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ABSTRACT. We extend the formulae of classical invariant theory for the Jacobian
of a genus one curve of degree n ≤ 4 to curves of arbitrary degree. To do this, we
associate to each genus one normal curve of degree n, an n × n alternating matrix
of quadratic forms in n variables, that represents the invariant differential. We then
exhibit the invariants we need as homogeneous polynomials of degrees 4 and 6 in the
coefficients of the entries of this matrix.

INTRODUCTION

Let C be a smooth curve of genus one defined over a field K. Its Jacobian is an
elliptic curve E defined over the same field K. However it is only if C has a K-
rational point that C and E are isomorphic over K. Starting with equations for C we
would like to compute a Weierstrass equation for E.

Let D be a K-rational divisor on C of degree n ≥ 1. It is natural to split into
cases according to the value of n. If n = 1 then C has a K-rational point, and
our task is that of writing an elliptic curve in Weierstrass form. If n ≥ 2 then the
complete linear system |D| defines a morphism C → Pn−1. Explicitly, the map is
given by (f1 : . . . : fn) where f1, . . . , fn are a basis for the Riemann-Roch space
L(D). If n = 2 then C is a double cover of P1 and is given by an equation of the form
y2 = F (x1, x2) where F is a binary quartic. In this case Weil [W1], [W2] showed that
the classical invariants of the binary quartic F give a formula for the Jacobian.

If n ≥ 3 then the morphism C → Pn−1 is an embedding. The image is a genus one
normal curve of degree n. The word normal refers to the fact C is projectively normal
(see for example [H, Proposition IV.1.2]), i.e. if H is the divisor of a hyperplane
section then the natural map

SdL(H)→ L(dH) (1)

is surjective for all d ≥ 1. If n = 3 then C ⊂ P2 is a smooth plane cubic, say with
equation F (x1, x2, x3) = 0. The invariants of a ternary cubic F were computed by
Aronhold [A], and again Weil (in the notes to [W1] in his collected papers) showed
that these give a formula for the Jacobian. If n = 4 then C ⊂ P3 is the complete inter-
section of two quadrics. If we represent these quadrics by 4 × 4 symmetric matrices
A and B, then F (x1, x2) = det(Ax1 + Bx2) is a binary quartic. The invariants of
this binary quartic again give a formula for the Jacobian. For further details of these
formulae in the cases n = 2, 3, 4 see [AKM3P], [ARVT] or [F1].

If n = 5 then C ⊂ P4 is no longer a complete intersection, and indeed the homoge-
neous ideal is generated by 5 quadrics. The Buchsbaum-Eisenbud structure theorem
[BE1], [BE2] shows that these quadrics may be written as the 4×4 Pfaffians of a 5×5
alternating matrix of linear forms. The space of all such matrices is a 50-dimensional
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affine space, with a natural action of GL5×GL5. In [F1] we computed generators
for the ring of invariants and showed that they again give a formula for the Jacobian.
In fact the invariants are too large to write down as explicit polynomials, so instead
we gave a practical algorithm for evaluating them (based in part on the case n = 5
of Proposition 9.3). More recently, B. Gross [G] gave a uniform description of the
invariants in the cases n = 2, 3, 4, 5, using results of Vinberg, although this does not
appear to give any way of evaluating the invariants in the case n = 5.

In this paper we extend these formulae for the Jacobian to genus one normal curves
of arbitrary degree.

Let C ⊂ Pn−1 be a genus one normal curve of degree n ≥ 3. Since C has genus
one, the space of regular differentials on C has dimension 1, say spanned by ω. We
call ω an invariant differential, since geometrically it is invariant under all translation
maps. There is a linear map

∧2L(H)→ L(2H) ; f ∧ g 7→ fdg − gdf
ω

. (2)

Since (1) is surjective for d = 2, we may represent this map by an n × n alternating
matrix of quadratic forms in x1, . . . , xn. This matrix Ω represents ω in the sense that

ω =
x2
jd(xi/xj)

Ωij(x1, . . . , xn)
for all i 6= j.

However if n ≥ 4 then there are quadrics vanishing on C ⊂ Pn−1 and so this descrip-
tion does not determine Ω uniquely. Nonetheless we show, by proving [F3, Conjec-
ture 7.4], that there is a canonical choice of Ω. We then define polynomials c4 and c6

of degrees 4 and 6 in the coefficients of the entries of Ω, and show that the Jacobian
has Weierstrass equation

y2 = x3 − 27c4(Ω)x− 54c6(Ω).

These main results are stated in Section 1. In the next two sections we show that
c4 and c6 are invariants for the appropriate action of GLn, and that they reduce to the
previously known formulae for n ≤ 5. At this point the proof of our results for any
given value of n is a finite calculation. However finding a proof that works for all n is
more challenging.

In Section 4 we show that if we can find a matrix Ω satisfying some apparently
weaker hypotheses, then it will satisfy the properties claimed in Theorem 1.1. For the
actual construction of Ω in Section 5 we reduce to the case C is an elliptic curve E
embedded in Pn−1 via the complete linear system |n.0E|. At first we specify Ω as a
linear map ∧2L(n.0E)→ S2L(n.0E), and use this in Section 6 to complete the proof
of Theorem 1.1. Then in Section 7 we make a specific choice of basis for L(n.0E),
so that Ω becomes an alternating matrix of quadratic forms. We compute this matrix
explicitly and, in Section 8, prove the formula for the Jacobian by computing c4(Ω)
and c6(Ω). Much of the work here is in checking that the invariants c4 and c6 are scaled
correctly for all n.

