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Abstract  29 

The effect of surface coating on the detachment of a complex microstructured food material, was 30 

investigated using an improved version of the millimanipulation device described by Ali et al. (2015 31 

Food & Bioproducts Processing, Vol. 93, 256-268). The test material was baked sponge cake batter, 32 

which contains approximately 27 vol% bubbles in a ‘continuous’ phase of emulsified oil in a flour/syrup 33 

suspension. Detachment in the dry state was studied for aluminium, 304 stainless steel and seven 34 

different fluoropolymer coatings. The surfaces differed in surface energy and roughness. The shear 35 

force required to detach baked cake, the work done, and the mass of residue remaining on the surface 36 

were measured. Virtually all samples detached by cohesive or mixed failure, where adhesion to the 37 

surface was stronger than or comparable with cohesive interactions within the cake. The shear force 38 

was almost independent of surface composition, energy and roughness, but strongly related to the oil 39 

content of the cake. The mass of residue was found to be linearly dependent on the calculated work of 40 

adhesion of oil to the surface in an aqueous environment. The quantitative findings are consistent with 41 

confocal microscopy images of uncooked batter contacting polar and non-polar surfaces which show 42 

very different oil spreading behaviour at the batter-substrate interface. The ability of oil to replace water 43 

from a surface is shown to be a key factor determining adhesion of these materials. 44 

 

Keywords Adhesion, cake, cleaning, cohesion, fouling, surface energy 45 

 

1  Introduction  46 

The adhesive properties of soft solids on surfaces are critical for many industrial and household 47 

applications. Whilst adhesion is desired in many applications, such as coating operations, in others the 48 

adhesion of unwanted species and their accumulation to form fouling deposits or their retention as 49 

residual soiling layers is an ongoing problem.  In the food sector the presence of such layers can reduce 50 

process efficiency and productivity. Their ability to harbour micro-organisms can compromise hygienic 51 
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operation, while cross-contamination (particularly in multi-product plant) can affect product quality or 52 

compromise batch integrity. Processes handling materials prone to adhere – which can be the product 53 

itself, as in heat exchanger fouling - are therefore subject to regular cleaning, monitoring and inspection.  54 

 55 

Adhesion can often be managed by controlling the surface morphology and composition (Detry et al., 56 

2010). Coatings and surface modifications can mitigate the initiation and build-up of deposits and/or 57 

promote the release of soil under certain conditions, facilitating cleaning (Mérian and Goddard, 2012). 58 

In the cleaning map of Fryer and Asteriadou (2009), the promotion of soil release from the substrate 59 

provides an alternative to the use of chemical and/or thermal energy which would otherwise be needed 60 

to remove complex soils with strong cohesive interactions. Promoting soil release (termed adhesive 61 

failure by Fryer and Asteriadou) would in effect move the soil to a less complex region on their map. 62 

 63 

Successful coatings can accrue long-term process cost savings (Gomes da Cruz et al., 2014) as well as 64 

improving safety and hygiene. 65 

 66 

Surface energy and work of adhesion 67 

The scientific principles underpinning adhesion and cohesive interactions are well established. In an 68 

aqueous environment the forces between a substrate and an adhering layer are determined by 69 

contributions from electrostatic, Van der Waals, and solvation forces (Israelachvili, 2010). Since many 70 

soiling layers are many microns thick (they are visible to the naked eye) cohesive interactions also 71 

determine how the layer responds to an imposed force.  72 

 73 

The surface topology and roughness play a role, by (i) determining the area available for interaction; 74 

(ii) controlling the interaction such as by the lotus leaf effect, where small, regular features modify the 75 

effective contact angle; and (iii) affecting the nature of the soiling layer, via the potential to promote 76 

nucleation (e.g. for crystallisation, see Junghahn, 1964, or condensation, see Zamuruyev et al., 2014), 77 

and mechanical interlocking. 78 

 79 

The surface tension of a liquid or the surface energy of a solid is classically treated as the sum of 80 

dispersion and polar forces, i.e. γ = γd + γp. Interfacial tensions obey the geometric mean ‘combination 81 

rules’ described by Fowkes (1963). For cases where both dispersive and polar interactions operate 82 

across the interface between medium 1 and 2 the interfacial tension is given by (Owens and Wendt, 83 

1969) 84 

)(2 21212112
ppdd            (1) 85 

Here, i is the surface tension between substance i and vacuum: the subscript for vacuum is omitted for 86 

convenience, as in many texts. Moreover,i,air  i. The thermodynamic work of adhesion in an 87 
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immersed system is estimated from the difference in total interfacial energy when adhering species 1 88 

wets a substrate 2 in medium 3. As outlined by Clint and Wicks (2001), for an oil (1) to adhere to a 89 

solid substrate (2) when immersed in water (3), the work of adhesion, W123 is given by 90 

121323123  W            (2) 91 

where γ23, γ13 and γ12 are the interfacial tensions between substrate/water, oil/sorrounding medium and 92 

oil/substrate, respectively. By combining Equations (1) and (2) it can be shown that 93 






  ppddppddppddW 3131323221213123 2      (3) 94 

Considering the relatively weak intermolecular interactions within and with a gas, for oil to attach to 95 

the same substrate when sorrounded by air, W123 collapses to 96 






  ppddW 212112 2            (4) 97 

The oil will exhibit a contact angle, β, which is related to the interfacial energies by the Young-Laplace 98 

equation. Equation (2) then gives 99 

)cos1(13123  W            (5) 100 

The above relationships can be applied readily when the surface is uniform and there is one adhering 101 

species.  102 

 103 

Food materials pose particular challenges when designing and predicting the performance of ‘non-stick’ 104 

coatings as a result of their multicomponent nature and heterogeneous microstructure. An aqueous 105 

solution may contain species which adsorb preferentially to different surfaces. Many foods feature 106 

emulsions with two liquid phases differing considerably in terms of hydrophobicity. This multiphase 107 

nature extends further with baked goods such as cake which may contain bubbles as well as solid 108 

components. This aspect, of variable microstructure and composition within a food material, is often 109 

neglected when considering adhesion to process surfaces. A priori prediction of adhesion of food 110 

materials is often, therefore, very approximate. Adhesion and removal behaviour of food and related 111 

structure products therefore have to be studied in situ, on the surface where they experience processing, 112 

under conditions which reflect those encountered during processing. 113 

 114 

Measurement methods and experimental studies 115 

Experimental techniques have been developed to study the adhesion or removal behaviour of complex 116 

soils on process surfaces. These can be categorised as applying a controlled or measured strain, or 117 

controlled stress, to the soil layer (Ali et al., 2015). Hydrodynamic approaches employ controlled (or 118 

estimated) shear stress conditions and monitor the response. Examples include the parallel plate flow 119 
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cell and fluid dynamic gauging. These approaches provide useful information for design and operation 120 

when fluid flow is used to remove soils, e.g. in cleaning-in-place operations.  121 

