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This note discusses a class of models for panel data that accommodate between-group heterogeneity that
is allowed to exhibit positive within-group variance. Such a setup generalizes the traditional fixed-effect
paradigm in which between-group heterogeneity is limited to univariate factors that act like constants within
groups. Notable members of the class of models considered are nonlinear regression models with additive
heterogeneity and multiplicative-error models suitable for non-negative limited dependent variables. The
heterogeneity is modelled as a non-parametric nuisance function of covariates whose functional form is fixed
within groups but is allowed to vary freely across groups. A simple approach to perform inference in such
situations is based on local first-differencing of observations within a given group. This leads to moment
conditions that, asymptotically, are free of nuisance functions. Conventional GMM procedures may then
be readily applied. In particular, under suitable regularity conditions, such estimators are consistent and
asymptotically normal, and asymptotically-valid inference can be performed using a plug-in estimator of the
asymptotic variance.
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INTRODUCTION

The linear fixed-effect model is a cornerstone model in applied microeconometrics. The introduction of

intercept terms that are heterogenous across units allows to control for various permanent differences between

units that cannot be observed by the researcher. For example, in the seminal work of Mundlak (1961, 1978)

the aim is to control for managerial ability in the estimation of production functions. With Cobb-Douglas

technology, log-output of firm i at time j equals

yij = x′ijα0 + aij ,

where xij represents log-input factors such as capital and labor, α0 is the corresponding vector of elasticities,

and aij is total factor productivity. The latter will typically be correlated with the inputs, rendering the

ordinary least-squares estimator of α0 inconsistent. To estimate the elasticities from within-group variation,

total factor productivity is decomposed as aij = λi + εij , where εij is assumed to be orthogonal to the

production inputs but λi can be correlated with the xij . In this case, a within-group transformation will

sweep out λi, after which least-squares can be applied to estimate α0. The inclusion of fixed effects in this

manner has become standard practice in applied work.

However, there are good reasons to believe that unobserved heterogeneity goes beyond what can be

captured by such location parameters. In the production-function example, it seems natural that managerial

ability depends on such things as experience, education, and sector-specific characteristics. As such, ability

itself is the outcome of a production process, and it may be difficult to justify that it remains constant over the

sampling period. A more appropriate way to control for managerial ability then could have aij = θi(vij)+εij

for some latent function θi that maps drivers vij such as experience and schooling into ability. In the same

vain, in matching models, aij could represent the match-efficiency parameter. In the context of the labor

market, Sedláček (2014) finds empirical evidence that matching efficiency is procyclical and is, at least

partially, driven by the hiring standards of firms. Moreover, the matching literature has argued that the
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efficiency parameter should be endogenous to the agents’ optimization behavior rather than exogenously

determined.

This note suggests a simple way to conduct inference on common parameters in panel-data models with

nonparametric incidental functions. Besides the linear setup just described, the approach can equally be used

for models with multiplicative errors, such as models for count data, and for multinomial logit models, for

example. In either case, staying true to the fixed-effect paradigm, the aim is to estimate a finite-dimensional

parameter while controlling for between-group heterogeneity in a nonparametric manner. The difference

with the traditional fixed-effect view, however, is that the heterogeneity is allowed to vary both within and

between groups. This view on unobserved heterogeneity is different from the one taken in recent work on

the linear random-coefficient model (Arellano and Bonhomme 2012; Graham and Powell 2012) and, as such,

can serve as a useful complement.

1. LOCAL FIRST DIFFERENCING

1.1. Incidental functions

Consider a panel dataset consisting of two observations on n units. Restricting attention to two observations is

without loss of generality. We let yi ≡ (yi1, yi2) denote the outcome variables for unit i, and let xi ≡ (xi1, xi2)

and vi ≡ (vi1, vi2) denote observable covariates. The distinction between the variables xi and vi will become

clear below.

