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ABSTRACT. This paper is concerned with the problem of reconstructing an infinite-dimensional signal from a
limited number of linear measurements. In particular, we show that for binary measurements (modelled with
Walsh functions and Hadamard matrices) and wavelet reconstruction the stable sampling rate is linear. This
implies that binary measurements are as efficient as Fourier samples when using wavelets as the reconstruction
space. Powerful techniques for reconstructions include generalized sampling and its compressed versions, as
well as recent methods based on data assimilation. Common to these methods is that the reconstruction quality
depends highly on the subspace angle between the sampling and the reconstruction space, which is dictated by
the stable sampling rate. As a result of the theory provided in this paper, these methods can now easily use binary
measurements and wavelet reconstruction bases.

1. INTRODUCTION

Reconstructing infinite-dimensional signals from a limited number of linear measurements is a key prob-
lem in sampling and approximation theory, and has received substantial attention over the last decades due
to its many applications. The list of fields is comprehensive and includes Magnetic Resonance Imaging
(MRI) [30, 41], electron tomography [38, 39], lensless cameras, fluorescence microscopy [49, 51], X-ray
computed tomography [17, 48], surface scattering [35] among others. Efficient methods for such problems
date back to Shannon’s sampling theorem [34, 50, 52], however, over the years, more modern approaches
have been developed. Indeed, new methods include generalized sampling, which has been studied by Ad-
cock, Hansen, Hrycak, Gröchenig, Kutyniok, Ma, Poon, Shadrin and others [1, 2, 4, 6, 32, 33, 42], its com-
pressed versions investigated by Adcock, Hansen, Kutyniok, Lim, Poon and Roman [5, 7, 37, 47] as well as
the predecessor; consistent sampling, analysed by Aldroubi, Eldar, Unser and others [8, 23–26, 53]. Note
that consistent sampling is very much related to the finite section method [13, 29, 31, 40]. More recently,
new methods based on data assimilation have been successfully developed and analysed. A first approach
for the same number of measurements M and reconstructed coefficients N was introduced under the name
generalized empirical interpolation method by Maday, Patera, Penn and Yano in [44]. This was then further
extended to Parametrized-Background Data-Weak (PBDW) approach with M ≥ N in [43, 45]. The PBDW
approach was additionally analysed and shown to be optimal by Binev, Cohen, Dahmen, DeVore, Petrova,
and Wojtaszczyk [10, 11, 21].

The problem is given as follows. An element f ∈ H, where H is a separable Hilbert space, is to be
reconstructed from measurements with linear functionals (mi)i∈N ∶ H → C that can be represented by
elements si ∈H as mi(f) = ⟨f, si⟩. The key issue is that the mi cannot be chosen freely, but are dictated by
the modality of the sampling device, for example a Magnetic Resonance Imaging (MRI) scanner providing
Fourier samples or a fluorescence microscope giving binary measurements. The goal is to reconstruct f
from the finite number of samples {mi(f)}Mi=1 for some M ∈ N. The space of the functions si is called
the sampling space and is denoted by S = span{si ∶ i ∈ N}, meaning the closure of the span. In practice,
one can only acquire a finite number of samples. Therefore, we denote by SM = span{si ∶ i = 1, . . . ,M}
the sampling space of the first M elements. The reconstruction is typically done via a reconstruction space
denoted by R and spanned by reconstruction functions (ri)i∈N, i.e. R = span{ri ∶ i ∈ N}. As in the case
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of the sampling space, it is impossible to acquire and save an infinite number of reconstruction coefficients.
Hence, one has to restrict to a finite reconstruction space, which is denoted byRN = span{ri ∶ i = 1, . . . ,N}.
The key is that the ri can be tailored to the desired signal type to be reconstructed. For example, spaces
spanned by X-lets (wavelets, curvelets, contourlets, shearlets) [14–16, 19, 20, 22, 36, 46] may be preferable
as reconstruction spaces in imaging applications, whereas polynomials may be useful when recovering very
smooth functions.

The methods mentioned above can be described as follows: for f ∈ H and N,M ∈ N, we define the
reconstruction method of generalized sampling GN,M ∶H →RN by

⟨PSM
GN,M(f), rj⟩ = ⟨PSM

f, rj⟩, rj ∈RN ,

where PSM
denotes the orthogonal projection on the subspace SM . Note that the stability and accuracy of

this method depends on the subspace angle between the sampling and the reconstruction space, i.e.

∥f −GN,M(f)∥ ≤ µ(RN ,SM)∥f − PRN
f∥,

where we define the subspace angle between closed subspaces U,V ∈H

cos(ω(U,V )) ∶= 1

µ(U,V ) ∶= inf
u∈U,∥u∥=1

∥PV u∥,

ω(U,V ) ∈ [0, π/2]. Moreover, the condition number κ of GN,M is also given by κ(GN,M) = µ(RN ,SM).
For the PBDW method one calculates

FN,M(f) = argmin
u∈PSM f+S⊥

M

∥u − PRN
u∥,

and it can be shown that the accuracy then depends on subspace angle as follows

∥f − FN,M(f)∥ ≤ µ(RN ,SM)dist(f,RN ⊕ (SM ∩RN)⊥).

Moreover, this is sharp because the constant µ(RN ,SM) cannot be improved. It is clear that, in both
approaches, the key to success lies in the ability to make sure that

µ(RN ,SM) ≤ θ, θ ∈ (1,∞).

Thus, we need to balance the number of samples M with the number of reconstruction vectors N , and this
leads to the so-called stable sampling rate:

Θ(N,θ) = min{M ∈ N ∶ µ(RN ,SM) ≤ θ} .

The methods above can only be used efficiently when the stable sampling rate is known and reasonable.
In particular, numerical calculations of the stable sampling rate are very time consuming. Moreover, if the
stable sampling rate is worse than linear, the approximation quality of the reconstruction space must allow
for rapid approximation to compensate for the ”slow” sampling rate. Fortunately, it is possible to obtain
sharp results on describing Θ(N,θ) for popular sampling and reconstruction spaces, and often, especially
for the reconstruction with X-lets, one can establish linearity. In this paper we do so for sampling with Walsh
functions and reconstructing with wavelets. Remark that this is not always the case. For example in the
case of the reconstruction with Legendre polynomials, the stable sampling rate is known to be quadratic for
Fourier measurements [33]. Additionally, for the PBDW-method there are approaches where the reconstruc-
tion space is fixed by the PDE and the sampling space is chosen adaptively. This is a very different setting
from the one discussed here. Details and convergence rates can be found in [12].



3

1.1. Connection to previous work and novelty of the paper. The stable sampling rate is well understood
when the samplesmi(f) = ⟨f, si⟩ are Fourier measurements. In other words, the si are complex exponentials
andmi(f) are the Fourier coefficients. In this case the stable sampling rate is linear for many X-lets including
wavelets and shearlets. Fourier samples and X-lets are a natural starting point given the vast applications that
are based on Fourier measurements (MRI, tomography problems with parallel beam, surface scattering, radio
interferometry etc.). However, the next question regards binary measurements. By binary measurements we
mean that the sampling functions si can only take two values either {0,1} or {−1,1}. Without loss of
generality we can assume that the model uses {−1,1}, as one can, by adding one extra measurement with
the constant function, convert from the {0,1} setup to the {−1,1} model.

Binary measurements are a mainstay in signal and image processing due to the ”on-off” nature of many
physical sampling devices. Microscopy is an obvious application as well as the newly emerging techniques
of lensless cameras. In the discrete setting binary measurements are often modelled with Hadamard matrices,
and this is one of the reasons why Hadamard matrices are so important in signal processing. To model binary
measurements we change the model from Fourier samples ⟨f, si⟩, where the si are complex exponentials
to letting the si be Walsh functions. The Walsh functions are the binary counterpart to Fourier samples
and complex exponentials. Thus, the key question is as follows: what is the stable sampling rate when
sampling with Walsh functions and reconstructing with wavelets? The answer is that it is linear regardless
of the dimension when we consider separable boundary wavelets. This means that sampling with binary
measurements is as efficient (up to potentially a different constant) as sampling with Fourier samples when
reconstructing with wavelets. We expect the techniques used in this paper to extend to other X-lets as well;
however, the extension, as in the Fourier case, is non-trivial.