 122 

Controlled strain devices have been developed for studies at different length scales. Plynometers, which 123 

reproduce the rubbing action and frictional force imposed by hand cleaning, are used at the product 124 

length scale (Zorita et al., 2010). Nano/microscale measurements are now possible: Mayer et al. (2012) 125 

measured the force required to dislodge individual CaCO3 crystals with a bending-beam arrangement 126 

mounted in a scanning electron microscope chamber. 127 

 128 

Capturing the contributions from different components of a composite, microstructured soil requires 129 

investigation at intermediate length scales. Zhang and co-workers (e.g. Akhtar et al., (2010)) modified 130 

the micromanipulation technique originally developed to study deformation of cells (Zhang et al., 1991) 131 

to investigate the adhesive and cohesive behaviour of fouling layers. In micromanipulation a stainless 132 

steel probe is dragged through the deposit at a set height relative to the substrate at a defined speed. 133 

This allows the forces to be measured and their variation with height to be quantified. Ali et al. (2015) 134 

developed a variant of this method which they called ‘millimanipulation’ to study viscoplastic layers at 135 

larger length scales. Ashokkumar and Adler-Nissen (2011) reported a similar scraping device to 136 

investigate the adhesion of foodstuffs (pancake, turkey meat, carrots and sweet potato) fried on different 137 

surfaces. 138 

 139 

In the current work, three failure modes were observed which we label as adhesive, mixed, or 140 
cohesive (see  141 
Figure 1). The influence of adhesion and cohesion on removal behaviour were discussed by Hoseney 142 

and Smewing (1999): sticky substances are associated with high adhesive forces and low cohesive 143 

forces. Adhesive failure occurs if the adhesive forces at the interface are weaker than the cohesive forces 144 

within the deposited material: the cake separates cleanly from the substrate, leaving little or no residual 145 

material. Conversely, in cohesive failure, breakage occurs at a shear plane within the cake, leaving a 146 

residual layer across the circular area of contact. Mixed failure arises when both occur, which is 147 

associated with the substrate surface and/or test material being heterogeneous. Non-stick coatings 148 

should promote adhesive failure, for ease of cleaning or for removal by forces exerted during 149 

processing. 150 

 151 

Ashokkumar and co-workers (2011; 2010) evaluated the cleanability of different surfaces soiled by 152 

frying carrot, sweet potato, turkey meat and pancake at temperatures between 160 and 240°C with and 153 

without applying oil prior to frying. Their cleaning procedure involved water rinsing, soaking in 154 

cleaning solutions and scrubbing with different sponges. They reported significant effects of surface 155 

roughness on removal forces and amount of residue, which they related to bubble nucleation behaviour. 156 
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Smoother surfaces gave poorer removal performance. The pancakes studied in their frying experiments 157 

featured porous structures generated by high heat fluxes which promote boiling and rapid moisture loss 158 

on the heated surface. 159 

 160 

Cake is an aerated food product and is likewise generated by baking a three-phase material, the batter. 161 

The heat fluxes in baking are generally smaller and more uniform than in frying. During baking the air 162 

bubbles present are expanded by the change in temperature, evaporation and release of carbon dioxide 163 

from the degradation of baking soda. The ‘continuous phase’ is a multiphase dispersion, comprising an 164 

emulsion of oil droplets in a suspension of flour particles in a sucrose solution. During baking, the starch 165 

in the flour gelatinises and sets at higher temperatures to capture the structure (see Chesterton et al., 166 

2013). Whilst the characteristic sizes of surface active molecules and proteins are of order nanometres, 167 

flour particles, oil droplets and air bubbles have diameters of tens to several hundred micrometres. The 168 

material is therefore heterogeneous at different length scales and was chosen as a representative material 169 

to test the performance of non-stick coatings for the food industry. 170 

 171 

Coated baking trays are often used to minimise adhesion on baking lines. A new version of the 172 

millimanipulation device reported by Ali et al. (2015) is employed here which allows a wider range of 173 

forces to be studied. The removal characteristics of sponge cake prepared from a standard commercial 174 

cake mix were studied for seven different fluoropolymer (FP) coated stainless steel plates, as well as 175 

uncoated stainless steel and aluminium surfaces. The influence of surface topography as well as work 176 

of adhesion, evaluated using Equation (3), were investigated. The effects of cake formulation and 177 

baking time and were also studied and the findings are compared with the results reported for frying by 178 

Ashokkumar and co-workers (2010; 2011; 2012). 179 

 

2 Materials and methods 180 

2.1  Surfaces tested 181 

Table 1 is a summary of the surfaces investigated. The majority of substrate plates were 304 stainless 182 

steel with dimensions either (i) square, 5×5 cm, thickness 2 mm  (EN 1.4301 304, EN 10088-2 2R) or 183 

(ii) circular, 5 cm diameter, 1 mm thick (EN 1.4301 304, EN 10088-2 2B). Chemours supplied five 184 

different coated square and two coated circular substrates. Uncoated circular stainless steel and square 185 

aluminium alloy substrates were included as references, representing metals commonly used in bakery 186 

equipment. Surfaces were cleaned in dishwashing solution followed by rinsing with copious amounts 187 

of tap water. 188 

 189 

2.1.1 Surface energies 190 

The dispersive and polar surface energy components of the test surfaces were determined according to 191 

the Owens and Wendt (1969) model with water, formamide, ethylene glycol and dodecane. Twelve 192 
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contact angle measurements were taken for each liquid on each coating and the results are summarised 193 

in Table 2. PTFE-1 (used), SS and AL were strongly hydrophilic with surface energies more than twice 194 

the others. As expected, alongside with the other fully fluorinated coatings, the liquid based PTFE 195 

coating (PTFE-2) had a low total surface energy. Its dispersive and polar surface energy components 196 

are close to the values of γd = 17 mJ/m2 and γp = 0.6 mJ/m2 reported for PTFE by Clint and Wicks 197 