The workhorse fixed-effect model specifies unit i’s response function as a linear function with a unit-specific

intercept, as in

yij = λi + x′ijα0 + εij (1.1)

for noise terms εij and vector of slope coefficients α0. Applications of this model are widespread. When

E[εij |xi, λi] = 0, an ordinary least-squares regression of ∆yi ≡ yi2− yi1 on ∆xi ≡ xi2−xi1 is known to yield

a consistent point estimator of α0 as n→ +∞. Indeed,

E[∆xi (∆yi −∆x′iα)] = 0

globally identifies α0 provided E[∆xi∆x
′
i] has full rank. When the covariates are not strictly exogenous, the

above moment condition can be replaced by E[zi (∆yi − ∆x′iα)] = 0 for a vector of instrumental variables

zi. A leading case would be a dynamic model where xij = yij−1 and zi contains further lags of the outcome

variable; see, e.g., Arellano and Bond (1991).

In (1.1), α0 is the parameter of interest. The traditional way of controlling for additional heterogeneity

among agents is by introducing a set of strictly-exogenous control variables, vij , as additional regressors.

This delivers a specification of the form

yij = λi + x′ijα0 + v′ijβ0 + εij , (1.2)

say. Here, the vij can be flexible polynomials specifications or other nonlinear transformations of the controls

and, of course, may include interactions with xij . The choice of functional form is up to the researcher, and

linearity is popular due to the resulting ease of computation via multiple regression. An approach that

would prevent functional-form misspecification in the effect of the control variables would be to work with

the partially-linear model

yij = λi + x′ijα0 + θ(vij) + εij , (1.3)
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of which (1.2) is merely a special case. This is the approach advocated in the work of Robinson (1988).

While he worked in a cross-sectional framework, it is quite obvious that his results can be extended to the

panel-data version in (1.3). See Li and Stengos (1996), Ai, You, and Zhou (2014), and You and Zhou (2014)

for a detailed analysis of such an approach in this type of model.

Nonetheless, a specification like (1.3) is less natural in a panel context than in a cross-sectional framework.

Indeed, a main aim of the panel literature has been to devise flexible methods that allow for unobserved

heterogeneity between units that stretches beyond what can be tackled with cross-section data. While (1.3)

allows the impact of vij to be nonparametric, it is restricted to be identical across i. Recent empirical

work has stressed the presence of excess heterogeneity across agents in microeconometric models. Guvenen

(2009), Browning, Ejrnæs, and Alvarez (2010), Browning and Carro (2010), and Browning and Carro (2014),

for example, provide extensive discussions and empirical evidence on this. An alternative extension of the

Robinson framework that stays true to the fixed-effect tradition would be

yij = x′ijα0 + θi(vij) + εij , (1.4)

where, now, θi are unit-specific nonparametric functions, and the usual location parameter λi has been

absorbed into it. A special case of (1.4) that has received some attention recently is the standard linear

random-coefficient model (Swamy 1970; Chamberlain 1992b; Arellano and Bonhomme 2012). Another is the

varying-coefficient model (Hastie and Tibshirani 1993). Nonetheless, the motivation for allowing for excess

heterogeneity is clearly different in these cases.

A complication with (1.4), as opposed to (1.3), is that α0 can no longer be identified through the approach

of Robinson (1988). Indeed, an extension of his argument would require that E[∆yi|vi, θi] and E[∆xi|vi, θi] can

be consistently estimated. Clearly, this is not possible under asymptotics where the number of observations

per unit is held fixed. However, if |θi(vi2) − θi(vi1)| ≤ Θi(vi1, vi2) ‖∆vi‖ for some function Θi for which

the expectation E[Θi(vi1, vi2)|∆vi = v] exists for all v in a neighborhood of zero, then, provided that

E[εij |xi, vi, θi] is a constant,

E[∆xi(∆yi −∆x′iα0)|∆vi = 0] = 0

globally identifies α0 if E[∆xi∆x
′
i|∆vi = 0] has full rank. Indeed,

α0 = E[∆xi∆x
′
i|∆vi = 0]−1 E[∆xi∆yi|∆vi = 0]

under this condition. The smoothness condition on θi is fairly weak. Suppose that θi is continuously

differentiable. Then its derivative, say θ′i, is locally bounded. Hence, Θ(vi1, vi2) = supv|θ′i(v)| with the v

restricted to the neighborhood [min{vi1, vi2},max{vi1, vi2}] satisfies the required Lipschitz-type smoothness

condition. When the support of the vij is discrete, we need that P (∆vi = 0) > 0. An estimator of α0 would

be

αn =

(
1

n

n∑
i=1

∆xi∆x
′
i ωi

)−1(
1

n

n∑
i=1

∆xi∆yi ωi

)
,

where ωi ≡ 1{∆vi = 0}. This estimator is
√
n-consistent and asymptotically normal under standard moment

assumptions. When vij is continuous, the event {∆vi = 0} has probability zero and
√
n-consistent estimation

will not be possible. However, under suitable regularity conditions, we can still perform asymptotically-valid

inference on α0 via αn on redefining ωi as

ωi =
1

hdim v
n

k

(
∆vi
hn

)
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for a chosen kernel function k and a bandwidth hn.
1 , 2

