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Abstract

Taking the Hall-Petch relationship as a starting point, the factors contributing to-

wards magnesium alloys strengthening are analysed, and their relative importance quan-

tified. Solid solution strengthening is modelled employing a power-law approach. The

effects of various processing schedules are reviewed, showing that these play a relatively

minor role. Grain refinement effects are described employing thermodynamics and ki-

netic formulation via the Interdependence Theory approach. The effects of the rare

earths are examined, and it is shown that their major contribution is towards grain size

control, an effect often in conflict with solid solution strengthening. A computational

approach is proposed, successfully modelling 104 grades reported in the literature. The

approach may aid in the tailoring and design of magnesium alloys for yield strength.

Keywords: Magnesium alloys; Yield strength; Grain refinement; Computational thermody-

namics; Alloy design
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1 Introduction

There is recent increased effort in the discovery of new alloys. A major related research

programme in Europe is Accelerated Metallurgy, which is motivated by the fact that only

10% of the possible metallic ternary systems is known [1]. An important family of engineering

alloys is that based on Magnesium. Magnesium is one of the most common elements on Earth,

and its potential industrial applications have increased in the last fifty years due to a better

understanding of its alloying behaviour with other elements. Mg is the third most commonly

used element in structural applications, after aluminium and iron, due to its excellent specific

mechanical properties [2]. Even so, its mechanical properties are far from those displayed

by other alloys, and improvements are always required. Mg alloys display low ductility

and poor cold workability; thus, the material is frequently produced by casting without

further mechanical processing. To optimise Mg alloys, extensive work has been performed in

understanding the role of its elemental additions. Only to mention some of them, additions

of Zr or Al can dramatically reduce the as-cast grain size [3, 4], increasing of the yield

strength, σY . Zn improves castability [2], and additions of rare earth elements improve σY and

optimise creep resistance via solid solution precipitation hardening [5]. Nevertheless, results

in the literature display scattered information and are frequently confined to a single effect.

Theories on grain size refinement, solid solution and grain boundary strengthening, and

stored deformation in the material have been developed to explain each corresponding effect.

However, these effects have never been explored in a combined manner. In addition to that,

different compositions, processing and mechanical testing conditions need to be quantitatively

examined. The objective of this work is to combine a number of theoretical studies to describe

the mechanical response of Mg-alloys. Several strengthening mechanisms are considered

simultaneously. A unified approach is produced aimed at understanding how each factor

influences σY , leading to alloy design with improved strength. The general model is based on a

factor decomposition of the Hall-Petch relationship [6, 7], where each contribution is analysed

and validated with experimental datasets available from the literature. Chemical composition

and thermo-mechanical processing are employed as input to predict σY , validating the model

2



with 104 alloys.

2 Modelling the contributions to yield strength

The Hall-Petch theory [6, 7] predicts an inverse relationship between the yield strength, σy,

and the mean grain size, Dgb:

σy = σ0 +
ky√
Dgb

(1)

where σ0 is the friction stress and kY is the strengthening coefficient. The description of

these parameters is usually by fitting to experimental data by the linear square method.

Although there are a number of studies focusing on characterizing σ0 and kY , experimental

results display very scattered data. This is related to various processing techniques, chemical

composition and testing methods. The aim of this study is to combine several theoretical

studies to produce a unified approach with the intention to understand how each factor

influences σY , leading to alloy design with improved properties. Each parameter of Equation

(1) is now examined separately.

2.1 Friction Stress

The friction stress σ0 term is grain size independent and can be decomposed into three

different contributions:

σ0 = σfric + σp + ∆σs (2)

σfric is directly related to the critical resolved shear stress τCRSS of the predominant

slip system. It has been found that different slip modes are activated in compression and

tension. For instance, deformation in HCP under compression perpendicular to the basal

poles displays a dominant basal slip activity [8]. The estimated value for basal slip in pure

Mg of τCRRS lies around 1.5 MPa [9], and in consequence σfric is ≈ 5 MPa, by using the

Taylor orientation factor. On the other hand, tensile deformation shows a strong pyramidal

slip activity, where τCRRS is in the range of 5 MPa [9], thus σfric ≈ 15 MPa. This effect can

be observed as a function of grain size in Figure 1, where two sets of experiments of extruded
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pure Mg tested in tension [10] and compression [11] are depicted, showing a difference of 15

MPa between both conditions without change in ky. In addition to this, two other conditions

for as-cast Mg-0.8Zn (at%) tensile [12] and compressive tests [13] show a difference of 10 MPa,

without effect on ky. The difference between both results is small and fits the predicted value

from Bhattacharya [9].

