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ABSTRACT

Treating water as a linearly responding dielectric continuum on molecular length scales allows very simple estimates of the solvation
structure and thermodynamics for charged and polar solutes. While this approach can successfully account for basic length and energy
scales of ion solvation, computer simulations indicate not only its quantitative inaccuracies but also its inability to capture some basic and
important aspects of microscopic polarization response. Here, we consider one such shortcoming, a failure to distinguish the solvation ther-
modynamics of cations from that of otherwise-identical anions, and we pursue a simple, physically inspired modification of the dielectric
continuum model to address it. The adaptation is motivated by analyzing the orientational response of an isolated water molecule whose
dipole is rigidly constrained. Its free energy suggests a Hamiltonian for dipole fluctuations that accounts implicitly for the influence of
higher-order multipole moments while respecting constraints of molecular geometry. We propose a field theory with the suggested form,
whose nonlinear response breaks the charge symmetry of ion solvation. An approximate variational solution of this theory, with a single
adjustable parameter, yields solvation free energies that agree closely with simulation results over a considerable range of solute size and
charge.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051399

I. INTRODUCTION

Water is perhaps the most important solvent, and understand-
ing the fundamental physical principles that underlie aqueous sol-
vation is essential to a broad range of disciplines, such as protein
structure and dynamics, desalination, atmospheric chemistry, and
crystallization. Despite numerous studies over the past century,
major gaps in our understanding of aqueous solvation still exist,
particularly for small charged solutes and for environments that
are spatially heterogeneous. Highlighting these gaps, active research
continues to develop and apply increasingly sophisticated methods
of spectroscopy'~® and computer simulation’"'® in order to clarify
the solvation of ions in aqueous systems.

These limits on our understanding are reflected by the lack of
a robust, general, and thoroughly predictive theory for the micro-
scopic structure and thermodynamics of water’s response to charged
solutes. As a promising and historically significant starting point,
dielectric continuum theory (DCT)—a macroscopic linear response
theory for solvent polarization—can be applied in a microscopic
context. This approach has yielded insights that inspire modern per-
spectives on solvation, but its flaws and limitations are considerable.
Among the most straightforward and important microscopic appli-
cations of DCT, the Born model of solvation'® caricatures an ionic
solute as a volume-excluding, uniformly charged sphere of radius
R embedded in a continuous, linearly responding solvent medium
with dielectric constant e. Reversibly introducing the solute’s charge
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q in this model gives a change in free energy

*le-1
SOREE e M)
that explains the basic energy scale of ion solvation and its sensitiv-
ity to the solute size and charge, and asserts the permittivity as an
essential determinant of solvent quality. Its quantitative predictions
are roughly correct, provided that the dielectric radius R is treated as
an empirical parameter similar but not identical to the radius Ry of
molecular volume exclusion.

Figure 1 shows the Born estimate of the charging free energy
Feng(g), alongside results of molecular simulation of the SPC/E
model of water,'” as a function of the solute charge for several
solute sizes Ry. (As a measure of Ry in molecular simulations, we
quote values of the Lennard-Jones diameter for solute-water inter-
actions, which is a reasonable—though not unique—choice for neu-
tral solutes.'® Effective hard sphere radii for fully charged ions, as
judged from radial distribution functions, are ~10%-20% smaller.
This convention is used throughout the paper.) Relative to Feg(e),
where e is the charge of an electron, agreement is reasonable even for
ions as small as fluoride. However, absolute errors of ~ 50k T (where
T is temperature and kg is Boltzmann’s constant) overwhelm the
scale of typical thermal fluctuations. Despite the magnitude of these
errors, DCT continues to serve as a basis for quantifying the ther-
modynamics of aqueous response in calculations that cannot afford
to represent water molecules explicitly.!” Motivated in part by such
usage, this paper describes theoretical efforts to improve on DCT
while maintaining the simplicity underlying its appeal.

From a molecular perspective, DCT is remarkably undetailed,
resolving neither the tetrahedral motifs defining water’s hydrogen
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FIG. 1. Solute charging free energy Fug Vs g for different solute sizes Ry, as
indicated in the legend. Symbols show results from simulations, while lines show

best fits of Fc(h]z‘“")(q) [Eq. (1)] to Fong. Fc(,zm")(q) largely captures the over-

all scale and size dependence of Feyg, but it does not describe the asymmetric
solvation?0-22 of anions vs cations.
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bond network nor the features of molecular geometry that are
responsible for it. Significant improvement might well require an
approach that differs substantially in both spirit and methodol-
ogy. Indeed, there is ample evidence that near-field contributions
from a solute’s immediate environment have a different charac-
ter than contributions from more distant molecules. The idea that
the latter are well described by DCT, while the former are not,
has figured prominently in many theoretical and computational
approaches to describing aqueous environments. The inner-shell
of Marcus theory,” for example, acknowledges and empirically
addresses such a distinction in the nature of near-field and far-field
response. More directly relevant to our study, the multi-state Gaus-
sian model”* of single ion solvation similarly presumes that the local
solvent structure requires special treatment, while far-field response
obeys simple Gaussian statistics. A precise and systematic compu-
tational framework for range separation in solvation can be found
in the quasi-chemical theory (QCT)”*>?° developed by Pratt and
co-workers. These hybrid theories and methodologies can achieve a
high degree of accuracy, e.g., when QCT is used in combination with
ab initio treatment of electronic structure.”’”* However, they are not
nearly as flexible or generalizable as DCT.

