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Abstract

Sensors employing mode localisation in weakly coupled resonators have been increasingly
viewed as an alternative to resonant frequency shift based sensing. Much theory has been
proposed highlighting the advantages of these sensors including the increased sensitivity
and the promise of common mode rejection to first order environmental variations. This
has led to the development of proof-of-concept sensors to sense physical quantities such
as displacement, charge, mass, and acceleration. However, practical aspects of developing
a sensor starting from design of a closed-loop implementation to understanding different
operating regions with the aim of resolution analysis and noise optimisation have yet to be
explored in depth. This work delves into these practical aspects of developing ultra-high
resolution mode-localised MEMS sensors.

First, the mechanical sensor is integrated with a prototype closed-loop oscillator along
with the interface electronics on a printed circuit board. Key aspects of sensors such as
stability, noise floor, and bandwidth are analysed using this integrated sensor system. A
critical observation is made on the improvement of stability of the amplitude ratio output
metric over its frequency shift counterpart at large integration times therefore, highlighting
the advantage of common mode rejection to environmental factors. The common mode
rejection abilities of both mechanically and electrically coupled devices are next studied
at different operating regions. These are then compared to the state-of-the-art differential
frequency measurements. Amplitude ratio measurements in an electrically coupled device
showed an order of magnitude better rejection to temperature variations over a mechanically
coupled device. Furthermore, amplitude ratio measurements in the electrically coupled
device were on par with the rejection offered by the differential frequency output in the same
device. This result highlights the advantage of amplitude ratio measurements that are able to
achieve the same common mode rejection with the help of a single oscillator instead of the
two oscillators required in differential frequency output measurements.

The resolution of the mode-localised sensor is then explored with the purpose of optimis-
ing operating regions to achieve the best noise figure. A detailed theoretical analysis is first
undertaken to optimise the amplitude ratio noise in different noise dominant regimes. It is
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predicted that the resonator-based noise (such as thermo-mechanical noise) can be optimised
be operating at an amplitude ratio of

√
2 and the electronic sourced noises can be optimised

at an amplitude ratio of
√

1.5 in a single ended resonator drive configuration. Additionally,
both sources of noise are predicted to decrease with the decrease of the coupling stiffness.
This result is then validated using experimental data to verify the claim. A further noise
reduction is sought by operating the coupled resonators in the nonlinear domain with inter-
esting observations on the variations of the amplitude ratio output metric. The phase filtering
offered by the bifurcation points in the nonlinear domain is utilised to further improve the
noise by 4 times.

Finally, a mode-localised accelerometer design is proposed that employs a novel differen-
tial amplitude ratio output metric. Noise optimisation techniques are then used to optimise
this novel output metric. A noise floor of 3 μg/

√
Hz with a stability of 3 μg is achieved thus,

benchmarking the mode-localised accelerometer favourably with respect to other high-end
commercial MEMS accelerometers. Additionally, their potential is demonstrated with a
measurement of seismic activity. This measurement is then compared to reference data
sourced from an accelerometer from the British Geological Survey. Lastly, suggestions are
made to further optimise the resolution in the accelerometer to push the limits of amplitude
ratio sensing thereby, putting mode-localised accelerometers at par with the best resonant
accelerometers till date.
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Chapter 1

Introduction

Sensors are now ubiquitous. Mobile phones, automobiles, and any number of consumer
electronics perform everything from finger-print recognition to airbag deployment with the
help of sensors. In the span of a few decades, accelerated technological advancements
have made sensors omnipresent in our lives. This was made possible with the scientific
breakthrough of miniaturisation using microelectromechanical systems (MEMS) technology.
MEMS describe electromechanical systems of microscopic scale lengths. Microfabrication
technology used for manufacturing such devices was first shown by Nathanson [1] in 1967.
Since then the technology has come leaps and bounds to being able to create devices that
have capacitive gaps in the order of 13 nm [2]. Enabling technologies such as vacuum
encapsulation [3] accelerated the development of MEMS resonators in the past decade. Due
to their intrinsic advantage of high stability, MEMS resonators have been employed as
accurate timing references [4, 5], filters [6, 7], and various sensors including but not limited
to accelerometers [8–11], magnetometers, [12, 13], temperature [14], and pressure sensors
[15].

Conventional MEMS resonant sensors use resonant frequency shifts as an output metric
due to its quasi-digital nature. However, frequency shift output metric is limited by slow drift
and random walk [16]. The resulting frequency instability of MEMS resonators can affect
the long-term measurement accuracy. The long-term stability of the resonators is relevant in
sensing applications that address low frequency variations in the measurand. Conventionally,
long-term stability in frequency shift output is achieved by temperature compensation [17, 18]
or differential cancellation specifically for sensing applications [19, 20]. These solutions
have their own drawbacks. Temperature compensation electronics typically consume more
power than oscillator electronics, which is less suitable for low power applications; whereas
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differential cancellation becomes less effective in the presence of mismatch between the
resonators [21].

This paves the way for mode-localised sensing [22, 23] that utilises an amplitude ratio
output metric instead of the frequency shift output metric to provide enhanced common
mode rejection capability [24, 25]. This type of sensor is based on the principle of vibration
mode localisation [26], where the eigenstate or the ratio of amplitudes of two coupled
resonators [27] changes when the system is subject to an external perturbation. This external
perturbation can be an inertial force [28], electrostatic force [29, 30], or a mass change [31].
Furthermore, an elevated sensitivity to input measurand of up to four orders of magnitude
[32] higher than conventional resonant sensors with frequency shift output paves the way for
an improved input-referred stability.

Mode localisation has been studied in depth from a theoretical point of view [23, 33] with
examples of experimental proof-of-concept [34, 29, 28, 22]. Yet, practical issues associated
with implementing a mode-localised sensor such as oscillator design, studying operating
regions, optimisation of noise, and resolution are topics that are still to be unravelled. It is
important to understand the practical limitations with common mode rejection capabilities
of the associated output metrics, the sources of noise that affect the coupled resonator
system, and how to discern the operating point to achieve the goal of an ultra-high resolution
mode-localised sensor. These aspects are analysed in depth and novel methods to improve
the input-referred resolution are proposed in this thesis to advance the development of a
mode-localised sensor of the same, if not better, performance than a commercial sensor
employing frequency shift sensing.

Thesis overview

This thesis is split into five chapters discussing the dynamics of sensors utilising mode-
localised weakly coupled resonators. The chapters discuss the theoretical study of these
sensors that have been carried out till date and apply them to physical systems with the help
of simulations and experimental data. Most experiments are performed on an electrically
coupled device due to the added flexibility of tuning the coupling stiffness [23]. Furthermore,
only a 2-DoF system is studied primarily due to the simplicity it offers with respect to tuning
the device when fabrication tolerances affect the stiffness mismatch between the resonators.
The higher the degrees of freedom, the more tuning ports are required making them less
feasible for use as a practical sensor. A brief overview of the different chapters is provided
below.
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Chapter 2 introduces the concept of mode localisation in weakly coupled resonators
and its development in the last five decades from its conception as ‘Anderson Localisation’
[35, 36]. It then discusses the various simulation techniques that can be used to predict
the mechanical and electrical properties of the coupled resonator topology. Simulations are
carried out in the form of eigenanalysis, transfer function analysis and Butterworth Van-Dyke
(BVD) model analysis to cover all the different aspects of mode localisation. Finally, an
experimental analysis is done to portray the application of the weakly coupled resonators as
a sensor from inspecting the open-loop frequency response curves.

Chapter 3 discusses the design process taken to create an integrated, self-sustainable
sensor in a closed-loop topology. The chapter delineates the design of a custom electrically
coupled double ended tuning fork (DETF) resonator system, the interface circuit needed to
readout the amplitude of vibrations, and the oscillator configuration implemented. Essentially,
it introduces the basic building blocks of an integrated mode-localised device that can be
used for applications as a physical sensor. Lastly, the stability, noise floor, and bandwidth
(the three essential metrics of a sensor) of the amplitude ratio output metric are characterised
while comparing it to traditional frequency shift output metric.

Chapter 4 inspects the validity of the superior common mode rejection capabilities
of the mode-localised sensor from a practical standpoint. Experimental data is provided
on a mechanically coupled and an electrically coupled device when operating at various
temperatures to test the degree of the first order common mode rejection offered by those
devices to temperature variations. The results are then compared to the state-of-the-art
differential frequency measurements to gauge the advantage of using mode-localised sensors
in rejecting temperature-based excursions of the output metric.

Chapter 5 includes a detailed description of all the major noise sources that affect the
amplitude noise of the mode-localised sensor. Both thermo-mechanical and electronic noise
sources are discussed and an expression is shown to derive the amplitude ratio noise from
the noise in individual channels. Furthermore, ways to optimise the amplitude ratio noise in
both thermo-mechanical and electronic noise dominant systems is presented depending on
operating conditions of amplitude ratio and coupling stiffness. The theory is experimentally
validated to bolster the conclusions drawn from the theoretical and analytical derivations.

Chapter 6 explores the nonlinear response of the coupled resonator system when experi-
encing large vibration amplitudes. It investigates the possibility of using the nonlinearity of
the system to improve the signal to noise ratio of the weakly coupled resonators for sensing
applications. Additionally, some of the unique ways in which operating in the nonlinear
domain affects amplitude ratio are predicted using a simulation employing harmonic balance
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method. Experimental data is shown for electrically coupled system to validate some of the
features being predicted for the nonlinear weakly coupled resonators. Furthermore, the noise
floor of the sensor is compared to its linear counterpart to test the improvement for sensing
purposes.

Chapter 7 studies a custom hermetically sealed resonant mode-localised accelerometer
designed to sense vibrations for applications as a seismometer. The design of the sensor
is discussed along with introducing a novel differential amplitude ratio output metric that
provides additional common mode rejection capabilities in a mechanically coupled sensor.
Experimental studies of long-term stability, noise floor, and bandwidth are done. Lastly,
a measurement of an earthquake is shown along with reference data to demonstrate the
potential for mode-localised MEMS accelerometers to be utilised for seismic applications
with comparable performance to existing seismometers.

Finally, Chapter 8 concludes with comments on possible future work and the route that
mode-localised sensors can take hereafter.



Chapter 2

Mode-localised Sensing in Microsystems

This chapter introduces the basic principles underlying vibration mode localisation. The
historical context is discussed commencing with work in the field of solid-state physics to
solid mechanics and current applications in the field of MEMS. It outlines the theory of mode
localisation in a coupled system using eigenanalysis, transfer function analysis, and BVD
model analysis. Experimental results displaying the localisation of energy in a 2-DoF system
using electrically coupled MEMS resonators are shown, bolstered with discussions around
the practical issues regarding the experimental setup.

2.1 Mode localisation: a historical context

In mechanically identical coupled resonators, the vibration energy in a mode is shared equally
between the resonators. Due to the effective dynamic symmetry in the system, the vibration
mode extends spatially over the resonators. In a particular case of weak coupling between
the two systems, a perturbation moving the system away from symmetry in the mechanical
parameters such as stiffness or mass, leads to a spatial confinement of the modal vibration
energy to one of the systems. This energy confinement can be quantified by an eigenstate or
amplitude ratio measurement and is referred to as mode localisation.

2.1.1 Origins of mode localisation

Although discussions in this thesis will revolve around mode localisation in MEMS resonator
systems, it is important to acknowledge the origins of mode localisation. Before its use in
micro systems and resonator topology, mode localisation was first discovered by Anderson in
the field of solid-state physics in 1958. Then, conductivity in an ideal crystal was described
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by the Drude model that predicted electronic conductivity to be directly proportional to the
mean free path that the free electron travels before colliding with positive ion site. The wave
character of the electron paved the way to the explanation that electrons do not scatter upon
colliding with the impurities but diffuse around them. This led to research on understanding
how the conductivity of the lattice would change with an increase in these impurities. The
popular theory at the time was that the transport of electrons reduces with the increase in
the impurities in the crystal lattice. In his seminal paper [35], Anderson showed that beyond
a critical amount of impurities in the semiconductor lattice, quantum-mechanical transport
of electrons leads to the complete spatial confinement of the electron. This phenomenon
gained the much deserved importance in the scientific community and is since then known
as Anderson Localisation [36]. Since its conception, it has been applied beyond the field of
semiconductor physics and is widely studied in the field of acoustics and structural dynamics.

In 1981, building on Anderson’s work in solid-state physics, Hodges [37] showed that
literature on periodic or symmetric acoustic systems can be misleading in a qualitative as
well as a quantitative manner. He showed the effects of mode localisation in two simple
mechanical models – a coupled pendulum system and vibrating string or beam constrained
in its motion by a mass and spring. Using an external source to inject vibrational energy
into the disordered systems, he showed that the vibrations could not propagate arbitrarily
large distances but are confined close to the source. He further showed that the steady state
response of the structure decays exponentially away from the source, even in the absence of
any dissipation. In 1983, Hodges and Woodhouse [38] validated these theoretical predictions
with experimental work that confirmed the effects of localisation in slightly disordered
systems.

The work of Hodges and Woodhouse inspired many to conduct deeper analysis of
the phenomenon through perturbation techniques. In 1987, Pierre and Dowell [39] used
the Classical Perturbation Method (CPM) to obtain the localised modes of the perturbed
system. Assuming that the eigenvalues and eigenvectors of the perturbed system were
only slightly different from those of the unperturbed system, they were able to predict
approximate solutions to the perturbed case using this method. They recognised that the
coupling strength and the magnitude of the induced perturbations were closely related.
Additionally, they showed that if the magnitude of perturbations were large in comparison
to the coupling strength, the mode shapes would be highly localised. On the other hand, if
the perturbations were smaller than the coupling strength, the mode shapes would be weakly
localised. They recognised that CPM would be ideal to analyse a weakly localised system
(where perturbations were smaller than the coupling stiffness) but would fail to predict the
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solutions for a strongly localised system (where perturbations were greater than the coupling
stiffness). The Modified Perturbation Method (MPM) was proposed in the same paper [39]
as an alternative, efficient approach to arriving at the solution for strongly localised systems.

The Modified Perturbation Method was able to predict the occurrence of strong mode
localisation by considering the coupling stiffness as an additional perturbation. Therefore, a
disordered coupled system was the perturbed state and the disordered uncoupled system was
the unperturbed state. Therefore, this method could be accurately used to describe strong
localisation in weakly coupled systems. Two years later, Pierre and Cha [40] characterised
strong localisation using MPM by stating that the degree of localisation increases as the
ratio of modal coupling to perturbation decreases. They also showed that modal coupling
decreases with increasing modes, and that localisation would occur more easily in higher
groups of modes than in the lower ones. They concluded that if the coupling constraint is
located at the node of a group of modes, the modes become very strongly localised; this result
is carried into the design of weak coupling in MEMS resonators near their modal nodes.

Another phenomenon that has been closely associated with mode localisation is eigen-
value curve veering. Even before its proven connection to mode localisation, it was seen
that when the symmetry is broken in weakly coupled identical mechanical structures, the
modal eigenvalues ‘veer’ away from each other and swap trajectories [41, 42]. Pierre made
the connection between strong mode localisation and eigenvalue curve veering in 1988 [43].
He analysed the system using MPM and showed that close eigenvalues were the common
condition for both veering and strong mode localisation. Since his findings on pendulum and
plate structures, many studies have been conducted with combined results of both eigenvalue
curve veering and mode localisation on beams, rotors, disks, and many other structures
[44–46].

2.1.2 Mode localisation in recent years

The study of mode localisation in solid mechanics paved the way for mode localisation
in MEMS resonators. The promise of using electrical transduction, high stability, high
quality factors, and the miniaturisation in MEMS devices opened up possibilities that were
previously unachievable. MEMS devices had shown promising results as accurate timing
references [47–50], filters [51, 52], and frequency shift-based resonant sensors in the form of
mass sensors [53, 54], accelerometers [55–57], gyroscopes [58, 59], temperature [60], and
pressure sensors [61]. However, the concepts of mode localisation in MEMS devices were
unexplored until Spletzer et al. demonstrated the principle in the context of mass sensing
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in 2006 [22]. They used a coupled cantilever configuration and reported to have achieved
20 times better sensitivity in eigenstate shifts than resonant frequency shifts when sensing
a 154 pg of attached sphere of boro-silicate. Two years later, the same group showed that
the sensitivity can be improved by increasing the number of coupled resonators [62]. They
used a group of 15 coupled micro-cantilever arrays and achieved a 2 orders of magnitude
sensitivity increase compared to their previous design of a 2-DoF system.

Soon after, a proof of concept for mass sensing, displacement sensing, and charge
sensing using mode localisation in DETF, Free-Free beam, and ring resonators was shown by
Thiruvenkatanathan et al. [63, 23, 29, 34]. Their work also included the use of a negative
electrical coupling spring instead of a mechanical coupling spring that allowed the tuning of
the veering gap and the sensitivity [23]. They were able to achieve 2-3 orders of magnitude
improvement in sensitivity by measuring the shift in eigenstates compared to resonant
frequency shift sensing. They also characterised many inherent features of mode localisation
and concluded that the sensors were less likely to be affected by temperature and pressure
drifts due to common mode rejection. Although in its early stages, this work paved the way
for many others to investigate mode localisation in MEMS structures for various applications.

Mode localisation in MEMS resonators was extended to 3-DoF identical spring-mass
systems to increase sensitivity (an order of magnitude more compared to 2-DoF) [64, 65]. It
is generally not advantageous to have more than 2-DoF coupled system for mode-localised
sensor applications since fabrication tolerances result in inherent asymmetries that deter
the practicality of the sensor. This is due to the requirement of electrostatic tuning using
the electrical spring softening effect to compensate for the asymmetries [23]. Thus, an
increase in the number of resonators that need tuning, reduces the practicality of the sensor.
Furthermore, sensing more than two amplitudes in such a system is impractical due to the
noise and complexity added by the interface circuitry for each of the amplitudes. To address
this issue, many groups have used M-DoF mode-localised systems but with only two output
amplitudes for sensing. Zhao et al. proposed a novel approach at a 3-DoF system by making
a middle resonator to have at least double the stiffness compared to the other two adjoining
resonators [66, 67]. This increased the sensitivity by 2 orders of magnitude while utilising
measurement schemes for only two resonators. His research also compared the output metrics
of the eigenstate shift, frequency shift and amplitude ratio shift and concluded that amplitude
ratio shift is the most sensitive [64].

Although there has been considerable work on characterising mode-localised devices
in open-loop configurations, there has not been a concrete suggestion for the use of a
self-oscillating loop compatible with the system so far. A self-oscillating loop maintains
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the resonator at the necessary resonating frequency, making it one of the fundamental
requirements of building a practical sensor [49]. Zhao et al. developed a transfer function
method to theoretically recognise that the self-oscillating loop configuration for a 1-DoF
sensor can be also used for a 3-DoF mode-localised sensor [68]. An advanced version of this
configuration [69] is presented and implemented in this work.

The key application for mode localisation has been its application in developing ac-
celerometers. The first implementation of such a sensor was by Zhang et al. who charac-
terised the accelerometer in an open-loop circuit condition [28]. They used a differential
perturbation configuration instead of a single perturbation configuration employed by their
predecessors and showed that the sensitivity to amplitude ratio sensing can be increased
twofold. Although they were able to achieve a sensitivity of 1.233/g, they had a meagre reso-
lution of 0.619 mg. They attributed this resolution to the noise of the electronic measuring
system. Eventually, a closed-loop oscillation loop was also realised by Yang et al. using a
Phase Locked Loop (PLL) configuration [70]. After their closed-loop implementation, the
same group proposed multiple accelerometers designs with 3-DoF [71], and even 4-DoF
[72] resonator systems that were designed to increase the sensitivity of the mode-localised
resonators. The group has also consistently optimised its system and has shown improvement
in stability achieved, with their latest work showing 157µg. Although they show noise floors
of a few µg, the methods they use to calculate the noise floor is contentious and not consistent
with the stability values presented. Accurately calculating the amplitude ratio noise has been
elaborated in Chapter 5.

Concurrently, modelling on the ultimate resolution offered by mode-localised resonators
was being carried out. Juillard et al. [33, 73] showed through modelling that in a system
dominated by thermo-mechanical noise, the resolution does not improve with a reduction in
coupling stiffness; contradicting what was previously predicted by Thiruvenkatanathan et al.

[74]. However, the analysis lacked any experimental evidence and the model hinged on a
derived relation between the individual resonator amplitude noise and the amplitude ratio
noise. Similarly, the method used by Juillard et al. has been discussed in Chapter 5 while
introducing the transfer function method of deriving amplitude ratio noise.

Currently, methods used to model the noise of the amplitude ratio output metric rely on
assuming its relations with the noise of the individual resonator amplitude and can only be
regarded as an estimate of the amplitude ratio noise. The most accurate way of describing the
amplitude ratio noise is by analysing the ratio of the two resonator amplitudes in real time
and performing power spectral density (PSD) analysis to retrieve the true noise performance
of the output metric. This method is pursued in detail in this work.
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Other than their use for sensing, coupled resonators have been used as filters. Both active
and passive electrical coupling have been realised to implement bandpass filters at various
frequencies [75–77]. A particular advantage of using coupled resonators quoted by these
works is the amplification of quality factor possible in coupled resonator array filters over
single resonator filters. Furthermore, coupled resonators have also been used as vibration
amplitude amplifier [78]. To realize this, arrays of 8 resonators are used and vibration
amplification is noticed when the energy is heavily localised to one of the resonators due to
the disorder in the system.

The ever increasing competition in the field has led to rapid increase in the development
of research acumen in mode-localised devices and as the field grows, the potential of mode-
localised MEMS devices is revealed.

2.2 Theory

Several different approaches have been previously studied and implemented to model mode
localisation. The Classical Perturbation Method and Modified Perturbation Methods were
used to predict modes of weakly and strongly coupled M-DoF systems for decades. Although
these methods remain pertinent in modelling the mechanical behaviour of such systems, they
are less useful when building an integrated model for practical applications. MEMS devices
require models that capture both the mechanical and the electrical behaviour (including
electronic interfaces). Thus, it is essential that the models used for MEMS devices can
encapsulate the fluidity between the mechanical and electrical domains. Furthermore, since
the focus in this work is on MEMS sensors, the models need to be able to predict key metrics
of the MEMS-based sensor such as scale factor and noise figures.

In this section, three different models are assessed in the context of the mode-localised
resonator system. First, an eigenanalysis is considered for the basic dynamics of the curve
veering phenomenon and the trend of the amplitude ratio variation with stiffness perturbations.
For simple systems, eigenanalysis remains the simplest method to predict the eigenvalues and
eigenvectors of a coupled system upon the application of a perturbation. Next, the transfer
function method of modelling is described. By reducing the mechanical dynamics of the
resonators to a transfer function, individual amplitudes of vibration of the two resonators can
be predicted at various perturbation states. This method is instrumental in predicting noise
processes that occur in mode-localised resonators. Finally, a Butterworth Van-Dyke (BVD)
electrical model of the resonators is derived so that they can be incorporated in a system
with readout electronics and a closed-loop oscillator circuit to sustain their oscillations. A
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combination of these three modelling approaches is proposed to predict the behaviour of a
practical MEMS sensor.

2.2.1 Eigenvalue solution

Mode localisation in its simplest form is seen in an unforced 2-DoF mass-spring system
coupled with a weak spring (as seen in Fig. 2.1). The two masses represent the intrinsic
masses of the two resonators and springs represent their corresponding stiffness. They are
both assumed to be similar (i.e. m1 = m2 = m and k1 = k2 = k). The coupling spring is
assumed to be far weaker than the springs of the resonators themselves (kc ≪ k). The disorder
is applied to the system by tuning the stiffness of one of the resonators and is represented
by ∆k on one of the springs. It is to be noted that in this work, ∆k acts as a proxy for a
measurand when being implemented into a sensor. The equations of motion of the unforced
system can be outlined as follows:

Fig. 2.1 Lumped unforced spring-mass model of 2-DoF coupled system

mẍ1 + kx1 + kc(x1 − x2) = 0 (2.1a)

mẍ2 +(k+∆k)x2 + kc(x2 − x1) = 0 (2.1b)

The eigenvalues can be solved for by arranging the system of equations into a matrix
form: [

m 0
0 m

][
ẍ1

ẍ2

]
+

[
k+ kc −kc

−kc k+∆k+ kc

][
x1

x2

]
=

[
0
0

]
(2.2)

Assuming harmonic displacement, [x1 x2]
T = une(iωt)(n = 1,2) and ∆k = 0 for the

unperturbed case, the matrix can be simplified to:[
−ω2m+ k+ kc −kc

−kc −ω2m+ k+ kc

][
x1

x2

]
=

[
0
0

]
(2.3)
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The eigenvalues of the system can be found by equating the determinant of the system to
zero. ∣∣∣∣∣−ω2m+ k+ kc −kc

−kc −ω2m+ k+ kc

∣∣∣∣∣= 0 (2.4)

From there, the two eigenvalues of the unperturbed system can be calculated as follows:

ω
2
1 =

k
m

; ω
2
2 =

k+2kc

m
; (2.5)

The eigenvalue for the in-phase mode is independent of the coupling stiffness since the
two masses are moving in the same direction. However, in the anti-phase mode, the coupler
impacts the dynamics of the system and shifts the eigenvalue by a factor proportional to itself.
If the two masses were not coupled, the eigenvalue of the two subsystems would be identical
(having their natural fundamental mode shape) and dependent on their individual mass and
stiffness. However, due to the coupler, the eigenvalue of the anti-phase mode occurs either
after or before the in-phase mode depending on whether the two masses are connected with
positive (mechanical) or negative (electrical) coupling respectively.

The eigenvalues are then substituted into Eq. 2.3 and the unperturbed normalised eigen-
vectors can be calculated as:

u01 =
1√
2

[
1;1
]

; u02 =
1√
2

[
1;−1

]
; (2.6)

For the unperturbed state, the two modes are: the two masses moving in-phase with each
other and the two masses moving out-of-phase with each other. In a 2-DoF system, the
amplitude ratio (AR) is defined as the ratio of the two resonator amplitudes when the system
is operated in either of those modes. In the unperturbed case, the amplitude ratios of the two
modes are as follows:

AR01 = 1 AR02 =−1 (2.7)

The modal amplitudes provide a good scalar representation of the localisation of vibra-
tional energy between the two resonators. In the unperturbed state, the system is symmetric
and the vibration energy in equally distributed. Therefore, the mode shapes are symmetric,
corresponding to an amplitude ratio of 1. As the system is perturbed from its symmetry
with a positive ∆k, it should be noticed that the vibrational energy is confined to one of the
resonators in the mode of operation whereas, with a negative ∆k, energy is confined to the
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other resonator. This is seen when the same eigenvalue problem (in Eq. 2.3) is solved with a
non-zero perturbation term added to the second spring-mass system.∣∣∣∣∣−ω2m+ k+ kc −kc

−kc −ω2m+ k+∆k+ kc

∣∣∣∣∣= 0 (2.8)

Again, the eigenvalues and eigenvectors of the system can be found by equating the
determinant to zero:

ω
2
i =

2k+2kc +∆k±
√

∆k2 +4k2
c

2m
(i = 1,2) (2.9)

u1 =
xi2

xi1
=

∆k∓
√

∆k2 +4k2
c

2kc
(i = 1,2) (2.10)
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Fig. 2.2 Analytical representation of the two output metrics in the two modes of 2-DoF
coupled resonator system.

The above relations are plotted in Fig. 2.2. The values of k = 1080 N/m, kc = 0.05 N/m,
−0.5 N/m < ∆k < 0.5 N/m and m = 4.36×10−10 Kg are chosen to provide a representative
set of parameters corresponding to the resonators used in the experiments. Fig. 2.2a shows
the variation of the eigenvalues of the two modes upon applying stiffness perturbations.
The eigenvalue for the unperturbed case represents the symmetrical case where the two

eigenvalues are separated by a factor proportional to
kc

k
. This can be derived from taking the

difference of the two eigenvalues:
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ω
2
0,2(∆k = 0)−ω

2
0,1(∆k = 0) =

k+2kc

m
− k

m

=⇒ (ω0,2 +ω0,1)(ω0,2 −ω0,1) = 2
kc

m

=⇒ 2ω0,1(ω0,2 −ω0,1) = 2
kc

k
ω

2
0,1

=⇒
(ω0,2 −ω0,1)

ω0,1
=

kc

k

(2.11)

From that symmetrical case, a negative perturbation in stiffness results in the veering

of mode 1 away from mode 2 and vice versa for positive perturbation. It is interesting to
note that the two eigenvalues never intersect each other. This phenomenon is known as mode
veering and it is seen in conjunction with mode localisation as predicted by Pierre [39].

Fig. 2.2b shows the relation between the magnitude of amplitude ratio and the applied
stiffness perturbation. The symmetric case shows the amplitude ratio of the two resonators
for mode 1 and mode 2 to be equal to 1. As mentioned before, this operating point signifies
the case where the vibration energy is shared equally between the two modes. With a negative
perturbation from the symmetric case, the amplitude ratio of mode 2 increases while that on
mode 1 reduces, showing that vibration energy is now localised to mode 2. For a positive
perturbation from the symmetric case, the reverse is noticed with vibration energy localised
to mode 1. This localisation effect can be used for sensing purposes where the output metric
is the amplitude ratio and the input stiffness perturbations can be caused due to a measurand
such as acceleration, displacement or charge.

The advantage of mode localisation for sensor design is evident when the comparisons of
the sensitivities of the modal ratio shift and the frequency shift are made in the same device.
Analytically, the two sensitivities around the symmetrical case simplify to:

SAR =

∣∣∣∣ui −u0i

u0i

∣∣∣∣= ∣∣∣∣∆k
kc

∣∣∣∣ (2.12a)

Sω =

∣∣∣∣ωi −ω0i

ω0i

∣∣∣∣= ∣∣∣∣∆k
2k

∣∣∣∣ (2.12b)

Eq. 2.12 shows that if the condition of | kc |<
k
2

is fulfilled in the system, amplitude ratio
measurements trump the resonant frequency shift measurement in terms of their relative sen-
sitivity to stiffness perturbations. In designing mode-localised sensors, two kinds of coupling
exist – mechanical, where the two resonators are coupled mechanically and electrical, where
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the two resonators are coupled capacitively using electro-elastic coupling. In both cases,
practical values of the coupling constant in the order of 10−2 −10−3 times smaller than the
stiffness of the resonators can be readily achieved. This enables a 2-3 orders of magnitude
increase in sensitivity in comparison to the eigenvalue shift sensing method.