The description of Ω in Theorem 1.1 involves higher secant varieties. We quote any
general results we need about these as required. Proofs, or references to the literature,
are then given in Section 9.
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In future work we plan to study the space of all matrices Ω. This appears to be
defined by d1 + d2 quadrics in PN−1 where N = (n2 − 1)(n2 − 4)/4 and

d1 = (n2 − 1)(n2 − 4)(n2 − 9)/36,

d2 = (n2 − 1)2(n2 − 9)/9.

The numbers N , d1 and d2 are dimensions of irreducible representations for GLn.
Moreover, as suggested by Manjul Bhargava, we expect that d2 of the quadrics can be
explained by an associative law, similar to that used in [B, Section 4].

We work throughout over a field K of characteristic 0, although it would in fact
be sufficient that the characteristic is not too small compared to n. Except at the
end of Section 1, where we give the application to computing Jacobians, we will
assume that K is algebraically closed. For a projective variety X we write I(X) for
its homogeneous ideal, and TPX for the tangent space at P ∈ X . A Magma script
containing some of the formulae in this paper is available from the author’s website.

1. STATEMENT OF RESULTS

Let C ⊂ Pn−1 be a genus one normal curve of degree n ≥ 3. For any integer
r ≥ 1 the rth higher secant variety Secr C is the Zariski closure of the locus of all
(r − 1)-planes through r points on C. For example, if r = 1 then Sec1C = C. The
codimension of Secr C in Pn−1 is max(n − 2r, 0). So according as n is odd or even
there is a higher secant variety of codimension 1 or 2. If n = 2r + 1 then Secr C
is a hypersurface of degree n, whereas if n = 2r + 2 then Secr C is the complete
intersection of two forms of degree r + 1. In Section 9 we give references for these
facts about higher secant varieties, and also explain how to compute equations for
Secr C from equations for C.

We give the polynomial ring R = K[x1, . . . , xn] its usual grading by degree, say
R = ⊕dRd, and write R(d) for the graded R-module with eth graded piece Rd+e.
Maps between graded free R-modules are required to have relative degree 0, and are
labelled by the matrices of forms that represent them. Our first main result is

Theorem 1.1. Let C ⊂ Pn−1 be a genus one normal curve of degree n ≥ 3.
(i) If n is odd, say n = 2r + 1, and Secr C = {F = 0} then there is a minimal

free resolution

0−→R(−2n)
∇T

−→ R(−n− 1)n
Ω−→ R(−n+ 1)n

∇−→ R

where Ω is an n× n alternating matrix of quadratic forms and

∇ = ∇(F ) =
(
∂F
∂x1

· · · ∂F
∂xn

)
.

(ii) If n is even, say n = 2r + 2, and Secr C = {F1 = F2 = 0} then there is a
minimal free resolution

0−→R(−n)2 ∇T

−→ R(−n−2
2

)n
Ω−→ R(−n+2

2
)n

∇−→ R2

where Ω is an n× n alternating matrix of quadratic forms and

∇ = ∇(F1, F2) =

(
∂F1

∂x1
· · · ∂F1

∂xn
∂F2

∂x1
· · · ∂F2

∂xn

)
.
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We remarked in [F3, Section 7] that Theorem 1.1(i) follows from the Buchsbaum-
Eisenbud structure theorem for Gorenstein ideals of codimension 3. In this paper we
give a different proof, not only so that it runs in parallel with our proof of Theo-
rem 1.1(ii), but also because this is needed for the proof of Theorem 1.2.

If the matrix Ω exists then, by the uniqueness of minimal free resolutions (see for
example [E, Section 20.1] or [P, Section 7]), it is uniquely determined up to scalars.
Moreover starting from equations for Secr C we can solve for Ω by linear algebra. The
details are very similar to those in [F4, Section 4].

Let Ω = (Ωij) be as specified in Theorem 1.1. We put

Mij =
n∑

r,s=1

∂Ωir

∂xs

∂Ωjs

∂xr
and Nijk =

n∑
r=1

∂Mij

∂xr
Ωrk. (3)

We then define

c4(Ω) =
3(n− 2)2

24n
(
n+3

5

) n∑
i,j,r,s=1

∂2Mij

∂xr∂xs

∂2Mrs

∂xi∂xj
(4)

and

c6(Ω) =
−(n− 2)3

26n
(
n+5

7

) n∑
i,j,k,r,s,t=1

∂3Nijk

∂xr∂xs∂xt

∂3Nrst

∂xi∂xj∂xk
. (5)

Let C1 and C2 be genus one curves with invariant differentials ω1 and ω2. An iso-
morphism γ : (C1, ω1) → (C2, ω2) is an isomorphism of curves γ : C1 → C2 with
γ∗ω2 = ω1.

Theorem 1.2. Let C ⊂ Pn−1 be a genus one normal curve of degree n ≥ 3, and let Ω
be an alternating matrix of quadratic forms as specified in Theorem 1.1. Then

(i) There is an invariant differential ω on C such that

ω =
x2
jd(xi/xj)

Ωij(x1, . . . , xn)
for all i 6= j.

(ii) The pair (C, ω) is isomorphic (over K = K) to

(y2 = x3 − 27c4(Ω)x− 54c6(Ω), 3dx/y).

