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Appendices

A The construction of the auxiliary parameter set Φ0

According to Liang et al. (2016), in order to have a good auxiliary parameter set Φ0 so
that the set of p(θ|Y, ϕ), ϕ ∈ Φ0, reasonably reflects the truth p(θ|Y, ϕ), where ϕ ∼ p(ϕ|Z),
two conditions should be satisfied.

• Full representation: Let CΦ0 be the convex hull constructed from Φ0, then we require∫
CΦ0

p(ϕ|Z)dϕ ≈ 1. This ensures that the selected Φ0 has fully represented the

original domain of ϕ.

∗E-mail address: yang.liu@mrc-bsu.cam.ac.uk (Yang Liu)
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• Reasonable overlap: For neighbouring ϕ
(i)
0 and ϕ

(j)
0 , we require p(θ|Y, ϕ(i)

0 ) and p(θ|Y, ϕ(j)
0 )

should have a reasonable overlap. Hence, the probability of accepting new proposal
of ϕ ∈ Φ0 is reasonably large given a fixed θ for the auxiliary chain. This ensures
that the auxiliary chain can mix well.

The grid Φ0 is chosen by following the Max-Min procedure (Liang et al., 2016) and
the purpose is to use this discrete set as a representation of the domain of p(ϕ|Z). After
we have decided the number of auxiliary parameters (that is m), the auxiliary parameter
set Φ0 is formed by selecting ϕ from a larger set Φ(M) = {ϕ(1), · · · , ϕ(M)} (an arbitrary
but substantially larger M > m) which are drawn from the marginal posterior p(ϕ|Z) by
any standard MCMC algorithm. Before starting the iterative process, we standardize all
ϕ

(i)
0 , i = 1, · · · ,M (i.e, ϕnew = (ϕ− ϕmin)/(ϕmax − ϕmin)). We then add values to the grid

using the following iterative process, initialised by randomly selecting a ϕ
(1)
0 as the first step.

Then suppose at the kth step we have Φ
(k)
0 = {ϕ(1)

0 , · · · , ϕ(k)
0 }. For each ϕ ∈ Φ(M) that has

not yet been selected, we calculate the minimum distance to the set Φ
(k)
0 according to some

pre-defined distance measure (e.g., Euclidean distance). This is the ‘Min’ process. We then

find the ϕ that has not been selected but has the maximum distance to the set Φ
(k)
0 . This

is the ‘Max’ process. We then add this particular ϕ into Φ
(k)
0 to form Φ

(k+1)
0 = Φ

(k)
0 ∪ {ϕ}.

Here we use a toy example to illustrate the procedure of selecting m. To make clear
visualization of ϕ straightforward, we use the example derived from Section 4.1 in the main
text but reduce the dimension of ϕ to 2.

We first draw a large number (M) of samples of ϕ from its marginal posterior p(ϕ|Z)
by a standard MCMC method and pool all samples together as a benchmark sample set.
This step is feasible because p(ϕ|Z) is a standard posterior distribution so there is no
double intractability. If M is large enough, it is appropriate to regard the convex hull of
the benchmark sample set as a good approximation of the true domain of p(ϕ|Z).

Next, we select several candidates values of m. In this illustration, we simply select
m from {10, 20, 50, 100, 500}. Given a selected value of m, we use the Max-Min procedure

(Liang et al., 2016) to construct the Φ
(m)
0 , and calculate its corresponding convex hull

C
Φ

(m)
0

numerically using the R package geometry. See the attached Figure 1. It can be seen

that the shape of the convex hull approximates the benchmark convex hull increasingly
accurately as m increases.
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Figure 1: Convex hull CΦ0 (indicated by the black circle) and samples of ϕ (indicated by
dots) when m = 10, 20, 50, 100, 500 and Benchmark. The coverage ratio is shown on the
upper right corner of each subplot. 3



Let C
Φ

(M)
0

be the benchmark convex hull, and define the coverage ratio Rm by:

Rm =

∫
C

Φ
(m)
0

p(ϕ|Z)dϕ∫
C

Φ
(M)
0

p(ϕ|Z)dϕ
, (1)

where Rm can be numerically approximated using Monte Carlo. The m can be selected
by choosing the smallest m that gives a high coverage ratio Rm (e.g., Rm > 0.95). In
this example, since the the coverage ratio is > 0.98 we choose m = 50 to satisfy the first
condition (Full representation).

We then check whether this value of m also satisfies the second condition (Reasonable

overlap). This involves checking that the m different p(θ|Y, ϕ(i)
0 ), where ϕ

(i)
0 ∈ Φ

(m)
0 , overlap

sufficiently. To do this, for each ϕ
(i)
0 , we draw samples of θ using a standard MCMC method

and compare the empirical distribution of θ ∼ p(θ|Y, ϕ(i)
0 ) with the empirical distribution

of θ ∼ p(θ|Y, ϕ(i1)
0 ) and p(θ|Y, ϕ(i2)

0 ), where ϕ
(i1)
0 and ϕ

(i2)
0 are the closest and second closest

values in Φ
(m)
0 to ϕ

(i)
0 in terms of Euclidean distance. This can be visually shown as a

grouped box-plot in Figure 2. It is clear that the majority part (inter-quartile area) of

the empirical distribution of θ given each ϕ
(i)
0 ∈ Φ

(m)
0 overlaps inter-quartile area given its

neighbouring ϕ
(i1)
0 and ϕ

(i2)
0 . Hence, it is appropriate to argue that m = 50 satisfies the

second condition (Reasonable overlap).
In general, m grows with the dimension of ϕ. However, the exact relationship between

them depends on the context of the real problem. Also, a large m is not a necessary
condition for proposed theorems to be theoretically valid. This is because m is involved
in the construction of the proposal distribution for the importance sampling procedure
that forms the numerator and denominator of P ∗n(θ|Y, ϕ) and we could use any proposal
distribution only if it has a correct domain, although a proposal distribution based on a
smaller m could leads to a slow convergence of the auxiliary chain. In the special case when
the marginal cut distribution p(θ|Y, ϕ) is not sensitive to the change of ϕ, a small m might
be good enough. A larger m will bring fewer benefits when two conditions hold in practice.
This differs significantly from the fact that we always require n to go to infinity. Hence,
increasing m has a diminishing marginal utility after two conditions hold. Notwithstanding,
when the dimension of ϕ increases, it will be more difficult to check whether two conditions
hold because the numerical calculation of the convex hull will become extremely time-
consuming and also checking for overlap visually will be infeasible. A more practical way
could be simply checking whether the auxiliary chain can converge well given a reasonable
time period by running some preliminary trials as suggested in Liang et al. (2016).
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Figure 2: Boxplot of the empirical distribution of θ given ϕ (i.e., p(θ|Y, ϕ)). For an arbitrary

fixed index i, the red boxplot refers to ϕ
(i)
0 . The green boxplot refers to ϕ

(i1)
0 (the closest

neighbour). The blue boxplot refers to ϕ
(i2)
0 (the second closest neighbour).
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B Construction of P ∗n (θ|Y, ϕ)

