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Abstract

The search for novel hardware beyond the traditional von Neumann architecture has given
rise to a modern area of unconventional computing requiring the efforts of mathematicians,
physicists and engineers. Many analogue physical systems, including networks of nonlinear
oscillators, lasers, condensates, and superconducting qubits, are proposed and realised to
address challenging computational problems from various areas of social and physical
sciences and technology. Understanding the underlying physical process by which the system
finds the solutions to such problems often leads to new optimisation algorithms. This thesis
focuses on studying gain-dissipative systems and nature-inspired algorithms that form a
hybrid architecture that may soon rival classical hardware.

Chapter 1 lays the necessary foundation and explains various interdisciplinary terms that
are used throughout the dissertation. In particular, connections between the optimisation
problems and spin Hamiltonians are established, their computational complexity classes are
explained, and the most prominent physical platforms for spin Hamiltonian implementation
are reviewed.

Chapter 2 demonstrates a large variety of behaviours encapsulated in networks of polariton
condensates, which are a vivid example of a gain-dissipative system we use throughout the
thesis. We explain how the variations of experimentally tunable parameters allow the
networks of polariton condensates to represent different oscillator models. We derive analytic
expressions for the interactions between two spatially separated polariton condensates and
show various synchronisation regimes for periodic chains of condensates. An odd number of
condensates at the vertices of a regular polygon leads to a spontaneous formation of a giant
multiply-quantised vortex at the centre of a polygon. Numerical simulations of all studied
configurations of polariton condensates are performed with a mean-field approach with some
theoretically proposed physical phenomena supported by the relevant experiments.

Chapter 3 examines the potential of polariton graphs to find the low-energy minima of
the spin Hamiltonians. By associating a spin with a condensate phase, the minima of the XY
model are achieved for simple configurations of spatially-interacting polariton condensates.
We argue that such implementation of gain-dissipative simulators limits their applicability
to the classes of easily solvable problems since the parameters of a particular Hamiltonian
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depend on the node occupancies that are not known a priori. To overcome this difficulty,
we propose to adjust pumping intensities and coupling strengths dynamically. We further
theoretically suggest how the discrete Ising and n-state planar Potts models with or without
external fields can be simulated using gain-dissipative platforms. The underlying operational
principle originates from a combination of resonant and non-resonant pumping. Spatial
anisotropy of pump and dissipation profiles enables an effective control of the sign and
intensity of the coupling strength between any two neighbouring sites, which we demonstrate
with a two dimensional square lattice of polariton condensates. For an accurate minimisation
of discrete and continuous spin Hamiltonians, we propose a fully controllable polaritonic
XY-Ising machine based on a network of geometrically isolated polariton condensates.

In Chapter 4, we look at classical computing rivals and study nature-inspired methods
for optimising spin Hamiltonians. Based on the operational principles of gain-dissipative
machines, we develop a novel class of gain-dissipative algorithms for the optimisation of
discrete and continuous problems and show its performance in comparison with traditional
optimisation techniques. Besides looking at traditional heuristic methods for Ising minimisa-
tion, such as the Hopfield-Tank neural networks and parallel tempering, we consider a recent
physics-inspired algorithm, namely chaotic amplitude control, and exact commercial solver,
Gurobi. For a proper evaluation of physical simulators, we further discuss the importance
of detecting easy instances of hard combinatorial optimisation problems. The Ising model
for certain interaction matrices, that are commonly used for evaluating the performance of
unconventional computing machines and assumed to be exponentially hard, is shown to be
solvable in polynomial time including the Mobius ladder graphs and Mattis spin glasses.

In Chapter 5 we discuss possible future applications of unconventional computing plat-
forms including emulation of search algorithms such as PageRank, realisation of a proof-of-
work protocol for blockchain technology, and reservoir computing.
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2 Introduction: Systems for unconventional computing

1.1 Nonlinear physical systems

We live in a world dominated by information. Systems that enable faster information
processing and decision making are becoming more integrated into our daily lives. This
data-intensive science relies on continual improvements in hardware for solving ever growing
in number of variables and constraints optimisation problems. Digital electronics can no
longer satisfy this trend as exponential hardware scaling (Moore’s law) and the von Neumann
architecture are reaching their limits [1, 2].

Looking beyond the traditional computing one turns to physical platforms that with
their superior speed and reconfigurability and internal parallel processing can provide faster
alternatives to solving a specialised class of nonlinear problems. Despite a number of physical
systems that were proposed as quantum or analogue simulators and further elucidated in
active applied research, significant challenges still remain before scalable analogue processors
can be realised and show the superior performance in comparison with the von Neumann
computing architecture. Over the years, various unconventional computing techniques
were proposed that enable simultaneous communication, computation, and memory access
throughout their architecture with the purpose to alleviate the device and system architectural
challenges faced by conventional computing platforms.

Neuromorphic computing based on neural networks promises to make processors that
use low energies while integrating massive amounts of information. Quantum annealer
devices promise to find the global minimum of a combinatorial optimisation problem faster
than classical computers. Physical (natural) systems aim to become analogue machines
by bridging the physics of a particular system with hardware platforms to enhance the
performance of machine learning algorithms.

A central challenge is in the development of mathematical models – system-inspired com-
puting – linking physical platforms to models of complex analogue information processing.
Among such models, those based on principles of neural networks and quantum annealing
are perhaps the most widely studied.

A large class of problems that can be solved on physical platforms includes nonlinear
programming problems. They seek to minimise some nonlinear objective function E(x) of
real or complex variables x subject to a series of constraints represented by equalities or
inequalities. Numerous applications in social sciences and telecommunications, finance and
aerospace, biological and chemical industries can be described in this basic framework [3–5].

Nonlinear optimisation problems are notoriously difficult to solve, and often involve
specialised techniques such as genetic algorithms, particle swarm optimisation, simulation
and population annealing. Around the vicinity of the optimal solution nonlinear optimisation
problems are quadratic to second order, and therefore, quadratic programming for minimising
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quadratic functions subject to linear constraints is a usual simplification to such problems
that can be used with a wide array of applications. Quadratic programming occurs in various
machine learning problems, such as the support vector machine training and least squares
regression. At the same time, quadratic programming and other nonlinear optimisation
problems can be mapped to spin Hamiltonians which can be emulated by real physical
systems: the degrees of freedom x become ‘spins,’ the cost function E(x) is a ‘Hamiltonian’
that specifies the interaction pattern between spins. In this Chapter we discuss two possible
ways by which the system can find the optimal solution – the ground state of the corresponding
spin Hamiltonian – depending on the nature of the system.

The system in thermodynamic equilibrium may find the optimal solution by quantum
annealing which is executed with the time-dependent Hamiltonian

H(t) = (1− t
τ
)H0 +

t
τ

Hobjective, (1.1)

where H0 is the initial trivial Hamiltonian whose ground state is known, and Hobjective is the
final Hamiltonian at t = τ which encodes an original objective function E(x). If the system
is in thermal equilibrium at all times then it stays close to the ground state, as Hamiltonian
parameters are adiabatically varied. A linear time dependence in Eq. (1.1) is assumed for
simplicity but more complex annealing schedules can be used. The time τ for obtaining the
result of optimisation is much larger than that defined by the inverse of the spectral gap [6].
When spectral gap is large, the coupling to the environment helps the annealer by cooling
the system towards its ground state, however, as the system becomes larger and the spectral
gap shrinks (typically exponentially fast with the system size) the excited states lead to large
errors at the same time slowing down the annealing procedure.

Non-equilibrium systems rely on a different principle of approaching the ground state
from below rather than via quantum tunnelling during the adiabatic annealing. The principle
of the gain-dissipative simulator is based on a two-stage process: gain increase below the
threshold and the coherence of operations at the threshold. Ramping up the gain allows
system to overcome its linear losses and to stabilise by the nonlinearity of the gain saturation.
The emergent coherent state minimises the losses and, therefore, maximises the total number
of particles as it will be explained further below, which leads to minimising a particular
functional that can be written as the objective spin Hamiltonian. Close to the threshold, the
resulting evolution of the system elements resembles the dynamics of Hopfield networks
which were shown to be able to solve quadratic optimisation problems more than thirty
years ago [7, 8]. Various modifications of Hopfield networks were proposed and studied [9],
however, the optimisers based on Hopfield networks were surpassed by other computational
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methods. This is largely due to the high connectivity between neurons that neural networks
require and the concomitant time it takes to evolve large networks on classical hardware.
The recent interest in Hopfield networks re-emerged as it became possible to create them in
analogue physical systems such as electronic circuits or photonic neural networks. Photonic
systems have an advantage over their electronic counterparts due to the picosecond to
femtosecond time scale of their operation and as hundreds of high bandwidth signals can flow
through a single optical waveguide. This means that a photonic implementation of Hopfield
networks as optimisers can have a large dimensionality and dense connectivity as well as a
fast convergence time. However, the evolution of Hopfield networks does not necessarily
lead to the optimal solution.

In this Chapter we review recent progress in building the analogue devices that implement
either quantum annealing or gain-dissipative principle in their architecture.

1.2 Spin Hamiltonians

The majority of optimisation problems are computationally impractical for traditional com-
puters with classic examples of a so-called “hard optimisation task” being the travelling
salesman problem, the dynamic analysis of financial markets, the prediction of new chemical
materials, and machine learning applications [10]. Mathematically, it is possible to refor-
mulate many of these optimisation problems from vastly different areas into the problem of
finding the ground state of a particular spin Hamiltonian with discrete or continuous degrees
of freedom. Throughout this Chapter, we will refer to this spin Hamiltonian optimisation
simply as solving spin model. The spin Hamiltonian can be emulated with a given simulator,
e.g. solid-state system, that would need to have an easy mapping of the variables of the
desired Hamiltonian into the elements (spins, currents etc.) of the simulator, independently
tunable short and long range interactions between them, and would allow one to perform
measurements to obtain the answer with the required precision. Such spin model Hamiltoni-
ans are experimentally challenging to implement and control but their possible advantageous
performance over classical computers, which struggle solving sufficiently large problem sizes,
leads to an intensive search for a superior simulator. Such simulators have been proposed and
realised to a various extent in disparate physical systems. Among these systems, two classes
of spin Hamiltonians are more common: Ising and XY Hamiltonians. For instance, the Ising
Hamiltonian is widely used for a vast variety of hard discrete combinatorial optimisation
problems, so that travelling salesman, graph colouring, graph partitioning, and others can be
mapped into it with a polynomial overhead [11]. This model is formulated for N classical
“spin” s j that take discrete values {−1,1} to minimise the quadratic unconstrained binary
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optimisation (QUBO) problem:

min −
N

∑
i, j=1
i< j

Ji jsis j +
N

∑
i=1

hisi subject to si ∈ {−1,1} (1.2)

where hi represents external (magnetic) field. This term can be incorporated in J matrix by
considering N +1 spins and thus will be omitted. Experimental realisation of the nonlinear
terms beyond quadratic in the Ising Hamiltonian would lead to a k-local spin Hamiltonian with
k > 2 and would allow for a direct mapping of polynomial unconstrained binary optimisation
(PUBO) problems including Max-SAT [12] or number factorisation [13]:

min −
N

∑
i1,i2,...ik

Qi1,i2,...il ,...,iksi1si2...sil ...sik subject to sil ∈ {−1,1}. (1.3)

In the XY model “spins” are continuous s j = cosθ j + i sinθ j and the corresponding quadratic
continuous optimisation (QCO) problem can be formulated as

min− ∑
i< j

Ji jsi · s j = min−∑
i< j

Ji j cos(θi −θ j) subject to θi ∈ [0,2π). (1.4)

When possible phases θ j are limited to discrete values 2π/n with an integer n > 2 the model
(1.4) recovers the n-state Potts model (Clock model) with applications in protein folding
[14].

QCO, QUBO, and PUBO problems are all examples of NP-hard problems. The corre-
sponding spin models are universal. The connection between these notions are detailed in
the next section.

1.3 P, NP, NP-complete problems

The computational complexity of a problem can be revealed by looking at the dependence of
the problem size on time or the number of operations required to solve it. In a simple case
of such polynomial dependence, i.e. when a polynomial time algorithm exists, a problem
belongs to a P class. If a polynomial time algorithm of finding a solution is not known but
there exists a polynomial algorithm for verifying a solution when presented, then a problem
belongs to non-deterministic polynomial-time (NP) class that clearly includes the P class.
Whether P = NP is true or not is a major unsolved problem in computer science although
it is widely believed to be untrue [15]. Most difficult decision problems in NP are called
NP-complete. These problems are equivalent in a sense that either all of them or none of
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them admit a polynomial-time algorithm. Examples include the travelling salesman problem,
spin glass models, and integer linear programming. A problem is called NP-hard if the
existence of an efficient algorithm for its solution implies the existence of such an algorithm
for all the NP-complete problems.

In general, if a decision problem with a yes or no answer, e.g. does a particular Ising
Hamiltonian have a ground state energy less than some value, is NP-complete then its
corresponding optimisation problem, e.g. what is the ground state energy of this Ising
Hamiltonian, is said to be NP-hard meaning that NP-hard problems are not any easier to
solve than the corresponding NP-complete decision problems. The computational complexity
of the Ising model on finite lattices has been studied before [16] where the two-dimensional
Ising model with a magnetic field and equal antiferromagnetic couplings has been shown
to be NP-hard for planar graphs. In addition, NP-hardness was demonstrated for the three-
dimensional Ising model with nearest neighbour interactions and coupling strengths from
{−1,0,1} [16]. Consequently, the above mentioned hierarchy of complexity classes allows
one to conclude the impossibility of existence of a polynomial algorithm for computing the
ground state energy of the Ising model without the existence of a polynomial algorithm for
all NP-complete problems.

The existence of universal spin Hamiltonians has been established. Universality means
that all classical spin models with any range of interactions can be reproduced within such
a model, and certain simple Hamiltonians such as the Ising model on a square lattice with
transverse fields and nearest neighbour interactions are universal [17]. Thus, due to NP-
hardness of the Ising model, there should exist a polynomial time mapping of many practically
relevant NP-complete problems to the Ising Hamiltonian, whose decision version solves the
NP-complete problem of interest. The mapping of various NP problems, including Karp’s 21
NP-complete problems [18], to Ising models with a polynomial overhead was demonstrated
[11]. For example, the travelling salesman problem for N cities, that are connected with
weighted edges wuv ≥ 0 from the set E (distances between cities), can be formulated as the
following Ising problem of size N2:

HTSP = A
N

∑
i=1

(
1−

N

∑
v=1

xv,i

)2

+A
N

∑
v=1

(
1−

N

∑
i=1

xv,i

)2

+A ∑
(uv)/∈E

N

∑
i=1

xu,ixv,i+1

+ B ∑
(uv)∈E

wu,v

N

∑
i=1

xu,ixv,i+1. (1.5)

Each spin xv,i ∈ {0,1} in Eq. (1.5) represents the vertex v and its order i in a path. All valid
routes in this representation are regulated by the first three terms: each city should be in the
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route (first term) and should appear in it only once (second term), any adjacent cities in the
route should be connected (third term), while the search for the optimal route is realised by
minimising the sum of weights of all cities in a route (forth term). The reasonable choice
of constants A and B (e.g. A should be big enough with respect to B > 0) guarantees that
only the space of valid routes is explored. Reshaping this two-dimensional spin matrix with
elements xv,i to a spin vector of size N2 allows one to recover the coupling matrix J and
magnetic field h to formulate the corresponding Ising Hamiltonian. The size of the Ising
problem can be reduced to (N − 1)2 by fixing a particular city to be the first in the route.
Note, that the Hamiltonian HTSP can represent both directed and undirected graphs, and the
generalisation for the cycles optimisation problem is straightforward. We also note that a
polynomial overhead does not always apply and some combinatorial optimisation problems
can be mapped to the Ising model of the same size N. For example, the maximum cut
(MaxCut) problem

max
S+,S−

∑
i∈S+, j∈S−

wi j (1.6)

seeks for the cut of a graph into two subsets with a largest sum of their connecting weighted
edges. By assigning +1 and −1 spins to all vertices in subsets S+ and S−, respectively, this
optimisation problem can be formulated as

max
si

1
2 ∑

i< j
wi j(1− sis j) =

1
2 ∑

i< j
wi j +min

si

1
2 ∑

i< j
wi jsis j (1.7)

and thus a maximum cut of any graph can be converted to minimisation of the corresponding
Ising Hamiltonian with the coupling matrix Ji j =−wi j with an addition of an offset. A well-
known standardised set of MaxCut type of problems often serve as a metric for comparison
of newly proposed simulators and algorithms [19–21].

Another example of a universal spin model is the XY model which is directly related to
the notoriously hard to solve phase retrieval problem. The problem’s objective is to recover a
general signal (or image) from the magnitude of its Fourier transform [22–24]. This problem
arises from the fact that the signal detectors can usually record only modulus of the diffraction
pattern, therefore, losing the information about the phase of the optical wave. Mathematically,
one needs to recover a signal x ∈Cm from the amplitude b = |Ax|, where A ∈Cn×m, b ∈Rn.
Then the phase recovery problem [25] can be formulated as:

min
x j,ui

∑
i

(
∑

j
Ai jx j −biui

)2

(1.8)
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where u ∈ Cn is a phase vector that satisfies Ax = diag(b)u, |ui| = 1 for i = 1,n. This
optimisation problem can be further rewritten as

min∑
i j

Mi juiu j subject to |ui|= 1, i = 1,n, (1.9)

where M = diag(b)(I−AA†)diag(b) is the Hermitian matrix, I is the identity matrix, and
A† is the Moore-Penrose pseudoinverse of a matrix A.

It is important to note that when we refer to a spin problem as NP-complete we understand
that for some specific coupling matrix J (‘problem instances’) finding the solution can be easy
(belong to P class). The term NP-completeness reflects worst case behaviour and may allow
a polynomial time to solution for most instances on average. This leads to the cornerstone
question of how to distinguish hard instances from simple ones. The answer is especially
important for the rivalry between classical computing machines and unconventional hardware
which have to compete on problems of known complexity. It is believed that the way to create
“hard” instances for spin Hamiltonians resides at the intersection of computational complexity
and physics, e.g. the hardness of problems can be connected to the existence of a first-order
phase transition in a system (see [26] and references therein). If an instance is indeed hard
then it would be difficult to solve even for a medium size on a classical computer since the
number of operations grows as an exponential function with the matrix size. Thus, the time
required to find reliably the ground state energy should highly depend on the coupling matrix
structure J and the way it was constructed. For instance, finding the global minimum of the
XY model for positive definite matrices remains NP-hard due to the non-convex constraints
but can be effectively approximated using a semidefinite programming (SDP) relaxation
with some performance guarantee [27, 28]. Sparsity also plays an important role and for
sufficiently sparse matrices fast methods exist [29]. For spin models, the generation of matrix
instances J with tunable algorithmic hardness and, preferably, with a specifiable ground
state, is an ongoing problem studied by many research teams [26]. Having a unified set
of optimisation problems with a tunable hardness and known solutions would allow for an
objective benchmark of quantum simulators on various physical platforms as well as for
classical algorithms. Otherwise, announcements of state-of-the-art platforms and methods,
which demonstrate their performance on some random and not necessarily hard instances,
would continue to happen.
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1.4 Physical platforms for large-scale optimisation

Rather than trying to model nature one can consider a reverse idea of exploiting physical
phenomena for solving NP-complete problems. Such problems can be tackled by quantum
computers or simulators to produce solutions in reasonable time. In the last five years we
have seen a competition of different physical platforms in solving classical optimisation
problems faster than it can be achieved on a classical hardware for a given problem size.
This rivalry resulted in the rapid emergence of a new field at the intersection of laser and
condensed matter physics, engineering and complexity theories, which aims to develop
quantum or classical analogue devices to simulate spin Hamiltonians. Next we discuss the
achieved success in such simulations for a range of physical systems.

1.4.1 Cold atoms in optical lattices

Ultra-cold atoms in optical lattices constitute a well-controlled experimental setting to realise
various spin Hamiltonians [30, 31]. Optical lattices are formed by directing several laser
beams to interfere and to create standing wave configurations. Such waves provide practically
loss-free external potentials in which ultra-cold atoms may condense, move and interact with
one another [32, 33]. The unprecedented control and precision with which one can engineer
such lattices and load the atoms there led to many suggestions to consider such systems as
possible candidates for unconventional computing in quantum information processing and
quantum simulations.

Here we will only discuss a weakly interacting Bose gas in an optical lattice. The
description of particles in the strongly-correlated regime is possible with Bose- and Fermi-
Hubbard models as well as with extended Hubbard models with nearest-neighbour and next
nearest-neighbour interactions [34]. If the bosonic gas is dilute, the time evolution of the
condensate wave function ψ is governed by the Gross-Pitaevskii equation (GPE) [35–37]

i}
d
dt

ψ(r, t) =− }2

2m
∇

2
ψ(r, t)+Vext(r)ψ(r, t)+g|ψ(r, t)|2ψ(r, t), (1.10)

where g is the strength of the delta-function interactions and the external potential Vext

describes an optical lattice (periodic potential) usually combined with a weak harmonic
trapping potential.

The condensate evolution and particles’ interactions at different local minima of the
optical lattice can be described with the tight-binding approximation, which is valid when
the barrier between the neighbouring sites is much higher than the chemical potential. In
this approximation the condensate wave function ψ is written as a sum of normalised wave



10 Introduction: Systems for unconventional computing

functions φi = φ(r− ri) localised in each minimum of the periodic potential, i.e. r = ri:

ψ(r, t) = ∑
i

Ψi(t)φ(r− ri), (1.11)

where Ψi(t) =
√

ρi(t)eiθi(t) is the complex amplitude of the i-th lattice site, ρi and θi are
the number of particles and the phase in the i-th site, respectively. The amplitude Ψi

describes the state of the so-called ‘coherent centre’ located at ri. By inserting this anzats
into Eq. (1.10) and integrating the spatial degrees of freedom out one obtains the discrete
nonlinear Schrödinger (DNLS) equation [38]

i}
∂Ψi

∂ t
=−J(Ψi+1 +Ψi−1)+ εiΨi +U |Ψi|2Ψi, (1.12)

where J is the nearest-neighbour tunnelling rate,

J =−
∫

dr
[
}2

2m
∇φi ·∇φi+1 +φiVextφi+1

]
, (1.13)

εi is the on-site energy given by

εi =
∫

dr
[
}2

2m
(∇φi)

2 +Vextφ
2
i

]
, (1.14)

and U is the nonlinear coefficient given by

U = g
∫

drφ
4
i . (1.15)

Such classical lattice models described by DNLS equations represent the mean-field limit of
Bose-Hubbard models [39]. The mean-field limit of the non-standard Bose-Hubbard models
includes the interactions beyond the nearest neighbours which leads to a generalised DNLS

i}
∂Ψi

∂ t
=−1

2 ∑
⟨i, j⟩

Ji jΨ j +(εi +U |Ψi|2)Ψi, (1.16)

where Ji j is the coupling strength between the i-th and j-th coherent centres. If one loads an
equal number of particles in each site of the lattice, the ground state of Eq. (1.16) realises
the minimum of the XY Hamiltonian −∑⟨i, j⟩ Ji j cos(θi −θ j). This has been experimentally
demonstrated in triangular lattices using the atoms motional degrees of freedom and tunable
artificial gauge fields [40, 41].
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The quantum annealing protocol can in principle be implemented in such a system
by using Eq. (1.1) with H0 = ∑⟨i, j⟩ cos(θi −θ j) and Hobjective = −∑⟨i, j⟩ Ji j cos(θi −θ j). A
similar principle of adiabatic quantum annealing has been realised in the D-Wave machine
that we discuss below.

1.4.2 Superconducting qubits

D-Wave is a first commercially available quantum annealer that is built on superconducting
qubits with programmable couplings and specifically designed to solve QUBO problems
[42]. By specifying the interactions Ji j between qubits, a desired QUBO problem is solved
[43] via a quantum annealing process as in Eq. (1.1). Adiabatic (slow) transition in time from
an initial state of a specially prepared “easy” Hamiltonian to the objective Ising Hamiltonian
guarantees that the system remains in the low energy state, which gives the final energy that
corresponds to the optimal solution of the QUBO problem.

Many benchmarks on different QUBO problems were performed on a D-Wave One
and D-Wave Two machines without a solid demonstration of quantum speedup of annealer
over classical algorithms [44–46]. A better performance was shown for the last 2000-qubit
D-Wave machine released in 2017 on a newly proposed synthetic problem class in which
the computational hardness is created through frustrated global interactions. The major
limitations of D-wave simulators is that each qubit can be connected to maximum of six
other qubits which is the consequence of creating chips with Chimera structure. The last
generation of D-Wave quantum computer is announced in 2020 with Pegasus architecture,
allowing one to have 15 connections per qubit. Together with reverse annealing and virtual
graphs features a significant performance improvement could be possibly demonstrated.

1.4.3 Complex laser networks

A new generation of complex lasers such as degenerate cavity lasers, multimode fibre
amplifiers, large-aperture VCSEL, random lasers have many advantages in comparison with
the relatively simple traditional laser resonators in terms of their computing properties [47].
They have a large number of spatial degrees of freedom, their nonlinear interactions within
the gain material can be controlled by adjusting the spatial structures of lasing modes, the
spatial coherence of emission can be tuned over a wide range, and the output beams may
have arbitrary profiles. These properties allow the complex lasers to be used for reservoir
computing [48] or for solving hard computational problems.

In laser networks the coupling can be engineered by mutual light injection from one
laser to another. This introduces losses that depend on the relative phases between the lasers.
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Such dissipative coupling drives the system to a phase locking and therefore to a steady state
solution of QCO described by Eq. (1.4), i.e. to the minimum of the XY Hamiltonian [49–51].
Degenerate cavity lasers are particularly useful as solvers as all their transverse modes have
nearly identical quality factor. This implies that a large number of transverse modes lase
simultaneously since they all have similar lasing thresholds [47].

The evolution of the N single transverse and longitudinal modes class-B lasers can be
described by the rate equations [52, 53] on the amplitude Ai, phase θi, and gain Gi of the i-th
laser

dAi

dt
= (Gi −αi)

Ai

τp
+∑

j
Ji j

A j

τp
cos(θi −θ j), (1.17)

dθi

dt
= Ωi −∑

j
Ji j

A j

τpAi
sin(θi −θ j), (1.18)

dGi

dt
=

1
τc
[Pi −Gi(1+A2

i )], (1.19)

where Pi,αi,Ωi represent the pump strength, loss, frequency detuning of laser i, respectively,
whereas τp and τc denote the cavity round trip time and the carrier lifetime, respectively. The
coupling strengths between i-th and j-th lasers are represented by Ji j. If the amplitudes of all
lasers are equal, Eq. (1.18) reduces to system of coupled phase oscillators with Ωi = Ω:

dθi

dt
= Ωi −

1
τp

∑
j

Ji j sin(θi −θ j). (1.20)

This Eq. (1.20) is a celebrated Kuramoto model of identical oscillators which is widely used
to describe the emergence of coherent behaviour in complex systems [54, 55]. By LaSalle
Invariance Principle [56] every trajectory of the Kuramoto model converges to a minimum of
the XY Hamiltonian.

It was shown that the probability of finding the global minimum of the XY Hamiltonian
agrees between experimental realisations of the laser array and numerical simulations of
Eqs. (1.17-1.19). However, simulating the Kuramoto model of Eq. (1.20) on the same
matrix of coupling strengths gives a much lower probability of finding the global minimum.
The conclusion was made that the amplitude dynamics described by Eq. (1.17) provides
a mechanism to reach the global minimum [53] by pumping from below. This suggested
that the cavity lasers can be used as an efficient physical simulator for finding the global
minimum of the XY Hamiltonian, and therefore, for solving phase retrieval problems.

A digital degenerate cavity laser has recently been shown to solve phase retrieval problems
rapidly [57]. It is an all-optical system that uses nonlinear lasing process to find a solution
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that best satisfies the constraint on the Fourier magnitudes of the light scattered from an
object. To make sure that the solution to the phase retrieval problem is found the compact
support aperture is introduced inside the cavity that ensures that different configurations of
laser phases compete to find the one with the minimal losses. The system combines the
advantages of short round-trip times of the order of 20 ns and high parallelism in selecting
the winning mode.

1.4.4 Optical parametric oscillators

Network of coupled optical parametric oscillators (OPOs) is an alternative physical system
for solving the Ising problem ([58] and references therein). Each OPO is a nonlinear oscillator
with two possible phase states above the threshold that can be interpreted as binary spin
states {−1,1} with respect to the reference beam. The OPO is stimulated with pulses of
light which are then loaded into a loop of optical fibre. Below threshold, pulses of low
intensity have random phase fluctuations. Depending on the enforced pulse interactions, the
intensities are continuously modulated so that after multiple runs around the loop the final
binary phases are formed for all OPOs at about the same time. Driving the system close
to this near-threshold regime, the lowest loss configuration state can be found. This state
corresponds to the optimal solution of the Ising Hamiltonian and, therefore, the OPO-based
simulator is known as the coherent Ising Machine (CIM).

The currently most successful implementations of CIMs have been realised using a fibre-
based degenerate optical parametric oscillators (DOPOs) and a measurement based feedback
coupling, in which a matrix-vector multiplication is performed on a field-programmable
gate array (FPGA) embedded in the feedback loop. The computational performance of such
scalable optical processor, that is bounded by the electronic feedback, was demonstrated for
various large-scale Ising problems [58–60], while a speedup over classical algorithms is an
ongoing study [61, 62]. The ability to implement arbitrary coupling connections between
any two spins [58] was apparently the main reason to claim a better scalability of the CIM
than the quantum annealer, i.e. D-Wave machine [59].

In a Coherent Ising Machine each Ising spin corresponds to a DOPO that is described by
a stochastic equation for the complex amplitude of the signal field ai:

dai

dt
= pa∗i −ai −|ai|2ai +∑

j
Ji ja j, (1.21)

where the dynamics is defined by a linear pump term p, normalised linear and nonlinear
losses, and mutual couplings Ji j. To experimentally realise these couplings, a portion of
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light is extracted from the cavity after each round trip. That light is then homodyned against
a reference pulse to produce ai that is next supplied to FPGA where a feedback signal is
computed for each pulse. Lastly, an optical modulator is applied to convert the signal back to
light that can be used for the next round trip. The Eq. (1.21) is often reformulated in terms of
the in-phase and quadrature components ai = ci + isi giving the equations in real terms:

dci

dt
=

(
p−1− (c2

i + s2
i )

)
ci +∑

j
Ji jc j (1.22)

dsi

dt
=

(
− p−1− (c2

i + s2
i )

)
si +∑

j
Ji js j. (1.23)

The computational effectiveness of these equations has been demonstrated [63] by tackling
small size Ising type problems of order up to 20. In a part devoted to polariton condensates
we will show that for achieving the global minimum the realisation of an individual pump
variation pi for equalising all signal amplitudes |ai| is crucial.

Phase-stability for the whole length of the cavity is required which makes the DOPOs
system highly susceptible to external perturbations that can affect performance [59]. Fur-
thermore, the nonlinear DOPO generation process demands powerful laser systems and
temperature-controlled nonlinear materials, which result in large and complex optical setups.
These issues lead to recent proposals of other physical platforms for implementing a CIM-like
machine. A CIM based on opto-electronic oscillators with self-feedback was suggested to
be more stable and cheaper based on solving Ising optimisation problems on regular and
frustrated graphs with up to 100 spins and similar or better performance compared to the
original DOPO-based CIM [64]. An analogue all-optical implementation of a CIM based on
a network of injection-locked multicore fibre lasers [65] demonstrated a possibility to solve
Ising Hamiltonians for up to thirteen nodes. The dynamics of a network of injection-locked
lasers was based on nonlinear coupled photon rate equations and the couplings were imple-
mented using spatial light modulators (SLMs). The couplings were reported to be dependent
on the photon numbers that are not known beforehand, which can be a major obstacle on
the way of solving a given Ising Hamiltonian with the proposed photonic CIM. To solve this
issue, approaches similar to gain variation that we discuss in Section 3.2 may be considered
in the future. Another large-scale optical Ising machine based on the use of an SLM was
experimentally demonstrated by using the binary phases in separated spatial points of the
optical wave front of an amplitude-modulated laser beam and realising configurations with
thousands of spins with tunable all-to-all pairwise interactions [66].
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1.4.5 Polariton and Photon networks

Microcavity exciton-polaritons, or simply polaritons, are mixed light-matter quasi-particles
that form due to the strong coupling of photons in a microcavity and excitons in a semiconduc-
tor quantum well. Polaritons are bosons and obey Bose-Einstein statistics and can, therefore,
form a condensed (coherent) state above a critical density [67]. These bosonic quasi-particles
have a tiny effective mass which is typically 4− 5 orders of magnitude smaller than the
electron’s mass. Polariton condensates are intrinsically non-equilibrium systems with the
steady states set by the balance between pumping and losses due to the short lifetime of
polaritons as photons leak through the confining mirrors. Their energy-momentum dispersion
curves can be controlled by appropriate detuning and their properties and dynamics can be
readily accessed by angular-resolved photo- or electroluminescence spectroscopy. This is
possible due to finite cavity lifetimes: polaritons decay in the form of photons that carry
all information of the corresponding polariton state (energy, momentum, spin and phase).
The continuous coupling of polaritons to free photons allows for the in-situ characterisation
of static polariton graphs, and for the dynamic control of an arbitrary set of sites, whilst
measuring in real time the kinetics and phase configuration of the modulated polariton
graph. Polariton condensates can be imprinted into any two-dimensional graph by spatial
modulation of the pumping source, offering straightforward scalability. Optically injected
polariton condensates can potentially be imprinted in multi-site configurations with arbitrary
polarisation and density profiles offering the possibility to control the separation distance
between sites. The design and choice of material allows one to control the polariton mass and
to realise such solid state non-equilibrium condensates not only at cryogenic temperatures but
even at room temperature in organic structures. The weak coupling at high temperatures and
high pumping intensities transitions continuously to strong coupling at lower temperatures
and lower pumping intensities. In the limit of a small gain, i.e. small losses, solid state
condensates resemble equilibrium Bose-Einstein condensates (BECs) and in the regime of
high gain, i.e. high losses, they approach the lasers. This transition from the equilibrium
BECs to normal lasers was described with a unified approach via polariton condensates [68].
A wealth of experimental results have been demonstrated with polaritons including polariton
lasers [69], polariton parametric amplifiers [70], and cavity quantum electrodynamics [71].
The polariton BEC or lasing have been demonstrated in various materials such as CdTe [67],
GaAs [72, 73], GaN [74], organic polymers [75] and using optical pumping or electrically
pumped exciton-polariton emitters [76].

In another system, closely resembling the physics of polariton condensates, macroscopic
occupation of the lowest mode for a gas of photons confined in a dye-filled optical microcavity
was recently shown [77–80]. The rapid thermalisation of rovibrational modes of the dye
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molecules by their collisions with the solvent and phonon dressing of the absorption and
emission by the dye molecules leads to the thermal equilibrium distribution of photons and
concomitant accumulation of low-energy photons. Such systems resemble micro-lasers [81],
but unlike micro-lasers exhibit a sharp threshold which occurs far below inversion.

