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Abstract 

Macroautophagy, hereafter referred to as autophagy, is a catabolic process that results in the 

lysosomal degradation of cytoplasmic contents ranging from abnormal proteins to damaged cell 

organelles. It is activated by diverse conditions, including nutrient deprivation and hypoxia. During 

autophagy, core autophagy-related (ATG) proteins mediate membrane rearrangements, which lead 

to the engulfment and degradation of cytoplasmic cargo. Recently, the nuclear regulation of 

autophagy, especially by transcription factors and histone modifiers, has gained increased attention. 

These factors are not only involved in rapid responses to autophagic stimuli, but also regulate the 

long-term outcome of autophagy. Now there are more than 20 transcription factors that have been 

shown to be linked to the autophagic process. However, their interplay and timing appear enigmatic 

as several have been individually shown to act as major regulators of autophagy. This Cell Science at 

a Glance and the accompanying poster highlights the main cellular regulators of transcription  involved 

in mammalian autophagy and their target genes. 

Introduction 

Autophagy is a pathway that cells use to degrade cytoplasmic contents, organelles, such as the ER and 

mitochondria, aggregate-prone proteins and various infectious agents (Levine and Kroemer, 2008). 

These substrates are engulfed by cup-shaped structures called phagophores that become 

autophagosomes after their edges extend and fuse. Completed autophagosomes can fuse with 

endosomes to form amphisomes (Ravikumar et al., 2009). Autophagosomes/amphisomes are then 

trafficked to the lysosomes with which they exchange content, enabling degradation of the autophagic 
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contents by the lysosomal hydrolases (Jahreiss et al., 2008). Autophagy is mediated by a set of so-

called ATG proteins (Xie and Klionsky, 2007). 

The primordial function of autophagy may be as a response to stresses such as starvation, as 

autophagic end-products can be released from lysosomes to enable some maintenance of the cellular 

energy status (Rabinowitz and White, 2010). Indeed, starvation leads to inhibition of mammalian 

target of rapamycin complex 1 (mTORC1), a negative regulator of autophagy, and activation of c-Jun 

N-terminal kinase (JNK), which stimulates autophagy (Wei et al., 2008). Many diseases are associated 

with autophagy dysregulation, and drugs modulating autophagy have been successful in several 

animal models of disease, especially neurodegenerative disorders. Neurodegenerative disorders, 

including Alzheimer’s, Huntington’s or Parkinson’s disease, involve the accumulation of protein 

aggregates in neurons (Decressac et al., 2013; Tsunemi et al., 2012). As autophagy acts as a cellular 

clearance mechanism, its activation appears especially promising in these diseases (Menzies et al., 

2015).  

The early years of autophagy research focused on the dynamic membrane rearrangements and the 

posttranslational modifications of ATG proteins, neglecting a potential nuclear regulation of 

autophagy (Füllgrabe et al., 2014). Indeed, the discovery that autophagy can be induced and is 

functional in enucleated cells lead to the assumption that nuclear events are of minor importance for 

this process (Tasdemir et al., 2008). 

However, it was already shown in 1999 in yeast that autophagy induction by nitrogen starvation 

results in the transcriptional upregulation of an autophagy-related gene within minutes (Kirisako et 

al., 1999). The research on transcriptional regulation of autophagy gained momentum in 2011 after a 

landmark paper that showed that transcription factor EB (TFEB), the master regulator of lysosomal 

pathways, regulates a wide range of autophagy-related genes (Settembre et al., 2011). 

Here, we aim to summarize the current knowledge about transcriptional regulators of autophagy and 

highlight their regulatory mechanisms in the accompanying poster. 