2.2.2 Transfer function solution

A transfer function solution of the mode-localised system needs to be obtained to integrate
the mechanical and electrical behaviour in a unified system level model. This method allows
for simulating the complex noise processes within the system and the trends of the individual
vibration amplitude variation to input perturbations. The model for a 2-DoF system can setup
by considering the forced spring-mass-damper system in Fig. 2.3 as a system of equations.

m1 m2

k2k1 kc

x1 x2 c2c1

F1 F2

Fig. 2.3 Lumped spring-mass-damper model of 2-DoF coupled system

The equations of motion of the two resonator system can be expressed as follows:

m1ẍ1 + c1ẋ1 + k1x1 + kc(x1 − x2) = F1 (2.13a)

m2ẍ2 + c2ẋ2 + k2x2 + kc(x2 − x1) = F2 (2.13b)

In the Laplace domain, these equations are expressed as:

m1s2x1(s)+ c1sx1(s)+ k1 + kc)x1(s) = F1 + kcx2(s) (2.14a)

m2s2x2(s)+ c2sx2(s)+(k2 + kc)x2(s) = F2 + kcx1(s) (2.14b)

This can be simplified to

H1(s)x1(s) = F1(s)− kcx2(s) (2.15a)

H2(s)x2(s) = F2(s)− kcx1(s) (2.15b)

where
H1(s) = m1s2 + c1s+(k1 + kc) (2.16a)
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H2(s) = m2s2 + c2s+(k2 + kc) (2.16b)

Using Cramer’s rule, the displacement of each resonator in response to each one of the
forces can be derived as follows:[

H1(s) kc

kc H2(s)

][
x1

x2

]
=

[
F1

F2

]
(2.17)

x1 =

∣∣∣∣∣F1 kc

F2 H2(s)

∣∣∣∣∣∣∣∣∣∣H1(s) kc

kc H2(s)

∣∣∣∣∣
;x2 =

∣∣∣∣∣H1(s) F1
kc F2

∣∣∣∣∣∣∣∣∣∣H1(s) kc

kc H2(s)

∣∣∣∣∣
; (2.18)

x1 =
F1H2(s)− kcF2

H1(s)H2(s)− k2
c

;x2 =
F2H1(s)− kcF1

H1(s)H2(s)− k2
c

; (2.19)

Using Eq. 2.19, the transfer function of the displacement of resonator i due to force on
the jth resonator can be described as

xi =
2

∑
j=1

Hi jFj (2.20)

where transfer functions (Hi j) for various inputs and outputs can be described as follows:

H11 =
H2(s)

H1(s)H2(s)− k2
c

;H12 =
−kc

H1(s)H2(s)− k2
c

;

H21 =
−kc

H1(s)H2(s)− k2
c

;H22 =
H1(s)

H1(s)H2(s)− k2
c

;
(2.21)

This analysis can be used to simulate the response of the individual amplitude of vibration
of the two resonator system upon the application of stiffness perturbations. Ideally, the
transfer function and the eigenvalue method of calculating the amplitude ratio should result in
the same curve. However, since a finite quality factor is used in the transfer function method,
there is a slight variation between the damped transfer function solution and the undamped
eigenvalue method. Practically, the system can be excited either by using a Double Ended
Drive (DED) method, where forcing is applied on both resonators or, by using a Single
Ended Drive (SED) where forcing is only applied on one of the resonators while the second
resonator is driven synchronously through the coupler. The expression of the individual
amplitudes under SED can be shown by using only one of the force terms (F1 or F2) in Eq.
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2.19 and setting the other to be equal to zero. This produces a slightly different amplitude
variation profile as compared to that produced by DED as shown in Fig. 2.4a.
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Fig. 2.4 Comparison between amplitude and amplitude ratio output metrics variations with
stiffness perturbations in Single Ended Drive (SED) and Double Ended Drive (DED).

Furthermore, SED and DED influence the profile of the amplitude ratio variation profile
with the application of stiffness perturbations. Fig. 2.4b shows the amplitude ratio profile
of SED, DED and the analysis of the unforced system using the eigenanalysis approach are
compared to each other. Either of the SED and DED methods can be employed. However,
in the test structures fabricated for the experiments performed in this thesis, the DED is
impractical due to the shortage of electrical ports for applying stiffness perturbations. Thus,
throughout this work, only SED is used and the sensitivity plots shown in this work will
reflect this behaviour.

2.2.3 Butterworth Van-Dyke (BVD) model

An equivalent electrical circuit model for the MEMS will translate the mechanical parameters
of spring, mass, and damper into equivalent electrical counterparts of capacitance, inductor,
and resistance respectively. This will aid simulations of the MEMS device and front end
electronics in the electrical domain. Electronic circuits are usually simulated using SPICE
(Simulation Program with integrated Circuit Emphasis) based simulation softwares. Having a
BVD model of the resonator system helps simulate the practical integration of the resonators
with the front-end electronics that use transimpedance amplifiers (TIA) and band pass filters
(BPF). A model of a 1-DoF resonator system is presented in Fig. 2.5 representing the RLC
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circuit for the MEMS device with the various parasitic capacitances leading to leakage
currents included.

Fig. 2.5 BVD model of a 1-DoF resonator system.

Individual spring, mass, and damper values of the resonator can be converted from
mechanical domain to electrical domain as follows:

Lr =
me f f

η2 (2.22)

Cr =
η2

ke f f
(2.23)

Rr =

√
ke f f me f f

Qη2 (2.24)

where, me f f is the effective mass of the resonator, ke f f is the effective stiffness of the
resonators, Q is the quality factor of the resonator that is related to the damping constant, and
η is the electro-mechanical transduction coefficient. For a symmetric capacitive transduction
system, the electro-mechanical coupling coefficient depends on the area of the electrode
(Aelec), transduction gap (gelec), drive voltage (VD), and the permittivity (ε) of the operating
medium. It can be modelled to be:

η = ε
Aelec

g2
elec

VD (2.25)

Additional parasitic capacitances are added in the form of C f t , Cpd and Cps as feedthrough
capacitance from the drive port to the sense port through the resonator body, parasitics from
the drive and sense pads to the grounded substrate respectively. Generally, the effect of C f t is
a more significant than Cpd and Cps [79] and therefore, for this simulation, Cpd and Cps are
ignored. The circuit shown in Fig. 2.5 is simulated in LTSPICE software with representative
values of motional parameters Rr = 0.1 MΩ, Lr = 500 H, Cr = 1 fF and C f t = 100 fF. Using
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dimensions of the capacitive actuation similar to the experimental values shown in Tab 2.1,
and a transduction voltage of 20 V, the equivalent mechanical parameters can be calculated
from Eqs. 2.22-2.25 as ke f f = 82 N/m, me f f = 41 ng, and Q = 7000. The frequency response
of the two different scenarios are shown in Fig. 2.6b.
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Fig. 2.6 Simulated frequency response from the 1-DoF BVD model.

As seen in Fig. 2.6b, the feedthough current distorts the frequency response curve of
the resonator by contributing an anti-resonance. The direction of the feedthrough current
determines whether the anti-resonance occurs before or after the resonance peak. Although
small amount of feedthrough current is to be expected in the physical systems, badly designed
devices could have high amounts of feedthrough capacitances. This could potentially distort
the phase and amplitude of the resonator and effect the design of oscillator systems, or
accurate amplitude/frequency measurements.

This simple system can be converted into a coupled mode-localised resonator topology
by adding the components for the second resonator and a coupling capacitance. The coupling
capacitance must be small to ensure that the two resonator systems are weakly coupled. A
circuit including the two parasitic capacitances is shown in Fig. 2.7.

The system of mode-localised resonators is simulated again in LTSPICE with test values
of R1r = R2r = 0.1 MΩ, L1r = L2r = 500 H, C1r =C2r = 1 fF, Cc = 1 pF, and C f t = 100 fF.
The frequency response of the system is shown at the symmetric condition (C2p = 0 F) and
the asymmetric condition (C2p = 200 fF) in Fig. 2.8. Using dimensions of the capacitive
actuation similar to the experimental values shown in Tab 2.1, and a transduction voltage
of 20 V, the equivalent mechanical parameters can be calculated from Eqs. 2.22-2.25 as
ke f f = 82 N/m, kc = 0.082 N/m, ∆k = 0.4 N/m, me f f = 41 ng, and Q = 7000. The arrow
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Fig. 2.7 BVD model of a 2-DoF resonator system.

indicates the measured motional current which is the representative current produced by the
resonator when it is resonating at its natural frequency. The first mode is described to be the
in-phase mode and the second as the anti-phase mode due to the phase conditions seen at the
output of each resonator. Localisation is clearly seen in the motional current measurement of
each resonator between the symmetrical (Fig. 2.8a) and asymmetrical state (Fig. 2.8b). The
effects of modal overlap and feedthrough currents clearly affect the amplitude measurements
and are further addressed in detail.
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(a) Symmetrical condition (C2p = 0F).
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(b) Asymmetrical condition (C2p = 200 f F).

Fig. 2.8 Frequency response of the coupled resonator system

Modal overlap

A salient feature seen in Fig. 2.8a is that the two modes of vibration are on the verge of
overlapping with each other due to the limited quality factor of the resonators. Modal overlap
is detrimental to the closed-loop applications of the coupled resonators and needs to be
avoided. The modal overlap depends directly on the difference between the natural frequency
of the two modes (ω01 and ω02) and the quality factor of the two resonators in question. As
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seen in Fig. 2.8a, that the closest the two eigenfrequencies approach each other is in the
symmetrical case, or the veering zone. So if the two eigenvalues are distinguishable at the
veering point, they should be distinguishable at any other point along the symmetry breaking
conditions. The key condition to be fulfilled for this is:

ω02 −ω01 ≥
∆ω01

2
+

∆ω02

2
(2.26)

Where ∆ω is the width of each modal spectrum that is dependent on the quality factor.
Now, if the quality factors of both these modes are assumed to be similar and the two
frequencies are close enough so that ω01 ≈ ω02, Eq. 2.26 can be approximated to be:

ω02 −ω01 ≥
ω01

Q
(2.27)

Hence, there is a direct relationship between the modal overlap and the quality factor.
This means that the quality factor of the resonators needs to be high enough for low modal
overlap. One of the dominant causes of quality factor reduction in capacitive devices is the
presence of fluid damping. In order to reduce fluid damping, these devices need to be either
operated in a vacuum chamber or sealed in hermetic packaging for practical applications.
If low Q factor devices need to be used, feedback control can be used to introduce stable
negative damping to avoid expensive packaging [80].

Feedthrough current

Another feature seen in Fig. 2.8 is the detrimental effect of feedthrough on the frequency
response of the resonators. As the system is transduced in a SED, the feedthrough in the
driven resonator is much higher than in the other. In this case, the feedthrough current limits
the dynamic range of the sensor if it exceeds the motional current. Furthermore, in such a
case, the phase conditions required for the oscillation loop by the Barkhausen conditions are
not met. To ensure that that the dynamic range is not limited, high feedthrough currents are
not desirable. Some ways to reduce parasitic capacitance are to have the drive and sense pads
far from each other with sufficient separation between parallel metallic traces for drive and
sense purposes. Additionally, once the sensor is mounted on to a chip carrier and a printed
circuit board (PCB) is used for the motional current readout, the electrical feedthrough from
the traces on the PCB will also add to the parasitic capacitance. To reduce those parasitics, the
sense signal tracks should be isolated from the drive signal traces and the channels measuring
the two motional currents should be kept on separate sides of the PCB.
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2.3 Experiment

The simulations outlined here capture the dynamics of the coupled resonator system. A
representative experiment is now shown to validate the results of the simulation and to
understand the issues underlining mode localisation in coupled resonators from a practical
standpoint.

The device used for this experiment is an electrically coupled Double Ended Tuning Fork
(DETF) resonator system. It is manufactured using SOIMUMPS® process, a commercial
foundry process using silicon-on-insulator (SOI) wafers by MEMSCAP Inc. Durham, NC,
USA. The device parameters and key experimental quantities are outlined in Tab. 2.1.

Fig. 2.9 Micrograph of an electrically coupled DETF resonator system

Table 2.1 Device parameters

Parameter Dimensions
Beam Length 350 μm
Beam Width 6 μm
Electrode Length 260 μm
Electrode Width 6 μm
Device Layer Thickness 25 μm
Proof Mass (2 for each DETF) 40 μm × 40 μm
Electrode Gaps 2 μm
Computed Resonator Stiffness (k) 1080 N/m
Computed Resonator Mass (m) 0.45 μg
Computed Resonance Frequency ( f0) 245 kHz
Experimental Quality factor (Q) 10000
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In this experiment, only an open-loop characterisation is carried out with a SED configu-
ration. A SED is chosen due to the restrictions on the number of electrodes available on the
device. A Zurich Instruments HF2LI is used as the signal generator and as a two channel
frequency response analyser. The coupling stiffness is realised by applying DC voltages
on the two resonator bodies. In this case, VDC1 is set to 0 V whereas VDC2 is set to 10 V to
realise a coupling voltage of Vc = 10 V. Resonator 1 is always defined as the resonator that is
being driven directly by the HF2LI and Resonator 2 as the resonator that is driven through
the coupler to which perturbations are being added. Perturbations are added to Resonator
2 in the form of a voltage on the perturbation electrode. This voltage is converted into a
negative perturbation due to the presence of the capacitor between the resonator electrode
plate and the perturbation electrode [23].

Fig. 2.10 Experimental setup of the open-loop readout circuit

The AC drive voltage from the HF2LI is passed through a Bias-T (a three port method of
setting a DC bias point at the sense node of the sensor without disturbing the AC component
of sense current) with a DC polarising voltage of 20 V. The motional current from both
resonators is first passed through a transimpedance amplifier (Analog Devices ADA4817)
to convert it to a voltage and then through a buffer before being recorded by the frequency
response analyser of the HF2LI. A Bias-T is also used on the output node with a DC voltage
of 60 V for a good transduction of the motional sense current.
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Fig. 2.11 Open-loop frequency response curves of the two resonators at different states of
symmetry due to applying perturbation voltage.
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2.4 Results

2.4.1 Open-loop frequency response

The frequency is swept around the vicinity of the resonant frequencies using the HF2LI
and the response of each channel is recorded. The stiffness of Resonator 2 is changed by
increasing the perturbation voltage resulting in vibration mode localisation. The results are
plotted in Fig. 2.11 with 11 different perturbation voltages highlighting the energy transfer
that occurs between the two modes as well as the two resonators in the same mode. It
is to be noted that the resonators are not perfectly matched due to fabrication tolerances
and accordingly need a high voltage to be brought to the symmetrical state (in this case
∼ 33 V). It can be clearly seen that when the perturbation voltage is increased, amplitude
of mode 1 (in-phase mode) of Resonator 1 decreases whereas that of mode 2 (anti-phase
mode) of the same resonator increases. As expected of the SED configuration, the amplitude
of Resonator 2, on the other hand, increases for both modes together until the symmetric
condition (achieved ∼ 33 V) and before reducing again. In this case, the feedthrough current
is quite low and allows for a wide range of operation between amplitude ratios of 1 to 4 for
mode 1 and amplitude ratios of 0.5 to 3.5 for mode 2. Any further change in the symmetry
results in the motional current of one of the resonators to be comparable to the feedthrough
current and therefore rendering it impractical to be used for sensing purposes. In practice,
either mode can be used in a sensing context but for this study, mode 2 (anti-phase mode)
will be considered.

Fig. 2.12a illustrates the frequency and amplitude at the peaks of each of the modes
of the frequency response curves shown in Fig. 2.11 plotted with respect to the applied
perturbations. The resonant frequencies of the two modes plotted this way leads to the
veering plot which has been described widely in coupled systems. As the perturbations are
added, it is seen that the two resonant frequencies come close to each other until the veering

zone at which point they veer away from each other. The veering zone is described as the
region in the plot with the smallest difference between the two resonant frequencies. This
is an important value since it allows us to estimate the real coupling stiffness that is being
generated by the coupling voltage applied to the system. The theoretical estimation of the
coupling voltage in the test device can be derived by equating the mechanical and electrical
forces in a capacitive plate as:

kc,analytical =−
ε0Acap

g3
elec

V 2
c =−0.72N/m (2.28)
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Fig. 2.12 Eigenfrequencies of the in-phase and anti-phase modes and amplitudes of the
anti-phase mode varying across different perturbation stiffness.

Furthermore, the experimental calculation of the coupling stiffness (kc) can be estimated
by taking a frequency difference of the two resonant frequencies in the symmetric condition
as is seen at the veering zone (as shown in Eq. 2.11). The frequency difference around
veering is seen to be 170 Hz and the resonant frequency is seen to be 247 kHz. The stiffness
(k) is calculated to be 1080 N/m and through this relation, the experimental kc is estimated
to be −0.743 N/m. This is quite close to the calculated kc and it can be concluded that the
fabrication tolerances are minimal. This method of calculating coupling stiffness is useful in
mechanically coupled devices where the theoretical estimation of the coupling stiffness is
complex.

Fig. 2.12b displays the output voltages of the two resonators of the anti-phase mode
(mode 2). These can be regarded to be synonymous with the vibration amplitudes. As
expected of the SED configuration, the amplitude of the driven resonator (Resonator 1)
increases with the increase in perturbations whereas that of Resonator 2 increases to the
symmetrical condition and then decreases with the further increase in perturbations. Since
the veering zone is representative of a symmetric resonator system, it is expected to see an
amplitude ratio of 1 there. In ideal systems, the veering would occur at ∆k/k = 0. However,
here it occurs at ∆k/k = 0.006 which can be associated to the fabrication tolerances that lead
to the production of an asymmetric system of resonators.
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2.4.2 Amplitude ratio and sensitivity

The amplitude ratio (AR) can then be calculated for each of these perturbation values by
taking the ratio of the amplitude of the Resonator 1 and Resonator 2. The result of this is
plotted in Fig. 2.13a against input stiffness perturbations.
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Fig. 2.13 Amplitude ratio variation with input perturbation stiffness and the localised sensi-
tivity to input perturbation.

Three main regions can be highlighted in this plot – the veering region (around AR∼1),
the region where AR>1 and the region where AR<1. The region where AR>1 is where the
energy gets localised to the driven resonator (in this case Resonator 1) and the variation of
amplitude ratio with respect to stiffness perturbations is linear. The veering region is where
the two resonators are matched in stiffness and the energy tends to be equally distributed
between the two resonators. The amplitude ratio here tends to vary nonlinearly with input
stiffness perturbations. The region of AR<1 is where the vibration amplitudes of both
resonators are low and from the perspective of the signal to noise ratio is not an ideal
operating region. Thus, this region is not considered for analysis.

Fig. 2.13a shows the nonlinearity in the variation of amplitude ratio is also plotted
in reference to the constant sensitivity of the system at AR>1 (in this case 929/(∆k/k)).
The nonlinearity in the scale factor is very small at high amplitude ratios and gradually
increases as the amplitude ratio decreases. It is generally expected of sensors to have a linear
variation in the output metric resulting in a constant scale factor. If a constant scale factor
is paramount, operating at a higher amplitude ratios might be considered. However, there
are many advantages to working around the veering zone (especially with optimising the
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noise) that will be discussed in later chapters. Hence, a plot showing the local sensitivity
is illustrated in Fig. 2.13b to aid the understanding of how the sensitivity changes with the
operating amplitude ratio. The sensitivity at large amplitude ratios shows an asymptotic
behaviour which is consistent with Fig. 2.13a. The sensitivity at veering (AR∼1) is a lot
lower than that at higher amplitude ratios and analytically is half of the sensitivity at the
constant sensitivity region. The sensitivity below AR∼1 reduces further until it is no longer
viable for use as a sensor due to the low signal to noise ratio, low sensitivity and low linearity
of the amplitude ratio variation. Although it is desirable to operate in the constant sensitivity
region, operating around the veering is not a great hindrance. The system can be run in a
feedback loop to keep the resonator system operating around a particular amplitude ratio or
the sensitivity can be calibrated so that the nonlinear variation in sensitivity is no longer an
issue.

The process of finding an optimum operating amplitude ratio requires much thought
and will differ depending the specifications needed for the sensor. Since the mode-localised
sensor is versatile, it can be operated at different amplitude ratios for various applications.
Optimum operating points will be detailed in later chapters from the perspective of sensitivity,
resolution, bandwidth, and building an oscillator.

Summary

This chapter discusses the basic operation of weakly coupled mode-localised resonator with
an emphasis on establishing the dynamics of a coupled resonator system from a modelling
and experimental perspective. Various modelling techniques reveal different aspects about
the dynamics of the coupled resonator topology. A simple eigenanalysis is helpful in
understanding the variation of the amplitude ratio and eigenfrequencies with input stiffness
perturbations as a measurand. The transfer function approach is useful to model the variation
of the amplitude of each resonator, and for estimating the noise in each resonator (discussed
later in Chapter 5). The BVD model allows us to understand the electrical aspect of sensing
the two resonator amplitudes and highlights potential issues with the feedthrough current.
From the experimental open-loop analysis, frequency veering is observed in the frequency
response curves and is critical in experimentally estimating the coupling stiffness. The
amplitude ratio variation trend with input stiffness perturbation is intrinsically nonlinear at
low amplitude ratios (around AR∼1) whereas it becomes linear at higher amplitude ratios.
Localised sensitivity around a chosen amplitude ratio is important to characterise to facilitate
the operation of the sensor at different amplitude ratios depending on the application. Future
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chapters focus more on the choice of particular operating amplitude ratios and coupling
stiffness for a variety of applications.





Chapter 3

Designing a Mode-localised Sensor

The path to building an integrated mode-localised sensor requires the incorporation of the
mechanical sensor components with the front-end electronics and a self-sustaining oscillator.
This chapter describes the necessary considerations for building a practical mode-localised
sensor. For the scope of this study, the sensor modules comprising of weakly coupled MEMS
resonators, front-end electronics including low noise TIA and a band pass filter, and a self-
oscillating loop are considered. The design process of each of these components is detailed
with explanations on the rationale behind them.

3.1 Mechanical design summary

The core of the sensor is the micromechanical resonator system that is manufactured using a
silicon-on-insulator (SOI) process. The fabrication process is outlined in Appendix A.

The device considered for the test structure is an electrically coupled MEMS resonator
system. Due to the high quality factor and low anchor losses, a DETF configuration was
chosen for the experiments over simple clamped-clamped beam resonator. Before fabrication,
an analytical model of the DETF resonator was created to aid with the design process (detailed
in Appendix B). The two DETF resonators are coupled using an electrostatic coupling instead
of a mechanical coupling. Since the coupling stiffness can be tuned simply by controlling the
voltage between the two resonators [23], electrostatic coupling offers the flexibility needed
in test structures for a variety of experiments. Furthermore, electrostatic coupling can offer
lower absolute values of coupling spring constant than mechanical coupling [23] for realising
highly sensitive mode-localised sensors.

The resonator needs to be compatible with the front-end electronics and the oscillator
topology. The dimensions of the DETF are governed by several conditions that must be met
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from the perspective of oscillator choice, power handling of the resonator, and transduction
method.

Oscillator requirement

A direct feedback oscillator is chosen in this implementation of a closed-loop sensor. This
topology is chosen due to its simplicity and is apt for the first implementation of an oscillator
for mode-localised sensor. More complex oscillators can be proposed in the future to optimise
different aspects of the sensor. The direct feedback oscillator works best when the resonator
has a high power handling ability, a low resonant frequency, and low feedthrough current.

Power handling

The power handling ability is a measure of the energy stored in the resonator. This ability
reduces when the size of the resonators is decreased. Since the direct feedback oscillator
requires a greater power handling ability, narrow beams are avoided when designing the
DETF resonators. The aspect ratio of the length to width of the resonator is set to 100:1 by the
manufacturing process. This guides the design of the length of the resonators. Furthermore,
to avoid stiction issues with fabrication, long beams are avoided. All these factors are
considered when designing the DETF resonators.

Transduction method

Electromechanical transduction in SOI resonators is done capacitively. The most common
kinds of capacitive transduction employ either a parallel plate capacitor or a comb-drive
capacitor. A parallel plate capacitor allows for greater transduction force but is inherently
nonlinear in its operation; whereas comb-drive transduction offers lower drive force but is
linear in its behaviour. The higher the drive force, the larger the amplitude of vibration, and
higher the motional current. However, if the drive force is too small, the motional current of
the resonator would be too low, and the signal to noise ratio would be affected. Therefore, a
parallel plate configuration with a large sensing electrode and a small transduction gap is
desired since it increases the motional current being sensed.

These are some of the main factors that need to be considered in the process of designing
the micromechanical resonator system. Significant optimisation needs to be performed to
tune these parameters and some compromises need to be made in arriving at the final design.
These optimisations are done using finite element modelling (FEM) using COMSOL®. The



3.2 Electrical circuit design 33

details of the COMSOL®simulation including the mode shapes, eigenfrequencies and the
sensitivity estimations of the device are shown in Appendix C.

The dimensions of the device were derived from previous operating designs that showed
resonant frequencies and quality factors consistent with the requirements for this work. These
were confirmed using FEM simulations as shown in Appendix C. An optical micrograph of
the device is shown in Fig. 3.1 and the dimensions are described in Table 3.1.

Fig. 3.1 Optical micrograph of the device.

Table 3.1 Device parameters

Parameter Dimensions
Beam Length 350 μm
Beam Width 6 μm
Electrode Length 260 μm
Electrode Width 6 μm
Device Layer Thickness 25 μm
Proof Mass (2 for each DETF) 40 μm × 40 μm
Electrode Gaps 2 μm
Computed Resonator Stiffness (k) 1080 N/m
Computed Resonator Mass (m) 0.45 μg
Computed Resonance Frequency ( f0) 245 kHz

3.2 Electrical circuit design

The interface circuit is closely tied with the design of the MEMS resonator. A key component
of the front-end electronics includes the circuitry that converts the motional current of the
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resonator into voltage using a trans-impedance amplifier (TIA) and then a band pass filter
(BPF) to reduce the broad band noise in amplitude measurements. Additionally, to sustain
the oscillation of the resonators, an oscillator needs to be designed to conclude the integration
of all the components needed for a mode-localised sensor.

3.2.1 Interface circuit

The interface circuitry is used for preliminary experimental analysis about the various
characteristics of the resonators and sensors. In this process, the resonant frequencies,
amplitude of the modes and quality factors of the devices are measured. The design and
simulation results of the TIA and the BPF are detailed further.

TIA configuration

A dual stage charge amplifier circuit using ADA4817-1 and OPA656 for the first and second
stage operation amplifiers is chosen as the TIA. A schematic of such a circuit is shown in Fig.
3.2. In the schematic, the resonator is illustrated as a current source; the parasitic capacitance
due to bond wires and packaging is chosen to be 10pF; the gain resistor is chosen to be 1GΩ;
and the parasitic capacitance between the pads of the gain resistor is chosen to be 150 f F.

150fF

1GΩ

10pF

5V

-5V
Vtiaires

-5V

5V220pF

7.5kΩ

6.8p

Fig. 3.2 Dual charge amplifier TIA using ADA4817-1 and OPA656

Using SPICE simulation, the circuit above can be simulated for its noise performance and
its gain values. Fig. 3.3 shows the results of the simulation for the TIA circuit. The resonators
in this work have a resonant frequency in the range of 250 kHz which has been marked as the
operating region. A charge amplifier is chosen for the TIA configuration for the high gain
and the low noise it offers as compared to conventional TIA. High gain allows for higher
output voltages without the need for high drive voltages that could lead to nonlinear effects
in the resonator. Furthermore, high output voltages are crucial in amplitude measurements
since the signal to noise ratio in the case of an electronic noise dominant system is entirely
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(b) Output and input noise of the TIA.

Fig. 3.3 Simulated properties output noise, gain and, input-referred noise of the charge
amplifier TIA configuration.

dependent on the magnitude of the sense voltage. The first stage maximises the gain; but, the
charge amplifier does not have a flat gain or phase around the frequency of interest. Thus,
the second stage of a differentiator is added to shift the phase by −180o and flatten the gain
around the operating region. The gain and phase response of the TIA is shown in Fig. 3.3a.
The noise of the circuit is also simulated and the results are plotted in Fig. 3.3b. The output
noise describes the voltage noise seen at the output of the TIA. The input-referred noise
is acquired by dividing the output noise with the gain of the amplifier. This metric gauges
the equivalent current noise that is added to the motional current before the amplifier stage.
The output noise is seen to be 0.85 μV/

√
Hz whereas due to the high gain the input-referred

current noise is only 77 fA/
√

Hz.
The current noise in Fig. 3.3b decreases at lower frequencies with a corner frequency

around 100kHz. If the resonant frequency of the device was below that corner, the noise could
be reduced by 5 times. Therefore, this TIA configuration is best suited for operating at under
100 kHz. However, it provides the best noise performance for the range of operation and the
bandwidth required for this implementation. Future breakthroughs in the TIA technology
could potentially improve the noise floor, leading to higher resolution measurements.

Band pass filter

Band pass filters are quintessential in amplitude measurements to restrict the amplitude
noise. A simple second order band pass filter as shown in Fig. 3.4 is implemented to allow
for a small bandwidth around the resonant frequency with sharp cut-off. The frequency
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Fig. 3.4 A second order band pass filter using ADA4898 OPAMP
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Fig. 3.5 Gain and bandwidth of the TIA

response of the band pass filter is shown in Fig. 3.5. The center frequency of 255 kHz
is achieved with the closest available commercial resistor and capacitor values; besides, a
bandwidth of 35 kHz is chosen to have a quasi-flat gain in the operation range while ensuring
the out-of-band components are heavily suppressed.

The noise models and the properties of the interface circuitry used in SPICE simulations
are helpful in the initial design of the electronics. However, they need to be experimentally
verified for their accuracy. Therefore, an experiment is conducted after assembling the
electronics for the noise and gain of the interface electronics. A wide frequency band is
chosen for gain measurement (shown in Fig. 3.6a) to capture the effect of the band pass filter.
A filter bandwidth of 40 kHz is measured around a center frequency of 250 kHz. The gain
measured from the interface circuit is almost double of what was seen from the model of the
TIA. This can be attributed to the variation in the parasitic capacitance around the pads of the
gain resistor and variability of the real components from the ideal ones used in the model.
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There is also a difference in the gain of the two channels and this is attributed to the variation
in the parts used for the two channels.
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Fig. 3.6 Experimental characterization of the gain and noise of the interface cirucit.

The experimental noise of the interface circuitry is shown in Fig. 3.6b. The noise band
between 245 kHz and 250 kHz is chosen as the operating region. The noise in the two
channels differs from the SPICE model by about 30%. However, the model only captures
the noise from the TIA and not the noise introduced by the band pass filter as well. There is
also a difference of 20% between the two channels that can be attributed to the error in the
component values used in both the channels.

These experimental results prove that the models used in the SPICE simulations were ac-
curate for providing insight into the behaviour of the interface circuit. They were instrumental
in simulating all of the circuitry presented in this work.

3.2.2 Closed-loop circuit

To develop a self sustaining loop, the main criteria to be fulfilled is the Barkhausen criteria
[81]. Fig. 3.7 shows the role the feedback control loop plays in sustaining oscillations from
the resonator system. The resonators and the amplifier form the open-loop pathway and have
already been described in the previous section.

Barkhausen criteria suggests that for oscillations to be sustained the following two
conditions must be met:

• The gain of the open-loop and feedback network must be greater than or equal to 1
(α( jω)×β ( jω)≥ 1).
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Fig. 3.7 Control loop including the resonator, amplifier and the feedback network.

• The phase lag in the loop must be a multiple of 2π

The feedback network includes a soft limiter gain control instead of the conventional
amplitude gain control. This allows for a gain control that reduces nonlinear effects including
higher order harmonics. In addition to that, a phase shifter is included in the loop to tune
the phase to fulfill the Barkhausen criteria. This oscillator is apt for operating the sensor in
the region where the output amplitude of the feedback resonator remains constant across
the operating region. If Resonator 1 is used in the control loop, then the operation region is
limited to high amplitude ratios (AR> 5). Contrarily, if Resonator 2 is used in the control loop,
then the operation region is limited to the veering range (0.9 < AR < 1.5) since amplitude of
Resonator 2 in SED remains relatively constant in that region. Therefore, the operation region
is confined to where the amplitude being controlled is constant across stiffness perturbations
as seen in Fig. 2.4a. To implement an oscillator at a greater range of working region, a phase
locked loop (PLL) should be preferred instead of a direct feedback oscillator topology.

Soft limiter gain control

A schematic of the soft limited circuit employed for the amplitude gain control is shown in Fig.
3.8. The soft limiter has two diodes to limit the positive and negative parts of the amplitude
of sine wave. When the output voltage (Vout) is small, the two diodes are off. The soft limiter
behaves as a simple voltage amplifier with a gain of −R2

R1
. When starting the oscillations up,

the noise in the system gets amplified and drives the resonators to continuously get higher
and higher amplitudes at resonance in this operating region. When the amplitude becomes
comparable to Vlim (with the positive threshold of VL+ and a negative threshold of VL−), the
diodes start to conduct. The thresholds of these voltages can be defined with respect to the
forward voltage of the diode (Vf ) and the reference voltage as follows:

VL+ =
R6

R5
5V +

(
1+

R6

R5

)
Vf (3.1a)
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VL− =−R4

R3
5V −

(
1+

R4

R3

)
Vf (3.1b)
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D2
1N4148

R3
10kΩ

R5
10kΩ

5V

-5V

VB

VA

Fig. 3.8 Soft limiter circuit

When the threshold is reached and the input voltage tries to increase further, more current
is injected into diodes D1 and D2 whereas, VA and VB stay at the forward voltage of the diode
(Vf and −Vf ). The current through R5 and R3 remains constant and the diode current flows
through R6 and R4 thus, reducing the gain in this region to:

GL+ =−R2||R6

R1
(3.2a)

GL− =−R2||R4

R1
(3.2b)

These two regions are described in Fig. 3.9. Notice that increasing the value of the
feedback resistor R2 increases the gain in the linear region but does not impact the limits VL+

and VL−.
The full circuit implementation with the values for the components are shown in Fig. 3.8.