1.2. Main Theorem. We consider the sampling space S of Walsh functions, which will be described in
more detail in Chapter 2, and let the reconstruction spaceR be the space of boundary-corrected Daubechies
wavelets (see Chapter 3 for details). The main theorem states that the stable sampling rate is indeed linear in
N .

Theorem 1.1. Let S and R be the sampling and reconstruction space spanned by the d-dimensional Walsh
functions and separable boundary wavelets respectively. Moreover, let N = 2dR with R ∈ N. Then for all
θ ∈ (1,∞) there exists Sθ such that for all M ≥ 2dRSθ we have µ(RN ,SM) ≤ θ. In particular, one gets
Θ ≤ SθN . Hence, the relation Θ(N ; θ) = O(N) holds for all θ ∈ (1,∞).

2. WALSH FUNCTIONS - DEFINING THE SAMPLING SPACE SM

Due to the fact that we are dealing with the d-dimensional case, we introduce multi-indices to make the
notation more readable. Let j = {j1, . . . , jd} ∈ Nd, d ∈ N be a multi-index. A natural number n is in the
context of a multi-index interpreted as a multi-index with the same entry, i.e. n = {n, . . . , n}. Then we define
the addition of two multi-indices for j, r ∈ Nd by the pointwise addition, i.e. j + r = {j1 + r1, . . . , jd + rd}
and the sum

r

∑
j=k

xj ∶=
r1

∑
j1=k1

. . .
rd

∑
jd=kd

xj1,...,jd ,

where k, r ∈ Nd. The multiplication of an multi-index with a real number is understood pointwise, as well
as the division by a multi-index. The absolute value of a multi-index j is given by ∣j∣ = j1 + . . . + jd. The
d dimensional functions that we use in this paper are constructed by the tensor product. For a function
f ∶ R→ R and an input parameter {xi}i=1,...,d = x ∈ Rd with xi ∈ R we use the following notation to present
the d-times tensor product of f , i.e.

f(x) = f(x1)⊗ . . .⊗ f(xd) (d-times).

It should be clear from the input parameter, whether f represents the function on R or Rd.
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2.1. Defining Walsh functions. The key property that makes Walsh functions attractive in many appli-
cations is that they take only the values 1 and −1. However, as Walsh functions are defined in the dyadic
analysis, some properties only hold for dyadic addition. Recalling the basics of dyadic addition, we represent
elements x ∈ R+ with their dyadic representation as follows

x =∑
i∈Z
xi2

i,

where xi ∈ {0,1} for all i ∈ Z. The natural extension always ends in 0 for dyadic rational numbers and is
infinite for dyadic irrational numbers. The representation is therefore unique. Elements of R− are represented
as in the decimal analysis with an additional − in front of the representation. In the dyadic analysis the
addition ⊕ ∶ R+ ↦ R+ is defined by

x⊕ y =∑
i∈Z

(xi ⊕2 yi)2i,

where xi ⊕2 yi is addition modulo two, i.e. 0 ⊕2 0 = 0,0 ⊕2 1 = 1,1 ⊕2 0 = 1,1 ⊕2 1 = 0. For negative
numbers one has −x ⊕ y = x ⊕ −y = −(x ⊕ y). Note that there is no closed form between the decimal
and dyadic addition. In particular, for two numbers x,h ∈ R the expression of the decimal sum x + h has
a different expression in the dyadic addition for every pair of numbers. This leads to further investigation
during the proof of the main theorem. One part on the way to control the subspace angle is not to deal with all
timeshifts of the wavelet but instead transfer them to the Walsh function and deal with the Walsh polynomial.
Unfortunately, all properties of Walsh functions rely on dyadic rather than decimal addition. Therefore, this
difference of the additions needs special care. In chapter 4.1 we will see that under mild assumptions the
additions can made be equal. In chapter 4.2 we tweak the wavelets to match these assumptions.

Now, we present the Walsh functions, which are used to represent the sampling space SM . Therefore,
we give a definition of the classical Walsh functions that highlights the difference between the possible
orderings.

Definition 2.1 ( [27]). Let s ∈ N and x ∈ [0,1). Then there exists a unique n = n(s) ∈ N such that s =
∑n−1
i=0 si2

i, in particular sn−1 ≠ 0 and sk = 0 for all k ≥ n. Let sn = {s0, . . . , sn−1} and for x = ∑−1
i=−∞ xi2

i

define xn = {x−n, . . . , x−1}, and ωW : Rn ↦ Rn by

ωW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 1 1

⋮ ⋰ ⋰ 1 0

0 ⋰ ⋰ ⋰ ⋮
1 1 ⋰ ⋮
1 0 ⋯ ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The Walsh functions are then given by

wal(s;x) = (−1)s
n
⋅ωW xn

.

By changing the matrix ωW one gets different orderings of the Walsh functions. For example, the identity
matrix leads to the Walsh-Kronecker functions, which have the drawback that with a change of n(s) all
functions are altered, hence one has to fix the maximal s in advance. The Walsh-Paley ordering is obtained
by replacing ωW with the reversal matrix, i.e.

ωWP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 1

⋮ ⋰ ⋰ 1 0

0 ⋰ ⋰ ⋰ 0

0 1 ⋰ ⋰ ⋮
1 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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They overcome the previous problem, but the functions are not ordered such that the number of zero crossings
increases with s. Both drawbacks are overcome with the Walsh-Kaczmarz ordering presented in the previous
definition.

The classical Walsh functions can be extended to the generalized Walsh functions Wal ∶ R2
+ → {−1,1}

which are defined with the classical Walsh functions and the periodic continuation with period 1 by

Wal(s, x) = (−1)s0x0 wal([s] ;x)wal([x] ; s),

where s and x have the dyadic representation (si)i∈Z and (xi)i∈Z and s0, x0 are the corresponding elements
of the sequence. This extension can also be defined by letting ωW be infinite, i.e. be defined over Z instead
of N and hence allow inputs with infinite dyadic representations over Z. Moreover, the Walsh functions can
also be extended to negative inputs. Therefore, we define the following equality as in [27]

Wal(−s, x) ∶= −Wal(s, x)
Wal(s,−x) ∶= −Wal(s, x).

The Walsh functions in higher dimensions are obtained by the tensor product, i.e. for s = {sk}k=1,...,d , x =
{xk}k=1,...,d ∈ Rd

Wal(s, x) =
d

⊗
k=1

Wal(sk, xk).

The Walsh functions can also be combined to Walsh polynomials similar to trigonometric polynomials.

Definition 2.2. Let A,B ∈ Zd such that Ai ≤ Bi, i = 1, . . . , d and αji ∈ R. Then for z ∈ Rd+ we define the
Walsh polynomial of order n = ∣B∣ by Φ(z) = ∑Bj=A αj Wal(j, z). The set of all Walsh polynomials up to
degree n is given by

WPn =
⎧⎪⎪⎨⎪⎪⎩

B

∑
j=A

αj Wal(j, z), αji ∈ R,A,B ∈ Zd, ∣B∣ ≤ n
⎫⎪⎪⎬⎪⎪⎭
.

With the generalized Walsh functions one can define a continuous and discrete transform. To ensure that
the following integral exists, let f ∈ L2([0,1]d), the generalized Walsh transform is given almost everywhere
by

f
⋀W

(s) = ⟨f(⋅),Wal(s, ⋅)⟩ = ∫
[0,1]d

f(x)Wal(s, x)dx, s ∈ Rd.

This is suitable for our setting, because we consider only the Walsh transform of functions that are supported
in [0,1]d. In the discrete setting we have for N = 2n, n ∈ N and x = {x0, . . . , xN−1} ∈ RN that the one
dimensional discrete Walsh transform of x is given by X = {X0, . . . ,XN−1} with

Xj =
1

N

N−1

∑
k=0

xk Wal(j, k
N

).