In Sec. II, we describe in detail the specific and fundamen-
tal shortcoming of DCT that inspires our theoretical development,
namely, an inability to distinguish between the solvation of cations
and anions that differ only in the sign of their charge. The contrast-
ingly strong charge asymmetry observed in molecular simulations is
then framed in terms of a water molecule’s higher-order multipole
moments, with particular emphasis on the molecular quadrupole.
Section IIT shows that, in the context of a single water molecule,
how integrating out quadrupole fluctuations renormalizes statistics
of the molecular dipole. The result of this molecular calculation is
then used to motivate a generalized version of DCT, whose predic-
tions for ion solvation thermodynamics are approximately explored
and numerically evaluated in Sec. IV. We end with a discussion and
outlook in Sec. V.

Il. BACKGROUND THEORY AND SIMULATION
A. Charge-asymmetric solvation

This paper focuses on one key failing of DCT, evident in Fig. 1
for the solvation of ions in bulk liquid water. Specifically, in molecu-
lar simulations, cations and anions of the same size can have very dif-
ferent solubilities, while DCT in its simplest form lacks such charge
asymmetry completely. Interfacial solvation provides even more
striking examples of charge asymmetry, with some anions adsorbing
favorably to the liquid’s outermost layer while their cationic coun-
terparts are strongly depleted. Here, we will consider only the bulk
case.

The lack of charge asymmetry in DCT can be readily appre-
ciated from its basic mathematical structure. As a linear response
theory, DCT in its simplest form can be cast as a microscopic model
for a Gaussian fluctuating dipole field m,, with energy*

Haip[m;] = %Zr:;mr . [(64_”1)1)_1 18(r-1')

1
+ VvV —— | -mp, (2)
r—r'|
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where T is the identity tensor. This model can be equivalently
formulated in continuous space,” but it will later become more
convenient for us to view space discretely. We therefore take the
position vector r to index a lattice cell with microscopic volume v
and m; to be a coarse-grained representation of the molecular dipole
distribution within v. The coarse-graining transformation could
take many forms, and we will not specify one here. Introducing a
solute with charge g, which we place at the origin without the loss
of generality, adds an electrostatic interaction between m, and the

solute’s electric field E4(r) = —qvr ™,

‘Hocr [mr] = Hdip [mr] - Z Eq(r) * M. (3)

Volume exclusion is acknowledged in this description only by
restricting the sums in Eqs. (2) and (3) to lattice cells that are not
occupied by the solute, a restriction we will leave implicit. The ther-
modynamic consequences of evacuating the solute’s volume, while
significant in some cases, are not considered by DCT and will not be
accounted for here. Our focus on comparing cations and anions of
the same size justifies this neglect but is not meant to minimize the
complex and interesting coupling between density and polarization
fields, which is particularly important near interfaces.”'

The field theoretic Hamiltonian in Eq. (3) is charge symmetric:
Changing the sign of g, while simultaneously inverting the dipole
field’s orientation, leaves  invariant. Cation and anion solvation are
thus statistically equivalent at this level of theory. The polarization
field induced by a cation, under inversion, is identical to that induced
by an anion of the same size. Predicted solubilities of the two ions are

equal as a result, as is clear from the Born energy Fc(l?;m) (g9) [Eq. (1)]
as an even function of g. By contrast, computer simulations indi-
cate that ion solvation in water is significantly charge asymmetric. In
their seminal study of single ion solvation using molecular simula-
tion, Hummer et al.* clarified this charge asymmetry by presenting
the average electrostatic potential (V), at the center of a volume-
excluding solute as a function of g. For reference, we recapitulate
those results in Fig. 2(a) for a solute with Ry = 3.17 A immersed
in SPC/E water. Notably, when referenced appropriately to vapor
[see Eq. (24)], this potential is negative even in the case of a neutral
solute, g = 0, giving an impression that liquid water is intrinsically
more hospitable to cations than to anions. The physical origins of
this neutral cavity potential”?"?* (V')o are surprisingly challenging
to identify precisely; profound ambiguities plague any attempt just
to separate contributions of solvent molecules near the solute and
those of a distant interface.'”'>*°*! Putting aside the lack of a clear
physical interpretation, the effects of a nonzero neutral cavity poten-
tial are straightforward to include in the DCT framework. Adding an
interaction between the solute and this innate potential,

Hocr[mes (Vo] = Haip[me] - ZEq(r) -my +q(V)o, (4)

gives a simply modified solvation energy

2

™ g vo) = -

e—1

) +q(V)o. (5)

€

Modifying DCT in this simple way has little impact, however, on
the predicted charging free energy, at least on the scale shown in
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FIG. 2. Average electrostatic potential at the center of a volume-excluding solute,
with size Ry = 3.17 A and charge g, due to the surrounding solvent. (a) All sol-
vent molecules in the simulation are included (see Sec. V1). The solid and dashed
lines are guides to the eye, suggesting distinct susceptibilities for /e < —0.2 and
q/e > —0.2, respectively. (b) Average electrostatic potential at the center of the
solute due to molecules in the first coordination shell (those molecules with oxygen
atoms within 3.5 A of the solute’s center). Along with the full Coulomb potential,
the dipolar and quadrupolar contributions are also shown. The green dashed line
is a guide to the eye, suggesting that the dipolar response is approximately linear.
The quadrupolar response, by contrast, exhibits a “kink” similar to that of the full
Coulomb potential.