To realise the lattices of polariton or photon condensates many techniques have been
proposed and realised in experiments. Polariton lattices can be optically engineered by
injecting polaritons in specific areas of the sample using a spatial light modulator [82–86]. A
variety of potential landscapes to confine polariton or photons have also been engineered [87–
89]. As it will be derived in the next Chapter, the evolution of gain-dissipative condensates
in a lattice can be described by the Stuart-Landau equations:

Ψ̇i =−iU |Ψi|2Ψi +(γi −|Ψi|2)Ψi +∑
j ̸=i

Ci jΨ j, (1.24)

where Ψi =
√

ρi exp[iθi] is the complex amplitude of the i-th condensate, U is the strength of
self-interactions between the quasi-particles, γi is the effective injection rate (the difference
between the pumping of the quasi-particles into the system and linear losses). The coupling
strength Ci j = Ji j + iGi j is generally a complex number and consists of the Heisenberg
coupling Ji j mediated by the injection reservoir and the Josephson part Gi j that comes from
exchange interactions between the condensates. We will show in Chapter 3, that the system
described by Eq. (1.24) reaches the fixed point when Ji j ≫ Gi j and the pumping feedback
is introduced in the system. The feedback on the pumping intensity ensures that all the
occupations are the same at the fixed point, by adjusting the pumping if the occupation
exceeds the set threshold value |Ψi|2 = ρth. The total injection of the particles in the system
of N condensates at the fixed point is given by

N

∑
i=1

γi = Nρth −
N

∑
i=1

N

∑
j<i

Ji j cos(θi −θ j). (1.25)

Choosing the lowest possible total particle injection ∑γi that leads to the occupation ρth

for each condensate guarantees that the minimum of the XY Hamiltonian is reached. In
order to find the true global minimum the system has to slowly be brought to the conden-
sation threshold while spending enough time in its neighbourhood to span various phase
configurations driven by the system noise (classical and quantum fluctuations). When the
system reaches a phase configuration in the vicinity of the minimum of the XY Hamiltonian
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it quickly converges to it by the gradient decent given by the imaginary part of Eq. (1.24):

θ̇i =−Uρth −
N

∑
j ̸=i

Ji j sin(θi −θ j). (1.26)

This idea will be explained in more details in Chapter 3. When the resonant excitation is
combined with a non-resonant one, the spins are forced to take the discrete values aligning
with the directions set by the resonant excitation. If n : 1 resonant drive is added to the system,
the dynamics of the coherent centres obeys

Ψ̇i =−iU |Ψi|2Ψi +(γi −|Ψi|2)Ψi +∑
j ̸=i

Ji jΨ j +h(t)Ψ∗(n−1)
i , (1.27)

where h(t) is an increasing function that reaches some value H >maxi ∑ j |Ji j| at the threshold.
At the fixed point, Eq. (1.25) is replaced with

N

∑
i=1

γi = Nρth −
N

∑
i=1

N

∑
j<i

Ji j cos(θi −θ j)−Hρ
n/2−1
th cos(nθi). (1.28)

At n = 2, the last term on the right-hand side provides the penalty to phases deviating from 0
or π reducing the optimisation problem to QUBO. For n > 2, the n-state Potts Hamiltonian
is minimised. More details will be given about minimising such discrete spin Hamiltonians
in Chapter 3.

1.5 Conclusions

The physical systems that we described aim at finding the global minimum of challenging
optimisation problems. They offer the potential to find a better solution for a fixed time, find
a solution of a given precision faster, or solve more complex problems at fixed and limited
cost. All these platforms have advantages and limitations. They vary in scalability, ability to
engineer the required couplings, flexibility of tuning the interactions, precision of read-out,
factors facilitating the approach to global rather than local minima. However, all of them
have specific operational components that promise increased performance over the classical
computations. With the advancement of system-inspired computational algorithms, these
physical platforms may indeed one day revolutionise our computing. The next Chapter will
focus on the physics of one of such platforms in more detail, namely polariton condensates.
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2.1 Polariton network as a paradigm for dynamics of cou-
pled oscillators

Complex dynamic behaviour of networks of coupled oscillators arises in various scientific
disciplines ranging from biology, physics, and chemistry to social and neural networks.
Such networks served as paradigmatic models for understanding the mechanism of various
collective phenomena. The reason for such power of networks of coupled oscillators in
describing vastly different setups lies in their underlying symmetries: all these physical
platforms are characterised by similar universal order parameter equations [90]. Such
symmetries allow one to classify the physical systems into various universality classes that
differ only by the nature of the dynamics [91]. In turn, such classification helps not only to
draw similarities between very different physical platforms but also predict the behaviour of
the new systems that fall into previously known universality class [68].

Traditionally, at the other end of the spectrum of nonlinear dynamical studies lie the com-
plex many-body solid-state systems. Lattices of various physical origin have been realised,
including neutral atoms, ions, electrons in semiconductors, polar molecules, superconducting
circuits, nuclear spins [92]. These are typically equilibrium systems that realise ground or
excited states of their structure Hamiltonians. Recently, photonic and polaritonic lattices have
emerged as promising platforms for many-body quantum and classical simulations [93, 94].
These systems are typically gain-dissipative, capable of symmetry breaking and spontaneous
pattern formation, and have constant nonzero particle fluxes even at the steady-state. As we
will discuss shortly, the gain-dissipative lattice elements evolve, interact and synchronise,
resembling the coupled oscillators dynamics governed by the universal order parameter
equations. As a result, many classical phenomena found in such lattices can be explained or
predicted by the behaviour of the corresponding system of coupled oscillator networks from
the same universality class.

In the last decade, it emerged that strong light-matter interactions in semiconductor
microcavities offer a versatile platform to realise nontrivial states. They consist of exciton-
polaritons, or simply polaritons, that are quasi-particles resulting from the hybridisation of
light confined inside semiconductor microcavities and bound electron-hole pairs (excitons).
In this Section, we will consider networks of polariton condensates that can be engineered
with a variety of experimental techniques [87, 88]. Polariton can be confined by strain-
induced traps [73], surface acoustic waves [95], direct fabrication with the gold deposition
technique [96], by using hybrid air gap microcavities [97], or by coupled mesas etched
during the growth of the microcavity [98], by micropillars [99]. With these techniques,
polariton graphs of various geometries can be created including square [96], triangular [100],
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hexagonal [101], fully etched honeycomb [102], Kagome [103] and quasi-periodic lattices
[104]. However, the flow dynamics could be highly nontrivial even in the steady-state
for some geometries due to the potential traps. Another option is to optically engineer
polariton lattices by exploiting interactions between polaritons and reservoir excitons that
can be injected in specific areas of the sample. Excitons can barely move from where they
are excited as they are orders of magnitude heavier than polaritons. In experiments, any
prescribed graph of polariton condensates can be created by using an SLM [82–86]. With
this technique, the intensities of individual sites can also be controlled depending on the
density of the polariton condensate at the site.

Next, we will investigate the behaviour of networks of exciton-polaritons (polaritonic
networks) and argue that they can be viewed as a flexible universal platform to realise a vast
array of known and extensively studied systems of coupled oscillators.

2.1.1 Mean-field description

The mean-field behaviour of polariton condensates is described by the generalised complex
Ginzburg-Landau equation (cGLE) (often also referred to as a driven-dissipative Gross-
Pitaevskii equation) coupled to the reservoir dynamics [105–107]. Although the process of
Bose-Einstein condensation includes quantum effects, once the condensate is formed, it can
be accurately described by the mean-field equations as was shown in numerous experimental
works [84, 85, 108–114]. The equation on the wave function ψ(r, t) of the condensed system
is coupled to the rate equation on the density of the hot reservoir R(r, t) so that

i
∂ψ

∂ t
= − 1

2m
(1− iη̂R)∇2

ψ +U0|ψ|2ψ +gRRψ +
i
2
[RRR− γC]ψ, (2.1)

∂R

∂ t
= −

(
γR +RR|ψ|2

)
R+P(r, t), (2.2)

where }= 1, U0 and gR are the polariton-polariton and polariton-exciton interaction strengths
respectively, η̂ is the energy relaxation, RR is the rate of scattering from the hot reservoir into
the condensates [68, 115]. The condensate (γC) and the reservoir (γR) relaxation rates describe
photon losses in the cavity and hot exciton losses other than scattering into condensates.
The incoherent pump source is described by the pumping intensity P(r, t). These equations
can be nondimensionalised by ψ →

√
γC/2U0ψ , t → 2t/γC, r →

√
1/mγCr, R → γCR/RR,

P → Pγ2
C/2RR. With the dimensionless parameters g = 2gR/RR, b0 = 2γR/γC, b1 = RR/U0,
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η = η̂γC/RR, the resulting model yields

i
∂ψ

∂ t
= −(1− iηR)∇2

ψ + |ψ|2ψ +gRψ + i(R−1)ψ, (2.3)

∂R

∂ t
= −

(
b0 +b1|ψ|2

)
R+P(r, t). (2.4)

A unique property of the exciton-polariton system is the flexibility with which the parameters
g, b0, b1, η can be controlled and changed to allow the system to span various regimes
bridging lasers or other non-equilibrium systems with equilibrium condensates. The lifetime
of polaritons γC is governed by the accuracy of the cavity distributed Bragg reflectors and
spans two orders of magnitude [67, 116]. The detuning between the cavity photon energy
and the exciton resonance determines the proportion of photon and exciton in the polariton
and, therefore, the strength of the polariton-polariton and polariton-exciton interactions
and effective mass [107]. The pumping geometry allows one to tune further the repulsive
interactions between excitons and polaritons gR by creating, for example, trapped condensates
[108].

A polaritonic network building block is a single stationary condensate described by
a wave function ψ = φ(r), created by a spatially localised radially symmetric incoherent
pumping source P = p(r). For instance, a Gaussian pump p(r) = Aexp[−wr2] where w
determines the inverse width has been widely used in experiments [85, 86]. In what follows,
the pumping intensity A can be chosen so that φ is normalised and

∫
Q |φ |2 dr = 1, where

Q is the entire plane of the cavity. The corresponding stationary reservoir profile is then
defined as the steady state of Eq. (2.4) which is R(r) = n(r) = p/(b0 + b1|φ |2). The
networks of N polariton condensates are created at lattice sites i using a time and space
varying pumping profile P(r, t) = ∑

N
i=1 fi(t)p(|r− ri|). The total wave function ψ and the

reservoir density R can be approximated by ψ(r, t) ≈ ∑
N
i=1 ai(t)φ(|r− ri|) and R(r, t) ≈

∑
N
i=1 ki(t)n(|r− ri|) respectively. Such approximation is valid if the distance between the

lattice sites exceeds the width of the condensate and reservoir [117]. With the shorth-
hand notation pi ≡ p(|r− ri|) and similarly for φ and n, the spatial degrees of freedom are
eliminated by multiplying Eq. (2.3) by φ∗

i , Eq. (2.4) by |φi|2 and integrating both equations
over the plane of cavity Q. To show how systems of different universality classes become
relevant to polaritonic networks, we use the smallness of the overlap integrals for the
wave functions of the different lattice sites [118] so that li j ≡

∫
Q niφ jφ

∗
i dr ≫

∫
Q φ jφ

∗
i dr,

l = lii ≫
∫

Q ni|φ j|2 dr, and H =
∫

Q n∇2φφ∗ dr≫
∫

Q ni∇
2φ jφ

∗
i dr if i ̸= j. Condensate profiles

are also assumed to be sufficiently smooth
∫

Q ni∇
2φ jφ

∗
i dr ≪ li j. The dynamical equations
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on Ψi(t) = ai(t)exp[−idt] and Ri(t) = lki become

Ψ̇i = −i|Ψi|2Ψi −Ψi +hRiΨi +(1− ig)[RiΨi +∑
j ̸=i

Ci jΨ j], (2.5)

Ṙi = b0(γi −Ri −ξ Ri|Ψi|2), (2.6)

where d =
∫

Q φ∗∇2φ dr, h = ηH/l, γi = fi
∫

Q p|φ |2 dr/b0, ξ = b1
∫

Q n|φ |4 dr/lb0, Ci j =

(Rili j +R jl∗ji)/l. The energy relaxation parameter is small η ≪ 1 and, therefore, |H| < l,
so the term |h|RiΨi will be neglected in comparison with RiΨi, whereas the imaginary part
of h will be assumed be absorbed by g. The coupling strength Ci j is generally a complex
number and can be written as Ci j ≡ Ji j exp[ivi j] for real Ji j and vi j. In deriving Eqs. (2.5,
2.6), higher order nonlinearities in Ψi are neglected in the view of their smallness close to
the condensation threshold. Several special cases of Eqs. (2.5, 2.6) are considered below.

2.1.2 Fast reservoir relaxation limit

In fast reservoir relaxation limit, when b0 ≫ 1, the reservoir dynamics can be replaced with
its steady state as Ri = γi/(1+ξ |Ψi|2)≈ γi−ξ γi|Ψi|2, which reduces the system of Eqs. (2.5,
2.6) to the single equation

Ψ̇i = i(gξ γi −1)|Ψi|2Ψi −ξ γi|Ψi|2Ψi −Ψi +(1− ig)[γiΨi +∑
j ̸=i

Ci jΨ j]. (2.7)

For uniform pumping γi = γ , this is a Stuart-Landau system of coupled oscillators [119, 120].
This model represents the normal form of the Andronov-Hopf bifurcation. Consequently,
it can approximate a wide range of different oscillatory systems including lasers operating
close to an instability threshold. Substituting Ψi(t) =

√
ρi(t)exp[iθi(t)] into Eq. (2.7) and

separating real and imaginary parts allows one to get

1
2

ρ̇i(t) = (γi −1−ξ γiρi)ρi + ∑
j; j ̸=i

J̃i j
√

ρiρ j cos(θi j − vi j +α), (2.8)

θ̇i(t) = (gξ γi −1)ρi −gγi − ∑
j; j ̸=i

J̃i j

√
ρ j√
ρi

sin(θi j − vi j +α), (2.9)

where θi j = θi −θ j, tan(α) = g and J̃i j = Ji j/cosα . Note, that for the Gaussian pumping
profile and wide reservoir the relation |vi j| ≪ |Ji j| is valid and the term vi j can be neglected
since li j ≈ l∗ji [117]. For other network geometries such assumption may not be valid in
which case vi j can be absorbed into αi j = α − vi j.
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Experimentally, the feedback can be applied to bring all the sites to the same density
ρi(t) = |Ψi(t)|2 = ρth by combining Eq. (2.7) with an equation on the pumping adjustments

γ̇i(t) = ε[ρth −ρi(t)], (2.10)

where the parameter ε characterises the rate of such adjustment or its discrete version applied
at discrete times tn (more appropriate for the current experimental control techniques), so that
γi(tn < t ≤ tn+1) = γi(tn)+ ε(tn+1 − tn)(ρth −ρi(tn)). Under this control, the Eqs. (2.8-2.9)
can be reduced to a single equation near the threshold ρi ≈ ρth:

θ̇i(t) = (gξ γi −1)ρth −gγi − ∑
j; j ̸=i

J̃i j sin(θi j +α). (2.11)

This is the Sakaguchi-Kuramoto model of coupled oscillators [121] with α representing
a phase lag. Synchronisation of such phase oscillators has been extensively studied in
vastly different contexts including networks of Wien-bridge oscillators [122], power grids
of many generators [123], and earthquake sequences [124]. The phase lag appears due to
synaptic organisations in neuroscience systems, time delays in sensor networks, or transfer
conductances in power networks. The Sakaguchi-Kuramoto model is a special case of
the Winfree model with delta-function pulse shape W1(θ) and a sinusoidal response curve
W2(θ), so that θ̇i = ωi +W2(θi)∑

N
i=1W1(θ j). If the coupling is sufficiently weak and the

oscillators are nearly identical, the phase can be replaced by its average over an entire period
of oscillations leading to the Sakaguchi-Kuramoto model.

The Eq. (2.11) is reduced to the paradigmatic Kuramoto model, i.e. the first tractable
mathematical model describing how coherent behaviour emerges in complex systems, when
g = 0 (or equivalently α = 0) [54, 55]. This model exhibits a phase transition at a critical cou-
pling, beyond which a collective behaviour is achieved. In our case, natural frequencies are
identical and equal to ρth, so the model describes the negative gradient flow θ̇ =−∂U(θ)/∂θ

for the smooth function U(θ) =−∑i, j J̃i j cosθi j. Therefore, every trajectory converges to a
minimum of the XY Hamiltonian HXY =−∑

N
i=1 ∑

N
j=1 J̃i j cos(θi −θ j) by the LaSalle invari-

ance principle [56]. Such minimisation happens for the type of couplings represented by
the negative gradient flow of real function U . For example, this is true when the coupling
matrix Ci j in Eq. (2.7) is self-adjoint (Ji j = J ji and vi j =−v ji). In contrast, if the couplings in
Eq. (2.7) are of a pure Josephson type (e.g. Ψ̇i = · · ·+ i∑ j Ki jΨ j with real couplings Ki j) or
have a non-negligible g, such a network will not necessarily minimise any spin Hamiltonian.

In addition, the parameter g has a destabilising effect on the fixed points of Eq. (2.11).
Different γi that have to be maintained to allow all densities to reach the same value ρth,
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provide each lattice element with its own “natural frequency" ωi = (gξ γi −1)ρth −gγi, and,
therefore, favour desynchronisation. In the network described by Eq. (2.11), synchronisation
occurs when the coupling dominates the dissimilarity introduced by natural frequencies and
the phase lag. The smaller is g, the more likely the global synchronisation will be achieved.
Concise results for complex networks are known for specific topologies such as, for instance,
complete graphs, highly symmetric ring or linear graphs, acyclic graphs, and complete
bipartite graphs with uniform weights. Also, Sakaguchi phase lag parameter α contributes
to desynchronisation as it provides attraction and repulsion between the oscillator phases
similar to the coupling time delay. The dependence of synchronisation and desynchronisation
in polariton condensates on g has been noted experimentally, but the reasons have not been
previously identified [82–84, 125]. Such a behaviour, however, is easily explained from the
point of view of the dynamics of coupled oscillators.

2.1.3 Slow reservoir relaxation limit

Eq. (2.7) describes the direct coupling scheme when pumping at the mean-field, calculated
algebraically from the states of all oscillators, enters the coupling. The coupling scheme of
Eqs. (2.5-2.6) is more complex: the mean-field acts on the reservoir densities that obey its
own nonlinear differential equations, and the acting force is a function of the reservoir state.
This is similar to the famous example of synchrony on London’s Millennium Bridge where
equations for the swinging mode of the bridge are coupled to the equations on individual
pedestrians [126], or to electronic or electrochemical oscillators that are coupled through the
common macroscopic current or voltage, which obeys macroscopic equations describing
the coupling circuit [127]. By tuning the photonic component of polaritons one can change
the polariton-polariton interactions up to 4 orders of magnitude [125] which allows one
to neglect the term |Ψi|2Ψi, so that Eqs. (2.5-2.6) become similar to the Lang-Kobayashi
equations (with Ψi replaced by the electric field and Ri by the population inversion of the
i-th laser) obtained using Lamb’s semiclassical laser theory and capable of describing the
dynamical behaviour of coupled lasers [128, 129]. We summarise all the regimes and models
described above schematically in Figure 2.1.

The flexibility to tune the system parameters, the shape and geometry of the polariton
lattice [86], existence and tunability of the nonlocal couplings beyond the next neighbour
interactions [130], strong self-interactions of polariton condensates allow one to not only
recreate the intriguing patterns, states and structures that fascinated the nonlinear dynamics
community in the last couple of decades but also to enter novel regimes. These regimes are
discussed in subsequent parts of this Chapter, with a detailed analysis of interactions between
two polariton condensates presented first.
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Lang-Kobayashi

Polaritonic Networks

Fast Reservoir Relaxation Limit:
b0 ≫ 1

Stuart-Landau

No Density AdjustmentDensity Adjustment: ρi →ρth

Kuramoto Sakaguchi-Kuramoto

g > 0g = 0

Extensions:
− Resonant Excitation 
− Spin Polarisation
− Magnetic Field
− Higher Nonlinearities

Novel Systems and Regimes

Nonlinear Self-interactions → 0

Fig. 2.1 The polaritonic networks described by Eqs. (2.5, 2.6) can lead to the Lang-Kobayashi
model in the absence of the nonlinear self-interaction term or to Kuramoto/Sakaguchi-
Kuramoto/Stuart-Landau models of coupled oscillators in the limit of fast reservoir relaxation.
The new regimes are expected to appear due to strong polariton-polariton interactions or
once the experimental controls such as resonant excitation pump, spin polarisation, magnetic
field, or combination of different sub-lattices are considered in polaritonic networks.
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2.2 Matter-wave coupling of two spatially-separated polari-
ton condensates

In this Section, the coupling of driven-dissipative condensates is studied. The closed-form
expression for the coupling interactions between equally pumped polariton condensates is
analytically derived, assuming an exponential profile of the individual polariton densities. The
coupling strength is derived from a series expansion for the outflow wave vector difference
in unequally populated polariton condensates. The limit under which two condensates
remain coherently coupled is discussed. It is shown that the phase configuration maximising
the polariton occupancy across a dyad corresponds to the minimisation of the sum of the
symmetric Heisenberg exchange and asymmetric Dzyloshinskii-Moriya interactions.

2.2.1 Symmetric Heisenberg and asymmetric Dzyaloshinskii-Moriya
interactions

We start by considering the case of two unequally pumped exciton reservoirs with Gaussian
pumping profiles. For two spatially separated condensates, the system’s wave function can be
approximated as the sum of the two wave functions of the individually created condensates:

ψ(r)≈ ψ1(|r− r1|)+ψ2(|r− r2|), (2.12)

where the wave function of a condensate located at r = ri can be approximated [118] by

ψi(|r− ri|)≈
√

ρi(|r− ri|)exp[ikci|r− ri|+ iθi]. (2.13)

Here θi is the space independent part of the phase, kci is the maximum wave vector k(r) that
polaritons reach within their lifetime by converting their potential to kinetic energy [107],
and ρi(|r− ri|) is the density of the isolated condensate created by a single pumping source
centered at ri; for an approximate expression for ρi as a function of the system parameters see
[118]. Note that the assumption of a linear superposition does not account for the nonlinearity
of the system.
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The total number of polaritons across the dyad is given by N =
∫
|ψ(r)|2dr, where

integration is over the entire area of the microcavity and

N ≈
∫

|ψ1(|r− r1|)+ψ2(|r− r2|)|2dr =

=
∫

dr
[
|ψ1(|r− r1|)|2 + |ψ2(|r− r2|)|2

]
+

+
∫

dr [ψ1(|r− r1|)ψ∗
2 (|r− r2|)+ c.c.] =

= N1 +N2 + J cos∆θ +Dsin∆θ , (2.14)

where ∆θ = θ1 − θ2 is the phase difference between two polariton condensates, Ni =∫
|ψi(|r− ri|)|2 dr is the number of polaritons of an individual condensate indexed by i, and

the interaction strengths J and D are expressed as

J = 2
∫ √

ρ1(|r− r1|)
√

ρ2(|r− r2|)

× cos[kc1|r− r1|− kc2|r− r2|]dr, (2.15)

D = 2
∫ √

ρ1(|r− r1|)
√

ρ2(|r− r2|)

× sin[kc1|r− r1|− kc2|r− r2|]dr. (2.16)

From all the possible phase differences ∆θ = [0,2π), the one that maximises the number
of particles in Eq. (2.14) will condense first for the equally pumped polariton dyad [131].
Equivalently, in the generic case of a polariton dyad with unequal populations, the system
will reach the threshold at the phase difference configuration ∆θ that minimises

HT =−(J cos∆θ +Dsin∆θ), (2.17)

where HT is the sum of the symmetric Heisenberg exchange and the asymmetric Dzyaloshinskii-
Moriya interactions [132, 133], that are usually studied in the context of a contribution to the
total magnetic exchange interaction between two neighbouring magnetic spins [134].

2.2.2 Analytical expressions for coupling strengths

Analytical expressions of the coupling strengths J and D can be obtained by positioning
the condensates at r1 = (−d/2,0) and r2 = (d/2,0), where d = |r1 − r2| is the separation
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distance, and transforming into elliptic coordinates (µ,ν) with

x =
d
2

cosh µ cosν , (2.18)

y =
d
2

sinh µ sinν , (2.19)

d2r =
d2

4
(sinh2

µ + sin2
ν)dµdν . (2.20)

Here µ is a positive real number and ν ∈ [0,2π). The expressions for the absolute values can
be further simplified to

|r− r1| =
d
2
(cosh µ + cosν), (2.21)

|r− r2| =
d
2
(cosh µ − cosν). (2.22)

Assuming an exponential decay of the amplitude for an individual condensate
√

ρi(|r− ri|)=
Ai exp(−β |r− ri|), where Ai and β correlate with the shape of the pumping profile [118],
and substituting Eqs. (2.21, 2.22) we obtain

J =
1
2

A1A2d2
∫

∞

0
e−βd cosh µ

∫ 2π

0
(sinh2

µ + sin2
ν)

× cos(δk−c d cosh µ −δk+c d cosν)dνdµ, (2.23)

D =
1
2

A1A2d2
∫

∞

0
e−βd cosh µ

∫ 2π

0
(sinh2

µ + sin2
ν)

× sin(δk−c d cosh µ −δk+c d cosν)dνdµ, (2.24)

where we denoted δk±c = (kc1±kc2)/2. After integrating over ν and expanding the integrand
for small δk−c up to the third order, analytical expressions for the coupling strengths of the
two unequally pumped condensates are obtained in terms of the Bessel functions Jn and the
modified Bessel functions of the second kind Kn:

J = πA1A2d
[

1
β

J0(δk+c d)K1(βd)

+
1

δk+c
J1(δk+c d)K0(βd)− (δk−c )

2F
]
, (2.25)

D = πA1A2d2
δk−c

[
1
β

J0(δk+c d)K2(βd)

+
1

δk+c
J1(δk+c d)K1(βd)− (δk−c )

2G
]
, (2.26)
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where

F =
d

2β 2 J0(δk+c d)
{

βdK1(βd)+3K2(βd)
}
+

+
d

2β

J1(δk+c d)
δk+c

{
(βdK0(βd)+K1(βd)

}
, (2.27)

G =
d

6β 2 J0(δk+c d)
{

βdK2(βd)+3K3(βd)
}
+

+
d

6β

J1(δk+c d)
δk+c

{
(βdK1(βd)+K2(βd)

}
, (2.28)

We note here that the integrals can be analytically calculated up to any desired precision of
(δk−c )

n. An exact analytical expression for two equally pumped polariton condensates with
A1 = A2 = A and kc1 = kc2 = kc (D = 0) reads as

J = πA2d
[

1
β

J0(kcd)K1(βd)+
1
kc

J1(kcd)K0(βd)
]
. (2.29)

If the pumping width is large (β is small) the sign of the interactions is determined by J0(kcd)
as was found in [131].

Figure 2.2 shows the analytically and numerically calculated J and D as functions of the
distance separating two condensates for small differences between the outflow wave vectors.
The agreement improves even further when higher orders of δk−c in Eqs. (2.25, 2.26) are
taken into account. Note that a discrepancy between the polariton wave vectors kc1 and kc2

may lead to significant non-zero values of the coupling strength D that may even exceed
values of J. In particular, for the range of experimental parameters it is possible to obtain a
continuous phase transition between antiferromagnetic coupling for equal pumping (∆θ = π ,
J < 0 and D = 0) and ferromagnetic coupling for unequal pumping (∆θ = 0, J ≈ 0 and
D > 0).

2.2.3 Loss of coherence in polariton dyad

To determine the levels of the pumping imbalance and the distances for which polariton
condensates in a polariton dyad remain coherently coupled, we use the cGLE for a polariton
wave function ψ in two-dimensional (2D) with a saturable nonlinearity as written in Eqs. (2.1,
2.2). The simulation parameters were calibrated using an extensive set of experimental data
[86].

For the range of pumping parameters where there is a mutual coherence across the
polariton dyad, the condensates share the same global chemical potential µcoh, which can be
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Fig. 2.2 The strengths of (a) the symmetric Heisenberg exchange J and (b) the asymmetric
Dzyaloshinskii-Moriya interactions D as functions of the separation distance d. The solid
(dashed) lines show the normalised coupling strengths found numerically (analytically)
from Eqs. (2.15, 2.16) (Eqs. (2.25, 2.26)). Colours correspond to the different population
imbalances characterized by the percentage differences of the condensates’ wave vectors,
∆k= 0%, 6% and 8%, where ∆k= 100% ·(kc2−kc1)/kc1. The parameters are kc1 = 1.6µm−1,
β = 0.2µm−1.
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Fig. 2.3 (a) Contour plot of the phase difference ∆θ = θ1 −θ2 in the polariton dyad as a
function of the pumping imbalance ∆P = 100% · (P2 −P1)/P1 and the separation distance
d. The pumping corresponding to P1 is kept fixed. The phase difference is measured
either for the steady state or at a fixed moment of time for time-dependent oscillations
that characterise the loss of phase locking between the condensates. Fragmentation of the
contour plot, therefore, represents the region with the loss of the phase locking (coherence)
between the condensates. (b) Density cross-sections of the polariton dyad along the line
connecting the condensate centers positioned at the distance d = 6.4µm apart and pumped
with ∆P = {−28,0,45}%.

found from Eq. (2.1) by substituting ψ → ψ exp(−iµcoht/}). For each separation distance d,
we numerically integrate Eq. (2.2) starting with many random phase difference configurations
and choosing the one that maximises the total number of particles as this corresponds to the
state that will lase first [131]. The resulting phase differences are depicted in Figure 2.3(a).
Here the phase difference ∆θ in the polariton dyad is shown in a colour scale as a function of
the pumping imbalance ∆P and the separation distance d. If two condensates in a dyad are
coherently coupled, they share the same chemical potential and achieve a steady state. Above
some critical pumping imbalance, which is different for different separation distances, the
coherence is lost: condensates have different chemical potentials and their phase difference
oscillates in time. This region is shown as fragmented in Figure 2.3(a). Figure 2.3(a)
demonstrates that phase differences from 0 to π are achievable in a polariton dyad without
losing coherence by adjusting the pumping imbalance or the distance between condensates.
Figure 2.3(b) depicts the density cross-sections of the polariton dyad along the line connecting
the condensate centres. The variation in the pumping imbalance changes the phase-locking
from π phase difference to almost ferromagnetic configurations.

Once arranged in a graph, the population imbalance plays a crucial role in the ability of
polariton networks to minimise any given spin Hamiltonian. If all condensates have the same
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density, they are phase-locked through symmetric Heisenberg interactions and can achieve
the minima of the XY Hamiltonian. For some simple configurations, such as the chains of
polariton condensates that we consider next, one can realise the XY model’s classical ground
states with nearest- and next-to-nearest-neighbour interactions and exotic spin states. The
ability to suppress the asymmetric Dzyaloshinskii-Moriya interactions for an arbitrary graph
would lead to the minimisation of the XY Hamiltonian on a broader range of problems, as
we will discuss later in Chapter 3.
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2.3 Exotic states of matter with polariton chains

Here we explore properties of various frustrated phase states that can be generated with
polariton graphs. In particular, we show that polariton condensates establish the relative
phases that correspond to the classical ferromagnetic, antiferromagnetic, frustrated states and
the novel exotic states that can be associated with a spin-wave.

2.3.1 Linear periodic chain of equidistant polariton condensates

For simplicity, a periodic chain of polariton condensates in a one-dimensional (1D) case is
considered first. The steady-state of cGLE with a saturable nonlinearity (see Eqs. (2.1, 2.2))
can be written for the polariton wave function ψ in one-dimension as

µΨ = −(1− iηR)Ψxx + |Ψ|2Ψ+gR(x)Ψ+ i(R(x)− γ)Ψ, (2.30)

R =
p(x)

(1+b|Ψ|2)
, (2.31)

where the non-dimensionalisation is done with ψ →
√
}2/2mU0l2Ψ, r → lr, t → 2mtl2/}

and the notations g = 2gR/RR, γ = mγCl2/}, p = ml2RRP(r)/}γR, η = ηd}/mRRl2, and
b = RR}2/2ml2γRU0 are introduced. We choose the unit length as l = 1µm. When pumped
into several spots with the outflows from each spot reaching its neighbours the system
establishes a global coherence with a chemical potential µ if the characteristics of the pump
(intensity, spatial shape) are not vastly different from one spot to another. The Madelung
transformation Ψ =

√
ρ exp[iS] relates the wave function to density ρ = |Ψ|2 and velocity

u = Sx. To derive the coupling strength, we consider a single pumping spot given by
p(x) = p0 exp[−σx2]. At large x, where p(x) = 0, the velocity u is given by the outflow wave
number kc = const with ρx/ρ = −γ/kc, which after integration leads to ρ ∼ exp[−xγ/kc].
Therefore, we obtain µ = k2

c − γ2/4k2
c at infinity from Eq. (2.30).

In previous Section, the coupling strength between two equally-pumped condensates was
derived in 2D (see Eq. (2.29)). Here to study spin configurations in a periodic chain of polari-
ton condensates, we obtain a similar analytical expression for the coupling strength in 1D. The
polariton wave function is approximated as a sum of identical spots Ψ(x)≈ ∑

ℓ
i=1 Ψi(x− xi).

The wave function of a single pumping spot centred at x = xi can be approximated by
Ψi(x− xi) =

√
ρ(x− xi)exp[(ikc|x− xi|)+ iθi], where θi is a space independent part of the

phase. Depending on the pumping parameters, the system will lock with the relative phases
θi j = θi −θ j between the sites i and j to achieve the highest occupation number, i.e. the total
amount of matter given by N =

∫
∞

−∞
|Ψ|2dx. To evaluate N , we work in the Fourier space
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and rewrite it as

N =
1

2π

∫
|Ψ̂(k)|2dk ≈ 1

2π

∫
|∑

i
Ψ̂i(k)|2dk =

= ℓN0 +
1
π

∑
i< j

∫ (
Ψ̂iΨ̂

∗
j + c.c.

)
dk (2.32)

where N0 is the number of particles of a single isolated condensate and

Ψ̂i(k) =
∫

∞

−∞

Ψi(x− xi)exp(−ikx)dx =

= exp(−ikxi)
∫

∞

−∞

Ψi(α)exp(−ikα)dα =

= exp(−ikxi + iθi)ψ̂(k), (2.33)

ψ̂(k) = 2
∫

∞

0

√
ρ(α)exp(ikcα)cos(kα)dα. (2.34)

Denoting the distances between the spots as xi j = xi − x j, we substitute Eq. (2.33) into the
integral in Eq. (2.32) to get:

N = ℓN0 +
2
π

∑
i< j

cosθi j

∫
∞

0
|ψ̂(k)|2 cos(kxi j)dk. (2.35)

This expression implies that polariton condensates establish the phase difference in a way
minimising the XY Hamiltonian, where the coupling strengths are given by

Ji j =
2
π

∫
∞

0
|ψ̂(k)|2 cos(kxi j)dk. (2.36)

Similarly to 2D case, the amplitude of the condensate is parametrised by the width β

and the height A as
√

ρ(x)≈ Aexp[−β |x|]. We expect the condensate’s width and height to
correlate with the width and intensity of the pumping profile, respectively. For this shape of
the amplitude, the integrals in Eqs. (2.35, 2.36) can be evaluated exactly:

ψ̂(k) = 2A
∫

∞

0
exp(−βα + ikcα)cos(kα)dα (2.37)

=
2A(β − ikc)

β 2 + k2 −2iβkc − k2
c
.