The values are chosen after setting the gain of the TIA to achieve an output voltage of 200
mV. Using a diode 1N4148 with a forward voltage of 0.7 V, and the reference voltage of ±5
V, the voltage is limited to 1.27 Vpk. The drive voltage feeding into the resonator needs to be



40 Designing a Mode-localised Sensor
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Vin

VL+

VL-

Gain=
-R2/R1

GL-=-
(R2||R4)/R1

GL+=-
(R2||R6)/R1

Fig. 3.9 Soft limiter operation

much lower for linear operation so a voltage divider is introduced at the drive port to reduce
this voltage by a factor to 10 before driving the resonator.

Phase shifter

A phase shifter is used to maintain the Barkhausen criteria of having a zero phase in the loop.
An example of a simple phase shifter is implemented as the schematic in Fig. 3.10 suggests.

Because the nodes of the two input terminals in an operational amplifier are at the same
voltage, the transfer function of the voltage from input to output node can be determined as
H( jω) = 1− jωRC

1+ jωRC . The gain of the operation amplifier is defined by R3 and R1 and since they
are equal, the amplifier has unity gain. The phase of the operational amplifier is defined as:

φ(ω) = arctan(−ωRC)− arctan(ωRC) =−2arctan(ωRC) (3.3)

Assuming that the capacitor (C1) is going to remain constant, the phase needs to be
adjusted by adjusting R2. Knowing the amount of phase that needs to be changed, a resistor
R2 can be chosen as follows:

R =
− tan(φ

2 )

C1ω
(3.4)
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C1
100p

Fig. 3.10 Phase shifter circuit

The phase lag in the circuit can be simulated but since the circuit components tend to
vary from their nominal values, it is prudent to experimentally determine R2 at the prescribed
operating range. The circuit components in Fig. 3.10 are chosen for operation at 250 kHz to
induce a phase lag of 60 o.

The fully integrated mode-localised sensor is realised on a printed circuit board (PCB). A
picture of this is shown in Fig. 3.11.

Fig. 3.11 Mode-localised sensor integrated with the electronics on a PCB
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3.2.3 Closed-loop implementation using lock-in amplifiers

The Zurich Instruments MFLI and HF2LI are off-the-shelf lock-in amplifiers with built in
PLL controller that can close the loop on the resonator system. By doing so, the PLL locks to
the oscillation frequency to fulfill a particular phase condition. The MFLI is a single channel
system lock-in amplifier while the HF2LI offers a dual channel lock-in amplifier option.
Both systems calculate the control values using the model of the resonator with a particular
resonant frequency and quality factor. A set of PI values are created using this model which
contribute towards sustaining oscillations by minimising phase error between sense and drive
signal. An added advantage is that the phase of the drive signal can be changed to facilitate
nonlinear frequency analysis by mapping unstable regions. This system is instrumental in
prototyping and is detailed in many of the experiments outlined in the thesis.

Unlike the direct feedback oscillator outlined previously, this method can be applied
to close the loop in a greater range of amplitude ratios. This is made possible as it does
not require the signal amplitude to be constant in the operating region. Either the output
voltage of Resonator 1 or 2 can be used in the loop for a large operating conditions. However,
it should be noted that the low amplitudes of vibration (<10 mV) increase the noise in
the system and limit the resolution of the sensor. Ultimately, the phase conditions being
fulfilled by the PLL will determine the resonator in the loop. Resonator 1 output shows the
same phase with respect to the drive voltage in both the in-phase mode and the anti-phase
mode; contrarily, Resonator 2 shows a phase difference of π between the two modes. Thus,
Resonator 2 is preferred because of the unique phase conditions it fulfils for either mode of
operation across a range of operating amplitude ratios.

3.3 Experiment

The experimental setup is shown in Fig. 3.12. The two resonators are weakly coupled
with negative stiffness by applying a DC voltage across the gap between the resonators.
The two sense electrodes were biased at the same DC Voltage and were used to sense the
vibration amplitudes (X1 and X2) of the resonators. A negative stiffness perturbation relative
to Resonator 1 was applied on the perturbation electrode in the form of voltage difference for
sensitivity measurements. The direct feedback oscillator topology is employed to sustain the
oscillations of the MEMS device.

The oscillator for the sensor was created using cascade drive configuration. The loop was
closed using the output current of Resonator 1. This motional current was first converted
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Fig. 3.12 Schematic of the experimental setup.

into voltage through a transimpedance amplifier (TIA), then passed through a soft limiter
circuit, and a phase shifter to satisfy the Barkhausen criteria. Resonator 1 was driven with a
combination of a DC polarising voltage and an AC excitation voltage and Resonator 2 was
driven synchronously through the coupling.

3.3.1 Sensitivity analysis

To achieve high sensitivity, VDC1 was set to 0 V and VDC2 was set to 5 V thereby applying
a coupling voltage of 5 V. The voltage difference for the drive and sense transduction
is maintained at 35 V to maintain equal drive and sense polarisation voltages. Stiffness
perturbations were applied to Resonator 2 by applying a voltage to the perturbations electrode.
The perturbation voltage were swept from −5 V to −15 V with increments of 2 V. The
amplitudes and frequency were first measured in open-loop setup with the Zurich Instruments
lock-in amplifier, and then in closed-loop with digital multimeters (Keithley) and frequency
counters (Keithley) respectively. Each measurement was averaged over a period of 1 min.
The results are plotted in Fig. 3.13.

Fig. 3.13 shows the sensitivity of various output variables in both open-loop and closed-
loop configurations. Since the operation point of this sensor is away from the veering zone,
the amplitude of Resonator 1 stays relatively constant while that of Resonator 2 increases
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Fig. 3.13 Sensitivity of various output metrics to stiffness perturbations in closed-loop (Black)
and in open-loop (Red) configurations
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with increased stiffness perturbations. Additionally, the observed change in amplitude
ratio over stiffness perturbations is linear while the frequency shift for this mode is almost
negligible due to the operating regime. The difference in the values of the open-loop and
closed-loop measurements can be attributed to different loading conditions observed over the
measuring devices. Furthermore, due to the low resolution of the open-loop measurements,
the frequency trend is not consistent with closed-loop measurements.

The sensitivity of the amplitude ratio in terms of normalised stiffness perturbation,
δK = ∆K/K, is calculated as:

SAR =
∂AR

∂ (δK)
=−5250/δK (3.5)

The frequency shift in this operating region is insensitive to input stiffness perturbation
in comparison to other operating regions. It does not represent the maximum sensitivity
achieved with frequency shift sensing in this device. Due to the choice of the feedback
oscillator, the operating region is limited to the mode where the amplitude of Resonator 1 is
insensitive to stiffness perturbations. A by-product of this condition with electrically coupled
devices is that the frequency of the anti-phase mode (the mode being measured) remains
approximately constant. This is seen in Fig. 3.13d where the closed-loop frequency changes
by only 2 Hz over the range of the stiffness perturbations. However, in this operating region,
the sensitivity of the in-phase mode is maximum. Due to the symmetry of the system, the
in-phase mode stability can be assumed to be similar to the anti-phase mode stability. To
achieve the highest input-referred bias instability, the sensitivity of the in-phase mode (shown
in Fig. 3.13e) is used for calculations of input-referred stability.

Fig. 3.13e shows the measured open-loop sensitivity of the frequency shift of mode 2
in the same operation region. The slope describes the sensitivity with respect to normalised
stiffness perturbation, δK, and it is calculated as:

S f =
∂ f

∂ (δK)
=−73715 Hz/δK (3.6)

3.3.2 Stability analysis

To investigate the long-term stability of the system, the sensor was placed in the closed-loop
configuration with the DC perturbation voltage set to −10 V while amplitude and frequency
data was collected for 12 hours. The Allan deviation of the amplitude ratio and the frequency
data was then calculated to indicate the stability of the two output metrics. Fig. 3.14a shows
the absolute stability of the amplitude ratio measurements. The trend of the curve shows
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Fig. 3.14 Modified Allan variance of the measured a) amplitude ratio and b) frequency
stability.

that the amplitude ratio output metric is more stable at higher integration times with the
best stability (σAR) of 4.32×10−4 achieved at 500 s. In comparison, Fig. 3.14b plots the
Allan deviation of the output frequency data. In this case, the trend of the curve shows that
the stability decreases with larger integration times signifying a poor long-term stability.
Nonetheless, a best stability (σ f ) of 0.6 mHz (2.7ppb) is achieved at 0.2 s integration time.

Although output stability is an important metric, the input-referred stability governs
the resolution of the sensor. In terms of normalised stiffness perturbation, σδK , the input-
referred stability signifies the minimum normalised perturbation that can be sensed by the
mode-localised system. This can be calculated for amplitude ratio and frequency as follows:

σδK,AR =
σAR

SAR
(3.7)

σδK, f =
σ f

S f
(3.8)

Using the above relation, the input-referred stability of both the amplitude ratio and the
frequency shift are compared in Fig. 3.15. The trend of the output stability is retained in the
input-referred stability as well. Normalised perturbations δK can be resolved very well by
frequency as an output metric for shorter integration times. The turnover point (in this case
at τ = 100s) signifies the integration time after which, the amplitude ratio measurements
provide better stability than frequency measurements.
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Fig. 3.15 Experimental Input-referred stability.

3.3.3 Bandwidth

The bandwidth of the mode-localised sensor in the closed-loop setup has been characterised
by applying alternating perturbations. A square wave with maximum and minimum ampli-
tudes of −5 V and −10 V was applied to the perturbation electrode at various frequencies.
The frequency was swept from 0.1 Hz to 10 Hz with appropriate steps in between them.
Similar to the sensitivity test, the amplitudes and the frequency were measured and recorded.
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Fig. 3.16 Real-time monitoring of the amplitude ratio for different input perturbation frequen-
cies (a) f = 0.1 Hz and (b) f = 1 Hz. The DC values of amplitude ratio for those particular
perturbation voltages are shown in red.
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Fig. 3.17 Measured amplitude ratio, normalised to DC amplitude ratio, at different frequencies
of perturbation.

The real time response of the amplitude ratio to such perturbation is shown in Fig. 3.16.
The two examples show the switching between the perturbation stages of −5 V and −10 V
at 0.1 Hz and 1 Hz. The amplitude ratio at both these frequencies track the DC values of −5
V and −10 V indicating that these frequencies are well within the bandwidth of the sensor.

Upon further increasing the frequency of perturbations, it is seen that the amplitude ratio
values change from the DC values seen above. To calculate the bandwidth of the sensor, the
RMS value of the amplitude ratio is taken for different perturbation frequencies. This gain is
normalised to the DC gain and plotted in decibels in Fig. 3.17. The 3dB bandwidth of the
system under test as shown in the figure is 3.5 Hz which is representative of the maximum
frequency of perturbation that can be sensed by this system without losing information about
the perturbations. Theoretically, the bandwidth of the system should be equal or close to
the mechanical bandwidth of the resonator (29.3 Hz) but the limiting factor to achieving it
can be attributed to the oscillator and electrical circuit. This oscillator has been designed for
near DC perturbation frequency and is not optimised for higher frequency perturbations; but
future work on oscillators for mode-localised systems can result in the system working at
higher frequency perturbations.
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Summary

In this chapter, the design of an integrated mode-localised sensor is shown with a detailed
description of the mechanical device design and the open-loop readout circuit including a
transimpedance amplifier and a band pass filter. Furthermore, a closed-loop implementation
is developed with a direct feedback topology and a PLL topology with Zurich Instruments
lock-in amplifier. The sensitivity, stability and bandwidth of the sensor were all characterised
using the direct feedback closed-loop topology. The stability results show that the input-
referred stability of the amplitude ratio output is better than the frequency shift output at
large integration times (in this case at τ > 100 s).

This work also demonstrates the potential practical benefits of the amplitude ratio sensing
over the conventional frequency shift sensing. However, there are many parameters that
affect the stability of the measured amplitude and those need to be studied thoroughly to
improve the stability of the system in both short and long integration times. The next chapters
discuss some of these factors that affect the resolution of the mode-localised resonators.





Chapter 4

Practical Limits to Common Mode
Rejection in Weakly Coupled Resonators

Common mode rejection is the ability of a sensor to reject effects caused by undesirable
sources that couple into the output metric being sensed. In silicon MEMS resonant sensors
such as accelerometers and gyroscopes, long-term stability in the output metric is highly
desirable. Differential frequency output in resonant accelerometers can reject common mode
changes in the ambient temperature that lead to frequency drifts in frequency measurement.
Amplitude ratio measurement in mode-localised sensors also provides such common mode
rejection that makes it superior to frequency shift-based sensing. This chapter delves into the
details of understanding the different mechanisms that play a role in defining the practical
limits to common mode rejection of temperature fluctuations in both electrically coupled and
mechanically coupled mode-localised resonators.

4.1 Temperature fluctuations and MEMS resonators

One of the key issues affecting resonant silicon MEMS devices is the high temperature
coefficient (TCF ) of the resonant frequency. This effect is primarily caused due to the intrinsic
temperature sensitivity of (Young’s Modulus) of silicon. In the context of resonant sensors,
high TCF results in undesirable frequency drifts in devices that restrict them from achieving
good long-term stabilities.

Several technical approaches have been researched to address this issue. Two widely
used methods are – oven control of the device [82–85], and temperature compensation of
the device by either using passive [86, 87] or active methods [88, 89]. Oven control involves
controlling the temperature in the vicinity of the MEMS chip so that the chip temperature
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is nominally independent of ambient conditions. Though some implementations of this
method [83, 82] have shown high thermal stabilities, the bulky nature of the setup and the
associated high power consumption undercut the advantages that MEMS devices offer with
the miniaturisation.

Temperature compensation involves the correction of the response of the frequency
measurement to temperature by using a calibrated dummy resonator with a known TCF to
sense the temperature. Once the temperature variations are accurately measured, they can
be used to compensate for the fluctuations seen in the frequency output of the device using
external circuitry [88, 89]. This requires additional electronic circuitry that consumes power
and an independent measure of the temperature that is impractical for many low power
applications. A passive method that is used in inertial sensors [57, 90, 8] is a differential
frequency output where two identical resonators are used to measure inertial forces and a
difference of the frequency output leads to rejection of common mode effects including
temperature. However, due to fabrication tolerances, the TCFs of the two resonators may not
be perfectly matched leading to an imperfect cancellation of temperature fluctuations.

On the other hand, an eigenstate or amplitude ratio shift metric in mode-localised weakly
coupled MEMS resonators has shown exceptional common mode rejection capabilities to the
first order when exposed to temperature or pressure changes in comparison to the frequency-
based readout [24, 25, 91]. Additionally, it also provides an increase in the sensitivity to input
measurand by 2-3 orders of magnitude in comparison to the conventional frequency shift
method of sensing [23, 32, 28, 92]. Typically, a temperature coefficient for frequency-based
readout of approximately −30 ppm/oC has been measured that is dominated by temperature
induced variation in elastic modulus of silicon. Thus, the promise of an output metric
rejecting temperature variations is highly desirable for sensor applications.

In this chapter, a detailed investigation of the common mode rejection in weakly coupled
mode-localised resonators is presented. Previous work on this topic focuses on a study
confined to electrically coupled resonators biased to a particular working range [24] or
to a study restricted to a mechanically coupled resonator operating at one vibration mode
[93]. However, no coherent study has been done encompassing both modes, large range of
amplitude ratio operating points, and different coupling topologies. Furthermore, it has been
established and shown that the amplitude ratio measurement demonstrates greater common
mode rejection capabilities than a frequency shift output but, an apt comparison has not been
made to a differential frequency shift output which is the convention with resonant sensors.
This study fills these gaps in the current state-of-the-art and sheds light on all the important
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factors impacting the common mode rejection capabilities of amplitude ratio readout metric
in mode-localised resonators.

4.2 Theory

In order to evaluate the limits to common mode rejection of amplitude ratio output metric
in mode-localised resonators, it is necessary to understand the different variables that affect
the amplitude ratio and frequency shift output metric. The three output metrics chosen for
this analysis are amplitude ratio in a coupled resonator system, frequency shift in a coupled
resonator system, and a differential frequency in uncoupled identical resonators representing
the current state-of-the-art. The temperature dependence of the variables that affect these
output metrics need to be studied with a discussion on the degree to which they affect each
of the output metrics. To aid the comparison with the same metrics, the analysis is limited to
common mode rejection in sensors. Furthermore, the measurand chosen for this analysis is
a perturbation in stiffness (∆K) since it effects both the frequency and the amplitude ratio
output metric.

4.2.1 Temperature dependence of output metrics

Mode localisation in its most basic form can be represented by a 2-DoF lumped spring-mass
model. The two springs (k1) and masses (m1) are assumed to be the same. They are coupled
together with a weak coupling spring (kc). A perturbation in stiffness (∆k) is added to one
of the resonators to perturb the system from a state of symmetry. The analysis is done on
an undamped system. Thus, c1 and c2 are neglected. A detailed work on the variability of
the quality factor should be done in the future with special importance given to the type of
damping that dominates in different coupled systems. This causes a shift in the eigenstate of
the resonators proportional to the measurand and this is represented as the ratio of the two
amplitudes of vibration of the resonators.

m1 m2

k2k1 kc

x1 x2 c2c1

F1 F2

Fig. 4.1 A coupled resonator configuration used for amplitude ratio measurements
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Frequency shift in mode-localised resonators

The eigenfrequencies of the two modes of the coupled resonator system have already been
derived previously in Chapter 2.2.1 and can be written as:

ω
2
i =

2k+ εk +2kc +∆k±
√
(∆k+ εk)2 +4k2

c
2m

(i = 1,2) (4.1)

It is to be noted that the two resonators are assumed to be different in stiffness (k and
k+ εk) due to fabrication tolerances. Eq. 4.1 shows that frequency of a mode-localised
resonator has the following temperature (T ) dependent components:

ωi(T ) = ωi0 +

(
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(
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)
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(
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)
+ωi

(
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(
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Amplitude ratio in mode-localised resonators

Similarly, the expression for the amplitude ratio is also derived from Chapter 2.2.1. Thus,
amplitude ratios of the two modes can be expressed as:

ARi =
∆k+ εk ∓

√
(∆k+ εk)2 +4k2

c
2m

(i = 1,2) (4.3)

It is also important to note that the fabrication imperfections (εk) in this case can be
merged with the stiffness perturbations (∆k) term since the fabrication tolerances can be
tuned electrostatically without affecting the drive or sense transduction. Therefore, ∆k can be
used as a sole representative of the measurand. Considering all these factors, the temperature
dependent features of amplitude ratio measurements in mode-localised sensors are:

ARi(T ) = AR0 +

(
ARi

(
∂kc

∂T

)
+ARi

(
∂∆k
∂T

))
∆T (i = 1,2) (4.4)

Differential frequency shift in two uncoupled resonators

It is necessary to make comparisons to a differential frequency output from two single
resonator systems, representing the current state-of-the-art in resonant sensors. Thus, an
expression is derived for a frequency difference readout metric in two separate but similar
resonator devices undergoing a differential change in the measurand (i.e. ∆k). Fig. 4.2 shows
the lumped spring mass damper model for two uncoupled resonators that can be used for
frequency difference measurements.
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m1 m2

k2k1

x1 x2 c2c1

F1 F2

Resonator	1 Resonator	2

Fig. 4.2 Uncoupled resonators for differential frequency measurement
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where the frequencies of the two resonators are expressed as ω1 and ω2. The two masses are
assumed to be equal when resonating and any variation in it with temperature is assumed
to be negligible. The stiffness of the two resonators are assumed to be different to include
the cumulative effect of manufacturing tolerances. They can be reduced to k and k+ εk to
simplify the expression by including a term (εk) to represent fabrication tolerances. The
frequency difference as an output metric can be achieved from subtracting the expressions in
Eq. 4.5:

ω1 −ω2 = ωd =

√
k+∆k

m
−
√

k+ εk −∆k
m

(4.6)

Any variation in k with temperature is rejected in this output metric too. But, it can be
noticed in Eq. 4.6 that the frequency difference output includes the εk term that ultimately
is the limit of common mode rejection. Even in this case, the fabrication tolerances can be
compensated by electrostatically tuning the resonators. But this generally hampers the drive
or sense transduction and requires continuous tuning [94, 90]. Thus, for the purposes of
this analysis, it is assumed that the fabrication tolerances are uncompensated and vary with
temperature. Therefore, the variables with temperature dependence in this output metric are:

ωd(T ) = ωd0 +

(
∂εk

∂T
+

∂∆k
∂T

)
∆T (4.7)

Although it might seem from an initial inspection that the amplitude ratio output metric
has similar number of temperature dependent terms in it, the mechanisms that cause this
temperature dependence are different in both these output metrics. Thus, it is prudent to
understand these mechanisms and their variation with temperature to highlight their individual
advantages.
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4.2.2 Variables with temperature dependence

The above section provided insight into the variables that affect the three output metrics
under question. These variables are discussed in detail here with emphasis on the various
mechanisms causing these changes in the different systems and output metrics.

Resonator stiffness (k)

The resonator stiffness is dependent on material parameters such as Young’s modulus and
density, and structural properties. The Young’s Modulus of single-crystal silicon varies with
temperature at ≈ −60ppm/oC [95] and affects the stiffness of the resonator. The thermal
expansion coefficient of single-crystal silicon is ≈ 2.6ppm/oC [96]. This induces a change
in the structural dimensions of the resonator with a variation in temperature which, in turn
affects the stiffness of the resonator. The temperature dependence of the resonator stiffness
affects only individual resonator frequencies. A differential frequency or an amplitude
ratio output eliminates common mode effects of the Young’s modulus changes since both
resonators would be part of the same wafer with the same crystal orientation.

Stiffness mismatch (εk)

When the resonators are non-identical due to fabrication tolerances, it leads to a stiffness
mismatch in the resonators (εk). Thus, due to their geometrical imperfections, the resonators
exhibit different responses to a change in temperature. This mismatch in the variation
of stiffness with temperature forms the fundamental limit to the common mode rejection
capabilities of an output metric. Tuning this mismatch in a differential frequency output
metric using the electrostatic spring softening effect has been shown [97]. Varying the
voltage on either the drive, sense electrode or the body of the resonator can lead to tuning the
stiffness mismatch between the two resonators. The caveat here is that changing the voltage
also varies the transduction factor which is undesirable for sensor applications. An additional
port can also be designed for the sole purpose of tuning, but this would encroach on valuable
space around the transduction of the resonator. Mode-localised resonators enjoy the mode
shape extending between the two coupled resonators and rely on a sensing mechanism based
on the stiffness mismatch. Thus, electrical tuning voltages do not change the transduction
capabilities. Therefore, they have a less direct effect on the common mode rejection abilities
of the amplitude ratio output metric.
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Coupling stiffness (kc)

The variation of the coupling stiffness in mode-localised resonators affects the amplitude
ratio as well as the frequency output metric. Thermal effects will affect the coupling stiffness
in different ways depending on whether it is realised using a mechanical beam or electrical
capacitive coupling. In a mechanically coupled device, the coupling stiffness is susceptible
to changes in the material’s Young’s modulus. Additionally, any thermal expansions of the
beam will lead to stresses developing around the point of connection with the resonator. In
electrical coupling, there is no physical connection between the resonators. Hence, the effect
of temperature on the output metric is mainly due to thermal expansion effects modifying the
capacitive gaps. It is to be noted that the thermal expansion coefficient is smaller than the
Young’s modulus change by about an order of magnitude and thus it is prudent to expect a
proportional variation in the effectiveness of the common mode rejection between electrical
coupling and mechanical coupling in these devices.

Stiffness perturbations (∆k)

It should be noted that in analysing the thermal effects on the output metrics, the stiffness
perturbations include only the added perturbations for sensing purposes and not the stiffness
mismatch that is caused due to fabrication tolerances. There are two main ways of applying
perturbations to a capacitively transduced resonator system: one, by using the capacitive
gaps next to the resonators, and the other through axial stress application. In the experiments
carried out in this work, electrostatic spring softening effect using a capacitive gap has been
used. Thus, the magnitude of these perturbations will change with temperature due to the
thermal expansion of electrodes. This will lead to the capacitive gaps changing, therefore,
resulting in the change of stiffness perturbations added. This effect is much smaller than
the change in the other variables such as the coupling stiffness, resonator stiffness, or even
stiffness mismatch. Thus, it does not contribute greatly to the variation of the output metrics.

If the perturbations were added axially with the help of force amplification levers as used
in resonant accelerometers [8], the perturbations would result from stress on the resonators.
These stresses could have a much greater variation with temperature. However, for the sake
of this analysis, only electrostatic sources of perturbations are considered.

These are some of the main temperature dependent variables that affect the three output
metrics under study. The experimental results are analysed by referring to the mechanisms
affecting each of these variables and ultimately each of the output metrics.
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4.3 Experiment

The experiments in this study are designed to test the effectiveness of the common mode
rejection that the three output metrics offer. The experiments include only changes to the
temperature as the pressure is kept constant in the system. Two systems are chosen for
this experiment – a system of mechanically coupled resonators and a system of electrically
coupled resonators. These two devices allow for the comparison between the coupling
mechanism and highlight the differences in the temperature dependence of these two coupling
mechanisms. The electrically coupled resonators can also be used to emulate two uncoupled
resonators by applying the same voltage on both resonators (Vc = 0 V) thereby allowing for
differential frequency measurements.

(a) Mechanically coupled DETF resonators.

(b) Electrically coupled DETF resonators

(c) Mode shapes

Fig. 4.3 Micrographs and mode shapes of the two device structures under test.

The devices used for the experiment consist of a system of double ended tuning fork
(DETF) resonators coupled using electrical coupling and another, coupled using a mechanical
beam. They are fabricated using a SOIMUMPS process by MEMSCAP Inc. Fig. 4.3a shows
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the optical micrograph of the electrical coupled resonators and Fig. 4.3b shows that of a
mechanically coupled device. The design of these devices are not a core part of this work
as they existed prior to the commencement of this work. To make accurate experimental
comparisons, the device parameters of both resonators are kept as close as possible. Table
4.1 summarises some of the key device parameters of both devices. Furthermore, the mode
shapes of the two devices in their in-phase and anti-phase modes are shown in Fig. 4.3c. It is
to be noted that the in-phase and anti-phase mode refer to the motion of the DETF element
with respect to each other. The tines of the individual DETF elements of both the modes of
operation are moving out-of-phase with each other to increase the quality factor of the device
under test.

Table 4.1 Device parameters

Parameter Electrically coupled device Mechanically coupled device

Resonator Beam Length 350 μm 350 μm
Resonator Beam Width 6 μm 6 μm
Coupling Beam width - 4 μm

Coupling Beam Length - 150 μm
Device Layer Thickness 25 μm 25 μm

Proof Mass 0.6 μg 0.6 μg
Q factor 17000 19000

Resonant Frequency 251 kHz 252 kHz

The measurement setup is divided in two parts: the oscillation circuit to sustain the
closed-loop oscillations of the resonators and the temperature control systems to regulate the
local temperature control of the MEMS chip.

The oscillation circuit (shown in Fig. 4.4a) comprises two transimpedance amplifiers to
convert the motional current of resonator into a voltage that can be easily recorded. Oscil-
lations are sustained using the phase locked loop (PLL) function of the Zurich Instruments
MFLI using the output voltage of the driven resonator – Resonator 1 (As seen in Fig. 4.3).
Resonator 2 is driven through the coupler in a cascade configuration. Both output voltages
are measured and recorded simultaneously using the National Instruments data acquisition
(DAQ) card. For the electrically coupled resonator, coupling is realised by applying −7 V
on Resonator 1 and 7 V on Resonator 2. A drive bias voltage (Vd) of 22 V is used while the
sense ports are set to 0 V each. For the mechanically coupled resonators, a Vd of −20 V and
Vb of 20 V is used and the sense ports are set to 0 V. Perturbation voltages (Vp) are varied
to tune the amplitude ratio from the perturbation port in both devices. The experiments are
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carried out in a custom vacuum chamber at a pressure of 20 mTorr to avoid operating at
pressures where fluid damping dominates.

(a) Circuit level schematic of the experimental
setup.

(b) Illustration of the chip level temperature control
setup

Fig. 4.4 The measurement and temperature control setup.

The heating is realised at the chip scale only. A cross section of the setup is shown in
Fig. 4.4b. A 20 Ω power resistor is used as the heating element and it is put in contact with
the ceramic chip carrier. A thermistor is placed close to the bottom face of the chip carrier
and is attached to the power resistor using thermal paste. The thermal paste ensures that
the temperature in the vicinity of the thermistor is evenly distributed and the heat from the
resistor gets transferred efficiently to the thermistor. A Stanford Research Systems (SRS)
temperature controller is used to accurately control the temperature of the device using the
built-in PID feature to a 10 moC stability. It is to be noted that there will be a gradient of
temperature from the heater to the chip but since the heated area is only 1 cm ×1 cm, a
settling down time of 1 hr for each temperature step is chosen to spread the temperature
evenly across the chip. An alternative option would be to place the thermistor at the top of
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the chip; however, it is undesirable to expose the bonded wires and the electrical interface to
the thermal paste.

4.4 Results

The results section is divided into the temperature dependent experiments conducted on
the electrically coupled device, mechanically coupled device, and a differential frequency
measurement done on two uncoupled DETF devices.

4.4.1 Mechanically coupled device

The mechanically coupled device used for the experiment is shown in Fig. 4.3b. It consists
of two DETF resonators coupled using a mechanical beam. A bias voltage of 20 V is applied
on the body to aid the transduction process. The resonators are set into oscillation in the
in-phase mode with a drive voltage of 10 mV while ensuring that they are operating in the
linear regime. The temperature is stabilised to 35 oC using the SRS temperature controller.
Once the temperature is stabilised to 10 moC, the perturbation voltage is varied to see the
amplitude ratio change from 1 to 5. The amplitude ratio and the frequency is noted and then
the experiment is repeated for temperatures upto 60 oC with steps of 5 oC. Then similar steps
are taken to repeat the experiment in the anti-phase mode. The results are plotted in Fig. 4.5.
It is to be noted here that the initial mismatch between the resonators is 0.54 N/m for the
mechanically coupled device.

The amplitude ratio of both the in-phase and the anti-phase mode undergo variations
with the change in temperature as seen in Fig. 4.5a. This can be expected of mechanically
coupled resonators since the coupler is dependent on the TCF of the elastic constant of silicon.
Any change in the coupling stiffness, directly results in changes in the amplitude ratio. A
peculiar observation is related to Fig. 4.5b where the frequency of the mechanically coupled
resonators appears to have a positive variation with temperature. The material properties
of silicon call for a frequency dependence to temperature of approximately −30ppm/oC,
but a positive variation points to secondary effects such as stress mechanisms dominating
the temperature dependence of frequency [98]. Stress build up is caused due to thermal
expansion at the anchor and coupling points of the resonator system which, can lead to
resonance frequency shift [99]. On the resonators, stress mechanisms would lead to a change
in frequency while the same on the coupler would be the major contributor to changes in
amplitude ratio.
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Fig. 4.5 Temperature and stiffness perturbation dependent variation in amplitude ratio and
frequency in mechanical coupled resonators.

The sensitivity to stiffness perturbations of amplitude ratio in both the in-phase and the
anti-phase modes of the mechanically coupled resonator is shown in Fig. 4.6a. It is expected
that the sensitivity of amplitude ratio output metric to measurand would increase with the
amplitude ratios and then plateau at higher amplitude ratios. Meanwhile, the sensitivity
of the frequency output is expected to decrease with the increase in amplitude ratio and
plateau at higher amplitude ratios. In this particular case, the sensitivity of amplitude ratio
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Fig. 4.6 Sensitivity analysis of the mechanically coupled resonators.

to stiffness perturbations has a parabolic feature where the sensitivity increases to about
an amplitude ratio of 2 and then decreases with further increase in amplitude ratio. To
investigate this feature, finite element modelling using COMSOL ® is carried out on the
mechanically coupled device and is detailed in Appendix C. The results indicate that this
feature is a by-product of the structural design but does not impact its temperature immunity
or the conclusions drawn in this study.