A residual stress σp related to the applied thermo-mechanical processing method is present.

This term can be considered negligible for the as-cast material as no mechanical work is ap-

plied. A comparison between sets of experiments on pure Mg in as-cast [12], rolling [14] and

extrusion [10] shows a constant hardening effect of rolling and extrusion of 18-22 MPa. This

is depicted in Figure 2, where three sets of experiments are plotted. Such increase can be

related to additional dislocation storage during processing. This term can differ under differ-

ent processing techniques, such as severe plastic deformation, where additional deformation

mechanisms are present.

A solid solution strengthening contribution ∆σs is also present. This effect has been the

subject of several studies [15, 16, 17, 18]. A power law relationship is assumed ∆σs = BiX
n
i ,

where Xi is the solute content of element i and Bi is a constant for element i. Two exponents

have been considered n = 1/2 for Fleischer approach [16] and n = 2/3 for Labusch approach

[18]. Both exponents show similar agreement with experimental data [19]. It is assumed

that:

Bi = 3µεmZ (3)

where m = 3/2 for Fleischer’s and m = 4/3 for Labusch’s, µ is the shear modulus of the

alloy, Z is a fitting constant and ε is a function of the atomic size misfit δ due to the strain

field of the solute in the solvent, and the modulus misfit η accounts for the the relative

change in shear modulus. These two parameters, η and δ, are respectively dependant upon

the compositional depdendence of µ, the shear modulus, and a, the lattice parameter [5]:

η =
dµ

dX

1

µMg

=
µi − µMg

µMg

; δ =
da

dX

1

aMg

=
ai − aMg

aMg

(4)
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where µMg and µi are the shear modulus of Mg and element i respectively, and aMg and ai

are the atomic size of Mg and element i. The final expression for ε is [16, 20]:

ε = (η′2 + α2δ2)1/2 ≈| η′ | +α | δ | (5)

where η′ = η/(1+0.5|η|) and α accounts for the difference in the interaction forces between the

screw and edge dislocations, respectively, and the solute atom [21]. It is generally accepted

that 3 < α < 16 is for screw dislocations and α > 16 is for edge dislocations [22].

Irrespective of the model, it is generally assumed that the influence of solute content

on yield strength scales with δ and η′. Both parameters are shown in Figure 3 for several

elements. A systematic study of the effect of the critical resolved shear stress in Mg alloys

with additions of Al, Cd, In, Li, Pb, Tl and Zn was carried out by Akhtar [22]. The largest

hardening effect was for Al and Zn, followed by Pb, where the elements Li, Cd, Tl and

In showed little contribution. A similar conclusion was reached by Lukáč [20], although

the hardening effect of Cd was larger than In, and close to Al and Zn. Such behaviour is

highlighted in Figure 3, where the value of δMg and η′Mg of each element is depicted; here δMg

(bottom axis) and η′Mg (left axis) correspond to δ and η′ of Equation (5) with respect to Mg.

In this figure, the grey squares correspond to atoms with negligible effect and grey circles

to atoms with larger effect. In both works, α = 16 was taken for Labusch approximation,

which considers screw dislocations as dominant, as expected for low temperature dislocations

behaviour in HCP [23]. In addition to this, it has been extensively reported a large solid

solution strengthening effect from rare earth (RE) elements, such as Y, Gd, Ce, Nd and Yb

[24, 5, 25, 26, 27, 28], which are displayed with grey rhombi in Figure 3. This extraodinary

effect is not explained by the solid solution hardening models. We reached the same conclusion

by studying experimental observations in Mg-Zn [29, 12, 13, 30], Mg-Al [29, 19], Mg-Sn [31]

and systems with RE elements, such as Mg-Y [5, 32, 11] and Mg-Gd [33]. The increase in

yield strength produced by the additions of RE elements is substantially higher than the

effect of Zn, Al and Sn, in spite of |δMg| being similar.