Ji j =
8A2

π

∫
∞

0

(β 2 + k2
c)cos(kxi j)dk

β 4 +(k2 − k2
c)

2 +2β 2(k2 + k2
c)
. (2.38)
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Applying the residue theorem for evaluating the last integral, we obtain the closed-form
expression for the coupling constants in 1D

Ji j = 2A2[
1
β

cos(kcxi j)+
1
kc

sin(kcxi j)]e−βxi j . (2.39)

This expression determines the switching of ferro- and antiferromagnetic coupling between
the neighbours since the sign of Ji j is set by the expression in brackets. If the pumping profile
is wide (β is small), the sign of the interactions is determined by cos(kcxi j), which is what
we expect directly from Eq. (2.36) since |ψ̂(k)|2 ∼ δ (k− kc) for a wide pumping spot.

Fig. 2.4 The contour plot shows the frustration parameter J2/J1 as a function of kcd and
β/kc, where kc is the polariton wave vector, β is the width of the polariton spot, d is the
distance between the two adjacent spots. The coupling strengths J1 and J2 are calculated
from Eq. (2.39) for the distances d and 2d, respectively. Solid black lines show lines of the
sign change for J1. The inset shows the different regimes of the XY model on J2 − J1 plane:
ferromagnetic, antiferromagnetic and frustrated.

Now we consider a linear periodic chain of ℓ equidistant polariton condensates separated
by xi j = d. This chain can be created experimentally by pumping condensates around a
circle [86, 135]. The corresponding XY model takes form H =−J1 ∑i si · si+1−J2 ∑i si · si+2,
where the sum is over all ℓ condensates with periodic boundary conditions. In case of
J2 = 0 the model is integrable [136], whereas for J2 ̸= 0 the exact solutions were found for a
limited set of values of J2/J1. Frustrated phases of the classical, as well as quantum spin-1/2
system with nearest-neighbour and next-nearest-neighbour isotropic exchange known as the
Majumdar-Ghosh Hamiltonian, have been extensively studied [137–139]. Classically, three
regimes were identified for ℓ→ ∞: ferromagnetic for J1 > 0,J2 >−J1/4, antiferromagnetic
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for J1 < 0,J2 > J1/4 and frustrated (spiral) phase otherwise, as the inset to Figure 2.4
illustrates. In frustrated phase the pitch angle of the spiral is φ = cos−1(−J1/4J2) [139].
Quantum fluctuations lower the ground state and shift the phase transition from spin liquid
state at J2 = 0 to a dimerized regime with a gap to the excited states at J2 = 0.2411J1;
the transition from antiferromagnetic phase to dimerized singlets takes place at J2 = J1/2
[137, 138]. Consequently, we elucidate if a polariton linear periodic chain can reproduce the
characteristics of classical regimes and what new physics arises due to nonlinear interactions
of polaritons.

Based on the derived above expression for the coupling strengths in Eq. (2.39), we plot
the frustration parameter J2/J1 in Figure 2.4. As evident, the frustration parameters from
−0.3 to 0.3 can be achieved for the feasible values of polariton spot widths and wave vectors.
Hence, we insinuate that all three of the classical regimes that are depicted in the inset of the
Figure 2.4 should be accessible in a linear periodic chain unless the hot exciton reservoirs,
R, of the polariton spots shield the interactions between the next-nearest-neighbours.

To verify our analytical results, we consider twelve condensates in a linear periodic chain
and numerically integrate the cGLE for several distances in the presence of white noise.
For each configuration, we start from 100 random initial distribution of phases to find the
ground state configurations. Figure 2.5 identifies ferromagnetic, antiferromagnetic and spiral
spin-wave phases that represent the ground states of the one-dimensional XY model. The
polariton densities (solid blue lines) are displaced from the pumping profiles (solid green
lines) in the case of the spin-wave state, which is depicted in Figure 2.5(c). In addition, this
state has a distinguished velocity pattern (red dashed lines) compared to the other two classic
states in Figure 2.5(a,b).

2.3.2 Spin liquid states for equidistant polariton condensates along the
circle

Here we consider the full 2D system of Eqs. (2.1, 2.2). The same classical phases are obtained
for pumping intensities just above the threshold. As the pumping intensity increases, the
nonlinearity of the system destabilises the frustrated state and produces spin fluctuations
as illustrated in Figure 2.6(a-c). The formation of a non-stationary spin-wave can probably
be related to a spin liquid (for review of spin liquids see [140, 141]). Direct observation
of liquid spin states in experiments would require time-resolved measurements on time
scales challenging with current experimental configurations. Figure 2.6(d-f) demonstrates a
non-stationary state of two spin waves of different periods with respect to the condensates
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Fig. 2.5 Polariton densities (solid blue line) and velocities (dashed red lines) are shown
for twelve condensates obtained by numerical integration of one-dimensional cGLE with
periodical boundary conditions. Pumping profiles are shown with solid green lines. Panel (a)
shows the ferromagnetic state, (b) corresponds to the antiferromagnetic state with π phase
difference between the adjacent sites, and panel (c) shows the frustrated state. The distances
between the nearest condensates are d = 5.4µm, d = 6.9µm, and d = 6.5µm for (a), (b), and
(c), respectively.

across the circle. The spectral weights at a fixed time in Figure 2.6(b,e) reflect the symmetry
of the lattice.

Non-stationary spin-wave states and, perhaps, spin liquid states can be detected in
the momentum- and energy-resolved photoluminescence spectrum, which can be directly
measured in the far-field. Figure 2.7 shows the spectral weight

I(ω,k) =
∣∣∣∣∫∫ Ψ(r, t)exp[−ik · r− iωt]dtdr

∣∣∣∣2,
as a function of (ω,kx,ky = 0). In the case of the non-stationary state depicted in Figure 2.6(a-
c), spins reorient themselves randomly with time, cycling through different microstates whose
density distributions are shown in Figure 2.7(a). The state shown in Figure 2.6(d-f) is a more
periodic state which is proved by the energy spectrum in Figure 2.7(b), showing several
well-separated energy levels. In contrast, the stationary state would show only one energy
level [142, 143].

Frustrated states that we found in the linear periodic chain of polariton graphs correspond
to superfluids at nonzero quasi-momentum and exhibit nontrivial long-range phase order. The
spiral phases spontaneously break time-reversal symmetry by generating bosonic currents
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Fig. 2.6 Density snapshots (left panel) and the far-field emission (central panel) are shown at
a fixed time for twelve condensates arranged in a circle obtained by numerical integration of
Eqs. (2.1, 2.2). The right panels show the evolution of the phases (relative to one fixed spin)
between adjacent spots with 12ps (c) and 10ps (f) time steps between spin configurations.
The highlighted with blue circles spin configurations in (c) and (f) correspond to the density
profiles (a,d) and the far-field emissions (b,e). The stable spins of the spots are marked with
orange circles in (c,f). The distances between the adjacent sites are 6.4µm (a-c) and 7µm
(d-f). Other simulation parameters can be found in Appendix A.

Fig. 2.7 The spectral weight plots are shown for ky = 0 of the two-dimensional non-stationary
spin wave states from Figure 2.6(a-c) in (a) and from Figure 2.6(d-f) in (b). Both plots are
saturated at the same level of 0.2 to make the energy levels more visible and to provide an
easier comparison between the states

.
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around the sites of polariton graphs. The observations of such spin waves open a new path
for studying novel states of matter. One of such states, namely the giant vortices, can be
formed by controlling the distances between the condensates and the number of condensates
along the circle, as we discuss next.
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2.4 Giant vortices of controlled multiplicity in polariton
lattices

Quantised vortices are fundamental topological objects that play an important role in diverse
areas ranging from superfluids and superconductors to high energy physics and optics.
They exist in classical matter fields described by a classical smooth complex-valued field
Ψ =

√
ρ exp[iS] signifying the points in 2D or lines in 3D, where the amplitude of ψ becomes

zero and the phase S winds around in multiples of 2π . The winding of a quantised vortex,
also called topological charge, is the integer defined as the integral k = (m/2π})

∮
C ∇S ·dl,

where C is the closed contour around the zero of the amplitude. Although the formation,
structure, dynamics, and turbulence of quantised vortices have been the subjects of intense
research [144, 145], many fundamental aspects of the vortex dynamics are still not fully
understood [146–148]. Vortex motions, even in the simplest configurations, such as the
advection of a single vortex of unit charge by a constant super flow, have challenged the
scientific community [149].

Fig. 2.8 A schematic of the density profile of an heptagon of polariton condensates with
antiferromagnetic coupling between its vertices is shown. Within the inner ring visible at the
centre of the heptagon, a sinkhole giant vortex occurs that is fully contained within the inner
ring.

In this Section, crossbreeds of the discrete vortex solitons and giant vortices are the-
oretically proposed and experimentally realised in a graph of polariton condensates. The
unprecedented control over the properties of these vortices, including the winding, density
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and velocity profiles, is achieved. Unlike discrete vortex solitons in purely optical systems or
photonic crystals, where the phase winding comes from the laser, giant vortices can form
under non-resonant pumping in polariton graphs. In this respect, they are closer to vortices
in atomic condensates but do not require any external rotation, and even multiply-charged
vortices are fully stabilised by the polariton outflow from the pumping sites. Also, unlike
vortices in ultra-cold atomic BECs, polariton giant vortices generate spiral velocity profiles
towards the vortex centre. Each node of polariton graphs that are considered here occupies
the vertex of a regular polygon. Figure 2.8 shows a schematic of the expected density profile
of an heptagon of polariton condensates. The coupling between the condensates is such that
a giant vortex is formed in the centre of the polygon.

In a polariton graph, relative phases are chosen by stimulated relaxation of polaritons to
the configuration with the highest overall occupation. The measurement of the condensate
phase is always made with respect to a reference phase; that is, only phase differences are
measurable of the system. As we discussed earlier in this Chapter, the phase configuration
with the highest polariton occupancy of N spatially separated condensates can correspond to
the minimum of the XY Hamiltonian: HXY =−∑Ji j cosθi j, where θi j is the phase difference
between two vertices. By varying the pumping intensity and the distances between sites, one
can control the sign and strength of the coupling. By arranging an odd number of condensates
along the circle with antiferromagnetic interactions, frustration is created: the spins can no
longer alternate their direction and are forced to acquire non-trivial phase winding patterns.
In the simplest case of three condensates, and for an element of a triangular lattice, phase
differences between vertices of an equilateral triangle are measured to be 2π/3 [86, 131].

In the following, we generalise the above discussion and analyse the spin configurations
obtained by minimising the XY Hamiltonian for N polariton condensates arranged at the
vertices of a regular polygon. When only nearest neighbour interactions are taken into account,
the XY Hamiltonian becomes HXY =−J ∑

N
i=1 cosθii+1, where the summation is cyclic. For

a regular polygon, the XY Hamiltonian can be written as HXY =−JN cos(2πk/N), where k
is an integer. If J > 0, the global minimum is at θii+1 = 0; if J < 0 and N is even, the global
minimum is achieved by θii+1 = π; finally if J < 0 and N is odd, the frustration described
above gives rise to a non-trivial phase winding with θii+1 =±π(N −1)/N. The latter case
corresponds to the formation of the central vortex with winding k =±(N −1)/2. Therefore,
by engineering antiferromagnetic coupling between nearest-neighbour condensates at the
vertices of an odd-sided regular polygon, we build frustration into the system and force it to
form a central vortex of multiplicity that relates to the number of vertices N. As the central
region contains particle fluxes coming from the condensates, these vortices exist on a nonzero
density background, which allows for the full manifestation of their nonlinear nature.
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Condensates along the circle with ferromagnetic interactions. The spin configurations are
experimentally accessed by injecting equidistant polariton condensates in a circle. From the
XY Hamiltonian minimisation perspective, the trivial spin configuration occurs in the case of
ferromagnetic couplings when the condensates lock in phase. For an even and an odd number
of vertices, we illustrate the all-in-phase configuration by tuning the nearest neighbour
distances to obtain ferromagnetic couplings at the condensation threshold. Figure 2.9(a,b)
shows experimental results of real-space photoluminescence intensity for an octagon and a
nonagon of polariton condensates at condensation threshold. The ferromagnetic coupling
is distinguishable by an odd number of fringes between vertices and their symmetry. Local
maxima of the photoluminescence intensity are observed in the centre of both polygons,
indicating the absence of a vortex.

Fig. 2.9 Normalised real-space photoluminescence intensity at condensation threshold for an
octagon and a nonagon with ferromagnetic couplings between nearest neighbours are shown
in a false-grey scale. The first column (a,b) shows the experimental results and the second
column (c,d) shows the numerical simulations of the density profiles; (a) is saturated at 0.5,
and (b) is saturated at 0.4 to increase the visibility of the low-intensity fringes between the
vertices. In (c,d) the centres of the pumping spots are shown by the black dashed circles. The
parameters of the numerical simulations are listed in Appendix A.
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The phase dynamics of polariton condensates is numerically simulated across regular
polygons using the cGLE coupled to a rate equation for the hot exciton reservoir, Eqs. (2.1,
2.2). The experimental excitation conditions for the pumping profile are mimicked using
N Gaussian functions: P(r, t) = ∑

N
i=1 P0 exp(−α|r− ri|2) centred at the positions ri. Fig-

ure 2.9(c,d) shows the result of the numerical simulations that are in good agreement with the
experimental observations, where the centres of the pumping spots are annotated by black
dashed circles on the theoretical density profiles.

Condensates along the circle with antiferromagnetic interactions. For even numbers of
condensates arranged at the vertices of the regular polygon with antiferromagnetic couplings
between nearest neighbours (J < 0), the condensates will simply lock in anti-phase. The
most exciting spin configuration is observed for an odd number of condensates. In this
case, frustration gives rise to non-trivial phase windings that correspond to the formation of
multiply-charged vortices. Figure 2.10 summarises the experimental results and numerical
simulations for seven (top row), nine (middle row), and eleven (bottom row) condensates,
respectively. The first column shows the experimental results of the real-space photolumines-
cence intensity. The antiferromagnetic coupling is imposed by tuning the distance between
nearest neighbours and is distinguishable by the even number of fringes between vertices.
In all three cases, the photoluminescence intensity depletion is observed at the centre of
polygons, indicative of a central vortex.

To investigate polariton flows in these polygons, the Fourier-spaces of the photolumines-
cence intensities are presented in the second column of Figure 2.10. We do not observe the
minima of the photoluminescence intensity that cross the Fourier-space centre. The absence
of nodal radial lines shows a continuum of wave vectors’ distribution versus the azimuthal
angle of the Fourier-space, which is a further indication of the presence of a central vortex. In
the third column of Figure 2.10, we further visualise the presence of core vortices by plotting
the velocity streamlines. In addition, zeros of the real and imaginary parts of the numerically
simulated polariton wave functions show the velocity circulation around the centre of the
polygons. The presence of a central vortex displaces a significant amount of polariton fluid
away from the centre and forces the fluid to circulate along a spiral trajectory. In principle, by
tuning the geometry and the profile of the excitation density, we can effectively control the
amount of the circulating fluid, its tangential and inward radial velocities and the volume of
the displaced fluid from the central region. Such control over the dynamics of giant vortices
may offer a unique test-bed for “Analogue” gravity studies.

These experimental observations and numerical simulations provide strong evidence for
the presence of multiply-charged vortices of winding numbers k =±3,±4 and ±5 for the
case of negative couplings in the heptagon, nonagon and hendecagon, respectively. Note
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Fig. 2.10 The first column (a-c) shows the normalised real-space photoluminescence intensity
at condensation threshold for a heptagon, nonagon and a hendecagon with antiferromagnetic
couplings between nearest neighbours in a false-grey scale. The second column (d-f) shows
the corresponding normalised photoluminescence intensity of the two-dimensional Fourier-
space at condensation threshold for the polygons of (a-c). The absence of nodal radial
lines indicates the presence of a central vortex. The third column (g-i) shows the velocity
stream-lines and the zeros of the real and imaginary parts of the wave functions with solid red
and black lines respectively for the polygons of (a-c). The black filled area in (g-i) indicates
the areas where the polariton density is less than 10−5 of its maximum. The parameters of
the numerical simulations are listed in Appendix A.
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that in these configurations, we do not externally imprint the phases [150–154]. Instead, we
control the dynamics of the coupling between condensates, which leads to the spontaneous
formation of giant vortices.

2.5 Conclusions

Spatially coupled polariton condensates can represent different oscillator models, including
the Kuramato, Sakaguchi-Kuramoto, Lang-Kobayashi and Stuart-Landau models for different
experimental parameters. Some of these parameters are easier to adjust, e.g. exciton-polariton
interactions, while others are harder, e.g. polariton lifetime. This apparent flexibility of
a polariton system is both a blessing and a curse. On one side, it allows us to observe
fascinating nonlinear dynamics phenomena with exotic spin states and topological giant
vortices discussed in this Chapter. On the other side, such flexibility makes it harder to isolate
a particular optimisation model to address with polariton networks and, consequently, limits
the optimisation accuracy of any objective function. Nevertheless, we confirm the possibility
of achieving the XY model’s ground states for simple configurations of condensates in a
circle. Spatially coupled polariton condensates may require an instrumental calibration
of experimental parameters for addressing a given optimisation problem, even for nearest
neighbour interactions. In addition, one needs to control the couplings beyond nearest
neighbours for arbitrary graphs of polariton condensates to tackle non-trivial discrete and
continuous optimisation problems. We focus on the optimisation perspectives of non-
equilibrium condensates in the next Chapter.



Chapter 3

Gain-dissipative simulator with
non-equilibrium condensates
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3.1 Signatures of minimising the XY model on simple graphs

A large variety of computationally intractable systems can be mapped into certain universal
classical spin models characterised by the given degrees of freedom, i.e. spins, by their
interactions, i.e. couplings, and by the associated cost function, i.e. Hamiltonian [17]. As
a result, there has been much interest in the possibility of devising a physical system, an
analogue simulator, to solve such spin models: n-vector models of classical unit vector
spins si with the Hamiltonian H =−∑i j Ji jsi · s j, where Ji j are real numbers specifying the
coupling strengths between the sites labelled i and j [92]. The Ising model corresponds to
the n = 1 case of the n-vector model, with si ∈ {−1,1}. For n = 2 the n-vector Hamiltonian
becomes HXY = −∑i j Ji j cos(θi − θ j), where we have parameterised unit planar vectors
using the polar coordinates si = (cosθi,sinθi). As it was discussed in the Introduction, these
spin Hamiltonians belong to the NP-hard complexity class.

With increasing excitation power, polariton condensation occurs at the state with the phase
configuration that carries the highest polariton occupation. This is due to the condensate
bosonic nature: the quasi-particles probability to relax in a particular state grows with the
population of that state. A macroscopic coherent state is formed at the condensation threshold
and can be described by the wave function ψg. To the leading order, ψg can be written as a
superposition of the wavefunctions ψ j at the sites x j with phase θ j; that is ψg ≈∑ j ψ j exp[iθ j].
Under the conditions discussed in Section 2.1, the system of an arbitrary polariton graph
can condense into the minima of the XY Hamiltonian HXY = −∑Ji j cosθi j, where θi j is
the phase difference between two sites. The bottom-up approach for searching the global
minimum of the XY Hamiltonian is achievable within the line width of the corresponding
state. This approach is different from classical and quantum annealing techniques, where the
global minimum is reached through transitions over metastable excited states (local minima).

In Section 2.2 we established analytically that the coupling between two equally-pumped
spots could be either in-phase with zero phase difference or anti-phase with a π phase
difference. In general, the coupling strength and the relative phase depend on the density
of the sites i and j, the distance between them, di j = |xi −x j|, and the outflow condensate
wavenumber kc, which under non-resonant optical excitation depends on the pumping
intensity and profile. The state with the phase configuration that carries the highest number
of particles corresponds to the solution that minimises the XY Hamiltonian. Experimentally,
phase differences can be verified for more complex geometries through interferometry and
Fourier-space analysis. In Figure 3.1(a), we plot the density of a polariton graph. The
interactions are either ferromagnetic or antiferromagnetic depending on the separation
distance between the vertices and the outflow wave vector. Polaritons have a local phase θi at
each vertex xi of the graph (always with respect to a reference vertex), which we map to a
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(a) (b)

Fig. 3.1 (a) A schematic of the condensate density map is shown for a five-vertex polariton
graph. Depending on the separation distance between the sites and the outflow wave vector,
the interactions between sites can be ferromagnetic (solid-blue lines) or antiferromagnetic
(dashed-red lines). At each vertex xi of the graph polaritons have a local phase θi that is
mapped to a classical vector spin si = (cosθi,sinθi). (b) The vertices (blue solid-circles) and
edges of the polariton density map depicted in (a), showing the sign of the coupling and the
spin vector si of each vertex.

classical vector spin si = (cosθi,sinθi). In Figure 3.1(b), we show spin vectors si that could
minimise the XY Hamiltonian of the graph given in Figure 3.1(a).

Following the theoretical investigation of 1D periodic polariton chains in Section 2.3,
here we theoretically describe and experimentally address several lattice configurations that
may resemble the minimisation of the XY Hamiltonian.

Polariton chain. We fist consider a linear chain of polariton condensates with equal spac-
ing d = di j between neighbours. For a given wave vector, the coupling strength Ji j between
the neighbour sites oscillates between negative and positive values with increasing separation
distance. We approximate the switching of the coupling sign with cos(kcd +φ), where φ

is fixed by the system parameters. In the steady-state excitation regime, we can calculate
the maximum particle number of a polariton dyad as a function of the separation distance
d by numerically integrating the cGLE to find the solutions of Eqs. (2.1, 2.2) that max-
imise N for a given pumping profile p(r) = p0[exp(−α|r−d/2|2)+ exp(−α|r+d/2|2)] of
a characteristic width α; the results are shown in Figure 3.2(a). The relative phases that
realise the maximum particle number switch periodically between 0 and π with the period
2π/kc as shown by superimposing the function cos(kcd+φ) in Figure 3.2(a). Figure 3.2(b-e)
shows the real-space photoluminescence intensity of the linear chain condensate for several
lattice constants. The relative phase difference realised between neighbours in the chain is
either π or zero. The patterns are distinguishable by the number of fringes (density maxima)
between the sites: zero or even for antiferromagnetic and odd for ferromagnetic coupling. In
Figure 3.2(a), we have annotated the abscissa with solid circles for each of the two separation
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Fig. 3.2 (a) The maximum number of particles, N, of a polariton condensate dyad formed
under incoherent pumping of two nodes as the function of the product kcd between the nodes
obtained by numerical integration of the cGLE for a fixed kc starting with random initial
conditions and choosing the realisation that maximises N. The solid black line corresponds to
the maximum number of particles in the in-phase ferromagnetic configuration and the dashed
black line to the antiferromagnetic configuration with π-phase difference. The switching
occurs with the periodicity 2π/kc as the superimposed graph of cos(kcd +φ) illustrates in
red, where φ ≈ 225◦. (b-e) Experimental realisation of the chain of five equidistant polariton
nodes with lattice constants of ∼ 9µm, ∼11.1µm, ∼11.4µm, and ∼13.4µm respectively.
The false-grey scale images show the normalised real-space photoluminescence intensity.
The corresponding kcd are shown by solid circles in (a).
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distances from which the expected sign of coupling is depicted, showing good agreement
with the experiment.

Square lattice. We consider a geometry of N incoherently pumped equidistant polariton
vertices positioned on the circumference of a circle. For equal separation distances d = di j

between adjacent sites, the XY Hamiltonian becomes HXY = −J ∑
N
i=1 cos(θi,i+1), where

J = Ji j, the summation is cyclic and we took into account only nearest neighbour interactions.
If J is positive, then all sites lock in-phase with θi,i+1 = 0. If J is negative, the minimum of
HXY occurs for θi,i+1 =±π , when N is even and for θi,i+1 =±π(N −1)/N when N is odd
(N > 1). For the odd number of vertices, therefore, the configurations bring about topological
vortices of winding ±(N −1)/2. These are spontaneously formed discrete vortex solitons,
whose properties we discussed in Chapter 2.4.

We experimentally access these regimes through incoherent injection of polaritons at
the vertices of a square. Figure 3.3(a,b,c) shows the experimental and numerical results for
lattice constants that lead to antiferromagnetic, ferromagnetic and the next antiferromagnetic
coupling respectively. Similar to the polariton chain, the type of coupling is distinguishable
by the number and symmetry of fringes between the vertices.

90◦ compass model. Apart from the trivial all ferromagnetic or antiferromagnetic coupling
configurations in a square geometry, we consider the compass models where the coupling
between the internal spin components is inherently directionally dependent. Such compass-
type coupling appears in various physical systems, where the interactions are sensitive to
the spatial orientation of the involved orbitals. In polariton graphs, the compass models with
direction-dependent coupling or glassy spin models with random couplings can be realised
by changing the pumping intensity and preserving the square geometry or by tuning the
separation distances so that each vertex has one ferromagnetic and one antiferromagnetic
coupling with its nearest neighbours. In Figure 3.3(c), we have realised the 90◦ compass
model, where each vertex has one ferromagnetic and one antiferromagnetic coupling with its
neighbours.

Triangular lattice. The XY Hamiltonian has been simulated on a triangular lattice of
atomic condensates, discovering a variety of magnetic phases and frustrated spin config-
urations [40]. For an antiferromagnetically coupled polariton triad, the energy flux that
minimises the XY Hamiltonian corresponds to ±1 winding (2π/3 phase difference between
the condensates) [131]. Here, we experimentally realise an equidistant triangular lattice of
two lattice cells (rhombus configuration). Figure 3.4(a-c) shows the experimental results
and numerical simulations for a rhombus with lattice constants that lead to antiferromag-
netic, ferromagnetic and the next antiferromagnetic coupling, respectively. In the case of
ferromagnetic coupling between nearest neighbours and neglecting opposite neighbours in-
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FIG. 1: Spin configurations of square polariton lattices. The
diagrams of the numerically calculated spins vectors at the
pumping sites si = (cos ✓i, sin ✓i) for a single shot realization,
the real-space energy tomography of the experimental reali-
sations, and the averaged condensate densities of the numer-
ically simulated condensate wavefunctions for several realiza-
tions are shown on the left, central and right columns respec-
tively. Solid and dashed blue lines on the spin vector diagrams
(left column) indicate ferromagnetic and anti-ferromagnetic
coupling, respectively. The false-grey scale images of the mid-
dle column show the normalised photoluminescence intensity
of the real-space tomography at the energy of the condensate;
(c) is saturated at 0.5 to increase the visibility of the low inten-
sity fringes between the vertices. The configurations shown
are some elementary building blocks of square lattices such as
(a,c) anti-ferromagnetic, (b) ferromagnetic, (d) 90�-compass.
The centers of the pumping spots are shown by white dashed
circles on the numerical density profiles (right column). The
parameters of the numerical simulations of Eqs. (??,??) are
listed in the Supp. Mat.

Fig. 3.3 Spin configurations are shown for square polariton lattices. The diagrams of the
numerically calculated spins vectors at the pumping sites si = (cosθi,sinθi), the real-space
energy tomography of the experimental realisations, and the averaged condensate densities
of the numerically simulated condensate wavefunctions for several realisations are shown
on the left, central and right columns respectively. Solid and dashed blue lines on the
spin vector diagrams (left column) indicate ferromagnetic and antiferromagnetic coupling,
respectively. The false-grey scale images of the middle column show the normalised real-
space photoluminescence intensity at the energy of the condensate at the condensation
threshold; (c) is saturated at 0.5 to increase the visibility of the low-intensity fringes between
the vertices. The configurations shown are some elementary building blocks of square lattices
such as (a,c) antiferromagnetic, (b) ferromagnetic, (d) 90◦-compass. The centres of the
pumping spots are shown by white dashed circles on the numerical density profiles (right
column). The parameters of the numerical simulations of Eqs. (2.1, 2.2) are listed in the
Appendix A.
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(c)
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FIG. 1: Spin configurations of the diamond-shaped polari-
ton lattices. The columns of images are as described in the
caption to Fig.3. The configurations shown are some elemen-
tary building blocks of triangular lattices such as (a,c) anti-
ferromagnetic and (b) ferromagnetic rhombuses. The false-
grey scale images of the middle column show the normalised
photoluminescence intensity of the real-space tomography at
the energy of the condensate saturated at 0.5 to increase the
visibility of the low intensity fringes between the vertices.

Fig. 3.4 Spin configurations are shown for the diamond-shaped polariton lattices. The
columns of images are as described in the caption to Figure 3.3. The configurations shown
are some elementary building blocks of triangular lattices such as (a,c) antiferromagnetic
and (b) ferromagnetic rhombuses. The false-grey scale images of the middle column show
the normalised real-space photoluminescence intensity at the energy of the condensate at
condensation threshold saturated at 0.5 to increase the visibility of the low-intensity fringes
between the vertices.
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teractions across the long diagonal axis of the rhombus, the XY Hamiltonian is minimised at
HXY ∼−5J when all polariton sites lock in phase. Similarly, in the case of antiferromagnetic
coupling between nearest neighbours, the XY Hamiltonian is minimised at HXY ∼−3J when
there is ±π phase difference between the outer edges of the rhombus. This configuration
forces the rhombus in a frustrated state wherein opposite vertices have the same phase. This
type of frustrated spin configuration is experimentally realised in Figure 3.4(a,c). These
configurations belong to two different bands of antiferromagnetic regions separated by a
ferromagnetic band, which are consistent with the alternating bands shown in Figure 3.2(a)). 1

(a) (b) (c)

10µm

FIG. 1: Spin configurations of a random polariton graph. The
panels of images are as described in the caption to Fig.3. The
false-grey scale image of the middle column show the nor-
malised photoluminescence intensity of the real-space tomog-
raphy at the energy of the condensate saturated at 0.5 to
increase the visibility of the low intensity fringes between the
vertices.

Fig. 3.5 Spin configurations are shown for a random polariton graph. The panels of images
are as described in the caption to Figure 3.3. The false-grey scale image of the middle column
show the normalised real-space photoluminescence intensity at the energy of the condensate
at condensation threshold saturated at 0.5 to increase the visibility of the low intensity fringes
between the vertices.

Random polariton graph. Finally, we test our platform on a disordered polariton graph of
five vertices. We take a graph of three equidistant triangular unit cells for a lattice constant
that leads to antiferromagnetic coupling and break the symmetry by slightly displacing one
vertex in Figure 3.5. For the symmetric configuration of three equidistant triangular cells
and considering only nearest neighbours interactions, the XY Hamiltonian is minimised
at HXY ∼ −3.86J with an alternating winding around each cell slightly deviating from
2π/3 difference reported for a single equilateral triangle. Breaking the symmetry leads to a
different phase distribution while maintaining the winding around each cell. The analysis of
the fringes on the experimental image (with different rows of local maxima along the two
long diagonals) shows that the symmetry is explicitly broken.

Extended polariton lattices. The photoluminescence intensities for a square latice of 45
polariton condensates are shown in Figure 3.6(a-c) for several lattice constants. Figure 3.6(d-
f) shows the corresponding normalised photoluminescence intensity of the two-dimensional
Fourier-space. The contrast of the interference pattern observed in the Fourier-space images
is indicative of the degree of coherence across the lattice. In particular, the dark centre
surrounded by sharp intense “Bragg peaks” in Figure 3.6(a,c) indicates antiferromagnetic
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Fig. 3.6 The first row shows the normalised real-space photoluminescence intensity at the
energy of the condensate at condensation threshold in a false-grey scale for (a,c) antiferro-
magnetic and (b) ferromagnetic configuration of 45 coherently coupled polariton condensates
arranged at the vertices of a square lattice. The second row (d-f) shows the normalised
photoluminescence intensity of the two-dimensional Fourier-space corresponding to the
lattices of (a-c).

coupling, whereas a bright centre in the two-dimensional Fourier-space of Figure 3.6(b)
indicates ferromagnetic coupling.

The optical approach of imprinting two-dimensional polariton lattices of arbitrary ge-
ometries and density profiles allows for tunable coupling strengths between vertices and can
offer the potential for rapid scalability. For a few simple configurations of condensates, the
observed phase configurations realise the ferromagnetic and antiferromagnetic configurations,
which could be a signature of minimising the XY Hamiltonian. The obstacles to using such
a polariton simulator to minimise an arbitrary XY coupling matrix and ways to overcome
these obstacles are discussed in the remainder of this Chapter.
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3.2 Density equilibration for minimising the XY model on
arbitrary graphs

In gain-dissipative simulators, the ‘spin’ (or node or ‘bit’) of the simulators can be represented
by the condensate phase at a particular spatial position [86, 89] or by the phase of coherent
state generated in a laser cavity [155, 156], so by the phase of the so-called coherent centre
(CC). Proposals to use gain-dissipative simulators to find the absolute minima of spin
Hamiltonians suffer from a severe limitation. As we show below, the coupling strengths Ji j

in such systems are modified by the occupations (number densities) of CCs i and j. However,
the densities are not known a priori and could be different from one CC to another for a
general matrix J. In previous experimental realisations of gain-dissipative simulators, an
explicit or implicit assumption was made about the smallness of coupling terms so that each
laser or condensate is stabilised independently at the same steady-state amplitude [86, 155–
158]. Such belief is justified only for the simplest structures of the coupling matrix, where
all CCs are almost equally connected with about the same coupling strengths. The found
solution for a more general matrix is bound to be either approximate or invalid.

Here we formulate the technological requirements for gain-dissipative platforms to be
used as analogue Hamiltonian optimisers. A general framework is developed for the operation
of gain-dissipative analogue simulators based on the Langevin gain-dissipative equations
written for a set of CCs. We derive the rate equations for geometrically coupled CCs based
on polariton or photon condensates. We show that by establishing a feedback connection
between the gain mechanism and the CC density, we can drive the system to the coherent
ground state of the XY model. The minimisers of this ground state will give the valid
minimum for the externally provided coupling strengths.

The operation of gain-dissipative simulators consists of two stages: bosonic stimulation
below the threshold and the coherence of operations at and above the threshold. As one
increases the power of the gain mechanism (e.g. laser intensity), the nonlinear gain saturation
stabilises the emergent coherent state. In this state, the total number of particles is maximised
while losses are minimised. To derive the governing equations, one can describe each CC
at a position r = ri by a classical complex function Ψi(t). Depending on the system, the
couplings Ki j between CCs can have a different origin: they can be geometrically induced
by the particle outflow from other CCs, as we have shown for polariton condensates earlier,
or induced by the mutual injection rate between lasers [155, 159] or spatially separated
condensates. Hence, we exploit the rate equations for the CCs valid for polariton condensates
considered in the previous Chapter or photon condensates. These equations were derived in
Section 2.1 starting from the mean-field description by the cGLE and integrating out spatial
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degrees of freedom. The time evolution of the complex amplitudes describing individual
condensates in the lattice can be written as

dΨi

dt
= Ψi(γ

inj
i − γc − (iU +σ)|Ψi|2)+

N

∑
j, j ̸=i

∆
inj
i j Ki jΨ j +noise(t), (3.1)

that is valid for polariton condensates under the following assumptions: negligible blue-shift
due to interactions of polaritons with the reservoir, short lifetime sample, fast reservoir
relaxation, near-threshold pumping intensity (the notations are taken from [20]). These
equations can be recovered from Eq. (2.7) assuming g ≪ 1, ξ γi = σ , Ci j = ∆

inj
i j Ki j, and

denoting the polariton-polariton interactions as U . The noise term here represents the
intrinsic system’s fluctuations which become negligible at the threshold.