Given a particular ϕ′, measure P ∗n(θ|Y, ϕ) is actually a weighted average of 1{θ∈B}. It is
used to approximate

∫
B p(Y |θ, ϕ

′)p(θ)dθ/p(Y |ϕ′), where numerator and denominator are
separately approximated by dynamic importance sampling. The only difference is the
domain of integration (i.e., B versus Θ). Here, we only show the numerator. We have∫

B
p(Y |θ, ϕ′)p(θ)dθ ∝ Eθ

(
1{θ∈B}

)
, where θ ∼ p(Y |θ, ϕ′)p(θ)

K(ϕ′)
,

where K(ϕ′) is a intractable normalizing constant of the target distribution. Hence, we
cannot sample θ from p(Y |θ, ϕ′)p(θ)/K(ϕ′). We have shown in the main text that, when
iteration number j is large enough, we actually sample (θ̃, ϕ̃) from an iteration-specific
proposal distribution

pj(θ̃, ϕ̃) ∝
m∑
i=1

p(Y |θ̃, ϕ(i)
0 )p(θ̃)

w̃
(i)
j−1

1{ϕ̃=ϕ
(i)
0 }
, θ̃ ∈ Θ, ϕ̃ ∈ Φ0.

Hence, we have

Eθ
(
1{θ∈B}

)
= Eθ̃,ϕ̃

(
1{θ̃∈B}

p(Y |θ̃, ϕ̃′)p(θ̃)
pj(θ̃, ϕ̃)K(ϕ′)

)

= Eθ̃,ϕ̃

{
1{θ̃∈B}

p(Y |θ̃, ϕ′)p(θ̃)
K(ϕ′)

(
m∑
i=1

w̃
(i)
j−1

p(Y |θ̃, ϕ(i)
0 )p(θ̃)

1{ϕ(i)
0 =ϕ̃}

)}
, where (θ̃, ϕ̃) ∼ pj(θ̃, ϕ̃).

The above expectation can be approximated by a step j single sample Monte Carlo esti-
mator

1

K(ϕ′)

m∑
i=1

w̃
(i)
j−1

p(Y |θ̃j, ϕ′)
p(Y |θ̃j, ϕ(i)

0 )
1{θ̃j∈B,ϕ

(i)
0 =ϕ̃j}

, where (θ̃j, ϕ̃j) ∼ pj(θ̃, ϕ̃).

Note that, K(ϕ′) will be canceled out in the denominator and numerator of measure (5)
so we can omit it. Now we have a total of n samples {(θ̃j, ϕ̃j)}nj=1, we then add all single
sample Monte Carlo estimators and calculate the average

1

n

n∑
j=1

m∑
i=1

w̃
(i)
j−1

p(Y |θ̃j, ϕ′)
p(Y |θ̃j, ϕ(i)

0 )
1{θ̃j∈B,ϕ

(i)
0 =ϕ̃j}

, where (θ̃j, ϕ̃j) ∼ pj(θ̃, ϕ̃).

Similarly, 1/n will be canceled out.
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C Density Function Approximation by Simple Func-

tion

Here, we show how a density function f can be approximated by a simple function that
is constant on a hypercube. We show that the degree of approximation can be easily con-
trolled, and is dependent on the gradient of f . The use of a simple function to approximate
a density function has been discussed previously (Fu and Wang, 2002; Malefaki and Iliopou-
los, 2009), but here we use a different partition of the support of the function, determined
by rounding to a user-specified number of decimal places.

For a compact set Ψ ⊂ Rd with dimension d, define a map Rκ : Ψ → Ψ that rounds
every element of ψ ∈ Ψ to κ decimal places, where κ ∈ Z, as Rκ(ψ) = b10κψ + 0.5c/10κ.
Since Ψ is compact, Rκ(Ψ) is a finite set and we let Rκ denote its cardinality. We partition
Ψ in terms of (partial) hypercubes Ψr whose centres ψr ∈ Rκ(Ψ) are the rounded elements
of Ψ,

Ψr = Ψ ∩ {ψ : ‖ψ − ψr‖∞ ≤ 5× 10−κ−1}, r = 1, ..., Rκ, (2)

and the boundary set Ψ̄κ,

Ψ̄κ = Ψ ∩

(
Rκ⋃
r=1

{ψ : ‖ψ − ψr‖∞ = 5× 10−κ−1}

)
. (3)

It is clear that
⋃Rκ
r=1 Ψr = Ψ. Hence {Ψr\Ψ̄κ}Rκr=1 and Ψ̄κ form a partition of Ψ.

Using this partition, we are able to construct a simple function density that approx-
imates a density function. Let C be the set of all continuous and integrable probability
density functions f : Ψ→ R, and let S be the set of all simple functions f : Ψ→ R. Define
a map Sκ : C → S for any f ∈ C as

Sκ(f)(ψ) =
Rκ∑
r=1

1

µ(Ψr)

∫
Ψr

f(ψ′)dψ′1{ψ∈Ψr}, ∀ψ ∈ Ψ.