Here, the convergence rate of αn will be reduced to√
nhdim v

n . We provide regularity conditions and more detailed asymptotic theory below. In either case, the

approach consists of simply constructing ωi for each i and then performing a weighted least-squares regression

of ∆yi on ∆xi with weight ωi. This estimator is similar in spirit to the one considered for sample-selection

models by Kyriazidou (1997, 2001).

The θi can be seen as incidental functions, as opposed to the incidental parameters λi in the conventional

setup in (1.1). Furthermore, the θi can be seen as draws from a distribution that depends on (xi, vi) but which

is left unspecified. The approach just described does not estimate these functions but, rather, differences

them out by focusing on the population of ‘stayers’ (Chamberlain 1984), that is, on units for which ∆vi

lies in a shrinking neighborhood of zero. As such, this approach could be called local first differencing. Of

course, a prerequisite to identification is that the support of vi1 and the support of vi2 cannot be disjoint.

The leading example where this requirement would be violated is when the vij include time dummies or

time trends. Such aggregate time effects are commonly used in applied work. Of course, they can easily be

included in the traditional way, that is, by including them in a linear fashion and assigning them homogenous

coefficients.

The use of stayers to recover parameters of interest from short panel data has recently also been used by

Hoderlein and White (2012). They consider fully nonparametric structures of the form

yij = θi(vij , εij),

say, and study conditions under which local-average response functions can be identified and estimated.

More precisely, they give conditions under which

∂ E[∆yi|vi1,∆vi = v]

∂v

∣∣∣∣
v=0

= E
[
∂θi(vi1, εi1)

∂vi1

∣∣∣∣ vi1,∆vi = 0

]
,

which is an average partial-effect for the subpopulation of stayers. Our setup is more modest in terms of

generality and focuses on different parameters of interest. As such, we can allow xij to be predetermined as

opposed to strictly exogenous and can accommodate discrete components in both xij and vij . Nonetheless,

like in Hoderlein and White (2012) and Arellano and Bonhomme (2012), allowing for feedback toward the

vij is complicated, as the distribution of the transitory shocks, εij , may change after conditioning on the

event ∆vi = 0.

1.2. Nonlinear specifications

The applicability of local first-differencing is not limited to the linear model. Indeed, any fixed-effect model

where heterogenous intercepts can be accommodated can be extended to allow for incidental functions. The

literature on panel data models is large, and we will not attempt to give a complete overview here. A rather

exhaustive survey is provided by Arellano and Honoré (2001).

One obvious generalization would be to allow for a nonlinear relationship between yij and xij but to

maintain additivity of the incidental function, as in

yij = µ(xij ;α0) + θi(vij) + εij , E[εij |xi, vi, θi] = 0,

1
As in standard nonparametric-regression theory, the choice of k has a much smaller impact than does the choice of hn. An

automated approach to selecting the bandwidth is to estimate it jointly with α0, as in Härdle, Hall, and Ichimura (1993). See
Appendix B for details and simulation experiments.
2
Of course, both discrete and continuous variables can equally be accommodated by specifying kernel weights for the continuous

elements of ∆vi and indicator functions for the discrete elements.
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for some function µ that is known up to the Euclidean parameter α0. Another type of nonlinearity that has

proved important in panel data applications features in models of the form

yij = µ(xij ;α0) θi(vij) εij , E[εij |xi, vi, θi] = 1.

A leading example of such a multiplicative model would be an exponential regression model with mean

E[yij |xi, vi, θi] = exp{log θi(vij) + x′ijα0}. Here,∣∣∣∣E [ yi2
µ(xi2;α0)

− yi1
µ(xi1;α0)

∣∣∣∣xi, vi, θi]∣∣∣∣ = |θi(vi2)− θi(vi1)| ≤ Θ(vi1, vi2) ‖∆vi‖
‖∆vi‖↓0−→ 0.