This transform corresponds, as mentioned, to the multiplication with a Hadamard matrix. By the definition
of Wal it corresponds to the Hadamard matrix in Walsh-Kaczmarz ordering. The addition here is again
the dyadic addition. The discrete d-dimensional Walsh transformed of x ∈ RN1×...×Nd where xki ∈ R,
k = {ki}i=1,...,d , ki = 0, . . . ,Ni −1 is given by X = {Xj} ∈ RN1×...×Nd , where Xji ∈ R, j = {ji}i=1,...,d , ji =
0, . . . ,Ni − 1, with

Xj =
1

∏d
i=1Ni

N−1

∑
k=0

xk Wal(j, k
N

).
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2.2. Properties of Walsh functions. The Walsh functions obey the following properties: They are symmet-
ric,

Wal(s, x) = Wal(x, s) for all s, x ∈ R,

and they obey the scaling property as well as the multiplicative identity, i.e

(2.1) Wal(2ks, x) = Wal(s,2kx) for all s, x ∈ R, k ∈ N

and

(2.2) Wal(s, x)Wal(s, t) = Wal(s, x⊕ t) for all s, x ∈ R.

These properties can be directly transferred to the d-dimensional Walsh functions and the continuous Walsh
transform, i.e. it holds, that the continuous Walsh transform is linear

W {af(t) + bg(t)} = aW {f(t)} + bW {g(t)} for all a, b ∈ R and f, g ∈ L2([0,1]d),

and obeys the following shift and scaling property, i.e.

W {f(t⊕ x)} (s) =W {f(t)} (s)Wal(x, s) for all x ∈ Rd and f ∈ L2([0,1]d)

and

W {f(2mt)} (s) = 1

2m
W {f(t)} ( s

2m
) for all m ∈ Nd and f ∈ L2([0,1]d).

3. WAVELETS - DEFINING THE RECONSTRUCTION SPACE RN

3.1. Boundary Wavelets.

3.1.1. Boundary Wavelet space in one dimension. Daubechies boundary wavelets are deduced from general
Daubechies wavelets. They have the advantage that they keep desirable properties, such as smoothness
and vanishing moments, from their mother wavelet. In contrast, other approaches to find an orthonormal
wavelet basis for L2([0,1]), such as extension with zero, periodising or folding, loose smoothness. For
the construction of the Daubechies boundary wavelets, as presented in [18], one starts with the Daubechies
scaling functions. First, we deal with the scaling functions on the positive line [0,∞). Remember that a
Daubechies scaling function φ of order p has the support [−p + 1, p]. Then the functions φn(x) = φ(x − n)
have their support completely in [0,∞) for n ≥ p − 1. However, these functions do not even generate the
polynomials on [0,∞), so they do not represent smooth functions well. Therefore, the following functions
are added to circumvent this issue:

φ̃left
n (x) =

2p−2

∑
l=0

( l
n
)φ(x + l − p + 1).

It is shown in [18] that these functions together with the inner ones, i.e. the translates of the scaling function,
whose support is completely contained in the positive real line, span all polynomials with degree smaller or
equal to p−1 on [0,∞). The same construction can be done for the negative line (−∞,0] and then be shifted
by 1 to get to the desired interval. This means in detail that the scaling function on the right hand side can be
deduced from those on the left side, i.e. the construction for the right hand side results from a shift of 1 in
the functions that do intersect with the right end of the interval and a reflection. We have that

φ̃right
n (x) = φ̃left

−1−n(−x).

In the next step we bring both systems together on [0,1]. To make sure that each shift of the scaling function
is either an inner a left or a right scaling function, we consider scaling functions at a level j ≥ J0, where
2J0 ≥ 2p − 1. This way the support size of the scaling function at that scale is smaller than 1. Therefore, the
scaling function can intersect only with 0 or 1 and hence the correction is well defined. The functions are now
all corrected on the boundaries and they span the desired space L2([0,1]). To form an orthonormal basis,
we simply apply a Gram-Schmidt procedure. The new functions, after the orthonormalisation, are denoted
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by φleft
n , φright

n . The functions have staggered support, i.e. suppφleft
n = [0, p+n]. Therefore, all φ have support

length at most 2p − 1. Hence, the change to the boundary wavelet preserves the favourable property of a
small support size. The dilated boundary scaling functions can be deduced from this construction, like the
scaling functions for the real line. With this construction we obtain 2j + 2 scaling functions at every scale j,
but in many applications one prefers to have 2j scaling functions. Therefore, we remove the two outermost
interior scaling functions, i.e. those with the support closest to 0 and 1 but not intersecting with them. This
results in the subspaces

V bj = span{φbj,n ∶ n = 0, . . .2j − 1} ,

where

φbj,n(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2j/2φleft
n (2jx) n = 0, . . . p − 1

2j/2φn(2jx) n = p, . . .2j − p − 1

2j/2φright
2j−n−1

(2j(x − 1)) n = 2j − p, . . .2j − 1.

(3.1)

In [18] it is proven that we can define the wavelet space at every scale j similar to the case on the real line by

W b
j = V bj+1 ∩ (V bj )⊥.

The original wavelet functions ψj,k from the real line are in W b
j for k = p, . . . ,2j − p − 1. Because of the

dimension of the scaling space one knows that dimW b
j = 2j . Hence, one has to add 2p wavelets. As they do

not play an important role for the investigation of the main theorem we point the interested reader to [18] for
detailed information.

Now that the necessary information about wavelets is introduced, we discuss the reconstruction space.
The data is usually sparsely represented in the wavelet scheme, i.e. they only have large coefficients up to a
certain scale. Therefore, the reconstruction space contains only the wavelets up to some scale R. Moreover,
the low frequency part can be represented by the scaling space at some level J ≥ J0. In theory the choice
of the lowest level J is free. Nevertheless, it is common to use J = J0. This results in the following
reconstruction space. For R ∈ N, the space of wavelets up to a scaling of R is given by

(3.2) RN = V bJ ⊕W b
J ⊕ . . .⊕W b

R−1 = V bR.

and has N = 2R elements. Due to the construction the ”left” scaling functions are translates of the mother
scaling functions and the ”right” scaling functions are reflected translated scaling functions, denoted by φ#.
Therefore,

(3.3) V bR = span{φR,n ∶ n = 0, . . . ,2R − p − 1, φ#
R,n ∶ n = 2R − p, . . . ,2R − 1}

and every ϕ ∈RN with ∣∣ϕ∣∣ = 1 has the representation

(3.4) ϕ =
2R

−p−1

∑
n=0

αkφR,n +
2R

−1

∑
n=2R−p

βkφ
#
R,n with

2R
−p−1

∑
n=0

∣αn∣2 +
2R

−1

∑
n=2R−p

∣βn∣2 = 1.

3.1.2. Boundary wavelets in higher dimensions. In this paper, we also consider the d-dimensional case. For
the reconstruction in d-dimensions we focus on separable boundary wavelets. Therefore, the d-dimensional
wavelets can be derived from the one dimensional case by tensoring the scaling space and then studying the
according wavelet space.

From (3.1) we have the one dimensional boundary scaling function. With the tensor product we get the d
dimensional one, i.e. φdj,n = φbj,n1

⊗ . . . ⊗ φbj,nd
for n = {n1, . . . , nd} ∈ Nd, j ≥ J0. To make this easier to

read we set φj,n ∶= φdj,n, as the dimension is defined by the context. Then the d-dimensional scaling space is
given by

V b,dJ ∶= V bJ ⊗ . . .⊗ V bJ (d times).
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For the purpose of constructing higher dimensional boundary wavelets we exploit the MRA structure. We
have that

V bj = V bj−1 ⊕W b
j−1.