A similar effect can be observed for Cu alloys [21] by studying the additions of Al, Au, Cd,
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Ga, Ge, In, Mg, Ni, Si and Zn, where a remarkable increase in solid solution strengthening

is achieved with Cd, In and Mg. Figure 3 shows the corresponding values of δCu (top axis)

and η′Cu (right axis) for different elements. As shown in Figure 3, the exceptions lie on the

elements with a positive value of δi. For Mg alloys, δMg >0.1 this corresponds to Y, Gd, Ce,

Nd and Yb, and for Cu alloys δCu >0.15 corresponds to Cd, In and Mg. This suggests that

the sign of atomic size misfit induces a different behaviour on yield strength. A positive value

of δ is related with compressive strains around the solute atom, which act as strong barriers

for moving dislocations. A negative δ value would produce tensile strains whose effect seems

to be more moderate than their compressive counterparts, according to the current results.

The fitted value in this work for Y is BY = 800 MPa (at.)−2/3 and together with the reported

value BGd = 1168 MPa (at.)−2/3 in [33], are in contrast with the fitted value of BZn = 40 MPa

−2/3 (reported as BZn = 43 MP at−2/3 [22]) and BAl = 39 MPa at−2/3 [22], which correspond

to the highest values obtained from the solid solution models.

2.2 Grain Size

Grain size refinement is a major handicap in Mg alloys. Pure as-cast Mg microstructures

show grain sizes in the order of 1000 µm [4, 34, 12], which display very undesirable mechanical

properties. Additional thermo-mechanical treatments can lead to grain size reductions, but

most Mg components are now produced by high-pressure diecasting [2]. This has encouraged

deep studies on the effect of grain refinement by including additional solute elements. The

effect of Zr in small quantities is remarkable, leading to grain size reductions down to 50–

100∼ µm [3]. The extensive work developed by StJohn and Easton [4, 34, 3, 35] led to the well

accepted Interdependence Theory [36]. Under the assumption of low thermal conductivity,

this theory can also be applied to Al [37, 38] and Ti alloys [38]. This theory is based on

a high nucleation rate from the liquid due to the presence of solute elements controlled by

constitutional undercooling. The final grain size during casting (Dgb) is dependant on the

diffusion coefficient of the respective element on Mg, D, the growth velocity of the solid-liquid

interface, v, the undercooling required to cause nucleation, ∆T , the fraction of particles that
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successfully nucleate a grain, f , the total particle density, ρ, and a parameter called the

growth restriction factor Q = Xq = Xm(k − 1), where m is the slope of the liquidus in a

binary phase diagram, k its partition coefficient and X is the solute content in the alloy, as

shown in Equation (6).

Dgb =
1

3
√
ρf

+
D∆T

vQ
= a0 +

a1
Q

(6)

The optimisation of Q is consistent with increasing σY , which happens for atoms with high

solubility (maximising X), together with k → 0 (0 < k < 1) and m → ∞. The conditions

of high solubility and k → 0 can be in competition, since atoms with high solubility may

not have a low partition coefficient k. On the other hand, the condition for constitutional

undercooling is that the temperature gradient is lower than mX(1/k−1)v/D [39], and higher

values of m and/or 1/k help in the nucleation and growth of new grains.

Experimental evidence confirms this dependence of Mg alloys grain refinement with ad-

ditions of Zr, Al, Zn, Sr, Ca and Si [3]. This approach has also been observed to apply in Al

alloys with additions of Si, Sr, Ti and Cu [37]. The variation of a0 and a1 for the different

alloying elements in Mg is small and the major effect lies on Q. Thus, its estimation is of

paramount importance for describing the final grain size of Mg as-cast alloys.

Thermodynamics software can be used to calculate m and k, by computing the liquid-

solid transformation of each solute element on Mg. In addition to that, CALPHAD method

and updated databases of Mg can be applied for higher order systems to compute accurately

these parameters. The results for a variety of solute elements have been compared with

reported values in the literature for binary systems [4]. The values are shown in Table 1

together with the solid solubility limit on Mg for each element. The agreement between the

computed parameters by StJohn [4] and this work is good, with the exception of Ca and

Si, which values are lower than those reported in the literature. In addition to that, 9 more

elements are also included in Table 1, these have not been reported before.