In other platforms such as the OPOs, the injection does not have to be symmetric
between nodes. This asymmetry can be modelled by introducing a parameter δ so that
∆i j = γ

inj
i (t)+(1−δ )γ

inj
j (t), where δ = 0 for symmetrically coupled CCs. The Eq. (3.1)

is the rate equation on the CCs coupled with the strengths ∆i jKi j. By writing the coupling
strength in such form, we separated the effect of what is not known a priori, e.g. pumping
intensity or energy at the threshold, from Ki j that are known and for geometrically coupled
condensates depend on the characteristics of the system, e.g. the distance between CCs i and
j. To show how Eq. (3.1) leads to the XY model minimisation, we suppress noise and use
the Madelung transformation Ψi =

√
ρi exp[iθi] to rewrite it in terms of the number densities

ρi and phases θi:

1
2

ρ̇i(t) = (γ
inj
i − γc −σρi)ρi + ∑

j; j ̸=i
∆

inj
i j Ki j

√
ρiρ j cosθi j, (3.2)

θ̇i(t) = −Uρi − ∑
j; j ̸=i

∆
inj
i j Ki j

√
ρ j√
ρi

sinθi j, (3.3)

where θi j = θi −θ j. The first term on the right-hand side of Eq. (3.3) tends to provide θi

with its own frequency of oscillations, whereas the second term couples the phases to each
other and so tends to synchronise them. This synchronisation is analogous to the Kuramoto
model discussed earlier in Section 2.1 allowing CCs to have constant (but not necessarily
zero) phase differences. Phase synchronisation in such a system has been extensively studied,
especially in the context of semiconductor laser arrays [160, 161]. To guarantee the XY
model minimisation, one needs to ensure that the gain mechanism equalises all densities ρi

at the near-threshold steady-state. Only under this condition does the second term on the
right-hand side of Eq. (3.3) describe the gradient descent to the minimum of the XY model.
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The earlier demonstrations of the XY model with laser systems and non-equilibrium
condensates were based on the assumption that all lasers (condensates) have the same steady-
state photon (particle) number [155, 160, 161]. Unfortunately, this assumption limits the
problems such a framework can address to trivial ones where all CCs have an almost equal
number of connections with nearly the same pumping rate. When phase synchronisation is
achieved, the variations of CC densities imply that the steady-state configuration realises
the minimum of the XY Hamiltonian with modified couplings ∆

inj
i j Ki j

√
ρ j/ρi, where ρi and

ρ j are not known a priori. To implement any couplings and connectivities, one needs to be
able to control the pumping rate of individual CCs and bring all densities to the same value
near the threshold so that the term

√
ρ j/ρi is cancelled out. The operational principle of

such a control mechanism is schematically illustrated in Figure 3.7(a). When a system is
below the threshold at some t = t1, all CCs are equally pumped. Depending on the node
connectivity, the non-zero densities emerge at different rates for each CC as the pumping
intensity increases and takes some of them above the specified threshold ρ = ρth as illustrated
in Figure 3.7(a) for t = t2. The pumping mechanism must be adjusted for each CC to enable
the saturation at the same density: decreased for CCs with densities above the threshold and
increased for CCs below the threshold. The feedback mechanism can be implemented via
optical delay lines in a network of OPOs or by adjusting the injection via the SLM in polariton
and photon condensates. The mathematical description of such a feedback mechanism is

dγ
inj
i

dt
= ε(ρth −ρi), (3.4)

where ε is a parameter that can be tuned to control the speed of approaching the threshold.
The fixed point of Eqs. (3.2, 3.4) is

ρi = ρth = (γ
inj
i − γc + ∑

j; j ̸=i
∆

inj
i j Ki j cosθi j)/σ , (3.5)

with the total particle number given by

N = (∑
i

γ
inj
i −Nγc + ∑

i, j; j ̸=i
∆

inj
i j Ki j cosθi j)/σ . (3.6)

By gradually increasing the gain until the threshold density value is reached, the condensation
takes place at the minimum of ∑i γ

inj
i for a given set of coupling coefficients since the pumping

of each of the CCs is controlled independently from others. Given that N = Nρth and Nγc

are fixed, the minimum of ∑i γ
inj
i is achieved at the maximum of ∑i, j; j ̸=i ∆

inj
i j Ki j cosθi j so at

the minimum of the XY Hamiltonian HXY =−∑i, j; j ̸=i ∆
inj
i j Ki j cosθi j.
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Fig. 3.7 (a) The operational schematics of the gain-dissipative simulator is shown. Initially,
all CCs are equally pumped (green bars) below the threshold, and all have negligible number
densities at t = t1. As the pumping intensities increase, the different CCs emerge (red bars)
with different number densities depending on the connectivity between CCs, as shown at
some t = t2. The individual control of the pumping intensity as described by Eq. (3.4) leads
to the steady-state with all the densities reaching the threshold at t = t3. (b-c) The ground
state spin configurations of the XY Hamiltonian for problem size N = 100 found by (b) the
numerical evolution of Eqs. (3.1, 3.4, 3.8) and (c) by the basin-hoping optimisation algorithm.
The found energies agree to 10 significant digits between methods. The coupling matrix is
fully connected with interactions randomly distributed in [−10,10].
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For non-equilibrium condensates, the nonlinear dissipation term σ can be proportional
to the pumping intensity σ = ξ γi = ξ γ

inj
i , where ξ is a system dependent parameter that for

polariton condensates depends on the decay rate of the particles in the exciton reservoir (see
Section 2.1 for details). The steady state of Eqs. (3.2, 3.4) becomes

ρi = ρth = (1− γc/γ
inj
i + ∑

j; j ̸=i
∆

inj
i j Ki j cosθi j)/ξ , (3.7)

with ∆
inj
i j = 1+ γ

inj
j /γ

inj
i . In this case, each of 1/γ

inj
i (and so ∑i 1/γ

inj
i ) is maximised at the

threshold, so again the system reaches the minimum of the XY Hamiltonian.
If one removes the density heterogeneity, the global minimum of the XY model can

be achieved. However, the coupling terms ∆
inj
i j (t)Ki j now depend on the particle injection

rates γ
inj
i that are not known a priori under the condition of equal densities at the threshold.

Therefore, not only γ
inj
i (t) has to be adjusted in time to equalise the densities using Eq. (3.4)

but also the coupling coefficients Ki j have to be modified in time to bring the required
couplings Ji j at the steady-state by

dKi j

dt
= ε̂(Ji j −∆

inj
i j Ki j), (3.8)

where ε̂ controls the rate of the coupling strengths adjustment. Since ε̂ ≪ ε such adjustments
do not significantly slow down the operation of the simulator as they have to be performed
much more rarely than adjustments of the gain. The couplings need to be reconfigured
depending on the injection rate as described by Eq. (3.8): if the coupling strength scaled
by the gain at time t is lower (higher) than the objective coupling Ji j, it has to be increased
(decreased). We have verified that Eqs. (3.1, 3.4, 3.8) find not just the value of the global
minimum of the XY Hamiltonian for a variety of couplings and sizes of the system, but also
the minimisers as Figure 3.7(b,c) shows.

Next, we illustrate the density and coupling adjustments for simulating the XY model on
the square lattice of polariton condensates that we discussed in Section 3.1. Figure 3.8(a)
shows the density profile of 45 polariton condensates that interact by the outflow of the
particles from neighbouring CCs. All CCs are equally pumped (with, say, γ inj ≡ γ

inj
i ) and,

therefore, the CCs away from the margins have the largest occupation: they are fed by the
particles coming from the eight neighbours. On the other hand, the CCs at the margins
have the lowest occupation as they interact with only four or five neighbours. Such density
heterogeneity between the lattice sites is observed in Figure 3.8(a), where the condensates
on the margins are barely visible. The resulting configuration could realise the minimum
of the XY model, but for the coupling strengths between i-th and j-th condensates given
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by 2γ injKi j
√

ρiρ j with number densities ρi and ρ j that are not known before the system
reaches the configuration shown in Figure 3.8(a). In agreement with experimental results,
the numerical simulation of the 7×7 polariton lattice suggests not only the density variation
between the sites but indicates the formation of a spin-wave state (Figure 3.8(b)), which
manifests the presence of various couplings in the lattice.

To realise the XY model for the given couplings Ji j, we need to implement the feedback
mechanisms described above and that we illustrate step by step. First, we remove the density
heterogeneity by adjusting the gain mechanism described by Eq. (3.4). The resulting pumping
profile is shown in Figure 3.8(c) with the corresponding steady-state number densities and
phases in Figure 3.8(d). In the presence of equal densities between the lattice sites, the
spin-wave is due to the different pumping intensities, and therefore, different couplings
∆i jKi j between the CCs across the lattice. We adjust Ki j according to Eq. (3.8) by changing
the distances between the sites as Figure 3.8(e) illustrates. The final steady-state has equal
densities and equal antiferromagnetic coupling strength between the nearest neighbours with
phases alternating between 0 and π , giving the expected global minimum of the XY model.

The developed procedure for the dynamical adjustment of the gain and coupling strengths,
which is reflected in Eqs. (3.1, 3.4, 3.8), can be simulated on a classical computer leading to
a new class of optimisation algorithms that we will explore in the next Chapter. In the next
Section, the developed scheme for minimising the XY Hamiltonian is extended to discrete
spin Hamiltonians, including the Ising and Potts models.
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+10%

+10%+12%

Fig. 3.8 (a) The contour plot is shown for the number density of polariton condensates formed
by non-resonant pumping with equal intensities. Red lines show the particle fluxes between
the sites: the central site experiences the inflow of the particles from eight neighbouring sites
whereas the sites on margins have only four or five neighbours. Dashed figures embrace
the condensates with densities lower than the central condensates. (b,d,f) Contour plots of
the steady state number density function |ψ|2 obtained by the numerical integration of the
full dynamical governing equations for 7×7 lattice and for the parameters used in previous
Section. Contour plots of the pumping profiles at the steady state are shown in (c,e). Panels
(c,d) are obtained by applying the density adjustments according to Eq. (3.4). Panels (e,f) are
obtained by applying both the density adjustments and coupling adjustments according to
Eq. (3.4) and Eq. (3.8). The resulting pumping intensities at the lattice sites are indicated for
the top right quarter of (c,e) as the factor of the pumping at the lattice centre. The coupling
strength adjustments are achieved by shifting the lattice sites as shown in red for the bottom
left corner only in (e).
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3.3 Signatures of minimising the Ising and Potts models on
simple graphs

In all considered lattice configurations of non-equilibrium condensates so far, the phases
of CCs could have taken any value between 0 and 2π . Many real-life optimisation tasks
can be formulated as discrete combinatorial optimisation problems, while mapping them to
continuous Hamiltonians is not practical. Therefore, it is crucial to reduce the overhead by
mapping discrete problems into discrete spin Hamiltonians directly. This section describes
the procedure for implementing the discrete Hamiltonians, namely the Ising and n-state
planar Potts Hamiltonians, in the geometrically coupled non-equilibrium condensates that
can be adapted to other gain-dissipative systems. The result is a flexible model system that
allows one to find the time and pumping-dependent behaviour and interplay of the discrete
and continuous order parameters with different symmetry breaking properties.

The operation of gain-dissipative simulators follows from the cGLE described by Eq. (2.1)
that governs the time evolution of the system of N spatially separated non-equilibrium
condensates. As we have shown earlier, the spatial degrees of freedom can be integrated out
so that the coupled rate equations describe the time evolution of the complex amplitudes Ψi(t)
of these CCs. For such a system to reach the global minimum of the XY Hamiltonian, one
needs to establish a feedback connection between the condensates’ gain, coupling strengths,
and densities. The resulting system is

dΨi

dt
= Ψi(γi −σ |Ψi|2)− iU |Ψi|2Ψi +

N

∑
j, j ̸=i

Ci jΨ j +noise(t), (3.9)

dγ
inj
i

dt
= ε(ρth −ρi),

dCi j

dt
= ε̂(Ji j −Ci j), (3.10)

where Ψi(t) =
√

ρi(t)exp[iθi(t)], ρi is the number density and θi is the phase of the i-th CC,
γi = γ

inj
i −γc is the effective gain where γ

inj
i is the pumping rate, γc and σ are the rates of linear

and nonlinear dissipation respectively, U is the strength of the in-site particle interactions, ρth

is the specified threshold number density. For simplicity, the coupling strength between i-th
and j-th CCs is denoted by Ci j compared to ∆

inj
i j Ki j from the previous Section. The constants

ε and ε̂ characterise the rates of the density and coupling adjustments respectively: if the
number density (the coupling strength) of the i−th CC is below (above) ρth (Ji j) it has to be
increased (decreased).

The system described by Eqs. (3.9, 3.10) has stable fixed points ρi = ρth at which the
phases acquire the global frequency ω0 = Uρth and minimise the XY Hamiltonian. To
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implement external fields and discrete versions of the XY model, such as the Ising and n-state
planar Potts models, we need to break the symmetry of Eq. (3.9) to phase rotations. This
symmetry breaking can be achieved by forcing the system parametrically at a frequency ωc

resonant with ω0. In polariton condensates, such resonant forcing has recently been used in
combination with a non-resonant pumping [162]. In analogy with [163, 164], the Eq. (3.9)
becomes for an integer ratio n = ωc/ω0

dΨi

dt
= Ψi(γi −σ |Ψi|2)− iU |Ψi|2Ψi +

N

∑
j, j ̸=i

Ci jΨ j +hniΨ
∗(n−1)
i +noise(t), (3.11)

where hni is the pumping strength of i-th CC at the resonant frequency n. We substitute
Ψi(t) =

√
ρi(t)exp[iθi(t)] in Eq. (3.11), separate real and imaginary parts, and drop the

noise term to get

1
2

ρ̇i(t) = (γi −σρi)ρi + ∑
j; j ̸=i

Ci j
√

ρiρ j cosθi j +hniρ
n
2
i cos(nθi), (3.12)

θ̇i(t) = −Uρi − ∑
j; j ̸=i

Ci j

√
ρ j√
ρi

sinθi j −hniρ
n
2−1
i sin(nθi), (3.13)

where θi j = θi −θ j. The fixed point of the dynamical system given by the Eqs. (3.12, 3.13,
3.10) satisfies

ρi = ρth = [γi + ∑
j; j ̸=i

Ji j cosθi j +hniρ
n
2−1
th cos(nθi)]/σ . (3.14)

Since for each CC we choose the smallest γi by raising it slowly from below the threshold,
the global minimum of

H =−
N

∑
i=1

N

∑
j=1; j ̸=i

Ji j cosθi j −ρ
n
2−1
th

N

∑
i=1

hni cos(nθi) (3.15)

is achieved while Eq. (3.13) describes the gradient decent to that minimum. By taking the
resonance n = 1 we introduce the effective external “magnetic" field F = {h1i/

√
ρth} into the

model. For n > 1 the forcing term in Eq. (3.11) reduces the invariance to a global phase shift
to a discrete symmetry θi = 2πi/n and for a sufficiently large hniρ

n
2−1
th > ∑ j |Ji j| introduces

the penalty term in the Hamiltonian H for the deviation of phases from the discrete values
2πi/n. For n = 2 and a uniform strength of the resonant pumping h2 = h2i, Eqs. (3.11, 3.10)
realise the minimum of Eq. (3.15) with θi restricted to 0 or π , and therefore, the minimum
of the Ising Hamiltonian, whereas for n > 2 and hn = hniρ

n
2−1
th Eqs. (3.11, 3.10) realise the

n-state planar Potts Hamiltonian with θi = 2πi/n [165].
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Fig. 3.9 Contour plots of the density |ψ(r)|2 of the polariton condensates with antiferromag-
netic nearest neighbour interactions show the ground states of the XY (a,c), the Ising (b), and
the 3-state planar Potts (d) Hamiltonians at the condensation threshold. The densities for the
Ising and 3-state planar Potts models are shown in log scale to emphasise the standing matter
waves between condensates and, therefore, the phase differences. The densities are obtained
by numerical integration of Eqs. (3.16, 3.17) with the parameters given in Appendix A.
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One can use Eqs. (3.11, 3.10) to simulate the behaviour of gain-dissipative systems.
However, since simplified assumptions were made to arrive at Eq. (3.11), it is important to
verify that a real system shows the transition from achieving the minimum of the continuous
XY model to the minimum of the discrete model when the resonant forcing is introduced.
As an illustrative example, we consider the polariton condensates modelled by the cGLE
coupled to the rate equation describing the exciton reservoir as given in Eqs. (2.1, 2.2). The
resonant drive can be achieved by an additional single-mode continuous wave laser tuned to
the multiple of the frequency of the system at the Hopf biburcation [163, 54]. The resulting
equations read

i}
∂ψ

∂ t
= − }2

2m
(1− iηdR)∇

2
ψ +U0|ψ|2ψ +}gRRψ

+ i
}
2

(
RRR− γC

)
ψ + iPn(r, t)ψ∗(n−1), (3.16)

∂R

∂ t
= −

(
γR +RR|ψ|2

)
R+P0(r), (3.17)

where ψ(r, t) is the condensate wave function, R(r, t) is the density profile of the hot
exciton reservoir, the last term on the right-hand side of Eq. (3.16) is the resonant forc-
ing with resonance n, and all other parameters are described in Section 2.1. Here the
polariton lattice of N condensates at the positions r = ri is formed by taking the non-
resonant pumping profile as P0(r, t) = ∑

N
i=1 fi(t)p(|r− ri|), where p(r) = exp(−αr2), α

characterises the inverse width of the incoherent pumping profile and fi describes the
strength of the pumping centred at the position r = ri. The resonant pumping profile
Pn(r, t) = ∑

N
i=1 h̃ni p(|r− ri|),n > 0 follows the lattice spatial profile but with different pump-

ing intensities h̃ni ≪ fi. As we have discussed above and shown in detail in Section 2.1 and
Section 3.2, the spatial degrees of freedom of Eqs. (3.16, 3.17) without the resonant terms can
be integrated out to yield the rate equations on the complex amplitudes of the CCs leading
to Eqs. (3.9). Similarly, Eqs. (3.16, 3.17) with the resonant forcing yield Eqs. (3.11) with
hni = h̃niRe[

∫
p(|r− ri|)φ∗n(|r− ri|)dr]/

∫
|φ(|r− ri|)|2 dr, where φ(r) is the wave function

of a single condensate pumped with p(r).
To illustrate how the polariton lattice minimises the discrete Ising or n-state planar Potts

models with or without external fields, we study the behaviour of the unit polariton lattice
cells when they are subjected to the effect of the resonant forcing. In what follows, we
explore the behaviour of the system without density and coupling adjustments described
by Eqs. (3.10) to see how the introduction of the resonant forcing changes the couplings.
First, we consider a simple lattice of three condensates arranged at the corners of the
equilateral triangle coupled antiferromagnetically with J = Ji j < 0. Without the resonant
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forcing, Pn = 0, n > 0, the phases arrange themselves with 2π/3 phase differences to
minimise HXY = −J(cosθ12 + cosθ23 + cosθ31) as Figure 3.9(a) illustrates. This agrees
with the experimental findings [131]. When the resonant forcing is introduced at n = 2, the
system described by Eqs. (3.16, 3.17) finds the global minimum of the Ising Hamiltonian
HIsing =−J̃(s1s2 + s2s3 + s1s3), si = cosθi =±1 for J̃ < 0, J̃ ̸= J. Such configuration is
frustrated with spins 0,π,π or 0,0,π depicted in Figure 3.9(b).

To illustrate the transition from solving the XY model to the n-state planar Potts model,
we consider four condensates arranged at the corners of a square with antiferromagnetic
coupling between the nearest neighbours and ferromagnetic coupling along the diagonal.
Figure 3.9(c) shows the solution of Eqs. (3.16, 3.17) without the resonant terms (Pn = 0,
n > 0). Four condensates realise the global minimum of the XY model with 0,π,0,π phase
differences as been shown in Section 3.1 and as been also observed in experiments [85]. The
same configuration would result from the Ising model, but the 3-state planar Potts model with
θi restricted to 0,2π/3 and 4π/3 is minimised by 0,z,0,z,0 configurations where z = 2π/3
or z = 4π/3. As Figure 3.9(d) illustrates, this is what we observe by implementing n = 3
resonant forcing in Eqs. (3.16, 3.17).

Finally, we combine two resonant forcing terms: the resonance n= 1 and either resonance
n = 2 or n = 3 in Eq. (3.16) to simulate the effect of an external “magnetic" field in the
Ising or 3-state planar Potts models. We take h̃11 = h̃12 > max|Ji j| and h̃13 = h̃14 = 0. Such
external field penalises the objection function if the phases of the bottom two condensates in
Figure 3.10(b-c) are not zeros and leads to the phase configurations as shown in Figure 3.10(d-
e).

This approach opens rather exciting possibilities for simulating complex physical systems,
solving combinatorial optimisation problems and developing new computational algorithms.
With spatially varied dissipation profiles, which we propose in the next Section for realising
independent control of individual coupling strengths, exciting opportunities are open to study
collective quantum phenomena and exotic phase configurations and transitions.
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Non-resonant

Non-resonant + Resonant Non-resonant + Resonant  

Fig. 3.10 Contour plots of the density |ψ(r)|2 of the polariton condensates in the corners of
quadraterial show the ground state of the XY (a), the Ising (b), and the 3-state planar Potts (c)
Hamiltonians without the external fields. The Ising and the 3-state planar Potts Hamiltonians
with the external fields forcing the bottom condensates to acquire phase θi are shown in (d)
and (e), respectively. The densities are obtained by numerical integration of Eqs. (3.17) with
the parameters given in Appendix A are shown in log scale for the Ising and Potts models.
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3.4 Individual control of spatial lattice interactions by vary-
ing dissipation profile

In previous Sections, the new subclass of simulators was proposed based on networks of
polariton and photon condensates and lasers. These are gain driven systems with dissipation:
when gain exceeds the threshold and overcomes the losses, a phase transition to a coherent
state occurs. The gain should occur at various localised spatial positions within the decoher-
ence length of neighbouring condensates to create a network of condensates. Initially, each
gain centre is seeded with a random phase and is evolved independently of other centres.
As the occupation of each gain centre grows with an increased pumping intensity, different
centres start interacting while exchanging particles. Finally, the dissipative nonlinearity
saturates the gain and the system can settle to a steady-state with a particular distribution of
phase differences between the network elements.

In this Section, we study a model of a fully controllable polaritonic network of a fixed
geometry by spatially varying dissipation. In this network, the desired interactions between
any nodes can be supported by creating channels of low dissipation and further controlled
individually by dissipative gates. At the same time, high-dissipative barriers can eliminate
undesired interactions. We justify how such dissipative channels, gates, and barriers, can be
experimentally implemented for a few physical platforms, including polariton and coupled
laser systems.

Individual control of pairwise interactions. As it was shown earlier, polaritonic networks
can be accurately modelled with the cGLE coupled to the reservoir dynamics which are
described by Eqs. (2.1, 2.2). For a purpose of spatially varying dissipation, we nondimen-

sionalise these equations here in a different way by ψ →
√

}RR/2U0l2
0ψ , t → 2l2

0t/RR,

r →
√

}l2
0/(mRR)r, R → R/l2

0 , P → RRP/2l2
0 and introduce the dimensionless parameters

g = 2gR/RR, b0 = 2γRl2
0/RR, b1 = }RR/U0, η = η̂/l2

0 , γ = γCl2
0/RR, where l0 = 1µm. The

resulting model yields

i
∂ψ

∂ t
= −(1− iηR)∇2

ψ + |ψ|2ψ +gRψ + i(R− γ)ψ, (3.18)

∂R

∂ t
= −

(
b0 +b1|ψ|2

)
R+P(r, t). (3.19)

Spatially varying dissipation profile effectively creates an excitonic landscape of hills and
valleys for polariton flows with excitons reservoirs occupying the regions of higher dissipation.
Such an excitonic landscape can create barriers for polariton flow and, therefore, change
the interaction depending on the height of the barriers. This relationship between density
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modulations and spatially varying dissipation suggests to use a varying dissipation profile
across the sample to establish pairwise interactions that can be independently tuned between
any two condensates. For instance, this can be achieved by creating a spatially dependent
dissipation profile γ(r), as illustrated in Figure 3.11. With this scheme, a two-dimensional
square grid is formed. It consists of narrow rectangular strips, i.e. channels, characterised by
a constant low dissipation rate γ = γchannel. Such small dissipation supports flows of polariton
quasi-particles through these channels. Outside of the channels, the dissipation is strongly
enhanced and equal to γ = γbarrier ≫ 1, thereby forming dissipative barriers. The condensates
are pumped at the grid vertices (schematically shown as yellow spheres in Figure 3.11)
and the high-dissipative barriers (brown areas) block the outflow of polaritons across the
diagonals.

Fig. 3.11 The schematic is shown for the spatially dependent dissipation profile with nine
condensates (yellow balls) arranged in a 2D lattice in a semiconductor microcavity. The
condensates interact via channels of low dissipation (light grey). Dissipative barriers (brown
areas) show an increased dissipation that prevents the coupling between the condensates
across the diagonals. Dissipative gates (dark blue areas) show the regions where the dissipa-
tion is increased or decreased to control the couplings between neighbouring condensates.

The pairwise interactions between the neighbouring condensates are further controlled
by another dissipative layer across the channel: dissipative gates (dark blue narrow blocks
in the scheme) given by γ = γchannel + γgate(r). The amplitude of dissipative gates should be
available for a dynamical adjustment and be large enough to change the sign of interactions
from ferro- to antiferromagnetic. In contrast, the channel-barrier structure forms the stationary
dissipative profile that can be conclusively imprinted in the sample.

Two condensates. To relate the characteristics of the dissipative control with the interac-
tion between the condensates, we first study the configuration of two polariton condensates.
The π phase modulation between geometrically fixed condensates is achieved by increasing
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the amplitude of the dissipative gate between condensates, as shown in Figure 3.12(a). The
complete transition to the π phase state happens at higher gates in the presence of higher dis-
sipative barriers meaning that the excitonic landscape with deeper valleys supports stronger
couplings between condensates. Here “strong coupling" means that the condensates have
to remain synchronised after the dissipative gate of a particular amplitude is placed. Such
strong coupling can be achieved by, for example, using a uniform pumping profile or by
closely arranging the condensates with significant overlapping of their pumping shapes. If
the external potential is used to control the coupling, the condensates become de-coupled
before the π phase difference can be reached.

Nine condensates. Next, we consider the same close arrangement of pumpings for a
3×3 square block of polariton condensates with the pumping profile as in Figure 3.12(b).
In this case, the dissipative gates are placed between the vertical stripes of condensates (see
Figure 3.12(c)). The initial gateless state is configured to be ferromagnetic, as shown in
Figure 3.12(d). The amplitude of dissipative gates is then increased, which leads to spin
configurations in Figure 3.12(e-g) with an antiferromagnetic coupling between vertical stripes
of condensates in the final configuration. Here we note that both chosen dissipative and pump
profiles serve the same purpose of preventing undesired interactions. The former destroys
polaritons by decreasing their lifetime, i.e. increasing losses, and the latter creates exciton
reservoirs that block polariton outflows due to repulsive exciton-polariton interactions.

To check the stability of an arbitrary network, we next demonstrate that the individual
control of couplings can be realised. Figure 3.13(a) shows the dissipative profile with only
one dissipative gate placed for the bottom-left condensate. This dissipative gate creates
frustration in the network and makes this particular coupling antiferromagnetic while all
the other couplings are ferromagnetic. The resulting spin configuration is depicted in
Figure 3.13(b) and demonstrates how the frustration spreads across the network. The addition
of another dissipative gate as in Figure 3.13(c) removes frustration from the system and leads
to the spin configuration, which is shown in Figure 3.13(d).

Arbitrary networks. For a potential implementation of reservoir computing or analogue
Hamiltonian optimisation, it is important to demonstrate the scalability of the polaritonic
network with dissipative gates, channels, and barriers. In Figure 3.14 we show a configuration
of 500 condensates with 92 dissipative gates, which are placed so that regions with antiferro-
magnetic couplings can form arbitrary symbols, in this case “Sk". We simulate Eqs. (3.18,
3.19) starting with 500 random initial conditions and choose two lowest energy states to
show in Figure 3.14. While the excited energy states do not maintain any recognisable spin
configuration (see Figure 3.14(b)), the lowest found energy state indeed recovers the letters
“Sk" (see Figure 3.14(a)).
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Fig. 3.12 (a) The transitions from the ferromagnetic state with 0 phase difference to the
antiferromagnetic state with π phase difference between two polariton condensates by
varying the amplitude of the dissipative gate are shown for three dissipative barriers (solid
lines). The condensates remain synchronised though the small phase fluctuations appear for
higher dissipative gates. The amplitude of such fluctuations is contained within the colour
dashed lines. (b) The pumping profile for a 3× 3 square lattice of polariton condensates.
(c) The structure of a dissipation profile γ(r) consisting of dissipative channels (black),
dissipative barriers (pink), and dissipative gates (purple) being horizontally placed between
vertical stripes of condensates. (d-g) The phase differences of all condensates are shown
with black arrows with respect to the central condensate, the background is the normalised
polariton density |ψ(r)|2. (d) In the absence of dissipative gates, the initial state is prepared
to be ferromagnetic with all spins aligned in the same direction. (e-g) With a dissipative
gate of γgate = {3,5,7}, the coupling strengths between vertical stripes of condensates are
continuously changed from ferromagnetic to antiferromagnetic coupling.



3.4 Individual control of spatial lattice interactions by varying dissipation profile 73

Fig. 3.13 (a) A dissipation profile structure is similar to that of Fig. 3.12(b) but with only
one dissipative gate. This dissipative gate makes the particular link antiferromagnetic while
all other links remain ferromagnetic and, thus, frustration is created in the network. The
resulting spin configuration is shown in (b). (c) The addition of another dissipative gate
removes frustration from the system and leads to the spin configuration which is shown in
(d). The dissipative gate’s amplitude is γgate = 7.



74 Gain-dissipative simulator with non-equilibrium condensates

Figures 3.13 and 3.14 give the realistic spin distributions under the XY model. However,
there are small deviations from the exact spin orientations of the global minimum of the
XY model. In all considered configurations, dissipative gates remove particles from the
system in an asymmetric way and create gentle density inhomogeneity that affects spins
across lattice sites. The origin of this problem and possible solutions have been elucidated in
Section 3.2. In particular, the injection rates could be adjusted and a weak dependence of
polariton outflow velocity on the pumping intensity, which is a sample-dependent property
of polaritons, could be ensured. Without such extensions, spins realise the stationary state of
the Stuart-Landau model, which we discussed in Section 2.1. In the next Section, we propose
a scheme for minimising the XY and Ising models on arbitrary graphs with non-equilibrium
condensates.

Fig. 3.14 The 20×25 square lattice of polariton condensates is shown for the lowest energy
state in (a) and for one of the excited energy states in (b). The polariton densities are shown
with black-and-white colour scheme, the phase differences are plotted with a cyclic green-
grey colour scheme. The dissipative gates γgate = 7 are placed between the condensates
constituting letters “Sk" and other condensates to create antiferromagnetic couplings, while all
other couplings are ferromagnetic. The lowest energy state spin configuration (a) resembles
“Sk" letters while the excited energy state (b) is blurred. The energies are in dimensionless
units.

Implementation feasibility. The following experimental approaches may be promising
to realise a fixed dissipative structure consisting of dissipative channels and barriers. Since
polaritons are quasi-particles that exist in semiconductor microcavity environments, their
excitonic or photonic components can be directly accessed by manipulating quantum wells
or microcavities, respectively. The technique of implanting protons into the quantum wells
or the top of distributed Bragg reflectors [87] makes independent spatial control of both the
exciton and the cavity photon energies possible, which in turn leads to local control over
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the polariton decay rate. The spatial control of the polariton lifetime, i.e. the dissipation
profile γ(r), can therefore be fabricated with the proton implant technique with a multi-layer
mask [87]. Another way to access the exciton states alone is to create controlled stress by
applying a pin to the backside of the substrate [73]. As a result, a spatial trap is formed
directly under the stressor where polaritons have an energy minimum, and the cavity photon
states and the exciton states are strongly coupled. However, away from the centre of the trap,
the lowest polariton states are almost purely photon-like, making the coupling of the exciton
states and cavity photon states weaker. This means that the lifetime of polaritons at high
energy is shorter than the lifetime of those at the energy minimum. Thus, in principle, such
strain-induced traps can be used to create a configuration of dissipative channels and barriers
if the tip radius of the pin can be decreased to a micrometre or less.

The dynamic dissipation control for realising dissipative gates can be achieved by elec-
trical carrier injection, which leads to localised losses due to excited state absorption and
bimolecular annihilation involving polarons and long-lived triplets [166]. Alternatively, the
local control of the dissipation can be achieved by increasing the biexciton formation rate.
Biexcitons can be created by two-photon absorption, by exciton absorption, or by inducing
polariton-biexciton transitions [167–170].
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3.5 Polaritonic XY-Ising Machine

A system of polariton condensates has attracted considerable interest over the last few years
by offering a gain-dissipative system for tackling both discrete and continuous optimisation
problems. The macroscopic coherence of networks of polariton condensates is characterised
by a complex classical field with well-defined condensates’ relative phases θi. These phases
can be mapped into continuous ‘spins’ si = (cosθi,sinθi) that can be further constrained
to discrete values θi ∈ {0,π} by employing the resonant excitation, as we have seen in
Section 3.3. The idea underlying the polariton simulator for solving optimisation problems
originates from the belief that huge combinatorial space of possible states can be sought in
parallel near the condensation threshold, at which only the low-energy coherent states can
form. These states may correspond to ocal or global minima of a particular spin Hamiltonian,
and since condensation occurs on a picosecond time scale, such polariton simulators may be
potentially attractive for optimisation tasks.

We have shown in Chapter 2 that the interactions between geometrically coupled con-
densates are generally of a complex nature and consist of the dissipative (Heisenberg) and
Josephson couplings. The latter could prevent the system from achieving the minimum of a
spin Hamiltonian. Moreover, even when the Josephson coupling is negligible compared to
the dissipative coupling, the geometric coupling barely allows one to control the interactions
beyond the nearest neighbours. Such a lack of control prevents the system from addressing
complex, non-planar spin Hamiltonians.

Finding ways to dynamically control individual interactions between network nodes,
such as the dissipative gates discussed in the previous Section, is a necessary step for
addressing non-trivial spin Hamiltonians but not sufficient. In all proposed schemes, the
nearest neighbour interactions are attempted to be controlled while the beyond nearest
neighbour interactions are assumed to be negligible, which is rarely the case. A recent study
has shown the synchronisation between condensates across distances over 100 µm [171]
noting that a typical lattice size constant is often in the range of 5-15µm. Moreover, spatially
coupled polariton condensates are capable of representing different oscillator models for
different ranges of experimental parameters (see Section 2.1 for details).