—1.0

Fig. 1. Furthermore, simulation results for Fepg(€) — Feng(—€), which
compares the solubilities of fully charged ions, indicate charge asym-
metry in the direction opposite to (V)o, favoring solvation of anions
over cations. Any significant improvements obtained by including
the neutral cavity potential are limited to small values of g, as
shown in the supplementary material.

Deviations from charge symmetry in SPC/E water (and sim-
ilar models) are not at all limited to an offset in the solvent’s
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electric potential. The polarization response to charging a solute is
also distinct for cations and anions, with more substantial conse-
quences.'>?1?23542 Figure 2(a) highlights this asymmetric response,
which manifests in (V') as a nonlinear dependence on q. Amend-
ing DCT to account for this nonlinear response is much more
challenging than introducing a background potential (V)o. Dis-
tinct thermodynamics for charging cations and anions can be engi-
neered by using different dielectric radii in the Born model, as
Latimer, Pitzer, and Slansky pursued with quantitative success.”’
More nuanced empirical approaches have been based on the approx-
imately piecewise-linear character of (V),, in essence asserting dif-
ferent values of e in different ranges of q.”> These ad hoc descriptions
of ion solvation, however, fall short of the flexible field theory we are
seeking. Such a theory would instead feature a microscopic Hamil-
tonian that is anharmonic in the dipole field m,, generating distinct
response to solute fields E; with opposite signs of g as an emer-
gent behavior. Below, we will propose a theory of this form, moti-
vated directly by the molecular fluctuations underlying polarization
response.

B. Multipole expansion of the solvation potential

Charge-asymmetric response in liquid water is rooted in the
inequivalent distribution of positive and negative charges within
each individual water molecule. A large molecular dipole is a char-
acteristic feature of this distribution, but by itself, it is a highly
incomplete description. Electrostatic forces that underlie hydrogen
bonding and charge asymmetry are instead encoded in higher-order
multipoles. Although a detailed description of these forces requires
a multipole expansion to high order, we will argue that a low-order
expansion may, in fact, be sufficient to correct qualitative flaws of
DCT.

In order to isolate important sources of nonlinear polariza-
tion in computer simulations, we decompose the solvation poten-
tial (V)4 according to the multipole moment and distance from
the solute. Anticipating that deviations from linear response are
dominated by the near-field environment, we show in Fig. 2(b) con-
tributions to (V)4 from molecular dipoles and quadrupoles of water
molecules in the solute’s first solvation shell. The nonlinear shape of
the total near-field contribution (Viear)q indeed strongly resembles
the full potential (V')4. By contrast, contributions from more distant
molecules, presented in the supplementary material, depend linearly
on q to a good approximation, confirming expectations from pre-
vious work that DCT accurately portrays polarization response on
length scales beyond ~ 1 nm.*>*

The dipole contribution to (Vnear)q for a solute at position r is
defined as

dip 1
Vnear == hnearjtt; - V—— ) 6
(Viear)q Zj: i V|Rj ] (6)

where

8= anrj“ )
o

is the net dipole of the jth molecule, whose center resides at R;. rjq is
the position of site & on molecule j, whose charge is g,. The charac-
teristic function hnear, is unity if the oxygen atom of solvent molecule
j resides in the solute’s first solvation shell; otherwise, it vanishes.
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Compared with (Vnear)q and (V),, the first-shell dipolar potential
VS;E, is a remarkably linear function of g. At large values of g, we
q y q 8 q

expect significant nonlinearity in (Vgé};r)q due to dielectric satura-
tion, but for |g| < e, such effects are barely apparent on the scale of
Fig. 2.

By contrast, the quadrupolar contribution to (Vnear)q exhibits a
nonlinearity quite similar to that of the full potential. We define this
contribution as

quady _ 1 h K - 1
<Vnear )q = 5 ; near,j1\j - va > (8)

where
Kj = an(rja - Rj)(l‘ja - Rj) + (COHSt)I 9)

is the net quadrupole of the jth molecule. The coefficient multi-
plying the identity tensor I in Eq. (9) is completely arbitrary since
I: VYR~ 1| = -478(R; - r) and R; necessarily lies outside the
solute. We will exploit this arbitrariness below, freely adding and
removing isotropic contributions to K for convenience. Similar
liberties can be taken with higher-order multipoles.

Parsing (Vnear)q as in Fig. 2(b) requires choosing the refer-
ence point R; that sets the origin of a molecular coordinate sys-
tem. The dipole g; is not sensitive to this choice, but its contri-
bution (VP ), is. At higher orders, both the multipole moment
(e.g., Kj) and its contribution to the electric potential (e.g., (V,?::rd )a)
depend on the choice of R;. For ( Vﬁégr)q and (Vﬁ::f )g» we find only
a weak sensitivity for reasonable choices of R;, i.e., points within
the solute’s excluded volume that lie along the line of symmetry
bisecting the hydrogen atoms and running through the O atom.
Throughout this work, we will adopt the molecule’s center of charge
Rj(c) = ¥ ,|9altia/ Tl gal, which is displaced ~ 0.3 A from the O atom,
as the reference point, which is shown schematically in Fig. 3(a).
Figure 3(b) provides a visual argument for this choice of the molec-
ular reference frame. Isosurfaces are shown for the corresponding
electric potential