  

TFEB and ZKSCAN3 – the master autophagy regulators 

While transcriptional regulators of core mammalian autophagy-related proteins were previously 

known, the transcriptional regulation by TFEB enables a rapid induction of autophagy-related proteins 

that are involved in all steps of the process, and its overexpression was sufficient to induce autophagy 

(Settembre et al., 2011). During baseline conditions in nutrient-replete medium, TFEB is retained in 
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the cytoplasm through phosphorylation by the mammalian target of rapamycin (mTOR), which leads 

to its binding to 14-3-3 proteins. However, after autophagy activation by different stimuli, such as 

nutrient depletion (starvation) or rapamycin treatment, mTOR is inhibited, which results in TFEB 

becoming dephosphorylated and rapidly translocating to the nucleus (Martina et al., 2012) (see 

poster). There, TFEB binds directly to the promoters of a multitude of autophagy-related genes, which 

induce the expression of key factors that regulate autophagic flux, including ATG4, ATG9, microtubule-

associated protein 1 light chain 3B (MAP1LC3B), UV radiation resistance associated protein (UVRAG) 

and WD repeat domain phosphoinositide interacting protein (WIPI). Apart from its direct regulation 

of core autophagy genes, TFEB is also a master regulator of lysosomal biogenesis. Given that the 

completion of autophagic flux requires the degradation of cargo by the lysosomal compartment, TFEB 

has the ability to regulate multiple steps of the autophagic process (Settembre et al., 2011).  

The overexpression of TFEB alone was sufficient to alleviate disease associated with protein 

aggregation in rodent models. For instance, overexpression of TFEB rescues toxicity of -synuclein and 

protects dopaminergic neurons in a rat model of Parkinson’s disease that is induced by viral 

overexpression of -synuclein (Decressac et al., 2013); it also ameliorates toxicity by enhancing the 

clearance of misfolded polyglutamine-expanded (polyQ) huntingtin protein (Tsunemi et al., 2012) and 

the mutant androgen receptor that causes X-linked spinal and bulbar muscular atrophy (Cortes et al., 

2014). Gene transfer of TFEB alleviates pathology in a mouse model of alpha-1-anti-trypsin deficiency 

(Pastore et al., 2013). Moreover, activation of autophagy and lysosomal activity by TFEB attenuates 

the pathological phenotype in mouse models of Pompe disease (Spampanato et al., 2013). Taken 

together, regulation of autophagy by transcriptional activity of TFEB plays a significant role in various 

pathological conditions.  

Zinc-finger protein with KRAB and SCAN domains 3 (ZKSCAN3) represents the transcriptional 

counterpart of TFEB, as it represses the transcription of a number of autophagy-related genes, 

including Unc-51 like autophagy activating kinase 1 (ULK1) and MAP1LC3B (see poster). Upon 

autophagy induction, ZKSCAN3 translocates from the nucleus to the cytoplasm, allowing the 

transcriptional activation of target genes by TFEB. Significantly, ZKSCAN3 knockdown is sufficient to 

induce autophagy, while its overexpression can inhibit autophagy (Chauhan et al., 2013).  

Hence, by the concomitant translocation of TFEB from the cytosol to the nucleus and the translocation 

of ZKSCAN3 from the nucleus to the cytosol during autophagy, a wide range of autophagy-related 

genes are induced. This specific shuttling of transcription factors during autophagy is common to most 

transcriptional regulators of autophagy, including the forkhead box O (FOXO) family discussed next. 
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The FOXO family - location matters 

The FOXO family of transcription factors has been linked to diverse physiological functions including 

various developmental programs and tissue homeostasis. FOXOs are activated by a multitude of 

environmental stimuli to coordinate processes like glucose homeostasis, angiogenesis or stem cell 

maintenance. The FOXO family was also one of the first transcriptional regulators to be linked to 

autophagy (Zhao et al., 2007). Like TFEB, the FOXOs are regulated by phosphorylation and in their 

activated form, they translocate to the nucleus to induce the expression of a number of autophagy-

related genes, including ATG4, ATG12, BECN1, BCL2/Adenovirus E1B 19kDa interacting protein 3 

(BNIP3), MAP1LC3B, ULK1, vacuolar protein sorting 34 (VPS34) and GABA(A) receptor-associated 

protein like 1 (GABARAPL1) (Mammucari et al., 2007; Zhao et al., 2007; Sanchez et al., 2012) (see 

poster). Forkhead box K1 (FOXK1) counteracts FOXO3 by occupying an overlapping set of autophagy 

gene promoters in muscle and heart (Mammucari et al., 2007; Zhao et al., 2007; Schips et al., 2011). 