Therefore, we can divide in higher dimensions the scaling space at one level in the scaling space and the
wavelet space in the lower level

V b,dj = V bj ⊗ . . .⊗ V bj = (V bj−1 ⊕W b
j−1)⊗ . . .⊗ (V bj−1 ⊕W b

j−1) = V b,dj−1 ⊕W
b,d
j−1.

This way we have defined the d dimensional boundary-corrected wavelet space W b,d
j−1 by

W b,d
j−1 ∶= (V bj−1 ⊕W b

j−1)⊗ . . .⊗ (V bj−1 ⊕W b
j−1)⊖ V b,dj−1.

Due to (3.2) we only have to focus on the scaling space, as the sum over the wavelet spaces can be represented
by the scaling space at highest scale. Therefore, we do not explain details about the wavelets here. We have
with (3.3)

V b,dj = V bj ⊗ . . .⊗ V bj = span{φdj,n ∶= φbj,n1
⊗ . . .⊗ φbj,nd

∶ n = {n1, . . . , nd} , ni = 0, . . .2j − 1} .

According to the size of the one dimensional scaling space, we know that the d-dimensional scaling space
has size 2dj . The reconstruction space for N = 2dR is then

RN = V b,dR .

In order to get the scaling space for the boundary wavelets in one dimension we had to reflect the scaling
function for translates k = 2j − p, . . . ,2j − 1. This means that V b,dj is spanned by the translates of 2d

functions, which are constructed by tensoring of the original scaling function φ0 ∶= φ and the translated
version φ1 ∶= φ#. Define K0 = {0, . . . ,2j − p − 1} and K1 = {2j − p, . . . ,2j − 1}, then the mapping m ∶
{0, . . . ,2j − 1}↦ {0,1} is given by

m(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 n ∈K0

1 n ∈K1.

This allows us to represent ϕ ∈ V b,dj with ∣∣ϕ∣∣ = 1 by

(3.5) ϕ =
2j
−1

∑
n=0

αnφ
m(n1)

j,n1
⊗ . . .⊗ φm(nd)

j,nd
= ∑
s∈{0,1}d

∑
n∈Ks

αn⊗φsj,n with ∑
s∈{0,1}d

∑
n∈Ks

∣αn∣2 = 1,

where

⊗φsj,n = φs1j,n1
⊗ . . .⊗ φsdj,nd

.

So at this point we have the wavelets and the scaling functions which span the space L2([0,1]d) and
therefore the reconstruction from Walsh functions in the wavelet space is guaranteed.

4. THE MAIN THEOREMS AND ITS PROOF

Taken together, we can now prove the main result.

4.1. Useful lemmas about Walsh functions. For the proof of theorem 1.1 we have to combine the prop-
erties of Walsh functions in the dyadic analysis with the properties of the wavelets in the decimal analysis.
Therefore, we consider under which conditions the decimal and dyadic additions are equal. This is important
to combine the multiplicative identity of the Walsh functions with the translates of the wavelets.

Lemma 4.1. Let x ∈ [0,1) and m ∈ N then x +m = x⊕m.
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Proof. The dyadic representation of x is {. . . ,0, x−1, x−2, . . .} and the dyadic representation of

m is {. . . ,m2,m1,m0,0,0, . . .} .

Because the representations do not have non-zero elements at the same position, one achieves the following

x⊕m =
∞

∑
i=−∞

(xi ⊕2 mi)2i =
∞

∑
i=−∞

(xi +mi)2i = x +m.

�

Next, we look at the inverse element for the dyadic addition. This is also discussed in [28] and will be
used in Corollary 4.3.

Lemma 4.2. The dyadic sum of two numbers x, y ∈ R+ is 0 if and only if x = y.

Proof. Let x, y ∈ R+ with the dyadic representation {xi}i∈Z and {yi}i∈Z. Then

x⊕ y =
∞

∑
i=−∞

(xi ⊕2 yi)2i = 0

if and only if xi ⊕2 yi = 0 for all i ∈ Z. This is the case if and only if xi = yi for all i ∈ Z, i.e. x = y. �

With this the relation between the decimal addition and the multiplicative identity of the Walsh functions
can be found.

Corollary 4.3. Let t ∈ N and x ∈ [0,1), then the following holds:

W {f(x + t)} (s) =W {f(x)} (s)Wal(t, s).

Proof. With Lemma 4.1 we have that x⊕ t = x + t. This allows

W {f(x + t)} (s) =W {f(x⊕ t)} (s) =W {f(x)} (s)Wal(t, s).

�

Next, we analyse the sum of Walsh functions with equally distributed inputs. This will be used in Lemma
4.5.

Lemma 4.4. Let N = 2n, n ∈ N, then for all s ∈ N0 the following property holds:

(4.1)
N−1

∑
i=0

wal(s, i
N

) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N if s = 0

0 else.

Proof. The first case for s = 0 follows directly by the definition of the Walsh function as wal(0;x) ≡ 1 for
all x ∈ [0,1). For the second part we use the equal distribution of Walsh functions in intervals where it takes
the values −1 and 1, i.e. for s ≤ 2m, m ∈ N0 the Walsh function wal(s;x) takes the value 1 on 2m−1 intervals
of length 1

2m and −1 on the same number of intervals of that length [27]. As the sequence {i/N}i=0,...N−1 is
equally distributed on this interval, the sum equals 0. �

With this information in hand we can now prove the following lemma, which shows a relation between
the values of the discrete Walsh transform and the signal itself. This will then be used in Lemma 4.6.

Lemma 4.5. Let N = {Ni}i=1,...,d, where Ni = 2ni , ni ∈ N and i = 1, . . . , d. Let x ∈ RN1×...×Nd , where
x = {xk} and xki ∈ R, k = {ki}i=1,...,d , ki = 0, . . . ,Ni − 1 be a discrete d-dimensional signal. Given the
discrete d-dimensional Walsh transformed by X = {Xj} ∈ RN1×...×Nd , where Xji ∈ R, j = {ji}i=1,...,d , ji =
0, . . . ,Ni − 1, with

Xj =
1

∏d
i=1Ni

N−1

∑
k=0

xk Wal(j, k
N

),
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it follows that
N−1

∑
j=0

∣Xj ∣2 =
1

∏d
i=1Ni

N−1

∑
k=0

∣xk ∣2.

Proof. First, one observes that by definition and the fact that Ni = 2ni , i = 1, . . . , d the following holds:

∣Xj ∣2 =
1

∏d
i=1N

2
i

(
N−1

∑
k=0

xk Wal(j, k
N

))(
N−1

∑
k=0

xk Wal(j, k
N

))

= 1

∏d
i=1N

2
i

N−1

∑
k=0

N−1

∑
l=0

xkxl Wal(j1,
k1 ⊕ l1
N1

) ⋅ . . . ⋅Wal(jd,
kd ⊕ ld
Nd

).

Next, recalling (4.1) and Lemma 4.2 we directly get the desired property by
N−1

∑
j=0

∣Xj ∣2 =
1

∏d
i=1N

2
i

N−1

∑
j=0

N−1

∑
k=0

N−1

∑
l=0

xkxl Wal(j1,
k1 ⊕ l1
N1

) ⋅ . . . ⋅Wal(jd,
kd ⊕ ld
Nd

)

= 1

∏d
i=1N

2
i

N−1

∑
k=0

N−1

∑
l=0

xkxl
N1−1

∑
j1=0

Wal(j1,
k1 ⊕ l1
N1

) ⋅ . . . ⋅
Nd−1

∑
jd=0

Wal(jd,
kd ⊕ ld
Nd

)

= 1

∏d
i=1Ni

N−1

∑
k=0

∣xk ∣2.

�

With this we can achieve a useful relation between the Walsh polynomial, i.e. Φ(z) = ∑Bj=A αj Wal(j, z)
with A,B ∈ Zd and αji ∈ R for all ji = Ai, . . . ,Bi, i = 1, . . . , d, and its coefficients α similar to the
trigonometric polynomial in [3].