The sets Ψr, r = 1, ..., Rκ, are the level sets of the simple function approximation, and
the value Sκ(f)(ψ), ψ ∈ Ψ\Ψ̄κ, is the (normalized) probability of a random variable with
density f taking a value in Ψr, r = 1, ..., Rκ. Note that, when Ψr is a full hypercube,
µ(Ψr) = 10−dκ; and if the set Ψ is known, then µ(Ψr) is obtainable for partial hypercubes.
Figure 3 illustrates how this simple function approximates the truncated standard normal
density function fnorm : [−4, 4]→ R, when κ = 0 and κ = 1. Note that this is the optimal
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Figure 3: Simple function approximation of a truncated normal distribution. When κ = 0
the sets Ψ1 = [−4,−3.5], Ψ2 = [−3.5,−2.5],..., Ψ8 = [2.5, 3.5], Ψ9 = [3.5, 4] are the intervals
partitioning [−4, 4] and Ψ̄0 = {−3.5,−2.5, ..., 2.5, 3.5}.

simple function for the approximation in terms of Kullback-Leibler divergence (Malefaki
and Iliopoulos, 2009).

Since µ(Ψ̄κ) = 0, it is clear that∫
Ψ

Sκ(f)(ψ)dψ =

∫
Ψ

f(ψ)dψ = 1.

Hence, Sκ(f) is a well-defined density function. We have the following theorem.

Theorem 1. Given any continuous density function f ,

Sκ(f)
a.s.−−→ f, as κ→∞.

Proof. Let Q be the set of all rational numbers in R and hence Qc is the set of all irrational
numbers in R. Let E = Qcd ∩ Ψ and it is easy to see that µ(E ) = µ(Ψ) since µ(Q) = 0.
We first show that, ∀κ <∞ and ∀ψ ∈ E , we have ψ /∈ Ψ̄κ.

Given a κ <∞, every element of set Rκ(Ψ) is a d-dimensional rational vector. We also
have that 5×10−κ−1 is a rational number. Therefore, at least one element of d-dimensional
vector ψ is a rational number if ψ ∈

⋃Rκ
r=1{ψ : ‖ψ − ψr‖∞ = 5 × 10−κ−1}. Now ∀ψ ∈ E ,
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because ψ is a d-dimensional irrational vector, ψ /∈
⋃Rκ
r=1{ψ : ‖ψ − ψr‖∞ = 5 × 10−κ−1},

and hence ψ /∈ Ψ̄κ.
Now given a fixed κ < ∞, ∀ψ ∈ E , since ψ /∈ Ψ̄κ, ψ is always in the inner set of one

of Ψr, r = 1, ..., Rκ. Re-write this Ψr as Ψ
(κ)
ψ . Since the set Ψ

(κ)
ψ is compact and function

f is continuous, we have fψ,min = min
y∈Ψ

(κ)
ψ
f(y) and fψ,max = max

y∈Ψ
(κ)
ψ
f(y). By the first

mean value theorem, there is a ψ∗ ∈ Ψ
(κ)
ψ with fψ,min ≤ f(ψ∗) ≤ fψ,max, such that

Sκ(f)(ψ) =
1

µ(Ψ
(κ)
ψ )

∫
Ψ

(κ)
ψ

f(y)dy = f(ψ∗)
1

µ(Ψ
(κ)
ψ )

∫
Ψ

(κ)
ψ

dy = f(ψ∗).

It is clear that, when κ increases, µ(Ψ
(κ)
ψ ) monotonically decreases since Ψ

(κ+1)
ψ ⊂ Ψ

(κ)
ψ

(i.e. a much smaller hypercube is formed). This leads to the fact that (fψ,max − fψ,min)
monotonically decreases to 0. Hence, there is a N such that ∀κ > N , (fψ,max−fψ,min) ≤ ε.
Then we have ∀κ > N ,

|R∗κ(f)(ψ)− f(ψ)| = |f(ψ∗)− f(ψ)| ≤ (fψ,max − fψ,min) ≤ ε.

Hence,
Sκ(f)

a.s.−−→ f, as κ→∞.

When the density function f is also continuously differentiable, we can obtain the
following result about the rate of convergence.

Corollary 1. Given a density function f that is continuously differentiable, there exists a
set E ⊂ Ψ with µ(E ) = µ(Ψ) such that the local convergence holds:

|Sκ(f)(ψ)− f(ψ)| ≤ (ε(ψ, κ) + ‖∇f(ψ)‖2)

√
d

10κ
, ∀ψ ∈ E ,

where ε(ψ, κ)→ 0 as κ→∞.
In addition, the global convergence holds:

sup
ψ∈E
|Sκ(f)(ψ)− f(ψ)| ≤ sup

ψ∈Ψ
‖∇f(ψ)‖2

√
d

10κ
.

Proof. Following the result of Theorem 1, for a given ψ ∈ E , we have

|Sκ(f)(ψ)− f(ψ)| ≤ (fψ,max − fψ,min).

9



Since f has a continuous gradient on a compact set, then by the mean value theorem we
have:

(fψ,max − fψ,min) = |〈∇f(y), (ψmax − ψmin)〉|.

where 〈·, ·〉 means inner product, f(ψmax) = fψ,max, f(ψmin) = fψ,min, y ∈ Ψ
(κ)
ψ . By the

Cauchy-Schwarz inequality, we have

|〈∇f(y), (ψmax − ψmin)〉| ≤ ‖∇f(y)‖2 × ‖(ψmax − ψmin)‖2

Now we prove the local convergence result. Since ∇f is continuous on the d-dimensional
compact set Ψ, we can write

ε(ψ, κ) = sup
a,b∈Ψ

(κ)
ψ

‖∇f(a)−∇f(b)‖2 .

Since µ(Ψ
(κ)
ψ ) → 0, it is easy to check that ε(ψ, κ) → 0 when κ → ∞. Moreover, we have

both ψmax and ψmin are in set Ψ
(κ)
ψ , and we have

sup
a,b∈Ψ

(κ)
ψ

‖(a− b)‖2 =
√
d10−2κ.

Then by the triangle inequality, we have

‖∇f(y)‖2 × ‖(ψmax − ψmin)‖2 ≤ (‖∇f(y)−∇f(ψ)‖2 + ‖∇f(ψ)‖2)

√
d

10κ

≤ (ε(ψ, κ) + ‖∇f(ψ)‖2)

√
d

10κ
.

and hence

|Sκ(f)(ψ)− f(ψ)| ≤ (ε(ψ, κ) + ‖∇f(ψ)‖2)

√
d

10κ
.