Zr is the major grain refiner, with a high value of q. Taking into account the solubility in

Mg, the higher values of Q are for Zr (79.2 K), Al (50.4 K), Sc (47 K), Ag (40 K) and Zn (38

K), followed by the rare earth elements such as Gd (28 K), Ge (22 K), Y (21 K), with similar

7



values to Sn (20). With the computed values of m and k, the relationship between Dgb and

1/Q is depicted in Figure 4 with the fitted values of a0 and a1 of Equation (6), which are

shown in Table 2. For Mg-Al alloys, such values correspond to data from [4, 2, 19, 40]. The

values of a0 and a1 vary from one element to another, but it is clear a distinctive behaviour

of a1 for RE elements, with much lower values than for the rest of the elements. The grain

refinement of RE elements is important, even for very a low concentration of RE. From Figure

4 it is clear that the value of for the RE is much lower than others elements. The slope a1 is

dependent on D, ∆T and inverse to v (Equation (6)), and it is expected that the diffusion of

RE in Mg could be low due to a large atomic misfit. This parameter, D, frequently display

large differences from one element to another, and could be the reason for the low values of

a1.

2.3 Hall-Petch hardening parameter kY

There is experimental evidence that the hardening parameter kY varies with solute content

in a variety of materials [12, 41, 42, 43]. The dependence of this parameter on the shear

modulus µ and Burgers vector b is considered in different models developed in the past,

such as the pile-up model by Hall [6] with kY ∝ (µb)0.5, the Ashby’s dislocation density

model [44] where kY ∝ µb0.5 and the flow stress model [45, 46, 47] where the dependence

is kY ∝ µb. Nevertheless, full understanding of the solute atoms effect on kY has not been

achieved. A Taylor expansion of µmbn can be performed by assuming linear behaviour of

both parameters in the range of the solid solubility of the alloying elements µ = µMg +X∆µ

and b = bMg + X∆b. By applying those models, the variation of kY with solute content

becomes always proportional to composition:

X(β∆b+ ν∆µ) ≡ X∆kY (7)

where β and ν are constants dependant on the magnitude of the Burgers vector of Mg

and shear modulus. Expressions for β and ν are derived in the Appendix, along with its

generalisation to multicomponent systems.
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From the set of experiments considered in this work, a direct study of the variation of

kY with composition has been performed for Mg-Zn [13, 12] and Mg-Y [11]. The results are

shown in Figure 5, where the effect of Zn on kY is noticeable. On the other hand, kY has little

variation with the addition of Y. The computation of ∆kY for other elements is not direct

since each solute content displays a different grain size, but it has been possible to compute

by fitting the data on the systems Mg-Al [19], Sn [48] and Gd [33]. Following Equation (7)

we propose the general equation:

σy = σfric + σp +BiX
2/3
i +

kY,Mg +Xi∆kY,i√
Dgb

(8)

where kY,Mg = 0.21 (MPa m0.5) is the strengthening coefficient of pure Mg, Xi is the atomic

solute content of element i and ∆kY,i its variation on kY . The corresponding values of kY,i

are shown in Table 3. With this complete model, both parameters Bi and ∆kY,i are fitted

simultaneously per element i. The computed value for BGd =900 MPa (at.)−2/3 is close to

BGd = 1168 MPa (at.)−2/3 reported at [33], although the value of Al, BAl =120 MPa (at.)−2/3,

varies significantly from BAl = 39 MPa at−2/3 calculated at [22]. It is remarkable that the

effect of Zn is much higher than that of any other considered element. This is not surprising

if we consider the values of ∆b and ∆µ of these elements with its effect on kY . The expected

variation of the shear modulus ∆µ of Zn is much higher than for the rest of elements, around

∆µZn = 26 GPa/at versus ∆µY = 9 GPa/at, ∆µAl = 9 GPa/at, ∆µGd = 5 GPa/at and

∆µSn = 1 GPa/at; while the Burgers vector variation is similar in all solute elements. Thus,

a higher effect on kY is expected.