Lemma 4.6. Let A,B ∈ Zd such that Ai ≤ Bi, i = 1, . . . , d and consider the Walsh polynomial Φ(z) =
∑Bj=A αj Wal(j, z) for z ∈ Rd+. If L = {L1, . . . , Ld} with Li = 2ni , ni ∈ N, i = 1, . . . , d such that 2Li ≥
Bi −Ai + 1, then

2L−1

∑
j=0

1

∏d
i=1 2Li

∣Φ( j
2L

)∣
2

=
B

∑
j=A

∣αj ∣2.

Proof. For the proof Lemma 4.5 is used. Therefore, let x = {xk}, where xki ∈ R, k = {ki}i=1,...,d , ki =
0, . . . ,2Li − 1 and x ∈ R2L1×...×2Ld with the discrete Walsh transformed X = {Xj} ∈ R2L1×...×2Ld , where
Xji ∈ R, j = {ji}i=1,...,d , ji = 0, . . . ,2Li − 1 and X ∈ R2L1×...×2Ld . Consider the sums ki +Ai, i = 1, . . . , d,
there exists a number Ãi(k), such that ki +Ai = ki ⊕ Ãi(ki) for all i = 1, . . . , d. As before, we denote by
Ã(k) the multi-index containing all Ãi(ki). Define the coefficients

α̃ki =
αki

Wal( ji
2L
, Ãi(ki))

and the sequence x as follows:

xk+L =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α̃k+A+L −Li ≤ ki ≤ −Li +Bi −Ai
0 otherwise.

Then one gets with the scaling property (2.1) and the multiplicative identity (2.2)

Xj =
1

∏d
i=1 2Li

2L−1

∑
k=0

xk Wal(j, k
2L

) = 1

∏d
i=1 2Li

L−1

∑
k=−L

xk+LWal(j, k +L
2L

)

= 1

∏d
i=1 2Li

B

∑
k=A

α̃k Wal( j
2L
,k +A) = 1

∏d
i=1 2Li

B

∑
k=A

α̃k Wal( j
2L
,k ⊕ Ã(k))

= 1

∏d
i=1 2Li

B

∑
k=A

α̃k Wal( j
2L
, Ã(k))Wal( j

2L
,k) = 1

∏d
i=1 2Li

B

∑
k=A

αk Wal(k, j
2L

) = 1

∏d
i=1 2Li

Φ( j
2L

).
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With that one can conclude
2L−1

∑
j=0

1

∏d
i=1 2Li

∣Φ( j
2L

)∣
2

=
2L−1

∑
j=0

d

∏
i=1

2Li∣Xj ∣2 =
2L−1

∑
j=0

∣xj ∣2 =
B

∑
j=A

∣α̃j ∣2 =
B

∑
j=A

∣αj ∣2.

�

4.2. Changes of Wavelets. As mentioned in chapter 2 the decimal and dyadic addition do not correspond
directly to each other. In particular, the representation of the decimal addition with a number h to a number
x depends on both parts of the sum. However, in Corollary 4.3 we have seen that for x ∈ [0,1) and n ∈ N the
dyadic and decimal addition coincide. In the proof of the main theorem we want to transfer the time shifts
of the wavelet to the Walsh function, i.e.

2−R(n+p)

∫
2−R(n−p+1)

2R/2φ(2Rx − n)Wal(k, x)dx = 2−R/2

p

∫
−p+1

φ(x)Wal(k,2−R(x + n))dx

≠ 2−R/2

p

∫
−p+1

φ(x)Wal(k,2−R(x⊕ n))dx.

Therefore, to enable us to use Corollary 4.3 and make the last equation an equality, the domain of the
wavelets needs to be restricted to [0,1]d. This is not a contradiction to the construction of the previous
chapter, because the functions φR,n are indeed supported in [0,1]d. However, the scaling function at level 0

is not only supported there and that is the function that we are dealing with after the change of variables in
the integral. To solve this problem we represent the scaling function as a sum of functions that are supported
in [0,1], i.e.

(4.2) φ(x) =
p

∑
i=−p+2

φi(x − i + 1) with φi(x) = φ(x + i − 1)X[0,1](x)

and

φR,n = 2R/2
p

∑
i=−p+2

φi(2Rx − i + 1 − n).

This can also be done accordingly for the reflected function φ#. In the higher dimensional case we have

φ(x) = φ1(x1)⊗ . . .⊗ φd(xd) =
p

∑
i=−p+2

φi1(x1 − i1 + 1) ⋅ . . . ⋅ φid(xd − i2 + 1)

and φik defined as above. This way the multiplicative identity holds also for the decimal time shift of the
wavelets.

4.3. Useful lemma about wavelets. For the proof of the main theorem we have to bound the decay rate
of the Wavelets under the Walsh transform. We analyse the Haar wavelets and the boundary-corrected
Daubechies wavelet separately.

For the Haar wavelet we have that the scaling function φ = X[0,1]. Hence,

φ
⋀W

( j
2R

+m) = ∫
1

0
Wal( j

2R
+m,x)dx = ∫

1

0
Wal(j + 2Rm,

x

2R
)dx

= ∫
2−R

0
Wal(j + 2Rm,x)2Rdx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 m = 0, j < 2R

0 else.

Therefore we have

(4.3) φ
⋀W

( j
2R

+m) ≤ 1

m
for j = 0, . . . ,2R − 1,m ≥ 1.

Next, we use the result from [9] regarding the decay rate of Hölder continuous functions. We have that the φi
and φ#

i have the same smoothness properties as the original function φ. Hence, we have for the Daubechies
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wavelet of order 2 that it is Hölder continuous with coefficient α = 0.55. The higher order wavelets are all
Hölder continuous with coefficient α = 1. The results in [9] hold only for inputs in N. We will use the same
proof strategy and notation for inputs in the form of k

2R for some k,R ∈ N.

Lemma 4.7. Let φ be a Daubechies wavelet of order p > 1. And letm ≥ 1,R ∈ N, L = 2R and j = 0, . . . , L−1.
Then we have that

∣φi
⋀W

( j
L
+m)∣ ≤ C

mα

and

∣φ#
i

⋀W

( j
L
+m)∣ ≤ C

#

mα

for some constants C and C#.

Proof. First, observe that

∫
1

0
φi(x)Wal( j

L
+m,x)dx = ∫

1

0
φi(x)Wal(j +Lm, x

L
)dx.

We want to use the same technique as in [9] to divide the integral into parts where the Walsh function takes
the values +1 and −1 on intervals of the same length. Let q ∈ N such that 2q ≤ m < 2q+1, then we have that
2q+R ≤ j +Lm < 2q+R+1. Now, define the intervals ∆q

k = [2−qk,2−q(k + 1)). It was shown that the function
Wal(j +Lm,s) is constant on the interval ∆q+R+1

2l and ∆q+R+1
2l+1 and takes the values +1 on one of them and

−1 on the other. Hence, Wal(j + Lm, x
L
) takes these values on the intervals ∆q+1

2k and ∆q+1
2k+1. Due to the

Hölder continuity we have that there exists a constant C such that φi(x) ≤ φi(s)+C ∣x−s∣α for all s ∈ [0,1].
With this one gets

sup
x∈∆q

k

φi(x) ≤ φi(2−qk + 2−q−1) +C2−(q+1)α

sup
x∈∆q

k

−φi(x) ≤ −φi(2−qk + 2−q−1) +C2−(q+1)α.

Hence,

∣∫
∆q

k

φi(x)Wal(j +Lm, x
L
)dx∣

≤ 2−q ∣(φi(2−qk + 2−p−1) +C2−(p+1)α) + (−φi(2−qk + 2−p−1) +C2−(p+1)α)∣
≤ 2−qC2−qα.

Thus, we get for the complete integral on [0,1]

∫
1

0
φi(x)Wal( j

L
+m,x)dx =

2q
+1

∑
k=0

∫
∆q

k

φ(x)Wal(j +Lm, x
L
)dx

≤
2q
+1

∑
k=0

2−q ∣2−q ∣α ≤ C2−qα ≤ 2C

mα
.