In the conventional setup, fixed-effect estimation of multiplicative models of this form was discussed by

Chamberlain (1992a) and Wooldridge (1997). Dynamic versions of this model can equally be handled; see

Blundell, Griffith, and Windmeijer (2002).

The multinomial logit model with fixed effects is the prime example of the success of conditional maximum

likelihood in panel models (Chamberlain 1980). A binary-choice version of a specification with incidental

functions would have

yij = 1{x′ijα0 + θi(vij) ≥ εij}, F (e) ≡ P (εij ≤ e) =
1

1 + exp(−e)
,

with the (xij , vij) independent of the εij . An application of the conditional-likelihood argument shows that

E[1{∆yi = 1} − F (∆x′iα0)|xi, vi,∆yi 6= 0,∆vi = 0] = 0,

which is free of θi. The optimal unconditional moment condition in the sense of Chamberlain (1992b) equals

E[∆xi (1{∆yi = 1} − F (∆x′iα0)) 1{∆yi 6= 0}|∆vi = 0] = 0

and can be seen as the first-order condition associated with a local conditional likelihood. It is useful to

note that this moment condition is very similar to the first-order condition of the estimator of Honoré and

Kyriazidou (2000) for a dynamic logit model with exogenous regressors.

In each of the examples just mentioned, it is easy to construct a GMM estimator in which the usual moment

condition is complemented with the kernel weight ωi as described above. We will provide asymptotic theory

in the next section.

There are several other models that could be extended to allow for incidental functions. Some interesting

examples are truncated- and censored regression models (Honoré 1992), as well as general transformation

models and generalized-regression models (Abrevaya 1999, 2000). The resulting estimators would have similar

asymptotic properties. However, they are M-estimators rather than GMM estimators, and the associated

criterion functions are characterized by a certain degree of non-smoothness. As such, they will not fit exactly

the generic setup entertained below.

2. ASYMPTOTIC THEORY

Consider a generic setup in which a Euclidean parameter α0 ∈ A is identified through the moment condition

E[m(yi, xi;α0)|∆vi = 0] = 0,

where m is a vector function that is known up to α0. An empirical counterpart to the population moment

at α is

σn(α) ≡ 1

n

n∑
i=1

m(yi, xi;α)

hdim v
n

k

(
∆vi
hn

)
,
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where hn is a non-negative bandwidth sequence that is o(1) and k is a kernel function. Regularity conditions

on hn and k are collected in Assumption 3 below. A GMM estimator of α0 based on σn(α) is then given by

αn ≡ arg min
α∈A

σn(α)′Wn σn(α),

where Wn denotes a given positive-definite weight matrix. This section provides distribution theory for αn

in the form of a consistency result and an asymptotic-normality result. The proofs are given in Appendix A.

Some elementary regularity conditions are collected in Assumption 1.

Assumption 1. A is a compact set and α0 is interior to it. m is twice continuously differentiable in α with

derivatives m′ and m′′. The distribution of ∆vi is absolutely continuous and the associated density function

is strictly positive in a neighborhood of zero.

Let ‖·‖ denote the Euclidean and Frobenius norms. To state sufficient conditions for consistency, let

σ(v;α) ≡ E[m(yi, xi;α)|∆vi = v] f(v),

for f the density of ∆vi.

Assumption 2. For all α ∈ A, E[‖m(yi, xi;α)‖2] and E[‖m′(yi, xi;α)‖2] are finite, ‖σ(v;α)‖ is bounded in

v, and σ(v;α) is continuous in v in a neighborhood of zero.

Assumption 3. k : Rdim v → R is a bounded and symmetric sth-order kernel function.

The conditions in Assumptions 2 and 3 are conventional. We refer to Li and Racine (2007) for a definition,

examples, and discussion on kernel functions that satisfy Assumption 3.

The consistency result is stated in Theorem 1.

Theorem 1. Let Assumptions 1–3 hold. Suppose that ‖Wn−W0‖ = oP (1) for W0 non-stochastic and positive

definite. Then ‖αn − α0‖ = oP (1).

To derive the limit distribution of αn we need an additional set of conditions. We let

Σ(v;α) =
∂σ(v;α)

∂α′
, ∆(v;α) = E[m(yi, xi;α)m(yi, xi;α)′|∆vi = v] f(v)

in the following assumption.