1 1 1
+-Kj: YV ——, (10)

2) -y
) = VTR T2 gy

x| | @

FIG. 3. The molecular structure of the water molecule gives rise to charge asym-
metry. (a) The unit separation vector X between the two hydrogen atoms is
orthogonal to the unit dipole vector . The yellow circle represents the multipole
expansion point, i.e., the molecule’s center of charge. (b) Equipotential surfaces of
the molecular dipole and quadrupole. Summing contributions of these two lowest
order moments [as indicated by the arrows and detailed in Eq. (10)] is suffi-
cient to generate a charge-asymmetric equipotential surface suggestive of a water
molecule.

quadrupole
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i.e., the multipole expansion of the potential generated by molecule
j» truncated at second order. The strong resemblance to water’s
intramolecular geometry suggests that this low-order expansion
captures aspects of charge asymmetry essential to ion-specific
solvation. By contrast, an analogous second-order expansion with
R; set at the O atom gives rise to a potential that resembles that of
water much less closely (see the supplementary material).

These results encourage amending DCT to account for fluc-
tuations in local quadrupole density. The approach we describe
below for doing so is straightforward to generalize for higher-order
multipoles. For the sake of generality, we therefore introduce the
nth-order multipole moment of a water molecule as

[r(n)]%':t... = an[(l‘ja - Rj)n]q”t--- + 6‘1"61““' * 6qsa:t"'
T+ Sy e (1)

The constants a, a’, and a’’ are all arbitrary since the moments ™
will always appear in contraction with tensors formed from gradi-
ents of the electrostatic Green’s function. As with the quadrupole in
Eq. (9), terms in r™ containing an identity in any two components
(e.g., 8yr) are therefore inconsequential. This contraction also makes
the ordering of indices in [F(”)]qm,,, irrelevant.

C. Elaborating DCT

Extending DCT to describe higher-order multipoles could be
accomplished most simply by adding a Gaussian quadrupole field
Q,. A natural choice for the generalized Hamiltonian

1
Hdip+quad[mr: Qr] = Hdip [mf] + FZQr : Qr
065

- %ZZQ, : [WVI -my

r r |r7rl|

1 1
4VVVV‘r_r,| .er:| (12)
couples these fields through standard electrostatic interactions, pro-
viding a bias that renormalizes dipolar linear response. Though
straightforward (and easily generalized to octupole density and
hexadecapole moments), this approach is unsatisfying in several
respects.

First, the electrostatic interaction between quadrupoles (and all
higher-order multipoles) diverges at a short range in a way that is
not integrable in three dimensions, unlike the dipole-dipole inter-
action. The field theory defined by Eq. (12) would therefore require
regularization so that the parameter o sets a finite local quadrupole
susceptibility. Second, and more importantly, this theory preserves
the charge symmetry of standard DCT. Specifically, coupling to a
charged solute gives a total energy of

1
Haiprquad = ), Bq(r) - my — EZ VEy(r): Q,

that is invariant to a simultaneous sign change of g, m,, and Q,. Just
as for the Born model, ion solvation energies would remain even in
solute charge g. Third, the number of degrees of freedom prolifer-
ates in such a generalization as higher-order multipoles are included.

ARTICLE scitation.org/journalljcp

At quadrupole order, the theory involves 12 scalar variables at each
point in space. Imposing expected symmetries of Q, would reduce
this number, but the fact remains that adding detail (in the form of
higher-order multipoles) increases the theory’s dimensionality. By
contrast, an individual water molecule, modeled as a rigid body, pos-
sesses only three non-translational degrees of freedom, regardless of
how exhaustively its electric potential ¢(r) is expanded in multipole
moments. These moments are not entirely independent variables;
they are instead tied together by molecular geometry. Such con-
straints among molecular multipoles, we argue, are key to capturing
charge asymmetry at a field theoretic level.

I1l. DEVELOPING A CHARGE-ASYMMETRIC FIELD
THEORY

A. Multipole constraints and dipolar response

The relationships among water’s molecular multipoles can
be easily understood. As an illustration, consider the dipole and
quadrupole of an SPC/E water molecule. These moments are simply
expressed in the coordinate system of Fig. 3(a), g = yfr and K = KXX,
where p is the magnitude of the dipole vector and K is a scalar con-
stant. The unit vectors ji and % point parallel and perpendicular,
respectively, to the line of symmetry bisecting the hydrogen atoms.
In the course of free molecular rotation, jz and X can both explore the
entire unit sphere, setting the range of possible realizations of g and
K. However, if i is fixed, X can explore only a unit circle orthogo-
nal to @, limiting the range of the tensor %%. Quadrupole fluctuations
are thus partially constrained by the dipole’s orientation, as are all
higher-order moments.

We imagine that multipole density fields, such as m, and Q,,
represent a coarse-grained view on a material’s molecular config-
uration. The coarse-graining procedure translates the constraint
detailed above between each molecule’s dipole ¢; and its quadrupole
K; into a relationship between the fields m; and Q,—a connection
that is less strict and more subtle than that between #; and K;. We do
not attempt here to detail this connection between coarse-grained
fields. Instead, we focus on the molecular constraint’s influence on
the dipolar response of a single molecule. The result of this molec-
ular calculation will then be used to motivate a modification of
DCT.