Now we prove the global convergence result. Since ∇f is continuous on compact set Ψ,
then ‖∇f‖2 is bounded. We have

‖∇f(y)‖2 × ‖(ψmax − ψmin)‖2 ≤ sup
ψ∈Ψ
‖∇f(ψ)‖2

√
d

10κ
.

Therefore, we have

|Sκ(f)(ψ)− f(ψ)| ≤ sup
ψ∈Ψ
‖∇f(ψ)‖2

√
d

10κ
.

10



Note that, this means that |Sκ(f)(ψ)− f(ψ)| is uniformly bounded. Hence, it implies

sup
ψ∈E
|Sκ(f)(ψ)− f(ψ)| ≤ sup

ψ∈Ψ
‖∇f(ψ)‖2

√
d

10κ
.

Corollary 1 shows that the rate of convergence of Sκ(f) to f is geometric. It states that,
(a) for any ψ ∈ E , the rate of convergence is locally controlled by its gradient ‖∇f(ψ)‖2;
and (b) the rate of convergence is uniformly controlled by the upper bound of the gradient.
Hence, as is intuitively expected, convergence is faster if the target function f has a smaller
total variation on the set E .

Remark 1. When the scale of each component of ψ ∈ Ψ is not same, a more complex
partition can be formed by choosing component-specific precision parameters κ = (κ1, ..., κd).
Denote ◦ as the Hadamard product and 10±κ := (10±κ1 , ..., 10±κd), we redefine

Rκ(Ψ) = b10κ ◦ ψ + 0.5c ◦ 10−κ.

We build a (partial) d-orthotope around ψr ∈ Rκ(Ψ)

Ψr = Ψ ∩ {ψ : |ψ − ψr| 5 5× 10−κ−1}, r = 1, ..., Rκ.

We do not discuss this more complex partition but all results in this paper that are based
on the basic partition in (2) and (3) can be easily extended to this more complex partition.

D Proofs of the Main Text

D.1 Proof of Lemma 1

We write the explicit form of p(κ)(θ|Y, ϕ):

p(κ)(θ|Y, ϕ) = Sκ(p(·|Y, ϕ))(θ) =
Rκ∑
r=1

1

µ(Θr)

∫
Θr

p(θ∗|Y, ϕ)dθ∗1{θ∈Θr},

11



then we have:

sup
θ∈Θ\Θ̄κ,ϕ∈Φ

∣∣p(κ)
n (θ|Y, ϕ)− p(κ)(θ|Y, ϕ)

∣∣
= sup

θ∈Θ\Θ̄κ,ϕ∈Φ

∣∣∣∣∣
Rκ∑
r=1

1

µ(Θr)

(
Wn(Θr|Y, ϕ)−

∫
Θr

p(θ∗|Y, ϕ)dθ∗
)
1{θ∈Θr}

∣∣∣∣∣
≤ sup

θ∈Θ\Θ̄κ,ϕ∈Φ

Rκ∑
r=1

1

µ(Θr)

∣∣∣∣Wn(Θr|Y, ϕ)−
∫

Θr

p(θ∗|Y, ϕ)dθ∗
∣∣∣∣1{θ∈Θr}

= sup
ϕ∈Φ;1≤r≤Rκ

1

µ(Θr)

∣∣∣∣Wn(Θr|Y, ϕ)−
∫

Θr

p(θ∗|Y, ϕ)dθ∗
∣∣∣∣ .

Thus, using Equation 10 from the main text, it is clear that

lim
n→∞

sup
θ∈Θ\Θ̄κ,ϕ∈Φ

∣∣p(κ)
n (θ|Y, ϕ)− p(κ)(θ|Y, ϕ)

∣∣ = 0.

Since µ(Θ̄κ) = 0, we are done.

D.2 Proof of Theorem 1

The theorem naturally holds when n = 1, we consider the case when n ≥ 2. Since the
dimension d and precision parameter κ are known and fixed, we suppose that the param-
eter space Θ is equally partitioned and the total number of d-orthotopes is Rκ and each
orthotope is indexed as Θr, r = 1, ..., Rκ. Since we suppose that the auxiliary chain has
converged before we start collecting auxiliary variable θ̃, by equation 6 in the main text, we
could write the probability of the original proposal distribution P ∗n taking a value in each
partition component Θr as the integral with respect to the target distribution p(θ|Y, ϕ):

W∞(Θr|Y, ϕ) =

∫
Θr

p(θ|Y, ϕ)dθ, r = 1, ..., , Rκ.

Now we define binary random variables Ir, r = 1, ..., , Rκ as:

Ir =

{
1 if orthotope r is never visited by auxiliary variables θ̃i, i = 1, ..., n;

0 otherwise,
(4)

12



We then have the expected number of orthotope visited is

E
(
|Θ̃(κ)

n |
)

= E

(
Rκ −

Rκ∑
r=1

Ir

)
= Rκ −

Rκ∑
r=1

(1−W∞(Θr|Y, ϕ))n .

By the method of the Lagrange multipliers, we write the Lagrange function as:

L(W∞(Θ1|Y, ϕ), ...,W∞(ΘRκ|Y, ϕ), λ) = Rκ−
Rκ∑
r=1

(1−W∞(Θr|Y, ϕ))n+λ

(
Rκ∑
r=1

W∞(Θr|Y, ϕ)− 1

)
.

Conduct first order partial derivatives, we have

∂L
∂W∞(Θr|Y, ϕ)

= −n (1−W∞(Θr|Y, ϕ))n−1 + λ = 0, r = 1, ..., Rκ;

∂L
∂λ

=
Rκ∑
r=1

W∞(Θr|Y, ϕ)− 1 = 0.

These equations hold when W∞(Θr|Y, ϕ) = 1/Rκ, r = 1, ..., Rκ. We now consider the
second order derivatives, we have

∂2L
∂2W∞(Θr|Y, ϕ)

= −n(n− 1) (1−W∞(Θr|Y, ϕ))n−2 , r = 1, ..., Rκ;

∂2L
∂W∞(Θr|Y, ϕ)∂W∞(Θt|Y, ϕ)

= 0, r 6= t.