The cross sensitivity (sensitivity of the output metric to temperature) of both the amplitude
ratio and the frequency output metric is shown in Fig. 4.6b. As mentioned in the theory
section, there are two key mechanisms that effect the cross sensitivity of the output metrics –
the variation of the Elastic Young’s Modulus (E) of silicon and thermal expansion coefficient
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(α) of silicon. The frequency output metric is dependent on the variation of Esi of the
resonator, Esi and αsi of the coupler, and αsi increasing the capacitive gap, resulting in
stiffness change in (k), (kc) and (∆k) respectively. Thus, the trend of the cross sensitivity curve
follows that of the sensitivity curve across different amplitude ratio operating points. Fig.
4.6b suggests that for both modes of vibration, there is an average temperature coefficient of
about 5 Hz/oC (20ppm/oC). These two observations lead to the conclusion that the frequency
is affected by two superimposing factors that simultaneously vary (k), (kc) and (∆k). The
amplitude ratio output metric is dependent on the variation of Esi and αsi in the coupling
beam and the αsi increasing the capacitive gap to impact the stiffness perturbations. Thus,
even the cross sensitivity of the amplitude ratio output metric follows the same trend as the
sensitivity of amplitude ratio to stiffness perturbations.

All these stiffness variations can be amalgamated into a net stiffness perturbation due
to temperature variations and this can be used to create a normalised representation of the
common mode rejection. Thus, a Figure of Merit (FOM) is created by dividing the cross
sensitivity of the output metric to temperature by the sensitivity of the output metric to
the measurand. This FOM represents the input-referred change in the normalised stiffness
perturbation of each output metric to a change in the temperature (measured in ∆k/k/oC)
or (ppm/oC). Thus, it is an apt quantity to judge the appropriate variation in the measurand
that is inflicted by temperature fluctuations in each output metric. Therefore, a lower FOM
results in better rejection of temperature fluctuations of the output metric.

FOM =
Sensitivity of output metric to temperature
Sensitivity of output metric to measurand

(4.8)
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Fig. 4.7 Figure of merit for amplitude ratio and frequency output metrics.
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The FOM is calculated and plotted with respect to the various amplitude ratio operating
points in Fig. 4.7. A two orders of magnitude improvement of the amplitude ratio over
frequency output metric is seen. This is caused by the different stiffness parameters affecting
the two output metrics separately. Amplitude ratio is affected by the changes in coupler and
the stiffness perturbations parameter, which leads to opposing changes in the amplitude ratio
of the two modes. Thus, the FOM of the amplitude ratio in the two modes shows opposing
slopes. Since the frequency output is dependent on the same two parameters as the amplitude
ratio in addition to the stiffness of the resonators (k), the FOM is orders of magnitude
worse that that of amplitude ratio. This also highlights the magnitude of contribution of
each stiffness parameter to variation in the output metric. Clearly, any variation in the
stiffness of the resonator impacts the output metric more than the variation in the coupler
and capacitive gap variation. Thus, it can be concluded that the amplitude ratio output
metric is superior to the frequency shift output metric in terms of rejecting temperature-based
effects. Unfortunately, it is impossible to implement a differential frequency output with
a mechanically coupled device so no comparisons are made of the amplitude ratio output
metric with a differential frequency output metric. This comparison is made in the electrically
coupled device with the same dimensions.

4.4.2 Electrically coupled device

Electrically coupled resonators are driven into closed-loop oscillation with a 10 mV drive
voltage to ensure a linear frequency response. A coupling voltage of 14 V is chosen to ensure
the same magnitude of coupling stiffness as its mechanical counterpart. This is done by
inspecting the frequency difference between the two modes in the two devices and calculating
the coupling stiffness accordingly [23, 28]. It is to be noted here that the initial mismatch
between the resonators is 6.4 N/m for the electrically coupled device. The temperature is first
set to 35 oC which is the minimum temperature that is controllable to 10 moC precision. The
perturbation voltage is added on the perturbation port to vary the amplitude ratio from 1 to 5.
The temperature is then increased in steps of 5 oC and the same perturbation voltages are
applied on the port while noting the amplitude ratio and frequency at each of those voltages.
The results are plotted in Fig. 4.8 for the amplitude ratio and the frequency of both the
in-phase and the anti-phase modes with respect to changes in the temperature.

It is evident on inspection that in comparison to the mechanically coupled device, the
amplitude ratio output in the electrically coupled device is less sensitive to temperature
variations. This can be attributed to the absence of the mechanical coupling beam that
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Fig. 4.8 Temperature and stiffness perturbation variation in electrically coupled resonators.

causes greater variation in the coupling stiffness in comparison to its electrical counterpart.
The frequency variation with temperature is more in character with the negative TCF that is
associated with silicon resonators. The absence of the coupling beam can also reduce stress
accumulation around the anchor points.

The sensitivity of the electrically coupled resonators to input stiffness perturbations is
plotted against various amplitude ratio operating regions in Fig. 4.9a. As expected, the
sensitivity of amplitude ratio increases and plateaus at higher amplitude ratios. In contrast,
the sensitivity of the frequency reduces and plateaus with the increase in amplitude ratios.
There is no sensitivity reduction in the amplitude ratio output at higher amplitude ratios
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similar to that seen in mechanically coupled device. This feature is also consistent with
COMSOL® simulation in Appendix C.
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Fig. 4.9 Sensitivity and FOM analysis of the electrically coupled resonators.

The temperature sensitivity of the frequency output of the electrically coupled resonators
mirrors that of its mechanically coupled counterpart. However, since the Esi of the coupling
beam does not play a role here, the cross sensitivity is approximately half of that seen in the
mechanically coupled device. The amplitude ratio is only affected by thermal expansion of
the capacitive gaps and thus shows a much lower temperature coefficient. The anti-phase
mode follows the same trend as the sensitivity to stiffness perturbation curve in Fig. 4.9a.
Thus, the change can be attributed to addition of effective stiffness perturbation in the form
of thermal expansion of capacitive gaps. However, the in-phase mode shows a different trend
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and has a temperature sensitivity crossing 0 AR/oC. This portrays an effective cancellation
of the thermal effects sourced from the thermal expansion of various capacitive gaps.

Taking the comparison one step further, it is important to compare the amplitude ratio
output metric with the differential frequency output. Unlike in the mechanically coupled de-
vice, it is quite straightforward to implement a differential frequency output in the electrically
coupled device. To implement this, the two resonators are decoupled by applying 12 V on
both resonators (effective 0 V applied between the two resonators). They now behave as two
uncoupled resonator systems that can be individually put into closed-loop oscillations. After
inducing closed-loop oscillations, the temperature is increased with steps of 5 oC as done
with the electrically coupled resonators. The sensitivity to stiffness perturbation is tested by
varying the voltage on the body of the two resonators from 11 V to 13 V. The variation of the
individual frequencies and the frequency difference to stiffness perturbations and temperature
are plotted in Fig. 4.10.

To mimic the response of a differential frequency measurement where the sensitivity to
a measurand is increased by ≈ 2 times, the sensitivities in this case are added instead of
being subtracted. This is reflected in Fig. 4.10a where the sensitivity to stiffness perturbation
of the differential frequency output is an addition of the individual frequency sensitivities.
The sensitivity to temperature of the individual resonator frequencies shown in Fig. 4.10b
reflects that the two resonators have similar TCF . The sensitivity of the differential frequency
to temperature is a difference of the individual frequency sensitivities to temperature. The
difference in sensitivities in the two resonators is expected since (due to manufacturing
tolerances), their physical properties differ and thus lead to these variations in sensitivities.

The observations made from both these experiments are represented in the figure of merit
plot in Fig. 4.11. The amplitude ratio clearly shows about 2-3 orders of magnitude better
figure of merit than the frequency output metric thus, showing benefits over the individual
frequency shift output metric. As an additional reference, the FOM of the differential
frequency output calculated from the results in Fig. 4.10 has been added to compare it to the
FOM of the amplitude ratio. In this particular device, the amplitude ratio shows a similar
FOM to a differential frequency output although the mechanisms that lead to this are quite
different. The differential frequency output metric is affected by the issues of mismatch in
physical properties of the resonators from fabrication tolerances while the amplitude ratio
output metric is affected by the thermal expansion of the capacitive gaps leading to a change
in coupling stiffness and perturbations applied.

From a direct comparison of the FOM of the mechanically coupled device (Fig. 4.7) and
the electrically coupled device (Fig. 4.11) with identical device parameters and coupling
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Fig. 4.10 Differential frequency sensitivity and cross sensitivity.

strength, it is evident the electrically coupled device offers up 10 times greater immunity
to temperature fluctuations than the mechanically coupled device. Within the electrically
coupled device, it is seen that the in-phase mode (refer to Fig. 4.3c) offers greater rejection;
even crossing the 0 AR/oC threshold. It leads to the conclusion that there is a possibility of
cancelling the effects of thermal expansion of the gaps and ensuring that the temperature
sensitivity is negligible. It should be noted here that the variation of the bias with respect to
temperature has been considered very small in comparison to the variation of the coupling
stiffness with temperature. A detailed study on the temperature dependence of the bias will
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coupled device.

shed more light into the residual temperature dependence seen in the electrically coupled
device.

The advantages of using amplitude ratio output metric in mode-localised coupled res-
onators (especially electrically coupled) over differential frequency output metric in similar
resonators is twofold – (1) the same FOM can be achieved with the use of a single oscillator
circuit as compared to two separate ones used in differential frequency output, and (2) the
stiffness mismatch due to fabrication tolerances can be better integrated into an amplitude
ratio output metric in mode-localised resonators than a differential frequency output metric
in two separate resonators.

Summary

The ability of amplitude ratio and frequency shift output metrics to reject temperature
fluctuations in weakly coupled mode-localised resonators is discussed in this work with
particular emphasis on the limiting mechanisms. The mechanically coupled resonator
displays worse common mode rejection than its electrically coupled counterpart due to the
additional temperature dependent Esi of the coupling beam. Furthermore, amplitude ratio
output metric in an electrically coupled device and a differential frequency readout metric are
compared in the same device. The results show similar common mode rejection capabilities
in the two methods but point towards a dependence on different physical mechanisms. It
is also demonstrated that it is possible to cancel the effects of the thermal expansion on
capacitive gaps that affect the amplitude ratio metric in electrically coupled devices to yield
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a ARTCF of 0. This result greatly enhances the possible applications that lie ahead for the
amplitude ratio output metric in mode-localised devices in the form of sensor design.

Further study is needed on a detailed derivation of the procedure to cancel thermal effects
as seen in the in-phase mode of the electrically coupled devices. Additionally, a theoretical
framework encompassing the contributions of the various factors outlined in this study would
be beneficial in validating the cause for the variation in the TCF variation in the amplitude
ratio output metric between mechanically and electrically coupled devices. Furthermore,
since electrically coupled devices are less robust in applications for inertial sensors such
as accelerometers (discussed in Chapter 7), a new output metric should be developed to
further the common mode rejection capabilities of the mechanically coupled mode-localised
device. One option is to use a differential amplitude ratio readout metric using two systems
of coupled resonators to reduce the impact of temperature fluctuations on the coupler. This
new output metric will be used in Chapter 7 in a custom designed mechanically coupled
mode-localised accelerometer. The benefits of this new output metric will be discussed there.





Chapter 5

Noise Analysis

Understanding the governing sources of noise and their impact on the output metric of a
sensor is critical for predicting the ultimate resolution that it can achieve. Noise can originate
from various sources such as from the mechanical sensor, interface electronics, and the
measurement setup. Thus, these noise sources must be estimated and quantified in order
to optimise the resolution of the sensor. In this chapter, the key noise sources plaguing
the amplitude ratio output metric are identified. Then, models are used to estimate and
predict the impact they have on the output metric of a weakly coupled resonator. Finally,
experimental results are shown to validate the model and suggest an optimum operating point
while employing an amplitude ratio output metric in mode-localised devices.

5.1 Sources of noise

Noise processes in MEMS resonators have been studied in depth over the years [100–102].
Conventionally, a periodic signal of frequency ω0 and amplitude V0 with additive amplitude
and phase noise is represented with the following notation:

v(t) = [V0 +αN(t)]cos(2πω0t +φN(t)) (5.1)

The representation in Eq. 5.1 refers to a signal that is corrupted with an amplitude noise
αN(t) and phase noise φN(t). It is assumed in this notation that the noise components are
much smaller than the signal components. Both the amplitude and phase noise are affected by
different noise processes operative in the MEMS system. In applications where the MEMS
resonator is employed as a reference oscillator, the key noise metric is phase noise. However,
when using MEMS resonators for sensor application, the key metric is generally frequency
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or amplitude noise. Since amplitude ratio employs the amplitude of the resonators as the
primary output metric, this chapter will focus on amplitude noise more than phase/frequency
noise. It is to be noted however, that when measuring using a closed-loop configuration, the
phase noise of the external oscillator will be a key metric in the performance of the sensor.
However, it is not trivial to estimate or predict it. Therefore, for the scope of this study, only
the noise sources from the sensor and the readout electronics are considered and oscillator
noise is not discussed in detail.

5.1.1 Thermo-mechanical noise

Thermo-mechanical noise is often a measure of the fundamental intrinsic limit of in microme-
chanical resonators [103, 104]. It arises from the interaction of the resonating MEMS sensor
with the molecular agitation of the fluid surrounding the structure and in classical physics
is known to be caused due to Brownian motion [105]. Since this noise mechanism arises
from the dynamic equilibrium between the resonator and the ambient environment around
the resonator, it can be represented as a force (F2

n ) exerted on the resonator system due to
thermal agitation of the molecules in this environment. The transfer function analysis will be
used in this section to estimate the amplitude noise of the coupled system. It employs the
same transfer function method described in Chapter 2.2.2 but the forcing is replaced with
that of thermal origin (F2

n ). Before estimating the thermo-mechanical noise, it is important to
derive an expression for this forcing term.

To formulate an expression for this thermal forcing, Equipartition theory [106, 107] is
used. Equipartition theory suggests that when a mechanical system is in thermal equilibrium
with its ambient surroundings, each mode of the mechanical system will have an average
energy equal to half of the product between the Boltzmann’s constant (kB) and the ambient
temperature (T ) at equilibrium. It is sufficient to do a single degree of freedom analysis to
derive the expression for the thermal forcing while making the assumption that in a M-DoF
system, each DoF will be affected by the same thermal forcing. The energy stored in any
mechanical system is proportional to its mean squared displacement. Hence, equating these
terms leads to [108, 109]:

1
2

kBT =
1
2

kx2
j (5.2)

In Equation 5.2, x2
j represents the mean squared displacement of the jth resonator due

to the thermal forcing (F2
n,m). Therefore, it can be expressed as a response of the transfer

function H j(iω) of the mechanical resonator system to input forcing:
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x2
j(iω) = |H j(iω)|2F2

n,m (5.3)

The transfer function of each individual ( jth) resonator can be expressed in terms of the
stiffness (k), mass (m), and damping (c) of the resonator as follows:

H j(iω) =
1

−ω2m j + iωc j + k j
(5.4)

Thus, the mean square fluctuation (x2
j(t)) of the jth resonator can be simplified to [110]:

x2
j(t) =

1
2π

∫
∞

0
|H j(iω)2|F2

n,mdω

=
1

2π

∫
∞

0

∣∣∣∣ 1
−ω2m j + iωc j + k j

∣∣∣∣2F2
n,mdω

=
1

2π

∫
∞

0

1
(k j −ω2m j)2 +(ωc j)2 F2

n,mdω

(5.5)

This integral can be simplified by assuming that the resonator has a high mechanical
quality factor leading to the majority of the energy in the resonator to be concentrated around
the resonant frequency (ω0). Also to be noted is that F2

n,m is white noise with a constant
spectral density (SF,m) evaluated over a 1 Hz bandwidth. Therefore, a solution can be obtained
as below [110]:

x2
j(t) =

F2
n,m

2π

∫
∞

0

1
(k j −ω2m j)2 +(ωc j)2 dω

=
F2

n,m

2π

π

2ω2
0 jc jm j

(5.6)

Using the results in Eq. 5.6 and substituting in Eq. 5.2, the expression for the thermal
forcing term can be found:

1
2

kBT =
F2

n,m

8π

πk j

ω2
0 jc jm j

=⇒ F2
n,m = 4kBT c j

(5.7)
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The thermal forcing (F2
n,m) can be used to derive the thermo-mechanical component of

the resonator noise by using the transfer function model that was developed in Chapter 2.2.2.
Assuming the noise sources for the resonators are uncorrelated, the noise spectrum of the
resonator displacement can be expressed as:

x2
1,m = |H11|2F2

1,m + |H12|2F2
2,m

x2
2,m = |H21|2F2

1,m + |H22|2F2
2,m

(5.8)

In Eq. 5.8, F2
1,m = F2

2,m = F2
n,m = 4kBT c j which is the thermal noise power forcing. The

transfer functions (H jk) mentioned in Chapter 2.2.2 are defined to be the transfer functions
for jth resonator due to the forcing on the kth resonator. The relevant expressions are:

|H11|2 =
∣∣∣∣ H2(s)
H1(s)H2(s)− k2

c

∣∣∣∣2; |H12|2 =
∣∣∣∣ −kc

H1(s)H2(s)− k2
c

∣∣∣∣2;

|H21|2 =
∣∣∣∣ −kc

H1(s)H2(s)− k2
c

∣∣∣∣2; |H22|2 =
∣∣∣∣ H1(s)
H1(s)H2(s)− k2

c

∣∣∣∣2;

(5.9)

Therefore, an expression for the amplitude noise power can be achieved from Eq. 5.8
and 5.9.

x2
1,m =

∣∣∣∣ H2(s)
H1(s)H2(s)− k2

c

∣∣∣∣2F2
1,m +

∣∣∣∣ −kc

H1(s)H2(s)− k2
c

∣∣∣∣2F2
2,m

x2
2,m =

∣∣∣∣ −kc

H1(s)H2(s)− k2
c

∣∣∣∣2F2
1,m +

∣∣∣∣ H1(s)
H1(s)H2(s)− k2

c

∣∣∣∣2F2
2,m

(5.10)

In Eq. 5.10, the individual resonator transfer functions are defined as H1(s) = ms2 +

sc+ k+ kc and H2(s) = ms2 + sc+ k+ kc +∆k. Using Eq. 5.8, the thermo-mechanical noise
in the two resonators (x2

1,m and x2
1,m) can be calculated. Fig. 5.1 shows the spectrum of

amplitude noise density (x j,m =
√

x2
j,m where j = 1,2) as a response to the thermal forcing

when the two resonators are matched in stiffness. The parameters used for this simulation
are as follows: Q = 10000; k = 1080 N/m; m = 0.445 μg; kc =−1 N/m; and ∆k = 0. Note
that a negative coupling stiffness is used to best emulate the electrostatic coupling achieved
in the experiment later in the chapter.
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Fig. 5.2 Peak open-loop noise when perturbations are added on Resonator 2

As seen from Fig. 5.1, the thermo-mechanical noise in both resonators is identical when
the resonators are identical. In order to predict the noise at different levels of asymmetry,
perturbations in stiffness (∆k) are added to the system. This perturbs the resonator system
away from symmetry and results in localisation of energy. The RMS noise at the resonance
is referred in this case as the peak noise amplitude. These are recorded for one mode and are
plotted in Fig. 5.2. Due to the symmetry in the system, the second mode will have a similar
trend with reversed behaviour from the two resonators.
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5.1.2 Electronic noise

The noise from the electronic sources can be divided into two parts – the noise from the
pre-amplifier circuit and the noise from the voltage sources used for biasing the MEMS
device. The difference in the two parts arises in how they shape the noise of the system.
The noise from the pre-amplifier results in a wide band current noise that is added onto the
motional current from the MEMS device and is regarded to be white in nature. However, the
noise from the voltage sources results in a capacitive forcing on the resonator much like the
thermo-mechanical noise discussed previously and, hence, is shaped by the resonator. These
two sources are discussed in detail from an analytical and experimental perspective.

Pre-amplifier noise

The derivation of the electrical noise due to the pre-amplifier in each of the channels is fairly
straightforward. It has no relation with the intrinsic noise of the resonators themselves and
is assumed to be independent of the MEMS device. The noise is generated in the electrical
pathway of the motional current and all the electrical components in the channel add to the
noise. It will be dependent on the noise specifications of the components used. For this
application, the input-referred current noise will be considered as the specific variable to
optimise since it gives a good indication of the equivalent noise of the amplifier circuit that
directly affects the motional current.
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Fig. 5.3 A transimpedance amplifier topology, with the main noise sources included schemat-
ically.

The readout circuitry consists of the transimpedance amplifier (TIA) and a buffer amplifier.
The TIA converts with motional current from the MEMS resonator to voltage and the buffer
amplifier decouples the loading conditions from the output voltage. An ultra-low-noise single
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stage TIA structure (as shown in Fig. 5.3) is used [111]. A bias-T consisting of Rb and Cb are
used to DC bias the sense electrode of the MEMS resonator (MEMS input port in Fig. 5.3).
R f and C f provide the feedback network for the first stage charge amplifier with U1. Cp,d

and Cp,u1 acting as the parasitic capacitance of the device and the amplifier U1, respectively.
A capacitor Cd is used at the output of the first stage to decouple the DC component at the
output of U1. U2 in this case consists of an ultra-low noise operational amplifier that is used
as a buffer. Since the input parasitic capacitance of U2 is generally much smaller than Cd , it
is neglected. It is to be noted that unlike the 2-stage TIA described in Chapter 3, this TIA
consists only of a single stage charge amplifier. This configuration is chosen since it reduces
the total noise in the output channel.

The current noise at the input node, i2E,n, can be expressed by [112]:

i2E,n = (i2u1)+(e2
u1)
[
2π f (C f +Cp,d +Cp,u1)

]2
+(e2

u1)

[(
1

Rb

)2

+

(
1

R f

)2
]

+

[(
C f

Cd

)2

+

(
1

2π f R fCd

)2
]
×
[
(i2u2)+(e2

u2)(2π fCd)
2
]

+
4kT
Rb

+4kT R f

[(
1

R f

)2

+(2π fC f )
2

]
(5.11)

It should be pointed out that near the operating region, 1/2π fC f ≪ R f . Additionally,
due to the high gain of the first stage, the noise contribution from the second stage can be
negligible. Therefore, the total current noise at the input node can be approximated as:

i2E,n ≈(i2u1)+(e2
u1)
[
2π f (C f +Cp,d +Cp,u1)

]2
+(e2

u1)

(
1

Rb

)2

+
4kT
Rb

(5.12)

To optimise the noise current, Rb should be maximised, whereas i2u1,e
2
u1,C f ,Cp,d and

Cp,u1 should be minimised. However, Rb is directly proportional to the charge-up time of
the circuit due to the bias-T. Therefore, for a reasonable balance between the noise and the
charge-up time, 20MΩ is chosen as the value of Rb. Input current noise, i2u1, input voltage
noise, e2

u1 and input parasitic capacitance, Cp,u1, are the key specifications for the U1 op-amp.
Therefore, ADA4817 (Analog Devices, Inc.) is chosen for its optimal noise performance
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Table 5.1 Circuit parameters

Parameter Value

U1 ADA 4817
U2 ADA 4899
eu1 4 nV/

√
Hz

iu1 2.5 fA/
√

Hz
R f 1 GΩ

C f 0.1 pF
Cp,d 10 pF
Cp,u1 1.3 pF
Rb 20 MΩ

near the operating frequency of 250 kHz. Furthermore, a device parasitic capacitance of
Cp,d=10 pF is assumed, and a C f =0.1 pF (smallest for discrete capacitance) is chosen. The
various values used in the circuit are summarised in Tab. 5.1.

Using the above values and plugging them into Eq. 5.12, an input-referred RMS noise
(iEn =

√
i2E,n) can be calculated around an operating region of 250kHz as 77 fA/

√
Hz.

Noise from voltage sources

The noise generated by the voltage sources used for transduction, biasing, and perturbations
act on the resonator as a force. Unlike the noise from the pre-amplifier, this noise is shaped by
the resonator. The force in this case is generated due to the capacitive nature of transduction
and coupling. A simple schematic capturing this mechanism on a resonator and electrode is
shown in Fig. 5.4

The power of the forcing due to the electronic noise from the DC sources (F2
dcn) can be

calculated using the force relation between two capacitive plates:

F2
dcn =

∣∣∣∣− ε0Acap

d2
cap

Vdc

∣∣∣∣2V 2
dcn (5.13)

The forcing shown in Eq. 5.13 is sourced from a single DC voltage supply. There are
several of these DC supplies used in the practical implementation of the electrical coupled
DETF device. Noise in each of these sources will result in an equivalent forcing on the
resonator. To understand the various sources of noise generated due to the DC voltage sources,
a schematic of a coupled DETF resonator system connected to all the voltage sources is



5.1 Sources of noise 81

Vdc

Vdcn2

dcap

Fdcn2

Fig. 5.4 Schematic of forcing generated by the DC voltage sources

shown in Fig. 5.5. The noise of each source is connected in series with the respective source,
representing a noisy DC signal that is supplied to the resonators.

Vc1 and Vc2 refer to the voltages applied on the body of the resonators to generate a
negative coupling stiffness. The noise associated with these two sources are Vc1n and Vc2n.
Vd refers to the DC bias voltage applied to the drive electrode along with Vac through the use
of a Bias-T (comprising of Cd and Rd). Vdn is the DC noise associated with the drive DC
bias voltage. Vp refers to the perturbation voltages used to perturb the coupled system from
symmetrical condition and its corresponding noise source is labelled Vpd . Lastly, Vs1 and Vs2

are the sense voltages applied through a Bias-T to increase the transduction of the motional
current seen by the TIA. Rb and Cb are the same as shown in Fig. 5.3 with their own noise
sources but they are not portrayed here. Vs1n and Vs2n are the two noise sources associated
with this sense transduction voltages.

The noise forcing (F2
dcn) due to the electronic noise from the voltage sources is dependent

on the area of the capacitor (Acap), distance between the plates (dcap) and the voltage (both
DC and AC). The noise of each of the DC voltage source was measured using the noise
measurement feature of the Zurich Instruments MFLI and the noise floor is stated in Tab. 5.2.
The supply voltages corresponding to these noise measurements are also stated next to the
noise measure. These particular voltages are chosen to mimic the experimental conditions
discussed later. Hence, these noise measures are valid only at these particular voltages.

Since different voltage sources were used in the experiments, the noise figures vary across
the various voltages used. High sense voltages (Vs1 and Vs2) transduce the resonator noise
favourably in the experimental section. The perturbation voltage (Vp) is changed throughout
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TIA 1
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TIA 2
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Cb Cb

Rb
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Fig. 5.5 Schematic of two coupled resonators with the different DC sources and the noise
associated with each source.

Table 5.2 Noise values for DC sources

Parameter Noise DC Voltage

Vs1n 100 nV/
√

Hz 60V
Vs2n 100 nV/

√
Hz 60V

Vdn 500 nV/
√

Hz 20V
Vpn 400 nV/

√
Hz 25V

Vc1n 20 nV/
√

Hz 14V
Vc2n - 0V

the experiment and this could lead to changes in the noise forcing. However, for the sake of
simplicity, the changes in the perturbation voltages are assumed to be much smaller than the
absolute perturbation voltage applied. The coupling stiffness is generated by applying 14V

on the first resonator and grounding the second one. Therefore, no noise measure is provided
for Vc2n.

The forces from the noise sources mentioned in Tab. 5.2 are calculated using Eq. 5.13
and added in quadrature with the thermo-mechanical forcing calculated (F1m and F2m) in Eq.
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5.7 to achieve the net noise forcing on each of the resonators. The total noise forcing (F2
jn

where j = 1,2) being experienced by each of the resonators can be summarised as follows:

F2
1n = F2

1m +F2
s1n +F2

dn +F2
cn (5.14a)

F2
2n = F2

2m +F2
s2n +F2

pn +F2
cn (5.14b)

As discussed, the noise forcing on each resonator is sourced from the various noise
sources supplying DC voltages to them. F2

s1n and F2
s2n are the sourced from the sense bias

voltages applied to transduce the sense voltages on each resonator. F2
dn describes the forcing

applied on the drive resonator due to the drive voltage bias. F2
pn includes the forcing applied

on the second resonator due to the perturbation voltage. Lastly, F2
cn is the forcing applied on

both the resonators due to the coupling voltage when realising an electrostatic coupling.
To calculate the total effect of noise on the system, the forcing in Eq. 5.8 needs to be

replaced with the forcing in Eq. 5.14 to calculate the net displacement spectrum from the
resonator transfer functions (which are mentioned in Eq. 5.10) .

x2
1n =

∣∣∣∣ H2(s)
H1(s)H2(s)− k2

c

∣∣∣∣2F2
1n +

∣∣∣∣ −kc

H1(s)H2(s)− k2
c

∣∣∣∣2F2
2n

x2
1n =

∣∣∣∣ −kc

H1(s)H2(s)− k2
c

∣∣∣∣2F2
1n +

∣∣∣∣ H1(s)
H1(s)H2(s)− k2

c

∣∣∣∣2F2
2n

(5.15)

Then, this displacement noise needs to be converted into current noise through the
capacitive transduction equation using the sense transduction voltages (Vs1 and Vs2), the
frequency being transduced in radians (ω0), the area of the capacitor (Acap), and the plate
gap (dcap):

i21n =

(
−

ε0Acap

d2
cap

Vs1ω0

)2

x2
1n (5.16a)

i22n =

(
−

ε0Acap

d2
cap

Vs2ω0

)2

x2
2n (5.16b)

Finally, the electronic noise from the pre-amplifier calculated in Chapter 5.1.2 is added to
this current noise in quadrature:

i21t = i21n + i2En (5.17a)
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i22t = i22n + i2En (5.17b)
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Fig. 5.6 Noise comparisons in the two resonators with different noise forcings compared to
the electronic pre-amplifier noise floor.

The spectrum of total amplitude noise calculated using Eqs. 5.15-5.17 is shown in Fig.
5.6 in red. The noise due to only thermo-mechanical noise forcing as seen in Fig. 5.1 is
converted into current noise using Eq. 5.16 transduced by the same voltages as mentioned in
Tab. 5.1 and plotted in black. The wide band electronic pre-amplifier noise is shown in blue.
The red curve summarises the total resonator noise that should be observed experimentally if
the noise sources mentioned in this section are all considered. These are the major sources of
noise plaguing the mode-localised resonator when measuring amplitude ratio as an output
metric. In this system, the noise contribution from thermo-mechanical forcing is only 8%
of the total noise forcing applied on the resonator. Therefore, such a system exhibiting
these noise properties cannot be characterised purely as a thermo-mechanical noise dominant
system. The effect of the noisy DC sources are considerable and eclipse the thermal forcing
in this case. As this noise is shaped by the resonator, it will be referred to in this work as
resonator noise. Resonator noise shows similar characteristics as thermo-mechanical noise
and can be useful in predicting the behaviour of mode-localised resonators when they are
purely limited by it.
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5.1.3 Amplitude ratio noise

Now that the individual amplitude noise of the resonators have been estimated, the noise of
the output metric or in this case amplitude ratio noise needs to be determined. It is imperative
that the amplitude ratio be derived from the noise in each channel. To do so, the noise is
compared to a statistical variance (·2 = σ2(·)) around a mean of a particular output metric.
Thus, the variance of the amplitude ratio can be calculated by estimating the variance and
mean of each channel. A detailed derivation of this calculation is shown in Appendix D. The
results of that derivation are highlighted here.

The variance of a ratio can be deduced as:

σ
2
X/Y =

µ2
X

µ2
Y

[
σ2

X

µ2
X
+

σ2
Y

µ2
Y
−2

Cov(X ,Y )
µX µY

]
(5.18)

This relation can then be adapted to the coupled resonator system by equating the variables
X and Y to the motional current i1 and i2. Hence, Eq. 5.18 can be remodelled to be:

AR2 =

√√√√µ2
i1

µ2
i2

[
i21t

µ2
i1
+

i22t

µ2
i2
−2

Cov(i1, i2)
µi1µi2

]
(5.19)

Furthermore, the Cov(i1, i2) can be shown to be negligible when considering the noise
sources pertaining to this study (see Appendix D for the full derivation). Therefore, Eq. 5.19
can be simplified to the following relation that can estimate the the amplitude ratio noise
(AR2) by including the relations between the individual motional currents i1 and i2 and their
respective total noise values i21t and i22t :

AR2 =
µ2

i1

µ2
i2

[
i21t

µ2
i1
+

i22t

µ2
i2

]
(5.20)

A further analysis can be undertaken to estimate the input-referred noise when measuring
amplitude ratio output metric. The input-referred noise refers to the minimum measurand
that is able to be measured given the noise in an output metric. It is achieved by dividing the
amplitude ratio noise (ARn =

√
AR2) by the sensitivity of amplitude ratio to input measurand

(in this case it is the normalised stiffness perturbation or ∆k
k ).(

∆k
k

)
n
=

ARn
∂AR

∂∆k/k

(5.21)

The sensitivity can be found to be a function of amplitude ratio (AR) and coupling
stiffness (kc) with the following relation [113]:
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∂AR
∆k/k

=
AR

(AR+ 1
AR)kc

k (5.22)

Using this model, the input-referred amplitude ratio noise can be predicted and optimised
with respect to the various operating conditions such as the stiffness mismatch, the coupling
stiffness, and the quality factor.