(2001). The non-zero polar component may arise from end-groups in the polymerisation reaction. The 198 

contact angle data were also analysed in terms of the van Oss et al. (1988) theory, which characterises 199 

the surface energy in terms of electron donor and acceptor sites. This indicated that electron donor 200 

components were dominant for all the surfaces tested (data not presented) and hence this theory was 201 

not used in the calculations as the system studied features no strong Lewis acid-acid or base-base 202 

repulsions.  203 

 204 

After baking, indelible marks were evident on the PTFE-1 plates (see Supplementary Material 1), which 205 

remained after repeated cleaning in detergent solution. Contact angle measurements on the stained areas 206 

revealed that polar interactions had increased two-fold, while dispersive interactions decreased. This 207 

change is consistent with degradation of the epoxy resin during baking: this material is known to 208 

degrade at 180 °C. 209 

 210 

2.1.2  Topology and roughness 211 

The surface topology was scanned at five positions on each surface with a Zygo NewView 200 212 

interferometer. The surface profile data were filtered with a 5×5 median filter and missing data were 213 

interpolated with a triangulation-based linear approach. Typical topology plots for each surface are 214 

shown in Figure 2. Both metal surfaces feature striations associated with machining and polishing. The 215 

arithmetic mean and root mean square roughness was calculated according to ISO 25178 are 216 

summarised in Table 1. Standard deviations were calculated on the basis of analysing the five profiles 217 

separately. 218 

 219 
2.2  Cake material 220 

A commercial cake mix (Betty CrockerTM Classic Vanilla Cake Mix) was used to generate cake test 221 

layers. Spray dried hen egg (internationalegg.co.uk) was used rather than fresh eggs to improve 222 

reproducibility. It was reconstituted with deionised water using a 12:37 mass ratio of egg powder to 223 

water. The typical ingredients of the cake mix and the spray dried egg as sold are given in Table 3. The 224 

total lipid content was varied between 6.11 wt% and 20.20 wt% by adding vegetable oil (100% rapeseed 225 

oil, Sainsbury’s supermarket) while maintaining the masses of all other ingredients constant (see Table 226 

4). The total constituent fractions of the cake batters were calculated by assuming that the fibre and salt 227 

fractions in the spray dried egg and the vegetable oil were negligible, as well as there being no water in 228 

the cake mix, egg powder and vegetable oil. The ingredients were combined in a large bowl with a 229 
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spatula, then whisked using a planetary mixer (KenwoodTM Chef KMC010) for 3 minutes at Setting 1 230 

(67 rpm) until a smooth consistency was achieved. The air volume fraction of the batter, air, calculated 231 

with Equation (6), was around 27 vol%. 232 

S
air




 1           (6) 233 

Here s is the density of the deaerated suspension, obtained by centrifuging 50 mL samples at 1200 g 234 

for 15 min. 235 

 236 

2.3 Confocal laser scanning microscopy 237 

To visualise how the lipids in the batter interact with test surfaces, an oil soluble dye (9 wt% loading: 238 

oil Red O, Sigma Aldrich, dye content ≥ 75%) was mixed with rapeseed oil and filtered with a 0.45 μm 239 

pore size syringe filter (Sartorius Stedim Minisart®) before adding it to the batter mix. The dyed batter 240 

was then applied using a 20 ml BDTM syringe to (polar) borosilicate and (non-polar) polyvinyl chloride 241 

acetate (PVCA) cover slips. Confocal laser scanning microscopy was conducted on a Leica TCS SP5 242 

microscope with an argon laser exciting the fluorophore at 514 nm, a 40 oil immersion lens (HCX PL 243 

APO 40 1.25-0.75 oil) and the pinhole set at 60.6 μm. 244 

 245 

2.4 Millimanipulation Device 246 

The millimanipulation tool shown in Figure 3 offered superior and more flexible performance than the 247 

device reported by Ali et al. (2015). The sample is moved (the probe (1) is effectively static) and the 248 

force is measured by the transducer (2; 0 − 10 N or 0 − 20 N HBM S2M). The force measured by the 249 

transducer is amplified by a ratio set by the position of the transducer on the tower (3). The axis (4) can 250 

move at a steady speed, up to 20 mm/s, or move then rest with a full step resolution of 5 µm. These 251 

tests featured a sharp bottom edge on the probe, reducing the resistance from any material underneath 252 

the probe. The sample may be tested immersed in a temperature controlled bath (5), in ambient air on a 253 

plain sample holder (6).  254 

 255 

Figure 4 (a) illustrates the millimanipulation action. A vertical blade is brought into contact with the 256 

layer (here, a small cake) and moved through the layer at a set speed, v. The voids in the structure render 257 

it compressible and the deformation induced by the blade motion (a combination of compliance and 258 

yield) detaches the cake in a complex fashion, often lifting it off at varying positions. This was overcome 259 

by baking cake samples in the holding ring device shown in Figure 4 (b and c). The test cake here is 260 

small compared to many baked products, starting as a short cylinder of batter with diameter, D, of 50 261 

mm and height 10 mm. The wall of the holder is constructed from polytetrafluoroethylene (PTFE) and 262 

a grid of 316 stainless steel 1 mm diameter rods in the lower section ensures that the strain is transmitted 263 

evenly through the base layer of the cake. The cake then detaches across the substrate/cake interface 264 
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when the ring is moved laterally by the millimanipulation blade. As shown in Figure 4 (b), a pin on the 265 

blade ensures that the shear force is applied at the base of the ring. The contribution from the area under 266 

the PTFE ring to the force measured, F, is negligible. The process is videoed with a digital microscope 267 

and the amount and distribution of any residual layer remaining on the substrate recorded by imaging 268 

and weighing. 269 

 270 

For experimental preparation the substrate plate and its test ring were each weighed before the latter 271 

was clamped onto the plate using three 51 mm fold-back clips. The compression provided by the clips 272 

prevented the ingress of batter beneath the ring which could result in an annulus of sticky material. 273 