Assumption 4. For all α ∈ A, E[‖m′′(yi, xi, α)‖2] is finite, ‖Σ(v, α)‖ is bounded in v, and Σ(v, α) is

continuous in v in a neighborhood of zero. E[‖m(yi, xi;α0)‖3|∆vi = v] f(v) is bounded. ∆(v;α0) is continuous

in v in a neighborhood of zero and ‖∆(v;α0)‖ is bounded. σ(v;α0) is s-times continuously-differentiable with

bounded derivatives.

Let Σ ≡ Σ(0, α0) and ∆ ≡ ∆(0, α0)
∫ +∞
−∞ k(η)2 dη. Theorem 2 gives the asymptotic distribution of αn.

Theorem 2. Let Assumptions 1–4 hold. Suppose that Σ has maximal column rank, that ∆ is positive

definite, and that ‖Wn −W0‖ = oP (1) for W0 non-stochastic and positive definite. Then√
nhdim v

n (αn − α0)
A∼ N

(
0, (Σ′W0Σ)−1 (Σ′W0∆W0Σ) (Σ′W0Σ)−1

)
provided

√
nhdim v

n → +∞ and
√
nhdim v

n hsn → 0.
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The matrices Σ and ∆ are estimated consistently by

Σn ≡
1

n

n∑
i=1

m′(yi, xi;αn)

hdim v
n

k

(
∆vi
hn

)
, ∆n ≡

1

n

n∑
i=1

m(yi, xi;αn)m(yi, xi;αn)′

hdim v
n

k

(
∆vi
hn

)2

,

respectively

ACKNOWLEDGMENTS

I am grateful to Jaap Abbring and three referees, Manuel Arellano, and Stefan Hoderlein.

APPENDIX A: PROOFS OF THEOREMS

Proof of Theorem 1. Let σ(α) ≡ σ(0, α). Given identification, the regularity conditions in Assumption 1,

and the fact that Wn
P→W0, we only need to verify

sup
α∈A
‖σn(α)− σ(α)‖ = oP (1)

to establish consistency; see Theorem 2.1 of Newey and McFadden (1994). Because m is differentiable,

supα∈A E[‖m′(yi, xi;α)‖2] is finite, and k is bounded, Lemma 2.9 in Newey and McFadden (1994) further

states that that it suffices to prove that ‖σn(α)− σ(α)‖ = oP (1) for all α ∈ A. Fix α ∈ A. By the triangle

inequality,

‖σn(α)− σ(α)‖ ≤ ‖σn(α)− E[σn(α)]‖+ ‖E[σn(α)]− σ(α)‖.

Assumption 2 and Assumption 3 imply that ‖σn(α) − E[σn(α)]‖ = op(1) by the law of large numbers.

Dominated convergence implies that

E[σn(α)] =

∫ +∞

−∞

σ(v;α)

hdim v
n

k

(
∆v

hn

)
dv =

∫ +∞

−∞
σ(hnη;α) k(η)dη → σ(α),

and so ‖E[σn(α)] − σ(α)‖ = oP (1). Thus, ‖σn(α) − σ(α)‖ = oP (1). This holds for any α ∈ A, and so

consistency has been shown. 2

Proof of Theorem 2. We will show (i)
√
nhdim v

n σn(α0)
A∼ N (0,∆) and (ii) supα∈A‖Σn(α)−Σ(α)‖ = oP (1).

The asymptotic distribution of the estimator then follows from the linearization√
nhdim v

n (αn − α0) = −(Σ′W0Σ)−1 Σ′W0

√
nhdim v

n σn(α0) + oP (1)

by an application of the delta method. To show (i), first observe that√
nhdim v

n σn(α0) =
√
nhdim v

n

(
σn(α0)− E[σn(α0)]

)
+
√
nhdim v

n E[σn(α0)].

The second term on the right-hand side is a bias term. By an sth-order expansion and Assumptions 3 and 4,

E[σn(α0)] =

∫ +∞

−∞
σ(hnη;α0) k(η) dη = O(hsn).