The proof holds analogously for φ#
i . �

4.4. Proof of the main theorem. With the tools established above, we can now prove the main result. To
make the exposition easier to read we first prove the theorem in one dimension and then make the generali-
sation to several dimensions in a separate proof. Given the setup with the multi-indices framework, this can
be done reasonably smoothly.

Proof of Theorem 1.1 in one dimension. The aim of this proof is to find for every θ ∈ (1,∞) an integer
Sθ ∈ N, such that for all M ≥ SθN the subspace angle is bounded, i.e. µ(RN ,SM) ≤ θ. Let R ∈ N be the
number of reconstructed levels, i.e. N = 2R. We start with a suitable representation of cos(ω(RN ,SM)).



13

There exists ϕ ∈ RN with ∣∣ϕ∣∣ = 1 such that inff∈RN ,∣∣f ∣∣=1 ∣∣PSM
f ∣∣ = ∣∣PSM

ϕ∣∣, because the closed unit ball
inRN is compact and PSM

is continuous. By (3.4) we can represent ϕ as

(4.4) ϕ =
2R

−p−1

∑
l=0

αlφR,n +
2R

−1

∑
l=2R−p

βlφ
#
R,n with

2R
−p−1

∑
l=0

∣αn∣2 +
2R

−1

∑
l=2R−p

∣βn∣2 = 1

and

cos(ω(RN ,SM)) = inf
f∈RN ,∣∣f ∣∣=1

∣∣PSM
f ∣∣ = ∣∣PSM

ϕ∣∣(4.5)

= ∣∣ϕ − P ⊥SM
ϕ∣∣ ≥ ∣∣ϕ∣∣ − ∣∣P ⊥SM

ϕ∣∣ = 1 − ∣∣P ⊥SM
ϕ∣∣.

The first equation (4.4) allows us to deal only with the scaling function instead of both the wavelets at
different scales and the scaling function. The second one (4.5) enables us to bound P ⊥SM

ϕ from above in lieu
of PSM

ϕ from below.
Instead of dealing with all different shifts of the scaling function, we aim for a closed form that only

depends on the functions φ and φ#. An essential part in the construction of this is the use of the scaling
property in Corollary 4.3. Therefore, it is necessary, that m ∈ N and x ∈ [0,1). For this sake, the functions
φi were defined in (4.2) and we define

(4.6) pR ∶ Z→ N

with z ↦ pR(z) and pR(z) being the smallest integer such that pR(z)2R + z > 0. This yields

⟨φR,n,Wal(k, ⋅)⟩ =
p

∑
i=−p+2

⟨φi,R,n,Wal(k, ⋅)⟩(4.7)

= 2R/2
p

∑
i=−p+2

2−R(n+i)

∫
2−R(n+i−1)

φi(2Rx − n − i + 1)Wal(k, x)dx

= 2−R/2
p

∑
i=−p+2

1

∫
0

φi(x)Wal(k,2−R(x + n + i − 1))dx

= 2−R/2
p

∑
i=−p+2

1

∫
0

φi(x)Wal(k,2−R(x + n + i − 1 + 2RpR(i − 1)))dx,

where we used in the last line the fact that the Walsh functions are 1-periodic, if the other input data is an
integer. Then, we have that x ∈ [0,1] and n + i − 1 + 2RpR(n + i − 1) ∈ N. Hence, Corollary 4.3 can be used
in the third line to get

⟨φR,n,Wal(k, ⋅)⟩(4.8)

= 2−R/2
p

∑
i=−p+2

1

∫
0

φi(x)Wal(k,2−R(x + (n + i − 1 + 2RpR(i − 1))))dx

= 2−R/2
p

∑
i=−p+2

Wal(k,2−R(n + i − 1 + 2RpR(i − 1)))
1

∫
0

φi(x)Wal(k,2−Rx)dx

= 2−R/2
p

∑
i=−p+2

Wal(n + i − 1 + 2RpR(i − 1), k
2R

)φi
⋀W

( k
2R

).

With

Φi(z) =
2R

−p−1

∑
n=0

αnWal(n + i − 1 + 2RpR(i − 1), z)(4.9)



14 A. C. HANSEN AND L. TERHAAR

it results in

2R
−p−1

∑
n=0

αn⟨φi,R,n,Wal(k, ⋅)⟩ = 2−R/2
2R

−p−1

∑
n=0

αnWal(n + i − 1 + 2RpR(i − 1), k
2R

)φi
⋀W

( k
2R

)(4.10)

= 2−R/2φi
⋀W

( k
2R

)Φi(
k

2R
).

Analogously this can be done for the reflected function φ#. Thus, by using

Φ#
i (z) =

2R
−1

∑
n=2R−p

βnWal(n + i − 1 + 2RpR(i − 1), z)

similar to the above, we get

2R
−1

∑
n=2R−p

βn⟨φ#
i,R,n,Wal(k, x)⟩ = 2−R/2

2R
−1

∑
n=2R−p

βnWal(n + i − 1 + 2RpR(i − 1), k
2R

)φ#
i

⋀W

( k
2R

)(4.11)

= 2−R/2φ#
i

⋀W

( k
2R

)Φ#
i ( k

2R
).

This representation is very useful. Indeed, one only has to pay attention to the decay rate of the Walsh
transform of the pieces of the mother scaling function, its reflection and the Walsh polynomial. Moreover,
the pieces fulfil f(t) = 0 for t < 0, such that the Walsh transform with one kernel can be used for the analysis.
Consider

∣∣P ⊥SM
ϕ∣∣ = ∣∣P ⊥SM

(
2R

−p−1

∑
n=0

αnφR,n +
2R

−1

∑
n=2R−p

βnφ
#
R,n)∣∣(4.12)

= ∣∣P ⊥SM
(
2R

−p−1

∑
n=0

αn
p

∑
i=−p+2

φi,R,n +
2R

−1

∑
n=2R−p

βn
p

∑
i=−p+2

φ#
i,R,n)∣∣.

Next, one uses the linearity of the orthogonal projection to change the order of the summands, such that the
sum over the scaling function pieces can be dealt with in the end. First, we take out the sum over the parts of
the wavelet φi,R,n to handle every cut-out of the wavelet separately. In particular, by (4.12)

∣∣P ⊥SM
ϕ∣∣ = ∣∣

p

∑
i=−p+2

P ⊥SM
(
2R

−p−1

∑
n=0

αnφi,R,n +
2R

−1

∑
n=2R−p

βnφ
#
i,R,n)∣∣(4.13)

≤
p

∑
i=−p+2

∣∣P ⊥SM
(
2R

−p−1

∑
n=0

αnφi,R,n +
2R

−1

∑
n=2R−p

βnφ
#
i,R,n)∣∣

=
p

∑
i=−p+2

¿
ÁÁÁÀ ∑

k>M

RRRRRRRRRRRR

2R−p−1

∑
n=0

αn⟨φi,R,n,Wal(k, ⋅)⟩ +
2R−1

∑
n=2R−p

βn⟨φ#
i,R,n,Wal(k, ⋅)⟩

RRRRRRRRRRRR

2

.

Second, it follows, by using (4.10), (4.11) and the Cauchy-Schwarz inequality, that

∣∣P ⊥SM
ϕ∣∣ ≤

p

∑
i=−p+2

¿
ÁÁÁÀ ∑

k>M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
) + φ#

i

⋀W

( k
2R

)Φ#
i ( k

2R
)∣

2

(4.14)

≤
p

∑
i=−p+2

⎛
⎝ ∑k≥M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
)∣

2

+ ∑
k≥M

2−R ∣φ#
i

⋀W

( k
2R

)Φ#
i ( k

2R
)∣

2

+2( ∑
k≥M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
)∣

2

)
1/2 ⎛

⎝ ∑k≥M
2−R ∣φ#

i

⋀W

( k
2R

)Φ#
i ( k

2R
)∣

2⎞
⎠

1/2⎞
⎟
⎠

1/2

.