5.2 Optimising amplitude ratio noise

In practical operation of the sensor, either the output metric in the sensing frequency range
is dominated by resonator noise or by the electronic pre-amplifier noise. To understand
the different variables affecting the amplitude ratio noise, it is prudent understand how the
system behaves when one of these sources is dominant.

5.2.1 Electrical noise dominant system

The theory and modelling done in this subsection are derived from my own work in [113] in
which I was equally contributing author. In an electrical noise dominant system, the current
amplifier noise (i2En) tends to dominate the noise from the resonator. To analyse the impact
that this noise has on amplitude ratio noise, the current noise is converted into vibration
amplitude noise x2

En . Since the two channels use similar electronic pathways, the noise in
both the channels is assumed to be same. The amplitude ratio noise when operating at the
resonant frequency of the coupled system can be estimated to be:

AR2

AR2 =
i2En

X2
1
+

i2En

X2
2

(5.23)

The aim of optimising the amplitude ratio noise is to investigate an optimum with respect
to operating amplitude ratio (AR) and coupling stiffness (kc). Therefore, it is important to
write the relation in Eq. 5.23 purely in those terms and some important constants. The
resonant frequency for the two modes of the weakly coupled resonators has been derived in
Chapter 2.9 to be:

ω
2
i =

2k+2kc +∆k∓
√

∆k2 +4k2
c

2m
(5.24)
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Using this expression for the resonant frequency and the transfer function approach for a
single ended drive configuration, the individual resonator amplitudes when driven at a force
(Fd) can be expressed to be [113]:

|X1|=
∣∣∣( H2

H1(ω0)H2(ω0)− k2
c

)
Fd

∣∣∣= 1
2

∣∣∣∣ ∆k+
√

∆k2 +4k2
c +2 jcω0

−c2ω2
0 + jcω0

√
∆k2 +4k2

c

∣∣∣∣|Fd| (5.25a)

|X2|=
∣∣∣( −kc

H1(ω0)H2(ω0)− k2
c

)
Fd

∣∣∣= ∣∣∣∣ kc

−c2ω2
0 + jcω0

√
∆k2 +4k2

c

∣∣∣∣|Fd| (5.25b)

Since, the amplitudes of the resonators at their resonant frequency (ω0) are considered
for the noise analysis, |X(ω0)|= |X | in the amplitude ratio calculations. Accordingly, the
amplitude ratio (AR) can be expressed as:

|AR|=
∣∣∣X1

X2

∣∣∣= ∣∣∣∣∆k+
√

∆k2 +4k2
c +2 jcω0

2kc

∣∣∣∣ (5.26)

Assuming no modal overlap (kc >
2k
Q ), the terms containing the damping term can be

ignored for simplicity. Furthermore, using some simple arithmetic on Eq. 5.26, the following
relations can be derived to simplify the equation in terms of the amplitude ratio:

∆k
kc

=

(
AR2 −1

AR

)
(5.27a)√

∆k2 +4k2
c

kc
=

(
AR2 +1

AR

)
(5.27b)

Using the above relations, the expression for the two amplitudes can be written in terms
of AR, kc, k, Q and Fd as:

|X1|=
∣∣∣∣ Q
k+ kc

AR2

AR2 +1

∣∣∣∣|Fd| (5.28a)

|X2|=
∣∣∣∣ Q
k+ kc

AR
AR2 +1

∣∣∣∣|Fd| (5.28b)

Substituting the value of |X1| and |X2| in Eq. 5.23, amplitude ratio noise (ARn) can be
estimated to be:
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ARn = xEn

∣∣∣∣k+ kc

FdQ

∣∣∣∣(AR2 +1)
3
2

AR
(5.29)

Note the change from noise power to noise amplitude (xEn =

√
x2

En). Since the input-
referred noise is of interest, Eq. 5.29 needs to be divided by the sensitivity to stiffness
perturbations as shown in Eqs. 5.21 and 5.22. Thus, the input-referred amplitude ratio noise
assuming kc ≪ k can be expressed as:

(
∆k
k

)
n
=

ARn
∂AR
∆k/k

= xEn

∣∣∣∣k+ kc

FdQ

∣∣∣∣(AR2 +1)
3
2

AR
AR2 +1

AR2
kc

k
= xEn

∣∣∣∣ kc

FdQ

∣∣∣∣(AR2 +1)
5
2

AR3 (5.30)

This relation shows that the input-referred amplitude ratio noise in an electrical noise
dominant system is dependent directly on the coupling stiffness (kc) and the electrical noise
(xEn); whereas, it is inversely dependent on the drive force (Fd) and Quality factor of the
resonator (Q). Since xEn, Fd and Q are all constant in a system, the coupling stiffness (kc)
is a very important tuning variable (especially in an electrically coupled device) to reduce
the input-referred amplitude ratio noise. The dependence of the noise on amplitude ratio is
complex. Therefore, the minimum of the function can be obtained by equating its derivative
to zero ( ∂ (∆k/k)n

∂AR (AR) = 0) in order to find its roots. This leads to the result where the
input-referred noise is minimized at AR =

√
1.5 = 1.22. Therefore, in a system dominated

with electrical noise from the amplifier, it is beneficial to work at an amplitude ratio of 1.22
to achieve the best sensing resolution.

To simulate this behaviour, values as close to the experimental system are chosen. The
drive force (Fd = 2×109 N) representative of linear operation and a quality factor of 10000
are selected. Three different kc values of −0.8 N/m, −1 N/m, and −1.2 N/m are used
to show the variation of the noise with coupling stiffness. The amplitude ratio is swept
between 0.5 and 3 to investigate optimal operating points. A representative amplitude noise
of the pre-amplifier noise corresponding to (xEn = 100 fm/

√
Hz) is used. The results of the

simulation are shown in Fig. 5.7.
As the figure suggests, the input-referred noise varies with both the coupling stiffness and

the amplitude ratio with the minimum occurring at an amplitude ratio of 1.22. Furthermore,
Eq. 5.30 dictates that the noise decreases with a decrease in kc. However, it is worth noting
that there is a lower limit to kc that is determined by the modal overlap assumption. Therefore,
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Fig. 5.7 Input-referred noise when electrical pre-amplifier noise dominates in the sensing
region.

for optimum operation, kc can be reduced as far as kc ≥ k
Q but cannot be reduced further

since it would deter the appropriate working of the coupled system as a sensor.

5.2.2 Resonator noise dominant system

In a resonator noise dominant system, the noise can no longer be considered to be constant
across different amplitude ratios or across both channels. Hence, to derive an expression for
such a system, the transfer function method needs to be employed. The expression for the
amplitude ratio remains similar except for the noise in each of the resonators, which is now
shaped by the resonator:

AR2

AR2 =
x2

1m

X2
1
+

x2
2m

X2
2

(5.31)

The expression for the resonator noise (that includes thermo-mechanical and voltage
source noise) has been derived previously in Eq 5.15 using the transfer function method.
A similar method has also been used to derive expressions for the vibration amplitudes of
individual resonators (in Eq. 5.25a and 5.25b). The expression for amplitude ratio noise in
Eq. 5.31 can be similarly setup as:

AR2

AR2 =
|H11|2F2

1n + |H12|2F2
2n

|H11|2F2
d

+
|H21|2F2

1n + |H22|2F2
2n

|H21|2F2
d

(5.32)
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In Eq. 5.32, F2
1n and F2

1n are the two noise forcing on the resonators and can be assumed
to be equal (F2

n ). Fd is the drive forcing on resonator 1 when the system is operating in
the linear regime. By substituting the individual resonator transfer functions (H1( jω) and
H2( jω)) into Eq. 5.32, the expression for amplitude ratio noise can be reduced to:

AR2

AR2 =
|H2( jω0)|2F2

n + |k2
c |F2

n

|H2( jω0)|2F2
d

+
|H1( jω0)|2F2

n + |kc|2F2
n

|kc|2F2
d

=

(
F2

n

F2
d

)(
2+

k2
c

|H2( jω0)|2
+

|H1( jω0)|2

kc

) (5.33)

The transfer functions have been previously achieved to be H1( jω) = −mω2 + jcω +

k+ kc and H2( jω) =−mω2 + jcω + k+ kc +∆k. These two expressions need to be defined
in terms of amplitude ratio. To achieve that, the expression for the resonant frequency as
shown in Eq. 5.24 is plugged in for the mode of interest and then the relations in Eq. 5.27a
and 5.27b are used:

|H1( jω0)|=
∣∣∣∣−∆k+

√
∆k2 +4k2

c +2 jcω0

2

∣∣∣∣= ∣∣∣∣ kc

AR
+ jcω0

∣∣∣∣ (5.34a)

|H2( jω0)|=
∣∣∣∣∆k+

√
∆k2 +4k2

c +2 jcω0

2

∣∣∣∣= ∣∣∣∣kcAR+ jcω0

∣∣∣∣ (5.34b)

Substituting Eqs.5.34a and 5.34b into Eq. 5.33, and assuming low modal overlap due to
a high quality factor ( jcω0 ≈ 0), the expression for amplitude ratio noise can be reduced to:

ARn =

√
AR2

(
F2

n

F2
d

)(
2+

1
AR2 +

1
AR2

)
=

(
Fn

Fd

)√
2(AR2 +1)

(5.35)

As previously done with the electronic noise, it is important to achieve an expression
for the input-referred noise. For that, the expression in Eq. 5.35 needs to be divided by the
sensitivity to input stiffness perturbations highlighted in Eqs. 5.21 and 5.22. This way, the
input-referred noise in a resonator noise dominant system can be derived to be:
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(
∆k
k

)
n
=

(
Fn

Fd

)
kc

k

√
2(AR2 +1)

AR2 +1
AR2 =

√
2
(

Fn

Fd

)
kc

k
(AR2 +1)

3
2

AR2 (5.36)

Thus, in a system dominated by resonator noise, the input-referred amplitude ratio noise
is once again directly proportional to the coupling stiffness (kc) and the noise forcing (Fn)
and inversely proportional to the drive force (F1). The noise forcing is in turn dependent on
the ambient temperature and the Q factor of the system. However, Fd and Fn are constant in a
system during operation and the main factors that can be tuned are the coupling stiffness and
the amplitude ratio. Similar to a system that is dominated by electronic noise, the coupling
stiffness can be reduced to reduce the input-referred noise. Again the lower limit to this
would be defined by kc ≥ k

Q to avoid modal overlap. To find the minimum of the function, its

differential is solved for its roots by equating it to zero ( ∂ (∆k/k)n
∂AR (AR) = 0). In this case, the

function has a minimum at AR =
√

2 = 1.41. It should be noted that this is also the case for
thermo-mechanical noise which is shaped in the same manner by the resonator.

The expression is again used to plot the input-referred noise with respect to different
amplitude ratios and three different coupling stiffness. A noise forcing (Fn = 150 fN/

√
Hz)

is used which is representative of the total forcing from thermal and electronic sources. The
drive force (Fd = 2×109 N) representative of linear operation, a resonator stiffness (k) of
1080 N/m, and a quality factor of 10000 are chosen. Three different kc values of −0.8 N/m,
−1 N/m, and −1.2 N/m to show the variation of the noise with coupling stiffness. The
amplitude ratio is swept between 0.5 and 3 to investigate optimal operating points. The
results are plotted in Fig. 5.8.

As seen from Fig. 5.8, the input-referred noise has a minimum at AR =
√

2 and decreases
with a decrease in the coupling stiffness. Although the trend of the noise is similar to that of
a system dominated by electronic noise, it is worth noting that the minimums with respect to
amplitude ratios are different. It is to be noted that the noise forcing considered here is the
noise amplitude at the resonant frequency. If the noise away from resonant frequency needs
to be estimated (even at the 3dB point), the expression for the minimum in Eq. 5.36 could
vary. However, the analytical solutions point to the conclusion that the choice of operating
point will depend on which noise (electronic pre-amplifier or the resonator noise) governs.

Although the analytical solutions show that different minimums for the input-referred
amplitude ratio noise exist for the two dominant noise mechanisms, the minimum can be
considered more of a range than a particular amplitude ratio point. Especially in the case of
the resonator noise dominant case, if the noise drive force (Fn) is not equal on both resonators,
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Fig. 5.8 Input-referred noise when resonator noise dominates in the sensing region.

the minimum tends to move towards the amplitude ratio
√

1.5. In the ideal case that the two
noise forcings are equal (as assumed in this case) and the pre-amplifier noise is much lower
than the resonator noise, the input-referred noise would have a minimum at amplitude ratio√

2. However, in practice, equal noise forcing is not achievable and more often than not,
the minimum tends to be broadly distributed in between

√
1.5 and

√
2 when implementing

single ended drive configuration. It would be different for a double ended drive which is
beyond the scope of this work. The more important result is that the input-referred noise
reduces with a reduction of coupling stiffness. Therefore, this result has more impact on the
ultimate resolution of the sensor than operating the sensor between an amplitude ratio of√

1.5 and
√

2.

5.3 Experiment

Modelling and predicting the ultimate limit of amplitude ratio sensing using mode-localised
sensors has been the topic of a several studies so far [73, 33, 74]. Many studies have
also tried to experimentally determine the amplitude ratio noise by measuring the noise of
each resonator output and estimating the amplitude ratio noise from those noise channels
[72, 30, 114]. Although these are helpful ways of estimating the noise of the amplitude ratio
output metric, they all make certain assumptions about the relation between the amplitude
ratio noise and the noise in individual resonators. The theory shown in this chapter also is
a way of estimating the noise of the amplitude ratio noise from the noise in each resonator
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channel. However, the most accurate way of describing the amplitude ratio noise is by
experimentally analysing the ratio of the two resonator amplitudes taken directly rather than
analysing the noise in each channel separately. This way, the true noise in the output metric is
determined experimentally rather than through analytical estimates. It also allows for direct
optimisations to be made with respect to the resolution of the amplitude ratio output metric.
They can then be used to validate the results of the optimisations achieved via analytical
studies.

Therefore, an experiment is designed around the electrostatically coupled resonator
topology as shown in Fig. 5.9.

Fig. 5.9 Optical micrograph of the electrostatically coupled resonators

Device Parameters

The device used for the experiment consists of a system of electrically coupled DETF
resonators as shown in Chapter 3.1. It is re-illustrated in Fig. 6.5.

Measurement setup

A schematic of the measurement setup is shown in Fig. 5.10. The coupling in the device is
realised using the two voltages (VDC1) and (VDC2) that are applied on the resonators’ body.
For this experiment, (VDC1) is grounded at 0 V and (VDC2) is changed from 12 V to 16 V
to apply different coupling stiffness. The AC drive voltage (10 mV) is applied from the
Zurich Instruments MFLI and is passed through a Bias-T with a DC voltage (VB) of 20 V
ensure a high transduction force while keeping the resonator operating in the linear regime.
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Perturbation voltage is applied on Resonator 2 to vary the operating amplitude ratio from
AR = 0.8 to AR = 2. The motional currents from both resonators are then passed through a
transimpedance amplifier with a gain ≈ 2 MΩ to convert the motional current into a voltage.
To aid the sense transduction, a bias voltage (Vs) of 60 V is applied on the sense node using a
Bias-T. This is done only to have a higher transduction to sense the resonator noise of the
device. For operation as a sensor, it is not necessary to have such a high Vs.
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Fig. 5.10 Experimental setup to realise a closed-loop measurement.

To realise a closed-loop measurement, the Phase Locked Loop (PLL) function of the
MFLI is used to lock onto the resonant frequency of the coupled resonator using the output
voltage (V2) as an input. The other output voltage is read out in an open-loop configuration
using another MFLI in a lock in configuration. The clocks of the two MFLIs are synchronised
and an external signal generator is used to provide a trigger for both MFLIs so that the
measurements are taken at the same time.

5.4 Results

The results section is divided into two parts – an open-loop noise measurement and a closed-
loop noise measurement. Both measurements reveal different noise processes occurring in
the system and are important to analyse in depth.
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5.4.1 Open-loop noise measurement

To measure the open-loop noise of the system, the AC drive voltage (Vd) is turned off while
keeping all the other DC voltages on. The noise measurement option in the MFLI is used to
measure the noise with a 1 Hz bandwidth around the resonant frequency of the resonators.
The results are plotted in Fig. 5.11a and 5.11b. To prove that the noise measured is due to
the two modes of the coupled system, an open-loop sweep is also done with a 10 mV AC
drive voltage (Vd). This sweep results in the resonance occurring at the same frequency as
seen during the noise sweep. This confirms that the noise peaks measured are originating
from the resonator.
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Fig. 5.11 Measured open-loop noise in each channel superimposed with the output voltage at
the same perturbation voltage.

The noise profile seen in Fig. 5.11 suggests that the electronic noise due to the amplifiers
and the readout circuitry is around 400 nV/

√
Hz and forms the noise floor for amplitude

measurements in both channels. There is a slight discrepancy in the two channels and that
can be attributed to the variation in the electronic parts used between the two channels.

The noise peaks shown in the plot can be attributed to the result of the forcing from
thermo-mechanical sources and the DC voltage sources. It can be concluded from these plots
that the system is dominated by resonator noise. Due to the fact that the resonator noise
profile is visible in the open-loop noise sweep suggests that in closed-loop operation, the
noise close to resonance will also be dominated by resonator noise.
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5.4.2 Closed-loop noise measurement

Open-loop noise sweeps cannot be used to accurately describe the amplitude ratio noise
since they do not reflect the amplitude ratio noise in closed-loop operation. Furthermore, the
noise in open-loop can describe only the noise in individual channels and not the noise in the
actual output metric – amplitude ratio. Thus, they cannot be used as a representative noise
figure for the amplitude ratio output metric. The accurate way of measuring amplitude ratio
noise would be to (a) measure the two output voltages during closed-loop operation, (b) take
the ratio of the two output voltages corresponding to the same time, (c) perform Fast Fourier
Transform (FFT) on the data to get the noise spectral density (NSD) of the amplitude ratio.

In order to achieve the NSD of the amplitude ratio, the resonators are set into closed-loop
oscillations using the PLL function of the Zurich Instruments MFLI as shown in Fig. 5.10.
The oscillator is locked to the in-phase mode of resonators. The filter bandwidth of the PLL
is set to 500 Hz and the measurement sampling frequency is chosen to be 1 kHz to capture
all the frequency components within the range of 500 Hz. The measurement of the amplitude
is done using the lock-in feature of the MFLI and the two MFLIs are synchronised with
an external trigger in the form of a signal generator applying a frequency of 1 kHz. The
coupling voltage of 16 V and a perturbation voltage of 9.5 V are set to achieve an amplitude
ratio ∼ 1. The measurement of each channel is taken for 5 minutes synchronously. An FFT
is then performed on the data which is shown in Fig. 5.12a and 5.12b.
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Fig. 5.12 Noise spectral density of the output amplitudes of the two resonators with the
different noise areas highlighted.

The NSD of the closed-loop amplitude measurements can be thought of as a representative
noise profile achieved by offsetting the open-loop noise to the respective frequency of the
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mode being sensed. The noise close to carrier (until 12 Hz) shows the resonator noise
dominating. As discussed previously, this is representative of the noise sourced from thermo-
mechanical origins and the DC voltage sources. The resonator noise of the anti-phase mode
is also visible here but, it is not trivial to decompose the various noise factors affecting this
mode. Thus, it is not going to be part of this analysis. Beyond this, the electronic noise of the
amplifier is also visible at frequencies above 400 Hz. This noise is going to form the noise
floor for each channel and is assumed to be of white nature beyond 400 Hz. The bandwidth
of the sensor is limited to the position of the non-driven mode (anti-phase mode in this case)
to avoid modal coupling. This means that in the sensing region (0-100 Hz), resonator noise
dominates as predicted from the open-loop noise sweep.
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Fig. 5.13 Noise spectral density of the amplitude ratio output metric at different operating
amplitude ratios.

To get the NSD of the amplitude ratio output metric, a ratio of the two output voltages
measured is taken and FFT is performed on this ratio metric data. By applying perturbations
to the system, the amplitude ratio operating points are changed. The results of this FFT for
four different operating amplitude ratios is shown in Fig. 5.13.

Overlaying the NSD at different amplitude ratio shows the variation of the amplitude
ratio noise with the different operating amplitude ratios. For the purposes of this analysis, the
noise only until 100 Hz would be considered due to the bandwidth of the sensor. The noise
before 1 Hz is dominated by the noise of the oscillator which is non-trivial to predict. The
noise in a 10 Hz bandwidth between 1Hz and 11 Hz is integrated and averaged to achieve
the RMS noise. This frequency range is chosen to avoid including high frequency noise
that is coupled in from the mains and the environment to skew the resulting noise figure.
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Furthermore, the resonator noise is maximum within the bandwidth of the resonators (in this
case 12 Hz) so by using this frequency range, the impact of the resonator noise on amplitude
ratio noise is captured.

In order to achieve an input-referred noise, the sensitivity of the amplitude ratio to
stiffness perturbations must be experimentally characterised for all the operating points
and coupling stiffness. This data is captured in Fig. 5.14. The sensitivity increases with
increasing amplitude ratio operating points; it also increases with a decrease in the coupling
stiffness (represented here by a decrease in coupling voltage).
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Fig. 5.14 Localised sensitivity of amplitude ratio to input stiffness perturbations at different
operating amplitude ratios.

The amplitude ratio noise is averaged in the respective frequency range of interest at
different amplitude ratio operating points ranging from AR=0.8 to AR=2. The input-referred
noise is then calculated by dividing the amplitude ratio noise by the experimental local
sensitivity at each of those amplitude ratios and coupling voltages. The averaged input-
referred noise are plotted in Fig. 5.15.

There is a clear minimum in the input-referred noise with respect to the amplitude ratio
operating point much like the simulation predicted. As expected, this minimum is quite
broad in between

√
1.5 and

√
2. Similar to the discussion in the theoretical section (refer to

Fig. 5.8), the minimum of the input-referred noise with respect to amplitude ratio operating
point in a resonator noise dominant system is dependent on the noise forcing on the two
resonators being equal. It is not practically possible to achieve symmetric noise forcing due
to different voltage sources being used in the experiment and this causes the minimum to
shift away from AR =

√
2. More importantly, the noise tends to reduce with the reduction in
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Fig. 5.15 Input-referred noise plotted against various amplitude ratios and coupling voltages.

the coupling voltage. This shows that a reduction in the coupling stiffness is key in reducing
the input-referred amplitude ratio noise and therefore leading to better sensing resolution.

It is to be noted that the thermo-mechanical noise limit of the resonator is not reached in
this experiment. As mentioned, earlier, the noise in the DC voltage sources are shaped by the
resonator much like the shaping of the thermo-mechanical noise. Thus, conclusions about
the optimisations done on the resonator noise can be applied to a system that is solely limited
by thermo-mechanical noise. The key findings of the optimum amplitude ratio and coupling
operating points would hold for a system limited by thermo-mechanical noise. Future systems
that have better electronic noise performance would benefit from this study and optimisation
techniques used here can be employed to achieve optimum sensing resolution.

Summary

A complete analysis of the amplitude ratio noise in weakly coupled resonators is carried
out in this chapter. Various noise sources that could affect the coupled system are discussed
and their effect on the noise in each resonator is predicted using a transfer function method.
Using the noise in each resonator amplitude, the input-referred amplitude ratio noise is
predicted with emphasis on optimising the noise in resonator noise dominant system and
in the electronic noise dominant system. Analytical calculations show that in the ideal
case, the optimum operating amplitude ratio to minimise input-referred electronic noise
floor is AR =

√
1.5 and that to minimise resonator noise is AR =

√
2 in a single ended

drive configuration. This paves the way for applications where the system can be put into a
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control loop at a particular operating amplitude ratio (where the noise is minimum) and the
control effort is measured so as to achieve the best resolution from mode localised devices.
Furthermore, these solutions predict that the input-referred noise reduces with the reduction
of the coupling stiffness.

The results of the simulations were bolstered with experimental validation of the model
with the help of an electrically coupled resonator system. Various coupling stiffness and
amplitude ratio operating points were chosen and the amplitude ratio noise at each of those
operating conditions was measured. The input-referred noise was calculated and plotted
to confirm the results of the simulations. The experiment on the whole agreed with the
simulations validating the key observation that the system showed a reduction in noise with a
reduction in the coupling stiffness. This result is paramount in creating high Q factor devices
with a low coupling stiffness to improve the ultimate achievable resolution of amplitude ratio
output metric in weakly coupled mode-localised sensors. The next steps on this topic would
revolve around comparing the fundamental limits of the amplitude ratio noise to the noise of
the frequency shift output metric.



Chapter 6

Nonlinear Characterisation of
Mode-localised Sensor

To date, mode-localised sensors have not been characterised in the nonlinear domain at
high vibration amplitudes. Nonlinear models of mode localisation are complex, and their
solutions are difficult to obtain analytically. Furthermore, high vibration amplitudes lead
to an amplitude-frequency (a-f) dependency that affects the closed-loop stability of the
oscillator [115]. Nonetheless, there are several advantages of operating the sensor in high
vibration amplitudes. In a system dominated by the electrical noise of readout electronics,
high vibration amplitudes allow for a greater output signal that result in high signal to noise
ratio (SNR). This could potentially lead to higher resolution amplitude measurements for
amplitude ratio sensing [66]. This chapter develops a model to predict the dynamics of the
coupled resonator system in the nonlinear domain. Using the modelling and experimental
results, it investigates the possibility of the improving the noise floor of amplitude ratio as an
output metric by operating the sensor at its bifurcation points.

6.1 Nonlinearity in MEMS resonators

Conventionally, MEMS/NEMS resonators are operated in the linear regime. The increasing
need for high performance sensors with high resolution has saturated design optimisations
revolving around improving sensitivity, signal-to-noise ratio (SNR) and quality factors. Of
these parameters, in the context of a sensor, SNR plays a crucial role in determining the
ultimate sensing resolution. Thus, SNR is an important factor to improve.

If the noise in the system remains constant, the SNR can be enhanced by either increasing
the sense transduction factor or increasing the drive force to the resonant structure. Since
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the transduction factor is limited by design conditions such as manufacturing constraints
and the supply voltage for the system, optimising the transduction factor for a given process
offers only limited options. Furthermore, increasing the drive force will make the resonator
amplitude grow until it is limited by nonlinear effects. In order to increase the linear range of
operation, the concept of nonlinearity cancellation was proposed [116]. This approach can
be employed to cancel the mechanical sources of nonlinearity arising from the geometric
stiffening of the resonator using the electrical nonlinearities arising from voltage bias across
parallel plate electrodes. However, since this approach requires precise control over tuning
of the voltage, it is not practical for use in sensor applications.

Operating the nonlinear regime is generally considered detrimental to stability of the
oscillator due to the presence of amplitude to frequency (a-f ) effect [117]. However, in
the community of MEMS/NEMS resonators, it has been demonstrated theoretically and
experimentally by various groups that nonlinear effects can be useful for noise reduction
in frequency and amplitude measurements [118–125]. In particular, operating at the top
and bottom bifurcation points has shown better phase noise filtering effects because of the
frequency-phase plot having a zero slope at those points. This has resulted in better frequency
stability at those points [120].

Energy localisation in coupled nonlinear systems has been studied previously [126–
128] whilst, its applications in the context of sensing have not been significantly pursued.
Recently, operating actively coupled devices in the nonlinear regime through injection locking
mechanisms has shown to provide an enhanced locking range [129]. However, one of the
drawbacks of operating beyond the critical Duffing amplitude is stated to be the reduced
sensitivity to stiffness perturbations that is critical for sensing applications[130].

High resolution amplitude ratio measurements in a mode-localised sensor require not
only a reduction of phase and frequency noise but also an optimisation of the amplitude noise.
Previous work has shown [123, 124] that working at the nonlinear bifurcation points of both
single and coupled resonators leads to an increased amplitude SNR. On the other hand, the
long-term stability of the amplitude readout is affected due to higher order noise ( f−n where
n ≥ 2) mixing in the nonlinear regime. Furthermore, the tuning of electrostatic coupling has
also been shown to induce a nonlinearity cancellation regime. This can be useful in achieving
higher SNR without introducing higher order noise mixing [128].

This work amalgamates the concepts of utilising the nonlinear bifurcation points and the
energy localisation phenomena within a weakly coupled nonlinear resonator to demonstrate a
proof-of-concept sensor. It is important to note that the region just beyond the critical Duffing
amplitude is considered here. This ensures that non-trivial effects such as stress build up on
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the mechanical resonators and higher order nonlinear effects do not undercut the key benefit
of improvement in signal-to-noise ratio.

In this chapter, a theoretical study is first conducted on a nonlinear single resonator
system which is then expanded to include a coupled resonator topology. Features such
as the suppression of amplitude ratio output metric in the nonlinear domain are predicted.
Experiments are used to characterise the amplitude ratio output metric in the nonlinear
domain at different operating points and modes. These results are then compared to the linear
operation of the sensor. Next, it is shown that the resolution of the amplitude ratio output
metric can be enhanced by operating at the top and bottom bifurcation points in a regime
beyond the critical Duffing amplitude. Discrepancies between theory and experiment are
explained with discussions on wider impact of the results to other MEMS devices.

6.2 Nonlinear model of a single resonator

Before modelling a nonlinear coupled resonator topology, it is pertinent to understand the
effects of nonlinearity on a resonator. To that end, a model of a single resonator with nonlinear
stiffness is used with a lumped spring-mass-damper diagram as seen in Fig. 6.1 where kn

is the nonlinear spring, c is the linear damper, m is the mass and F is forcing applied to the
system.

m

kn

x

F

c

Fig. 6.1 Lumped spring-mass-damped model of a single nonlinear resonator.

The primary effect of nonlinearity on the resonator is noticed in the frequency response
of the system. One way of analyzing this effect is through the method of harmonic balance to
achieve both the backbone curve of the system (for an undamped system) and the frequency
response curve (for a damped system). For simplicity, the damper is assumed to be linear
although further analysis can be performed on a system with nonlinear damping as well.
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Backbone function

A 1-DoF equation of motion for an undamped nonlinear resonator with cubic stiffness
nonlinearity (assuming that the quadratic stiffness nonlinearity is negligible due to the
symmetry of the device) is as below [69]:

ẍ+ω
2
n x+βx3 = 0 (6.1)

where, ω2
n = k

m is the natural frequency of the resonator and β is the cubic nonlinearity
term. The harmonic solution for this equation takes the general form of x = XR cos(ωt).
Substituting this solution into Eq. 6.1, yields:

(ω2
n −ω

2)XR cos(ωt)+β (XR cos(ωt)3 = 0 (6.2)

Using the trigonometric relation cos(ωt)3 = 0.75cos(ωt)+0.25cos(3ωt) gives:

(ω2
n −ω

2)XR cos(ωt)+βX3
R(0.75cos(ωt)+0.25cos(3ωt)) = 0 (6.3)

Ignoring the higher harmonics and keeping only the components at the natural frequency,
harmonic balance can be applied to the system of equations:

(ω2
n −ω

2)XR cos(ωt)+βX3
R(0.75cos(ωt)) = 0 (6.4a)

ω
2 = ω

2
n +0.75βX2

R (6.4b)

Eq. 6.4b describes the relation between the frequency and amplitude of the resonator at
its resonant frequency. This is called the backbone function. For a linear system, this is a
straight line; for a nonlinear system, it generally bends forward or backward depending on
the type of nonlinearity. If the system is dominated by nonlinearity from mechanical sources,
the backbone curve bends forward whereas if it is dominated by nonlinearity from electrical
sources, the curve bends backward.