11.00 ±0.05 g of cake batter was filled into the chamber thus formed using a 20 ml BDTM syringe. Care 274 

was taken to fill the gaps between the rods so that the cake batter covered the coated plate completely. 275 

The ‘mini-cakes’ were baked in a pre-heated Carbolite® oven at 180°C for 8 minutes, then left to cool 276 

for 30 minutes in a temperature-controlled room at 22 ±1 °C. The clamps were then removed and the 277 

combined mass of the plate, test ring and cake was measured. The mass of the cooled cake weighed 278 

9.37 g on average, representing a 15% mass loss on baking. Following millimanipulation testing the 279 

plate and any residual material was weighed and photographed. 280 

 281 

Figure 5 (a) shows a typical force profile during a steady shear test. The signal is filtered with a finite 282 

impulse response band-stop filter to remove 50 Hz noise. After contact with the probe, setting x = 0, the 283 

force increases linearly with displacement up to about 4 N, after which the increase is non-linear, 284 

reaching a peak and falling sharply as the majority of the connections within the cake and/or between 285 

the cake and the surface rupture. This suggests that the material contains elastic elements with a 286 

distribution of limiting strains. Detailed interpretation of these results in terms of microstructural models 287 

was not attempted. Subsequently, the force decreases sharply and approaches a steady value associated 288 

with friction as the sheared material moves over the fracture plane. The low friction coefficient of PTFE 289 

and the light-weight ring (the average mass of the rings was 20.2 g) reduced the frictional contribution 290 

from the ring to less than 0.05 N during manipulation testing (measured without cake present).  291 

 292 

The peak force Fmax is extracted from each force profile as indicated on the Figure and converted to the 293 

maximum shear stress, τmax, by dividing by the cake contact area. The breakage work per area (see 294 

Equation 7), Wb, is determined by calculating the work done (per unit area) from x = 0 to X, where X is 295 

the intercept on the x-axis of the projection of the tangent passing through the point of inflection, I, 296 

marked in Figure 5 (a): 297 



X

b Fdx
A

W

0

1
  .            (7) 298 
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Figure 5 (b) shows the force profile obtained by a second mode of testing, labelled relaxation testing. 299 

The probe was moved 1 mm and then held in place for 20 s, labelled interval I, before being moved a 300 

further 1 mm, followed by 20 s delay (interval II), and then a further 1 mm (and interval III). The force 301 

decays with a quasi-exponential trend in interval I, indicating a visco-elastic response of the material. 302 

The peak force after interval I is similar to the initial value, but the decay response is very different: this 303 

feature, and the small force peak after interval II, indicates that rupture at the shear plane is complete. 304 

Further consideration of such data and analysis are not presented here: this mode of operation affords 305 

new insights into the material behaviour. 306 

 307 

3 Results and Discussion 308 

3.1 Removal behaviour 309 

The majority of tests, on all surfaces and for all oil contents, featured cohesive or mixed failure (see 310 

Figure 1), leaving measurable amounts of residual material on the coated surface. This indicated that 311 

the strength of the adhesive interactions of the cake material with the surfaces was comparable or 312 

stronger than the cohesive interactions within the cake. The peak shear stress, τmax, and breakage work, 313 

Wb, should then both be influenced strongly by the forces required to disrupt the cake structure, and be 314 

less sensitive to the presence of a coating. The reverse would apply if the tests exhibited mostly adhesive 315 

failure. τmax and Wb showed a strong, positive correlation for all surfaces which confirms this hypothesis 316 

(see Supplementary Material 2). Cake with a high rapeseed oil content left lumps, a few mm in diameter, 317 

on the stainless steel surface. This indicates that the cohesive strength of the cake was weak compared 318 

to the material’s adhesion to the steel. Peak shear stress is used as the indicator of forces in subsequent 319 

plots. 320 

 321 

The effect of scraping speed, v, was investigated to see if this would promote a transition in breakage 322 

mechanism. Tests conducted with scraping speeds in the range 0.1 to 8 mm/s for the reference 323 

formulation on two fluoropolymer coated surfaces exhibited a logarithmic increase in max with v and 324 

no systematic difference in failure mode (data not reported). 325 

 326 

3.2  Effect of cake formulation 327 
Figure 6 and Table 5 indicate that the addition of oil reduces the cohesive strength of the cake. 328 
Figure 6 (b) shows that, with the exception of uncoated stainless steel, the peak shear stress decreases 329 

with increasing oil content up to about 8 wt% and is effectively constant thereafter. The similarity in 330 

trend for the remaining coatings and aluminium indicate that the contribution from surface properties 331 

is small by comparison, which is consistent with the hypothesis that max is determined by the cohesive 332 

strength of the cake material. 333 

 334 
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The max values for the PTFE-2 coating are twice as large as the other fluoropolymer coatings and 335 

decrease steadily with increasing oil content, unlike the other fluoropolymer coatings. This was the 336 

roughest surface tested, with Sa and Sq values of 2.3 m and 2.8 m, respectively, and maximum peak 337 

to valley distances of about 14 m. The latter distance is large enough to harbour smaller flour particles. 338 

The large max values are not, however, accompanied by high mres values, indicating that the large 339 

difference in surface roughness has caused a difference in the mechanical properties of the surface layer. 340 

 341 

A simple explanation for the difference in max behaviour for the two metals is not available. The 342 

measured surface energy components are similar. The uncoated stainless steel is significantly smoother 343 

than the aluminium (Table 1) but this cannot be readily linked to the presence of a maximum in the 344 

cohesive forces. The thermal diffusivity of the aluminium is approximately 20 that of the stainless 345 

steel so the aluminium surface would be expected to reach the oven temperature more quickly. 346 

Temperature-driven hardening at the surface would then be expected to be manifested by greater 347 

adhesive or cohesive strength on the aluminium plates. This is not evident, and the similarity of the 348 

aluminium results to most of the coated surfaces indicates that heat transfer through the metal plate is 349 

not a significant factor. The additional thermal resistance imparted by coating is therefore not important. 350 