1. Dipole statistics of an isolated molecule

Consider a single water molecule, at equilibrium, in an electric
potential ¢, (r) that is generated by external charges. Taking the
molecule’s center of charge to be fixed at a position Ry, a multipole
expansion expresses its energy as

w, 0 9 D
r rste.. ™ a8 o - Pex > 1
e R MU (L)

where the nth term of the expansion involves # spatial deriva-
tives, indexed by r,s,t,.... We have in mind a model with a rigid
intramolecular geometry so that the unit vectors j# and % specify the
entire set of multipole moments F(")(ﬂ, %). We aim here to inte-
grate over one intramolecular degree of freedom (X), while holding
the other (ji) fixed, to obtain a free energy
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het(i) = —ksT In f df e P (14)

that depends only on j. In doing so, we determine an effective energy
hege(f1) for the molecular dipole in which fluctuations of all higher-
order multipole moments have been taken into account along with
the constraints that relate them.

The integration in Eq. (14) is analytically intractable, even for
this simplified single-molecule scenario. The complicated electric
field fluctuations generated by a liquid environment at microscopic
scales do not invite greatly simplifying approximations. We nev-
ertheless introduce two such assumptions, which will allow us to
capture the lowest-order influence of quadrupole (or octupole, etc.)
fluctuations on the statistics of molecular dipoles. We first make a
weak-field approximation

unbiase = 1 n) \ unbiase:
et ()™ = 30— 30 (OO
n=1"""rst,...
0 0 0
e R NG| PR

where (-)E“bmed denotes an unbiased orientational average over X
subject to the constraint of fixing ji. We further assume that the
potential ¢_ (r) is slowly varying so that the sum over n can be
truncated at a low order.

The symmetry of a water molecule causes many elements of I'
to vanish, regardless of the specific model considered. The irrele-
vance of isotropic contributions (e.g., terms in K that are propor-
tional to I) causes many other multipole elements to be unimpor-
tant. Furthermore, the contraction in Eq. (13) allows the indices of

(1)

[T ], to be permuted arbitrarily. As a result, the class of ele-
ments relevant to h at a given multipole order is not large. Non-
trivial contributions to T can all be written in terms of dyadic
products involving an even number 2m of factors x together with
n—2m factors of ji (e.g., it and XX at order n =2 and fjifr and
fikx at order n = 3). Relevant contributions to the average moments
(rm )Enbiased in Eq. (15) then follow from results of straightforward
angular integration,

i 1
(R = (- ),

ased 3 (16)

(R 2 (),
where we have exploited the arbitrariness of index ordering in
[(F(")>;nbiased]rst,,,. Removing isotropic contributions that vanish
when contracted with gradients of ¢, (r), we finally obtain an
effective dipolar energy

hefr = Zlbn(,u V)n¢ext(r)|R0- (17)

The form of this result is general for any SPC model that has the
symmetry of a water molecule. The values of coefficients b,, on the
other hand, are model-specific; they are also sensitive to the choice
of reference point Ry defining the multipole expansion. For the case
of SPC/E water and Ry set at the molecule’s center of charge, b; =1
and b, ~ ~0.6e".
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In constructing a field theory in Sec. III B, we will focus on a
truncation of the sum in Eq. (17) atn = 2,

WD (4) = - Vet + ba2(- V) pest. (18)

The first term in héfzf) describes direct electrostatic coupling between
the molecular dipole and an electric field external to the molecule. Its
coarse-grained analog, appearing explicitly in Eq. (3) and implicitly
in Eq. (2) through the dipole-dipole interaction, defines the nonlo-
cal interaction energy in DCT. Correspondingly, this contribution
is charge symmetric—a potential ¢, , = g/r due to an external point
charge yields an energy that is invariant to inverting the signs of both
qand p.

The second term in héfzf) , by contrast, breaks charge
symmetry—it effects response to an external point charge that is
not equivalent for ¢ > 0 and g < 0. This nonlinear contribution orig-
inates in fluctuations of X, which dictates the molecular quadrupole.
By integrating out quadrupole fluctuations, we have thus obtained
an effective dipolar energy that reflects the asymmetric charge dis-
tribution within a water molecule.

Carrying out the summation in Eq. (17) to higher order gener-
ates a series of charge symmetric (# odd) and charge antisymmetric
(n even) terms. If a particular model and choice of Ry gives b, =0
(as is the case for SPC/E water if one chooses the oxygen atom as
the reference point), charge asymmetry would emerge first at hex-
adecapole order (n = 4). If a particular model features a completely
charge-symmetric intramolecular geometry (e.g., BNS water’’) and
Ry is set at the center of charge, then b, = 0 for all even values of 7 so
that heg is appropriately equivalent for cation and anion response.

B. A constraint-inspired field theory

The analysis of single-molecule response we have presented
suggests important considerations for generalizing DCT. Foremost,
it indicates that the introduction of quadrupolar fields (or other
higher-order multipole moments), as in Eq. (12), should be accom-
panied by the consideration of constraints dictated by molecular
geometry. The nature of these constraints is clear at the molecu-
lar level, but an appropriate expression in terms of coarse-grained
fields such as m, and Q, is not obvious. If one were to impose strict
constraints, such as m; - Q, = 0 at each position r, then partition
functions and response functions could be formulated from Eq. (12)
using methods that have proven effective in other contexts.””** This
approach would be analytically challenging, however, since the non-
linear constraints we have described prevent mapping onto a Gaus-
sian theory simply by introducing auxiliary fields as in Refs. 29
and 48.