Frequency response curve

The frequency response of the system is also important for the analysis of nonlinear systems.
The frequency response is achieved for a forced damped resonator system outlined below:

ẍ+2ζ ωnẋ+ω
2
n x+βx3 = 0 (6.5)
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Assuming a harmonic solution of x = XRcos(ωt) and substituting this relation into Eq.
6.5:

(ω2
n −ω

2)XR cos(ωt)+βX3
R(0.75cos(ωt)+0.25cos(3ωt))+

2ζ ωnωXR sin(ωt) = F(sin(ωt)cos(φ)+ cos(ωt)sin(φ))
(6.6)

Equating the cos(ωt) and sin(ωt) terms, and ignoring the higher order terms, yields:

(ω2
n −ω

2)XR +βX3
R(0.75cos(ωt))≈ F cos(φ) (6.7a)

2ζ ωnωXR ≈ F sin(φ) (6.7b)

Squaring and adding Eq. 6.7 produces:

X2
R

[(
ω

2
n −ω

2 +0.75βX2
R

)2

+4ζ
2
ω

2
n ω

2
]
≈ F2 (6.8)

This leads to the amplitude dependent transfer function and phase relation:

XR

F
=

1[(
ω2

n −ω2 +0.75βX2
R

)2

+4ζ 2ω2
n ω2

]1/2 (6.9a)

φ = arctan
(

2ζ ωnωXR

ω2
n −ω2 +0.75βX2

R

)
(6.9b)

Eq. 6.9 shows a clear amplitude-frequency (a-f) relation which is plotted in Fig. 6.2.
The parameters that control this a-f effect are β (which is the nonlinear spring constant that
is dependent on the structural and material properties), the damping constant ζ (which is
dependent on energy dissipation mechanisms such as fluid damping, anchor losses, etc.),
and the drive force (F) that is dependent on the AC drive voltage and the DC bias polarising
voltage. To achieve a linear response of the system, β can be either set to zero in the
simulation or the drive force can be set to be small. By doing so, the linear frequency
response is captured on the left side of Fig. 6.2. There is no a-f effect here and there is only
one solution of phase and amplitude for each frequency of vibration. If now the drive voltage
is increased and β is given a positive value, a spring hardening effect results in a positive a-f

effect and there are multiple solutions to both the amplitude and phase for each frequency.
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Fig. 6.2 Simulated frequency response (black dotted) and backbone curve (red dashed) for
linear and nonlinear resonator.

Contrarily, if β is given a negative value, a spring softening effect is seen where there is a
negative a-f effect and again, there are multiple solutions to both the amplitude and phase
for each frequency. A backbone function is also shown in Fig. 6.2 which shows only the a-f

effect and does not consider the damping constant.
The backbone curve and the frequency response curve can be used to capture different

effects of the nonlinear system. The back-bone curve sufficiently captures the frequency-drive
force relation. However, if modelling the vibration amplitude of the resonator is paramount,
a frequency response curve is necessary.

6.3 Nonlinear model of coupled resonator system

After understanding the various ways in which nonlinearity affects a single resonator, the
study can be expanded to include the effect of nonlinearity in a coupled 2-DoF system. To
develop an analytical model, a lumped model of the system is shown in Fig. 6.3. The two
masses (m) and linear dampers (c) are assumed to be the same for both resonators. Nonlinear
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springs for the two resonators are defined as kn1 = k(1+ k3x2) and kn2 = k(1+ k3x2) +

∆k(1+∆k3x2). To mimic experimental conditions, perturbations are applied capacitively
on the second spring (kn2) only. A negative nonlinear coupling spring is defined as knc =

kc(1+ kc3x2) as realised through a capacitive coupling. The dynamics of the system is
approximated by the equations:

Fig. 6.3 Lumped spring-mass-damped system with nonlinear springs.

mẍ1 + cẋ1 +(k+ kc)x1 − kcx2 + kk3x3
1 + kckc3(x1 − x2)

3 = Fcos(ωt +φ) (6.10a)

mẍ2 + cẋ2 +(k+ kc +∆k)x2 − kcx1 + kk3x3
2 +∆k∆k3x3

2 + kckc3(x2 − x1)
3 = 0 (6.10b)

Assuming a harmonic response at the resonant frequency, the amplitudes of the two
resonators can be written as x1 = Acos(ωt) and x2 = Bcos(ωt + γ). For the purposes of
simulating the system closest to the experimental mode under consideration, the phase
difference (γ) between the two resonators is assumed to be π . This assumption is valid
for all operating amplitude ratios – near veering and far from veering. Furthermore, har-
monic balance is used to separate the contribution of the nonlinear terms to ω and 3ω as
(Acos(ωt))3 = A3(0.75cos(ωt)+0.25cos(3ωt)). Only the terms of ω are considered while
ignoring the higher order terms. Eq. 6.10 can be reduced to:

−ω
2mA+(k+ kc)A+ kcB+0.75kk3A3 +0.75kckc3(A+B)3 = Fcos(φ) (6.11a)

ω
2mB−(k+kc+∆k)B−kcA−0.75kk3B3−0.75∆k∆k3B3−0.75kckc3(B+A)3 = 0 (6.11b)

ωcA = Fsin(φ) (6.11c)

Eq. 6.11c can be substituted into 6.11a and 6.11b and using MATLAB®, the system
can be solved for a range of 0.4 < φ < 2.8. This range of φ is chosen to cover the required
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frequency response range of interest. The drive voltage is swept from 10 mV to 80 mV to
emulate the shift from linear to nonlinear domain. The results, plotted in Fig. 6.4 show
the frequency response functions with the two bifurcation points and the unstable region
between them clearly discerned. The simulated values mirror the experimental values for
k = 1080 N/m, kc =−0.46 N/m, m = 3.7×10−10 kg, Q = 10000. The nonlinear parameters
are k3 = 2.1306×1010 m-2, kc3 = 5×1011 m-2 and ∆k3 is calculated on a case by case basis
depending on the perturbation voltage applied using the nonlinear parallel plate capacitor
equation. Furthermore, the two output metrics are plotted against the phase to show that the

bifurcation points occur at points that fulfill
∂ f
∂φ

= 0 and
∂AR
∂φ

= 0, where f is the resonant

frequency of the device and AR is the amplitude ratio of the mode of operation.
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Fig. 6.4 (Left) Simulated frequency response functions of the two resonators showing the a-f
effect and (right) the frequency-phase and the amplitude ratio-phase plots showing the points
where the two bifurcation points occur.
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Some interesting features can be noticed in Fig. 6.4. The plots to the left show the
simulated frequency response curves of the two resonators at various increasing drive voltages.
The nonlinearity from the mechanical sources (e.g. resonator) dominate in the scenario and
a positive a-f effect is seen. With the onset of nonlinearity at Vd = 40 mV, the amplitude
of Resonator 1 at the top bifurcation point (TBP) increases proportionally with the drive
voltage indicative of the weak nonlinearity region. However, it is seen that the amplitude of
Resonator 2 at the TBP does not follow the same proportion. This feature is further discussed
later in the chapter with experimental data. The plots on the right show the φ − f and φ −AR

relation to find operating points where their slope is zero. As expected, both output metric
shows a zero slope with phase at the top and bottom bifurcation points. This further bolsters
the argument for operating at these points from the perspective of lowering phase noise.
These observations are validated by experimental results shown next.

6.4 Experiment

Fig. 6.5 Optical micrograph of the device.

The device used for the experiment consists of a system of electrically coupled DETF
resonators as shown in Chapter 3.1. It is re-illustrated in Fig. 6.5. A schematic of the
measurement setup is shown in Fig. 6.6. The DETF resonators are electrically coupled by
applying two different DC voltages on each of their bodies. The resonators are driven in
a cascade configuration where the first resonator is driven capacitively by an AC voltage
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from a commercially available lock-in amplifier (Zurich Instruments HF2LI) and the second
resonator is driven synchronously (i.e. resonance occurs at the same frequency) through the
coupler. The motional current from each of the resonator channels is converted to voltage by
an off-the-shelf transimpedance amplifier (TIA) and then through a band pass filter (BPF)
to remove the broadband amplitude noise. In this study, a closed-loop configuration is
utilised for the characterisations, where the resonance tracking is realised through the built-in
PLL/PID features of the HF2LI. The in-phase mode is chosen for the operating mode at a
resonant frequency of ≈ 250kHz.

Fig. 6.6 Circuit level schematic of the experimental setup.

6.5 Results

First, the nonlinear frequency response curves are mapped in a closed-loop configuration to
identify the bifurcation points. Then, the performance of the sensor is tested at these points
to verify the reduction of amplitude ratio noise as predicted [131]. Finally, key specifications
of the sensor such as the sensitivity and noise floor are studied with the purpose of improving
the sensing resolution.

6.5.1 Instability mapping

Nonlinear oscillations produce regions of multiple amplitudes of vibration for a given
frequency as seen from the simulation in Fig. 6.4. This can be called as the unstable region
of the frequency response function and is generally visible as the amplitude of the drive
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signal is increased. The AC drive signal is increased from 10 mV (representing linear
frequency response) to 80 mV to transition into the nonlinear regime beyond the critical
Duffing amplitude. Once the critical Duffing amplitude is reached, a PID controller is used
to tune the phase of the drive signal to map the different unstable regions in a closed-loop
configuration. In doing so, the two bifurcation points – top bifurcation point (TBP) and the
bottom bifurcation point (BBP) are identified for each drive voltage (see Fig. 6.7). The top
bifurcation point (TBP) is defined as the bifurcation point with a higher amplitude while
the bottom bifurcation point (BBP) is defined as the bifurcation point with lower amplitude.
TBP and BBP occur synchronously at the same drive frequency for both resonators.
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Fig. 6.7 Instability region mapping for the two resonators for each drive voltage. The linear
response (at 10 mV drive level) is shown in black.

Another way to view the results of the instability mapping is to plot the amplitude ratio
and the frequency as a function of the phase of the drive signal. This is plotted in Fig. 6.8.

The figure shows both
∂AR
∂φ

and
∂F
∂φ

decrease with the increase in drive amplitude at TBP

and BBP. Therefore, at both TBP and BBP, the amplitude ratio noise due to phase fluctuations
is reduced as predicted by the simulation in Fig. 6.4. Hence, these points will be the focus
for this study.

To understand the nonlinear behaviour of the coupled resonator system at other operating
amplitude ratios, stiffness perturbations are added on Resonator 2 to tune the symmetry of
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Fig. 6.8 Experimental amplitude ratio-phase and frequency-phase plots showing the Bottom
Bifurcation Point (BBP) and the Top Bifurcation Point (TBP).

the resonators. The drive voltage is then increased from 20 mV to 120 mV to encompass
nonlinear drive regimes with increasing levels of Duffing nonlinear behaviour. The two
bifurcation points are chosen as operating points and the change in amplitude ratio at those
points at different perturbations is recorded. The amplitude ratio and the frequency shift are
shown in Fig. 6.9.

The first observation that can be made from Fig. 6.9 is that the bottom bifurcation from
many amplitude ratios close to veering does not exist for drive voltages 50 mV and 80 mV.
This leads to the hypothesis that the a-f effect in coupled nonlinear resonators is dependent
on the operating amplitude ratio at a particular drive voltage. Another manifestation of this
phenomenon is that the amplitude ratio and frequency of both bifurcation points do not vary
much around the veering region but vary greatly away from the veering region. This is seen
in Fig. 6.9 where the amplitude ratio and the frequency at both bifurcation points are immune
to drive power variations at AR∼1 but change significantly at AR≫1.

Fig. 6.9 also shows that amplitude ratio at both TBP and BBP reduce with increasing
drive voltage away from veering. A reduction in amplitude ratio can be due to either a dispro-
portionate decrease in the amplitude of driven resonator (Resonator 1) or a disproportionate
increase in the amplitude of the non-driven resonator (Resonator 2). To understand this trend,
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Fig. 6.9 Comparison of amplitude ratio at different drive voltages across a range of stiffness
perturbations.

a table with the output voltages at a linear operating amplitude ratio of 4 is plotted. This
amplitude ratio is chosen since both BBP and TBP occur at this point across the different
drive amplitudes. Tab. 6.1 summarises these results.

It is seen that at the BBP, the amplitude ratio reduces due to disproportionate reduction
in the amplitude of the driven resonator (Resonator 1). This can be explained by the
phenomenon of gain compression which is described as the energy transfer between the first
order harmonics and the third order harmonics at large amplitudes of vibration. Due to the
occurrence of third order harmonic in the Duffing equation, energy is transferred to higher
frequencies terms from the fundamental frequency, resulting in reduction of the vibration
amplitude at the fundamental frequency.

At the TBP, however, the amplitude ratio reduces due to a disproportionate increase in
the amplitude of Resonator 2. As the amplitude of Resonator 1 increases, so does the force
applied on Resonator 2 since it is driven in cascade configuration. This leads to a greater
nonlinear force being applied on Resonator 2 through the coupler. Furthermore, the coupling
gap between the resonators cannot be assumed to be constant at high vibration amplitudes.
This also contributes to the increase in the effective forcing on Resonator 2. Therefore,
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Table 6.1 Amplitude ratio at TBP and BBP at different drive voltages

(a) Bottom Bifurcation Point

Drive amplitude (mV) Resonator 1 (V) Resonator 2 (V) Amplitude Ratio

20 (Linear) 0.36 0.08 4.09
50 0.65 0.18 3.48
80 0.51 0.18 2.81

120 0.41 .18 2.21

(b) Top Bifurcation Point

Drive amplitude (mV) Resonator 1 (V) Resonator 2 (V) Amplitude Ratio

20 (Linear) 0.36 0.08 4.09
50 0.85 0.23 3.68
80 1.71 0.50 3.42

120 2.79 1.02 2.71

these two phenomena increase the amplitude of that resonator in a disproportionate manner,
resulting in the reduction of the amplitude ratio at the TBP.

6.5.2 Sensitivity analysis

Once the bifurcation points for each drive voltage have been identified, the sensitivity of
the system at the TBP and BBP to input stiffness perturbations are studied by applying a
small DC perturbation voltage on Resonator 2 [24]. Three operating regions are chosen with
amplitude ratios ranging from 1 to 8 to cover a wide range of operating points of the sensor.
The sensitivity results are plotted in Fig. 6.10 for both TBP and BBP. The simulated values
(dashed lines) for the sensitivity are also plotted using the results from the solution to Eq.
6.11. The sensitivities shown as error bars are a representation of the range of experimental
sensitivities that are measured for that span of amplitude ratios. The amplitude ratio at both
TBP and BBP decrease with an increase in drive amplitude but there is a clear difference in
the degree of this reduction between two bifurcation points. A certain reduction in sensitivity
is expected with a reduction in amplitude ratio in mode-localised sensors. This is due to their
inherent property as mentioned earlier in Chapter 2. At the BBP, the sensitivity reduces with
the increase in drive voltage and is consistent with the reduction expected with a reduction in
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Fig. 6.10 Sensitivity of the system to input stiffness perturbations at the top bifurcation point
(TBP) and bottom bifurcation point (BBP) with dashed lines signifying the simulated results.

amplitude ratio. Thus, when the sensitivity is plotted with respect to amplitude ratio, there is
no deviation from the expected sensitivity curve.

However, this is not the case at the TBP where there is a disproportionate decrease
in sensitivity with the increase in amplitude ratio. This feature can be explained by the
presence of higher order nonlinearity in the coupler and electrostatic stiffness perturbations
that become considerable at high vibration amplitudes. These effects lead to changes in the
effective coupling and the added stiffness perturbations. They can be seen in the expression
of these nonlinear couplers and stiffness perturbations associated with capacitive coupling
and transduction deduced to the second order by the series expansion of the electrostatic
force created by a capacitor.

Fcap =−
V 2

DC
2

∂C
∂x

(6.12a)

C =
ε0Ae

g− x
(6.12b)



116 Nonlinear Characterisation of Mode-localised Sensor

Here, the VDC represents the DC voltage difference between the two capacitive plates; x

represents the generalised displacement of the plates; g is the initial gap between the plates
and Ae is the capacitive face area.

kc =−
V 2

couple

2
∂ 2C

∂ (x1 − x2)2 =−
V 2

coupleε0Ae

g3 (1− 3
2g

(x1 − x2)+
2
g2 (x1 − x2)

2) (6.13a)

kp =−
V 2

p

2
∂ 2C

∂ (x2)2 =−
V 2

p ε0Ae

g3 (1− 3
2g

(x2)+
2
g2 (x2)

2) (6.13b)

The higher order terms of both these spring constants leads to variations in the effective
coupling and perturbations which results in the change in sensitivity. This explains how
the simulations of the sensitivity of amplitude ratio to stiffness perturbations agree with
the experiments for the BBP but show a discrepancy for the TBP. Since the second order
harmonics are ignored in the simulation due to convergence issues, the behaviour at the TBP
is not represented accurately in the simulations.

6.5.3 Noise floor

Next, the noise floor improvement due to operating in the nonlinear domain is experimentally
investigated. To measure the broadband noise floor of the amplitude ratio output, the
amplitudes of the two resonators are measured at a high sampling rate (2000 samples/s) for 5
minutes. The ratio of the two amplitudes is computed and a FFT is performed on this data.
The noise floor for each of the drive voltages is compared for the three operating regions with
increasing amplitude ratios, and is shown in Fig. 6.11. It should be noted that in addition
to the 50 Hz peaks (as well as its higher order harmonics, e.g. 100 Hz, 150 Hz etc.), the
thermo-mechanical noise of the in-phase mode is visible on the plot. Similar observations
of thermo-mechanical noise of spurious peaks have been spotted in the phase noise plots
in coupled opto-electronic oscillators [132]. Furthermore, these peaks have been shown to
comprise other sources of additive noise as well [33]. This effect is worthy of a separate
analysis and, therefore, are beyond the scope of this study. Additionally, for measuring the
amplitudes of vibration, a bandwidth of 500 Hz on the Zurich Instruments PLL has been
chosen and it is represented in the noise roll off seen at that frequency.
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Fig. 6.11 Output noise spectral density for the BBP and TBP for different drive power and
different operating regions (i.e. different amplitude ratios).

To understand the observations from Fig. 6.11, it is important to revisit the expression
for the calculation of amplitude ratio noise power, σ2(x1/x2), expressed as a function of the
individual resonator amplitude noise power (σ2(x1) and σ2(x2)) [133]:

σ2(x1/x2)

[µ(x1)]2/[µ(x2)]2
=

σ2(x1)

[µ(x1)]2
+

σ2(x2)

[µ(x2)]2
−2

Cov(x1,x2)

µ(x1)µ(x2)
(6.14)

In Fig. 6.11, due to the more pronounced increase in the amplitudes of vibration, the SNR
( [µ(xi)]

2

σ2(xi)
,(i = 1,2)) is better for each resonator amplitude at the TBP than BBP. This leads to

a better noise floor of the amplitude ratio output metric at the TBP as compare to BBP. At
both bifurcation points, the noise floor improves as the amplitude ratio, µ(x1)

µ(x2)
decreases. This

is in agreement with the conclusions drawn in Chapter 5. Since the amplitude of vibrations
(µ(xi)

2,(i = 1,2)) are insensitive to drive voltage at the BBP, the improvement of the output
noise floor with an increase in drive voltage (after the bifurcation occurs) is minimal. This is
also confirmed in the AR−φ plot in Fig. 6.8 where the region around the BBP sees very little
change in amplitude ratio as compared to that at the TBP. This leads to a greater improvement
in the noise floor at the TBP as compared to the BBP when the drive voltage is increased in
the nonlinear regime.
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A further comparison is made by averaging the noise floor around 30 Hz offset frequency
for all the above cases and plotting it against their amplitude ratio in Fig. 6.12. 30 Hz is
chosen here because most of the FFTs show the noise floor around that frequency and also it
excludes the thermo-mechanical noise peaks that start to appear at later offset frequencies.
The trend of the output noise spectrum (in Fig. 6.12a) clearly shows an improvement in the
noise floor by increasing the drive voltage at both bifurcation points. Consistent with the
observation in the noise floor plots, it is seen that the improvement is incremental at the TBP
as compared to the BBP where the noise floor remains consistent throughout this nonlinear
operating regime.

0 2 4 6 8
1E-5

1E-4

 10mV
 40mV
 60mV
 80mV

N
oi

se
 S

pe
ct

ra
l D

en
si

ty
 (/

H
z)

Amplitude Ratio

Bottom Bifurcation Point Top Bifurcation Point

0 2 4 6 8

1E-5

1E-4

 10mV
 40mV
 60mV
 80mV

(a) Output noise spectral density

0 2 4 6 8
1E-8

1E-7

 10mV
 40mV
 60mV
 80mV

In
pu

t R
ef

er
re

d 
N

oi
se

 F
lo

or
 (/

H
z)

Amplitude Ratio

Bottom Bifurcation Point Top Bifurcation Point

0 2 4 6 8
1E-8

1E-7

 10mV
 40mV
 60mV
 80mV

(b) Input-referred noise spectral density

Fig. 6.12 Averaged noise around 30 Hz compared for the various different drive voltages at
the TBP and BBP.

The input-referred noise is then calculated by dividing the output noise floor ARn by
the sensitivity at each operating point SAR, (∆k

k )n = ARn
SAR

. Fig. 6.12b compares the trend
of the input-referred noise spectral density around 30 Hz offset frequency. The trend of
the input-referred noise floor changes significantly from the trend seen in the output noise.
Since the sensitivity at the top bifurcation point (as shown in Fig. 6.10) decreases with the
increased drive voltage, the input-referred noise at that point is affected by this decrease in
sensitivity. Therefore, it no longer shows an incremental improvement in the noise floor
with an increase in drive voltage. The noise increases at higher amplitude ratio operating
point which is expected from the system that is dominated by electronic noise. On the other
hand, the input-referred noise at the bottom bifurcation point preserves its trend similar to
the output noise due to a relatively small change in the sensitivity with an increase in drive
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voltage. Similar to the TBP, the noise at the BBP also increases with an increase in amplitude
ratio.

An interesting feature that is observed in the input-referred noise floor is that at the
amplitude ratio of 1 (nearly symmetric resonators), the improvement of the noise floor with
an increase in drive voltage is minimal for both bifurcation points. This shows the advantage
of working around the veering region. Although the sensitivity of the system is lower there,
the input-referred noise floor is the best and the most insensitive to changes in drive voltage
[125]. Away from veering, however, the improvement in the noise floor compared to the
linear drive is better at the TBP than at the BBP. Ultimately, an improvement of 2 times
in input-referred noise floor, or resolution, in comparison to its linear counterpart at both
bifurcation points has been achieved around veering and an improvement of 4 times at the
top bifurcation point away from veering. This is likely due to the higher SNR and additional
noise filtering properties at the bifurcation points. A minimum of 18 ppb/Hz1/2 has been
achieved in this work demonstrating an improvement relative to operation in the linear regime
(30 ppb/Hz1/2) for this system.

It is to be noted that the results presented here apply to devices using electrical coupling
only since the sensitivity reduction is a direct consequence of the second order term of the
coupler. It is additionally beneficial for the improvement of the SNR to operate at the TBP
in a device where there is no significant reduction in sensitivity at that point. For example,
the dynamics in a mechanically coupled system would be different since the coupling would
no longer be governed by nonlinear capacitive behaviour but be dependent on the nonlinear
response of the mechanical coupling beam. This might not adversely affect its sensitivity.
Nonetheless, for operation as a sensor, it is recommended that the mode-localised resonators
be driven just beyond the critical amplitude to see improvements in the SNR of the amplitude
ratio output metric. This is to ensure that unwanted effects associated with stress build-
up or higher order nonlinear behaviours are not observed in the output. As long as the
mode-localised system is operated in the weak nonlinear regime, the noise and sensitivity
observations in a resonator system showing softening or stiffening nonlinearities should not
differ.

Summary

The nonlinear dynamics of a mode-localised resonator system are studied in this chapter.
Operation at higher drive amplitudes leads to higher signal-to-noise ratio in an electrical noise
dominant system but increases the nonlinearity in the system. Instead of using nonlinearity
cancellation techniques, operation at the bifurcation points is studied in view of the potential
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for enhanced amplitude ratio noise filtering. Modelling is done to understand the behaviour
of the coupled resonators when exposed to large amplitudes of vibration across different
amplitude ratio operating points. It is seen that amplitude ratio reduction takes place at both
bifurcation points but to a greater extent at the top bifurcation point due to gain suppression.
The sensitivity also reduces with an increase in the drive voltage at both bifurcation points.
However, the top bifurcation point sees a disproportionately large reduction in sensitivity to
what is predicted by the gain suppression. This is attributed to the presence of second order
nonlinearities from the electrical coupling. Nonetheless, the noise floor is seen to improve
despite this reduction in sensitivity.

It has been shown in the previous chapter that in a system dominated by electronic noise,
the noise floor can be optimised at an amplitude ratio of

√
1.5. Ideally, operating at the TBP

at an amplitude ratio of
√

1.5 improves the noise floor due to the higher signal-to-noise ratio
as compared to the linear case. Unfortunately, in this system operating at that amplitude ratio
led to a reduction in sensitivity. Hence, similar experiments carried out on a mechanically
coupled device would allow for greater improvement in the noise floor in the nonlinear
operating regime of the mode-localised resonators.



Chapter 7

Mode-localised Accelerometer

Accelerometers are sensors that detect dynamic acceleration as a measurand. They have
become one of the most widely implemented inertial sensors for consumer applications in
mobile phones and automobiles. They also have industrial applications such as in modal
analysis, and noise vibration and shock testing. Additionally, they have also been used for
geophysical measurements (e.g. seismic sensors for geological imaging). In this chapter,
a prototype of mode-localised MEMS accelerometer is presented that shows the potential
of matching the performance of the commercial accelerometers in the field of seismic
monitoring. The resolution optimisation techniques presented in the previous chapters
are applied on a mode-localised accelerometer (MLAXL) to show state-of-the-art sensing
resolution.

7.1 Review of MEMS accelerometers

MEMS accelerometers have become a common commercial commodity for inertial measure-
ments. Their size, ability to be batch-fabricated, and their low cost have given MEMS sensors
a great advantage over their competitors [134]. This has led to them displacing their larger
size alternatives in the field of consumer electronics [135–137] and auto mobiles [138–142].
These devices have flooded the market and have given great impetus to the MEMS industry.
But, the performance of these sensors is mostly in the low to mid-range with stabilities in
the region of the 10−3 g (mg) where g is one unit of gravitational acceleration or 9.8 m/s2.
Although these sensors are powerful for their applications, most of them do not meet the
resolution, long-term stability, robustness, or bandwidth requirements for high performance
applications (μg) such as in defense, oil and gas industry, and seismic monitoring.
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With the advent of new fabrication technologies, MEMS accelerometers employing a
variety of different principles have been introduced. However, they all revolve around two
basic principles of acceleration detection – measurement of the displacement of a proof
mass relative to a reference frame or measurement of the inertial force experienced by a
proof mass due to input acceleration. Some accelerometers employing displacement sens-
ing principle are capacitive [143–148], tunnelling [149, 150], and optical [151–153] based
and some employing force sensing are piezo-resistive [154–156], piezo-electric [157, 158],
and resonant [57, 90, 8] based approaches. The main mechanisms implemented for high
performance accelerometers currently in the market are either capacitive-based [159] or
resonant-based [160]. This is because although accelerometers using other mechanisms pro-
vide better noise performance (optical and tunnelling), or a wide range of input acceleration
and frequency response (piezo-electric and piezo-resistive), they have key drawbacks such as
minimisation difficulties (optical and piezo-electric), low frequency noise (tunnelling), and
high temperature sensitivity (piezo-resistive) that make them unsuitable for current commer-
cial applications. Thus, the two ubiquitous accelerometers that employ the capacitive and
resonant approaches are discussed in detail with a special mention of optical accelerometers
due to the exceptionally high resolution it offers.

Optical accelerometers

The optical method of transduction in accelerometers has shown to consistently result in
high resolution and performance [151, 152] as compared to other transduction methods.
These accelerometers generally employ a laser interferometry to accurately detect changes in
the displacement of the proof mass. Since the transduction method does not use electronic
components in the readout path, the noise in the system is defined by the thermal noise
of the sensor and the laser. Since both of these are orders of magnitude lower than the
noise of analogue electronics, optical transduction enables for extremely high resolution
measurements. Generally, optical accelerometers are fabricated using MEMS technology
but the transduction method including a laser makes the integrated sensor very bulky and
impractical for field applications. Nonetheless, works have shown noise floors of 17 ng/

√
Hz

[151] and 40 ng/
√

Hz [152]. In the coming years, this technology has the great potential in
the field for gravimetric or seismic applications but for now, other technologies that offer
similar performances in a compact package are preferred.
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Capacitive accelerometers

One of the simplest designs employing a displacement-based sensing is the capacitive
accelerometer architecture. This sensor architecture consists of a proof mass that moves
relative to a support frame upon the presence of an external acceleration. A capacitive
transducer (usually comb-drive) present on the moving mass is used to measure a change in
the capacitance relative to the stator frame with the help of simple circuitry. Key advantages
of this method of sensing is the resistance to temperature fluctuations offered and the low
noise floors achieved. Recent work on capacitive MEMS accelerometers [161–163] resulted
in impressive noise floors of 100 ng/

√
Hz but their limitations lie in the small dynamic range

of sensing they offer (usually in the mg region). Additionally, they are plagued by 1/f noise
that reduce their ability to measure low frequency accelerations to few hertz. The small
dynamic range is due to the need for a force feedback loop that keeps the proof mass from
moving since, large accelerations will lead to the mass collapsing into the frame. Furthermore,
a large proof mass needs to be implemented with compliant suspensions to achieve large
sensitivities. This inherently effects the maximum achievable bandwidth in these devices.
Most recently, a capacitive accelerometer [148] with a bandwidth between 0.1 Hz-10 Hz, a
noise floor of 0.25 ng/

√
Hz and able to withstand high shock (>1000g) was reported. This has

been the highest performance reported to date and was implemented with a force feedback
loop. Their results showed that the sensor was able to measure the earth’s tidal wave patterns.
Although it shows brilliant noise performance, this device does not have a large bandwidth to
be used ubiquitously for a large range of applications.

Resonant accelerometers

On the other side of the spectrum, resonant accelerometers are part of a family of designs
employing force sensing mechanism. The core of this sensing principle is a resonator coupled
to a proof mass that is driven at its resonant frequency. An inertial force acting on a proof
mass due to an external acceleration is coupled into the resonator, thus changing its resonant
frequency [90, 57]. This method requires an oscillator design that accurately tracks the
resonant frequency of the resonator. It is particularly useful in offering large dynamic range
(upto kHz) since the sensitivity does not scale down with the size of the proof mass the same
way as in capacitive accelerometers. Furthermore, it does not experience the same issue
with low frequency noise since the resonator frequency of the sensing element is usually in
the kHz region. It has been proven to offer good noise performance without sacrificing the
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dynamic range or the bandwidth of the sensor [57, 90, 8] monolithically in single axis [164],
two axes [165], and three axes [166].

One of the main drawbacks for using the resonant sensing approach is the temperature
dependence of the resonant frequency of the resonator that can lead to drifts in the output
frequency. To tackle this issue, several designs [167, 21] have incorporated a passive
temperature compensation using differential frequency readout scheme. In this scheme,
the frequencies of two identical resonators are subtracted to double the inertial signal and
cancel the first order temperature effects [168, 10]. However, this method is limited again
by fabrication tolerances which result in unequal temperature-based drift between the two
resonators [57]. Yet, recent work on these sensors reported stabilities on the order of
100 ng [169, 8] with a prospect of bettering the resolution with the advent of low noise
amplifier circuits and better fabrication technologies. The main issue at hand is the need for
more temperature compensation techniques due to the high temperature coefficient of these
resonators (−30 ppm/oC). Although many architectures do exist where external ovenisation
[170, 114, 171] based on the oven controlled crystal oscillator (OCXO) has been used, they
creates the need for bulky circuitry and oven technologies that renders the advantages of the
MEMS technology irrelevant. This shows that there is a need for a mode-localised resonant
accelerometer (MLRXL) to provide similar noise performance but without the need for
complex and bulky temperature compensation techniques. Therefore, the MLRXL is an ideal
candidate for an accelerometer with a high measurement bandwidth, high sensitivity while
providing greater rejection to temperature fluctuations, thus, allowing for high resolution
measurements of slowly varying acceleration.