The shuttling of FOXK1 between the nucleus and cytoplasm depends on mTOR and chromosomal 

maintenance 1 (CRM1), and mTOR-inhibition by amino-acid starvation results in its dissociation from 

chromatin (Bowman et al., 2014). In addition, the nuclear translocation of FOXO1 has been correlated 

with the activation of the transcription of ATG5 (Xu et al., 2011), ATG14 (Xiong et al., 2012) and VPS34 

(Liu et al., 2009). In accordance with this concept, the transcriptional activity of FOXO1 was shown to 

also enable the autophagic function of Beclin 1 (Xu et al., 2011). (Beclin 1 associates with and regulates 

the activity of VPS34, a kinase that generates phosphatidylinositol 3-phosphate, which is critical for 

autophagosome biogenesis (Russell et al., 2013)). Interestingly, GATA-binding factor 1 (GATA-1), the 

master regulator of hematopoiesis, activates transcription of MAP1LC3A/B and its homologs 

(GABARAP, GABARAPL1, and GABARAPL2), both directly and indirectly, and this has been suggested 

to rely on direct transcriptional induction of FOXO3 by GATA-1 (Kang et al., 2012). The transcription 

factor X-box-binding protein 1 (XBP1) is another critical regulator for the activation and degradation 

of FOXO1. Additionally, XBP1 can directly bind to the promoter region of BECN1, thus acting as an 

autophagy activator or inhibitor depending on its splice variant (Margariti et al., 2013). Unlike TFEB, 

FOXO1 also acts as an autophagy inducer in the cytosol by direct binding to autophagy-related proteins 

(Zhao et al., 2010). 

In summary, members of the FOXO family can act as autophagy inducers and repressors depending 

on their cellular localization. This feature is shared with arguably the most prominent transcription 

factor in the human genome p53. 

p53 – Deciding between cell death and survival 
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Although activation of p53 has been described to inhibit mTORC1 and thus activate autophagy, several 

studies have shown that cytoplasmic p53 is a potent inhibitor of autophagy. The mechanisms for this 

inhibition are largely unknown (Green and Kroemer, 2009); however a posttranscriptional 

downregulation of MAP1LC3A by p53 has been suggested to be at least partly responsible (Scherz-

Shouval et al., 2010). The effect of p53 in the nucleus was investigated in a whole-genome study 

(Kenzelmann Broz et al.), which showed that the promoters of numerous autophagy-related genes, 

including ATG2, ATG4, ATG7, ATG10 and ULK1 (Kenzelmann Broz et al., 2013), were bound by p53 (see 

poster). Diverse inducers of autophagy, such as DNA-damage or activated oncogenes, lead to 

activation of p53, which results in enhanced autophagy, an effect that depends on its role as a 

transcription factor (Tasdemir et al., 2008). Furthermore, the other member of the p53 family, p63 

and p73, appear to have a similar range of autophagy-related target genes and are able to compensate 

for the loss of p53 to a certain extent during the induction of autophagy (Kenzelmann Broz et al., 

2013). For example, p-ΔNp63α can bind to the promoters of several autophagy genes, including ULK1, 

ATG5 and ATG7, as well as indirectly regulate autophagy through the transcription of miRNAs (Huang 

et al., 2012). p73, on the other hand, is inhibited by mTOR and induced by the classical inducer of 

autophagy rapamycin. As with p53, p73 has been shown to bind the promoters of a range of 

autophagy-related genes, including ATG5, ATG7 and GABARAP (Rosenbluth et al., 2008). 

In summary, the p53 family members have overlapping functions in regulating a number of autophagy-

related genes upon a diverse set of stimuli. Noteworthy, E2F1, one of the main co-regulators of p53 

with regard to life-or-death decisions made by the cell, is also an important transcriptional regulator 

of autophagy-related genes (Polager and Ginsberg, 2009). 

E2F1 and NF-κB – competing for the spotlight 

E2F1 activation induces autophagy, whereas reduction in its levels inhibits autophagy. E2F1 has a 

range of autophagy-related target genes, including ULK1, MAP1LC3 and BNIP3, and was also shown 

to indirectly regulate the transcription of ATG5 (Polager et al., 2008) (see poster). BNIP3 acts as a 

positive regulator of autophagy by disrupting the B-cell lymphoma 2 (BCL-2)-mediated inhibition of 

Beclin 1 (Tracy et al., 2007). Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) has 

been described as a molecular switch for transactivation of BNIP3 by inhibiting the binding of E2F1 to 

its promoter (Shaw et al., 2008). Hence, while E2F1 induces autophagy by activating the transcription 

of BNIP3, NF-κB inhibits this transactivation. Another connection between these two autophagy-

regulatory factors is the stabilization of the inhibitor of NF‑κB, IκB, by E2F1 (Polager et al., 2008). 