Similarly, the thickness of the plate had little effect. 351 

 352 
Figure 6 (a) shows that the lipid content has a relatively small effect on the amount of residue with the 353 

exception of the uncoated stainless steel. The mres values for all PFA coatings and FEP-2 are effectively 354 

constant, while FEP-1 shows a minimum around 12 wt% oil.  Coating PTFE-1 gives mres values similar 355 

to aluminium, both exhibiting a decrease in mres with increasing cake oil content. The uncoated stainless 356 

steel results are again anomalous, giving values similar to the aluminium until 14 wt% and then a wide 357 

range of values at the highest oil loading. The anomalous datum of steel (20 wt% lipids), marked L, 358 

gave high mres and low max values compared to the other steel tests (see also Table 5). This suggests a 359 

lower cohesive strength than adhesive strength, and is thought to arise from the oil preferring not to wet 360 

the surface but remaining in the bulk material. 361 

 362 

The effect of surface energy on oil behaviour in the batter is demonstrated by the series of confocal 363 

microscopy images in 364 

Figure 7, obtained with the 8 wt% oil content formulation on transparent surfaces. No baking was done. 365 

In (a), the microscope cover slip is made of strongly polar borosilicate glass whereas in (b) it is made 366 

from non-polar PVCA. Some oil droplets are evident suspended in the bulk of the dough whereas others 367 

are adhering to the substrates. The oil does not wet the polar borosilicate glass readily, instead forming 368 

discrete droplets with sizes up to 20 μm. The contact angle measured from the image is around 130°. 369 

The work of adhesion is low, estimated as 5.2 mJ/m2 for an ideal system of rapeseed oil on borosilicate 370 
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glass when immersed in water. The contact angle calculated from Equation (5) was 154.2° (see Table 371 

2 for calculated oil-surface-water contact angles), which is comparable with the observed value. The 372 

difference is attributed to surface active components and the batter’s resistance to deformation. 373 

 374 

In contrast, the work of adhesion of the oil on PVCA in water was calculated to be 91.5 mJ/m2. The 375 

affinity for the oil to stay at the non-polar polymer is demonstrated by 376 

Figure 7 (b), where the oil wets the PVCA surface readily and spreads across the surface. The contact 377 

angle is around 25°, which compares favourably with the value of 41.5° calculated for oil on PVCA in 378 

water. Quantitative analysis of the fluorescence intensity data (see Supplementary Material 3) showed 379 

the oil content to be greatest at the interface, whereas on the borosilicate glass the maximum oil content 380 

was located approximately 5 m from the interface, which is consistent with the oleophobicity of the 381 

surface in an aqueous environment. 382 

 383 

3.3 Effect of surface roughness 384 

Surface roughness and surface energy have been reported to influence the performance of surface 385 

coatings. The influence of individual factors on mres and low max were quantified, for each oil content, 386 

and the Pearson correlation coefficients of the samples are presented in Table 6.  Multi-variate 387 

techniques were not attempted as the results are unlikely to offer deterministic insight. The peak shear 388 

stress data do not show a systematic dependency on any of the parameters tested, with the largest 389 

coefficient being 0.69. This is consistent with max being determined by forces involved in cohesive 390 

failure, which is expected to be determined chiefly by batter formulation rather than surface 391 

characteristics. Plots for peak shear stress over roughness for four batter formulations are provided in 392 

Supplementary Material 4. 393 

 394 

The correlation coefficients for mres for all oil contents studied show a very weak, negative correlation 395 

with Sa and Sq, indicating that there is little direct influence of surface roughness on the amount of 396 

residual layer. Similar findings were reported for bacterial adhesion on stainless steels by Detry et al., 397 

(2010). An estimate of roughness-related coverage can be obtained by assuming that the support ring 398 

slides across the top of the highest asperities. The residual mass can then be estimated from the peak-399 

to-valley dimension. This will be an overestimate. Taking the largest peak-to-valley value, 14 m with 400 

PTFE-2, and batter density of approximately 950 kg/m3, gives a coverage of 13 g/m2. This is smaller 401 

than all those measured, and indicates that mres is not determined by filling the surface features. The 402 

values measured on most of the coated plates, or 40-70 g/m2, correspond to a layer thickness of 40-70 403 

m, which is similar to the sizes of the structural components in the cake, i.e. the oil droplets (5-20 m) 404 

and flour particles. 405 

 406 
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3.3 Work of adhesion 407 

Table 6 reports a strong positive correlation between the residual mass and all three components of 408 
surface energy, particularly for p, for which correlation coefficients ranged from 0.87 to 0.97. This 409 
result is consistent with the postulation of mres being linked to oil wetting behaviour outlined above. A 410 
stronger, negative, correlation is evident when the surface energy components are combined in the 411 
theoretical work of wetting, W123.  412 
Figure 8 (a) illustrates that a high work of adhesion of the oil phase, and thus its tendency to wet the 413 

surface, deters cake retention. 414 

 415 

An explanation for this behaviour is that the surface coating determines whether the oil spreads readily 416 

across the surface or is present as discrete ‘islands’, resulting in different fractions of surface area in 417 

direct contact with the aqueous matrix. The cluster of smaller mres values in Figure 14 (a) belong to 418 

surfaces with 2312   , giving from Equations (2) and (5) an oil contact angle in water less than 90°, 419 

indicating the that oil will prefer to spread on the substrate. The baking time is too short for the oil to 420 

react to give a cohesive material (8 minutes at 180 C is not sufficient time to cause polymerisation of 421 

the oil: Ali et al. (2015) baked their lard layers for several hours), whereas the starch and proteins in the 422 

matrix undergo various transformations in this time. The oil thus tends to shear rather than rupture 423 

during testing, requiring a smaller shear force. Regions with high matrix contact will register higher 424 

peak force. It should be noted that the W123 values are calculated for simple oil-matrix-substrate 425 

interactions and do not account for the volume fraction of oil in the batter, which will determine the 426 

availability of oil to coat the surface. 427 

 428 

The results obtained for the 6.11 wt% lipid formulation, with no additional rapeseed oil, are presented 429 

in Figure 8 (b). This shows a similar trend but there is more scatter. In this case the lipids are palm fat 430 

and lipids present in the egg powder, a fraction of which are solid at room temperature. They are less 431 

mobile in terms of wetting and also provide stronger resistance to shear when tested at room 432 

temperature. 433 

 434 

3.4  Discussion 435 

Fluorocarbon-based coatings are often considered for ‘non-stick’ applications and many studies have 436 

demonstrated their effectiveness for food operations, including frying (Ashokkumar and Adler-Nissen, 437 