As
√
nhdim v

n hsn = o(1),
√
nhdim v

n E[σn(α0)] = o(1) and the bias term is asymptotically negligible. The

leading term satisfies the conditions of Lyapunov’s central limit theorem. To see this, write√
nhdim v

n

(
σn(α0)− E[σn(α0)]

)
=

1√
n

n∑
i=1

γi − E[γi], γi ≡
m(yi, xi;α0)√

hdim v
n

k

(
∆vi
hn

)
.

Then E[γi] = o(1) and

var[γi] = E[γiγ
′
i]− E[γi]E[γ′i] =

∫ +∞

−∞

∆(v;α0)

hdim v
n

k

(
∆v

hn

)2

dv + o(1)→ ∆(0;α0)

∫ +∞

−∞
k(η)2dη = ∆,
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by a bounded-convergence argument and Assumption 4. Finally, also Lyapunov’s condition is satisfied,

because
n∑
i=1

E

[∥∥∥∥ γi√n
∥∥∥∥3
]
≤ 1√

nhdim v
n

∫ +∞

−∞

E[‖m(yi, xi;α0)‖3|∆vi = v] f(v)

hdim v
n

∣∣∣∣k( v

hn

)∣∣∣∣3 dv = O

(
1√

nhdim v
n

)
,

which vanishes as n→ +∞. This establishes (i). To verify (ii) one can proceed as in the proof of Theorem 1.

In particular, Lemma 2.9 of Newey and McFadden (1994) may again be applied. By the moment conditions

in Assumption 4 we have that ‖Σn(α) − E[Σn(α)]‖ = oP (1). An application of the bounded convergence

theorem similarly shows that E[Σn(α)] → Σ(α). Uniform convergence of the Jacobian matrix follows and

the proof is complete. 2

APPENDIX B: SIMULATIONS

The results from a small set of Monte Carlo experiments are collected as supplementary material. We consider

two designs for two models. In the first design we draw xi1 ∼ N (0, 1) and xi2 ∼ N ( 1
2xi1, 1), and vi1 ∼ N (0, 1)

and vi2 ∼ N ( 1
2vi1, 1), so that the xit and vit are independent. In the second design we induce dependence

by generating vi1 ∼ N ( 1
2xi1, 1) and vi2 ∼ N ( 1

2xi2 + 1
2vi1, 1). In either design, we draw

y∗it = xitα0 + vit,

and subsequently obtain the outcome variable as either (i) yit ∼ N (y∗it, 1) (linear regression model) or (ii)

yit ∼ Poisson(exp(y∗it)) (exponential regression model). In either case, we estimate α0 from a single moment

condition, with instrument ∆xi, and so we minimize |σn(α)|2. For implementation we use the fourth-order

kernel k(η) = ( 3
2 −

1
2η

2)φ(η) with bandwidth hn = cn n
−1/7 for some constant cn. The constant cn is

obtained in a data-driven manner, by minimizing the GMM objective function jointly with respect to α

and cn; see Härdle, Hall, and Ichimura (1993) for this proposal in a different context. Although we claim

no optimality for the bandwidth-selection method just described, such an automatic procedure for selecting

the bandwidth makes the implementation of our procedure quite straightforward. Table 1 reports the bias,

standard deviation, and empirical rejection frequency of 95%-confidence intervals for our estimator for each

of the designs and models described above. The results were obtained over 10, 000 Monte Carlo replications.

Table 1. Simulation results for αn

n α0 bias std size bias std size

linear model (i)
independence dependence

250 1 .0004 .1228 .0505 .0201 .1310 .0512
500 1 −.0015 .0933 .0507 .0139 .0990 .0512

1000 1 .0003 .0703 .0498 .0109 .0758 .0500
2500 1 −.0005 .0485 .0542 .0060 .0521 .0514
5000 1 .0000 .0359 .0496 .0044 .0387 .0521

exponential model (ii)
independence dependence

250 1 .0295 .1655 .0457 .0378 .1414 .0450
500 1 .0180 .1181 .0464 .0209 .0983 .0425

1000 1 .0097 .0897 .0504 .0153 .0726 .0501
2500 1 .0055 .0611 .0507 .0079 .0479 .0514
5000 1 .0031 .0454 .0532 .0052 .0351 .0484
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Honoré, B. E. (1992). Trimmed LAD and least squares estimation of truncated and censored regression

models with fixed effects. Econometrica 60, 553–565.
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