The following corollary gives the application of Theorem 1.2 to computing Jaco-
bians. For this result only we drop our assumption that K is algebraically closed.

Corollary 1.3. Let C ⊂ Pn−1 be a genus one normal curve defined over a field K.
Suppose we scale the matrix Ω in Theorem 1.1 so that the coefficients of its entries are
in K. Then C has Jacobian elliptic curve y2 = x3 − 27c4(Ω)x− 54c6(Ω).

Proof: Let E be the elliptic curve y2 = x3 − 27c4(Ω)x − 54c6(Ω). By Theorem 1.2
there is an isomorphism γ : C → E with γ∗(3dx/y) = ω. Let ξσ = σ(γ)γ−1 for
σ ∈ Gal(K/K). Since 3dx/y and ω are both K-rational it follows that ξ∗σ(3dx/y) =
3dx/y. This implies, as explained for example in [F1, Lemma 2.4], that ξσ : E → E
is a translation map. Then C is the twist of E by the class of {ξσ} in H1(K,E). It
follows by Theorems 3.6 and 3.8 in [S, Chapter X] that C is a principal homogeneous
space under E, and E is the Jacobian of C. �
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Remark 1.4. Although we will not need it for the proofs of Theorems 1.1 and 1.2, it
is natural to ask whether C ⊂ Pn−1 is uniquely determined by Ω. The answer is that it
is. Indeed by the minimal free resolutions in Theorem 1.1 we can recover ∇ from Ω.
Then by Euler’s identity we obtain equations for Secr C where n− 2r = 1 or 2. This
then determines Sec1C = C by Theorem 9.1(v).

2. CHANGES OF CO-ORDINATES

We show that the constructions in Section 1 behave well under all changes of co-
ordinates. First we define an action of GLn on the space of all n × n alternating
matrices of quadratic forms in x1, . . . xn. For g ∈ GLn we put

g ? Ω = g−T

(
Ω(

n∑
i=1

gi1xi, . . . ,

n∑
i=1

ginxi)

)
g−1

where g−T is the inverse transpose of g. Since the scalar matrices act trivially, this
could equally be viewed as an action of PGLn.

Lemma 2.1. Let C ⊂ Pn−1 and C ′ ⊂ Pn−1 be genus one normal curves. Let Ω and
Ω′ be alternating matrices of quadratic forms that satisfy the conclusions of Theo-
rem 1.1, and define invariant differentials ω and ω′ on C and C ′. If γ : C ′ → C is an
isomorphism given by

(x1 : . . . : xn) 7→ (
n∑
i=1

gi1xi : . . . :
n∑
i=1

ginxi)

for some g ∈ GLn then there exists λ ∈ K× such that g ? Ω = λΩ′ and γ∗ω = λ−1ω′.

Proof: Suppose n is odd, say n = 2r + 1 and Secr C = {F = 0}. Then Secr C ′ is
defined by

F ′(x1, . . . , xn) = F (y1, . . . , yn)

where yj =
∑n

i=1 gijxi. By the chain rule

∇(F ′)(x1, . . . , xn) = ∇(F )(y1, . . . , yn) gT .

Then
∇(F )Ω = 0 =⇒ ∇(F ′)(g ? Ω) = 0.

It follows by the uniqueness of minimal free resolutions that g ? Ω = λΩ′ for some
λ ∈ K×. The case n is even is similar.

We also have γ∗ω = µω′ for some µ ∈ K×. If yj =
∑n

i=1 gijxi then

y2
sd(yr/ys) =

n∑
i,j=1

girgjsx
2
jd(xi/xj).

Dividing by γ∗ω = µω′ gives

Ω(y1, . . . , yn) = µ−1gTΩ′(x1, . . . , xn)g.

Hence g ? Ω = µ−1Ω′ and so µ = λ−1. �

Lemma 2.2. The polynomials c4 and c6 are invariants for the action of GLn, i.e.
c4(g ? Ω) = c4(Ω) and c6(g ? Ω) = c6(Ω) for all g ∈ GLn.
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Proof: Let Ω′ = g ? Ω, i.e.

Ω′ij(x1, . . . , xn) =
n∑

a,b=1

(g−1)ai(g
−1)bjΩab(y1, . . . , yn)

where yj =
∑n

i=1 gijxi. Direct calculation using (3) shows that

M ′
ij(x1, . . . , xn) =

n∑
a,b=1

(g−1)ai(g
−1)bjMab(y1, . . . , yn),

N ′ijk(x1, . . . , xn) =
n∑

a,b,c=1

(g−1)ai(g
−1)bj(g

−1)ckNabc(y1, . . . , yn).

Then
∂2M ′

ij

∂xr∂xs
=

n∑
a,b,c,d=1

(g−1)ai(g
−1)bjgrcgsd

∂2Mab

∂xc∂xd
,

∂2M ′
rs

∂xi∂xj
=

n∑
A,B,C,D=1

(g−1)Cr(g
−1)DsgiAgjB

∂2MCD

∂xA∂xB
.

Multiplying these together and summing gives
n∑

i,j,r,s=1

∂2M ′
ij

∂xr∂xs

∂2M ′
rs

∂xi∂xj
=

n∑
a,b,c,d=1

∂2Mab

∂xc∂xd

∂2Mcd

∂xa∂xb
.