Hence the Hessian matrix is negative definite, E
(
|Θ̃(κ)

n |
)

achieves its maxima whenW∞(Θr|Y, ϕ) =

1/Rκ, r = 1, ..., Rκ. If we additionally require this to be held for any precision parameter
κ, the target distribution p(θ|Y, ϕ) has to be uniform distribution.

D.3 Proof of Lemma 2

Given a (θ, ϕ) ∈ Θ× Φ, for any Borel set B = BΘ × BΦ ⊂ Θ× Φ, define a signed measure
Dn on Θ× Φ as

Dn(B|(θ, ϕ)) = T(1)
n (B|(θ, ϕ),Gn)−U(1)(B|(θ, ϕ))

=

∫
BΦ

∫
BΘ

(
α(ϕ′|ϕ)p(κ)(θ′|Y, ϕ′)q(ϕ′|ϕ)− α(ϕ′|ϕ)p(κ)

n (θ′|Y, ϕ′)q(ϕ′|ϕ)
)
dθ′dϕ′

=

∫
BΦ

(∫
BΘ

(
p(κ)(θ′|Y, ϕ′)− p(κ)

n (θ′|Y, ϕ′)
)
dθ′
)
α(ϕ′|ϕ)q(ϕ′|ϕ)dϕ′.

13



Since p(ϕ|Z) and q(ϕ′|ϕ) are continuous on a compact set, then α(ϕ′|ϕ) and q(ϕ′|ϕ) are
bounded. Let C = supϕ′∈Φ,ϕ∈Φ α(ϕ′|ϕ)q(ϕ′|ϕ), we have

|Dn(B|(θ, ϕ))|

=

∣∣∣∣∫
BΦ

(∫
BΘ\Θ̄κ

(
p(κ)(θ′|Y, ϕ′)− p(κ)

n (θ′|Y, ϕ′)
)
dθ′
)
α(ϕ′|ϕ)q(ϕ′|ϕ)dϕ′

∣∣∣∣
≤
∫
BΦ

sup
ϕ∗∈Φ

∣∣∣∣∫
BΘ\Θ̄κ

(
p(κ)(θ′|Y, ϕ∗)− p(κ)

n (θ′|Y, ϕ∗)
)
dθ′
∣∣∣∣Cdϕ′

≤ µ(Φ)C

∫
BΘ\Θ̄κ

sup
θ∗∈Θ\Θ̄κ,ϕ∗∈Φ

∣∣p(κ)(θ∗|Y, ϕ∗)− p(κ)
n (θ∗|Y, ϕ∗)

∣∣ dθ′
≤ µ(Φ)µ(Θ)C sup

θ∗∈Θ\Θ̄κ,ϕ∗∈Φ

∣∣p(κ)(θ∗|Y, ϕ∗)− p(κ)
n (θ∗|Y, ϕ∗)

∣∣ .
The important fact here is that |Dn(B|(θ, ϕ))| can be uniformly (with respect to θ, ϕ and
Borel set B) bounded by

sup
θ∗∈Θ\Θ̄κ,ϕ∗∈Φ

∣∣p(κ)(θ∗|Y, ϕ∗)− p(κ)
n (θ∗|Y, ϕ∗)

∣∣
up to a constant.

Given Lemma 1, we have that the density p
(κ)
n converges almost surely to p(κ) and this

convergence is uniformly on Θ \ Θ̄κ × Φ, and so we have

lim
n→∞

sup
θ∈Θ,ϕ∈Φ

‖Dn(·|(θ, ϕ))‖TV = 0.

Now by the triangle inequality, we have

lim
n→∞

sup
θ∈Θ,ϕ∈Φ

∥∥∥T(1)
n+1 (·|(θ, ϕ),Gn+1)−T(1)

n (·|(θ, ϕ),Gn)
∥∥∥
TV

≤ lim
n→∞

sup
θ∈Θ,ϕ∈Φ

‖Dn+1(·|(θ, ϕ))‖TV + lim
n→∞

sup
θ∈Θ,ϕ∈Φ

‖Dn(·|(θ, ϕ))‖TV .

It follows that:

lim
n→∞

sup
θ∈Θ,ϕ∈Φ

∥∥∥T(1)
n+1 (·|(θ, ϕ),Gn+1)−T(1)

n (·|(θ, ϕ),Gn)
∥∥∥
TV

= 0.
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D.4 Proof of Lemma 3

Define a function g : Φ→ R as

g(ϕ) = min
θ∈Θ

p(κ)
n (θ|Y, ϕ).

Since the support of p
(κ)
n is Θ, we have g(ϕ) > 0, for all ϕ ∈ Φ. In addition, since each

element of Wn(ϕ) is a continuous function on the compact set Φ (see equation 5 and 9 in
the main text), then g(ϕ) is also a continuous function on Φ. Since Φ is compact, g(ϕ)
reaches its minima

ε = min
ϕ∈Φ

g(ϕ).

Thus p
(κ)
n (θ|Y, ϕ) > ε for all θ ∈ Θ and ϕ ∈ Φ, and local positivity holds.

By the same reasoning, it is also true for the proposal distribution with density p(κ).

D.5 Necessary definitions

Definition 1. Given any function V : Ψ → [1,∞) and any signed measure M on Ψ,
define the V -norm as

‖M‖V = sup
|g|≤V

∣∣∣∣∫
Ψ

g(ψ)M(dψ)

∣∣∣∣ .
Definition 2. For simplicity, for any function f : Ψ → R and any measure M on Ψ,
write

Mf :=

∫
Ψ

f(ψ)M(dψ).

Definition 3. Given any two measures M(x)(dz) := M(dz|x), where x ∈ X, and N(y)(dx) :=
N(dx|y) which concentrates on X, for any Borel set B, we write

MN(y)(B) :=

∫
B

∫
X
M(x)(dz)N(y)(dx).