Mode-localised accelerometers

There have been several reported versions of mode-localised accelerometer that employ
two [28], three [71, 32], and four [72] DoF resonator systems. However, all of that work
has been based on open-loop characterisations and do not quote any information on the
bias stability, noise floor, or bandwidth of the sensor. Recent work [172] from the same
group showed the implementation of an oscillator based on previous implementation of a
simple feedback circuit [69]. A bias stability of 1.4 mg was achieved at integration time
of 100 s and a noise floor of 7.6 μg/

√
Hz was reported by the group. However, the noise

floor calculations were not conclusive since they included the noise outside of the sensor
bandwidth. The noise outside the sensor’s bandwidth is lower than the noise in the sensing
bandwidth and therefore is a misleading quotation of noise floor. A further implementation
of a three degree of freedom system [173] was shown to provide a bias stability of 157
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μg. Although a breakthrough for MLRXL resolution, this resolution was not sufficient to
compete with the current off-the-shelf accelerometers in the market.

In this work, a differential mode-localised resonator system is proposed and implemented
that can show similar, if not better resolution compared to off-the-shelf accelerometers. The
system is able to offer high performance in its noise floor, stability, common mode rejection,
and tunable bandwidth which opens the doors for a wide range of potential applications from
low frequency tidal wave sensing to high frequency seismic activity sensing. A theoretical
analysis of the differential mode-localised accelerometer is presented since it employs a new
amplitude ratio difference output metric. As discussed in Chapter 4, mechanically coupled
devices offer lower common mode rejection than electrically coupled devices because of the
variability in the coupler with temperature and pressure. Since there are two coupled systems
in this case, the couplers in the two systems will undergo similar variations in common
mode variables. Therefore, using the difference of the two amplitude ratios offers additional
common mode rejection in mechanical coupled devices. A characterisation of the scale
factor, bias stability, noise floor, bandwidth, and the record of a seismic event is shown as
measured by the sensor. An analysis of the noise factors affecting the current resolution is
provided along with a discussion on the long-term stability of the sensor.

7.2 Theory

Fig. 7.1 Lumped model of the differential 2-DoF coupled system

Mode localisation in its most basic form can be represented by a 2-DoF lumped spring-
mass model. The two springs (k1) and masses (m1) are assumed to be the same and are
coupled together with a weak coupling spring (kc). A perturbation in stiffness (∆k) is added
to one of the resonators to perturb the system from a state of symmetry. This causes a shift
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Fig. 7.2 A schematic of the differential mode-localised accelerometer

in the eigenstate of the resonators proportional to the measurand and this is represented as
the ratio of the two amplitudes of vibration of the resonators. However, since a differential
configuration is chosen for this sensor, another system of coupled resonators with springs
(k2), masses (m2), and coupling spring (kc) experiencing a negative change in perturbation
(−∆k) is added to the model. The two resonator systems need to be considered as two
separate coupled systems but both experiencing a differential axial perturbation in stiffness
that is proportional to input acceleration. It is to be noted that the amplitude ratio difference
measurements are most effective when the operating amplitude ratio of both the systems are
matched. A lumped spring-mass-damper model representing this is shown in Fig 7.1 and the
schematic of the accelerometer is shown in Fig. 7.2.

To solve for eigenvalues and eigenvectors, the two systems are assumed to be undamped
and unforced. Thus, the equation of motion can be acquired as:[

m1 0
0 m1

][
Ẍ1

Ẍ2

]
+

[
k1 + kc −kc

−kc k1 + kc +∆k

][
X1

X2

]
=

[
0
0

]
(7.1a)

[
m2 0
0 m2

][
Ẍ3

Ẍ4

]
+

[
k2 + kc −kc

−kc k2 + kc −∆k

][
X3

X4

]
=

[
0
0

]
(7.1b)
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Solving these systems of matrices leads to the eigenvalue and eigenvectors as:

ω
2
1,2 =

2(k1 + kc)−∆k∓
√

∆k2 +4k2
c

2m
(7.2a)

u1,2 =
−∆k±

√
∆k2 +4k2

c
2kc

(7.2b)

ω
2
3,4 =

2(k2 + kc)+∆k∓
√

∆k2 +4k2
c

2m
(7.2c)

u3,4 =
∆k±

√
∆k2 +4k2

c
2kc

(7.2d)

ω1,ω3 correspond to the eigenfrequency of the in-phase mode and u1,u3 correspond
to the eigenstate or in this case amplitude ratio of the in-phase mode of the two resonator
systems. Similarly, ω2,ω4 and u1,u3 correspond to the anti-phase mode of the two resonator
systems. For a differential amplitude ratio measurement, the difference between the two
eigenstates corresponding to either of the modes is derived to be:

|u1 −u3|= |u2 −u4|=
∆k
kc

(7.3)

Thus, the sensitivity of the amplitude ratio difference (ARD) to input stiffness perturbation
at veering (when ∆k = 0) can be modelled as:

∂ |u1 −u3|
∂∆k

=
∂ |u2 −u4|

∂∆k
=

1
kc

(7.4)

Both the amplitude ratio and its sensitivity to stiffness perturbations is simulated and
plotted in Fig. 7.3. The two amplitude ratios meet at an equilibrium point (χ) corresponding
to an amplitude ratio 1. As the figure suggests, the sensitivity enhancement of the differential
amplitude ratio is maximum in the operating region around this equilibrium point and thus, it
is preferable to work around that region. Furthermore, the amplitude ratio difference provides
a constant sensitivity around this point. This is a very important result since amplitude ratio
measurements in mode-localised accelerometers have been plagued with high nonlinearity of
sensitivity around the veering zone [32, 28]. Using an amplitude ratio difference as an output
metric allows for greater linearity of operating around the veering zone where the system
provides the best noise floor [113].

The equilibrium point can be tuned electrostatically by applying perturbation voltages
on either one of the systems. The results of a simulation showing the change of sensitivity
in this case is shown in Fig. 7.4 plotted against the individual amplitude ratios of the two
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Fig. 7.3 Simulation showing the variation and the sensitivity of the two individual amplitude
ratios and their difference across different perturbations at equilibrium point of AR=1

systems. The sensitivity of the amplitude ratio is dependent on both the amplitude ratios and
reaches a maximum at the various equilibrium points (marked in red) in each case. Even
though the sensitivity increases around the equilibrium points at higher amplitude ratios, the
sensitivity of the system is no longer constant there. Only when the equilibrium point is
at AR ∼ 1, is the sensitivity constant in the amplitude ratio difference across all amplitude
ratios. Thus, it is still preferable to work around the veering zone for higher linearity of the
output metric. In this work, all results are done at the equilibrium points with the amplitude
ratios of both the systems matching each other to 3 decimal places.

7.3 Experiment

The sensor consists of two systems of coupled clamped-clamped beam resonators that are
placed on either side of a proof mass so that each system of resonators experiences differential
change in acceleration. The design and fabrication of the sensor is not part of my work.
However, the rationale behind the design is pertinent to this work. Thus, The design of
the different parts of the sensor are discussed in detail in Appendix E. Tab. 7.1, has been
prepared to include all key parameters as a summary of the design considerations. The sensor
is fabricated using a custom process by SILEX Microsystems AB where they are vacuum
sealed using fusion bonding. An optical micrograph of the sensor is shown in Fig. 7.5.

A schematic of the measurement setup is shown in Fig. 7.6. The device layer and the
substrate are both biased at 10 V to avoid any deformations of the proof mass. The resonator
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Fig. 7.4 3-dimensional plot showing the variation of the amplitude ratio sensitivity at different
individual amplitude ratios.

Fig. 7.5 Optical micrograph of the accelerometer.

systems on either side of the proof mass are driven individually by two commercially
available lock-in amplifiers (Zurich Instruments MFLI). A single resonator system is driven
in a cascade configuration where the first resonator is driven capacitively and the second
resonator is driven synchronously through the coupler. The motional current from each
resonator channel is passed through a custom transimpedance amplifier (TIA) and is fed back
to the lock-in amplifiers to realise a closed-loop tracking of the amplitude and frequency.
MFLIs are used for to achieve resonance tracking in this study; however, more details
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Table 7.1 Device parameters

Parameter Dimensions

Resonator beam length 700 μm
Resonator beam Width 7 μm
Coupling beam width 4 μm
Coupling beam length 400 μm
Device layer thickness 40 μm
Computed resonator stiffness 108.4 N/m
Computed resonator mass 1.75×10−10Kg
Computed resonant frequency 125.2 kHz
Estimated coupling stiffness 0.27 N/m
Computed suspension stiffness 374 N/m
Computed proof mass 4.6×10−6Kg
Computed resonant frequency of proof mass 1443 Hz
Computed effective lever amplification factor 9.5

on realising an oscillator topology for mode-localised resonators can be found elsewhere
[69, 91]. To synchronise the measurement of all four channels, they are all fed into a
National Instruments Data Acquisition card that reads all the amplitudes and frequencies
synchronously.

The resonators are tuned electrostatically by applying perturbation voltage to bias the
resonators at different levels of symmetry. The coupling strength is characterised experimen-
tally to be 0.3 N/m by calculating the frequency difference between the first flexural modes
[28, 23, 24] (see Appendix E for calculations). A quality factor of 60000 is realised for the
first flexural mode at the operating frequency of 130 kHz. All experiments are carried out at
room temperature without the use of any external temperature control.

7.4 Results

Experiments are performed on the designed accelerometer on its scale factor, bias stability,
noise floor, and bandwidth in closed-loop configuration. As an example of its application in
seismology, seismic activity measured while conducting experiments is also shown with data
from a reference seismometer in the British Geological Survey network.
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Fig. 7.6 Circuit level schematic of the experimental setup.

7.4.1 Scale factor

The scale factor analysis is done with the help of a tilt table that applies gravitational
acceleration from 0-1 g depending on the tilt angle. 10 V of bias voltage was applied, and
continuous resonance tracking was achieved using the Zurich Instruments MFLIs. The
amplitude ratios of both systems were recorded at various tilt angles ranging from 0o −90o.

These results are plotted against the respective change in gravitational acceleration in
Fig. 7.7a. In this case, it is seen that the equilibrium point (point where the amplitude ratios
of the two coupled systems meet) is at an amplitude ratio of 2.5. This can be modified by
individually tuning the two systems using electrostatic perturbations [23]. The localised
sensitivities at different equilibrium points is measured using the tilt test and the results
are shown in Fig. 7.7b. Each of the points in Fig. 7.7b refers to a different equilibrium
point where the tilt test is repeated. As the equilibrium point is changed, the sensitivity of
the differential amplitude ratio follows that of the individual amplitude ratios thus being
consistently double of the sensitivity of individual systems. This trend of sensitivity is
consistent with the simulation results shown in Fig. 7.4.
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Fig. 7.7 Model of the differential mode-localised accelerometer.

7.4.2 Noise floor

The noise floor is calculated by measuring the two amplitude ratios simultaneously and
performing a power spectral density (PSD) analysis on the data. The sampling rate is set to
100 Hz and the measurements are taken for 5 minutes at each different equilibrium point.
The noise spectral density (NSD) is achieved by taking the square-root of the PSD data. An
example of the NSD for each value of the amplitude ratio compared to that of the differential
amplitude ratio is shown in Fig. 7.8 (left). There is a peak around 10 Hz which can be
attributed to the environmental noise in the laboratory. The noise floor is seen after this
peak until the Nyquist frequency which in this case is 50 Hz. This noise floor is averaged
for equilibrium points ranging from amplitude ratio 1 to 5 and plotted in Fig. 7.8 (right).
A similar analysis of optimisation of individual amplitude ratios has been carried out on
electrically coupled resonators [113] but this is the first to be done on a differential amplitude
ratio as an output metric. It regards the noise in individual channels as a variance around a
mean value and calculates the noise in the amplitude ratio as an output metric [133]:

σ2(AR)
[µ(AR)]2

=
σ2(x1)

[µ(x1)]2
+

σ2(x2)

[µ(x2)]2
−2

Cov(x1,x2)

µ(x1)µ(x2)
(7.5)

The noise in the individual channels can be assumed to be uncorrelated as the system
is dominated by electronic amplifier noise. Thus, the component of Cov(x1,x2) = 0. The
response of the individual amplitude ratio noise with respect to different operating amplitude
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ratio points in the work [113] is similar to that achieved in Fig 7.8 (right). Using the Bienaymé
formula [174], the noise in the amplitude ratio difference can be estimated as:

σ
2(AR1 −AR2) = σ

2(AR1)+σ
2(AR2) (7.6)
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Fig. 7.9 Input-referred noise floor compared at different ARs

Thus, assuming that the sensor is being operated at an equilibrium point where both
amplitude ratios are similar, the noise floor of the differential amplitude ratio is

√
2 times

worse than the noise floor of individual amplitude ratio. However, since the sensitivity is
improved by 2 times by using a differential amplitude ratio, the input-referred noise floor
((AR1 −AR2)n/(∂ (AR1 −AR2)/∂ (g))) is improved by a factor of

√
2. This is seen in Fig.
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7.9 where the input-referred noise floor (minimum amount of change in g that the sensor
can capture) is plotted against various different equilibrium amplitude ratio points. The
differential amplitude ratio tracks a similar trend as the individual amplitude ratio metrics but
is consistently better by a factor of

√
2. Furthermore, a simulation is done using Equations

7.5 and 7.6, assuming an individual amplitude electronic noise floor of 100 nV/
√

Hz operated
at the equilibrium amplitude ratios. The trend of the amplitude ratio noise of both the systems
as well as the noise of the amplitude ratio difference is similar in the experimental and
simulated data. The minimum of the input-referred noise floor in both the simulation and
experiment is around the amplitude ratio of 1.22(

√
1.5) for individual amplitude ratios [113].

A similar minimum is seen for differential amplitude ratio as an output metric. In this case
the best noise floor of 3 μg/

√
Hz is achieved at an amplitude ratio equilibrium point of 1.22.

To achieve optimum resolution, 1.22 is chosen as an operating equilibrium amplitude ratio
point.

It is important to understand the contributions of noise from various sources in achieving
these noise floors. Therefore, FFT measurements are made on the output of each channel
at the operating amplitude ratio of 1.22 using the MFLI under four different conditions –
(1) closed-loop with the PLL function of the MFLI (total noise), (2) open-loop with the
bias voltage and perturbation voltage on (noise of the resonator and amplifier), (3) amplifier
circuit on but external bias and perturbation voltages off (amplifier noise), and (4) amplifier
circuit and voltages off (measurement noise). These noise values for one of the resonator
channels is plotted in Fig. 7.10 along with a theoretical estimation of the thermo-mechanical
noise of the resonator as shown in Chapter 5.

The noise from the electrical sources and the oscillator are the most dominant as suggested
by Fig. 7.10. This includes the noise from the amplifier and the electrical sources such as
the voltage source supplying the bias and perturbation voltages. The oscillator noise close
to the carrier is generally non-deterministic and is intrinsic to all oscillators. There are two
second order low pass filters that are used with a cut-off frequency of 1 Hz on the bias voltage
and the perturbation voltages to filter high frequency noise and that is seen in the open-loop
noise profile. Usually for a low noise measurement, these sources would be replaced with
batteries to ensure that no noise from the mains transfers into the resonators. Since most
measurements were done in the lab environment, flexibility with tuning operating conditions
was required and so no batteries were used.

When these sources are switched off, the amplifier noise can be measured. The results
show that the noise in individual channels can be reduced by almost an order of magnitude
if these sources were turned off and replaced with batteries. This is very promising since it
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Fig. 7.10 Different amplitude noise sources dissected.

means that there is potentially room to improve the resolution. Furthermore, it is seen that
the calculated thermo-mechanical noise of the resonators also is at the same vicinity of the
amplifier noise which goes to show that the same simple circuitry can be used for further
enhancement in resolution of these devices. The last limit on the plot is the measurement
noise of the MFLI to show that the noise sources measured are from their respective sources
and not from the MFLI itself.

Using these noise sources in individual channels, the noise in the amplitude ratio differ-
ence output metric can be compared as in Fig. 7.11. As seen from the individual channels,
the noise in the differential amplitude ratio in the current setup is dominated by the electronic
noise of the amplifier and the voltage sources. As a comparison, the theoretical thermo-
mechanical noise limit is shown, and this signifies that there is a potential improvement
in the noise floor by at least two orders of magnitude if the electronic noise was reduced.
This improvement would put the resolution of the mode-localised sensor comparable to
other resonant resonant accelerometers employing frequency shift output [169, 167] to date
which is in the order of 100 ng/

√
Hz between 0.1 Hz and 100 Hz. Applications such as

monitoring the slow varying tidal waves is a realistic possibility with the help of better
electronic amplifiers and low noise sources for bias and perturbation voltages.
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Fig. 7.11 Differential amplitude ratio noise sources.

7.4.3 Bias stability

To calculate the bias stability of the sensor, the amplitude ratios of both sensors are logged
for a period of 4 hours at a sampling rate of 10 Hz (raw data shown in Fig. 7.12a) and the
Modified Allan variance of the data set is taken. The resulting curve is then divided by the
scale factor for each of the output metrics to achieve input-referred stability which is shown
in Fig. 7.12b.

Both the individual amplitude ratio and the differential amplitude ratio outputs show
similar trends where due the noise in the amplitude ratios integrating over time the long-term
Allan variance curve gets better. A bias stability of 2.96 μg is achieved at an integration
time of 100 s from the differential amplitude ratio output. This is better in comparison to
the individual amplitude ratio outputs which have an individual bias stability of 3.93 μg and
4.87 μg respectively. All three of these bias stabilities are unprecedented and represent a
significant improvement over results reported by other groups by two orders of magnitude
[173] and are better than our previous work by a factor of 2 [91]. One effect to be noticed
is that the Allan variance curve for both the individual amplitude ratio and the differential
amplitude ratio start to increase after the integration time of 200 s. These effects could be
attributed to residual temperature effects and micro-tilt of the chip due to limitations in the
test setup.
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Fig. 7.12 Bias stability characterisation of the MLRXL.

7.4.4 Bandwidth

The bandwidth characterisation is carried out on a single coupled system instead of using
a differential configuration since both of them are tuned to the same amplitude ratio (1.22)
when in operation and both are equivalent in physical properties. An open-loop frequency
sweep is done to investigate the resonant frequency of the proof mass. Using the MFLI, an
AC excitation signal is applied on the comb-drive electrodes of the proof mass and the output
current is passed through a TIA and analysed on the MFLI. The results are shown in Fig.
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Fig. 7.13 Open-loop characterisation of the proof mass.

7.13. The resonance of the proof mass is at 1500 Hz with a quality factor of 900. This shows
the limit that is posed by the proof mass on the maximum frequency of acceleration that can
be measured.

Next a dynamic test is done on the proof mass by inducing dynamic acceleration through
applying a sinusoidal signal to actuate the proof mass. To do this, an AC actuation signal of
peak amplitude 500 mVpp is applied on the comb-drive actuators of the proof mass. The
frequency of this AC excitation is swept from 1 Hz to 2000 Hz. The amplitude ratio is
then measured for a period of 5 minutes at each actuation frequency and the FFT is taken
to show the amplitude ratio component at the excitation frequency. These components are
plotted against the actuation frequency to reveal the effective bandwidth of the sensor (as
seen in Fig. 7.14). The effective bandwidth in this case is described to be the excitation
frequency at which the gain is within 1% of that compared to the DC component. As seen
in the results, the effective bandwidth is reduced below the expected 1500 Hz, due to a
resonance occurring at 350 Hz. This is attributed to the fact that the anti-phase mode of the
coupled resonators is exactly 350 Hz away from the operating in-phase mode causing for
mode coupling. This leads to an amplified response when the input acceleration matches this
frequency difference. Thus, although the proof mass limits the ultimate bandwidth achievable,
the effective bandwidth is set by the frequency difference between the two modes of the
resonators. This opens the investigation into a tunable bandwidth based on the operating
amplitude ratio of the mode-localised accelerometer. The resonators are therefore tuned to
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Fig. 7.14 Bandwidth analysis done at different amplitude ratios.

three different amplitude ratios – 2, 4 and 6 and the same experiment is repeated to investigate
the bandwidth of the resonator at these amplitude ratios.

As hypothesized, Fig. 7.14 shows the anti-phase mode moving away from the mea-
surement mode with the increase in amplitude ratio. Tab. 7.2 summarises this effect at
the three different amplitude ratio operating points. Thus, the effective bandwidth also
increases with the increase in amplitude ratio. This phenomenon creates a trade-off between
the bandwidth and the operating amplitude ratio and in turn the resolution of the sensor. It
has been established that the mode-localised resonators provide the best resolution whilst
operating at an amplitude ratio of 1.22 in an electronic noise dominant system. The user
would need to understand that if the sensor is operated at that amplitude ratio, it would limit
the sensor’s bandwidth. On the contrary, if the resonator is operated at higher amplitude
ratios, the bandwidth would be improved but at the cost of a worse resolution. Another factor
that would affect the bandwidth is the coupling stiffness since that directly influences the
frequency difference between the two modes around veering. Lower coupling strengths allow
for higher sensitivities and therefore a gateway to better resolutions but at the cost of lower
bandwidth. This design trade-off must be considered in determining the optimal coupling
strength for a specific device application.

Although a smaller bandwidth might seem disadvantageous for working at amplitude
ratios close to veering, it adds to the filtering of the background seismic noise in addition to
the filtering provided by the proof mass itself. Thus, for applications where large bandwidth
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Table 7.2 Relationship between frequency difference between two modes and the bandwidth
of the sensor.

Amplitude
ratio

In-phase mode Anti-phase
mode

Frequency
difference

Bandwidth

2 126272 Hz 126659 Hz 387 Hz 120 Hz
4 126323 Hz 127033 Hz 710 Hz 250 Hz
6 126338 Hz 127298 Hz 960 Hz 320 Hz

of measurement is not essential but an ultra high resolution is desired, operating around
veering can be very beneficial. On the other hand, for applications for monitoring seismic
activity where large bandwidth is preferred over resolution, operating at higher amplitude
ratios is prescribed.

7.4.5 Seismic measurement

MEMS based seismometers are greatly advantageous because of their size and ability to be
batch fabricated. Special high performance applications such as in geological monitoring of
seismic activity requires sensors to be portable without sacrificing performance. Keeping
this in mind, evidence is provided to show the potential of using MLRXL as a seismometer.

The seismic measurement was recorded of an earthquake of 3.8 magnitude on the Richter
scale in Grimsby, UK on the 9th June, 2018 at about 23:15 BST. The sensor was being used to
carry out long-term measurements when the earthquake was captured. The raw data with the
time stamp is shown in Fig. 7.15b along with a comparison from a reference accelerometer
at Elham, UK installed by the British Geological Survey. A 10 minute window around the
earthquake is shown where both the mode-localised accelerometer (MLRXL) and reference
accelerometer picked up signatures of the earthquake.

Since the sensor was positioned in a horizontal direction (oriented in the E-W direction),
the horizontal component of the earthquake propagation waves is recorded. It is seen that the
peak ground acceleration is higher by an order of magnitude in the MLRXL and this is due its
proximity to the earthquake by 200 km. The time delay between the two measurements is also
explained by the longer distance the waves must travel to the reference AXL as compared to
the MLRXL. It is to be noted that the MLRXL was setup to measure the long-term stability of
the sensor with a oscillator bandwidth of 10 Hz. Therefore, the MLRXL shows a dampened
response as compared to the Reference AXL that is solely setup for measuring seismic
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(b) Data from the mode-localised accelerometer.

Fig. 7.15 Data from the earthquake in Grimsby, UK on 9th June, 2018.

data. Furthermore, due to the lower sampling rate, many of the high frequency components
have not been captured. However, from the bandwidth measurement, the sensor is able to
effectively pick up frequency components up to 200 Hz and thus has the potential to be used
as a seismic-grade accelerometer.

Summary

A prototype of a mode-localised accelerometer is presented in this chapter with detailed
descriptions on the design, theory, and experimental observations of differential amplitude
ratio output metric. The advantages of the new output metric in bettering the sensitivity (by
2 times) and the resolution (by

√
2 times) is shown. Although an unprecedented 2.96 μg

stability and 3 μg/
√

Hz were achieved with this work to sense seismic activity, the resolution
needs to be improved by at least an order of magnitude for these sensors to benchmark to
state-of-the-art capacitive MEMS and geophone technology. The theoretical estimation of the
thermo-mechanical noise and the experimental characterisation of the other electronic noise
sources currently limiting the amplitude detection resolution suggest that the voltage sources
for bias and perturbations are the main inhibitors of the resolution. Batteries as voltage
sources could be an alternative to eliminate the noise due to the voltage sources. Beyond
that, to reach closer to the thermo-mechanical noise floor, the amplifier noise will need to be
reduced further by using ultra-low noise TIAs. The true advantage of the mode-localised
accelerometer is its ability to provide ultra-stable long-term measurements. A robust setup
needs to be designed to ensure no micro-tilting of the sensor occurs. Since the resonators
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reject first order changes in temperature and pressure variations, operating at the mechanical
noise limit would aid in measuring gravitational effects that vary on the order of 100 s or
longer time scales.

From a design perspective, the resolution can also be improved by increasing the scale
factor of the sensor. This can be either done by making weaker coupling springs or increasing
the size of the proof mass. A weaker coupler would increase the sensitivity of the resonator
system but would also amplify the effect of mismatch of the resonators at fabrication on the
uncompensated amplitude ratio output metric. For example, if the coupling beam width is
reduced by half, and a mismatch of ±0.5 μm in the fabrication tolerances in the two coupled
resonators could lead to an initial uncompensated amplitude ratio of 40 instead of currently
10. Although this will not change the voltage that needs to be applied to tune this mismatch,
it does increase in the mismatch of physical properties such as temperature-based amplitude
drifts between the two resonators. Since the mismatch in stiffness is due to the fabrication
process, unless the fabrication process becomes more accurate, the mismatch will exist and
perturbation voltages will need to be applied to tune the operating amplitude ratio. The proof
mass, on the other hand, is limited by the size of the die. But, if the width and length of the
size are to stay the constant from a fabrication point of view, one way to increase the proof
mass would be to increase the thickness of the proof mass. A demonstration of a capacitive
accelerometer derived from this method was able to separate the sensing elements that were
fabricated on a thinner layer and inertial elements that included an additional thick substrate
to increase the effective mass [175]. This way, the proof mass can be increased without
compromising the overall width of the sensor.

If the sensitivity needs to be improved in the same device, there is another interesting
phenomenon that can be used which has been observed in opto-mechanics community.
Parametric pump [176], essentially uses an external AC source as a perturbation to couple
the in-phase and anti-phase mode. If the AC source matches the frequency that is equal or
close to the frequency difference between the two modes, it leads to a modal coupling, and
a component of the in-phase mode mixes with the pump frequency to appear close to the
anti-phase mode and vice versa. This in turn leads to a pseudo-reduction in the coupling
stiffness and increase in sensitivity. More on this can be found in the future work section
(Chapter 8.1). Since this can be implemented without any structural changes to the design,
this approach can be implemented on the same accelerometer design.



Chapter 8

Conclusion

This work has deepened the understanding of the practical limitations imposed on mode-
localised sensors in terms of noise, sensitivity, common mode rejection, and bandwidth. It
has further quantified these metrics in the context of a high-resolution accelerometer. By
doing so, the work has paved the way for ultra-high resolution mode-localised sensing by
providing analytical and experimental evidence from a practical point of view.

The understanding of the physics behind these sensors is of utmost importance to predict
its performance. To that effect, the simulations performed on the coupled 2-DoF in the
form of a transfer function analysis, finite element modelling, and harmonic balance of the
nonlinear system provided valuable insight into predicting the intrinsic noise in amplitude
ratio measurements, their behaviour when exposed to temperature variations, and large
vibration amplitudes respectively. They provided the freedom to optimise sensitivity, noise,
temperature variability, and nonlinear behaviour without the need for a physical system. This
enabled the prediction of the performance of the coupled resonator system as a sensor.

The implementation of an oscillator for a mode-localised sensor shown in this work was
the first of its kind and paved the way to further study the practicality of using mode-localised
sensors. The demonstration of a closed-loop configuration for the coupled resonator system
enabled faster characterisation of the sensitivity since the oscillator was able to follow the
resonance with the application of perturbations. Thus, the two amplitudes were able to
be measured instantaneously in comparison to constantly performing open-loop frequency
sweeps. Furthermore, it allowed for the true measurement of stability, noise floor, and
bandwidth of the sensor which are key in understanding and optimising the resolution of the
mode-localised sensor.

Experimental characterisations on electrically and mechanically coupled devices at
different operating temperatures highlighted the variability in the common mode rejection
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offered by these mode-localised devices. The results suggest that the electrically coupled
device offers almost an order of magnitude better rejection that their mechanical counterpart.
Furthermore, the superiority of the amplitude ratio over differential frequency output metric
was emphasised by the comparison between the two output metrics in the same electrically
coupled device. Amplitude ratio offered the same level of rejection as the differential
frequency output without the need for an additional oscillator.

The detailed noise analysis performed in this thesis delineated major sources of noise
that affect mode-localised sensors. The modelling of the noise using the transfer function
method enabled an accurate prediction of the variation of the amplitude noise in the resonator
noise and electrical noise dominant scenarios. The amplitude ratio noise was predicted from
the individual amplitude noise by assuming them to be a variance around a mean vibration
amplitude. The simulations predicted that optimisations could be made by operating at
different amplitude ratios and coupling stiffnesses. The experiment was able to confirm this
prediction with lower coupling stiffnesses leading to lower input-referred noise floors across
all amplitude ratio operating regions. Furthermore, the optimum amplitude ratio to minimise
noise was shown to be between

√
1.5 and

√
2 depending on the dominant noise mechanism

and drive configuration.
Nonlinearity has always been a deterrent to the practical implementation of MEMS

sensors. Thus, characterising the mode-localised sensor in the nonlinear domain accentuated
the advantages of working in this domain in relation with improving the amplitude noise
floor in an electronic noise dominant system. Amplitude ratio showed some interesting
behaviours at the top and bottom bifurcation points mainly due to gain compression and
electrical coupling that led to a reduction in sensitivity at the top bifurcation point. Despite
this detrimental feature, the noise floor was seen to better by 4 times in comparison to its
linear counterpart. Being able to utilise nonlinear effect in such a sensor can lead to great
optimisations from a phase noise filtering and amplitude ratio noise floor improvements that
can prove to be instrumental in enabling ultra-high resolution measurements.

Finally, a mode-localised accelerometer was implemented to show the potential of the
weakly coupled resonators to be used as a physical sensor. With the introduction of a
differential amplitude ratio output metric, superior common mode rejection was achieved
even with a mechanically coupled resonator system. A stability of 3 μg and a noise floor
of 3 μg/

√
Hz was achieved. The key factors limiting the resolution were identified as the

electronic noise sourced from the large perturbation voltage needed to bias the system at
symmetry. More work can be carried out to either reduce this perturbation voltage noise or
increase the sensitivity through a larger proof mass to achieve better resolutions.
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These contributions have furthered the understanding of the community on mode localisa-
tion in weakly coupled resonators and advanced the ultimate goal of implementing physical
sensors with exceptional long-term stability and resolution.

8.1 Future work

Although many aspects of mode localisation are presented and discussed in this work, there
is much potential to be harvested from this concept in the field of sensing. Some of these are
proposed for future directions that can be taken to guide this field.

Mass sensing

An interesting application of mode-localised sensors could be their use for mass sensing.
The sensitivity enhancement that amplitude ratio sensing offers over frequency shift sensing
could be of immense help in sensing ultra-fine particulate matters (PM10). A possible imple-
mentation is shown in Fig. 8.1. It is to be noted that this particular proposed implementation
would be done using piezoelectric transduction rather than the capacitive method discussed
in this work. This is to ensure good quality factors (100 - 1000) when operating in air.

Oscillator

Output 1 Output 2

Mass Particle

Fig. 8.1 Prototype mass sensor design.