Conversely, NF-κB was shown to also induce autophagy-related genes, including BECN1 and 

sequestosome-1  (SQSTM1) (Copetti et al., 2009 and Ling et al., 2012). One should bear in mind that 
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it is not always clear if the transcriptional activity of a protein is always needed for induction of ATG 

genes or autophagy, as, for instance, E2F that lacks transcriptional activity can still induce autophagy 

(Garcia-Garcia et al., 2012). Interestingly, two classical apoptosis inhibitory proteins (IAPs), X-linked 

inhibitor of apoptosis protein (XIAP) and Baculoviral IAP repeat-containing protein 3 (BIRC3), have 

recently been shown to induce autophagy by upregulating BECN1 transcription through NF-κB 

activation (Lin et al., 2015). 

Thus, the transcription of the autophagy activator BNIP3 is mainly regulated by E2F1 and NF-κB. 

Moreover, E2F1 is one of a range of transcription factors known to become activated upon hypoxia, 

which, in turn, induces autophagy (Yurkova et al., 2008).  

Hypoxia and autophagy – Well studied but still enigmatic 

A surprisingly large number of studies have investigated transcriptional regulation of ATG genes using 

hypoxia to induce autophagy, and the induction of BNIP3 and BNIP3L by hypoxia-inducible factor 1α 

(HIF1α) has been described by a number of papers (Zhang et al., 2008; Bellot al., 2009; Pike et al., 

2013) (see poster). Interestingly, the degree of hypoxia appears to determine which transcription 

factors are activating autophagy. In moderate hypoxia, HIF1α activates BNIP3 transcription, whereas 

severe hypoxia leads to a response involving activating transcription factor 4 (ATF4) (Pike et al., 2013). 

ATF4 induces the transcription of MAP1LC3B under hypoxia by direct binding to a cyclic AMP response 

element binding site in the promoter of MAP1LC3B (Rzymski et al., 2010). Additionally, ULK1 is 

upregulated by ATF4 and ATG5 indirectly through ATF4-dependent transcriptional induction of DNA 

damage inducible transcript 3 (DDIT3) (Rouschop et al., 2010). 

c-Jun – Activated by diverse stresses 

The JNK pathway is activated by cytokines and environmental stresses (Raingeaud et al., 1995). Since 

autophagy is also activated upon cellular stress, a connection between both pathways is thus not 

unexpected. Annexin A2, which is necessary and sufficient for autophagy both in basal conditions and 

amino-acid starvation, was recently shown to be involved in the vesicular trafficking of autophagy and 

to be transcriptionally regulated by the JNK-c-Jun pathway under amino-acid starvation (Moreau et 

al., 2015) (see poster). Since Annexin A2 overexpression induces autophagy by itself, the JNK-c-Jun-

Annexin A2 transcriptional program appears to be a key process that regulates autophagy in response 

to starvation, even in vivo (Moreau et al 2015). Several studies have investigated the direct induction 

of autophagy genes by c-Jun, highlighting its role in the regulation of BECN1 and MAP1LC3B 

transcription (Jia et al., 2006; Li et al., 2009; Sun et al., 2011). 

The FXR-PPARα-CREB axis – the new kid on the block 
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Recently, the farnesoid X receptor (FXR) was highlighted by two publications as the first direct link 

between nuclear receptors and autophagy (Seok et al., 2014; Lee et al., 2014) (see poster). While both 

studies agree that an impressive number of core autophagy-related genes are directly repressed by 

FXR in the liver under fed conditions (compared to autophagy-inducing fasting conditions), they 

propose different regulatory mechanisms. According to Seok et al., the fasting transcriptional 

activator, cAMP response element-binding protein (CREB), upregulates autophagy genes, including 