2011), thermal processing of milk (Gomes da Cruz et al., 2014) and handling caramel (Goode et al., 438 

2013). Goode et al. used atomic force microscopy to measure the adhesion forces between stainless 439 

steel or fluoro-coated glass (FCG) surfaces and (i) whey protein concentrate, (ii) sweetened condensed 440 

milk, and (iii) caramel, over the temperature range 30 to 90°C. The protein concentrate did not adhere 441 

strongly to FCG at temperatures up to 70°C but adhered strongly at 90°C, which is attributed to  442 

denaturation of the protein and a change in its surface characteristics. Caramel (containing 11 wt% fat) 443 

adhered strongly to FCG initially and this diminished with contact times longer than 1 s. The adhesion 444 
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of caramel at short contact times depended on temperature whereas it was independent of temperature 445 

at longer times, suggesting that the material involved in adhesion changed over the first second of 446 

contact. On the basis of the results presented above we postulate that this behaviour is related to the 447 

time for lipids to diffuse to and adsorb at the interface, replacing the polar aqueous phase. 448 

 449 

It is interesting to compare these findings with the results for pancake frying reported by Ashokkumar 450 

et al. (2010). Their pancake formulations differed noticeably from the cake mixes studied here (egg 451 

white 13.3%, egg yolk 8%, milk 40%, 33.3% wheat flour, 5.3% sugar: water content 59.3%, all w.b.). 452 

The contact angle data from Ashokkumar et al. (2012) were used to estimate W123 for adhesion of the 453 

frying oil to the different surfaces, assuming an initially aqueous environment. In cases where no oil 454 

was added prior to frying the cleaning rating (a visual characterisation) was independent of W123. When 455 

oil was added, the deposit was harder to clean from polar metallic surfaces (with lower W123 values), 456 

which is consistent with Figure 8. The simple work of adhesion model assumes a liquid water phase 457 

competing with the oil in wetting. During frying, bubble formation and water evaporation is likely to 458 

remove the water phase from the surface soon after contact, giving rise to the insensitivity to W123. 459 

 460 

The cake materials investigated here demonstrate that ‘non-stick’ behaviour is not universal and is 461 

determined by the surface and the soil properties. It would be a challenge to identify a surface which 462 

would resist attachment of this material as it contains three components with very different wetting 463 

characteristics: oil, a sugar/starch aqueous phase, and bubbles likely to have surface active proteins at 464 

the liquid/vapour interface. Moreover, the material is processed in such a way (semi-quiescent baking) 465 

that allows adhering components to migrate to the surface. 466 

 467 

Finally, it must be noted that cleaning with a liquid involves a new series of interactions and is likely to 468 

promote detachment of the residues, particularly if surfactants or shear forces are present. This 469 

highlights the difference between attachment and cleaning. 470 

 471 

4 Conclusions 472 

Millimanipulation was used to evaluate the performance of stainless steel plates coated with seven 473 

different fluorocarbon coatings, alongside stainless steel and aluminium surfaces as reference. The 474 

surface energies and topographies of the surfaces were measured and the former was used to calculate 475 

the ideal energy of wetting associated with oil attaching to the surface when immersed in water. 476 

 477 

The removal tests were conducted in the dry state. There was little influence of scraping speed and 478 

surface roughness, but a strong sensitivity to cake oil content. This result, alongside the observation of 479 

residual material on all surfaces, confirmed that the cake was a sticky material wherein adhesion to the 480 

surface was stronger that cohesive interactions within the cake matrix. The removal forces were mostly 481 
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sensitive only to oil content, whereas the amount of residue was found to be directly related to the oil’s 482 

work of adhesion to the surfaces assuming the cake matrix to resemble an aqueous environment.  483 

 484 

The ability of oil to replace water from a surface seems to be a key mechanism for a ‘non-stick’ surface 485 

in baking applications involving water and oil containing doughs or oil pre-wetted moulds. In frying, 486 

where the foodstuff is placed on a hot surface, the situation is different. High temperatures evaporate 487 

water too quickly to allow the oil to be driven to the surface by hydrophobic repulsion. 488 

 489 
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Nomenclature (alphabetical order) 495 

A  cake contact area       m2 496 

D  diameter of test cake       m 497 

F  force         N 498 

mres  residual mass per area       g/m2
 499 

Sa  roughness according to ISO 25178, arithmetic mean   m 500 

Sq  roughness according to ISO 25178, root mean square   m 501 

W  adhesion/breakage work per area     J/m2 502 

v  millimanipulation velocity      m/s 503 

x  scraping distance       m 504 

X  upper integration limit in calculation of breakage work per area  m 505 

 

Greek 506 

β, βows  contact angle, contact angle of oil in water on surface   ° 507 

γ  surface energy, surface tension      mJ/m2 508 

ρ, ρS  density of the cake batter, centrifuged cake batter (suspension)  kg/m2 509 

τ,max  shear stress, peak value       kPa 510 

ϕair  air volume fraction       1 511 

 

Subscripts 512 

1  adsorbing species 513 

2  surface 514 

3  surrounding medium 515 

b  breakage 516 

i  integer 517 

 

Superscripts 518 

d  dispersive 519 

p  polar 520 

 

521 
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Tables 586 

 587 

Table 1: Summary of surfaces studied. Sa and Sq are, respectively, the arithmetic mean and root mean 588 

square roughness of the substrates. ± indicates standard deviation.  589 

 590 

Name Symbol Shape Thickness  

(mm) 

Surface  Sa  

(nm) 

Sq  

(nm) 

SS  circular 1 stainless steel; EN 1.4301 

304, EN 10088-2 2B 

65 ±9.6 90 ±17 

AL  square 1 aluminium alloy 351 ±31 425 ±37 

PFA-1  circular 1 liquid based 

perfluoroalkoxy alkane 

(PFA) 