3 Application of the model

The model described in Equation (8) has been developed for binary systems. The extension to

many solute elements can be performed following the approach by Gypen and Deruyttere [49,

50] for the solid solution strengthening and adding the effect of each solute in the Hall-Petch

strengthening parameter kY , as deducted in the Appendix. The final expression becomes:
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σy = σfric + σp +
∑
i

(
B

3/2
i Xi

)2/3
+
kY,Mg +

∑
iXi∆kY,i√

Dgb

(9)

This model has been applied to pure Mg [10, 11, 12, 14], the binary systems Mg-Al

[2, 19], Mg-Zn [12, 13, 29], Mg-Sn [48], Mg-Y [5, 11], Mg-Gd [33], as well as to higher

order systems such as Mg-Al-Zn [51, 52], Mg-Al-Yb [53] and Mg-Y-Gd [33]. The results

are shown in the experimental vs. predicted σY plot in Figure 6, where the legend contains

each composition together with its corresponding reference. A R2=0.95 indicates a very good

agreement with the 104 data points, which covers 6 solute elements, different testing methods

and thermomechanical processes.

Such model can be used to quantify the effect of each element in the solid solution on

yield strenght, and to understand which contribution to the Hall-Petch relationship prevails.

The relationship between δMg, η
′
Mg and max(Q), i.e. the product of the maximum solubility

and q from Table 1, is shown in Figure 7 for various solute elements. By taking into account

the elements with enough solubility to display a certain effect on the grain size, there are

clear trends relating max(Q) with δMg and η′Mg. This is depicted in the projections onto the

planes max(Q) vs. η′Mg (in red) and max(Q) vs. δMg (in green). The more the elastic misfit,

the more is the expected growth restriction factor, which increases also with low values of

atomic misfit. Thus, small atoms with high shear modulus seem to help in controlling grain

size. That means that, during the liquid-solid transformation, the solute concentration in the

liquid is close to the solute content of the material X, which is more affected by the atomic

misfit, since the shear modulus does not exist in the liquid, but also the solute concentration

in the solid is much lower than X, where µ could also play a role. On the other hand, large

atoms with low shear modulus have little effect on grain size.

A flow chart illustrating the design process of Mg alloys is depicted in Figure 8, where

the physical parameters and models are related to the final value of σY . The main physical

parameters are the Burgers vector, b, the shear modulus, µ, and the thermodynamic magni-

tudes m and q. The parameters used to compute a0 and a1 (i.e. D, v, ∆T , ρ and f), are of

lower importance, since the dependence of a0 and a1 depicted in Figure 4 show little variation
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from one element to another, apart for the RE elements, which form a separate group. There

is a common dependence of Bi and kY on the parameters b and µ. This dependence is better

understood for Bi, with Fleisher’s and/or Labusch’s approaches, than for kY . Even so, from

the results shown in this work, Bi is more related to the atomic misfit, while kY seems to

be more dependant on the elastic misfit. As elastic and atomic size misfits show certain

inverse relationship (see Figure 3), it is not surprising that Bi and kY are inversely related,

as suggested by the data shown in this work. This is highlighted in the fitted data shown

Table 3 for Bi and kY . The large value of Zn on ∆kY is in contrast with its low solid solution

hardening effect, while the opposite is true, especially for RE elements, with large values of

Bi and negligible variation on kY . This demands a compromise between Bi and kY , since

both cannot be simultaneously optimised. On the other hand, from the results displayed in

Figure 7, the growth restriction factor parameter, Q, is also related with atomic and elastic

misfit. Thus, fine grains are expected for solute atoms with with higher elastic misfit and low

atomic size misfit. It is clear that, b and µ are key parameters in the design of new alloys.

4 Conclusions

The combination of several experimental works and theoretical models found in the literature

lead to a general approach for the prediction of yield strength σY on Mg alloys under the

influence of solute elements. The Hall-Petch relationship has been analysed and divided in

different contributions which dependence on concentration has been examined.

It has been shown how both the atomic size and elastic misfit control the solid solution

hardening and the strengthening coefficient on Hall-Petch relationship. The calculation re-

sults suggest that the atomic size misfit has a larger effect on the solid solution hardening,

and that positive values of δ around 1-1.5 could have a remarkable effect on this factor. This

has seen to be true in Mg-alloys, where this region of δ is covered by RE elements, and also

supported in Cu-alloys. Many attempts to explain the effect of RE element on Mg-alloys

have been made, but complete understanding is not achieved and further investigations are

required.
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The variation of kY is also dependent on the atomic size and elastic misfits, although the

effect of the difference on shear modulus seems to have a larger effect than the atomic size

misfit. As a guideline for alloy design, large variations of δ due to different atomic sizes will

affect strongly the solid solution hardening, while a variation on the shear modulus is more

related to the strengthening parameter kY .