Thus c4(Ω′) = c4(Ω). A similar argument shows that c6(Ω′) = c6(Ω). �

The following corollary shows that to prove Theorems 1.1 and 1.2 for a fixed value
of n, it suffices to prove them for a family of curves covering the j-line.

Corollary 2.3. Let Ω1 and Ω2 correspond to pairs (C1, ω1) and (C2, ω2). If there
is an isomorphism γ : C1 → C2 with γ∗ω2 = λω1 then c4(Ω1) = λ4c4(Ω2) and
c6(Ω1) = λ6c6(Ω2).

Proof: Let C1 and C2 have hyperplane sections H1 and H2. Then H1 and γ∗H2 are
degree n divisors on C1. After composing the isomorphism γ with a translation map,
we may suppose (see [S, III.3.5]) that H1 ∼ γ∗H2. Then γ is given by a change of
co-ordinates on Pn−1. The case λ = 1 is immediate from Lemmas 2.1 and 2.2. In
general we use that c4 and c6 are homogeneous polynomials of degrees 4 and 6. �

3. CURVES OF SMALL DEGREE

We compare our general formula for the Jacobian with the formulae previously
known for genus one normal curves of degrees 3, 4 and 5.

For curves of degrees 3 and 4 it is easy to write down a matrix Ω satisfying the
conclusions of Theorems 1.1 and 1.2(i). Indeed for C = {F (x1, x2, x3) = 0} ⊂ P2 a
plane cubic we put

Ω =

 0 ∂F
∂x3

− ∂F
∂x2

− ∂F
∂x3

0 ∂F
∂x1

∂F
∂x2

− ∂F
∂x1

0

 ,
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and for C = {F1 = F2 = 0} ⊂ P3 a quadric intersection we let Ω be the 4 × 4
alternating matrix with entries

Ωij =
∂F1

∂xk

∂F2

∂xl
− ∂F1

∂xl

∂F2

∂xk
,

where (i, j, k, l) is an even permutation of (1, 2, 3, 4). To prove Theorem 1.2(ii) in
these cases we may check by direct computation that c4(Ω) and c6(Ω) are the classical
invariants of a ternary cubic or quadric intersection, as scaled in [F1, Section 7]. We
note that these are polynomials of degrees 4 and 6 in the coefficients of F , respectively
of degrees 8 and 12 in the coefficients of F1 and F2.

As described for example in [F4, Section 4], a genus one normal curve of degree
n = 5 is defined by the 4×4 Pfaffians p1, . . . , p5 of a 5×5 alternating matrix of linear
forms on P4. We call the matrix of linear forms Φ a genus one model of degree 5, and
note that there is a natural action of GL5×GL5 on the space of all such models. It is
shown in [H, Proposition VIII.2.5] that the secant variety Sec2C is a hypersurface of
degree 5 with equation F = 0 where F is the determinant of the Jacobian matrix of
p1, . . . , p5. In [F3, Section 7] we proved that there is a degree 5 covariant Ω satisfying
the conclusions of Theorems 1.1 and 1.2(i). We gave an explicit formula for this
covariant in [FS, Section 2].

We claim that c4(Ω) and c6(Ω) are invariants for the action of SL5× SL5. For the
action of SL5 via changes of co-ordinates on P4 this follows from Lemma 2.2. For the
action of SL5 via Φ 7→ AΦAT it turns out that the coefficients of the entries of Ω are
already invariants. Since Ω is a covariant of degree 5, the invariants c4(Ω) and c6(Ω)
have degrees 20 and 30 in the coefficients of the entries of Φ. Computing a single
numerical example (to check the scaling) shows that c4(Ω) and c6(Ω) are the same as
the invariants c4(Φ) and c6(Φ) constructed in [F1].

4. MINIMAL FREE RESOLUTIONS

Let C ⊂ Pn−1 be a genus one normal curve of degree n ≥ 3. Let Ω be an n × n
alternating matrix of quadratic forms in x1, . . . , xn. In Sections 5 and 6 we exhibit Ω
satisfying the following three hypotheses.

(H1) If n− 2r ≥ 1 and f ∈ I(Secr C) then
∑n

i=1
∂f
∂xi

Ωij ∈ I(Secr C) for all j.

(H2) If n− 2r = 2 and Secr C = {F1 = F2 = 0} then
∑n

i,j=1
∂F1

∂xi
Ωij

∂F2

∂xj
= 0.

(H3) If n− 2r ≥ 1 then there exists P ∈ Secr C with rank Ω(P ) = 2r.

In this section we prove:

Theorem 4.1. Let Ω be an n× n alternating matrix of quadratic forms, satisfying the
hypotheses (H1), (H2) and (H3). Then there is a minimal free resolution as described
in Theorem 1.1.

The next two propositions are proved in Section 9. By abuse of notation we write
P both for a point in Pn−1 and for a vector of length n representing this point.

Proposition 4.2. If n− 2r ≥ 1 and P =
∑r

i=1 ξiPi for some P1, . . . , Pr ∈ C distinct
and ξ1, . . . , ξr 6= 0 then the tangent space TP Secr C is the linear span of the tangent
lines TP1C, . . . , TPrC.
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Proposition 4.3. Let∇(F ) and ∇(F1, F2) be as defined in Theorem 1.1.
(i) If n−2r = 1 and Secr C = {F = 0} then the entries of∇(F ) define a variety

in Pn−1 of codimension 3.
(ii) If n−2r = 2 and Secr C = {F1 = F2 = 0} then the 2×2 minors of∇(F1, F2)

define a variety in Pn−1 of codimension 3.