1447 ±205 1760 ±240 

PFA-2  square 2 powder based PFA 490 ±47 610 ±58 

PFA-3  square 2 liquid based PFA 560 ±67 700 ±80 

FEP-1  circular 1 liquid based fluorinated 

ethylene propylene (FEP) 

380 ±54 470 ±65 

FEP-2  square 2 liquid based FEP 380 ±78 480 ±92 

PTFE-1  square 2 epoxy resin with 

dispersed polytetra-

fluoroethylene (PTFE) 

particles 

740 ±73 960 ±110 

PTFE-2  square 2 liquid based PTFE 2290 ±310 2810 ±290 

 591 

 592 
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Table 2: Equilibrium contact angle, , measured at 20 °C, and surface energy components calculated from the Owens and Wendt (1969) approach. ± indicates 593 

95 % confidence interval of the mean. Liquid parameters taken from (van Oss et al., 1992). ows is the contact angle for rapeseed oil (γd = 33.8 mJ/m2, 594 

γp ≈ 0 mJ/m2; Esteban et al., (2012) in water (γd = 21.8 mJ/m2, γp = 51.0 mJ/m2) on the surface calculated from Equation (5). Angles reported to one 595 

decimal place. 596 

 597 
Liquid 

 

γd (mJ/m2) 

γp (mJ/m2) 

 

water 

21.8 

51.0 

 

formamide 

39.0 

19.0 

ethylene 

glycol 

29.0 

19.0 

 

dodecane 

25.4 

0.0 

 

 

Surface energy 

 (mJ/m2) 

 

 

ows 

Surface  (°) γd γp (°) 

SS 64.3 ±1.9 61.5 ±2.0 51.8 ±2.9 4.0 ±0.9 18.4 ±5.2 21.0 ±5.9 98.8 

AL 57.6 ±8.8 67.6 ±8.2 41.2 ±2.6 5.1 ±1.4 18.8 ±6.6 20.8 ±7.4 108.0 

PFA-1 105.4 ±5.3 93.4 ±3.3 90.7 ±2.6 37.9 ±1.3 17.2 ±3.6 0.7 ±0.8 45.1 

PFA-2 110.3 ±1.8 90.4 ±1.8 94.7 ±0.7 43.0 ±0.8 17.6 ± 2.0 0.2 ± 0.2 36.4 

PFA-3 108.2 ±2.0 92.8 ±3.5 91.8 ±1.5 44.6 ±1.2 16.7 ± 2.1 0.5 ± 0.4 42.5 

FEP-1 98.0 ±3.1 93.5 ±1.3 91.0 ±1.5 37.6 ±1.8 15.2 ±3.9 2.1 ±1.6 58.6 

FEP-2 108.4 ±1.1 92.9 ±4.0 92.6 ±1.3 41.6 ±3.3 17.2 ± 2.2 0.4 ± 0.3 40.4 

PTFE-1 81.1 ±3.5 70.1 ±2.8 65.7 ±2.9 19.3 ±7.3 20.8 ± 3.2 7.2 ± 2.0 77.9 

PTFE-1 used 63.0 ±4.9 63.7 ±3.7 61.4 ±4.0 15.4 ±3.9 18.0 ± 5.5 17.3 ± 5.7 101.7 

PTFE-2 106.9 ±4.7 96.3 ±2.0 96.3 ±3.0 38.1 ±2.6 16.2 ±3.8 0.5 ±0.7 42.6 

borosilicate glass slip 11.3 ±1.13 9.7 ±0.69 8.4 ±0.16 0 ±0a 20.5 ±4.7 45.6 ±7.5 154.2 

PVCA slip 103.8 ±0.37 83.9 ±0.96 79.5 ±3.0 25.2 ±1.1 22.3 ±1.2 0.5 ±0.2 41.5 

a contact angle too small to identify, set to zero 

  598 



21 

 

Table 3: Ingredients and constituents of cake mix and spray dried egg, taken from packaging. 599 
 600 
Betty CrockerTM Classic Vanilla Cake Mix 

Ingredients: sugar, wheat flour, palm fat, 

raising agents: monocalcium phosphate, 

sodium bicarbonate, modified corn starch, salt, 

Emulsifiers: propane- 1, 2-dial esters of fatty 

acids, mono-diglycerides of fatty acids, 

Flavouring, Stabiliser: Xanthan gum 

Constituent fraction (wt%) 

Fat 7.8 (of which 4.1 are saturates) 

Carbohydrates 79.3 (of which 47.1 are sugars) 

Fibre 1.4  

Protein 5.1  

Salt 1.6  

Spray dried hen egg   

Ingredients: Pasteurised and spray dried hen 

eggs 

Constituent fraction (wt%) 

Fat 42 

Carbohydrates 5 

Protein 46 

  601 
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Table 4: Ingredients and total constituent fractions of the cake batter recipes used. Bold text indicates 602 

preparation according to the recipe on the packaging. 603 
 604 

Ingredient  

Cake mix (g) 135.00 

Egg powder (g) 13.96 

Deionised water (g) 118.94 

Vegetable oil (g) 0.00 5.47 11.16 17.10 23.30 29.77 60.47 

Mass fraction in batter (all in wt%) 

lipids  6.11 8.00 9.87 11.75 13.63 15.51 20.20 

carbohydrates  40.22 39.42 38.61 37.81 37.00 36.20 32.81 

fibre  0.71 0.69 0.68 0.66 0.65 0.64 0.57 

protein  4.96 4.87 4.77 4.67 4.57 4.47 4.05 

salt  0.81 0.79 0.77 0.76 0.74 0.73 0.66 

water  44.40 43.51 42.62 41.73 40.85 39.96 36.22 

605 
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Table 5: Photos of typical residue left on the substrates after Millimanipulation for four different total lipid fractions. Anomalous case where lumps of cake 606 

were left on SS plates at 20.2 wt% lipid is shown. Numbers are average residue masses in g/m2 and ± indicate standard errors. 607 

  Substrate (residue masses in g/m2) 

  SS AL PFA-1 PFA-2 PFA-3 FEP-1 FEP-2 PTFE-1 PTFE-2 

L
ip

id
 f

ra
ct

io
n
 (

w
t%

) 