Grain size displays very different dependence on the solute content, where thermody-

namics plays now an important role. Elements with deep eutectics and high solubility will

lead to finer grains. However, some of the parameters controlling this process are difficult

to estimate, such as D and v on Equation (6), and some extent of experimental fitting is

required. Nevertheless, a functionality with atomic size and/or shear modulus of the solute

has been seen, where the maximum grain refinement seems to be correlated with small atoms

and large shear modulus.

There has traditionally been a large effort on optimizing Dgb above the rest of factors on

the Hall-Petch relationship. Its effect is larger than the rest of factors and once a chemical

composition is defined, no further influence can be induced on ∆σY or kY . In the case of

as cast materials, the parameter to optimize is ∆σY /∆X which comprises Dgb. The results

obtained in this work support, the relevace of Dgb refinement, because it has a larger effect

on σY , but it is clear that some elements such us Zn, improve σY much more efficiently

than others due to a large effect on kY . To illustrate this effect, same grain sizes in Mg and

in Mg-2.3Zn display a factor of 2 in σY (see Figure 5) where the same effect for grain size

straightening is only possible for a reduction of a factor of 4 in mean grain size. The total

optimization of mechanical properties goes through the total understanding of the effect of

these elements in Mg alloys.
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6 Apendix

The Taylor expansion of (µb)1/2 from the pile-up model by Hall [6] takes the form:

√
µb =

√
µMg +X∆µ

√
bMg +X∆b =

√
µMgbMg +

(
∆µ

1

2

√
bMg

µMg

+ ∆b
1

2

√
µMg

bMg

)
X+O[X2]

(10)

Thus, the variation of the strengthening parameter kY is ∆kY = ν∆µ+ β∆b where

ν =
1

2

√
bMg

µMg

; β =
1

2

√
µMg

bMg

(11)

By using the dislocation density model proposed by Ashby:

µ
√
b = (µMg+X∆µ)

√
(bMg +X∆b) = µMg

√
bMg+

(
∆µ
√
bMg + ∆b

µMg

2

√
1

bMg

)
X+O[X2]

(12)

It follows that the parameters ν and β are:

ν =
√
bMg ; β =

µMg

2

√
1

bMg

. (13)

In the case of Flow stress model, the Taylor expansion becomes simple:

µb = (µMg +X∆µ)(bMg +X∆b) = µMgbMg + (∆µbMg + ∆bµMg)X +O[X2] (14)

and then the parameters ν and β are:

ν = bMg ; β = µMg . (15)

By doing simple mathematical calculations, the generalisation to many solute elements
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takes the form of any of the three possibilities is:

µpbq = (µMg +
∑
i

Xi∆µi)
p(bMg +

∑
i

X∆bi)
q = µp

Mgb
q
Mg +

∑
i

(∆µiν + ∆biβ)Xi +O[X2]

(16)

where p = q = 1/2 for Hall’s model, p = 1 and q = 1/2 for Ashby model and p = 1 and

q = 1 for Flow stress model, and ν and β corresponds to the expressions computed in each

case. Thus, the dependence of kY with respect to more than one solute element will always

be a linear combination of each individual element:

kY = kY,Mg +
∑
i

Xi∆kY,i (17)
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Figure 1: Comparison of Hall-Petch plots of different testing methodology for similar com-

position and thermo-mechanical treatment.

15



Figure 2: Mechanical processing and effect of σY on as-cast, rolled and extruded Mg
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Figure 3: Elastic (η′Mg, η
′
Cu) and atomic size (δMg, δCu) misfits for Mg-solute and Cu-solute

interactions. Elements highlighted in grey squares corresponds to negligible solid solution

hardening effect in Mg alloys, while elements highlighted in grey circles correspond to larger

effects and grey rhombi corresponds to elements with remarkable hardening, which can not

be explained with the proposed models.
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Figure 4: Relation of Dgb grain size with the inverse of the Growth Restriction Factor, for the

elements Al, Si, Ca, Zn, Zr, Sn, Y, Gd and Yb. Lines are fitted by the least square method.