ATG7, ULK1 and TFEB, which are otherwise repressed by FXR through the disruption of the functional 

complex between CREB and CREB-regulated transcription coactivator 2 (CRTC2) (Seok et al., 2014). On 

the other hand, Lee et al. described the opposing roles between FXR and another nutrient-sensing 

regulator, peroxisome proliferation factor-activated receptor α (PPARα). PPARα is activated by fasting 

and shares specific DNA binding sites (called DR1) with FXR. When FXR is active, the binding of PPARα 

is inhibited (Lee et al., 2014). Both mechanisms might act in concert, which is highlighted by the fact 

that under nutrient starvation, PPARα and CREB complexes occupy different regions of the MAP1LC3A 

and ATG7 genes. 

Interestingly, PPARα activation with Wy-14643 reduces proinflammatory responses by promoting 

activation of autophagy in an acute liver failure mouse model (Jiao et al., 2014). Activation of PPARα 

by gemfibrozil also upregulates the expression of TFEB, which, in turn, transcriptionally increases the 

levels of ATG proteins (Ghosh et al., 2015). PPARγ is also a master regulator of adipocyte 

differentiation (Jonker et al., 2012). However, the role of PPARγ-mediated transcriptional regulation 

of autophagy remains controversial. Indeed, Troglitazone, a PPARγ agonist, induces autophagy and 

cell death in bladder cancer cells (Yan et al., 2014), whereas another PPAR agonist, 15d-prostaglandin 

J2, suppresses autophagy in ischemic brain (Xu et al., 2013; Qin et al., 2014).  

Even more transcription factors – cell-type- and stimulus-dependent effects on autophagy 

An increasing number of transcription factors have been linked to the transcriptional activation of 

autophagy-related genes involved in all steps of the process. Most of these transcriptional activators 

share a functional translocation from the cytosol to the nucleus upon autophagy induction (Zhang et 

al. 2015). As a surprising example, proteasome 26S subunit non-ATPase 10 (PSMD10) was recently 

reported to translocate to the nucleus upon amino-acid starvation and bind to the transcription factor 

heat shock factor protein 1 (HSF1) at the ATG7 promoter to induce its transcription (Luo et al., 2015) 

(see poster). Noteworthy, autophagic flux and the expression of autophagy-related genes in the liver 

appear to follow a circadian rhythm. Hence, the transcriptional regulator of circadian rhythm, 

CCAAT/enhancer binding protein (C/EBP), beta (C/EBPβ), which can also be stimulated by amino-acid 

starvation, activates several ATG genes, including MAP1LC3B and its homolog GABARAPL1 (Ma et al., 
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2011). A recent study highlighted the presence of cAMP response elements (CREs) in the promoter of 

the MAP1LC3 homolog GABARAPL1, and, indeed, CREB-1 recruitment to the GABARAPL1 promoter 

was required for GABARAPL1 expression (Hervouet et al., 2015). However, the number of studies on 

transcription factors that are activated by the diverse inducers of autophagy and bind to promoters 

of autophagy-related genes far exceeds the scope of this short review and a list of mammalian 

transcription factors, which have been shown to regulate autophagy through the regulation of 

transcription of autophagy-related genes can be found in Table 1.  

 

Perspectives 

The work on TFEB has led to an explosion in research on transcriptional regulators of autophagy. Due 

to space limitations, this review can only act as an up-to-date introduction into this topic and is 

restricted to the mammalian system (for a more detailed review see e.g. Pietrocola et al. 2013; 

Füllgrabe et al., 2014; Zhang et al. 2015). The work on factors, such as TFEB, c-Jun and FOXO3, has 

shown us that the altered activity of a single transcription factor can be sufficient to either induce or 

inhibit autophagy. Considering this, the sheer number of transcription factors that act on key 

autophagy genes remains surprising. It is possible that transactivation of key autophagy genes by 

different transcription factors enables regulation of autophagy by different stress responses. 

Autophagy is induced by a range of environmental stresses and it is likely that there is an overlapping 

set of autophagy genes that is required for sustained autophagy independent of the inducer while the 

transactivation of other ATG genes may be specific to particular cellular stress types. Strikingly, key 

autophagy genes, especially MAP1LC3 and its homologs, as well as BECN1 and ULK1, have a vast 

number of transcriptional activators, indicating a key role for their transcriptional induction upon 

diverse autophagic stimuli. However, in some cases, it is unclear if the autophagy responses are driven 

necessarily by changes in a single target gene (e.g. MAP1LC3A/B), whose levels are not critical for 

autophagy regulation (Mizushima et al., 2004; Maruyama et al., 2014)), or are instead exerted by a set 

of targets. 