6.11 

 
169 ±2.7 

 
149 ±5.9 

 
42 ±9.9 

 
37 ±14.0 

 
69 ±9.6 

 
80 ±16.9 

 
66 ±11.6 

 
133 ±2.7 

 
106 ±18.6 

8 

 
143 ±5.6 

NA 

145 ±7.5 
 

43 ±5.2 

NA 

37 ±8.2 

NA 

62 ±7.5 
 

72 ±2.5 

NA 

48 ±4.6 

NA 

130 ±7.0 

NA 

53 ±11.6 

13.63 

 
109 ±7.0 

 
119±10.3 

 
32 ±3.0 

 
34 ±11.9 

 
60 ±5.1 

 
54 ±9.5 

 
58 ±2.7 

 
121 ±6.8 

 
61 ±5.3 

20.2 

 
127 ±13.8 

 
115±8.3 

 
38 ±5.0 

 
32 ±4.6 

 
61 ±9.6 

 
80 ±3.2 

 
60 ±7.6 

 
96 ±7.6 

 
56 ±0 

 

 
265 (lumps) 

 608 
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 609 
Table 6: Sample Pearson correlation coefficients between surface properties and residual mass and 610 

maximum shear stress for different total lipid contents. Coefficients in bold indicate highest 611 

correlation for a specific lipid content. 612 

 613 

 mres (g/m2) τmax (Pa) 

Lipid content 6.11 8 13.63 20.2 6.11 8 13.63 20.2 

γ 0.87 0.97 0.93 0.88 -0.038 0.0023 0.36 -0.072 

γd 0.62 0.67 0.60 0.60 -0.33 -0.20 0.48 -0.38 

γp 0.87 0.97 0.95 0.88 0.014 0.036 0.32 -0.017 

W123 -0.89 -0.99 -0.95 -0.91 0.0041 -0.072 -0.33 0.037 

Sa -0.22 -0.43 -0.33 -0.49 0.69 0.63 0.15 0.67 

Sq -0.21 -0.42 -0.33 -0.48 0.68 0.63 0.14 0.67 

Substrate thickness -0.31 -0.41 -0.17 -0.46 0.12 -0.044 -0.17 0.27 

  614 
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Figures 615 

 616 

 617 

 618 

Figure 1: Schematic of the failure modes encountered in experiments.  619 
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 620 
Figure 2: Filtered and interpolated substrate surface topologies. Height scale differs between 621 

substrates. 622 
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 623 
 624 

Figure 3: Schematic of the millimanipulation device. Components not shown: axis controllers and force 625 

transducer amplifier. 626 

  627 



28 

 

(a) 628 

 629 

(b) 630 

 631 

(c) 632 

 633 

 634 

Figure 4: Millimanipulation of baked cake (a) without and (b) with support ring. Dotted line in (a) 635 

shows the cake lifting up, which is prevented in (b) by the support ring detailed in (c) ensuring 636 

a defined fracture plane.  637 
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(a) 638 

 639 
(b) 640 

 641 

Figure 5: Typical millimanipulation force profiles for shearing of baked cake (PFA-2, 6.11 wt% total 642 

lipids). (a) standard test at v = 1 mm/s: I marks the point of inflection and X shows the limit of 643 

integration to obtain the breakage work with Equation (7). (b) Relaxation test: Inset shows 644 

probe motion history, 1 mm/s, 1 mm scrape interval, 20 s stop period.  645 
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 646 

 647 
 648 

 649 

Figure 6: Effect of lipid content on (a) residue coverage, and (b) and peak shear force, for nine surfaces. 650 

Some markers are offset in lipid content for clarity and connecting lines are reading aids. Datum 651 

labelled L indicates anomalous data where lumps of cake were left on SS plates. Legend labels 652 

(c) and (m) indicates cohesive and mixed failure, respectively. Error bars show ±1 standard 653 

error. 654 
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 656 

 657 

Figure 7: Orthogonal section images obtained by CSLM of cake dough with 8 wt% total lipids on (a) 658 

borosilicate glass and (b) PVCA cover slips. Red indicates lipids labelled with Oil Red O. 659 

  660 

(a) (b) 
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 661 

 662 

Figure 8: Effect of work of adhesion on residual mass of cake remaining on surface after testing, for (a) 663 

cakes containing additional rapeseed oil, total lipid fraction 8, 13.63 or 20.02 wt%, and (b) 664 

cakes with no added oil, containing higher melting point lipids from the cake mix (palm fat) 665 

and egg powder amounting to 6.11 wt% lipids. W123 was calculated using Equation (3) with 666 

solid surface energy components from Table 2, oil parameters (γd = 33.8 mJ/m2, γp = 0 mJ/m2) 667 

and water parameters (γd = 21.8 mJ/m2, γp = 51.0 mJ/m2). Symbols given in Table 1. 668 
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Supplementary material 1 671 

(a) (b) 

  

 672 

Figure S1: Photographs of PTFE-1 (a) before baking, and (b) cleaned, after first bake. 673 

  674 
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Supplementary material 2 675 

 676 

 677 

Figure S2: Relationship between peak shear stress and breakage work per unit area for different surfaces 678 

and oil contents. Legend labels (c) and (m) indicate cohesive or mixed failure. Black triangle 679 

labelled with L at 6 J/m2 indicates anomalous data where lumps of cake were left on SS plates. 680 

Error bars show ±1 standard error.  681 
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Supplementary material 3 682 

 683 

 684 
 685 

Figure S3: Distribution of fluorescent material (rapeseed oil dyed with Oil Red O) in the plane paralled 686 

to the surface of the cover slips in Figure 11. Scan area 390 x 390 μm. The positions are 687 

approximate. The fluorescence intensity was evaluated for each case by calculating the 688 

arithmetic mean of intensity values at all locations scanned in the plane a distance z from the 689 

surface, then dividing the mean by the highest value obtained for that case.  690 
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Supplementary material 4 691 
 692 

 693 

 694 

 695 

Figure S4: Effect of root mean square surface roughness on peak shear stress for (a) 6.11 wt%, (b) 8 696 

wt%, (c) 13.63 wt% and (d) 20.02 wt% lipids. Symbols given in Table 1. 697 
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