The definition can be extended to cases with more than two measures in a natural way.
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D.6 Proof of Lemma 4

Given the filtration Gn, the transition kernel U(1) and V(1)
n both admit an irreducible and

aperiodic Markov chain by assumption. Therefore, to prove that transition kernel T(1)
n also

holds same property, it suffices to prove that for any s ∈ N, (θ0, ϕ0) ∈ Θ × Φ, and Borel
set B = BΘ × BΦ ⊂ Θ× Φ such that V(s)

n (B) > 0, we have T(s)
n (B) > 0. We prove this by

mathematical induction.
Consider first when s = 1. We write α(ϕ′|ϕ) = min(1, β(ϕ′|ϕ)) where

β(ϕ′|ϕ) =
p(ϕ′|Z)q(ϕ|ϕ′)
p(ϕ|Z)q(ϕ′|ϕ)

,

and αn((θ′, ϕ′)|(θ, ϕ)) = min (1, βn((θ′, ϕ′)|(θ, ϕ))), where

βn((θ′, ϕ′)|(θ, ϕ)) =
p(κ)(θ′|Y, ϕ′)p(ϕ|Z)q(ϕ|ϕ′)p(κ)

n (θ|Y, ϕ)

p(κ)(θ|Y, ϕ)p(ϕ|Z)q(ϕ′|ϕ)p
(κ)
n (θ′|Y, ϕ′)

,

and

r((θ′, ϕ′), (θ, ϕ)) =
β(ϕ′|ϕ)

βn((θ′, ϕ′)|(θ, ϕ))
,

noting that both p
(κ)
n and p(k) are bounded away from 0 and ∞. Now we denote

r∗ = min
(θ′,ϕ′),(θ,ϕ)∈Θ×Φ

r((θ′, ϕ′), (θ, ϕ)),

and it is easy to see that r∗ > 0.
Now given any Borel set B = BΘ × BΦ ⊂ Θ× Φ and initial value (θ0, ϕ0) ∈ Θ× Φ, we

have

T(1)
n (B|(θ0, ϕ0),Gn)

= T(1)
n (B \ {(θ0, ϕ0)}|(θ0, ϕ0),Gn)

=

∫
B
α(ϕ|ϕ0)p(κ)

n (θ|Y, ϕ)q(ϕ|ϕ0)dθdϕ

=

∫
B

min {1, r((θ, ϕ), (θ0, ϕ0))βn((θ, ϕ)|(θ0, ϕ0))} p(κ)
n (θ|Y, ϕ)q(ϕ|ϕ0)dθdϕ

≥
∫
B

min {1, r((θ, ϕ), (θ0, ϕ0))}min {1, βn((θ, ϕ)|(θ0, ϕ0))} p(κ)
n (θ|Y, ϕ)q(ϕ|ϕ0)dθdϕ

≥ min {1, r∗}
∫
B
αn((θ, ϕ)|(θ0, ϕ0))p(κ)

n (θ|Y, ϕ)q(ϕ|ϕ0)dθdϕ

16



Since min {1, r∗} > 0, we have

V(1)
n (B|(θ0, ϕ0),Gn) > 0⇒ T(1)

n (B|(θ0, ϕ0),Gn) > 0.

Thus, the induction assumption holds when s = 1.
Now assume that the induction assumption holds up to step s = s∗, i.e.

V(s∗)
n (B) > 0⇒ T(s∗)

n (B) > 0.

We need to show that it also holds at step s = s∗+ 1. For an initial value (θ0, ϕ0), consider
a Borel set B such that V(s∗+1)

n (B) > 0. We proceed by contradiction. Suppose that

T(s∗+1)
n (B) =

∫
Θ×Φ

T(1)
n (B|(θ, ϕ),Gn) T(s∗)

n (dθ, dϕ) = 0.

This implies that the function T(1)
n (B|·,Gn) = 0 almost surely with respect to the measure

T(s∗)
n . Because the induction assumption holds at step s∗, which means that any V(s∗)

n -
measurable set of positive measure is a subset of a T(s∗)

n -measurable set of positive measure,
we have that the function T(1)

n (B|·,Gn) = 0 almost surely with respect to the measure V(s∗)
n .

This further implies that the function V(1)
n (B|·,Gn) = 0 almost surely with respect to the

measure V(s∗)
n . It is clear that this contradicts the fact that V(s∗+1)

n (B) > 0. Hence, we are
done.

Given that q(ϕ′|ϕ) and p(κ)(θ′|Y, ϕ′) satisfy the local positivity by Lemma 3, it is easy
to check that

q((θ′, ϕ′)|(θ, ϕ)) = p(κ)(θ′|Y, ϕ′)q(ϕ′|ϕ)

also satisfies local positivity. Hence, by Theorem 2.2 of Roberts and Tweedie (1996), since
the target distribution is bounded away from 0 and ∞ on a compact set and the proposal
distribution satisfies local positivity, the Partial Gibbs chain is irreducible and aperiodic,
and every nonempty compact set is small. Moreover, Θ×Φ is a small set for the transition
kernel u(1)(·|(θ, ϕ)), since it is compact. Hence, it is straightforward to verify that, for any
(θ, ϕ) ∈ Θ× Φ and Borel set B ⊂ Θ× Φ, there exists a δ > 0 such that

U(1)(B|(θ, ϕ)) ≥ δµ(B).

Since
qn((θ′, ϕ′)|(θ, ϕ)) = p(κ)

n (θ′|Y, ϕ′)q(ϕ′|ϕ)
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also satisfies local positivity, following the proof of Theorem 2.2 in Roberts and Tweedie
(1996) 1, one can show that, Θ×Φ is also a small set for the transition kernel t(1)

n . Let the
“geometric drift function” V (θ, ϕ) ≡ 1, there exists λ < 1 and b <∞ such that

1 =

∫
Θ×Φ

V (θ∗, ϕ∗)T(1)
n ((dθ∗, dϕ∗)|(θ, ϕ),Gn) ≤ λV (θ, ϕ) + b1{(θ,ϕ)∈Θ×Φ}

then by Theorem 3.1 of Roberts and Tweedie (1996), for all (θ0, ϕ0) ∈ Θ× Φ, there exists
a probability measure Πn on Θ × Φ and constant ρ < 1 and R < ∞ such that for all
s = 1, 2, ... and all (θ0, ϕ0) ∈ Θ× Φ,∥∥∥T(s)

n − Πn

∥∥∥
V
≤ R V (θ0, ϕ0)ρs.