Proof: (i) Theorem 9.1 tells us that Secr C has singular locus Secr−1C, and that this
has codimension 3.
(ii) This is proved in Section 9.3. �

We start the proof of Theorem 4.1 with the following lemma.

Lemma 4.4. Let C ⊂ Pn−1 be a genus one normal curve. Suppose that n − 2r ≥ 1
and `1, . . . , `n are linear forms in x1, . . . , xn such that

n∑
i=1

`i
∂f

∂xi
∈ I(Secr C) for all f ∈ I(Secr C). (6)

Then there exists λ ∈ K such that `i = λxi for all 1 ≤ i ≤ n.

Proof: The coefficients of `1, . . . , `n form an n × n matrix. Let V ⊂ Matn(K) be
the subspace of all solutions to (6). We must show that V consists only of scalar
matrices. Let E be the Jacobian of C. Translation by T ∈ E[n] is an automorphism
of C that extends to an automorphism of Pn−1, say given by a matrix MT . Now V is
stable under conjugation by each MT . By considering the standard representation of
the Heisenberg group (see for example [F2, Section 3]) it follows that V has a basis
{MT : T ∈ X} for some subset X ⊂ E[n].

We suppose for a contradiction that MT ∈ V for some 0E 6= T ∈ E[n]. Then
translation by T on C extends to an automorphism of Pn−1 that sends each point
P ∈ Secr C to a point in the tangent space TP Secr C. Let H be the divisor of a
hyperplane section on C. For D an effective divisor on C we write D ⊂ Pn−1 for
the linear subspace cut out by L(H − D) ⊂ L(H). For example, if D is a sum of
distinct points on C then D is the linear span of these points. We also write DT for D
translated by T . We choose D = P1 + . . . + Pr an effective divisor of degree r such
that

(i) P1, . . . , Pr ∈ C are distinct,
(ii) D and DT have disjoint support,

(iii) 2D +DT 6∼ H .
Proposition 4.2 shows that for generic P ∈ D we have TP Secr C = 2D. It follows
from our assumptionMT ∈ V thatDT ⊂ 2D, equivalentlyL(H−2D) ⊂ L(H−DT ).
Then by (ii) we have

L(H − 2D) = L(H − 2D) ∩ L(H −DT ) = L(H − 2D −DT ).

However by (iii) and the Riemann-Roch theorem these spaces do not have the same
dimension. Indeed, since r ≥ 1 and n− 2r ≥ 1 we have

dimL(H − 2D) = n− 2r 6= max(n− 3r, 0) = dimL(H − 2D −DT ).

This is the required contradiction. �

We show that the resolution in Theorem 1.1 is a complex.
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Lemma 4.5. Let C ⊂ Pn−1 be a genus one normal curve, and let Ω be an alternating
matrix of quadratic forms satisfying the hypotheses (H1) and (H2).

(i) If n = 2r + 1 and Secr C = {F = 0} then
n∑
i=1

∂F

∂xi
Ωij = 0 for all 1 ≤ j ≤ n.

(ii) If n = 2r + 2 and Secr C = {F1 = F2 = 0} then
n∑
i=1

∂F1

∂xi
Ωij =

n∑
i=1

∂F2

∂xi
Ωij = 0 for all 1 ≤ j ≤ n.

Proof: (i) By the hypothesis (H1) we have
n∑
i=1

∂F

∂xi
Ωij = `jF for all 1 ≤ j ≤ n,

for some linear forms `1, . . . , `n. We multiply by ∂F
∂xj

and sum over j. Since Ω is
alternating the left hand side is zero. Therefore

n∑
j=1

`j
∂F

∂xj
= 0.

By Lemma 4.4 and Euler’s identity it follows that `1 = . . . = `n = 0 as required.
(ii) By the hypothesis (H1) we have

n∑
i=1

∂F1

∂xi
Ωij = `jF1 +mjF2 for all 1 ≤ j ≤ n, (7)

for some linear forms `1, . . . , `n and m1, . . . ,mn. We multiply by ∂F1

∂xj
and sum over j.

Since Ω is alternating the left hand side is zero. Since F1 and F2 are forms defining a
variety of codimension 2 they must be coprime. Therefore

n∑
j=1

`j
∂F1

∂xj
= ξF2 and

n∑
j=1

mj
∂F1

∂xj
= −ξF1

for some ξ ∈ K. If instead we multiply (7) by ∂F2

∂xj
and sum over j then using the

hypothesis (H2) we find that
n∑
j=1

`j
∂F2

∂xj
= ηF2 and

n∑
j=1

mj
∂F2

∂xj
= −ηF1

for some η ∈ K.
By Lemma 4.4 there exist λ, µ ∈ K such that `i = λxi and mi = µxi for all

1 ≤ i ≤ n. By Euler’s identity and the linear independence of F1 and F2 it follows
that λ = µ = 0. Therefore

n∑
i=1

∂F1

∂xi
Ωij = 0 for all 1 ≤ j ≤ n.