This Section focuses on a crucial and yet missing discussion of isolating a particular
optimisation problem to address with polariton networks and controlling the couplings beyond
nearest neighbours for arbitrary graphs of polariton condensates. We offer an alternative
approach for simulating spin Hamiltonians with a network of spatially localised polariton
condensates that do not interact with one another geometrically. For the network to become
a spin Hamiltonian optimiser, we propose to couple any two condensates by redirecting the
emission from one condensate to another or by exciting one condensate with an additional
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resonant pump tuned to the phase of that condensate. The performance of the emulated
polariton simulator is demonstrated for discrete, i.e. Ising, and continuous, i.e. XY, spin
Hamiltonians for sparse and dense interaction matrices J of various sizes from 9 to 49
condensates.

3.5.1 Remote coupling control

To model polariton condensates, we start again with the dimensionless cGLE coupled to the
exciton reservoir dynamics:

i
∂ψ

∂ t
= −∇

2
ψ + |ψ|2ψ +gRψ + i(R− γ)ψ + i fRes(r, t)ψ∗, (3.20)

∂R

∂ t
= −

(
b0 +b1|ψ|2

)
R+P(r, t). (3.21)

Compared to Eqs. (3.18, 3.19), here we neglected η that is generally assumed to be small in
experiments. Also, following the discussion of Section 3.3, we introduced the fRes term that
is an optional resonant pump at the double condensate frequency (second resonance) which
forces phase differences between different condensates to be either 0 or π .

We use Eqs. (3.20, 3.21) to represent a network of isolated non-interacting polariton
condensates which can be experimentally realised, for instance, with micropillars or with
trapped polariton condensates. The former requires a lithographically modified sample and
etching and leads to the formation of a polariton condensate, which coexists with the exciton
reservoir density in each micropillar. The latter can be achieved without modifying the
sample, e.g. by exciting each network’s element with a Gaussian ring pump, which would
form a polariton condensate separated from the exciton reservoir. Although the following
analysis can be readily applied to either experimental configuration, for ease of reading,
we will use an array of micropillars as our primary example of isolated condensates with
occasional notes on the possible change in performance of the other.

The position, shape and size of micropillars can be accurately controlled during fabrica-
tion [99]. Hundreds of coupled micropillars etched in a planar semiconductor microcavity
have been used to study a wealth of phenomena from the Dirac cones in a honeycomb geom-
etry [102] to the gap solitons in 1D Lieb lattices [172]. To model the polariton condensation
in a micropillar cavity, we introduce a spatially dependent dissipative profile

γ(r) = γout − (γout − γin)∑
i

exp
(
−α|r− ri|2nSG

)
, (3.22)
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where γout and γin are the dissipation rates outside and inside of a micropillar, respectively.
Here, γout ≫ γin, ri denotes the centre of the i-th micropillar, and nSG is the degree of
a supergaussian that models micropillars as flat low-dissipative discs. The dramatically
increased dissipation between the discs (γout = 100γin) effectively blocks all the polariton
outflows which leads to non-interacting condensates even for short separation distances of a
few micrometers as would be expected for the system of micropillars. The condensates at
different micropillars are noninteracting unless either relative or absolute remote couplings
are introduced. In the former case, a part of the light emitted by the j-th micropillar
condensate is re-injected into the i-th micropillar condensate at the amount proportional to
the occupation of the j-th condensate. In the case of the absolute coupling, the same amount
of light is exchanged between the i-th and the j-th condensates. Both coupling models can
be represented by

iψt = −∇
2
ψ + |ψ|2ψ +gRψ + i(R− γ)ψ + i fResψ

∗

+ iδγ,γin

N

∑
j=1, j ̸=i

Ji jψ(r+ r j − ri, t − τ) (3.23)

where δγ,γin is the delta-function which is equal to one inside a micropillar, i.e when γ(r) = γin,
and zero outside, N is the number of micropillars, and τ represents a possible time delay
to supply couplings in an experimental setup. The coupling term represents the emission
feedback when for each ψ(r) in a micropillar i the respective values ψ(r+ r j − ri) are
added from the micropillar centred at j. For the relative coupling model we shall consider
Ji j = Ji j while for the absolute coupling model we will use Ji j = |ψi|Ji j/|ψ j|. The sign
of the coupling strength can be made positive or negative by injecting the light with zero
(ferromagnetic coupling) or π phase (antiferromagnetic coupling), respectively. For further
derivations, we denote K(r) = Θ(R− r) as the Heaviside function where R is the radius
of the central part of the micropillar with a uniform phase distribution. In Eq. (3.23) we
assume that the frequencies of each individual micropillar may be slightly different just
below the condensation threshold. Nevertheless, the condensation process in presence of
interpillar couplings locks these frequencies of different condensates resulting in a single
energy condensate level. Recent experimental reports on two coupled micropillar lasers
have demonstrated such frequency locking for detunings of up to 1 GHz in the few photons
regime [173, 174]. For negligible time delay and geometric couplings between condensates,
we can rewrite Eqs. (3.21, 3.23) for each micropillar i using ψ = ∑i ψi and R = ∑i Ri as
N equations for the polariton condensates ψi = K(|r− ri|)ψ(r− ri, t) and N equations for
reservoir densities Ri = K(|r− ri|)R(r− ri, t) noting that P(r, t) = ∑i Pi = ∑i P(|r− ri|, t),
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fRes(r, t) = ∑i f (i)Res = ∑i fRes(|r− ri|, t):

i∂tψi = −∇
2
ψi + |ψi|2ψi +gRiψi + i(Ri − γin)ψi + i f (i)Resψ

∗
i + i

N

∑
j=1
j ̸=i

Ji jψ j (3.24)

∂tRi = −
(
b0 +b1|ψi|2

)
Ri +Pi. (3.25)

The steady states of Eqs. (3.24, 3.25) correspond to the minima of the XY, when f (i)Res = 0,
and Ising, when f (i)Res ̸= 0, models as it becomes evident after we substitute ψi =

√
ρi exp[iθi]

into Eq. (3.25) and separate the real and imaginary parts. The equations read as

1
2

∂tρi = (Ri − γin)ρi +
N

∑
j=1, j ̸=i

√
ρiρ jJi j cos(θ ji)+ρi fRes(r, t)cos(2θi), (3.26)

∂tθi =
∇2√ρi√

ρi
−ρi −gRi +

N

∑
j=1, j ̸=i

√
ρ j

ρi
Ji j sin(θ ji)− fRes(r, t)sin(2θi), (3.27)

∂tRi = −(b0 +b1ρi)Ri +Pi(|r− ri|, t), (3.28)

where θ ji = θ j −θi. Here we considered the uniform phase distribution θi(|r− ri|, t)≈ θi(t)
which is a valid assumption near the micropillar’s centre, i.e. R < Rm with Rm being the
micropillar’s radius. In case of the relative coupling scheme, the fixed points of Eqs. (3.26-
3.28) represent the minima of the XY or Ising spin Hamiltonians only for the equal polariton
densities across all micropillars, that is, when the condition ρi(r)= ρ j(r) stands. Such density
equilibration can be robustly achieved by iteratively updating pumping intensity Pi so that∫

ρidr = ρ0 for all micropillars, where ρ0 is the predefined integral luminosity. In contrast,
the absolute coupling model naturally optimises the XY and Ising models and doesn’t require
the equalised polariton densities due to the coupling coefficients Ji j = |ψi|Ji j/|ψ j| that
represent the exchange of a fixed number of photons between sites. The steady state solution
of Eqs. (3.26-3.28) is given for both coupling models by equations:

(Ri − γin) =−
N

∑
j=1, j ̸=i

Ji j cos(θ ji)− f (i)Res cos(2θi),

(3.29)

µ −
∇2√ρi√

ρi
+ρi +gRi =

N

∑
j=1, j ̸=i

Ji j sin(θ ji)− f (i)Res sin(2θi)

(3.30)

Ri = Pi(b0 +b1ρi)
−1, (3.31)
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where µ is the global oscillation frequency shared between all condensates at a coherent
state.

One can see from the Eq. (3.31) that for a fixed point solution the maximised total
polariton density corresponds to the minimum of the total reservoir density, which together
with Eq. (3.29) leads to the minimisation of the spin Hamiltonians:

max
N

∑
i=1

∫
Ω

ρidr ⇔ min
N

∑
i=1

∫
Ω

Ridr ⇔ minHXY|Ising

HXY|Ising =−1
2

N

∑
i, j=1

Ji j cos(θi j)−
N

∑
i=1

(∫
Ω

f (i)Resdr
)

cos(2θi),

where Ω denotes the plane of the microcavity. The resonant force term f (i)Res acts as a
penalty in the objective function and leads to optimisation of the Ising model. At the same
time, the XY Hamiltonian is optimised for the zero penalty term. We note that the term
gRi has a destabilising effect on the steady states solutions corresponding to minima of
spin Hamiltonians meaning that small exciton-polariton interactions and/or small exciton
reservoirs Ri could possibly improve the optimisation accuracy. In experiments, a small
reservoir density can be achieved for a high conversion rate of excitons into polaritons or
by spatially separating polaritons from the reservoir by considering, for example, trapped
condensates.

3.5.2 Minimisation of the XY and Ising models on arbitrary graphs

The validity of the proposed relative and absolute coupling models is verified by applying
the two-dimensional Eqs. (3.24, 3.25) for optimisation of the XY and Ising Hamiltonians
on various coupling matrices. Firstly, we determine the minimum value of the coupling
strength required for the phase-locking of two condensates. Figure 3.15(top) shows the
phase difference for a polariton dyad in the case of different interaction strengths with a
zero time delay. We simulate 50 random initial conditions for each coupling strength and
calculate the phase difference between the condensates in a final steady state. The region
of decoupled condensates can be identified for coupling strengths |J0|. 0.02 by observing
random phase differences between the condensates in Fig. 3.15(top). The condensates
become phase-locked for bigger coupling strengths and can reach the ferromagnetic ground
state for positive couplings or antiferromagnetic ground state for negative couplings. The
local minima become unstable for coupling strengths bigger than 0.05 when the system finds
the ground state regardless of the initial conditions. The demonstrated minimum coupling
strengths for phase-locking of two condensates are similar for both relative and absolute
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Fig. 3.15 Top: Phase difference as a function of coupling strength for a polariton dyad.
The Eqs. (3.24, 3.25) are simulated for 50 random initial conditions for each coupling
value. The coherence occurs for the absolute values of strengths greater than 0.02 leading to
ferromagnetic state with 0 phase difference for positive couplings and to antiferromagnetic
state with π phase difference for negative couplings. The slowly decaying unstable solutions
are shown in grey. Bottom: Phase difference as a function of time delay for a polariton dyad.
The time delay percentage is defined with respect to the time required to reach a steady state
in the absence of delay. The scatter point size indicates how many states out of 50 initial
conditions end with a particular phase difference. The coupling strength between condensates
is chosen to be J0 =−0.1. The expected antiferromagnetic state is observed for time delays
τ < 2% and followed by the region with decoupled condensates. The further phase-locking
of condensates becomes possible for bigger time delays due to the global phase presence.
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coupling models in the case of the XY model. For the Ising Hamiltonian, the destabilisation
of excited states (local minima) happens for bigger coupling strengths of about |J0| ≥ 0.07.
This is, therefore, the minimum coupling strength needed for the system to find the dyad’s
ground state independently of the initial conditions. We note that the presence of intrinsic
noise has a positive effect on destabilising such local minima.

In an experimental implementation of interactions, a possible time delay τ may appear
in constructing couplings between the network elements due to multiple reasons, including
the phase readout time, the time required to re-route photons or the time for adjusting an
SLM. As a result, the delayed phase information of condensates at time t − τ will be used
for creating couplings between the condensates at time t whose phases will be shifted due
to the global oscillation frequency. To demonstrate this effect of a time delay in realising
coupling strengths between different micropillars, we consider the absolute coupling model in
optimising the XY Hamiltonian. Figure 3.15(bottom) shows the phase difference dependence
on the time delay for the polariton dyad with the coupling strength J0 =−0.1. The percentage
time delay is defined as a ratio to the time T required for the dyad to reach a steady state
without delay. We simulate 50 random initial conditions for each time delay value and
show the resulting phase difference with scatter points of varied sizes proportional to the
fraction of initial conditions that lead to this phase. The anticipated antiferromagnetic ground
state is observed for time delays τ up to 2%. The previously unstable local minimum, i.e.
a ferromagnetic state with 0 phase difference for J0 = −0.1, becomes now stable in the
presence of time delay.

Interestingly, the subsequent de-synchronisation area is followed by a clear ferromagnetic
coupling between condensates, followed by another antiferromagnetic area for τ > 7%.
This peculiar synchronisation behaviour can be attributed to the global phase rotation with
frequency µ of each condensate, leading to phase-locking of condensates with an additional π

phase difference for large time delay values. This time delay effect is similar for both coupling
schemes in simulating either spin Hamiltonian. Although for networks of condensates, the
presence of a time delay would result in a phase lag in Eqs. (3.29-3.31) which for significant τ

can decrease the optimisation accuracy of the XY Hamiltonian, but not Ising. For simplicity,
in the following investigations, we will not consider any time delay in the couplings.

Having established the minimum coupling strength for phase-locking of two condensates,
we now consider nine fully connected polariton condensates. Each condensate is created
with a non-resonant Gaussian pump in a lattice of 3 by 3 condensates (see Fig. 3.16(a)). To
realise spatially non-interacting polariton condensates we introduce a dissipative profile as
shown in Fig. 3.16(b) where the absence of particle outflows is ensured by the high value of
γout = 100 outside nodes compared to low γin = 1 values inside nodes. A random interaction
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Fig. 3.16 The XY Hamiltonian is minimised for a problem of size N = 9 with a 3× 3
polariton lattice by simulating Eqs. (3.24, 3.25). The intensity distribution of the incoherent
pumping profile P(r) is shown in (a). The condensate emissions within the black circles
are used for couplings between condensates. The dissipative profile for realising spatially
isolated polariton pillars are presented in (b). The fully connected coupling matrix J, which
is randomly constructed from J1 = 0.05 and J2 = 0.1 of random signs, is shown in (c). The
polariton density profiles and phase configurations are plotted for relative and absolute
coupling models in (d-e), respectively. The white arrows represent the phase difference
relative to the central condensate (the vertical arrow). The corresponding energy values of
the XY Hamiltonian are shown in the top-right corner. The XY Hamiltonian ground state
solution is verified by the gain-dissipative and the basin-hopping algorithms in (f).
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matrix is constructed of positive and negative couplings of amplitude {0.05,0.1} as shown
in Fig. 3.16(c). As an illustrative example, we apply the relative and absolute coupling
models described by Eqs. (3.24-3.25) for optimising the XY Hamiltonian ( fRes = 0). In the
former case, the densities of condensates are iteratively equalised over time by individually
adjusting pumping intensities Pi. On the other hand, the absolute coupling model does not
require equal polariton densities at the steady-state and, consequently, non-equal densities
can be realised in a final state. The phase configurations and corresponding density profiles
are shown in Fig. 3.16(d-e) for the lowest energy states out of 10 runs for both models. To
quantify the optimisation performance of coupling models, we consider the median accuracy
that is defined by proximity to the ground state:

Median Accuracy =<
HRelative|Absolute

HGround State
> . (3.32)

where HRelative|Absolute is the spin Hamiltonian energy for the phase configurations obtained
with the mean-field approach (Eqs. (3.24, 3.25)) in case of the relative or absolute cou-
pling schemes, HGround State is the ground state energy found by the classical optimisation
algorithms. In Fig. 3.16(d-e), the found minima are within 1% and 0.4% from the XY Hamil-
tonian ground state that was verified with the gain-dissipative [20] and the basin-hopping
[175] algorithms (Fig. 3.16(f)). The median accuracy over 100 random fully-connected
matrices of size N = 9 generalises to 99.2% and 99.5% for the XY Hamiltonian in case of
the relative and absolute coupling models, respectively.

To investigate the performance of the proposed polaritonic XY-Ising machine on the
bigger size problems, an analysis of the optimal range of coupling values and edge density
effects is required. In what follows we study the relative and absolute coupling models on
the random unweighted MaxCut problems for the XY and Ising spin Hamiltonians. For
the unweighted MaxCut problem, one seeks to divide the graph into two subgraphs with
the maximised number of edges between them. As it was mentioned in Introduction, this
problem is known to be NP-hard and can be mapped to the Ising Hamiltonian by assigning
antiferromagnetic couplings Ji j =−1 to the graph edges. We construct three such random
adjacency matrices A of size N = 16 of degree 5, 9, and 13. Both coupling models are
simulated on matrices J = −J0A with amplitudes J0 in the range [0.001,0.3]. For each
coupling strength amplitude, the Eqs. (3.24, 3.25) are simulated for 20 random initial
conditions. Figure 3.17(a-b) shows the ground state proximity as a function of J0 amplitude
for the XY Hamiltonian. The optimal range of couplings with the median accuracy over 90%
can be identified for the amplitudes in the range [0.01,0.11] for the relative coupling model
and slightly smaller range of [0.02,0.1] for the absolute coupling model. For the Ising model,
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Fig. 3.17 Optimal amplitude range is studied for relative and absolute coupling models on the
unweighted MaxCut problems of size N = 16 with degrees 5, 9, and 13. The median accuracy
is shown for the XY Hamiltonian in (a-b) and the Ising Hamiltonian in (c-d). Both models are
simulated with Eqs. (3.24, 3.25) for 20 random initial conditions per each coupling strength.
Shading indicates 25th and 75th percentile range of instances.

a smaller batch of coupling amplitudes allows one to achieve the median accuracy greater
than 90% (see Fig. 3.17(c-d)). Such difference between the optimal coupling ranges can be
possibly anticipated since the hard problems for the Ising Hamiltonian are not necessarily
hard for the XY Hamiltonian optimisation. The clear shift to bigger optimal couplings
for bigger edge densities (> 0.8) is especially pronounced for the Ising Hamiltonian. This
analysis confirms the lower bound and provides the upper bound of the coupling strength
J0 for achieving higher optimisation accuracies for both models. We note that the ground
states of the Ising Hamiltonians were verified with the gain-dissipative [20] and CIM [21]
algorithms.

With the identified optimal range of coupling amplitudes, we apply the relative and
absolute coupling models to the larger spin Hamiltonian problems. Table 3.1 shows the
median accuracy for both coupling models simulated on 20 unweighted MaxCut instances
of size 25 and 49 with edge density of 50%. For such connectivity, we pick the amplitude
strength of J0 = 0.04 from the optimal range. The number of initial conditions is fixed to 20
per coupling matrix. We say that the coupling matrix J is globally optimised if the actual
ground state is found at least once out of 20 runs for the Ising Hamiltonian. In the case of the
XY Hamiltonian, we require at least one phase configuration that is closer than 98% to the
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ground state for claiming global optimisation. This number of globally optimised interaction
matrices is indicated in parentheses in Table 3.1. The relative coupling model shows
consistently better performance on both the Ising and XY Hamiltonians than the absolute
coupling model. The less accurate results for the Ising Hamiltonian, which are even more
pronounced for the absolute coupling model, maybe due to the greater hardness of generated
interaction matrices for discrete optimisation than continuous. The drastic difference between
coupling models could be possibly mitigated with a better choice of J0 or may be a signal
of a better local minima escape mechanism of the relative scheme. Nevertheless, the
demonstration of the optimal performance of either of the proposed coupling methods is
not the focus of this Section since standard heuristic algorithms can easily outperform both
methods. Instead, the achieved results demonstrate a proof-of-principle for using polariton
condensates, modelled with the mean-field approach governed by Eqs. (3.24-3.25), as the
XY-Ising computing machine.

Feasibility of experimental implementation

The spatially non-interacting condensates can be experimentally realised using lithographi-
cally etched micropillars or with trapped polariton condensates. The couplings are established
remotely according to the elements of the coupling matrix Ji j. We envision two types of
remote couplings. In the first scheme, couplings are constructed by redirecting the emission
of each condensate with either free-space optics or optical fibres to an SLM. At the SLM, the
signal from each node is multiplexed and redirected to other nodes with the desired coupling
strength Ji j allowing one, in principle, to create an all-to-all coupled network. Each matrix of
couplings J can be programmed on the SLM in advance. We refer to this implementation

Table 3.1 The Ising and XY spin Hamiltonians are minimised with relative and absolute
coupling models on unweighted MaxCut problems of size 25 and 49 with edge density 0.5.
The median accuracy of both models is calculated for 20 random initial conditions per each
coupling matrix which was further averaged over 20 random coupling matrices with coupling
strength J0 = 0.04. The number in parentheses indicates how many problems with different
coupling matrices were globally optimised. The ground state solutions are calculated with
the gain-dissipative and the basin-hopping algorithms for the XY Hamiltonians and the
gain-dissipative and CIM algorithms for the Ising Hamiltonians.

Problem Size
Relative Absolute

XY Ising XY Ising

25 (5×5 lattice) 99.3% (20) 87.8% (20) 96.8% (20) 72.9% (14)
49 (7×7 lattice) 98.2% (20) 81.7% (4) 93.3% (3) 52.3% (0)
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as all-optical implementation. In the second approach, the frequency and phase of the
condensate emission are read out and fed forward to an additional resonant excitation. Such
resonant excitation will have to be iteratively updated based on the phase and energy of the
emission until the polariton network synchronises. Consequently, the time-performance of
the second scheme would be dependent on the operational frequency of the reading system
and the SLM, which could be on the order of a few kHz [176].

The comparable or better time-performance can be achieved with the digital micromirror
devices, which have a similar millisecond operational time-scale, or with electro-optical
modulators that can operate at a nanosecond scale. We will refer to this implementation
as hybrid-classical since the condensate must first form to acquire a well-defined phase
that is read out and passed to other nodes. Note that in both implementations, we consider
symmetric interactions Ji j = J ji for any two condensates in a network, though directional
interactions can be readily constructed, e.g. by using an optical isolator.

In addition to two possible experimental implementations of the remote coupling control,
we propose two kinds of couplings: absolute and relative. The absolute coupling scheme
implies the exchange of equal amounts of photons (identical signals’ intensities) between i-th
and j-th nodes, which guarantees that the occupation of the condensates pumped with equal
intensities remains the same. In the relative coupling scheme, the condensates are coupled at
the rate defined by relative intensities of emission and, therefore, a further density adjustment
is required [20]. This adjustment is crucial for the operation of nonequilibrium condensates,
lasers or DOPOs as the density heterogeneity changes the values of the coupling strengths.
Since the equilibration of densities will be done at the operation frequency of the SLM, the
relative coupling model shares the same limitations as the hybrid-classical implementation.

Thus, the absolute coupling scheme with the all-optical implementation may lead to a
pure polaritonic XY-Ising machine for optimising spin Hamiltonians since it doesn’t require
any external control: all couplings of a given spin Hamiltonian can be programmed on the
SLM in advance. By approaching the condensation threshold from below, the polariton
network will condense at one of the lowest energy states corresponding to a local or global
minimum of the spin Hamiltonian. The term "pure" indicates that the system can operate at its
physical time-scale, i.e. picosecond scale for the polariton condensation. Among other pure
physical simulators are the time delay CIM [177] and the recently proposed pure molecular
simulator [178]. The absolute coupling scheme with the hybrid-classical implementation as
well as the relative coupling scheme with either of the proposed implementations would lead
to the classical hybrid polariton simulators with an operational time limited by the frequency
of the SLM. These approaches would be reminiscent of the CIM with measurement feedback
via FPGAs [58, 179] or hybrid molecular simulator [178].
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The potentially advantageous performance of the polaritonic machine in optimising spin
Hamiltonians stems from the nature of polariton quasiparticles. Polariton condensates have a
much stronger nonlinearity (coming from self-interactions between polaritons) than any of
the purely photonic or laser-based optimisers. The stronger interactions should allow easier
and faster exploration of phase configurations during the condensation process and narrower
line width for the final measurement. In addition, the Bose-condensation process itself may
facilitate the efficient low-energy sampling of spin Hamiltonians in a polariton simulator
thanks to quantum effects present during the coherence formation.

3.6 Conclusions

The optical approach of imprinting two-dimensional regular polariton lattices can offer
the potential for rapid scalability to several thousands of condensates. For several simple
configurations of spatially interacting condensates discussed in this Chapter, the observed
phase configurations realise ferromagnetic and antiferromagnetic configurations or their
mixture. The spatially varied dissipation profile and additional resonant pumping could
allow one to study the rich dynamics of unequally coupled oscillators of different nature,
continuous and discrete. With the addition of the density equilibration framework, the Ising
and XY models can be possibly minimised for graphs of spatially coupled oscillators with
nearest neighbour interactions. Moreover, relative and absolute remote coupling schemes
could be considered to tackle arbitrary graphs. These theoretical and numerical elucidations,
together with experimental results, create the foundations for the further development of a
scalable polaritonic XY-Ising machine.



Chapter 4

Nature-inspired algorithms for
evaluating unconventional computing
machines
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4.1 Gain-dissipative approach for minimising spin Hamil-
tonians

It is no wonder that the advent of unconventional ways of finding ground states of spin
Hamiltonians is accompanied by the development of new classical algorithms. In this
Section, motivated by the operation of gain-dissipative physical systems, we develop a new
class of classical gain-dissipative algorithms for solving continuous and discrete optimisation
problems. The robustness of such iterative algorithms is demonstrated by solving problems
of various sizes and coupling structures. Most importantly, these algorithms can be used as a
benchmark for the performance of the physical gain-dissipative simulators.

Operational principles of the gain-dissipative simulator with N coherent centres were
formulated for minimisation of the spin Hamiltonians in Section 3.2. The following set of
rate equations summarises them:

dΨi

dt
= Ψi(γi −|Ψi|2)+ ∑

j, j ̸=i
∆i jKi jΨ j + fResΨ

∗
i , (4.1)

dγi

dt
= ε(ρth −ρi), (4.2)

dKi j

dt
= ε̂(Ji j −∆i jKi j), (4.3)

where Ψi(t) is the complex-valued function that describes the state of the i-th site, γi is the
effective gain rate at site i, fRes represents the strength of the resonant force. As shown in
the previous Chapter, the individual control of injection rates is required for the steady-state
solutions to coincide with the minima of a given spin Hamiltonian. Hence, gain rates γi have
to be dynamically adjusted to bring all sites to the specified number density ρth. This density
equilibration is achieved by Eq. (4.2) where ε controls the speed of gain adjustments.

Coupling strengths are represented by ∆i jKi j in Eq. (4.1). In these couplings, the gain
rates changing interaction strengths are incorporated in ∆i j and separated from other coupling
mechanisms represented by Ki j. The case of ∆i j = 1 physically corresponds to the site-
dependent dissipative coupling. In this case, we assign Ki j = Ji j and equations simplify
to

dΨi

dt
= (γi −|Ψi|2)Ψi +∑

j ̸=i
Ji jΨ j + fResΨ

∗
i , (4.4)

dγi

dt
= ε(ρth −ρi). (4.5)
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We shall refer to the numerical realisation of Eqs. (4.4, 4.5) as the gain-dissipative algorithm
(‘GD’). In contrast, ∆i j = γ

inj
i (t)+ γ

inj
j (t) is appropriate for the description of geometrically

coupled condensates. For that case, the coupling strengths change in time and have to be
dynamically reconfigured depending on injection rates so that the minimum of a given spin
Hamiltonian with interaction strengths Ji j can be achieved. This procedure is realised via
Eq. (4.3) where ε̂ controls the rate of the coupling strengths adjustments. We will refer to the
model based on Eqs. (4.1-4.3) as the modified gain-dissipative algorithm (‘GD-mod’).

After substituting Ψi =
√

ρi exp[iθi] and separating real and imaginary parts in Eq. (4.1),
the equations on the number density ρi and phase θi become

1
2

ρ̇i(t) = (γi −ρi)ρi + ∑
j; j ̸=i

∆
inj
i j Ki j

√
ρiρ j cosθi j + fResρi cos(2θi), (4.6)

θ̇i(t) = − ∑
j; j ̸=i

∆
inj
i j Ki j

√
ρ j√
ρi

sinθi j − fRes sin(2θi), (4.7)

where θi j = θi −θ j. The fixed point of Eqs. (4.3, 4.6, 4.7) are

ρi = ρth = γi + ∑
j; j ̸=i

Ji j cosθi j + fRes cos(2θi), (4.8)

with the total number of particles in the system given by

N = Nρth = ∑
i

γi + ∑
i, j; j ̸=i

Ji j cosθi j + fRes ∑
i

cos(2θi). (4.9)

Such value of the total number of particles will be first reached at the minimum of ∑i γi and,
therefore, at the minimum of the spin Hamiltonian given by

Hs =− ∑
i, j; j ̸=i

Ji j cosθi j − fRes ∑
i

cos(2θi). (4.10)

This equation represents the general functional that the GD and GD-mod algorithms optimise.
The nonzero term fRes represents the penalty forcing phases to be 0 or π , which implies that
the minima of Eq. (4.10) coincide with the minima of the Ising Hamiltonian. If fRes = 0,
then Eq. (4.10) represents the XY Hamiltonian.

The NP-hardness assumption suggests that not only any classical algorithm but also any
physical simulator cannot escape the exponential growth in the number of operations with
the size of the problem. To find the global minimum of a spin Hamiltonian with either of
the introduced gain-dissipative methods, one would need to span an exponentially growing
number of various phase configurations. This can be achieved by an exponentially slow
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increase of gain rates when approaching the threshold or exponential growth in the number
of runs when exploring different noise seeds. Here we focus on the second option as it is
more practical and corresponds to the operation of the actual physical simulators. We further
demonstrate the performance of these gain-dissipative algorithms on the medium scale Ising
and XY models.

4.1.1 Minimisation of the XY Hamiltonian

We illustrate operational principles of the gain-dissipative algorithm by minimising the XY
Hamiltonian for a fully connected coupling matrix of small size N = 20 with randomly
distributed coupling strengths between −10 and 10. We simulate the GD algorithm governed
by Eqs. (4.4, 4.5) with fRes = 0 using the 4th-order Runge-Kutta integration scheme. At the
first stage of the time evolution, i.e. when t < 120 in Figure 4.1(a), the densities are well
below the threshold and phases span various configurations in Figure 4.1(b) with all injection
rates being similar, as shown in Figure 4.1(c). When certain nodes reach and overcome the
prescribed density threshold, the injection rates are individually adjusted to bring all the node
densities to the same value. At the same time, phases stabilise and realise the minimum of
the XY Hamiltonian.

Fig. 4.1 The operational principle of the gain-dissipative algorithm: the number densities
ρ (a), the phases θ (b), and the injection rates γ (c) are shown as functions of time for all
network elements by simulating Eqs. (4.4, 4.5) with fRes = 0. The interactions between
elements are given by the fully connected matrix with random coupling strengths taken from
the range [−10,10].
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We further verify that the proposed gain-dissipative algorithms can find global minima
with a sufficient number of runs on small and mid-scale problems. To characterise the
performance of these iterative approaches, we compare them to the standard heuristic solvers:
Monte Carlo sampling (MC) and the basin-hopping (BH) algorithm, which are built-in
optimisation methods of the well-known Scipy optimisation library in Python. We generate
a random starting point at each run of the MC algorithm and use the local optimisation
algorithm to find the nearest local minimum. Applying such a simple MC method allows us
to evaluate both the roughness of the energy landscape of problem instances and evaluate
the gain-dissipative algorithms’ ability to escape from local minima. The BH algorithm is
an iterative stochastic algorithm that is known to be efficient for a wide variety of problems
in physics and chemistry [175] and outperforms common heuristic methods such as MC
sampling or simulated annealing. At each iteration, the BH method performs a random
perturbation of the coordinates with a local minimisation followed by the acceptance test
of new coordinates based on the Metropolis criterion. Thus, comparing to the BH method
allows us to evaluate better the performance of the proposed gain-dissipative algorithms on
the minimisation of the XY model.

Both approaches, MC and BH, depend on a local minimisation algorithm for the optimal
descent to a local minimum. Among other local optimisation algorithms, the quasi-Newton
method of Broyden, Fletcher, Goldfarb, and Shanno (L-BFGS-B) has shown the best per-
formance on the XY model. This method is designed for large-scale problems with a good
performance on non-smooth optimisation problems [180, 181]. We use the L-BFGS-B
algorithm as a local optimiser at each step of the BH and MC methods for achieving their
best performance. In addition, both BH and MC algorithms are supplied with the analytical
Jacobian of the objective function for better time performance.

Next, we generate 50 real-valued symmetric coupling matrices of two types for XY
minimisation to compare the performance of gain-dissipative algorithms with BH and MC
methods. We consider fully connected graphs with elements that are randomly distributed
in [−10,10] and sparse 3-regular graphs where each node is randomly connected to exactly
three other nodes and coupling strengths are randomly generated from the interval with the
random bounds from {−10,−3,3,10}. For each such matrix, we simulate all algorithms
for 500 random initial conditions. The best found minima of the XY model match to ten
significant digits across all methods. The average distribution of counts over various dense
matrix instances is shown in Figure 4.2(a-d) for N = 50 as a function of proximity to the
optimal solution. All methods show similar performance and achieve the proximity of
optimal solutions over 97% for the majority of runs, with slightly better results for the GD
and BH methods. The difference between methods becomes more noticeable on sparse
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Fig. 4.2 The count number dependence on the proximity to the optimal solutions of the XY
Hamiltonian is shown for several methods: (a,e) Monte-Carlo sampling, (b,f) basin-hopping,
(c,g) gain-dissipative algorithm (GD) based on Eqs. (4.4, 4.5), and (d,h) the modified gain-
dissipative algorithm (GD-mod) based on Eqs. (4.1-4.3). The results of 500 runs are averaged
over 50 real symmetric coupling matrices J of size N = 50 for (a-d) dense and (e-h) sparse
matrices described in the main text. The number of internal BH iterations is set to ten.
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graphs in Figure 4.2(e-h). Here the GD algorithm demonstrates higher success rates for
better solutions’ quality than all other methods. In contrast, the performance of the GD-mod
method is still similar to that of MC sampling.

Thus, the GD-mod algorithm allows one to find the lowest energy minima of the XY
model, albeit the better performance could be achieved with the GD method, which does not
include the updates of geometric couplings described by Eq. (4.3).

4.1.2 Minimisation of the Ising Hamiltonian

To illustrate the possibility of minimising the Ising model with the gain-dissipative algorithms,
we consider the GD algorithm in the presence of the resonance term, i.e. when fRes ̸= 0.
As discussed in the Introduction, the minimisation of the Ising model can be mapped to the
MaxCut optimisation problem for which the well-known benchmark set of problems exists, G-
Set. Hence, we evaluate the GD algorithm on G1 −G10 instances of size N = 800. Although
the G1 −G5 instances are unweighted and G6 −G10 instances are weighted with elements
from {−1,1}, we simulate the GD method for the same numerical parameters to demonstrate
its robustness. For each instance, we perform 100 runs and limit the computational time to
35−40s on a single-core CPU. The performance of the GD algorithms is demonstrated in
Figure 4.3. The average cuts are within 0.2−0.3% for G1−G5 and 1.1−1.8% for G6−G10

from the optimal MaxCut values [19], which are plotted with coloured rectangles.
The time performance of the standard heuristic methods is highly dependent on a particu-

lar instance and for G1 −G10 varies from 13s to 317s for breakout local search algorithms
[19] and is within 100−854s for GRASP tabu search [182], though their average solutions
are much closer to the optimal values. The GD algorithm shows similar performance on the
problems of bigger sizes. In particular, all found solutions out of 100 runs are within 1.1% of
the best known optimal solution for the G70 of size N = 10000. These results are achieved
with an average computational time per run of 530s, equivalent to 1000 time iterations on a
single-core CPU, compared to 11365s of the breakout local search algorithm.