Noteworthy, in the past few years, it was shown that the nuclear impact on autophagy is not limited 

to the regulation of transcription factors, but also involves epigenetic marks, microRNAs and the 

specific shuttling of core autophagy proteins between the nucleus and cytosol (reviewed in Füllgrabe 

et al., 2013). The interplay between these factors during autophagy has only been investigated in a 

few studies, but these highlight a very complex picture of histone modifications, DNA methylation and 

nuclear/cytosolic shuttling, which all need to be carefully controlled in a cell to achieve the desired 

level of autophagic flux. How these factors are interconnected to enable different autophagic 
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outcomes remains one of the most intriguing questions in the field. It will also be important to assess 

cell-type specificity for transcriptional regulators of autophagy responses in future.   
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Table 1. Transcription factors regulating mammalian core autophagy genes 

Gene Transcription Factor Reference 

Regulation of autophagy induction 

MTOR ATF5 Sheng Z. et al., 2011 

ULK1 ATF4 Pike L.R. et al., 2013 

  C/EBPb Ma D. et al., 2011 

  CREB Seok S. et al., 2014 

  E2F1 Polager S. et al., 2008 

  FOXO3 Schips T.G. et al., 2011 

  KLF4 Liao X. et al., 2015 

  p53 Gao W. et al., 2011, Kenzelmann Broz D. et al., 2013 

  ΔNp63α Huang Y. et al., 2012 

  FOXK1 Bowman C.J. et al., 2014 

  FXR Seok S. et al., 2014 

  ZKSCAN3 Chauhan S. et al., 2013 

ULK2 KLF4 Liao X. et al., 2015 

 TFE3 Perera R.M. et al., 2015 

  p53 Kenzelmann Broz D. et al., 2013 

  FOXK1 Bowman C.J. et al., 2014 

ATG13 FOXK1 Bowman C.J. et al., 2014 

Vesicle nucleation 

BECN1 c-Jun Li D.D. et al., 2009 

  FOXO1  Fiorentino L. et al., 2013 

  FOXO3A Sanchez A.M. et al., 2012 

  NF-κB Copetti T. et al., 2009, Lin F. et al., 2015  

  PPARα Lee J.M. et al., 2014 

  XBP1 Margariti A. et al., 2013 

  ΔNp63α Huang Y. et al., 2012 

  FXR Lee J.M. et al., 2014 

  STAT-1 McCormick J. et al., 2012 

ATG14 FOXOs Xiong X. et al., 2012 

VPS34 FOXO1  Liu H.Y. et al., 2009 

  FOXO3 Mammucari C. et al., 2008 

  PPARα Lee J.M. et al., 2014 

  FOXK1 Bowman C.J. et al., 2014 

  FXR Lee J.M. et al., 2014 

BCL2 MITF and TFE3 Martina J.A. et al., 2014 

  NF-κB Tamatani M. et al., 1999 

AMBRA1 FOXK1 Bowman C.J. et al., 2014 

UVRAG MITF and TFE3 Martina J.A. et al., 2014 

  TFEB Settembre C. et al., 2012 

  p73 Rosenbluth J.M. et al., 2009 

ATG9A ΔNp63α Huang Y. et al., 2012 

ATG9B MITF Perera R.M. et al., 2015 
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  TFE3 Martina J.A. et al., 2014 