The corresponding result for F2 follows by symmetry. �

To complete the proof of Theorem 4.1 we must show that the complex is exact. First
we need some linear algebra. IfB is an n×nmatrix and S ⊂ {1, . . . , n} then we write
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BS for the (n − |S|) × (n − |S|) matrix obtained by deleting the rows and columns
indexed by S. The Pfaffian pf(M) of an alternating matrix M is a polynomial in the
matrix entries with the property that det(M) = pf(M)2.

Lemma 4.6. (i) LetA = (ai) be a 1×nmatrix andB an n×n alternating matrix
over a field K. Suppose that rankA = 1, rankB = n− 1 and AB = 0. Then
there exists λ ∈ K× such that

(−1)i pf(B{i}) = λai

for all 1 ≤ i ≤ n.
(ii) Let A = (aij) be a 2×n matrix and B an n×n alternating matrix over a field

K. Suppose that rankA = 2, rankB = n− 2 and AB = 0. Then there exists
λ ∈ K× such that

(−1)i+j pf(B{i,j}) = λ(a1ia2j − a1ja2i)

for all 1 ≤ i < j ≤ n.

Proof: (i) It is well known that the vector with ith entry (−1)i pf(B{i}) belongs to the
kernel of B. See for example [BH, Section 3.4]. Since rankB = n− 1 this vector is
non-zero and the kernel is 1-dimensional. The result follows.
(ii) We first claim there exist λ1, . . . , λn ∈ K such that

(−1)i+j pf(B{i,j}) =

{
λi(a1ia2j − a1ja2i) if i < j,
−λi(a1ia2j − a1ja2i) if i > j.

Indeed taking a2i times the first row of A minus a1i times the second row of A, gives
a non-zero vector in the kernel of B{i}. If rankB{i} = n − 2 then we argue as in (i).
Otherwise we can simply take λi = 0. This proves the claim.

Now let C = (a1ia2j−a1ja2i)i,j=1,...,n and let D be the diagonal matrix with entries
λ1, . . . , λn. We must show that if CD = DC then CD is a scalar multiple of C.
More generally this is true for any rank 2 alternating matrix C and diagonal matrix
D. Indeed we may re-order the rows and columns so that the diagonal entries of D
which are equal are grouped together. Then C is in block diagonal form. Since C is
alternating of rank 2, exactly one of these blocks is non-zero. The result is then clear.

�

Lemma 4.7. Let C ⊂ Pn−1 be a genus one normal curve, and let Ω be an alternating
matrix of quadratic forms satisfying the hypotheses (H1), (H2) and (H3).

(i) If n = 2r + 1 and Secr C = {F = 0} then the (n− 1)× (n− 1) Pfaffians of
Ω are (scalar multiples of) the partial derivatives of F .

(ii) If n = 2r + 2 and Secr C = {F1 = F2 = 0} then the (n − 2) × (n − 2)
Pfaffians of Ω are (scalar multiples of) the 2× 2 minors of ∇(F1, F2).

Proof: We apply Lemma 4.6 over the function field K(x1, . . . , xn).
(i) By Lemma 4.5 we have

∑n
i=1

∂F
∂xi

Ωij = 0. By the hypothesis (H3) the generic rank
of Ω is n− 1. So by Lemma 4.6(i) there exists λ ∈ K(x1, . . . , xn) such that

(−1)i pf(Ω{i}) = λ
∂F

∂xi
for all 1 ≤ i ≤ n.

Since pf(Ω{i}) and ∂F
∂xi

are forms of degree n− 1, we can write λ = u/v where u and
v are coprime forms of the same degree. Then v divides ∂F

∂xi
for all i, and so must be a
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constant by Proposition 4.3(i). Therefore λ is a constant.
(ii) By Lemma 4.5 we have

∑n
i=1

∂F1

∂xi
Ωij =

∑n
i=1

∂F2

∂xi
Ωij = 0. By the hypothesis (H3)

the generic rank of Ω is n − 2. So by Lemma 4.6(ii) there exists λ ∈ K(x1, . . . , xn)
such that

(−1)i+j pf(Ω{i,j}) = λ
∂(F1, F2)

∂(xi, xj)
for all 1 ≤ i < j ≤ n.

Since pf(Ω{i,j}) and ∂(F1,F2)
∂(xi,xj)

are forms of degree n − 2, we can write λ = u/v where

u and v are coprime forms of the same degree. Then v divides ∂(F1,F2)
∂(xi,xj)

for all i, j, and
so must be a constant by Proposition 4.3(ii). Therefore λ is a constant. �

Let R = K[x1, . . . , xn]. Consider a complex of graded free R-modules

0→ Fm
ϕm−→ Fm−1−→ . . .−→F1

ϕ1−→ F0. (8)

We write Vk ⊂ Pn−1 for the subvariety defined by the rk×rk minors of ϕk where rk =
rank(ϕk). The Buchsbaum-Eisenbud acyclicity criterion (see [BH, Theorem 1.4.13]
or [E, Theorem 20.9]) states that (8) is exact if and only if rankFk = rankϕk +
rankϕk+1 and codimVk ≥ k for all 1 ≤ k ≤ m.