We will follow a different approach. Rather than taking the
constraints themselves from a molecular model, we instead take the
effective dipolar energy [Eq. (18)] they imply when local quadrupole
fluctuations are integrated out. In doing so, we neglect correlated
fluctuations in the quadrupole field, in effect treating Q, and Q.
(with r # t’) as independent variables for a given realization of the
dipole field. Focusing in this way on quadrupolar response to me
alone conforms to the spirit of the multipole expansion on which
our perspective is based. The resulting charge-asymmetric, field
theoretic Hamiltonian follows from Eq. (18),
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H[m;] = Haip[me] = D Eg(r) -me = b)Y mym,: VE(r), (19)

where E = E; + Egjp, is the total electric field at r, including contribu-
tions from the solute and the dipole field,

1
Egp(r) = -3 vV’ m;.

=4

We will not attempt here to derive or motivate a value for the
parameter b, whose connection to the molecular parameter b, is
conceptually but not quantitatively clear.

Equation (19) is the central result of this paper. It defines a
field theory that is charge asymmetric in accord with the asymmet-
ric response of an isolated water molecule. It respects the rotational
symmetry of the liquid state and is simple to express, but analysis
is made unwieldy by the final sum in Eq. (19), which features cou-
pling of the external field to a bilinear functional of the dipole field
as well as cubic, spatially nonlocal interactions among the field vari-
ables. To make exploratory progress, we introduce two additional
approximations. First, we replace the fluctuating total electric field
in Eq. (19) with a constant, screened external field, E(r) ~ E,/e, that
would result on average from linear dielectric response. This replace-
ment removes a nonlinearity of third order in the dipole field, while
preserving nonlinear response to the solute’s charge. It also limits
the complications we have added to a spatially local functional of the
field my.

With this simplification, the Hamiltonian in Eq. (19) becomes
bilinear in the dipole field, whose statistics are therefore Gaussian.
Analysis remains challenging, however, because the effective dipo-
lar coupling generates localized normal modes that are not eas-
ily anticipated. The fluctuation spectrum of m, thus changes as
E, is introduced, producing a complicated nonlinear response that
breaks charge symmetry. We simplify further by taking a variational
approach, introducing a more tractable reference system

Href[mr] = Hdip [mr] + éz m; - Vril- (20)

H.er describes the response of a conventional dielectric continuum
to a solute with effective charge §.

We determine an optimal choice of the variational parameter g
from the Gibbs-Bogoliubov bound

InZ > In Zref - ﬁ(AH>ref

on the partition function Z and its counterpart Z, for the refer-
ence system. Here, AH = H — Hyer and (-)rr denotes an ensemble
average in the reference system. Evaluating (AH ). requires cal-
culating, and appropriately summing, both (m;).es and (memy)ys.
The former, (my).r = Eq(e —1)/(4ne), is simple to compute and
manipulate, both on- and off-lattice. The latter involves the response
function x(r, r') = (dm;6my ) ef, where Smy = my — (my)rer. In the
presence of a volume-excluding solute, y(r,r") is generally compli-
cated, and in the off-lattice case, it is singular for r = r’. However,
with space treated discretely, it can be written compactly for a solute
that occupies a single lattice cell. Placing this solute at the origin, we
have”’

ARTICLE scitation.org/journalljcp

()= -2 (—e_l)3vvl vyl
MBE)= Be(2e+ 1)\ 4nm r r

for r # 0. Approximating sums Y., as integrals v™' [ ,<gATs We
obtain

|

1= 1+Bg’
with B = —b(v/R*)(e - 1)/(47ne), and

F§(g) ~ FS (q) + (AH) s
— 13
__49¢€ 1 3bgksT (e-1) . (1)

2R € 2m%e  2e+1

For simplicity, we have taken R = v'/2. Reasonable alternatives
such as R = (3v/4m)""” yield similar results.

Equation (21) includes a term linear in g, whose coefficient
could be regarded as a contribution to the neutral cavity potential
(V)o. Since we have made no attempt to include contributions from
distant interfaces, this term cannot offer a full accounting of charge
asymmetry in the limit g — 0. In the same spirit as the modified Born
model in Eq. (5), we could replace it with the correct neutral cavity
potential

F$* (g (V)o)

ge—1
chg ~ _ﬂT +q<V>0 (22)

2R
This modification is only significant at very small values of g.
Predictions for fully charged ions (q = +e) are essentially unaffected.

IV. NUMERICAL RESULTS

Predictions of the variational result in Eq. (22) depend on
input parameters R and b, which set the effective solute size and
the strength of nonlinearity due to quadrupole fluctuations. We will
treat these parameters as we did the dielectric radius R of the Born
model in Sec. II A. Specifically, we require consistency across ions
with a given volume-excluding radius Ry but otherwise adjust R and
b to obtain the best possible agreement with results from molecular
simulation.