We will only deal with the first summand and the other follow analogously. In the following step the 1-
periodicity of the Walsh function is used. Let S ∈ R+ such that M = S2R, then by replacing k ≥ M with
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k =mL + j with L = 2R, m ≥ S and j = 0, . . . , L − 1 we have

∑
k≥M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
)∣

2

≤
L−1

∑
j=0

1

L
∣Φi(

j

L
)∣

2

∑
m≥S

∣φi
⋀W

( j
L
+m)∣

2

.

The last sum can be estimated via Lemma 4.7 and (4.3) by

∑
m≥S

∣φi
⋀W

( j
L
+m)∣

2

≤ ∑
m≥S

A2

m2α
≤ A2

S2α−1
(4.15)

with α = 1 for the Haar wavelet and α being the Hölder coefficient for the other Daubechies wavelets of

order p > 1. For the first sum
L−1

∑
j=0

1
L
∣Φi( jL)∣2 we have with αn = 0 for n = −p + 1, . . . ,−1 that

Φi(z) =
2R

−p

∑
n=0

αnWal(n + i − 1 + 2RpR(i − 1), z)(4.16)

=
2R

−p

∑
n=−p+1

αl Wal(n + i − 1 + 2RpR(i − 1), z)

=
2R

−p+i−1+2RpR(i−1)

∑
n=−p+1+i−1+2RpR(i−1)

αn−i+1−2RpR(i−1) Wal(n, z)

and L = 2R, such that we can use Lemma 4.6 as 2R−p+i−1+2RpR(i−1)−(−p+1+i−1+2RpR(i−1))+1 =
2R − p − (−p + 1) + 1 = 2R ≥ L and obtain

(4.17)
L−1

∑
j=0

1

L
∣Φi(

j

L
)∣

2

=
2R

−p+i−1+2RpR(i−1)

∑
l=−p+1+i−1+2RpR(i−1)

∣αl−i+1−2RpR(i−1)∣2 =
2R

−p

∑
n=−p+1

∣αn∣2 ≤ 1.

Altogether this gives with Lemma 4.7

(4.18) ∑
k≥M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
)∣

2

≤ A2

S2α−1
,

and similarly

(4.19) ∑
k≥M

2−R ∣φ#
i

⋀W

( k
2R

)Φ#
i ( k

2R
)∣

2

≤ A#2

S2α−1
.

Using (4.17), (4.18) and (4.19) yields the following estimation

∣∣P ⊥SM
ϕ∣∣ ≤

p

∑
i=−p+2

⎛
⎝

A2

S2α−1
+ A#2

S2α−1
+ 2

AA#

S2α−1

⎞
⎠

1/2

≤ (2p − 2)
⎛
⎜
⎝

4 max{A2,A#2}
S2α−1

⎞
⎟
⎠

1/2

= (2p − 2)( C2

S2α−1
)

1/2

.

Thus, ∣∣P ⊥SM
ϕ∣∣ ≤ γ whenever

(4.20) S ≥ (C(2p − 2)
γ

)
2/2α−1

,

where C = 4 max{A2,A#2}. It follows from (4.5) that cos(ω(RN ,SM)) ≥ 1−γ ≥ 1
θ

,i.e. µ(RN ,SM) ≤ θ,

whenever the constant S, which is dependent on θ and therefore denoted by Sθ, fulfils (4.20) with γ = 1− 1
θ

,
i.e

Sθ ≥ (C(2p − 2)θ
θ − 1

)
2/2α−1

and M = SθL = SθN . �
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Proof of Theorem 1.1 in d-dimensions. In higher dimensions we represent ϕ ∈RN in terms of the sum over
2d different tensor products. Then, we need to investigate the inner products of these summands with the
Walsh functions as in the one dimensional case. At this point the results from the one dimensional case come
into play. Next, one investigates the parts of the set I⊥M , where IM = {l = {l1, . . . , ld} , lk = 0, . . . ,Mk − 1}
and M = {M1, . . . ,Md} ∈ Nd and I⊥M = Nd ∖ IM , which correspond to the largest estimates of the in-
ner products of the summands of the wavelet and the Walsh function. Finally, these can be bounded with
estimates from the one dimensional case and additional care for the finite sums.

Now, we present the described steps in more detail. Let ϕ ∈ RN with ∣∣ϕ∣∣ = 1. Then we can represent ϕ
as in (3.5) in the following sum

ϕ = ∑
s∈{0,1}d

∑
n∈Ks

αn⊗φsR,n.

In the one dimensional case we derived the representation of ∑2R
−p−1

n=0 αn⟨φi,R,n,Wal(k, ⋅)⟩ in terms of the

Walsh transform of the wavelet and the Walsh polynomial, i.e. 2−R/2φi
⋀W

( k
2R )Φi( k

2R ). This equality from
(4.10) is used to represent the inner product in higher dimensions. For this we need to define pR from (4.6)
for higher dimensions. In particular, let pR ∶ Zd → Nd with {zi}i=1,...,d = z ↦ pR(z) = {pR(z)i}i=1,...,d

and pR(z)i being the smallest integer such that pR(z)i2R − zi > 0 for all i = 1, . . . , d. Further, let l =
(l1, . . . , ld) ∈ Zd. This yields

⟨φsi,R,n,Wal(l, ⋅)⟩ =
d

∏
k=1

⟨φski,R,nk
,Wal(lk, ⋅)⟩.

Here, the problem is reduced to the one dimensional case and we can apply (4.7) and (4.8) to get

⟨φsi,R,n,Wal(l, ⋅)⟩ =
d

∏
k=1

2−dR/2 Wal(nk + ik − 1 + 2RpR(ik − 1), lk
2R

)φskik
⋀W

( lk
2R

)

= Wal(n + i − 1 + 2RpR(i − 1), l
2R

)φsi
⋀W

( l

2R
).

This is defined now as in (4.9)

Φsi (z) = ∑
n∈Ks

αnWal(n + i − 1 + 2RpR(i − 1), z
2R

).

Note that the different definitions from the one dimensional case for Φ and Φ# are combined in the notation
with the Ks. We get with this the presentation of the inner products as desired:

∑
n∈Ks

αn⟨φsi,R,n,Wal(l, ⋅)⟩ = 2−dR/2Φsi (
l

2R
)φ̂si (

l

2R
).

For the representation of indices that correspond to the sampling functions, let IM = {l = {l1, . . . , ld}, lk =
0, . . . ,Mk − 1}, where M = {M1, . . . ,Mk} ∈ Nd is the number of samples. Then l ∉ IM corresponds to
l > m in the one dimensional case. We now want to analyse the orthogonal projection on the orthogonal
complement of the sampling space

∣∣P ⊥SM
ϕ∣∣ = ∣∣P ⊥SM

( ∑
s∈{0,1}d

∑
n∈Ks

αnφ
s
R,n)∣∣ = ∣∣P ⊥SM

( ∑
s∈{0,1}d

∑
n∈Ks

αn
p

∑
i=−p+2

φsi,R,n)∣∣.

This way we ensured the use of Corollary 4.3. Next we change the order again to deal with the different
cut-out functions separately. This was seen already in (4.13). We get

∣∣P ⊥SM
ϕ∣∣ = ∣∣

p

∑
i=−p+2

P ⊥SM
( ∑
s∈{0,1}d

∑
n∈Ks

αn
p

∑
i=−p+2

φsi,R,n)∣∣ ≤
p

∑
i=−p+2

∣∣P ⊥SM
( ∑
s∈{0,1}d

∑
n∈Ks

αn
p

∑
i=−p+2

φsi,R,n)∣∣.
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With the Cauchy Schwarz inequality and a careful reordering we get as in (4.14)

∣∣P ⊥SM
ϕ∣∣ =

p

∑
i=−p+2

¿
ÁÁÁÁÀ ∑

l∉IM

RRRRRRRRRRRRR
∑

s∈{0,1}d
∑
n∈Ks

αn⟨φsi,R,n,Wal(l, ⋅)⟩
RRRRRRRRRRRRR

2

=
p

∑
i=−p+2

¿
ÁÁÁÁÀ ∑

l∉IM

2−dR
RRRRRRRRRRRRR
∑

s∈{0,1}d
Φsi (

l

2R
)φsi
⋀W

( l

2R
)
RRRRRRRRRRRRR

2

≤
p

∑
i=−p+2

∑
s∈{0,1}d

⎛
⎝ ∑l∉IM

2−dR∣Φsi (
l

2R
)φsi
⋀W

( l

2R
)∣2

⎞
⎠

1/2

.