Proof of Theorem 4.1: We already saw in Lemma 4.5 that the resolution in Theo-
rem 1.1 is a complex. We must prove it is exact. If n is odd then the free R-modules
have ranks 1, n, n, 1 and the maps have ranks 1, n − 1, 1. If n is even then the free
R-modules have ranks 2, n, n, 2 and the maps have ranks 2, n − 2, 2. By Lemma 4.7
we have V1 = V2 = V3 and Proposition 4.3 shows that this variety has codimension 3.
We now apply the Buchsbaum-Eisenbud acyclicity criterion. �

5. A BASIS-FREE CONSTRUCTION

The results of Section 2 show that for the proof of Theorems 1.1 and 1.2 we are free
to make changes of co-ordinates on Pn−1. Since we are working over an algebraically
closed field we can therefore reduce to the following situation. Let E be the elliptic
curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with point at infinity 0E and invariant differential

ω = dx/(2y + a1x+ a3) = dy/(3x2 + 2a2x+ a4 − a1y).

Let C ⊂ Pn−1 be the image of E embedded via the complete linear system |n.0E|.
The embedding depends on a choice of basis for the Riemann-Roch space L(n.0E),
but the only effect of changing this is to make a change of co-ordinates on Pn−1. In
this section we define a linear map Ω : ∧2L(n.0E)→ S2L(n.0E). In the next section
we show that the corresponding alternating matrix of quadratic forms satisfies the
hypotheses (H1), (H2) and (H3).

For f ∈ L(n.0E) we put ḟ = df/ω ∈ L((n+ 1).0E). Motivated by (2) we define a
linear map

A : ∧2L(n.0E)→ S2L((n+ 1).0E)

f ∧ g 7→ f ⊗ ġ − g ⊗ ḟ .
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Lemma 5.1. Let f, g ∈ L(n.0E). Then the rational function on E × E given by

(P,Q) 7→ yP + yQ + a1xQ + a3

xP − xQ
(f(Q)g(P )− f(P )g(Q))

belongs to L((n+ 1).0E)⊗ L((n+ 1).0E).

Proof: (i) If we fix Q = (xQ, yQ) then as rational functions of P = (x, y),
y + yQ + a1xQ + a3

x− xQ
∈ L(0E +Q) and f(Q)g − g(Q)f ∈ L(n.0E −Q).

Therefore the product belongs to L((n+ 1).0E).
(ii) If we fix P = (xP , yP ) then as rational functions of Q = (x, y),

yP + y + a1x+ a3

xP − x
∈ L(0E + P ) and g(P )f − f(P )g ∈ L(n.0E − P ).

Therefore the product belongs to L((n+ 1).0E). �

We define a second linear map

B : ∧2L(n.0E)→ S2L((n+ 1).0E)

f ∧ g 7→ yP + yQ + a1xQ + a3

xP − xQ
(f(Q)g(P )− f(P )g(Q))

∣∣∣∣
P=Q

where |P=Q is our notation for the natural map

L((n+ 1).0E)⊗ L((n+ 1).0E)→ S2L((n+ 1).0E).

We show that A and B both represent the invariant differential ω, in the sense of
Theorem 1.2(i).

Lemma 5.2. As rational functions on E we have

A(f ∧ g) = B(f ∧ g) = fġ − gḟ =
fdg − gdf

ω
.

Proof: This is clear for A. For B we apply l’Hôpital’s rule to get

f(Q)g − g(Q)f

x− xQ

∣∣∣∣
P=Q

=
f(Q)ġ − g(Q)ḟ

ẋ

∣∣∣∣
P=Q

,

and then use that ẋ = 2y + a1x+ a3. �

If we pick bases for L(n.0E) and L((n+ 1).0E) then A and B are (represented by)
n× n alternating matrices of quadratic forms in n+ 1 variables. However the matrix
Ω we seek is an n×n alternating matrix of quadratic forms in n variables. It turns out
that the correct choice of Ω is a linear combination of A and B.

We may expand rational functions on E as Laurent power series in the local param-
eter t = x/y at 0E . Let φ be the linear map that reads off the coefficient of t−n−1.
There are exact sequences

0→ L(n.0E)→ L((n+ 1).0E)
φ→ K → 0

and
0→ S2L(n.0E)→ S2L((n+ 1).0E)

φ2→ L((n+ 1).0E)→ 0 (9)
where φ2(f ⊗ g) = φ(f)g + φ(g)f .
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Lemma 5.3. Let f, g ∈ L(n.0E) be rational functions whose coefficients of t−n (when
expanded as Laurent power series in t) are 0, 1 respectively. Then

φ2(A(f ∧ g)) = nf and φ2(B(f ∧ g)) = 2f.

Proof: (i) We have x = t−2 + . . . and y = t−3 + . . .. Then ẋ = 2y+a1x+a3 = 2t−3 +
. . . and ẏ = 3x2+2a2x+a4−a1y = 3t−4+. . .. Writing g as a polynomial in x and y it
follows that g = t−n + . . . and ġ = nt−n−1 + . . .. Therefore φ(f) = φ(g) = φ(ḟ) = 0
and φ(ġ) = n. We compute

φ2(A(f ∧ g)) = φ2(f ⊗ ġ − g ⊗ ḟ) = nf.

(ii) If we fix Q = (xQ, yQ) then as rational functions of P = (x, y),
y + yQ + a1xQ + a3

x− xQ
= t−1 + . . . and f(Q)g − g(Q)f = f(Q)t−n + . . .

with product f(Q)t−n−1 + . . ..
If we fix P = (xP , yP ) then as rational functions of Q = (x, y),
yP + y + a1x+ a3

xP − x
= −t−1 + . . . and g(P )f − f(P )g = −f(P )t−n + . . .

with product f(P )t−n−1 + . . .. In both cases the leading coefficient is f . Adding these
together gives φ2(B(f ∧ g)) = 2f . �

Corollary 5.4. Let Ω = nB− 2A. Then Ω is a linear map ∧2L(n.0E)→ S2L(n.0E).