This is a simple implementation of a 2-DOF mode-localised mass sensor. The mass
particles in this case are selectively deposited on one of the resonators to change the symmetry
of the system. As the perturbations can be applied to the system in the form of a stiffness or
a mass change, energy localisation still takes place with the deposition of mass. A similar
oscillator as proposed in this thesis can be applied to the system to sustain closed-loop
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oscillations. Additionally, similar front-end electronics with the TIA configuration can be
utilised.

Parametric pump

Input Force
due to

acceleration

Input Force
due to

acceleration

Output
1

Drive

Output
2

AC
Pump

To TIA

To TIA

f~fo*kc/k

f~fo

Fig. 8.2 Parametric pump design for accelerometers.

Another promising phenomenon that can be explored, especially for application as
accelerometer is the use of parametric pump [176] to boost the effective sensitivity of the
mode-localised accelerometer. It is desirable to use mechanical coupling over electrical
coupling in an accelerometer design due to the constraints from a robustness perspective.
This provides a floor on the strength of the coupling stiffness from a sensitivity perspective
alone and restricts any tuning of the coupling stiffness. However, one way to tune the
sensitivity in a mechanically coupled device is to use an AC pump as perturbation instead
of the conventional DC perturbations. If the frequency of the pump is near the frequency
difference between the two modes ( fpump ≈ fo

kc
k ), it induces modal coupling in the system.

This leads to a component of the in-phase mode appearing near the anti-phase mode and
vice versa. Here, increasing the amplitude of the pump can increase the coupling and vice

versa. This way, the effective coupling and sensitivity can be tuned as required and can be
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potentially increased by 2-3 orders of magnitude depending on the frequency of the pump
chosen [177]. An illustration of the proposed setup is shown in Fig. 8.2.

The setup is similar to what is seen in a conventional mode-localised accelerometer with
the exception of the pump being applied at the perturbation electrode. In this illustration an
accelerometer undergoing perturbation due to acceleration on both the resonators is shown
but the concept would work with one of them undergoing perturbation as well. In this work,
the mode-localised accelerometer in linear operation was showing sensitivities of 6 AR/g
but with the pump, sensitivities of upto 1000 AR/g have been shown [177]. This would help
bring down the noise floor significantly to the region of ultra-high resolution acceleration
measurements. Furthermore, the noise contribution from the perturbation voltage is reduced
since the tuning of the amplitude ratios is now done using an AC signal. This concept is the
next step that needs to be taken to reach the performance levels of other resonant frequency
shift-based accelerometers showing sub 20 ng stability [178].

8.2 Contribution of the author

The work presented in this thesis has been published, in part in international peer reviewed
journals and proceedings in international conferences as outlined below.

8.2.1 Articles in international peer reviewed journals

• M. Pandit, C. Zhao, G. Sobreviela, and A. A. Seshia, ” Practical Limits to Common
Mode Rejection in mode-localized Weakly Coupled Resonators”, in IEEE Sensors

Journal, In print.

• M. Pandit, C. Zhao, G. Sobreviela, X. Zou and A. A. Seshia, ” A High Resolution
Differential Mode-localized MEMS Accelerometer”, in Journal of Microelectrome-

chanical Systems, In print.

• M. Pandit, C. Zhao, G. Sobreviela, S. Du, X. Zou and A. A. Seshia, ” Utilizing Energy
Localization in Weakly Coupled Nonlinear Resonators for Sensing Applications”, in
Journal of Microelectromechanical Systems, vol. 28, no. 2, pp. 182-188, Apr. 2019.

• M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, S. Du, X. Zou and A. A. Seshia,
” Closed-loop Characterization of Noise and Stability in a Mode-localized Resonant
MEMS Sensor”, in Transactions in Ultrsonics Ferroelectronics and Frequency Control

(TUFFC), vol. 66, no. 1, pp. 170-180, Jan. 2019.



148 Conclusion
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Localization”, in Appl. Phy. Lett., vol. 112, no. 19, p.194103, May 2018.
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Fluctuations in Weakly Coupled MEMS Resonators”, 2018 IEEE SENSORS, New
Delhi, 2018, pp. 1-4.
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Appendix A

Device Fabrication

The device used for most of the experimental characterisation was manufactured by MEM-
SCAP Inc. using the SOIMUMPS®process. The process is performed on a 150 mm n-type
double-sided polished silicon on insulator (SOI) wafers. The process flow is shown in Fig.
A.1 and can be divided into seven steps outlined below:

• Silicon doping: The first step is dope the top surface by depositing phosphosilicate
glass (PSG) and annealing it at 1050 oC for 1 hour in Argon (Fig. A.1a). The PSG
layer is then removed via wet chemical etching.

• Pad metal liftoff: A metal stack of 20 nm of chrome and 500 nm of gold is patterned
through a liftoff process Fig. A.1b.

• Silicon patterning: The device layer is then patterned using DRIE using inductively
coupled plasma (ICP) technology Fig. A.1c.

• Substrate patterning: Next, a protection material is applied on the top surface of the
silicon device and the wafers are reversed in order to pattern the trench using a deep
reactive ion etching (DRIE) process Fig. A.1d.

• Oxide later removal: The buried oxide layer is then removed with the help of a wet
oxide etch process. The front side protection is then stripped off using a dry etch
process in order to release the mechanical structures on the device layer Fig. A.1e. The
remaining exposed oxide layers are removed using a vapor HF process to minimize
stiction. This is done in order to allow for electrical contacts to the substrate and
prevent metal shorts with the help of an undercut.
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(a) Silicon doping (b) Pad metal liftoff

(c) Silicon patterning (d) Substrate patterning

(e) Protection layer and oxide layer removal (f) Shadow Mask bonding and metal deposition

(g) Shadow mask removal

Fig. A.1 Device fabrication process flow

• Shadow mask bonding and metal deposition: The shadow mask is prepared by
using a separate silicon wafer. "Standoffs" are used on the side of the shadow mask in
order to ensure no contact with the device layer Fig. A.1f. Metal in the form of 50 nm
Cr and 600 nm Gold is then deposited using e-beam evaporator. After evaporation, the
shadow mask is removed, leaving a patterned metal layer on the SOI wafer Fig. A.1g.



Appendix B

Resonator Model

The basic structure of a DETF element involves two clamped-clamped (C-C) beams that are
coupled strongly at the two ends. Two free-free beams acting as electrodes are then connected
to the coupled beams at the anti-node in order to realise transduction and coupling. Mass
can either be added or removed from this connection between the beam and the electrodes
in order to tune the resonator frequency. Classical modelling of the element assumes the
two tines to be separate 1-DoF C-C systems and has been well established [179, 94] and the
analysis is summarized in this section. The mechanical model simplifies many dimensions
but incorporates many of the different physical effects that occur within the DETF element.
Fig. B.1 has the structure that this model takes into account and will be referred to in the
equations following this modelling.

Fig. B.1 3-d view (left) and top view (right) of the DETF resonator.
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The dynamic response of the undamped C-C resonator under axial loading is governed
by the equation [180]:

∂ 2

∂x2 (EI
∂ 2w(x, t)

∂x2 )+
∂

∂x
(
F
2

∂w(x, t)
∂x

)+ρA
∂ 2w(x, t)

∂ t2 = Pe(x, t) (B.1)

In Eq. B.1, EI is the flexural bending stiffness in the x-y plane (as illustrate in Fig. B.2);
F is the force applied axially to change the stiffness of the resonator (is the total force applied
on both the tines); w(x, t) is the deflection of the tines in both spacial and time domain; ρ

is the density of material; A is the cross-sectional area of the time, and Pe is the transverse
actuation force applied on the electrodes that is assumed to be a point force concentrated at
the middle of the tine (because of the actuation plates). In the case that there is no transverse
force, P equals zero for every position except where the actuation masses are placed. Thus,

P = ∑
j

m jẅ(x j)ÿ (B.2)

where, m j is the jth mass and the z j is the position of the mass.

Fig. B.2 DETF element with geometrical variables and mode shapes assumed.

The boundary condition for this system is that the ends of the beam have zero deflection
and zero slope:

w(0, t) = w(Lt ,0) = 0

∂w
∂x

∣∣∣∣
x=0

=
∂w
∂x

∣∣∣∣
x=Lt

= 0
(B.3)

Using separation of variables w(x, t) = φ(x)y(t) into spatial and time domain, we can
simplify Eq. B.1 to just spatial coordinates:
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m jẅ(x j)ÿi
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The response to individual modes i can be analysed by multiplying the above equation
by the necessary mode shape and integrating over the length of the mode shape. Due to
orthogonality, the cross-terms will cancel and the following relation remains:
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This can be simplified to the simple equation of an undamped mass-spring system:

me f f ÿ+ ke f f y = 0

This makes the effective mass and stiffness of the DETF element to be

me f f =
∫ L

0
ρAφ

2dx+∑
j

m jφ
2
i (x j) (B.6a)

ke f f =
∫ L

0

(
EI(

∂ 2φi

∂x2 )2dx+F(
∂ 2φi

∂x2 )2dx
)

(B.6b)

These equations can be used to estimate the lumped stiffness and mass values for eigen
and transfer function analysis shown in Chapter 2. They are also useful in Chapter 3 when
designing the DETF resonator system for test structures. Eq. B.6a relates the dimensions
of the resonator to the effective mass of the resonator when it is vibrating. It is to be noted
that the total mass of the resonator also includes the mass of the electrodes and the connector
beam when vibrating at its natural frequency. The first term in Eq B.6b corresponds to
the elastic stiffness of the resonator while the second corresponds to stiffness added due to
axial loading. The term due to axial loading is important when analysing the resonators are
coupled to a proof mass in resonant accelerometer designs [8, 58].





Appendix C

COMSOL®Simulations

The two devices manufactured using the SOIMUMPS process used in the thesis have
been analysed with the help of COMSOL®simulations in order to predict the amplitude
ratio change and the eigenfrequency of the system. It is important to note that although
the eigenfrequency analysis on COMSOL®is quite accurate in determining the resonant
frequency of the system, it is not accurate in determining the absolute amplitude of vibration.
Thus, only the amplitude ratio as an output metric is being analysed.

C.1 Mechanically coupled device

Fig. C.1 Mechanically coupled DETF device

The mechanically coupled device described in Tab. 4.1 is simulated using solid mechanics
module in COMSOL®. The two DETF resonators are coupled using a mechanical beam
at the nodal point. Stiffness perturbations are applied in the form of a "spring foundation"
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that allows the user to add the desired amount of stiffness to one of the resonator bodies (as
illustrated in Fig. C.1).

An eigenfrequency analysis is done to identify the two modes of interest – in-phase and
anti-phase modes of the anti-phase DETF mode and are plotted in Fig. C.2. As expected
of a mode-localised device, the energy is localised to a particular resonator depending on
the amount of perturbations added to the system. The mode shapes to the left show the case
where negative perturbations are added and the ones to the right show the case where positive
perturbations are added.

Fig. C.2 Mode shapes of the mechanically coupled device across different perturbations
showing the localisation of energy

The maximum displacement amplitudes of each of the resonators across different pertur-
bations are recorded and their ratio is plotted in Fig. C.3a. It is to be noted that this simulation
by default assumes that both resonators are driven. Therefore, the drive configuration can be
characterised as the DED configuration. The sensitivity at each amplitude ratio is calculated
by taking the local slope around that operating amplitude ratio and is plotted in Fig. C.3b.
Like its experimental counterpart explained in Chapter 4, the sensitivity is seen to increase
as the amplitude ratio increases and then tends to decrease beyond that. This is limited to
the design of this particular device and not a reflection on the sensitivity of mode-localised
sensors as a whole.
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(b) Local sensitivity of the mechanically coupled
device at various amplitude ratios.

Fig. C.3 Amplitude ratio variation and sensitivity to input perturbations of mechanically
coupled device.

C.2 Electrically coupled device

The electrically coupled device described in thesis is simulated using electromechanics
module in COMSOL®. The device has the same dimensions as outlined in Tab. 2.1. The
resonators are coupled electrically where the coupling is realised by applying a voltage
difference (in this case 10 V) between the two resonators. Perturbations are applied with the
help of "spring foundation" that allows the user to add the desired amount of stiffness to one
of the resonator bodies (as seen in Fig. C.4).

Fig. C.4 Electrically coupled DETF device

An eigenfrequency analysis is done by concentrating the study in the frequency range
of interest. The mode shapes of the two modes (in-phase and anti-phase) across various
perturbations states are shown in Fig. C.5. Again, the energy is localised to particular
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resonators depending on the extent of perturbations added to the system. The mode shapes to
the left show the case where negative perturbations are added and the ones to the right show
the case where positive perturbations are added.

Fig. C.5 Mode shapes of the electrically coupled device across different perturbations showing
the localisation of energy

The maximum displacement amplitudes of each of the resonators across different pertur-
bations are recorded and their ratio is plotted in Fig. C.6a. The amplitude ratios of the two
modes are symmetrical and change in opposite directions with the change in perturbations
as expected. The sensitivity at each amplitude ratio is calculated by taking the local slope
around that operating amplitude ratio and is plotted in Fig. C.6b. Unlike the mechanically
coupled device with the same device parameters, the sensitivity of the electrically coupled
device adheres more closely to that of an ideal mode-localised sensor. The sensitivity is seen
to be low at lower amplitude ratios and increases as the amplitude ratios increases until it
plateaus at high amplitude ratios. Since the only difference between the two mechanically
and electrically coupled devices is the type and position of the coupler, it is prudent to assume
that the mechanical coupler poses the problem of a reduced sensitivity at higher amplitude
ratios as displayed in Fig. C.3b.

The finite element modelling of these two devices allows us to understand some of the
more nuanced dynamics of the resonator systems. The issue with the mechanical coupled
device can be solved by reducing the stress build up around the point of contact of the coupler
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Fig. C.6 Amplitude ratio variation and sensitivity to input perturbations of mechanically
coupled device.

and the resonators by increasing the distance between the two tines of the DETF. Although
not implemented in this particular design, it is a key in designing better MEMS devices.





Appendix D

Amplitude Ratio Noise

It is imperative that the noise calculation for the amplitude ratio needs to be derived from the
noise in each channel. To do so, the noise is compared to a statistical variance (·2 =

√
σ2(·))

around a mean of a particular output metric. Thus, the variance of the amplitude ratio can
be calculated by estimating the variance in each of the channels to the mean of each of the
channel’s amplitude.

The variance of any bivariate function Var( f (X ,Y )) can be defined as [181, 182]:

Var( f (X ,Y )) = E[ f (X ,Y )−E( f (X ,Y ))]2 (D.1)

where E(·) is the expectation or the mean value of a variable and f (X ,Y ) is the function
of the two variables X and Y . Thus, in order to determine the variance an expression for
E( f (X ,Y )) needs to be derived. This can be done through the use of Taylor expansion of
f (X ,Y ) around a defined mean γ = (µx,µy):

f (X ,Y ) = f (γ)+ f ′x(γ)(X −µX)+ f ′y(γ)(Y −µY )+R (D.2)

where R is the remaining terms of higher orders which will be ignored for this calculation.
Thus, E( f (X ,Y )) can be approximated to be:

E( f (X ,Y )) = E
[

f (γ)+ f ′(γ)(X −µX)+ f ′(γ)(Y −µY )
]

= E
[

f (γ)
]
+E

[
f ′x(γ)(X −µX)

]
+E

[
f ′y(γ)(Y −µY )

]
= E

[
f (γ)

]
+ f ′x(γ)E

[
(X −µX)

]
+ f ′y(γ)E

[
(Y −µY )

]
= E

[
f (γ)

] (D.3)
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The last step in Eq. D.3 is achieved by using the fact that E(X − µX) and E(Y − µY )

are both equal to 0. Thus, having got approximations for both terms in Eq. D.1 the
approximations of the variance can be derived as:

Var( f (X ,Y )) = E[ f (X ,Y )− f (γ)]2

≈ E[ f (γ)+ f ′x(γ)(X − γx)+ f ′y(γ)(Y − γy)− f (γ)]2

= E[ f ′x(γ)(X − γx)+ f ′y(γ)(Y − γy)]
2

= E f ′2x (γ)(X − γx)
2 + f ′2y (γ)(Y − γy)

2 +2 f ′x(γ)(X − γx) f ′y(γ)(Y − γy)

(D.4)

Defining Var(X) = E|(X −µX)
2| and Cov(X ,Y ) = E|(X −µX)(Y −µY )|, Equation D.4

can be reduced to:

Var( f (X ,Y )) = f ′2x (γ)Var(X)+ f ′2y (γ)Var(Y )+2 f ′x(γ) f ′y(γ)Cov(X ,Y ) (D.5)

For this particular situation, f (X ,Y ) = X/Y where the X and Y represent the two am-
plitude of vibrations. Expanding the equation around γ when knowing f ′X = 1/Y and
f ′Y = −X/Y 2 the following relation can be derived, f ′2x (γ) = 1/µ2

Y , f ′2y (γ) = µ2
X/µ4

Y and
f ′X(γ) f ′Y (γ) =−µX/µ3

Y .
Thus, accordingly the variance of the ratio can be deduced as

σ
2
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X

µ2
Y

[
σ2

X

µ2
X
+

σ2
Y

µ2
Y
−2

Cov(X ,Y )
µX µY

]
(D.6)

This relation can then be adapted to the coupled resonator system by equating the variables
X and Y to the motional current i1 and i2. Thus, Eq. D.6 can be remodelled to be:

AR2 =

√√√√µ2
i1

µ2
i2

[
i21
µ2

i1
+

i22
µ2

i2
−2

Cov(i1, i2)
µi1µi2

]
(D.7)

Furthermore, the Cov(i1, i2) can be shown to be negligible when considering the noise
sources pertaining to this study. This can be derived by representing the motional current (i)
as a mixture of the mean of the signal (µi) and the noise associated with each channel (i2):

i1 =
(
µ

2
i1 + i21

) 1
2 = µ

2
i1
(
1+

i21
µ2

i1

) 1
2 (D.8a)
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i2 =
(
µ

2
i2 + i22

) 1
2 = µ

2
i2
(
1+

i22
µ2

i2

) 1
2 (D.8b)

Using the Binomial expansion of the above expression and only keeping the linear term,
they can be simplified as:

i1 = µi1
(
1+

1
2

i21
µ2

i1
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= µi1 +

1
2

i21
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(D.9a)

i2 = µi2
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1
2

i22
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i2

)
= µi2 +

1
2

i22
µi2

(D.9b)

Since, covariance between two variances is defined as Cov(X ,Y ) = E|(X −µX)(Y −µY )|,
by expanding this expression and using i1 and i2 instead of X and Y , the following expression
can be achieved[183]:

Cov(i1, i2) = E(i1i2)−E(i1)E(i2) (D.10)

Substituting Eq D.9a and D.9b into Eq. D.10:

Cov(i1, i2) = E
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1
2
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2

i22
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)) (D.11)

Expanding the equation and subtracting the components that are similar, the following
expression for the covariance between the two motional currents can be achieved:

Cov(i1, i2) =
1

4µi1µi2
E(i21i22)−E(i21)E(i

2
2)

=
1

4µi1µi2
Cov(i21, i

2
2)

=
1

4µi1µi2
Cov(Var(i1),Var(i2))

(D.12)

This is an interesting result since it points to the fact that the covariance between the
two motional currents is actually equal to the covariance between the individual noises
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associated with the two motional currents or as defined in this case, their variances. The
variance of a variable X has been defined before as E(X −E(X))2 which can be simplified
to E(X2)−E(X)2. Expected values are considered to be constants and thus expanding the
final relation in Eq. D.12 leads to the result Cov(Var(i1),Var(i2)) = 0.

Thus, it can be shown that Eq. D.7 can be simplified to the following relation that can
estimate the the amplitude ratio noise (AR2) by including the relations between the individual
motional currents i1 and i2 and their respective total noise values i21 and i22 as estimated in Eq.
5.17:

AR2 =
µ2

i1

µ2
i2

[
i21
µ2

i1
+

i22
µ2

i2

]
(D.13)

Using this noise model, the amplitude ratio noise can be predicted and studied very
closely in order to optimise of the noise with respect to the various operating conditions such
as the stiffness mismatch, the coupling stiffness and the quality factor.



Appendix E

Accelerometer Design

The design process behind each aspect of the resonant mode-localised accelerometer is
discussed in detail here. The main components of the accelerometer are the resonator system,
the proof mass and suspension design and the force amplification lever system.

E.1 Resonator system

Since a resonant technique is being used for sensing, optimising resonators play a key part
in the sensor design. A simple C-C beam configuration (700 μm ×7 μm) is chosen for the
resonator over other designs such as double ended tuning fork (DETF) topologies that offer
lower anchor losses. The simple design offers more control over the final fabricated device
as manufacturing tolerances have minimum effect on the resonator. This means that the
dimensions of the final sensor is closest to those of the simulated device. Furthermore, the
axial force that is applied to the resonators is maximized in this configuration as compared to
the stiffer DETF configuration. Thus, a C-C beam topology increases the relative stiffness
applied on the resonator. Additionally, the simple design structure allows for the option to use
the first and the second flexural modes for sensing as seen from the electrode configuration
in Fig. E.1.

The stiffness and mass of the resonators can be estimated as follows in order to calculate
the theoretical resonant frequency of the sensor:

ke f f =
16Etw3

l3 =
16×169e9×40e−6× (7e−6)3

(700e−6)3 = 108.4 N/m (E.1a)

me f f = 0.384×ρwlt = 0.384×2330×7e−6×700e−6×40e−6 = 1.752e−10 Kg
(E.1b)
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f0 =
1

2π
×

√
ke f f

me f f
= 125.2 kHz (E.1c)

Fig. E.1 Optical micrograph of the coupled resonator system.

A mechanical coupler has been chosen in this particular design although an electrostatic
coupling has been shown to provide greater flexibility with choosing coupling stiffness [34].
This is mainly to make the accelerometer more robust since an electrostatic coupler increases
the chances of resonators pulling in or collapsing on each other due to external shocks.
Additionally, it is more practical to use a mechanical coupler for a sensor as it minimizes
the number of voltage sources needed for its operation as well. As it has been previously
established that the sensitivity increases with a decrease in the coupling stiffness [23, 66], the
coupler is designed to be 400 μm ×4 μm (considering the limit of the aspect ratio achievable
through this fabrication process is 100:1).

Due to the simplicity of the process, an experimental method is chosen to determine the
coupling spring stiffness. The resonator systems are both tuned to the veering region where
the frequency difference between the in-phase and anti-phase is the smallest. The relation
between the angular frequencies (∆ω ≪ ω1) of the unperturbed system was derived in Eq.
2.5 and this can be used to estimate the coupling constant as follows:
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Fig. E.2 Open-loop sweep of one of the coupled resonator systems.

Hence, the experimental open-loop frequency sweep should be enough to accurately
determine the coupling spring constant. The open-loop sweep results at veering of one
system is shown in Fig E.2. A similar test is done for the second system and the frequency
difference was found to be 332 Hz coupling spring constant of both systems are calculated
as:

kc1 = k
∆ fmodes

f0
= 108.4∗ 330

132000
= 0.2713 N/m (E.3a)

kc2 = k
∆ fmodes

f0
= 108.4∗ 332

132000
= 0.2726 N/m (E.3b)
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These analytical values are used later in the chapter to derive the theory of a differential
amplitude ratio output metric.

E.2 Electrical ports

The transduction scheme has been designed so that either the first or the second flexural
mode can be excited for the sensing purposes. The first mode offers higher sensitivity to
input acceleration due to the axial force being transferred to the resonators being greater
than in the second mode. Furthermore, as seen in Fig. 3.3b, the noise of the transimpedance
amplifier (TIA) used for the amplitude readout has a corner frequency around 120 kHz and
increases beyond that frequency. As the first mode is designed to be at 130 kHz, it offers
lower amplifier noise than if the second mode (350 kHz) is in operation. However, the since
the first mode has lower stiffness, it is more susceptible to nonlinear effects that could be
coupled into the results.

The bias voltage is added on the body of the resonator rather than using a Bias-T at
the electrodes. This is done to avoid any charging effects that result in drifts in the output
voltage and the frequency. However, it requires the substrate and the body of the proof mass
to be at the same potential to avoid the proof mass from deforming in the z-direction. This
method can be used since the fabrication process allows for substrate biasing. A voltage
regulator is used to control the voltage applied on the body. Since any changes in this voltage
directly result in a change in the output voltage, the regulator reduces the amplitude noise at
the output. As low-noise regulators are limited to lower voltages, a 10 V voltage regulator
(REF102U) is chosen to regulate the bias voltage for this sensor.

The transduction force can be modelled after the force applied by parallel plate capacitor
of length(L), thickness (t) and gap (d) with an ac drive voltage (Vac) and bias voltage (VDC)as:

Fdrive =−VacVDC

2
∂C
∂x

where, C =
ε0lt

d − x
(E.4)

Assuming the resonators are operating in linear region at small oscillation amplitudes,
the drive force can be simplified to:
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Fdrive =−VacVDC

2
ε0lt
d2 (E.5)

An electrical port has been used for perturbation voltage in addition to the stiffness pertur-
bations added axially from acceleration. This is mainly to tune the operating amplitude ratios
since fabrication tolerances lead to asymmetrical stiffness in the resonators. Furthermore,
this port gives the user the chance to tune individual systems separately where as the axial
perturbations would lead to both systems experiencing a differential change.

A negative stiffness perturbation is added by varying the voltage applied (Vp) on the
perturbation port which can be calculated for the parallel plate capacitor as:

kp =−
V 2

DC
2

∂ 2C
∂x2

where,C =
ε0lt

d − x
(E.6)

Assuming small oscillation amplitudes, the stiffness perturbations added can be calculated
as:

kp =−
V 2

DC
2

ε0lt
d3 (E.7)

There are several comb drive electrodes around the proof mass that allow for an electrical
actuation of the proof mass that is useful in the bandwidth measurements. There are 4 sets
of 440 inter-digitated comb fingers that are 20 μm and separated by 2 μm that can be used
actuate the proof mass to test the device without any physical external acceleration producing
devices such as shakers. The force exerted by each individual comb finger ports with N comb
fingers, l length, t thickness and d gap can be estimated to be:

Fcomb =−VacVDC

2
∂C
∂ l

where,Ccomb f ingers =
Nε0lt

d

(E.8)

The force is linear with respect to the various dimensions in the direction of the actuation
and is calculated as:
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Fcomb =−VacVDC

2
Nε0t

d
(E.9)

E.3 Proof mass and force amplification levers

The design of the proof mass mainly revolves around the choice of the suspensions archi-
tecture. The suspensions need to be stiff to counter the effect of gravity in the cross-axis
(z-axis and x-axis) but compliant in the sense axis (y-axis) to not hinder with the sensitivity.
Furthermore, the suspensions alongside with the proof mass will determine the mechanical
bandwidth of the sensor. The inertial force applied by the proof mass scales with its size.
Thus, larger proof masses apply larger force; therefore, increasing the sensitivity of the
sensor. However, a large proof mass would also reduce the mechanical bandwidth of the
sensor as ωmass =

√
ksus/m. Since the sensor’s bandwidth is defined by the resonance of the

proof mass, the bandwidth is inherently dependent on the resonance of the proof mass.
A folded beam configuration is used for the suspensions design of the proof mass. A

micrograph of the four anchors for the proof mass each having 4 folded beams (500 μm ×6
μm) (inset) that are connected in parallel is shown in Fig. E.3.

Fig. E.3 Optical micrograph of the suspensions of the proof mass.
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The stiffness of all 16 folded beams in parallel in the sensitive axis can be estimated to
be[180, 184]:

ksus = 16× 2Etw3
sus

l3
sus

= 16× 2×169e9×40e−6× (6e−6)3

(500e−6)3 ≈ 374 N/m (E.10)

The proof mass can be estimated roughly by excluding the etch holes and the area taken
up by the suspensions and assuming it to be a solid of dimensions 9000 μm ×5500 μm ×40
μm. Therefore, a rough estimation of the proof mass is:

mproo f = ρlmwmhm = 2330×9000e−6×5500e−6×40e−6 ≈ 4.6×10−6 kg (E.11)

Thus, the mechanical bandwidth of the proof mass can be estimated by estimating the
resonant frequency of the proof mass and the suspensions. As it behaves as a low pass filter,
any frequencies before the resonant frequency can be sensed accurately by the accelerometer
and is regarded as the bandwidth of the sensor:

fproo f =
1

2π

√
ksus

mproo f
=

1
2π

√
374

4.6e−6
= 1443Hz (E.12)

The force applied by the proof mass needs to be transduced to the resonators to afflict
a change in the sensed amplitude ratio. There are traditionally two ways in which this can
be implemented – (a) transversely, through the use of movable capacitive plates, and (b)
axially, through the use of micro-levers. Force applied transversely consists of a proof mass
attached to a movable electrode that applies negative stiffness perturbations when it moves.
The stiffness perturbations are inversely proportional to the cubic factor of the gap distance
(as derived seen in Eq. E.7). Although it may seem that this configuration applies a higher
stiffness perturbation, the disadvantages are twofold- (1) the applied perturbations are highly
nonlinear in nature and hence, reduce the dynamic range of the sensor, and (2) the sensor
is highly probable to encounter pull-in effects with large input gravity changes which can
structurally damage the sensor.

An axial force application system involves attaching one end of the C-C beam to the
proof mass through the use of micro-levers. The force gets transduced through these micro-
levers as a stiffness change. The advantage of this system is that (a) it provides a linear
stiffness perturbation, and (2) it can apply a greater force without damaging the structure,
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thus, allowing for a greater dynamic range. However, the applied stiffness perturbation is
small. Therefore, there needs to be a micro-lever system to amplify the force being applied
on the resonator. A simple lever system is shown below:

Fig. E.4 A schematic of the lever for force amplification.

The lever would have an amplification factor defined to be Fout/Fin. In an ideal lever,
this would translate to Lin/Lout but unlike in the regime of macro-lengths, there is no way
to implement a hinge in MEMS size [185]. Therefore, a lever needs to be constructed with
the help of flexural beams. However, due to the non-zero rotational stiffness and the finite
vertical stiffness of the beams used, energy loss occurs in translating the force from the proof
mass to the resonator[186]. Hence, the lever amplification factor is always smaller than the
ideal amplification factor. This is especially true when looking at large lever ratios (> 20) and
finite element analysis should be used to simulate the actual amplification factor[187, 188].

However, it is not just the lever ratio that has an impact on the amplification factor but
the stiffness of the suspensions and the vertical stiffness of the resonator also play a big role
in determining the effective amplification factor. The effective amplification factor (EAlever)
can be defined as the translation of the inertial force experienced by the proof mass to the
resonators. Hence,

EAlever =
Fout

Finertial
=

Fout

mproo f ain
(E.13)

Since the suspensions supporting the proof mass have a non-zero stiffness in the sensing
directions, they absorb some of the inertial force by deforming upon acceleration. Therefore,
the inertial force can be split into:
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Finertial = Fsus +Fin (E.14)

Assuming that the displacement experienced by the input-end of the lever, the suspensions
in the sensing axis and the proof mass is the same, Eq. E.14 can be simplified to:

mproo f ain = ksusx+ kinx (E.15)

Thus, the effective amplification factor can be reduced to:

EAlever =
kinAlever

ksus + kin
(E.16)

Assuming that the beam deformations are negligble, kin can be estimated in terms of the
axial stiffness of the resonator (kra) under vertical load as:

kin =
kra

A2
lever

(E.17)

Substituting Eq. E.17 into E.16, the following relation can be achieved to include the
suspension stiffness, axial stiffness of the resonator and the lever amplification factor:

EAlever =
kraAlever

ksusA2
lever + kra

(E.18)

Hence, through Eq. E.18, the maximum effective amplification factor of the lever can be
deduced to be Alever/2 when Alever =

√
kra/ksus.

The axial stiffness of the resonator can be calculated as [180, 189]:

kra =
2Etwr

Lr
=

2×169e9×40e−6×7e−6
700e−6

= 135.2×103 N/m (E.19)

Using the values of stiffness from Eqs. E.10 and E.19, the amplification factor and the
effective amplification factor can be deduced as:

Alever =

√
kra

ksus
=

√
135.2e3

374
≈ 19 (E.20a)

EAlever =
Alever

2
= 9.5 (E.20b)
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The design values calculated in this section are further used in simulating the dynamics of
the differential amplitude ratio output metric and its scale factor improvement as compared
to a single amplitude ratio output metric and the traditional frequency shift output metric.
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