Now, let S ∈ N be given, such that the number of samples M = {M1, . . . ,Mk} ∈ Nd is Mk = S2R. Then
if l = {l1, . . . , ld} ∉ IM at least one lk >Mk. The sum is the largest if only one lk fulfils this estimate. Hence,
without loss of generality let l1 >M1 and lk ≤Mk for k = 2, . . . , d. Now let lk = jk + uk2R and α = 0.55 or
α = 1 depending on the chosen wavelet. Then we get similar to (4.15):

∑
l1>M1

∑
l2≤M2

. . . ∑
ld≤Md

2−dJ ∣Φsi (
l

2R
)φsi
⋀W

( l

2R
)∣

2

=
2R

−1

∑
j=0

1

2dR
∣Φsi (

j

2R
)∣

2

∑
u1>S

∑
u2≤S

. . . ∑
ud≤S

∣φsi (
j

2R
+ u)∣

2

≤
2R

−1

∑
j=0

1

2dR
∣Φsi (

j

2R
)∣

2

∑
u1>S

∑
u2≤S

. . . ∑
ud≤S

A2
1

(1 + u1)2α
. . .

A2
d

(1 + ud)2α

≤ Cd−1

S2α−1

2R
−1

∑
j=0

1

2dR
∣Φsi (

j

2R
)∣

2

.

The last sum can be estimated with the help of Lemma 4.6. In (4.16) and (4.17) this was derived in the one
dimensional case that can be directly used here, such that

2R
−1

∑
j=0

1

2dR
∣Φsi (

j

2R
)∣

2

= ∑
n∈Ks

∣αn∣2.

From the fact that the φsR,n form an orthonormal bases and ∣∣ϕ∣∣ = 1 we have

∑
n∈Ks

∣αn∣2 ≤ 1.

This together with the fact that ∣ {0,1}d ∣ = 2d gives

∑
s∈{0,1}d

⎛
⎝ ∑
l1>M1

∑
l2≤M2

. . . ∑
ld≤Md

2−dR ∣Φi(
l

2R
)φ̂i(

l

2R
)∣

2⎞
⎠

1/2

≤ 2d ( C
d−1

S2α−1
)

1/2

.

By replacing Cd−1 with C we have

∣∣P ⊥SM
ϕ∣∣ ≤

p

∑
i=−p+2

2d (C
S
)

1/2

= (2p − 2)2d ( C

S2α−1
)

1/2

.

Thus, ∣∣P ⊥SM
ϕ∣∣ ≤ γ whenever

(4.21) S ≥ C ((2p − 2)2d
γ

)
2/2α−1

.

It follows from (4.5) that

cos(ω(RN ,SM)) ≥ 1 − γ ≥ 1

θ
,

i.e. µ(RN ,SM) ≤ θ, whenever Sθ fulfils (4.21) with γ = 1 − 1
θ

, i.e.

Sθ ≥ C ((2p − 2)2dθ
θ − 1

)
2/2α−1
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and ∣M ∣ =M1 ⋅ . . . ⋅Md = Sdθ2dR = SdθN . �

5. NUMERICAL EXPERIMENTS

In this chapter we underline the theoretical results with numerical experiments. We first calculate the
stable sampling rate for different stabilities θ and Daubechies wavelets. Then, we see that the reconstruction
with generalized sampling leads to much better results then the direct inversion with the Walsh transform.
Moreover, we point out that it is important to consider the stable sampling rate, as otherwise the reconstruc-
tion gets very unstable with meaningless results.

First, we see in Figure 1 the stable sampling rate for the different wavelets and stabilities in the one-
dimensional case. One can see that it is indeed linear with jumps according to the levels of the wavelets.
Moreover, it is easy to detect that the constant Sθ is considerably low such that the number of samples needed
is only marginally larger than the number of coefficients that we reconstruct. It is not surprising that the stable
sampling rate gets larger for smaller θ. In the theory of the reconstruction from Fourier measurements we
have a direct relation between the smoothness of the wavelets and the size of the stable sampling rate. Similar
relations are not known for the Walsh wavelet case.

0 100 200 300 400 500 600 700 800 900 1000

reconstructed coefficients

0

200

400

600

800

1000

1200

1400

sa
m

p
le

s

(A) Θ(N ; 5) for DB2 with Nmax
Mmax

= 1.249

0 200 400 600 800 1000 1200

reconstructed coefficients

0

200

400

600

800

1000

1200

1400

1600

sa
m

p
le

s
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= 1.257
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FIGURE 1. Plots of the stable sampling rate (blue) for Daubechies Wavelet of order 2 and
8 for a threshold θ = 2 and 5 and the linear line with Nmax/Mmax (orange).

In Figure 2, we demonstrate the reconstruction with generalized sampling. For this sake we consider two
different functions on [0,1]. First, we look at the cosine function in Figure 2a, taking 77 Walsh samples. In
Figure 2c the direct inversion is shown. It is clear that the reconstruction has a lot of block artefacts, whereas
the reconstruction with generalized sampling of 64 Daubechies 8 wavelets has nearly no visible artefacts.
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(A) Original function 1 (B) Reconstruction with Generalized
Sampling of function 1 with 64 Wavelet
coefficients from 77 measurements

(C) Truncated Walsh series of function
1 from 77 measurements

(D) Original function 2

(E) Reconstruction with Generalized
Sampling of function 2 with 128

Wavelet coefficients and 192 measure-
ments

(F) Truncated Walsh series from 192

measurements

FIGURE 2. Reconstruction with Generalized Sampling and Daubechies 8 Wavelets and
the inverse Walsh.



20 A. C. HANSEN AND L. TERHAAR

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 #10 11 Wavelet reconstruction error 7.717546e+11

FIGURE 3. Reconstruction with Generalized Sampling below the Stable Sampling Rate
with 512 Walsh samples and Daubechies 8 Wavelet coefficients

The same artefacts can be seen in 2f. In this case 192 Walsh samples were taken and 128 wavelet coefficients
were reconstructed. The artefacts with the direct Walsh inverse are much stronger than the common Gibbs
phenomena for the Fourier case. Because of this, reconstructions with Walsh functions are not feasible in
practice. They are also the reason why one does not use Haar wavelets as they obey the same block artefacts.
This underlines the need of a reconstruction technique that refers the data from the sampling space to a
much more appropriate reconstruction space, where the data is represented sparsely. In this case we get
fewer artefacts. For completely continuous functions as in 2b the reconstruction with generalized sampling
has nearly no artefacts. In case of discontinuities as in the second function 2d one gets some artefacts at
the discontinuities as can be seen in 2e. Even so, the overall reconstruction quality is much better and the
reconstruction still obeys the regularity properties of each part of the function.

Nevertheless, it is important to take the stable sampling rate in mind. If one tries to reconstruct with fewer
samples then needed, the reconstruction gets very unstable and one gets meaningless results. This can be
seen in Figure 3, where a function on [0,1] is reconstructed from 512, which is much more than the 77 and
192 for the other functions.

6. CONCLUSION

We were able to investigate a very important part of the error estimate for different reconstruction meth-
ods. Moreover, we showed that binary measurements modelled by Walsh functions are well suited to re-
construct images with wavelets. This, together with the results in [1, 3], gives a broad knowledge about the
accuracy and stability for two major applications of sampling theory, i.e. systems with Fourier samples and
those with binary measurements.
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