  TFEB Settembre C. et al., 2011 

Vesicle elongation 

ATG3 CREB Seok S. et al., 2014 

  TFE3 Perera R.M. et al., 2015 

  ΔNp63α Huang Y. et al., 2012 

  FXR Seok S. et al., 2014 

ATG4 GATA-1/FOXO3 Kang Y.A. et al., 2012 

  SREBP-2 Seo Y.K. et al., 2011 

  p53/p63/p73 Kenzelmann Broz D. et al., 2013 

  ΔNp63α Huang Y. et al., 2012 

ATG5 DDIT3 Rouschop K.M. et al., 2010 

  CREB Seok S. et al., 2014 

 E2F1 Polager S. et al., 2008 

  FOXO1  Fiorentino L. et al., 2013 

  ΔNp63α Huang Y. et al., 2012 

  FXR Seok S. et al., 2014 

  GATA-1 Kang Y.A. et al., 2012 

ATG7 CREB Seok S. et al., 2014 

  PPARα Lee J.M. et al., 2014 

  PSMD10/HSF1 Luo T. et al., 2015 

  p53/p63/p73 Kenzelmann Broz D. et al., 2013 

  ΔNp63α Huang Y. et al., 2012 

  FXR Seok S. et al., 2014 

ATG10 MITF Perera R.M. et al., 2015 

  SOX2 Cho Y.Y. et al., 2013 

  TFE3 Perera R.M. et al., 2015 

  p53/p63/p73 Kenzelmann Broz D. et al., 2013 

  ΔNp63α Huang Y. et al., 2012 

  FXR Seok S. et al., 2014 

ATG12 FOXO1  Liu H.Y. et al., 2009 

  FOXO3 Zhao J. et al., 2007 

  GATA-1/FOXO3 Kang Y.A. et al., 2012 

  FOXK1 Bowman C.J. et al., 2014 

ATG16 MITF, TFE3 and TFEB Martina J.A. et al., 2014 

  FXR Seok S. et al., 2014 

BNIP3 C/EBPb Ma D. et al., 2011 

  E2F1 Yurkova N. et al., 2008 and Shaw J. et al., 2008 

  FOXO3 Mammucari C. et al., 2007   

  HIF1 Zhang H. et al., 2008 and Bellot G. et al., 2009 

  PPARα Lee J.M. et al., 2014 

  FXR Lee J.M. et al., 2014 

  NF-κB Shaw J. et al., 2008 

  pRB/E2F Tracy K. et al., 2007 

MAP1LC3A/B ATF4 Rouschop K.M. et al., 2010 and Milani M. et al., 2009 

  C/EBPb Ma D. et al., 2011 
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  c-Jun Jia G. et al., 2006 and Sun T. et al., 2011 

  CREB Seok S. et al., 2014 

  E2F1 Polager S. et al., 2008 

  FOXO1  Fiorentino L. et al., 2013 

  FOXO3A Sanchez A.M. et al., 2012 

  GATA-1/FOXO3 Kang Y.A. et al., 2012 

  MITF and TFE3 Perera R.M. et al., 2015 

  PPARα Lee J.M. et al., 2014 

  SREBP-2 Seo Y.K. et al., 2011 

  TFEB Settembre C. et al., 2011 

  FOXK1 Bowman C.J. et al., 2014 

  FXR Lee J.M. et al., 2014 

  ZKSCAN3 Chauhan S. et al., 2013 

GABARAP GATA-1/FOXO3 Kang Y.A. et al., 2012 

  PPARα Lee J.M. et al., 2014 

  FXR Seok S. et al., 2014 

GABAPAL1 C/EBPb Ma D. et al., 2011 

  CREB Hervouet E. et al., 2015 

  FOXO1  Liu H.Y. et al., 2009 

  FOXO3A Sanchez A.M. et al., 2012 

  GATA-1/FOXO3 Kang Y.A. et al., 2012 

  MITF, TFE3 and TFEB Martina J.A. et al., 2014 

  PPARα Lee J.M. et al., 2014 

  FXR Lee J.M. et al., 2014 

GATE-16 GATA-1/FOXO3 Kang Y.A. et al., 2012 

 ZKSCAN3 Chauhan S. et al., 2013 

SQSTM1 C/EBPb Ma D. et al., 2011 

  KLF4 Riz I. et al., 2015 

  MITF and TFE3 Perera R.M. et al., 2015 

  NF-κB Ling J. et al., 2012 

  TFEB Settembre C. et al., 2011 

  β-catenin/TCF Petherick K.J .et al., 2013 

Retrieval 

ATG2 CREB Seok S. et al., 2014 

  TFE3 Perera R.M. et al., 2015 

  p53 Kenzelmann Broz D. et al., 2013 

  FXR Seok S. et al., 2014 

WIPI MITF, TFE3 and TFEB Martina J.A. et al., 2014 

  PU.1 Brigger D. et al., 2014 

  TFEB Settembre C. et al., 2011 

  FXR Seok S. et al., 2014 

  ZKSCAN3 Chauhan S. et al., 2013 
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•TFEB is retained in the cytoplasm where it binds to 14-3-3 proteins. Starvation results in its

dephosphorylation and translocation to the nucleus.