The performance of the GD algorithm can be further improved by tuning the parameters
ρth, ε , and fRes(t) time dependence, which can be done with machine learning techniques
such as the M-LOOP algorithm [183]. As a possible modification to the GD algorithm,
one can consider individual time-dependent injection rates εi(t). For minimising the Ising
model, the introduced GD algorithm can be still outperformed by the best available physics-
inspired solvers, including the chaotic amplitude control method [184], discrete simulated
bifurcation algorithm [185], and parallel tempering [186]. Nevertheless, implementing the
gain-dissipative algorithms in physical systems, i.e. GD simulators, will enjoy a super-fast
operation and parallelism in processing various phase configurations as the system approaches
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Fig. 4.3 The gain-dissipative algorithm, governed by Eqs. (4.1-4.2), is applied to the MaxCut
optimisation problem formulated on G-Set instances {G1−G10} of size N = 800. The found
optimal values are shown with scatter plots for 100 runs on each Gi. The best known optimal
values are plotted with coloured rectangles for each Gi.

the minima from below even if the system behaves entirely classically. Further acceleration
could be expected if quantum fluctuations and quantum superpositions contribute to the
processing of phase configurations. Therefore, the proposed GD algorithm shows a promise
of physical Ising machines to compete with the classical optimisation techniques.

The operational principles of Ising machines can be suited to the structure of some prob-
lems but not others. To develop a standardised procedure for the performance evaluation of
emerging physical simulators and physics-inspired algorithms, we evaluate the optimisation
complexity of several problems in the next Section.
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4.2 Computational complexity continuum within Ising for-
mulation of NP problems

A promising approach to achieve computational supremacy over the classical von Neumann
architecture explores classical and quantum hardware as Ising machines. Solving the Ising
model is NP-hard problem with computational hardness proven for certain coupling matrices
[16]. From the computational complexity theory perspective, the exponential growth does
not necessarily apply to all instances of an optimisation problem, that is shown to be NP-hard
in general, admitting the worst-case scenario when a mere handful of instances are truly hard
to optimise. Selection of the hardest instances within NP-hard classes could be the key to
determining the computational advantages of small and medium-size simulators and may
lead to a reliable generalisation of their optimisation performance to a larger scale.

Given existing small and medium-scale simulators, considerable attention is devoted to
problems that can be mapped to the Ising model with zero overhead. A common example
includes the MaxCut class of problems in which one looks for the cut of the given graph
into two subsets with the largest number of their connecting weighted edges. The subclass
of unweighted graphs is attractive for experimental implementation since it only requires
the realisation of antiferromagnetic couplings (Ji j < 0) of the same amplitude, i.e. Ji j =−1
if spins i and j are connected, and 0 otherwise. Since the unweighted MaxCut problem
is NP-hard [187], the instances of unweighted k-regular graphs, in which each spin is
randomly connected to k other spins, are often used to study new and compare existing
physical simulators [58, 61, 59, 66, 188]. The 3-regular MaxCut problems are used in the
proposal of the quantum approximate optimisation algorithm [189] with its later experimental
demonstration on superconducting qubits [190].

Another common practice is to consider the unweighted MaxCut problems on circulant
graphs. Circulant graphs are defined by symmetric circulant adjacency matrices where
(i + 1)-th row is a cyclic shift of i-th row by one element to the right. Subclasses of
circulant graphs include complete graphs, cyclic graphs, Möbius ladder and many others
[191, 192]. Efficient quantum walks are implemented on circulant graphs with sampling
problem shown to be intractable for classical hardware [193]. The complete unweighted
graphs with antiferromagnetic couplings can be optimised for large sizes up to 80000 with
the photonic Ising machine [66]. The unweighted Ising model on the Möbius ladder graph
formally belongs to the MaxCut problem and has the circulant adjacency matrix with nonzero
elements of the first row at 0, N/2, and N-th positions, where N is an even number. For
the Möbius ladder of size N = 100, the ground state can be found with a probability of
21% for the coherent Ising machine based on optical parametric oscillators [58, 194, 195]
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and a success rate of 34% is demonstrated with optoelectronic oscillators [196]. The 3%
ground state probability is reported for the larger Möbius ladder of size 300 on the analogue
coupled electronic oscillator machine [197]. The Möbius ladders become typical candidates
for evaluating the performance of physical platforms [198, 199] and an exponential time
increase on the graphs up to 800 nodes has been reported [200].

Ordinarily, it is tempting to assume that choosing any instance of a general class of NP-
hard problems is equivalent to considering a hard instance, thereby ignoring the possibility
of that instance being in the P-class. In this Section, we probe an instance complexity
between the two extremes. To detect easy instances within the Ising model, we propose
an ‘optimisation simplicity criterion’. We provide numerical evidence of such optimisation
simplicity for instances covering a wide range of problems from spin glass models to 3-
regular MaxCut problems. As an illustrative example of easy instances of the unweighted
3-regular MaxCut problem, the Möbius ladder graphs are shown to be polynomially solvable.
In particular, greater than 99% ground state probability can be ensured with the quadratic
increase in the number of time iterations for the Hopfield-Tank algorithm [7] on graphs
up to 10000 size. Moreover, the mathematical complexity of the weighted Ising model
on the Möbius ladder graphs is shown to be in P-class, and the super-linear scaling for its
computational complexity is demonstrated with the exact commercial solver, Gurobi. With a
simple Möbius ladder at one end and hard random 3-regular graph on the other, the relative
computational hardness of intermediate graphs with rearranged edges is investigated. The
percentage of rewired edges in the Möbius ladder, that is required to achieve an average
hardness of an arbitrary 3-regular graph, depends on the optimisation technique and can
vary from 2−5% to 40−50%, as evidenced by the time performance of several heuristic
algorithms and Gurobi solver.

The Ising models satisfying the proposed optimisation simplicity criterion are not limited
to circulant matrices and include sparse and dense interaction matrices of various topolo-
gies with or without a magnetic field. For some Ising models, such as the Mattis model,
unweighted spin glasses on a torus, and biased ferromagnet on Chimera graph, we find
that all instances are solvable in polynomial time. There also exists a high probability of
finding simple small size random instances of NP-hard problems, as we confirm for 3-regular
MaxCut, Sherrington-Kirkpatrick, and other spin glass models, with couplings taken from
the Gaussian and bimodal distributions. Understanding the average instance complexity of
NP-hard problems and having a robust way to identify the polynomially easy instances could
help evaluate the general potential of small and medium-scale simulators in solving hard
combinatorial optimisation problems.
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4.2.1 Optimisation simplicity criterion for the Ising model

The original work of Hopfield and Tank [7] introduced an analogue computational network
for solving difficult optimisation problems. The network, later termed the Hopfield-Tank
(HT) model or HT neural network, is governed by the equations:

dxi

dt
=−xi

τ
+

N

∑
j=1

Ji jv j + Ib
i , v j = g(x j), (4.11)

where xi(t) is a real input that describes the state of the i-th network element at time t, τ is
the decay parameter, J is the symmetric coupling matrix, Ib

i are the offset biases (external
fields) that can be absorbed into J by introducing an additional spin, N is the size of the
network, and g(xi) is the activation function. The nondecreasing monotonic function g(xi)

is designed to limit possible values of vi to the [−1,1] range and is typically chosen as a
sigmoid or hyperbolic tangent. The steady states of the HT model (4.11) are the minima of
the Lyapunov function E:

E =−1
2

N

∑
i, j=1

Ji jviv j −
N

∑
i=1

Ib
i vi +

1
τ

N

∑
i=1

∫ vi

0
g−1(x)dx. (4.12)

In the high-gain limit, when τ → ∞ or g approaches a step function g(x) = 1 (g(x) =−1) if
x ≥ 0 (x < 0), the minima of E occur at vi = {−1,1} and correspond to the minima of the
Ising model. If the high-gain limit conditions are violated (low-gain limit), the minima of E
are not necessarily at vi = {−1,1} and can be inside the hypercube [−1,1]N . By projecting
non-integer amplitudes of the steady-state at the end of the simulation, the allowed minimiser
of the Ising model is restored at the nearest hypercube corner. Therefore, the HT network
tends to locate local minima if it minimises the Ising model at all, as has been recognised in
earlier works [8]. Remarkably, there exist simple coupling matrices J that can be globally
optimised even in this low-gain limit. For zero fields in both limits, the steady states are
completely characterised by the coupling matrix eigenvalues λi and corresponding orthogonal
eigenvectors ei ∈ RN×1 with coupling matrix expressed as J = ∑

N
i=1 λieieT

i . In the presence
of degenerate or zero eigenvalues, the eigenvectors form a subspace of rank lower than N.
Denoting components of v in the space of coupling matrix eigenvectors as γi and the null
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subspace component as q, the amplitudes and energy can be written as

v =
N

∑
i=1

γiei +q, (4.13)

E = −1
2

N

∑
i=1

λiγ
2
i +

1
τ

N

∑
j=1

∫ v j

0
g−1(x)dx. (4.14)

To minimise E, the components γi should be increased for positive λi and decreased otherwise.
This observation reveals the nature of how the HT algorithm functions: it changes amplitudes
vi in a way that gradually favours the larger positive eigenvalues λi [9]. Therefore, in the
low-gain limit, the HT algorithm finds the minimum of the Ising model that corresponds
to the largest positive (dominant) eigenvalue. Suppose this minimum happens to be the
global minimum, which is valid for many problems selected for testing the Ising Hamiltonian
minimisers. In that case, the corresponding instances should be considered polynomially
simple for optimisation, as we further explain.

The choice of the HT algorithm in our analysis is not accidental and is prompted by its
ability to replicate the dynamic behaviour of many existing Ising simulators considered in
optics, photonics, and electronics. For instance, the recent memristor-based annealing system
operates as a Hopfield neural network [201]. Another example is the coherent Ising machine
on the optical parametric oscillators that is commonly thought to be similar to HT networks
with nonlinear saturation of amplitudes and, therefore, both are often compared [61]. For
such gain-dissipative computing machines, the successive better minima toward the dominant
eigenmode [202] are achieved via a series of bifurcations [203].

In general, the global minimum of the Ising Hamiltonian would correspond to a nontrivial
direction in the eigenspace of ei in Eq. (4.14). This obvious yet substantial observation
leads to our proposal for ‘optimisation simplicity criterion’ (OSC): the instance of a hard
problem should be regarded as computationally simple for optical and electronic analogue
machines, if the ground state minimiser sgs of the Ising Hamiltonian HIsing is located at the
hypercube corner of the projected dominant eigenvector emax, corresponding to one of the
largest eigenvalues λmax of the coupling matrix J:

Eλ = minHIsing =−1
2

sT
gsJsgs, sgs = sign(emax). (4.15)

Without the loss of generality, the fields (the biases in HT networks) are assumed to be zero
since they can always be incorporated into the coupling matrix J with an additional spin. The
OSC provides an upper bound for the ground state energy of the Ising model. Eigenvalue
analysis is common to many polynomial-time algorithms that approximate both lower and
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upper bounds for optimal solutions to complex combinatorial problems [204, 205]. For the
MaxCut problem, the eigenvalue minimisation is known to be equivalent to semidefinite
programming [206], which in turn makes it equivalent to the eigenvalue maximisation that
the Hopfield-Tank algorithm does for the Ising model.

The standard procedure for verifying whether a particular instance satisfies the OSC would
be to compare the upper bound energy Eλ , which corresponds to the dominant eigenvector,
with the global minimum obtained with a physical simulator or an optimisation algorithm.
If these two energies coincide, the instance should be considered trivial to optimise. The
polynomial complexity of instances satisfying the OSC could be recovered with the HT
algorithm Eq. (4.11), which is naturally designed to project the input vector into a subspace
that is dictated by the eigenvalues of the coupling matrix. For an instance to violate the OSC,
it is sufficient to show that it has energy lower than Eλ . The complexity of the instances that
do not satisfy the OSC can be further assessed by other means. For example, the optimality
gaps could be evaluated using the exact solvers such as Gurobi, or the time to solution metric
could be considered for heuristic solvers, as we show below.

4.2.2 Minimising Ising model on Möbius ladder graphs

As an illustrative example, we apply the HT algorithm Eq. (4.11) with a hyperbolic tangent
activation function to a particular topology of unweighted 3-regular graphs, namely the
Möbius ladder graph. The two representations of this cubic circulant graph of size N are
shown in Fig. 4.4A. When n = N/2 is an even number, antiferromagnetic interactions cause
lattice frustrations that result in N degenerate ground states with two frustrated edges (shown
in red) between two domains of n anti-aligned spins and the ground state energy of (3n−4).
Figure 4.4B demonstrates a typical simulation of the HT network for the Möbius ladder of
size N = 1000. The ratio of the HT energy, found by associating spins with the signs of
amplitudes vi at the steady-state, to the ground state energy is defined as the proximity to the
ground state. The network operates in the low-gain limit (see Appendix B for parameters)
and, hence, the amplitudes vi are not binary when the steady-state is reached. Yet, by
gradually favouring the eigenvectors with larger eigenvalues, the HT algorithm moves spin
states through the hypercube interior over time and achieves the global minimum, although
the coupling matrix is modified by non-equal continuous amplitudes vi in [−1,1]. The
necessity of homogeneous amplitudes for minimising non-trivial spin Hamiltonians with
gain-dissipative networks was discussed earlier in the Section 3.2. All states of the low
energy spectra Eλi in Fig. 4.4B correspond to the eigenvectors of the largest eigenvalues of
the interaction matrix, whose analytical expressions are available for the Möbius ladder as a
representative of circulant matrices.
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Fig. 4.4 (A) Illustration of the Möbius ladder graph on Möbius strip (left) and on circular
graph (right). Two possible frustrated edges in the ground state are highlighted in red. (B) The
evolution of amplitudes vi (top) for the Möbius ladder graph of size N = 1000 over Niter =
3000 time iterations of the Hopfield-Tank algorithm with the corresponding proximity to the
ground state shown below. All low energy levels Eλi correspond to the projected eigenvectors
sign(ei) of the distinct largest eigenvalues λi. (C) The number of time iterations Niter of the
Hopfield-Tank algorithm for optimising Möbius ladder graphs of sizes up to N = 10000 with
desired ground state probability ranges of pgs ∈ {50−55%,75−80%,99−100%} are shown
on the left panel. The solid lines correspond to a quadratic fit confirming that the Ising model
on Möbius ladder graphs can be solved in polynomial time. The number of algorithm runs
per each graph size is fixed to 250. The ground state probabilities as a function of Möbius
ladder size are shown for the fixed number of time iterations Niter ∈ {10000,50000,250000}
on the right panel.
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To estimate the performance of optical and electronic Ising machines the Möbius ladder
graphs, we determine the number of HT time iterations for achieving the ground state with
probabilities greater than 50%, 70%, and 99% for problem sizes up to N = 10000. The ground
state probability is defined as the fraction of simulations leading to the global minimum to
the total number of simulations. Figure 4.4C(left) shows a polynomial (quadratic) increase
in the number of iterations with the graph size, which confirms the optimisation easiness of
such problems. The quadratic slope remains the same for each range of the desired ground
state probabilities. The ground state probability decreases for the fixed number of iterations
as demonstrated in Fig. 4.4C(right), which suggests that the reported quick performance
deterioration of the physical Ising machines with the network size [58, 196] may be caused
by the fixed amount of internal system loops available in that physical platform. The lack of
frustration in the Möbius ladders with odd N/2 does not necessarily mean that the ground
state is trivial to reach. We consistently observe that such non-frustrated graphs require larger
number of time iterations than frustrated Möbius ladder graphs with even N/2. Since the
complexity of one time iteration of the HT algorithm is determined by the matrix-vector
multiplication product as O(kN) for k-regular sparse graphs, the time complexity for globally
optimising Ising Hamiltonian on the Möbius ladders scales as O(N3) with the problem size.

Thus, the eigenvalue maximisation principle, which underlies HT algorithm, ignores
the energy profile of a simple problem that satisfies the OSC. Even in the absence of a
mechanism for exploring the global energy landscape, network elements follow eigenvectors
with successively larger eigenvalues. The corresponding consecutive energy states can
differ by hundreds of spins, while the Ising Hamiltonian energy monotonically approaches
the global minimum. This dynamic behaviour is drastically different from both the Ising
machines based on equilibrium systems and optimisation methods, for which the width and
height of energy barriers are critical and occasional increases in energy are common once
the system escapes local minima. For example, the exponential time scaling for the Ising
model on the Möbius ladders was recently reported for the simulated annealing algorithm
[200], while unconventional computing platforms based on gain-dissipative networks can
efficiently find principal eigenvectors for million size problems [207].

So far we discussed only the computational complexity of the unweighted Ising model
on the Möbius ladder graphs. It can be seen that the mathematical complexity of minimising
the Ising Hamiltonian on the Möbius ladder topology is in P-class. Since the Möbius
ladder graph becomes a bipartite graph after removal of two nodes, it belongs to a family
of weakly-bipartite graphs [208]. However, the weighted MaxCut problem is in P-class for
weakly-bipartite graphs [209] and, hence, the Ising model with arbitrary couplings on the
Möbius ladder graph is in P-class too.
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With the understanding of what is essential for an individual instance of the NP-hard
problem to be counted as simple, we next present a natural approach for restoring complexity
and study the continuous complexity transition from simple to hard instances for Ising
optimisation on physical Ising machines.

4.2.3 Interpolating between simple Möbius ladders and hard 3-regular
graphs

We develop a procedure that allows us to continuously ‘tune’ the graph from the Möbius
ladders to random 3-regular graphs, the unweighted MaxCut problem on which is known to
be NP-hard, and thereby to probe the intermediate problem computational complexity. To
interpolate between two extremes, we consider the following random rewiring procedure.
Starting from the Möbius ladder, we remove and reconnect a pair of edges at random. For
each subsequent iteration of the rewiring procedure, a random pair among the original edges
(if any) of the Möbius ladder is selected. Hence, intermediate graphs are quantified by the
percentage of rewired edges in the Möbius ladder. For the frustrated Möbius ladder graphs
to violate the OSC, the rearrangement of two edges is sufficient for any problem size N as
shown in Fig. 4.5A(left) and works for about 85% of the Möbius ladders of size up to 1000
in Fig. 4.5A(right). Both configurations preserve the ground state energy of (3n−4) while
making the rewired graphs impossible to optimise with the HT algorithm in the low-gain
limit even for the smallest problem sizes. For the Möbius ladder with no frustration (odd n),
the edges J12, JN−2,N−3 could be rewired as J1,N−3, J2,N−2 to violate the OSC for any N ≥ 10.
Although satisfying the OSC is sufficient for the certain graph structure to be simple, its
violation does not necessarily make the instance hard to solve. Other optimisation approaches
have to be tested to estimate the relative hardness.

One way to address the relative complexity is to use exact solvers. For example, the com-
mercial solver Gurobi [210] employs various pre-processing techniques and uses heuristics
for accelerating the branch-and-bound algorithm [211] that can be applied to the mixed-
integer programming problems. For problems that cannot be exactly solved for a given time
limit, Gurobi evaluates the optimality gap defined as:

OGAP =
Ebest −Elower bound

Ebest
, (4.16)

where Ebest and Elower bound are the best objective and the lower objective bound, respectively.
The size of the optimality gap or the time to reach a particular gap could be used as a
performance metric for the problem complexity [212]. Hence, the relative hardness of the
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Ising model on the rewired Möbius ladder graphs can be evaluated by the time it takes Gurobi
to reach a zero optimality gap.

Another way to evaluate the relative computational hardness is to use heuristic solvers. We
consider two physics-inspired algorithms, namely parallel tempering and chaotic amplitude
control. The former [213–216] is arguably the current state-of-the-art algorithm that generally
shows better or similar performance over other heuristic methods [217, 218, 186], while the
latter is inspired by the operation of the Ising machine based on optical parametric oscillators
[21, 184]. The operational principles of both algorithms and their optimal parameters are
discussed in the Appendix B. The standard quantitative measure of performance of such
stochastic algorithms is the time to solution metric [219, 186], which reflects the time it takes
to find the ground state with 99% confidence:

TTS = trunR99 = trun
log(1−0.99)
log(1− pgs)

, (4.17)

where trun is the time for running an algorithm once, R99 is the number of runs for finding the
ground state energy with a probability of 99%, and pgs is the ground state success probability.

The computational complexity of the Ising model on 3-regular graphs is interpolated
between P and NP classes in Figure 4.5B, where we use the branch-and-bound, chaotic
amplitude control, and parallel tempering methods. For the branch-and-bound algorithm
within Gurobi solver, Figure 4.5B(middle) shows the time to zero optimality gap dependence
on the percentage of rewired edges in the Möbius ladder graphs of size N ∈ {100,200,300}.
For all sizes, the initial exponential increase in time is followed by a plateau starting at about
40−50% of rewired edges. For this percentage of rearranged edges, the still recognisable
original four-band structure of the Möbius ladder graph has equivalent complexity of random
3-regular graphs for Ising model minimisation. Such equivalence can be associated with
frustrated (unsatisfied) edges, namely edges with different signs of sis j and Ji j, the number
of which is necessarily minimised at the ground state. Rewiring 40% edges in the Möbius
ladder for N = 100 introduces about 8% of frustrated edges, which makes its complexity
relatively similar to random 3-regular graphs with 8.6% of frustrated edges. For heuristic
algorithms, the optimised time to solution metric is shown in Fig. 4.5B(bottom). For each
percentage of rewired edges, we minimise the time to solution with the machine-learner
online optimisation package [183]. Unlike the branch-and-bound exact solver, the smaller
number of rewired edges is required for achieving a time plateau for the considered stochastic
algorithms: the relative hardness of the Möbius ladders with around 2% of rewired edges
is equivalent to the complexity of random 3-regular graphs. Similar to Gurobi solver, the
computational effort scales exponentially with the number of rewired edges for the chaotic
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Fig. 4.5 (A) The rewiring procedure of two edges for violating the optimisation simplicity
criterion in the Möbius ladder graphs of size N = 2n for any even N (left) and most even
N (right). The removed and added edges are shown with red solid and dashed green lines,
respectively. (B) The relative computational hardness of the unweighted Ising model on the
rewired Möbius ladder graphs is evaluated by the median time required for reaching zero
optimality gap with Gurobi solver for problem sizes 100, 200, and 300. The 100 random
graphs are optimised for each problem size for every percentage of rewired edges with shaded
regions indicating an interquartile range. The median time to solution metric as a function
of the percentage of rewired edges in the Möbius ladder graphs is shown at the bottom for
chaotic amplitude control and parallel tempering methods. (C) The average computational
hardness is evaluated by the median time required for reaching zero optimality gap with
Gurobi solver for the Möbius ladder graphs of sizes up to 500000 with couplings from the
unweighted, bimodal, and Gaussian distributions. The 10 random graphs are optimised for
each problem size.
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amplitude control method, although a more modest speed up of 2−2.5 times is observed
with the parallel tempering.

Evidently, all three considered optimisation techniques can successfully determine the
relative easiness of the Möbius ladders for the Ising model. The number of rearranged edges
in the Möbius ladder graphs, required for achieving the equivalent computational complexity
of random 3-regular MaxCut, depends on the method’s operational principles. As assessed
with arguably state-of-the-art heuristics, this relative complexity of rewired graphs leads to
a practically significant result. One may consider an existing physical platform that was
previously tested on Möbius ladders and construct the graphs with 2-5% of rewired edges with
minimal engineering adjustments. The global Ising minimisation of such rewired Möbius
ladder graphs would suggest the physical platform’s ability to go beyond the eigenvalue
maximisation principle and potentially solve problems that are as hard as random 3-regular
MaxCut. Without rewiring, the average computational complexity of the Ising model grows
polynomially with the Möbius ladder problem size, as demonstrated for unweighted and
weighted graphs with coupling values taken from bimodal and Gaussian distributions in
Fig. 4.5C.

4.2.4 General applicability of the optimisation simplicity criterion

Any instance of a problem from the P-class is polynomially easy to optimise, while for
an arbitrary instance of NP-hard problem, there is no guarantee that the instance is hard.
Hardness cannot be guaranteed by violating the proposed OSC, which in itself can only
help detect naturally easy instances of NP-hard problems. With the addition of the rewiring
procedure proposed above, the relative computational complexity of random graphs can
be probed. Till now, the identified simple instances of Ising models were limited to the
Möbius ladder graphs. To emphasise the general applicability of the OSC to instances of any
NP-hard problem, we show examples of simple graphs in a diverse set of problems that are
often chosen to evaluate the performance of the Ising physical machines and computational
algorithms.

We apply the OSC to the Ising models with dense, e.g. the Sherrington-Kirkpatrick
and the Mattis models, and sparse coupling matrices, where besides 3-regular MaxCut,
we examine spin glass models of various topologies including torus, Chimera graph, and
3-regular planar graphs. Where appropriate, in addition to unweighted coupling matrices,
we consider commonly chosen probability distributions for interaction strengths such as
bimodal, when couplings take values from {−1,1} with equal probability, and Gaussian,
when couplings are distributed around zero mean with unit variance (for the full model
descriptions please see Appendix C). Some of these models belong to the P-class with all
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Fig. 4.6 Probability of finding easy instances for various Ising models. Fraction of in-
stances, satisfying the optimisation simplicity criterion, is shown as a function of problem
size N for Gaussian, bimodal, and unweighted coupling distributions. The considered Ising
models include Sherrington-Kirkpatrick, 3-regular maximum cut, Mattis spin glass, spin glass
on a torus, Möbius ladder graphs, biased ferromagnet on Chimera graph, planar spin glass
within a magnetic field. The red dashed line represents models which are polynomially easy
to optimise across all problem sizes. For each model, 1000 random matrices are generated
per each size, and the ground states are verified with the exact Gurobi solver.
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instances satisfying the OSC, e.g. the Mattis spin model, unweighted spin glass on a torus,
unweighted biased ferromagnet on the Chimera graph, or unweighted ladder graphs with a
magnetic field (see Fig. 4.6). For other models, there exist high chances of getting easy to
optimise small-size random instances. Across all models, consistently greater probabilities
of simple Ising instances are observed for the coupling matrices with values from bimodal
and unweighted distributions compared to the Gaussian distribution. Note that in the case
of the weighted Möbius ladder graphs, the instances not satisfying the OSC remain easy in
terms of both mathematical and computational complexities, as we previously argued.

When testing small-scale Ising simulators, the existence of large fractions of easy in-
stances of NP-hard problems should be taken into account to avoid a misleading assessment
of optimisation capabilities of the platform. A hard random instance would possibly be gen-
erated for large problem sizes, while small-scale simulators would likely face easy instances
satisfying the OSC. As Fig. 4.6 shows, the percentage of frustrated edges in the ground state
covers the entire range of possible values confirming that the OSC could help identify simple
graphs in low and highly frustrated models.
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5.1 Reservoir computing

In addition to a promising Hamiltonian optimisation application, various nonlinear dynam-
ical systems, including electronic [220–222], photonic [223, 224], spintronic [225–227],
mechanical [228], and biological [229] systems, have been recently employed as potential
reservoirs for reservoir computing (RC) (see [230] and references therein). RC methods,
originally referred to as echo state networks [231] or liquid state machines [232], constitute
a computational framework for temporal data processing. These methods have been suc-
cessfully applied to many practical problems involving real data, with most of the studies
focused on machine learning applications. The best performance on these applications is
usually achieved by applying different reservoir designs to a particular problem and finding
an optimal reservoir by evaluating the computational performance, processing speed, power
efficiency, and scalability. The role of the reservoir in RC is to nonlinearly map sequential
inputs into a higher-dimensional space so that the features can then be extracted from its
output with a simple learning algorithm. Therefore, such reservoirs become attractive for
experimental implementation in many physical systems. The goal is to design such RC
hardware that would perform the high-speed computation for dynamic data and build fast
information processing devices with low learning costs.

Networks of non-equilibrium condensates or lasers can serve as interacting nonlinear
elements for an efficient network-type reservoir computing system. In particular, many
requirements for a physical RC system can be fulfilled by polariton condensates, and indeed
the first proposals of such an implementation have appeared [233]. Polariton condensates
are scalable to many lattice sites, while high dimensionality is necessary for mapping input
data into a high-dimensional space in RC. The polariton network is a strongly nonlinear
system which rises from the excitonic part of polaritons. This is necessary for the reservoir
to operate as a nonlinear mapping. The presence of short-term memory in polariton systems
is supported by many experimental observations of their bistability behaviour [234]. Such
memory is necessary to ensure that the reservoir state is dependent on recent-past inputs
but independent of distant-past inputs. Thanks to the polariton’s photonic component, the
rich physical properties of waves such as interference and synchronisation make polariton
condensates similar to coupled oscillators (see Section 2.1), and together with a possible on-
chip implementation at room temperature with organic materials, they become a compelling
candidate for RC [235].
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5.2 Proof-of-work protocol

This Section suggests a conceptually different scheme of blockchain technology that relies
on using unconventional computing platforms. We propose a new generation of proof-of-
work protocols that perform a meaningful computation at their core: the minimisation of
continuous or discrete spin Hamiltonian problems is completed to add each new block to
the blockchain. The modern capabilities of unconventional computing platforms are nearly
sufficient for demonstrating computational supremacy over classical computers and, hence,
such platforms can provide a greater transaction rate over existing proof-of-work protocols
in cryptocurrencies.

5.2.1 Introduction to blockchain technology

Blockchain technology with its digital currency, bitcoin, has been introduced a decade ago
[236]. Bitcoin is the first decentralised electronic payment system operated by an open peer-
to-peer network where a financial transaction happens directly between two willing parties
without the need for a trusted intermediary such as banks or other financial institutions.
This digital currency initiated the development of many other cryptocurrencies, which
attracted significant investments and increased interest in understanding the structure and
technological capabilities of the platform. The blockchain platform consists of a publicly
accessible database of all transactions arranged into blocks of a certain length in the order
preserved by a distributed ledger (see Figure 5.1). Adding each new block of transactions
to the blockchain requires solving a computationally demanding problem, i.e. performing a
proof-of-work (POW). POW concept is developed initially to prevent junk mails by requiring
the sender to solve a moderately complex computational problem to allow the message
delivery [237]. The POW concept is implemented in the blockchain by computational
nodes that perform complex mathematical calculations and are rewarded with crypto coins.
Consequently, the computational nodes are called miners, and the process of completing the
computations is called mining.

The common POW problems are based on a function H, called hash function, which
maps an arbitrary sized input data to a fixed size output (called a hash) and is designed to be
hard to invert. This means that the hash y can be easily computed from the initial data x by
calculating y = H(x) but finding x from a given y is computationally hard. The inversion of
the hash function requires an exponentially growing computational time of O(2n) where n is
the hash size and can only be completed with brute-force approaches. Still, when x is found,
the validation of the transaction could be quickly done by computing H(x) and comparing



114 Other applications for unconventional computing platforms

Fig. 5.1 The schematic for blockchain generation by computational nodes in bitcoin cryp-
tocurrency is shown. The block is added to a blockchain with an average interval of ten
minutes. The output of each block serves as the name for the next block, thus forming a
chain.

the result with the hash y. This hash is further used as the block header for identifying each
block in the blockchain.

The processing time of each new block in a chain depends on the amount of POW
performed. The complexity of such work, i.e. mining difficulty for adding a new block, is
dynamically controlled to compensate for the increasing computational power and varying
interest in running nodes. At the moment, this difficulty target value is updated every 2016
blocks to target the desired block interval accurately, which is set to be ten minutes on average
in the case of bitcoin (see Figure 5.1). This ten minutes rate is chosen as an ad hoc tradeoff.
If the time is too short, the stability of the blockchain decreases as more forks and longer
forks in the blockchain form requiring an increased bandwidth between nodes, so it has to be
hard enough for an ordinary CPU to process it instantaneously. On the other side, the time
which is too long would increase the block’s confirmation time, making it inapplicable for
most applications. Other cryptocurrencies can have even shorter times, though their stability
and security issues usually remain unclear.

Such a large block’s processing time is a major technical obstacle for the broader use
of the blockchain, with two main negative consequences. The first is the problem of cen-
tralisation. The blockchain is supposed to be insured by distributed computational powers
that verify all transactions and agree on what blocks should be in the blockchain. Hence,
no specific computer is responsible for a particular transaction. To validate the transaction
of a specific block, one can wait until several newer blocks are added to the blockchain,
which will automatically validate all of the previously created blocks. Regretfully, about
70% of the cryptocurrencies with the highest capitalisation are currently controlled by a few
major computational pools. Such centralised hubs of power lead to a high entry barrier for
a new potential computational node since it has to compete with the large computational
rate of centralised nodes, which will make the system even more centralised in the nearest
future. Possible solutions to such a problem are seemingly mutually exclusive: shortening
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the processing time must be accompanied by restrictions on such processing for modest
computational powers, but not computational centralisation. Second, a significant block’s
processing time leads to a considerable transaction confirmation time which prevents tra-
ditional payment systems from being replaced by digital cryptocurrencies for routine daily
transactions happening in a fraction of a second. These conflicting requirements prevent all
of the existing cryptocurrencies from becoming a real electronic payment system.

The growing focus on sustainable practices threatens the existence of rapidly evolving
blockchain technologies based on traditional proof-of-work protocols, which consume more
than 0.5% of total energy consumption worldwide. Since minimisation of spin Hamiltonians
is equivalent to solving practical combinatorial optimisation problems, analogue classical
and quantum simulators, based on energy-efficient optical and electronic systems, have the
architecture most suitable for realising novel proof-of-work protocols.

5.2.2 Proof-of-work through minimisation of spin Hamiltonians

In previous Chapters, we considered several unconventional computing platforms that can
potentially outperform classical state-of-the-art algorithms in solving optimisation problems,
such as QUBO and QCO. These platforms have either already demonstrated a speedup or can
achieve it in the nearest future. Figure 5.2 illustrates the schematics of the POW protocols
that are based on solving QUBO or QCO problems using the currently available analogue
Hamiltonian simulators.

Physical 
Platforms

Superconducting Qubits
 (D-Wave)

Optical Parametric Oscillators
(Coherent Ising Machine)

Gain-Dissipative Simulator
on polariton condensates

Gain-Dissipative Simulator
on photon condensates

Quadratic Unconstrained
Binary Optimisation (QUBO)

Quadratic Continiuous 
Optimisation (QCO)

Simulators that minimise 
Ising Hamiltonian

Simulators that minimise 
XY Hamiltonian

Fig. 5.2 The scheme shows how to use purposely built quantum simulators based on su-
perconducting qubits, optical parametric oscillators, polariton and photon condensates for
solving QUBO or QCO problems in the proof-of-work protocol.

The recipe for building a blockchain based on such simulators is essentially the same for
all types of simulators. The input for each block will include an additional parameter, namely
a matrix of coupling strengths Ji j. The ways of controlling and modifying coupling strengths
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are system dependent. For instance, the coupling strengths can be tuned by changing the
distance, pumping intensity, and the trap barrier’s height in the gain-dissipative simulators.
The coupling matrix has to be formed depending on the block content ensuring that nobody
can prepare a coupling matrix and solve the corresponding optimisation problem in advance
to approve a particular block. For example, the numerical expressions of the order of
transactions together with the amount of each transaction could be used to form this matrix.
The output of the block consists of the problem optimisers: the resulting "spins" si or phases
θi, that can be further encoded and serve as the next block’s name. Verifying whether the
block belongs to the chain or not can be done, for instance, by checking that the objective
function value for the found optimisers is better than that found by a classical heuristic
algorithm.