Since V = 1, we have uniformly geometric convergence:

lim
s→∞

sup
(θ0,ϕ0)∈Θ×Φ

∥∥∥T(s)
n − Πn

∥∥∥
V

= 0

In addition, for any (θ0, ϕ0) ∈ Θ× Φ,

0 ≤
∥∥∥T(s)

n (·)− Πn (·)
∥∥∥
TV
≤
∥∥∥T(s)

n − Πn

∥∥∥
V
,

by the squeeze theorem, we have:

lim
s→∞

sup
(θ0,ϕ0)∈Θ×Φ

∥∥∥T(s)
n (·)− Πn (·)

∥∥∥
TV

= 0.

Remark 2. Following the fact that, for any (θ, ϕ) ∈ Θ×Φ and Borel set B ⊂ Θ×Φ, there
exists a δ > 0 such that

U(1)(B|(θ, ϕ)) ≥ δµ(B).

following the proof of Lemma 2, we have:

U(1)(B|(θ, ϕ)) = U(1)(B|(θ, ϕ))−T(1)
n (B|(θ, ϕ),Gn) + T(1)

n (B|(θ, ϕ),Gn)

≤ sup
θ∈Θ,ϕ∈Φ

∣∣∣U(1)(B|(θ, ϕ))−T(1)
n (B|(θ, ϕ),Gn)

∣∣∣+ T(1)
n (B|(θ, ϕ),Gn)

≤ Cµ(B) sup
θ∗∈Θ\Θ̄κ,ϕ∗∈Φ

∣∣p(κ)(θ∗|Y, ϕ∗)− p(κ)
n (θ∗|Y, ϕ∗)

∣∣+ T(1)
n (B|(θ, ϕ),Gn) .

1The difference is that there is an additional term, the ratio of p
(κ)
n to p(κ), in our case. Since they are

positive and bounded functions defined on Θ×Φ, this ratio has a positive minimum on Θ×Φ. Hence, the
inequality in the original proof still holds.
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where C is a constant. Therefore, for any (θ, ϕ) ∈ Θ × Φ and Borel set B ⊂ Θ × Φ, we
have

T(1)
n (B|(θ, ϕ),Gn) ≥

(
δ − C sup

θ∗∈Θ\Θ̄κ,ϕ∗∈Φ

∣∣p(κ)(θ∗|Y, ϕ∗)− p(κ)
n (θ∗|Y, ϕ∗)

∣∣)µ(B).

Note that, by Lemma 1, for any outcome ω in probability space Ω, we have

sup
θ∗∈Θ\Θ̄κ,ϕ∗∈Φ

∣∣p(κ)(θ∗|Y, ϕ∗)− p(κ)
n (θ∗|Y, ϕ∗)

∣∣→ 0, when n→∞.

This is important. Since for any positive constant a < δ, there exists a N such that for all
n > N , we have

T(1)
n (B|(θ, ϕ),Gn) ≥ (δ − a)µ(B).

Hence, a common and same lower bound is well defined on this outcome ω.

D.7 Proof of Lemma 5

For any initial value (θ0, ϕ0) and s > 1 and function f : Θ× Φ→ [−1, 1], write

T(s)
n f − P (κ)

cut f = U(s)f − P (κ)
cut f + T(s)

n f −U(s)f.

We first concentrate on the second term T(s)
n f −U(s)f , for any 1 ≤ s0 < s, denote U(0) = 1

and T(0)
n = 1, we have, by a telescoping argument,∣∣∣T(s)
n f −U(s)f

∣∣∣
≤
∣∣∣T(s)

n f −T(s0)
n f

∣∣∣+
∣∣∣T(s0)

n f −U(s0)f
∣∣∣+
∣∣∣U(s)f −U(s0)f

∣∣∣
=
∣∣∣T(s)

n f −T(s0)
n f

∣∣∣+

∣∣∣∣∣
s0−1∑
k=0

(
U(k)T(s0−k)

n f −U(k+1)T(s0−k−1)
n f

)∣∣∣∣∣+
∣∣∣U(s)f −U(s0)f

∣∣∣
=
∣∣∣T(s)

n f −T(s0)
n f

∣∣∣+

∣∣∣∣∣
s0−1∑
k=0

U(k)
(
T(1)
n −U(1)

)
T(s0−k−1)
n f

∣∣∣∣∣+
∣∣∣U(s)f −U(s0)f

∣∣∣ .
Note that,

(
T(1)
n −U(1)

)
is the signed measure Dn defined in the proof of Lemma 2. By

the result of Lemma 2, we have

sup
θ∈Θ,ϕ∈Φ

‖Dn(·|(θ, ϕ))‖TV
a.s.−−→ 0,
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on the probability space Ω. Then by Egorov’s theorem, for any e > 0, there exists a set
E1 ⊂ Ω with P(E1) > 1 − e

2
such that supθ∈Θ,ϕ∈Φ ‖Dn(·|(θ, ϕ))‖TV uniformly converges

to 0 on E1. Hence, for any ε > 0, there exists a N1(ε), such that for all n > N1(ε),
supθ∈Θ,ϕ∈Φ ‖Dn(·|(θ, ϕ))‖TV ≤ ε on E1. Then, since the remaining terms are bounded by
1, there exist a constant C such that∣∣∣∣∣

s0−1∑
k=0

U(k)
(
T(1)
n −U(1)

)
T(s0−k−1)
n f

∣∣∣∣∣ ≤ Cs0ε.

Now, following the same reasoning as Lemma 4 and Theorem 3.1 of Roberts and Tweedie
(1996), U(s) uniformly converges to P

(κ)
cut in the sense of V -norm (V ≡ 1). Hence, for the

same ε, there exists a S1(ε) such that for any s > s0 > S1(ε),∣∣∣U(s)f −U(s0)f
∣∣∣ ≤ ε,

∣∣∣U(s)f − P (κ)
cut f

∣∣∣ ≤ ε.