• MITF/TFE3 share activation pathways and have overlapping target genes to TFEB.

•ZKSCAN3, is a repressor of the transcription of ATG genes. Upon starvation, ZKSCAN3

translocates from the nucleus to the cytoplasm allowing the transcriptional activation of target

genes by TFEB.

• When activated, FOXOs translocate to the nucleus to induce the expression of a number of

ATG genes. GATA-1 acts with FOXO3 to upregulate autophagy. Alternative splice variants of

XBP1 either inhibit autophagy by degrading FOXO1, or induce autophagy by transactivating

BECN1. In the cytosol, acetylated FOXO1 binds and activates ATG7.

• FOXK1 counteracts FOXO3 by occupying an overlapping set of promoters.

The FOXO family
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• Inducers of autophagy enhance the transcriptional activity of p53 leading to the expression of

several ATG genes.

• The p53 family members, p63 and p73, are able to partly compensate for the loss of p53.

• Under prolonged starvation, cytoplasmic p53 inhibits autophagy through posttranscriptional

down-regulation of MAP1LC3.

TFEB and ZKSCAN3

14-3-3 

TFEB 

Autophagy 
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E2F and NK-κB

E2F1 

Transcription ATG5 (indirect)
MAP1LC3
ULK1

C
yto

so
l

N
u

cle
u

s

E2F1 

Transcription 
BNIP 3NF-κB 

BCL-2 

Beclin1 
Beclin1 

NF-κB 

BNIP3 

Transcription 
BECN1
SQSTM1

IkB Stabilization 

XIAP/ 
BIRC3 

Complex disruption 

• Upon medium hypoxia, HIF1α activates BNIP3 and BNIP3L transcription.

• Severe hypoxia leads to the activation of ATF4, which induces ULK1, MAP1LC3B and

ATG5.

Hypoxia
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Transcription 
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HIF1α 

Transcription 

ATF4 

ULK1
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ATG5 (indirect through DDIT3)

Hypoxia

HIF1α ATF4 

• E2F1 and NF-κB mainly regulate autophagy by opposing effects on BNIP3 transcription. BNIP3

positively regulates autophagy by disrupting the BCL-2 mediated inhibition of Beclin-1.

• NF-κB generally inhibits autophagy but can also induce autophagy-related genes including

BECN1 and SQSTM1. The amplification of two inhibitors of apoptosis proteins XIAP and BIRC3

induces autophagy through the up-regulation of BECN1 transcription via NF-κB.
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• Annexin A2 is involved in the vesicular trafficking of autophagy and is transcriptionally

regulated by the JNK-c-Jun pathway under starvation.

• FXR was shown to repress most core ATG genes in the liver under fed conditions.

• The fasting transcriptional activator CREB and the nutrient-sensing regulator PPARα

have both been described to work in opposition to FXR.

•CREB upregulates autophagy genes through the disruption of the functional CREB-

CRTC2 complex.

• PPARα, activated by starvation, shares specific DNA binding sites with FXR. While FXR

is active, the binding of PPARα is inhibited.

The FXR/PPARα/CREB axis 
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Other autophagy induced transcription factors
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• The proteasome subunit PSMD10 translocates under starvation to the nucleus and binds

the transcription factor HSF1 onto the ATG7 promoter.

• C/EBPβ activates several ATG genes in the liver.

• CRE elements were found in the promoter of GABARAPL1 and CREB-1 recruitment was

required for GABARAPL1 expression.

•β-catenin/TCF4 inhibit SQSTM1 transcription under baseline conditions. Upon autophagy-

induction, MAP1LC3 binds β-catenin and leads to its degradation.

• Cell-sterol depletion increases SREBP-2 nuclear localization and ATG gene expression.

Transcriptional regulation of autophagy 
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