For any physically well-founded theory, we expect the optimal
choice of dielectric radius R to be similar, but not necessarily identi-
cal, to the radius Ry of molecular volume exclusion. Indeed, Fig. 4(a)
shows that R for our nonlinear variational theory depends on Ry in
almost precisely the same way as for the Born model. Across the
range of solute sizes considered, we find that dielectric and volume-
excluding radii differ by a nearly constant offset, R ~ Ry — 1.31 A.*
With this offset, R corresponds suggestively to the distance of clos-
est approach between the solute and the hydrogen atoms of sur-
rounding water molecules, as shown in Fig. 4(b) for g = —e and
Ro =3.17 A (examples for different choices of Ry are given in the
supplementary material). The idea that an optimal dielectric radius
may appear smaller than Ry owing to the longer reach of water’s
hydrogen atoms has been proposed and discussed before,”’~** but
for the specific case of negatively charged solutes, whose solva-
tion favors molecular orientations that place hydrogen atoms as
close to the solute as possible. In our case, we stress that the same
dielectric radius is used for cations and anions that have the same
volume-excluding size. Charge asymmetry is an emergent, rather
than engineered, feature of this approach.
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FIG. 4. The optimal dielectric radius R is generally smaller than the radius Ry of
a solute’s excluded volume. (a) The relationship between R and Ry, determined
by fitting theoretical results to computer simulations, is approximately linear. The
dotted line indicates R = Ry, and the dashed line shows R ~ 0.97R, — 1.31 A.
Results are shown for the Born model [Eq. (5)] and for our variational theory
[Eq. (22)]. (b) The solute-solvent radial distribution function [g(r)] suggests that
R roughly corresponds to the distance of closest approach of water's hydro-
gen atoms to the solute. Solid and dotted lines show solute-hydrogen g(r)
and solute—oxygen g(r), respectively, for Ry = 3.17 A and q = —e. The vertical
dashed line indicates the best-fit value of R for this solute size.

Because the optimal choice of R aligns closely with that of the
Born model, we view the nonlinear theory of Eq. (19) as adding a
single adjustable parameter, namely, b. We anticipate that b, which
has units of inverse charge, should be roughly of order 1/e. We
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also expect that b should decay in magnitude as the solute size Ry
increases, both because near-field contributions are less prominent
for large ions and because linear response theory is already success-
ful in this limit. The origin of b in constraints of molecular geometry,
which are not at all transparent at a field theoretic level, makes it
difficult to develop further a priori expectations. Maximizing agree-
ment of Eq. (22) with simulation results for Fepg(q), we find empir-
ically that b ~ ™' (~0.03 — 3.20R;?) to a very good approximation,
as shown in Fig. 5(a). As a practical matter, this simple and quan-
titatively successful fit allows accurate application of the variational
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FIG. 5. (a) The nonlinearity parameter b [see Eq. (19)], determined by fitting the-
oretical results to computer simulations, varies linearly with RO‘Z. The dashed line
shows eb = —0.03 — 3.20R0‘2. (b) The resulting effective variational charge q is
larger in magnitude for anions than it is for cations, as shown for a solute with
volume-excluding radius Ry = 2.70 A (solid line). The dotted line indicates § = g.
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tional solution to our nonlinear field theory for different solute sizes Ry as indicated
in the legend. Symbols show results from simulations. Lines indicate best fits

of Fc(r:’g“) [Eq. (22)] to the simulation results. For smaller solute sizes, Fc(hvg“)

significantly improves upon Ff;"‘”, especially for g = +e (see Fig. 1 and the
supplementary material).

result in Eq. (22) to arbitrary Ry without any further fitting. Physi-
cally, the observed scaling of b with Ry is intriguing, but we cannot
offer a compelling explanation.

With these fitted values of R and b, the effective variational
charge § is larger in magnitude for g = —e than for g = e, as shown
in Fig. 5(b) for a solute with volume-excluding radius Ry = 2.70 A.
The resulting charge asymmetry therefore favors solvation of fully
charged anions over cations with the same volume-excluding size,
as observed in computer simulations. Figure 6 shows a detailed com-
parison of charging free energies obtained from simulation and from
the nonlinear variational theory. For all solute sizes considered, and
across the entire range g = —e to q = e, the agreement is excellent. For
the largest solute, Ry = 5.5 A, there is little room for improvement
over the linear response prediction [Eq. (5)]; a small but notable
charge-asymmetric response in simulation results is nonetheless
captured well by our variational result. For the smaller solutes,
Ro=2.7 A and Ry = 3.17 A, improvement over the Born model is
dramatic. Discrepancies between simulation and the nonlinear field
theory result certainly remain, but the qualitative shortcomings of
DCT have essentially been erased.

V. DISCUSSION AND OUTLOOK

Our aim in this article has been to address a key fail-
ing of DCT—a fundamental lack of charge asymmetry in ion
solvation—while preserving its conceptual simplicity. Computer
simulations indicate that this asymmetry originates in induced
polarization of the solvent, which is not simply a linear functional
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of the electric field exerted by a charged solute. Motivated by the
influence of quadrupole fluctuations and constraints of molecular
geometry on the statistics of the solvent dipole field, the effective
Hamiltonian presented in Eq. (19) adds the kind of sensitivity
to such nonlinear response that is required to capture charge-
asymmetric solvation. Our approximate solution to this model,
obtained by a variational procedure, gives a charging free energy
[Eq. (22)] with the same basic form as the standard Born model
[Eq. (5)] but with an effective ion charge that is renormalized by
nonlinear response. Setting the strength b of the nonlinearity to be a
simple function of ion size, we obtain close quantitative agreement
with results of computer simulations.