By Lemma 1, we have that p
(κ)
n (θ|Y, ϕ) converges to p(κ)(θ|Y, ϕ) almost surely on prob-

ability space Ω. Then by Egorov’s theorem, for same e, there exists a set E2 ⊂ Ω with
P(E2) > 1− e

2
such that p

(κ)
n (θ|Y, ϕ) uniformly converges to p(κ)(θ|Y, ϕ) on E2. Hence on E2,

by the Remark of the proof of Lemma 4, for any Borel set B ⊂ Θ×Φ and (θ, ϕ) ∈ Θ×Φ,
there exists a N2 such that for all n > N2,

T(1)
n (B|(θ, ϕ),Gn) ≥ δ

2
µ(B).

By Theorem 2.3 of Meyn and Tweedie (1994), we have all T(1)
n (·|(θ, ϕ),Gn), when n > N2,

are uniformly ergodic in V -norm and have the same geometric convergence rate. Hence on
E2, there exists a S2(ε), such that for all s > s0 > S2(ε) and n > N2,∣∣∣T(s)

n f −T(s0)
n f

∣∣∣ ≤ ε.

Let N(ε) = max(N1(ε), N2) and S(ε) = max(S1(ε), S2(ε)). On set E2, all convergences
which involve S1(ε) and S2(ε) have geometric convergence rate. Thus, one can select a S(ε)
such that εS(ε)→ 0 when ε→ 0.

Let ε = (CS(ε) + 3)ε and set E = E1 ∩ E2 with P(E) > 1 − e. It is clear that ε → 0
when ε→ 0. We can conclude that, on set E, there exists N(ε) and S(ε) such that for any
n > N(ε) and s > S(ε), ∣∣∣T(s)

n f − P (κ)
cut f

∣∣∣ ≤ ε.
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Note that, for any Borel set B ⊂ Θ × Φ, we can let function f be an indicator function
1{x∈B}. Hence, for any initial value (θ0, ϕ0) ∈ Θ×Φ, and any ε > 0 and e > 0, there exists
constants S(ε) > 0 and N(ε) > 0 such that

P
({
P (κ)
n :

∥∥∥T(s)
n (·)− P (κ)

cut (·)
∥∥∥
TV
≤ ε
})

> 1− e.

for all s > S(ε) and n > N(ε).

D.8 Proof of Corollary 2

Given the result of global convergence in Corollary 1, and given a ϕ, there is a subset
Θ∗ ⊂ Θ such that

sup
θ∈Θ∗

∣∣p(θ|Y, ϕ)− p(κ)(θ|Y, ϕ)
∣∣ ≤ sup

θ∈Θ∗
‖∇θp(θ|Y, ϕ)‖2

√
d

10κ
,

where d is the dimension of θ. Following the proof of Lemma 1, we know that the con-
struction of the set Θ∗ is only related to the geometric shape of Θ, and it is not related
to the function and thus not related to ϕ. Since pcut is continuously differentiable, then
∇θ,ϕpcut(θ, ϕ) is continuous. This further implies ∇θp(θ|Y, ϕ) is continuous with respect to
θ and ϕ. Because Φ is compact, we have

sup
θ∈Θ∗,ϕ∈Φ

∣∣p(θ|Y, ϕ)− p(κ)(θ|Y, ϕ)
∣∣ ≤ sup

θ∈Θ∗,ϕ∈Φ
‖∇θp(θ|Y, ϕ)‖2

√
d

10κ
<∞.

Now since µ(Θ∗) = µ(Θ), we have the following bias term∣∣∣∣∫
Θ×Φ

f(θ, ϕ)Pcut(dθ, dϕ)−
∫

Θ×Φ

f(θ, ϕ)P
(κ)
cut (dθ, dϕ)

∣∣∣∣
=

∣∣∣∣∫
Θ∗×Φ

f(θ, ϕ)
(
p(θ|Y, ϕ)− p(κ)(θ|Y, ϕ)

)
p(ϕ|Z)dθdϕ

∣∣∣∣
≤
∫

Θ∗×Φ

f(θ, ϕ)
∣∣p(θ|Y, ϕ)− p(κ)(θ|Y, ϕ)

∣∣ p(ϕ|Z)dθdϕ

≤ sup
θ∈Θ∗,ϕ∈Φ

∣∣p(θ|Y, ϕ)− p(κ)(θ|Y, ϕ)
∣∣ ∫

Θ∗×Φ

f(θ, ϕ)p(ϕ|Z)dθdϕ

≤ sup
θ∈Θ∗,ϕ∈Φ

‖∇θp(θ|Y, ϕ)‖2

√
d

10κ

(∫
Θ∗×Φ

f(θ, ϕ)p(ϕ|Z)dθdϕ

)
.
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For any ε > 0, let

sup
θ∈Θ∗,ϕ∈Φ

‖∇θp(θ|Y, ϕ)‖2

√
d

10κ

(∫
Θ∗×Φ

f(θ, ϕ)p(ϕ|Z)dθdϕ

)
=
ε

2
,

let the solution of this equation be κ∗. We have the following bias term∣∣∣∣∫
Θ×Φ

f(θ, ϕ)Pcut(dθ, dϕ)−
∫

Θ×Φ

f(θ, ϕ)P
(κ∗)
cut (dθ, dϕ)

∣∣∣∣ ≤ ε

2
,

and this is always true in probability space Ω. Now by Theorem 2, for the same ε and
κ∗, there exists a N(κ∗, ε) such that for any N > N(κ∗, ε), there is a set E ⊂ Ω with
P(E) > 1− e and on this set the error term satisfies∣∣∣∣∣ 1

N

N∑
n=1

f(θn, ϕn)−
∫

Θ×Φ

f(θ, ϕ)P
(κ∗)
cut (dθ, dϕ)

∣∣∣∣∣ ≤ ε

2
.

Hence, combining the error term and bias term, on the set E we have∣∣∣∣∣ 1

N

N∑
n=1

f(θn, ϕn)−
∫

Θ×Φ

f(θ, ϕ)Pcut(dθ, dϕ)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
n=1

f(θn, ϕn)−
∫

Θ×Φ

f(θ, ϕ)P
(κ∗)
cut (dθ, dϕ)

∣∣∣∣∣+

∣∣∣∣∫
Θ×Φ

f(θ, ϕ)Pcut(dθ, dϕ)−
∫

Θ×Φ

f(θ, ϕ)P
(κ∗)
cut (dθ, dϕ)

∣∣∣∣ ≤ ε

Hence, we are done.
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