We schematically demonstrate a simple option for constructing the matrix J in Fig-
ure 5.3(a) where the nodes, i.e. financial parties, are placed around the circle and indexed by i.
Each line corresponds to the transaction between the parties. The transaction amounts Si can
be used to define the elements of coupling matrix J as Ji, j>i = Si−S j (Ji, j<i = S j −Si) where
the nodes are connected using red or blue lines in Figure 5.3(a) for positive and negative
Ji j, respectively. The sparsity of such matrix can be fully controlled and regulated by a
blockchain protocol allowing, for instance, random connections of each node with up to X
other nodes from at most Y clusters out of total Z clusters available. To illustrate the protocol,
we randomly generate N = 800 transactions (Si), connect each node with up to 10% of other
nodes from at most 50% of clusters out of total 40 clusters and show the resulting matrix in
Figure 5.3(b). The lowest excited states of the Ising model are shown in Figure 5.3(c) for
three such coupling matrices optimised with the GD algorithm, that has been described in
the previous Chapter. The projected performance of a physical GD simulator is shown as
an inset in Figure 5.3(c) under an assumption that the pumping feedback mechanism can
be physically implemented in 0.1ms (limited by the SLM operational timescale). This inset
shows how the average time to find a solution, which is not necessarily the optimal one,
increases with a problem size N for the GD-algorithm much faster compared to its possible
implementation in a physical platform. Furthermore, an actual physical simulator will also
benefit from simultaneous parallel search through the whole phase space assisted by classical
noise and quantum fluctuations. Such results suggest that each block of a blockchain can
be processed in a matter of seconds or even less when the POW scheme based on solving
NP-hard optimisation problems, e.g. MaxCut problems, will be realised on the real physical
simulator.

The above discussion is a simplistic picture of a sophisticated analysis that is yet to
be done for designing an actual proof-of-work protocol based on the minimisation of spin
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(a) (b)

(c)

Fig. 5.3 (a) The schematics of mapping the block’s information to a coupling matrix J for
solving QUBO or QCO problems as a proof-of-work is shown. Each node is placed around
the circle and represents a financial party that transfers (blue dots) or receives (red dots) the
money with the nodes being clustered in a few regions, i.e. six regions for 200 nodes shown.
The nodes are randomly connected with red or blue lines with respect to positive or negative
Ji j, respectively. (b) A typical structure of a random matrix J of size N = 800 constructed
as described in the main text, the positive and negative elements of J are marked with red
and blue colours, respectively. (c) The global and the low energy excited states of QUBO
problem for three such randomly generated coupling matrices of size N = 800 denoted by
J1 (dark green), J2 (green), J3 (light green). The results show that classical algorithms can
often result in finding excited states for such coupling matrices. The inset shows the average
time to find a steady-state solution by the GD algorithm as a function of the problem size N
(dashed green line). The projected time of the GD simulator (solid green line) is obtained
by multiplying the number of time iterations of the GD algorithm for each size N with the
pumping adjustment time 0.1ms, which is a realistic time for current physical platforms.
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Hamiltonians. First, one needs to prove that a coupling matrix constructed in a certain
way is not only mathematically difficult, i.e. belongs to NP-hard, but also computationally
challenging for all state-of-the-art classical optimisation techniques. Second, one needs to
ensure that such a coupling matrix corresponds to a practical problem, finding a solution to
which is of desire to someone. And third, the minimisation of the spin model on such matrices
needs to be performed faster on particular physical platforms than traditional hardware. The
first and the last questions could be possibly tackled thanks to the recent advances in artificial
intelligence. Inspired by the success of machine learning methods in such games as chess
and go, the hardest computational problems of small size could be possibly created with
reinforcement learning. For this task, the possible agent policies could be explored for a
particular type of interactions between the network elements that, for example, could be taken
from the bimodal or Gaussian distributions and certain connectivities, e.g. sparse or dense
graphs. The reward procedure could be based on the time performance of the state-of-the-art
classical methods, including the traditional simulated annealing and parallel tempering, as
well as novel physics-inspired algorithms. Such an approach could help create the hardest
problems tailored to a specific optimisation technique, such as quantum annealing, or the
most challenging tasks across multiple optimisation algorithms, which would help identify
the hardest universal problem. By optimising the performance ratio of classical algorithms
and specific physical Ising machines, the hardest Ising instances could be created by taking
advantage of a particular physical platform. Finding similar interaction patterns for hard
problems of small size would allow one to build the hardest problems of larger sizes for the
computational supremacy demonstration of unconventional hardware. Finding connection or
mapping of such highly non-trivial problems to solve with real-life tasks could be another
interesting challenge.



5.3 PageRank algorithm 119

5.3 PageRank algorithm

Access to reliable information has always been and will continue to be critical to people’s
lives and rights. Diverse ways to retrieve information include text, voice, and image queries
to search engines, which systematise human knowledge and provide universal access to
hundreds of billions of worldwide web pages (or simply web pages) daily [238]. At a
query time, the most relevant pages are returned in a fraction of a second. Behind such
impressive time performance lie significant computational resources that can be divided into
two categories. First, the semantic meaning of a query is analysed by applying traditional
information retrieval techniques, combining advances in computer science and statistics, and
machine learning methods, including the latest natural language processing algorithms for
context analysis [239]. Millions of pages are retrieved with potentially relevant information
to the query. Second, before the search happens, the database of publicly available web pages
is precomputed and organised by applying hundreds of ranking metrics covering the linking
structure, keywords, location, and content freshness of each page. By combining the ranking
scores of these two steps, the final order of the most relevant web pages is determined in
response to the query [240].

One ranking algorithm remains in use since the first launch of the Google search engine.
The PageRank algorithm [241, 242] evaluates the relative importance of pages by exploiting
the web link structure (web graph) solely. The web network is represented as a directed graph,
where each page is a node of the graph, and each hyperlink is an edge connecting one page
to another. For the entire database of web pages, the PageRank algorithm computes a single
score vector, the PageRank vector (or simply PageRank). The algorithm’s key underlying
assumption is that pages transfer the importance to other pages via links and, hence, the
PageRank vector components determine the importance of pages regardless of their textual
or visual content and the search query. Mathematically, finding the PageRank vector is
equivalent to calculating the principal eigenvector of the link-structure matrix, Google matrix.
The general mathematical principles of the PageRank algorithm inspired extensive studies
beyond its original use for ranking web search results. A wide range of applications was
found in various domains, including social network analysis, recommendation systems,
bibliometrics, bioinformatics, DNA sequencing, and distributed computing systems [243,
244].

The ranking of web pages with the PageRank algorithm, which is connectivity-based
and query-independent, does not require real-time processing and is computed in advance.
Since the principal eigenvectors can be found in polynomial time, the problem of computing
the PageRank vector belongs to the P complexity class. While being a simple task from
the computational complexity theory perspective, the processing of the tens of billions
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of elements of the link-structure matrix represents a numerical challenge for running the
PageRank algorithm on conventional hardware.

Further development of search technologies requires ever-increasing computational
resources. Recent advances were achieved with cloud-based tensor processor unit pods with
the power of over 100 petaflops and specialised chips designed to accelerate the training
of neural networks. Albeit enough computing resources may be available today, the future
demand for prodigious amounts of processing power is beyond traditional hardware. The
adiabatic quantum algorithm [245] and quantum stochastic walks [246, 247] are considered
as potential quantum analogues of the PageRank algorithm. Classical physical systems,
such as crosspoint resistive memory arrays [248], are proposed for emulating the original
PageRank algorithm based on the power method. In another direction of novel computing,
various unconventional physical systems are considered as simulators that can minimise spin
Hamiltonians. While the demonstration of the ability of such systems to find the global
minima of spin Hamiltonians faster than the classical von Neumann architecture is an ongoing
research, many of these disparate physical systems can either efficiently perform matrix-
vector multiplication [66, 249–252] or mimic the Hopfield neural networks [253, 201]. For
a certain choice of parameters, the time evolution of such networks can be viewed as an
eigenvalue maximisation problem [9], which results in finding the energy state dictated by
signs of the eigenvector corresponding to the largest eigenvalue of the interaction matrix, i.e.
principal eigenvector.

This Section demonstrates that the PageRank algorithm can be naturally simulated on
unconventional hardware based on a variety of physical systems. We consider networks of
optical parametric oscillators, polariton and photon condensates, coupled lasers, as well as
the original Hopfield networks and show their ability to efficiently find principal eigenvectors
of the Google matrix (see schematics in Fig. 5.4). We confirm networks’ ability to reliably
find the PageRank vectors by classifying the importance of pages in actual web graphs with
sizes from 500 to 3.5 million, including social and university networks. In addition, the
unconventional hardware can offer opportunities for exploring alternative rankings. We
show that one of such possible rankings could be based on the minimisation of the XY
spin Hamiltonian. We further discuss the feasibility of experimental implementations of
the large-scale Google matrices on existing unconventional hardware and argue about the
potential improvements in power consumption over classical hardware they could bring.

5.3.1 Emulating PageRank algorithm with unconventional networks

PageRank algorithm. We start by briefly reviewing the foundations of the PageRank algorithm.
The Pagerank algorithm evaluates the importance of web pages based on their connectivity
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Fig. 5.4 The schematics of running ranking algorithms on unconventional hardware is shown.
The link-structure of pages is represented as the Google matrix of the web network (top
image). This web network is then mapped to unconventional hardware (middle image) that
could be based on a variety of physical platforms, including optical parametric oscillators,
lasers, polariton and photon condensates. The time-evolution of unconventional networks
can mimic the traditional PageRank algorithm and find the principal eigenvector (PageR-
ank) of the Google matrix or offer alternative rankings based on the minimisation of spin
Hamiltonians.
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via hyperlinks. The web graph is represented by the Google matrix G and the power method
is used for finding the PageRank vector p. In the original algorithm, this method is formulated
as [241]:

p(k+1) = G ·p(k). (5.1)

After a certain number of iterations k, the power method converges to the principal eigenvector
of the matrix G, which is known as the PageRank vector. The largest components of the
principal eigenvector represent the most relevant pages with ranks given by the indices of
ordered decreasing components (the PageRank order P). For a unique stationary solution of
the power method in Eq. (5.1) to exist, the Google matrix G is constructed as stochastic and
irreducible [240, 254, 255]:

G = αPT +v[αdT +(1−α)eT ] (5.2)

where P is the transition matrix that represents hyperlink structure of the web, d is the
dangling vector with di = 1 for zero rows of P and 0 otherwise, v represents a personalisation
vector, e is the unity vector, and α is the teleportation (convergence rate) parameter. For
α ∈ [0,1), the Google matrix has a unique principal eigenvector that corresponds to the
largest positive eigenvalue λmax = 1 [255]. The details of such construction of the Google
matrix are outlined in Appendix D.

To emulate the PageRank algorithm on unconventional hardware, we reformulate the
power method of Eq. (5.1) as an iterative scheme on the components pi:

d pi

dt
=−pi +

N

∑
j=1

Gi j p j, (5.3)

whose stationary solution realises the principal eigenvector of the Google matrix. As we shall
see below, similar dynamic behaviour is reflected by the operation of many physical systems.

PageRank algorithm on unconventional hardware. Novel computing paradigms, based
on networks of various physical elements from nonlinear oscillators to atoms, may offer
a computational advantage over conventional hardware in solving complex optimisation
tasks [256], many of which can be reformulated as minimisation of discrete or continuous
spin Hamiltonians. Unlike the optimisation of hard optimisation problems, calculating
the PageRank vector is a polynomially simple task but of large dimensionality. To deter-
mine the requirements for unconventional hardware to simulate the PageRank algorithm or,
equivalently, to find the principal eigenvector, we formulate the general dynamic network
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description based on physical systems as:

dxi

dt
= fi(xi)+hi(xi)

N

∑
j=1

Ĵi jg j(
N

∑
k=1

J̃ jkxk), (5.4)

where xi is the real variable that describes a certain measurable physical quantity for each
i-th element of network, fi(·) describes the local dynamics, hi(·) is an amplification function,
g j(·) is an activation function, Ĵi j [J̃i j] specifies pairwise interactions between i-th and j-
th elements and J̃i j [Ĵi j] is the identity matrix. This generalised class of unconventional
networks is reminiscent of two fundamental modelling approaches of neural networks. When
Ĵ is the identity matrix, i.e. Ĵ = I, and interactions between elements are governed by J̃ = J,
the time-evolution of Eq. (5.4) represents the static neural network with applications in
backpropagation [257]. In the opposite case of Ĵ = J and J̃ = I, the networks of physical
elements can be viewed as local field neural models [258]. The latter also represents the
Cohen–Grossberg model [259] to which the well-known Hopfield neural networks belong
[253]. The ability of both the static and local field neural networks to find the principal
eigenvector of the interaction matrix J originates from the assumption that their nonlinear
dynamics can be linearised to:

dxi

dt
= ξ xi +β

N

∑
j=1

Ji jx j, (5.5)

where ξ and β are the system-dependent parameters. The steady states of the linearised
network coincide with the minima of the Lyapunov function, which can be introduced as:

dxi

dt
=−∂L

∂xi
where L =−ξ

2
xT x− β

2
xT Jx. (5.6)

The Lyapunov function can be written for a general asymmetric matrix J with a Lyapunov
equation although here we assume the matrix to be symmetric for simplicity. The emergence
of stable states of Eq. (5.5) can be analysed with the Jacobian matrix with its maximum
eigenvalue given by

J = ξ I+βJ, λ
(J )
max = ξ +βλ

(J)
max. (5.7)

The first nonzero stable state occurs when the maximum eigenvalue of the Jacobian is equal
to zero, which leads to the critical value ξcrit:

ξcrit =−βλ
(J)
max. (5.8)
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For ξ < ξcrit, only the trivial solution x = 0 exists. At the critical point, the evolution of
elements in Eq. (5.5), with time rescaled as t → β t, and the Lyapunov function L are
expressed as:

dxi

dt
= −λ

(J)
maxxi + ∑

j=1,N
Ji jx j, (5.9)

L =
1
2

(
λ
(J)
maxxT x−xT Jx

)
. (5.10)

In this regime, the Lyapunov function is nonnegative, and the network converges toward a
stable equilibrium corresponding to the zero minimum value

min
ξ=ξcrit

L = 0 ⇐⇒ Jx = λ
(J)
maxx. (5.11)

In case of the Google matrix, the largest eigenvalue is equal to one, namely λ
(J)
max = λ

(G)
max = 1,

and the PageRank vector is represented by the network amplitudes at the steady state of
equations

dxi

dt
=−xi +

N

∑
j=1

Gi jx j, (5.12)

that is equivalent to the iterative scheme of the power method in Eq. (5.3). Starting with any
initial conditions, the solution of Eq. (5.12) will always converge to the equilibrium point of
the system corresponding to the principal eigenvector of the Google matrix.

As a demonstration of calculating the PageRank vector on unconventional hardware, we
consider networks of elements based on several physical systems, including OPOs, lasers,
polariton and photon condensates. These gain-dissipative systems achieve coherent states
when the gain exceeds the losses. At the coherence threshold, when ξ = ξcrit, the principal
eigenvector of the Google matrix can be reconstructed from the network amplitudes of the
first stable nonzero steady state. Besides, the PageRank algorithm can be emulated using
the Hopfield networks, which can be implemented with photonic [260] and electronic [201]
systems. For showing a possible robust emulation of the PageRank algorithm on unconven-
tional hardware, the system-dependent parameter configurations are found analytically for all
considered networks whose dynamics at the lowest power consumption regime is equivalent
of Eq. (5.12), as discussed in Appendix D.

We consider the Google matrices from small size N = 500 to larger sizes up to N = 3.5
million based on real web graphs of universities, social Networks, frequently co-purchased
products, the Wikipedia top categories, and others (see Appendix D for a full description of
databases) to show a reliable operation of unconventional hardware for computing the PageR-
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ank vectors. For all datasets, the ranking vectors obtained using unconventional networks are
compared with the PageRank vectors computed using the original PageRank algorithm based
on the power method. We use a standard metric to measure the correspondence between two
rankings, namely the Kendall rank correlation coefficient (Kendall’s tau):

Kendall′s tau =
C−D√

(C+D+T1)(C+D+T2)
∈ [−1, 1],

where C is the number of concordant pairs, D is the number of discordant pairs, Tk is the
number of ties only in the k-th ranking. Concordant and discordant pairs describe the
relationship between pairs of elements from two rankings: the pair (i, j) is concordant if
both methods rate the i-th element higher than the j-th. A tie occurs for the pair (i, j)
when a method assigns equal weights to both elements, while the pairs of elements with
equal weights in both rankings do not contribute to either number of ties Tk. The larger
positive values of Kendall’s tau correspond to the stronger agreement between rankings,
larger negative values indicate the reverse order of rankings, and near-zero values reflect no
correlation between rankings.

The Kendall’s tau between the PageRank order, which corresponds to the indices of
the sorted components of the principal eigenvector computed using the power method, and
ranks obtained with unconventional networks, is shown in Fig. 5.5A as a function of the
number of iterations of all methods. The noticeable discrepancies between rankings of
several methods, e.g. networks of OPOs and condensates (lasers), on several datasets, e.g.
‘cambridge’ and ‘wiki-topcats’, originate from the elements with the lowest importance
as reflected in Fig. 5.5B(top). Computing Kendall’s tau between the PageRank vector and
amplitude distributions of the steady states in unconventional networks leads to the occasional
minor deviations from the perfect agreement with the PageRank algorithm, as shown in
Fig. 5.5B(bottom). Despite nonlinearities, the principal eigenvectors of the Google matrices
are reconstructed with high accuracy by all networks.

The varying agreement between methods for the PageRank order (Pi) and PageRank
vector (pi) is caused by the processing of ties in Kendall’s tau calculation. In the latter case,
different rankings can have multiple ties for the same pairs of elements that do not contribute
to Kendall’s tau, while redistributions of these ties into the concordant and discordant pairs
decrease the correlation between rankings in the former case. Hence, we conclude that
all unconventional networks successfully produce orderings in strong agreement with the
PageRank algorithm.
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Fig. 5.5 (A) Kendall’s tau, as a measure of the agreement between the PageRank order
computed with the power method and the rankings obtained using unconventional networks,
is shown as a function of the number of iterations for a variety of web graphs. The sizes of
graphs vary from N = 500 for the university network (‘harvard’) to N = 3.5 million for the
Wikipedia database (‘wikipedia’). The unconventional networks are represented by Hopfield
networks and networks of optical parametric oscillators (OPOs), condensates (polariton and
photon), and lasers. (B) Kendall’s tau distribution is shown as a function of the highest-ranked
elements for the PageRank order (top) and the PageRank vector (bottom). The teleportation
parameter is fixed across all datasets to α = 0.85.
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5.3.2 Alternative ranking through minimisation of the XY Hamilto-
nian

Physical systems can provide unconventional hardware to mimic the original PageRank
algorithm and be used to explore alternative rankings. One of such new rankings could
be based on the minimisation of the XY Hamiltonian, i.e. XYRank. As a representative
example, we realise the minimisation of the XY model with the gain-dissipative networks
that we described in Section 4.1. In the case of the Google matrix J = G, the alternative
ranking is based on the individual gains γi, which can take negative and positive values.
The lower is the gain γi, the higher importance is assigned to the i-th element. We call this
alternative ranking the XYRank since the minimum of the total power gain ∑i γi corresponds
to the minimum of the XY Hamiltonian.

We show the relation between the traditional PageRank and XYRank distributions in
Table 5.1. The highest-ranked elements are simply reshuffled for web graphs ‘harvard’,
‘facebook’, and ‘wiki-topcats’. In the case of the ‘california’ dataset, several of the PageRank
positions are given much lower importance with respect to the XYRank, while the top
XYRank positions still belong to the highly-rated pages of the PageRank distribution (see
Appendix D). Understanding which ranking algorithm is best and whether XYRank can
lead to better search results requires a detailed ranking analysis beyond algorithmic methods.
In commercial search engines, thousands of trained external raters evaluate search quality
results on various datasets and queries, even for small changes in ranking algorithms. The
ability to have a platform that emulates the traditional PageRank algorithm and offers alter-
native rankings could allow unconventional hardware to safely replace traditional computing
architectures and facilitate the development of new search algorithms.

Computing power and energy efficiency. The evolving nature of the Internet requires
regular updates of PageRank distributions. Whereas 20 years ago, almost half of all web
pages were updated at weekly intervals, nowadays constant changes in the web structure can
occur within an hour or even a minute. As an estimate, the regular updates of the PageRank
vector on a minute scale for a 10 billion size matrix would result in the average annual
electricity consumption of about 3.5 ·105 kWh on dedicated hardware, such as the tensor
processing units (TPUs), see Fig. 5.6, that is equivalent to charging up about 300 electric cars
for one year (see Appendix D for details). In addition to updating the global web network,
the monetary success of many other platforms depends on how often similar to the PageRank
ratings are calculated. For example, SalesRank needs to be updated hourly to reflect the
purchase history of Amazon products.

To keep up with the dynamic changes of the web structure and its growing size, un-
conventional hardware can offer a time and energy-efficient platform for performing such



128 Other applications for unconventional computing platforms

FPGAInt6

TPUFP16

100042040539010575 90604530

10

50

30

500•103

200•103

2400
130

110

90

70

15

Intel XeonFP32

CPUs

Unconventional
Computing

Hardware
Supercomputers

Nvidia DGXFP64

SummitFP64

FugakuFP64

Co
m

pu
tin

g 
Po

w
er

 [T
FL

O
PS

]

Energy Efficiency [GFLOPS/W]

Nvidia RTXFP32

GPUs

Nvidia V100FP16

Dedicated Hardware

Fig. 5.6 The schematic distribution of the processing power as a function of energy efficiency
is shown for several conventional computing devices, including CPUs, GPUs, FPGAs, and
supercomputers. Unconventional computing devices based on optical systems could provide
orders of magnitude improvements in time and energy performance.
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intensive computations. The unconventional hardware typically benefits from inherent com-
putational parallelism and possible quantum speedup. The typical improvements to the power
method, such as reduced recalculation of converged pages [261], are naturally embedded in
physical systems. In general, the time performance and energy consumption of computing
PageRank and alternative ranks on unconventional hardware depend on the type of possible
architectures.

For a hybrid (or active) coupling scheme, when interactions in the network are created
using traditional devices, the performance of unconventional hardware is dictated by char-
acteristics of the classical counterpart. For example, arbitrary coupling configurations can
be implemented in OPO-based networks by matrix multiplication on the FPGA [58], which
limits the time and energy performance of the optical system to the operational characteristics
of FPGA. For polariton networks discussed earlier in Chapter 3 and other photonic systems
[66], couplings could be realised using a spatial light modulator, which also restricts their
time and energy performance.

To take full advantage of the capabilities of physical systems underlying unconventional
hardware, pure optical architectures with passive schemes for creating interactions could be
considered. In such all-optical passive networks, couplings do not require reconfiguration at
each iteration, and the performance is determined solely by the characteristics of physical
systems. While such coupling schemes are more difficult to engineer, there exist proposals of
all-optical OPO and polaritonic machines. The programmable photonic processors provide
passive integrated circuits with subnanosecond operation time scale [188].

The presence of inherent nonlinearities in some physical systems requires operation near
the coherence threshold to simulate the PageRank algorithm with high accuracy. Nonlineari-
ties are introduced intentionally in other physical computing platforms and can be omitted to
model the PageRank algorithm. For example, the PageRank can be calculated by performing
optical matrix multiplications that support beyond GHz clock rates [250–252].

To estimate the energy efficiency of unconventional hardware, we note that the power
intensity required for creating an element of a network is on the order of milliwatts for most
optical systems [251]. For example, a milliwatt laser power is usually required for exciting
one micron-sized polariton condensate. Hence, the approximate power scaling with network
size could be taken as P ∼ N mW. The computational complexity of the PageRank algorithm
is governed by the matrix-vector multiplication product in the power method and can be
expressed as O(mnN), where m is the average connectivity of the web graph, and n is the
number of iterations required for convergence. Then the number of floating-point operations
per second (FLOPS) for unconventional hardware operating at picosecond-nanosecond time
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scale could be in the range of mnN · [109, 1012] FLOPS with the energy efficiency of

Energy efficiency ≈ mn · [1, 103]
TFLOPS

W
. (5.13)

Evidently, unconventional hardware with passive coupling schemes could provide orders of
magnitude more energy-efficient performance than conventional computing architectures,
see Fig. 5.6 for their power and efficiency comparison.



5.3 PageRank algorithm 131

Table 5.1 The highest 10 PageRank positions are shown for datasets ‘harvard’, ‘california’,
‘facebook’, and ‘wiki-topcats’ of size N = 500, N = 9664, N = 22470, and N = 1791489.
The identical PageRank distributions are found between the original PageRank algorithm
based on the power method and simulations of Hopfield networks and networks based on
optical parametric oscillators, lasers, polariton and photon condensates. The alternative
ranking (XYRank) is computed by minimising the XY Hamiltonian. The difference between
the two ratings is indicated by green (red) arrows showing the shift in the XYRank towards a
higher (lower) rating by a certain number of positions with respect to the PageRank.

PageRank Harvard XYRank California XYRank
1 www.harvard.edu − www.ucdavis.edu/ ⇓ 58
2 www.hbs.edu ⇓ 6 search.ucdavis.edu/ ⇓ 421
3 search.harvard.edu:8765/.. ⇑ 1 www.california.edu/ ⇓ 22
4 www.med.harvard.edu ⇑ 1 home.netscape.com/.. ⇑ 2
5 www.gse.harvard.edu − www.berkeley.edu −
6 www.hms.harvard.edu ⇓ 3 www.linkexchange.com/ ⇑ 5
7 www.ksg.harvard.edu ⇑ 1 www.berkeley.edu/ ⇑ 3
8 www.hsph.harvard.edu ⇑ 4 www.uci.edu/ ⇓ 173
9 www.gocrimson.com ⇓ 5 www.ca.gov ⇓ 7

10 www.hsdm.med.harvard.edu ⇓ 12 www.lib.uci.edu/ ⇓ 291
PageRank Facebook XYRank Wikipedia (top categories) XYRank

1 Facebook ⇓ 2 United States −
2 Sir Peter Bottomley MP ⇑ 1 France −
3 The White House ⇓ 9 United Kingdom ⇓ 8
4 The Obama White House ⇓ 11 Canada ⇓ 1
5 U.S. Army ⇓ 6 Germany ⇓ 5
6 U.S. Army Chaplain Corps ⇑ 1 World War II ⇓ 18
7 Joachim Herrmann ⇑ 5 English language ⇓ 16
8 Barack Obama ⇓ 1 Australia ⇓ 5
9 European Parliament ⇓ 5 Italy ⇓ 9

10 Manfred Weber ⇑ 4 India ⇓ 10





Chapter 6

Conclusions
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Unconventional computing architectures based on classical and quantum physical sys-
tems can become a superior computational paradigm for solving challenging optimisation
problems. Analogue simulators are proposed for numerous systems, including superconduct-
ing qubits, CMOS hardware, optical parametric oscillators, memristors, lasers, trapped ions,
photon and polariton condensates. All these approaches aim to achieve a much faster, more
efficient and more accurate way of solving a particular class of optimisation problems.

In this thesis, the possibility of gain-dissipative systems becoming unconventional com-
puting platforms is investigated. As an example of driven-dissipative platforms, polariton
condensates are considered throughout the text. Chapter 2 shows that polaritonic networks
can be viewed as a paradigm for studying the dynamics of various known coupled oscillators.
Intriguing opportunities for entering novel hybrid regimes are revealed as different types
of oscillators can be incorporated together in one interaction platform within polaritons.
Depending on the identified parameter regimes, various states of matter are possible in such a
non-equilibrium system: the classical ferromagnetic and antiferromagnetic models, stationary
and non-stationary spin waves, disordered configurations and stable giant vortices.

It is evident that polaritonic networks represent a flexible and robust platform for exploring
new regimes and states of matter. Their prospects of optimisation is another discussion on
which we are focusing. There are three crucial factors to consider when building a novel
computing platform based on physical systems. The first is to ensure that the platform
can, in principle, perform a practical computation, which could be minimisation of spin
Hamiltonians or any other application of interest. Second is programmability: the platform’s
flexibility should allow one to realise a diverse set of problems within a chosen application
domain. For example, implementations of arbitrary graph connections with controlled
amplitudes are required for solving general optimisation problems. And third is the scalability
easiness: a platform should be possible to scale to the size needed for tackling practically
relevant applications, which should be done preferably with commodity optical and electronic
components or, in rare cases, through technological innovation.

Chapter 3 attempts to address all these factors in the context of gain-dissipative systems
as an analogue platform for minimising classical spin Hamiltonians. We introduce a new
approach for simulating discrete and continuous spin Hamiltonians, e.g. Ising and XY,
with polariton networks. The minimisation of the XY Hamiltonian is numerically and
experimentally shown for simple building blocks of spatially coupled polariton condensates.
For the first time, the scheme to realise discrete spin Hamiltonians, Ising and n-state planar
Potts, is demonstrated for lattices of polariton and photon condensates. For minimising
arbitrary graphs, the density equilibration feedback mechanism is proposed that applies to
a broad family of oscillatory networks, including optical parametric oscillators, lasers, and
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non-equilibrium condensates. By engineering a spatial variation of a dissipation profile, the
localised independent control of individual interactions could be achieved, adding another
dimension to the flexibility and tuneability of control parameters in lattice spin models.
Finally, we suggest experimental implementations for realising remote phase locking of any
two condensates in a micropillar array or in a lattice of trapped condensates with a potential
to minimise both the Ising and XY models on fully-connected coupling matrices.

Thus, the proposed polaritonic XY-Ising machine possesses such essential qualities of
an analogue optimiser as robust programmability of interactions via SLMs, the ability to
simulate sparse and fully-connected matrices, and the implementation of arrays up to a
thousand condensates with existing experimental techniques which have great potential
for further scale-up. Furthermore, the strong-coupling regime of polariton quasi-particles
should be advantageous for the bottom-up optimisation approach. Such strong interactions
can facilitate the achievement of low-energy states by a parallel-scanning through all phase
configurations near the condensation threshold. The real physical machine would benefit
from low noise to signal ratio, ultra-fast operational time-scale, high energy efficiency with a
milliwatt excitation power per condensate, and potential room-temperature operation.

Once all three factors are shown to be achievable, at least in theory, for a particular
system, one needs to find a way to compare existing physical simulators and decide which
approach is worth investing time and money in for further scaling. With dozens of small-size
novel machines proposed over the last couple of years, a fair assessment of their optimisation
capabilities is a non-trivial task, given the many technological constraints specific to each
system. Such evaluation becomes even more difficult since the computational complexity
theory operates with limits and tells us that a particular class of problems could be hard to
optimise in general, e.g. NP-hard, although this complexity does not immediately apply
to all instances of this class. As Leo Tolstoy said in Anna Karenina, “All happy families
are alike; each unhappy family is unhappy in its own way”, the similar statement seems to
be true for the complexity of optimisation problems: all simple problems are alike, but all
complex problems are complex in their own way. Therefore, selection of the non-trivial or,
even better, the hardest instances available in the NP-hard complexity class could tell more
about the general optimisation capabilities of physical machines, even of small size, and
could lead to more accurate prediction of their large scale performance.

A compelling approach for distinguishing easy and hard instances within the same NP-
hard class of problems is proposed in Chapter 4. To identify computationally simple instances
within the Ising model, we present an optimisation simplicity criterion. Neuromorphic
architectures based on optical, photonic, and electronic systems can naturally operate to
optimise instances satisfying this criterion, which are therefore often chosen to illustrate
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the computational advantages of new Ising machines. Significant fractions of polynomially
simple instances are further found for a wide range of small-size models from spin glasses
to maximum cut problems. The reported simplicity criterion is sufficient but not necessary
for an instance to be counted as easy to optimise. Hence, there exist great opportunities for
developing other simplicity criteria for identifying easy instances of NP-hard problems.

Analogue optical platforms may become a new class of multi-purpose computing ar-
chitectures with ultra-low power consumption in the near future. Determining the right
architectural design in itself can help in developing new physics-inspired algorithms. Mo-
tivated by operational principles of gain-dissipative simulators, a novel gain-dissipative
algorithm is proposed in Chapter 4. Its computational advantages over several standard
methods are demonstrated for both continuous and discrete problems of various sizes. Be-
sides grand applications of solving challenging optimisation problems on unconventional
computing platforms, other possible applications are discussed in Chapter 5. In addition
to reservoir computing, we propose to use the analogue Hamiltonian optimisers as a basis
for a proof-of-work protocol. Using analogue optimisers at the heart of this protocol to
perform valuable computations could help ensure blockchain’s sustainable future. Also,
these analogue machines could be exploited to accelerate existing search engine techniques
and explore novel ranking approaches. Consequently, unconventional hardware based on
physical systems may represent an efficient computing and long-term sustainable paradigm
for continued innovation in search and other applications.
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Li Jing, Tena Dubček, Chenkai Mao, Miles R Johnson, Vladimir Čeperić, et al.
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Appendix A

Parameters for numerical simulations of
polaritonic networks

In numerical simulations of polariton lattices throughout the Thesis, until otherwise specified
in the main text, we used a Gaussian pumping profile that produces the same width of the
condensate as in experiment (FWHM 2.6µm) and choose the pumping intensity to obtain the
correct outflow wavenumber for a single condensate. The standard dimensionless integration
parameters are g = 0.1,b = 1,γ = 0.3, η = 0.4, p = 9.5exp(−0.4r2). The dimensionless
pumping profile of each site of polariton graphs is created by P0 · exp(−αr2), where P0 =

9.5, α = 0.4. The corresponding dimensional parameters are mpol = 0.4 meV · ps2/m2,
}γC = 0.33 meV , }RR = 0.1 meV · µm2, }gR = 0.005 meV · µm2, }γR = 1.5 meV , U0 =

0.036 meV · µm2, ηd = 0.037 µm2. These parameters are agree with experimental data
presented for giant vortices in Chapter 2 and polariton lattices in Chapter 3.

In Section 2.3, the numerical parameters for 1D simulations in Figure 2.5 are η = 0.4,
b = 1.5, γ = 1, p0 = 5, σ = 0.4, g = 2.5. In Figure 2.6, the pumping intensity is 2.6 times
larger to bring about a non-stationary state with the rest of parameters similar to the standard
parameters listed above.

In Section 3.1 the numerical simulations are performed for various geometries and
distances. All numerical simulations start from initial conditions with phases randomly
distributed between the computational modes. The configuration with the largest number of
particles, N, is chosen out of 100 runs for each pumping geometry.