Data points for Yb corresponds to Mg-Al-Yb alloys with Al constant, then Q is computed

with respect to Yb.
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Figure 5: Hall-Petch plots for the effect of the solute elements Zn and Y on kY . Mg and

Mg-Zn data points correspond to as cast materials Mg, Mg-0.4, Mg-0.8Zn and Mg-2.3Zn in

tensile testing from [12] and in compressive testing Mg-0.83Zn from [13], while Mg-Y data

points were extruded measured in compressive tests [11].
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Figure 6: Experimental vs. prediction model of Equation (9). The composition and its

corresponding reference are indicated in the legend. For set of experiments with a variation

on the solute content, the notation (X1:X2) shows its minimum X1 and maximum X2 values.

Alloy contents are reported in wt%. Datasets corresponding to Mg-Zn, from references

[13, 12] contains small additions of Zr inducing grain size variation. Its effect as solute on

∆σY and kY is considered negligible.
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Figure 7: Relationship between elastic misfits η′Mg, atomic size misfits δMg and maximum Q

for each element. Elements with refining effect are shown with projections onto (δMg,max(Q))

and (η′Mg,max(Q)) planes. Elements with low influence on grain refinement are depicted in

grey and have max(Q) ≈ 0
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Figure 8: Design flow chart for new Mg alloys
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Table 1: Solubility and growth restriction factor parameters m, k and m(k − 1), of various
alloying elements in Mg.

Solubility m k q = m(k − 1)
Element (wt%) [4] This Work [4] This Work [4] This Work System

Ag 13.8 -4.3 0.34 2.8 eutectic
Al 12.7 -6.9 -6.4 0.37 0.38 4.3 3.9 eutectic
Ca 0.7 -12.7 -8.2 0.06 0.04 12 7.8 eutectic
Ce 0.3 -2.9 -2.9 0.04 0.01 2.7 2.8 eutectic
Cu 0.13 -5.4 -4.9 0.02 ≈0 5.3 4.8 eutectic
Fe ≈ 0 -5.5 -5.6 0.054 0.06 5.2 5.3 eutectic
Gd 20.2 -3.4 0.59 1.4 eutectic
Ge 21.6* -4.4 -2.2* 0 0.53* 4.4 1.04* eutectic
K 58.2* -5.0* 0.68* 1.5* eutectic
La 0.06 -2.6 ≈0 2.5 eutectic
Li 5.6 -8.1 0.72 2.2 eutectic

Mn 1.9 1.5 0.3 1.1 1.13 0.15 0.04 peritectic
Na 0.3 -6.6 0.15 5.5 eutectic
Nd 4.8 -3.5 0.17 2.8 eutectic
Ni 0 -6.1 -6.1 0 ≈0 6.1 6.1 eutectic
Pb 41* -2.8 -3.1* 0.62 0.97* 1 0.1* eutectic
Pr 0.4 -3.0 0.01 2.9 eutectic
Sb 0* -0.5 -1.0* 0 0* 0.53 0.9* eutectic
Sc 12.1* 4.0 5.0* 1.65 1.78* 2.6 3.8* peritectic
Si ≈0 -9.3 -7.6 0 0.00 9.2 7.5 eutectic
Sn 13.9 -2.4 -2.3 0.39 0.37 1.5 1.4 eutectic
Sr 0.3 -3.5 -.4 0.006 0.02 3.5 3.3 eutectic
Th 0 -1.4 ≈0 1.4 eutectic
Y 12.1 -3.4 -3.2 0.5 0.48 1.7 1.6 eutectic

Yb 0* -3.1 -2.1* 0.17 0* 2.5 2.1* eutectic
Zn 7.5 -6.0 -5.9 0.12 0.14 5.3 5 eutectic
Zr 2.7 6.9 8.0 6.55 4.70 38.3 29.5 peritectic

*Binary systems not critically assessed

23



Table 2: Fitted values of a0 and a1 for different elements
Element a0 (µm) a1 (µm·K)
Al 120 1300
Al [4] 95.9 3534
Si [4] 202 290
Ca [4] 135 864
Zn [4] 201 668
Zr[4] 52.5 695
Sn 276 423
Y 110 53
Gd 150 60
Yb∗ 16 52
∗Fitting performed with Mg-Al-Yb
alloys with Al constant.
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Table 3: Variation of the strengthening parameter kY in Mg alloys in presence of various
solute elements

B ∆KY

Element (MPa at−2/3) (MPa m0.5 at−1)
Zn 40 18
Y 800 1
Al 120 2
Sn 280 3
Gd 900 5
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