While we believe that our approach is original, it is certainly
not the only way to achieve charge-asymmetric solvation energies. In
many previous efforts, asymmetry was introduced by hand. Latimer,
Pitzer, and Slansky’’ amended the Born model by assigning dif-
ferent dielectric radii for anions and cations of the same size, an
approach that has been adopted in subsequent theoretical stud-
ies. The piecewise-affine response model*” of Bardhan et al. fol-
lows a similar spirit, empirically adjusting the nature of electrostatic
response as a solute’s charge is varied. We recently demonstrated
that an analogous treatment of interfacial solvation performs rea-
sonably well in describing ion-specific adsorption to the air-water
surface.'” Also inspired by the constraints between water’s molecu-
lar multipoles, Mukhopadhyay et al. introduced charge asymmetry
into both the Born®’ and generalized Born’' models via a scaling
factor that depends upon the sign of the solute’s charge. Similar to
our approach, the dielectric radius is also independent of the solute’s
charge. In all these approaches, however, charge asymmetry was
built in a posteriori, whereas it is an emergent feature of the model
defined by Eq. (19).

Fluctuations in a solvent’s polarization and in its density are
both advanced at microscopic scales by rearrangement of discrete
molecular structures; they are therefore tied together intimately. In
this paper, we have taken an electrostatic perspective on the nonlin-
ear response to solute charging, in which polarization fluctuations
are renormalized by degrees of freedom that can be described in
terms of electrostatic multipoles. Polarization statistics can of course
also be complicated by the influence of microscopic density fluctu-
ations, as highlighted by the sensitivity of dielectric susceptibility
to volume exclusion.”” The work by Dinpajooh and Matyushov™*
emphasizes that these biases are not completely distinct, suggesting
the interesting possibility that the quadrupole-mediated response we
have analyzed might be conceived alternatively in terms of micro-
scopic density fluctuations. More recently, Duignan and Zhao found
that the degree of charge asymmetry in simple point charge models
can be drastically reduced by shifting the center for volume exclusion
on the water molecule from the oxygen atom toward the hydrogen
atoms.”” This sensitivity is distinct from that discussed in Sec. IIT A 1,
which arises from truncating the sum in Eq. (17) at second order. In
principle, however, a field theory that is insensitive to Ry could be
constructed by including all higher-order contributions, even if its
analysis becomes intractable.

More generally, the interplay between density and polarization
response generates a spectrum of solvation behaviors, ranging from
hydrophobic effects at one extreme to small ion solvation at the
other. A lack of theoretical methods and tractable models that suc-
cessfully span this range stands as one of the most severe challenges
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limiting computational biophysics and nanoscience. While research
on hydrophobic effects remains active,”* field theoretic approaches
to the underlying density fluctuations have matured greatly in recent
years.>?>=9¢ The powerful tools they provide do not yet have coun-
terparts in an electrostatic context, a gap that our work seeks to
help fill. While much remains to be done in refining the nonlin-
ear theory we have formulated and in developing practical methods
to solve it, the work presented here is, in our view, a meaningful
step toward placing theories for electrostatic and hydrophobic sol-
vation on comparable footing. As such, it advances the development
of efficient computational techniques that apply across the entire
hydrophobic/hydrophilic spectrum.

VI. METHODS

All simulations used the SPC/E water model'” and were per-
formed with the LAMMPS simulation package.’” Simulations com-
prised 64, 256, or 512 water molecules plus a single solute such that
the total number density was p = 0.033 33 A~>. Our model solute is
a Lennard-Jones particle,

u(r) = 4e[(Ro/r)"™ = (Ro/r)"], (23)

where 7 is the distance between the center of the solute (where the
solute charge is also located) and the oxygen atom of the water
molecule. We set & = 0.1553 kcal/mol (the same as SPC/E water)
for all solutes investigated but varied Ry as indicated through-
out the manuscript. Full 3D periodic boundary conditions with
particle—particle particle-mesh Ewald summation was used through-
out,"®" with a homogeneous background charge to neutralize the
system. Simulations of 5 ns in length, with a periodic cell of side
length L, were performed with g/e = -1.0,-0.9,...,+0.9,+1.0 (for
Ro > 4.5 A, we used g/e = -1.0,-0.8,...,+0.8, +1.0). The charging

free energy Fc(lfg) was then computed using the MBAR algorithm,®

as described previously in Ref. 45. The quantity Fc(lfg) suffers from

severe finite size effects. It has previously been shown®>***° that the
quantity

Feng = FC‘Q + %( el )¢wig +qViut (24)
€

accurately estimates the macroscopic limit L — oo, including the
effects of distant interfaces. In Eq. (24), the Wigner potential ¢, /q
is defined as the electrostatic potential at the site of a unit point
charge due to all of its periodic replicas and a homogeneous back-
ground charge that acts to neutralize the primitive cell. The surface
potential Vs = —590 mV'* was determined by numerically inte-
grating the solvent’s charge density profile (p, . (z)) according to
Viurt = 47 fzfi:dz (psolv(2) )z, where zjiq and zya denote locations on
either side of a neat liquid/vapor interface. Nonlinear curve fitting
to obtain optimal choices of R and b [see Eqgs. (5) and (22)] was per-
formed using the true region reflective algorithm,*’ as implemented
in SciPy’s “curve_fit” routine.*!

SUPPLEMENTARY MATERIAL

The supplementary material includes results showing the effect
of including (V) in the Born model, contributions to (V), from
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molecules beyond the first solvation shell, Fc(l‘;ar) for all solutes inves-

tigated, further analysis of the dielectric radius, and a comparison of
the equipotential surfaces for a single water molecule obtained with
different centers for the multipole expansion.
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