In Section 3.3, the parameters agree with the standard parameters listed above. In
addition, the following parameters are used to simulate the resonant pumping: P2(r, t) =
0.5(tanh(6t/tmax−3)+1)∑

N
i=1 p(|r− ri|) , P3(r, t)= 0.25(tanh(6t/tmax−3)+1)∑

N
i=1 p(|r− ri|),

and to simulate the field P1(r, t) = 0.25(tanh(6t/tmax − 3) + 1)(p(|r− r1|) + p(|r− r2|)),
where tmax ≈ 100 is the time when a steady state is achieved.
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In Section 3.4, tthe dimensionless parameters for numerical simulations for Eqs. (3.18,
3.19) in Figure 3.12 and Figure 3.13: η = 0.01, g = 0 (a small nonzero value of g ≈ 0.1
will make the spins less aligned), b0 = 0.2, b1 = 20, P = ∑i P0 exp(−α(r− ri)

2), P0 = 100,
α = 0.4, γchannel = 1, γbarrier = 40, lattice constant is d = 2.8, the width and length of channels
are 1 and 1.4. In Figure 3.14, the parameters are are b0 = 0.1, P0 = 60, γbarrier = 60, γgate = 8,
d = 3, while other parameters are the same as in Figure 3.12. The physically meaningful
polariton lifetimes of 5ps, 20− 200ps, and 200ps (or 2ps/13ps/100ps for simulations in
Figure 3.14) are used for barriers, gates, and channels, respectively, with an assumption of
the exciton lifetime of 2ns.



Appendix B

Algorithms for Ising minimisation

1. Hopfield-Tank neural networks. The numerical integration of the Hopfield-Tank algorithm
(4.11) is performed in Fig. 5.4 by the Euler scheme with the discrete time step dt = 0.9. In all
numerical simulations, a hyperbolic tangent is used as an activation function g = tanh

(
x/x0

)
and the numerical parameters are τ = 1, Ib = 0, x0 = 3. The polynomial fits are 0.006x1.986,
0.01x1.993, 0.026x2.006 for ground state probabilities 50%, 75%, and 100%, respectively. We
note that for coupling matrices not satisfying the OSC, the Hopfield-Tank neural networks
could still find energies lower than the energy corresponding to the largest eigenvector by
violating the low-gain limit.

2. Gurobi solver. The optimality gaps and times to reach optimal solutions are obtained
with the Gurobi solver on a single core of Intel(R) Core(TM) i9-8950HK CPU 2.0GHz in
Fig. 5.5.

3. Chaotic Amplitude Control method. The chaotic amplitude control method is an
iterative scheme that is inspired by the operation of optical parametric oscillators [21] and
based on the time evolution of equations:

dxi

dt
= (p−1)xi − x3

i + εei(t)
N

∑
j=1

Ji jx j (B.1)

dei

dt
= −β (x2

i −a)ei (B.2)

where the signs of xi represent the Ising spins, p is the linear gain, ε is the coupling strength
scaling coefficient, ei is the error signal, β is the rate of change of error signal, and a is the
target amplitude. The dynamics of xi elements in Eq. (B.1) is similar to a Hopfield network
evolution with the addition of nonlinearity, while the amplitude alignment of the network
elements as in Eq. (B.2) was first argued to be necessary for minimisation of both discrete
and continuous spin Hamiltonians for gain-dissipative simulators in [20]. Following [21],
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the parameters a, p, and β are dynamically adjusted as:

a = 1− tanh(δ∆E) (B.3)

p = p0 + tanh(δ∆E) (B.4)

dβ

dt
=

γ, if t − tc < τ

0, otherwise
(B.5)

where the baseline of the target amplitude a is set to one, δ is the sensitivity to energy
variations, ∆E = Ebest −E(t) is the difference between the best found Ising energy and the
current energy at time t, p0 is the linear gain baseline. The parameter β increases with a
positive rate γ for the maximum allowed time τ , otherwise is set to zero and tc is set to t,
where tc is the last time when the best known energy Ebest was updated or β was reset. The
numerical simulation of Eqs. (B.1-B.5) could efficiently sample the low energy states of
Ising Hamiltonian [21] and was recently implemented on a field-programmable gate array as
chaotic amplitude control method [184].

We note that the parameters ei in Eq. (B.1) play a critical role in the algorithm’s per-
formance and make the local minima escape mechanism of the chaotic amplitude control
method somewhat similar to that of parallel tempering. Namely, the error signals ei could
be seen as a set of inverse temperatures, each applied to individual spin. Hence, the energy
landscape exploration within subspaces is performed during network elements’ evolution at
different temperatures. For spins whose amplitude x2

i is much less than the target amplitude a,
the signals ei are large and help the system to quickly settle in a local energy minimum within
the phase space of these spins (small temperature regime with a rough energy landscape for a
subset of spins). For spins with amplitudes close to the target value, the signals ei are small
and facilitate crossings over energy barriers within this phase subspace (high-temperature
regime with a smooth energy landscape for a subset of spins). The global optimisation
could be then achieved due to fluctuations of ‘inverse temperatures’ ei in time, which realise
a continuous exploration of random spin subspaces at low and high temperatures. The
importance of multiplying the interactions by amplitudes ei has also been argued in terms of
the destabilisation of low energy local minima [184] and due to the energy-conserving rotary
motion [262].

4. Parallel Tempering. Parallel tempering (PT), or replica exchange Monte Carlo method,
takes advantage of the dependence of the energy landscape on the temperature of the system:
a rough landscape at low temperatures becomes smooth at high enough temperatures. In
this algorithm [213–216], multiple states (replicas) of a particular Ising model are simulated
independently at different temperatures with a Monte Carlo algorithm. At low temperatures,
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Table B.1 Optimal parameters for chaotic amplitude control method are shown. The indi-
vidual sets of parameters are selected for each rewiring of 3-regular graphs in Fig. 5.5 by
optimising time to solution for ten rewired graphs with the m-loop method. The presented
values are averaged over the percentage of rewired edges for each problem size.

Size Niter Nτ ε α γ δ dt
100 3100 500 0.25 1.94 0.015 6.1 0.026
200 5500 1250 0.22 1.93 0.007 5.2 0.02
300 6600 1400 0.26 1.22 0.006 5.1 0.031

the local exploration of an energy landscape is realised, and replicas could quickly get
trapped in local minima. In contrast, a global exploration of energy profile is facilitated
with replicas easily crossing energy barriers at high temperatures. The global optimisation
could be then achieved by exchanging replicas at low and high temperatures. For the optimal
performance of PT, one needs to ensure the exchange in the reverse direction, which requires
a trade-off between two factors. On the one hand, the exchange mechanism is accelerated
once the acceptance probabilities for exchanges are high, which can usually be achieved by
increasing the number of replicas. On the other hand, the larger number of replicas slows
down the algorithm and increases the exchange time between replicas at the lowest and
highest temperatures.

Optimal Parameters. For parallel tempering and chaotic amplitude control methods,
the optimal sets of parameters are determined with the machine-learner online optimisation
package (m-loop) [183] over ten random problem instances for each rewiring percentage
per each problem size which results in a total of more than 150 graphs optimised for each
problem size. The time-to-solution has been used as a target function for optimisation with
the success probability calculated by running algorithms 30 times for each instance. The
number of m-loop steps was fixed to 200. Both algorithms are implemented in Python
and translated to optimised machine code with Numba, while Numba-compiled algorithms
are known to approach a performance similar to Fortran. The reported time-to-solution
performance is achieved on a single core of Intel(R) Core(TM) i9-8950HK CPU 2.0GHz.

For chaotic amplitude control method, the optimal time-to-solution for a given rewiring
percentage for each problem size is determined by optimising the following seven parameters
with the m-loop: number of iterations (Niter), maximum number of iterations without energy
change (Nτ ), coupling strength (ε), linear gain baseline (p0), rate of increase of β (γ),
sensitivity to energy variations (δ ), and time step (dt). The averaged optimised parameters
are listed in Table B.1, where linear gain baseline is determined through the parameter α and
the largest eigenvalue λ0 of coupling matrix J as p0 = 1−αλ0.
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Table B.2 Optimal parameters for parallel tempering are shown. The individual sets of
parameters are selected for each rewiring of 3-regular graphs in Fig. 5.5 by optimising time to
solution for ten rewired graphs with the m-loop method. The presented values are averaged
over the percentage of rewired edges for each problem size.

Size NMC NR Neq Tlow Thigh
100 100 4 1.9 0.71 1.18
200 120 4.6 5.3 0.77 1.12
300 230 4.6 5.8 0.77 1.05

For parallel tempering, the optimal time-to-solution for a given rewiring percentage for
each problem size is determined by optimising the following five parameters with the m-loop:
the number of Monte Carlo sweeps (NMC), number of replicas (NR), number of iterations
for equilibration (Neq), low temperature (Tlow) and high temperature (Thigh). Temperatures at
each replica are set based on the geometric schedule [186, 216]. Compared to the pseudocode
in [186], our parallel tempering implementation includes an additional extra hyperparameter
Neq, which allows individual replicas to equilibrate over a few Monte Carlo sweeps before
exchanging states of neighbouring pairs of replicas. The Metropolis update mechanism is
used for the Monte Carlo simulations. The average values of optimal parameters are shown
in Table B.2.
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Ising models

In Fig. 5.6, the non-exhaustive list of problems in which one can find polynomially easy
Ising instances includes:

1. Sherrington-Kirkpatrick (SK) model of spin glasses [263]. The fully-connected SK
instances have a coupling matrix with elements from Gaussian distribution with zero mean
and unit variance (Gaussian-SK). The Gaussian-SK model is NP-hard [264] though the
ground state with precision of (1− δ ) can be found in polynomial time for any δ > 0
when the coupling coefficients are taken from the Gaussian distribution with zero mean
and variance σ = 1/N [265]. The probability of finding an easy instance of Gaussian-SK
problem with the OSC decreases from 45−100% for size N = 3−10 to 10−20% for 20-25
size. The SK model stays in the NP-Hard class [266] when the coupling values are chosen
from bimodal distribution (bimodal-SK). In this case, the probability of easy instances drops
from 65−100% to 20% for problem sizes 3-10 and 20-25, respectively. Both models have
100% simple instances for N = 3 and all instances are simple for N = 5 in case of bimodal
distribution. The unweighted SK model coincides with the complete unweighted graphs,
which were considered for the complexity continuum transition of k-regular graphs and
argued to be polynomially simple. Both Gaussian-SK and bimodal-SK are commonly chosen
for comparing Ising physical machines [59] and computational algorithms [21, 186].

2. Mattis spin glass (Mattis SG) model [267]. In the Mattis model, random variables ε are
generated for each site i according to a specified probability distribution to build separable
spin interactions as Ji j = f (Ri j)εiε j, where f (Ri j) is the adjacency matrix that specifies the
topology of a graph. Such a model does not have frustrations, and the ground state is identical
to the configuration of the random variables si = εi. Also, one may notice that the Mattis
model is equivalent to gauge transformation Jgauged

i j = JF
i jεiε j which conceals the planted

ground state of the problem with ferromagnetic couplings JF
i j . For both Gaussian and bimodal

probability distributions of couplings, all Mattis spin models’ instances satisfy the OSC,
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which generalises to any problem size. Thus, the Mattis SG belongs to the P-class. The
Mattis model was recently used for evaluating the performance of photonic Ising machines
[66].

3. Maximum cut on 3-regular graphs. In addition to unweighted 3-regular graphs, we
considered 3-regular MaxCut with couplings from bimodal and Gaussian distributions. The
bimodal 3-regular MaxCut exhibits a similar probability of easy instances as unweighted
3-regular graphs, while the probabilities for Gaussian 3-regular MaxCut are slightly higher
on average than for Gaussian-SK. Besides, the case of 3-regular graphs on Möbius ladder
is considered for bimodal and Gaussian coupling distributions. The MaxCut problems are
commonly chosen for evaluating physical simulators [61, 59].

4. Spin glass model on a torus (SG-torus). A torus is represented by a two-dimensional
rectangular lattice with periodic boundaries in both directions and nearest-neighbour in-
teractions. The unweighted SG-torus model satisfies the OSC for any problem size. The
Gaussian SG-torus is less likely to have simple graphs compared to Gaussian-SK, while
the chances of about 40% hold even for a problem size of N = 40 for bimodal SG-torus.
The SG-torus models were recently used for comparing the large-scale performance of
optimisation physics-inspired algorithms [186].

5. Planar spin glass within a magnetic field. One of the earliest proofs of NP-hardness
of the Ising model was demonstrated for a three-dimensional spin glass and a planar spin
glass within a uniform magnetic field hi =−1 and unweighted antiferromagnetic interactions
[16]. Conveniently for us, the Möbius ladder graphs can be easily rewired to planar cubic
graphs by avoiding the twist and becoming ladder graphs. All unweighted ladder graphs with
a magnetic field satisfy the OSC. By exploiting the rewiring procedure with an additional
planarity constraint, about 50% random planar 3-regular graphs happen to be simple for a
problem size of 20. We also note that all found planar graphs of size 6 are simple graphs.

6. Biased ferromagnet on Chimera graph (BF-Chimera). The model represents an
unweighted ferromagnetic coupling matrix on Chimera graph with fields p(hi = 0) = p0 and
p(hi = 1) = p1 where p0 ≫ p1 that bias si = 1 for all spins as the global optimal solution.
This model was introduced as a toy example to get an intuition behind optimisation behaviour
of the D-Wave machine and classical algorithms [212]. The BF-Chimera model has no
frustration and its instances satisfy the OSC and thus are in P-class. Though this is the only
model in our list that was not argued to be hard before, its presence here could serve for
studying the complexity of other known Ising models with Chimera topology. We note that
there could be an additional overhead due to topological embedding in simulators where the
long-range interactions are non-trivial to engineer, e.g. the Chimera graphs for some Ising
problems.
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Details of PageRank simulations

1. Google Matrix Construction Details

The stages for constructing the Google matrix G:

G = (P
′′
)T = [αP+(αd+(1−α)e)vT ]T

= αPT +v[αdT +(1−α)eT ] (D.1)

could be divided into the following steps (see [242, 255] for more details):

i. P is the directed (undirected in rare cases) transition matrix, whose nodes represent
web pages and the directed edges correspond to hyperlinks, with elements expressed
as Pi j = Ai j/deg(i) when deg(i)> 0 and Pi j = 0 otherwise. Here A is the adjacency
matrix with Ai j = 1 when there is a link from page i to page j, and Ai j = 0 otherwise,
and deg(i) = ∑ j Ai j is the number of outgoing links of a page i (out-degree). Thanks
to such normalisation, the matrix elements Pi j represent probabilities of moving from
page i to page j in one time-step.

ii. The stochastic matrix P′
is constructed from the transition matrix P as P′

= P+dvT ,
where d is the dangling vector with di = 1 for zero rows of P and 0 otherwise. The
dangling nodes are the nodes without outlinks in the transition matrix. Such nodes
commonly occur in practice and can be attributed, for example, to the unexplored
(‘crawled’) web pages that are added to the web graph. The uniform vector v adds
artificial links by connecting uniformly dangling pages to all pages in the web graph,
while the non-uniform choice of v represents a personalisation vector. For such
nonnegative row-stochastic matrix P′

, the principal eigenvector corresponds to the
eigenvalue λ = 1 which could be degenerate, while such degeneracy can prevent the
convergence of the power method.



168 Details of PageRank simulations

iii. The stochastic irreducible matrix P′′
is formed as P′′

= αP′
+(1−α)evT , where e is

the unity vector. The matrix is irreducible (strongly connected) since every page is
now directly connected to every other page. The irreducibility adjustment also ensures
that P′′

is primitive, which guarantees the existence of the unique stationary PageRank
vector for α < 1, to which the power method will converge regardless of the initial
distribution. The parameter α is known as the damping (teleportation) factor since for
a non-dangling page i a random web surfer can not only follow one of the available
outlinks with the probability of α but can also jump (teleport) to any other page j
with the probability of (1−α)v j. Hence, the probability vector v > 0 is known as the
teleportation vector when chosen to be uniform or personalisation vector otherwise.

For computational efficiency, the Google matrix G is never explicitly formed. Instead,
the PageRank vector can be calculated with the power method as [? ]:

p(k+1) = G ·p(k) = αPT ·p(k)+v[αdT p(k)+(1−α)], (D.2)

where the normalisation condition eT p(k) = 1 is assumed and the advantage of the sparse
matrix-vector multiplication could be taken of. The PageRank algorithm is also directly
linked to the mathematical properties of Markov chains and Perron-Frobenius operators [?
255] and can be viewed as a stationary probability distribution for the Markov chain induced
by a random walk on the web graph.

2. Feasibility and requirements of embedding the Google matrix in phys-
ical systems

To discuss the possibility to embed the Google matrix on unconventional hardware, we
comment on all three stages of construction of the Google matrix.

The first step requires an ability to realise a sparse adjacency matrix in a physical platform.
It should be possible to create directed interactions between arbitrary nodes in the network
with about 10 to 100 connections per node. This requirement is feasible for most of the
physical systems considered in this work since the couplings can be usually organised by
external means. For example, the field-programmable gate arrays are used for OPOs, and
spatial light modulators can be used for polariton condensates. Such number of interactions
could be possibly harder to realise in passive coupling schemes.

In the second step, some nodes (dangling nodes) should be equally connected to all other
nodes with a small interaction strength. Given the possibly large number of the dangling
nodes, this could be an expensive step to complete with purely optical means from the
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engineering perspective, although it is straightforward with externally supplied couplings.
Alternative ways to create a stochastic matrix may need to be explored to implement such
interactions in physical systems efficiently.

In the third step, the irreducible matrix is created. Creating such a strongly-connected
matrix may look even more challenging to engineer than a few fully-connected nodes in the
second step. Fortunately, there could be a simple way to do this. The method of minimal
irreducibility [268] was proven to be equivalent both in theory and in computational efficiency
to the maximally irreducible method (that is used used in the third step) [240]. An additional
node is added to the network and connected to all other nodes in this alternative method.
Such an extra node plays the role of a teleportation state: there is a small probability of
transitioning to and out of this state. Unlike maximal irreducibility, the minimal irreducibility
could be naturally realised in many physical systems by applying a bias, for instance, a small
uniform magnetic field to all network elements. Also, a nonuniform magnetic field could
allow one to emulate the personalised PageRank algorithm.

3. The PageRank algorithm on unconventional hardware

Networks of optical parametric oscillators.
Network of coupled optical parametric oscillators (OPOs) represents an unconventional

gain-dissipative platform [269, 158] whose simplified dynamics is governed by the equations

dxi

dt
=−x3

i +(p−1)xi +β

N

∑
j=1

Ji jx j, (D.3)

where p represents the linear gain, Ji j are the interactions between oscillators, the linear
and nonlinear losses are normalised. The OPO-based simulator is proposed initially as a
coherent Ising machine since two possible phase states exist for each nonlinear oscillator
above a certain pumping threshold, and, hence, these states can be interpreted as binary spins.
For degenerate optical parametric oscillators (DOPOs) in a fibre [58], arbitrary coupling
connections between any two spins can be realised in the feedback loop on the FPGA.

For mimicking the PageRank algorithm, networks of OPOs should be operating at the
lowest loss regime. In the case of the Google matrix, this critical regime corresponds to
[269, 270]

pcrit −1 =−βλ
(G)
max =−β . (D.4)

The linear stability analysis of Eq. (D.3) is similar to that of Eq. (5.5) at ξcrit = pcrit − 1.
Hence, the PageRank vector is realised by the OPOs amplitudes xi in the steady state of
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equation:
dxi

dt
=− 1

β
x3

i − xi +
N

∑
j=1

Gi jx j. (D.5)

To get this equation, the time is rescaled as t → β t in Eq. (D.3).
Networks of polariton and photon condensates.
Lattices of polariton condensates are another gain-dissipative unconventional hardware

that we considered throughout this thesis and whose physics resembles another uncon-
ventional computing system based on photon condensates confined in a dye-filled optical
microcavity [77, 271]. These networks of gain-dissipative condensates can be realised in
experiments using a spatial light modulator [82] with many techniques proposed and engi-
neered for controlling couplings between condensates. The time-evolution of gain-dissipative
condensates is derived from the space and time-resolved mean-field equations in Section 2.1
and for certain parameter regimes can be described by the Stuart-Landau equations:

dψi

dt
=−iU |ψi|2ψi +(γ −|ψi|2)ψi +

N

∑
j=1

Ji jψ j, (D.6)

For simulating the PageRank algorithm with networks of gain-dissipative condensates, we
show the equivalence of stability of linearised equations Eq. (D.6) to Eq. (5.5). By substituting
ψi =

√
ρi exp[iθi] and separating real and imaginary parts in Eq. (D.6), we obtain

Re
d
√

ρi

dt
= (γ −ρi)

√
ρi +

N

∑
j=1

Ji j
√

ρ j cos(θ j −θi),

Im
dθi

dt
=−Uρi +

N

∑
j=1

Ji j

√
ρ j

ρi
sin(θ j −θi),

(D.7)

where ρi and θi are the density and phase of the i-th condensate. When Ji j = Gi j, since all
the elements of the Google matrix are positive, the condensation threshold is realised at
θi = θ j with the cos(θ j −θi) = 1 for all i, j. By denoting xi =

√
ρi, we rewrite the real part

of Eqs. (D.7) as:
dxi

dt
=−x3

i + γxi +
N

∑
j=1

Gi jx j. (D.8)

This time evolution of polariton and photon condensate amplitudes is similar to the networks
of OPOs, described by Eq. (D.3). As the effective pumping rate γ increases from the negative
values (linear dissipation dominates), the first nonzero stable state emerges at

γcrit =−λ
(G)
max =−1, (D.9)
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which corresponds to ξcrit = γcrit in Eq. (5.5). Hence, the networks of gain-dissipative
condensates emulate the PageRank algorithm in the regime of the lowest gain while the
PageRank vector is represented by the absolute values of amplitudes |ψi| at the steady state
of equations:

dψi

dt
=−iU |ψi|2ψi − (1+ |ψi|2)ψi +

N

∑
j=1

Gi jψ j. (D.10)

In case of the Google matrix, the nonlinear interactions U do not affect the dynamics of
gain-dissipative condensates. Consequently, the dynamics of Eq. (D.10) is equivalent to that
of the networks of coupled lasers, which are considered next.

Networks of lasers.
The network of the degenerate lasers in a cavity represents a gain-dissipative unconven-

tional computing hardware that was proposed for the minimisation of the XY Hamiltonian
[272]. In such networks, the interactions are engineered by mutual light injections from
one laser to another, which introduce losses depending on the relative phases of lasers. The
dynamics of coupled lasers is governed by the rate equations [52]:

dEi

dt
= (G̃i − α̃)Ei +

N

∑
j=1

Ji jE j,

dG̃i

dt
=

1
τ
[P̃− G̃i(1+ |Ei|2)],

(D.11)

where Ei is the electric field of the i-th laser, G̃i is the active medium gain, τ is the gain
medium fluorescence lifetime, α̃ is the linear loss coefficient, and P̃ is the active medium
pump rate, Ji j are the coupling strengths between the i-th and j-th lasers. In the limit of the
fast active medium gain relaxation and low amplitude electric fields, the equations simplify
to:

dEi

dt
= (P̃− α̃ − P̃|Ei|2)Ei +

N

∑
j=1

Ji jE j. (D.12)

Consequently, the stability analysis of the dynamics of polariton and photon condensates,
governed by Eq. (D.6), applies to the time evolution of coupled laser oscillators described
by Eq. (D.12). For the Google matrix, the first nonzero stable state occurs when the linear
losses α̃ satisfy

P̃− α̃crit =−λ
(G)
max =−1. (D.13)

The dynamics of linearised laser networks is equivalent to Eq. (5.5) at ξcrit = P̃− α̃crit. Hence,
the networks of coupled lasers emulate the PageRank algorithm in the lowest loss regime
with the PageRank vector represented by the absolute values of electric fields |Ei| in the
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steady state of equations:

dEi

dt
=−(1+ P̃|Ei|2)Ei +

N

∑
j=1

Gi jE j. (D.14)

The dynamic of laser networks is reminiscent of gain-dissipative condensates described by
Eq. (D.10), where the presence of nonlinear term U does not affect the system’s ability to
find the principal eigenvector. Consequently, the emulation of the PageRank algorithm with
networks based on either polariton and photon condensates or lasers can be performed with
Eq. (D.10).

Hopfield neural networks.
The Hopfield networks [253] can be realised with unconventional hardware based on

electronic [201] and photonic systems [260] with quantum extensions available [273]. These
networks are of great importance in many areas with early applications ranging from min-
imising discrete spin Hamiltonians and associative memory [7] to more recent uses in web
information retrieval, pattern recognition, and natural language processing techniques. The
evolution of individual neurons is governed by the equations:

dxi

dt
=−xi

τ
+

N

∑
j=1

Ji j tanh
( x j

u0

)
+ Ib

i , (D.15)

where xi describes the state of the i-th neuron, τ is the leakage parameter, Ji j are the interaction
coefficients between neurons, Ib

i is the external pumping imposed on the i-th neuron, and the
activation function is assumed to be the hyperbolic tangent. In the case of the Google matrix,
the first nonzero stable state emerges at

τcrit =
u0

λ
(G)
max

= u0. (D.16)

The dynamics of the linearised Hopfield networks is equivalent to such of the Eq. (5.5) at
ξcrit =−1/τcrit. Hence, the Hopfield networks emulate the PageRank algorithm in the lowest
loss regime with the PageRank vector represented by the amplitudes xi in the steady-state of
equations:

dxi

dt
=−xi +

N

∑
j=1

Gi j tanh(x j)+ Ib
i , (D.17)

where the time and amplitudes in Eq. (D.15) are rescaled as t → t/u0 and xi → xi/u0.
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4. Numerical parameters

The numerical results presented in the main text of the article are achieved for the OPO-
networks by simulating Eq. (D.5) with β = 1, polariton/photon/laser networks by simulating
Eq. (D.10) with U = 1, Hopfield networks by simulating Eq. (D.17) with Ib

i = 0 for all
elements. The Euler iterative scheme is used for all networks with the time step dt = 1. We
note that smaller time steps would work too, and the choice of such large dt makes the time
evolution of the considered networks similar to the power method, albeit in the presence of
small nonlinearities, which could affect the components of the PageRank vectors for some
datasets. In Fig. 5.5, the L1-norm termination criterion is used for all algorithms with the
maximum number of iterations corresponding to the 10−16 tolerance.

For the numerical calculations of the XYRank, the numerical parameters are fixed to
be ρth = 10, ε = 60, dt = 0.005, across datasets ‘harvard’, ‘california’, and ‘facebook’,
while for the ‘wiki-topcats’ dataset ρth = 1, ε = 15, dt = 0.0005. The presented rankings
in Table 5.1 and Table D.1 are consistent across different choices of parameters with gain-
dissipative networks converging to the similar steady state under the fixed tolerance, although
the required number of iterations for convergence greatly depends on a particular choice. The
Euler method with L1 norm accuracy of 10−10 converges in about 5000, 4000, and 50000
iterations for datasets ‘harvard’, ‘california’, and ‘facebook’, while the maximum limit of
1000000 iterations is reached for the ‘wiki-topcats’ dataset. The easiness of the Google
matrices for the minimisation of the XY model is caused by the ferromagnetic sign of all
couplings.

5. The highest XYRank positions

The XYRank is an alternative ranking that is calculated through the minimisation of the XY
Hamiltonian on the Google matrix. Similar to the highest PageRank positions in Table 5.1, the
highest XYRank positions are shown in Table D.1. The Kendall’s tau between PageRank and
XYRank across all positions is 0.74, 0.16, 0.74, 0.61, for the datasets ‘harvard’, ‘california’,
‘facebook’, and ‘wiki-topcats’, respectively.

6. Web graph datasets

The considered datasets are publicly available and include:

• Harvard web graph (‘harvard’). The Harvard database is an N = 500 directed graph
containing web pages related to Harvard University as of 2002 [274].
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Table D.1 The highest 10 alternative ranking positions (XYRank) are shown for datasets
‘harvard’, ‘california’, ‘facebook’, and ‘wiki-topcats’ of size N = 500, N = 9664, N = 22470,
and N = 1791489. The XYRank is calculated by minimising the XY Hamiltonian for
the Google matrices. The difference between the XYRank and PageRank distributions is
indicated by green (red) arrows showing the shift in the PageRank towards a higher (lower)
rating by a certain number of positions with respect to the XYRank.

XYRank Harvard PageRank California PageRank
1 www.harvard.edu − www.linkexchange.com/ ⇓ 5
2 search.harvard.edu:8765/custom/.. ⇓ 1 home.netscape.com/.. ⇓ 2
3 www.med.harvard.edu ⇓ 1 www.yahoo.com/ ⇓ 9
4 www.hsph.harvard.edu ⇓ 4 www.berkeley.edu/ ⇓ 3
5 www.gse.harvard.edu − www.berkeley.edu −
6 www.ksg.harvard.edu ⇓ 1 www.leginfo.ca.gov/.. ⇓ 20
7 search.harvard.edu:8765/query ⇓ 4 www.creia.com/ ⇓ 25
8 www.hbs.edu ⇑ 6 www.ca.gov/ ⇓ 11
9 www.hms.harvard.edu ⇑ 3 www.adobe.com/.. ⇓ 15

10 www.gse.harvard.edu/search.html ⇓ 7 www.dot.ca.gov/hq/.. ⇓ 24
XYRank Facebook PageRank Wikipedia (top categories) PageRank

1 Sir Peter Bottomley MP ⇓ 1 United States −
2 Joachim Herrmann ⇓ 5 France −
3 Facebook ⇑ 2 Departments of France ⇓ 12
4 Harish Rawat ⇓ 7 Communes of France ⇓ 14
5 U.S. Army Chaplain Corps ⇓ 1 Canada ⇑ 1
6 Manfred Weber ⇓ 4 Village ⇓ 18
7 Home & Family ⇓ 9 Powiat ⇓ 18
8 Cancillería Argentina ⇓ 18 Gmina ⇓ 14
9 Barack Obama ⇑ 1 Voivodeships of Poland ⇓ 14

10 Loïc Hervé ⇓ 15 Germany ⇑ 5

• California web graph (‘california’). The California database is an N = 9,664 directed
graph that contains pages matching the query “California" collected in 2002 [275].

• Facebook web graph (‘facebook’). The Facebook database is an N = 22,470 undirected
graph with nodes representing official Facebook pages and edges corresponding to
mutual likes between pages. Pages belong to 4 categories: politicians, governmental
organisations, television shows, and companies. The graph is collected in 2017 and is
available in Stanford large network dataset collection [276].

• Cambridge University web graph (‘cambridge’). The Cambridge University database
is an N = 212,710 directed graph containing web pages related to the University of
Cambridge as of 2006 [277].
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• Amazon web graph (‘amazon’). The Amazon database is an N = 400,727 directed
graph collected in 2003 [276] with nodes representing products and edges correspond-
ing to frequently co-purchased products.

• Hollywood web graph (‘hollywood’). The Hollywood database is an N = 1,139,905
undirected graph collected in 2009 [278] with nodes representing actors and edges
corresponding to the appearance of actors in the same movies.

• Wikipedia top categories web graph (‘wiki-topcats’). The Wikipedia top categories
database is an N = 1,791,489 directed graph collected in 2011 [276] with nodes
representing pages from the top Wikipedia categories (have at least 100 pages) with
the largest strongly connected component and edges corresponding to hyperlinks.

• Wikipedia web graph (‘wikipedia’). The Wikipedia database is an N = 3,566,907
directed graph collected in 2007 [279] with nodes representing Wikipedia pages and
edges corresponding to hyperlinks between them.

All datasets can also be found on the GitHub page together with the implementations of
numerical methods for calculating the PageRank.

7. Data for computing power and energy efficiency of classical devices

The numbers in Fig. 5.6 are representative of typical orders of computing power and energy
efficiency of contemporary classical computing architectures, although they could be drasti-
cally different within one class of computing devices. In the descriptions below, we denote the
processing power by R that is measured in the number of floating-point operations per second
(FLOP/s = FLOPS), the power consumption by P that is measured in watts (W), and energy
efficiency is calculated as the ratio R/P and is measured in units FLOPS/W = [FLOP/J].
The performance for devices is reported for either double-precision (FP64), single-precision
(FP32), half single-precision (FP16), or integer precision (int6) calculations.

1. Supercomputers. In terms of energy efficiency, the top 10 list of supercomputers [280]
starts with

NVIDIA DGX SuperPOD (FP64):
R = 2356 TFLOP/s, P = 90 kW,

R/P = 26.2 GFLOPS/W

and ends with
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Fujitsu’s Supercomputer Fugaku (FP64):
R = 442000 TFLOP/s, P = 29899 kW,

R/P = 14.8 GFLOP/J.

The latter is also the most powerful supercomputer in terms of processing power, that
has overcome the previous best supercomputer

Summit IBM (FP64):
R = 148600 TFLOP/s, P = 10096 kW,

R/P = 14.72 GFLOPS/W.

2. GPUs. For an estimate of GPU power efficiency we consider two state-of-the-art cards
[281]:

NVIDIA GeForce RTX 3090 (FP64):
R = 0.556 TFLOP/s, P = 0.35 kW,

R/P = 1.85 GFLOPS/W.
NVIDIA GeForce RTX 3090 (FP32):

R = 36 TFLOP/s, P = 0.35 kW,
R/P = 103 GFLOPS/W.

and

NVIDIA V100 (FP64):
R = 7.8 TFLOP/s, P = 0.3 kW,

R/P = 26 GFLOPS/W
NVIDIA V100 (FP32):

R = 15.7 TFLOP/s, P = 0.3 kW,
R/P = 52.3 GFLOPS/W

NVIDIA V100 (FP16):
R = 125 TFLOP/s, P = 0.3 kW,

R/P = 417 GFLOPS/W.

3. CPUs. Most CPUs lie within processing power of 2 TFLOP/s and power efficiency of
about 10 GFLOPS/W. As an estimate of top CPU power efficiency we use [282]

Intel Xeon (FP64):
R = 4.8 TFLOP/s, P = 0.165 kW,



177

R/P = 29 GFLOPS/W
Intel Xeon (FP32):

R = 9. TFLOP/s, P = 0.165 kW,
R/P = 55 GFLOPS/W

4. Dedicated hardware. FPGAs are reprogrammable hardware devices that provide
energy efficient computing tailored specific tasks. One of the high-end FPGA boards is

Intel Stratix10 (FP32):
R = 10 TFLOP/s, P = 0.18 kW,

R/P = 56 GFLOPS/W
Intel Stratix10 (int6):

R = 70. TFLOP/s, P = 0.18 kW,
R/P = 389 GFLOPS/W

The Tensor Processing Unit (TPU) is a custom application-specific integrated circuit
(ASIC) designed by Google and used for accelerating machine learning tasks:

TPU v3 (FP16):
R = 90. TFLOP/s, P = 0.225 kW,

R/P = 400 GFLOPS/W

Note that with distributed computing, when the processing power of personal computers
is linked together over the Internet, the total computing power over 2.3 exaFLOP could be
achieved as of 2020.

As an estimate of the energy consumption of computing the PageRank vector of 10
billion size matrix in the main text, we have assumed that one needs to run 1000 iterations
of the power method, and there are around 100 connections per each element in the matrix.
The PageRank vector’s single computation would then take around 1 PFLOP. To update
the ranking on a minute scale, the PageRank vector would need to be recomputed about
half a million times over a year. The average annual electricity consumption for computing
the PageRank would be around 3.5 · 105 kWh on dedicated hardware, such as the tensor
processing units (TPUs) with the energy efficiency of 400GFLOPS/W. This amount of
energy is equivalent to charging up 290 electric cars for one year under the assumption of an
average size battery of 30 kWh and 40 charges per year.
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