Proof: This follows from Lemma 5.3 and the exact sequence (9). �

6. PROOF OF THEOREM 1.1

If we pick a basis for L(n.0E) then the linear map defined in Corollary 5.4 is rep-
resented by an n × n alternating matrix of quadratic forms in n variables. In this
section we complete the proof of Theorem 1.1 by showing that this matrix Ω satisfies
the hypotheses (H1), (H2) and (H3), as stated at the start of Section 4.

For 0E 6= P ∈ E we write P and dP for the linear maps f 7→ f(P ) and f 7→ ḟ(P )
in the dual space L(n.0E)∗. For example, if L(n.0E) has basis 1, x, y, x2, xy, . . . then

P = (1, xP , yP , x
2
P , xPyP , . . .),

dP = (0, 2yP + a1xP + a3, 3x
2
P + 2a2xP + a4 − a1yP , . . .).

We note that [P] is a point on C ⊂ Pn−1 = P(L(n.0E)∗), with tangent line passing
through [dP]. The square brackets indicate that we are taking the 1-dimensional sub-
spaces spanned by these vectors, i.e. the corresponding points in projective space. For
0E 6= Q ∈ E we likewise define Q and dQ.

For P,Q ∈ E let λP,Q be the slope of the chord (or tangent line if P = Q) joining
P and Q. In the following lemma the vectors P,Q, dP, dQ in L(n.0E)∗ are extended
to L((n + 1).0E)∗ using exactly the same definition. Evaluating A or B at a linear
combination ξP + ηQ gives an element of (∧2L(n.0E))∗ = ∧2(L(n.0E)∗).

Lemma 6.1. Let 0E 6= P,Q ∈ E and ξ, η ∈ K. Then

A(ξP + ηQ) = ξ2(P ∧ dP) + ξη(P ∧ dQ + Q ∧ dP) + η2(Q ∧ dQ),

B(ξP + ηQ) = ξ2(P ∧ dP) + ξη(λQ,−P − λP,−Q)(P ∧Q) + η2(Q ∧ dQ).
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Proof: (i) For f, g ∈ L(n.0E) we compute

A(P)(f ∧ g) = (fġ − gḟ)(P ) = (P ∧ dP)(f ∧ g).

The formula for A(ξP + ηQ) follows by bilinearity.
(ii) For f, g ∈ L(n.0E) we write

B(ξP + ηQ)(f ∧ g) = ξ2B0 + ξηB1 + η2B2

By Lemma 5.2 we have

B0 = (fġ − gḟ)(P ) = (P ∧ dP)(f ∧ g),

B2 = (fġ − gḟ)(Q) = (Q ∧ dQ)(f ∧ g).

Since for s, t ∈ L((n+ 1).0E) we have

(s⊗ t)(ξP + ηQ) = s(ξP + ηQ)t(ξP + ηQ)

= ξ2s(P )t(P ) + ξη(s(P )t(Q) + s(Q)t(P )) + η2s(Q)t(Q),

it follows from the definition of B that

B1 = λP,−Q(f(Q)g(P )− f(P )g(Q)) + λQ,−P (f(P )g(Q)− f(Q)g(P ))

= (λQ,−P − λP,−Q)(P ∧Q)(f ∧ g).

�

We pick a basis for L(n.0E), so that now Ω(P) is an n× n alternating matrix, and
P, Q, dP, dQ are column vectors.

Lemma 6.2. Let 0E 6= P1, . . . , Pr ∈ E distinct and ξ1, . . . , ξr ∈ K. Then

Ω(
r∑
i=1

ξiPi) = Π

(
∗ Ξ
−Ξ 0

)
ΠT

where

Ξ =


(n− 2)ξ2

1 −2ξ1ξ2 . . . −2ξ1ξr
−2ξ1ξ2 (n− 2)ξ2

2 . . . −2ξ2ξr
...

... . . . ...
−2ξ1ξr −2ξ2ξr . . . (n− 2)ξ2

r

 (10)

and Π is the n× 2r matrix with columns P1, . . . ,Pr, dP1, . . . , dPr.

Proof: Recall that Ω = nB − 2A. The case r = 2 is immediate from Lemma 6.1.
Since the entries of Ω are quadratic forms the general case follows. �

We now check the hypotheses (H1), (H2) and (H3).

Proof of (H1) and (H3): Suppose n − 2r ≥ 1. A generic point P ∈ Secr C
may be written P = [

∑r
i=1 ξiPi] for some 0E 6= P1, . . . , Pr ∈ E distinct and

ξ1, . . . , ξr 6= 0. By Proposition 4.2 the tangent space TP Secr C ⊂ Pn−1 is spanned by
P1, . . . ,Pr, dP1, . . . dPr. In particular these 2r vectors are linearly independent.

For f ∈ I(Secr C) we have
∑n

i=1
∂f
∂xi

(P )vi = 0 for any v in the linear span of
P1, . . . ,Pr, dP1, . . . dPr. By Lemma 6.2 the columns of Ω are linear combinations
of these vectors. So for each 1 ≤ j ≤ n the form

∑n
i=1

∂f
∂xi

Ωij vanishes at P . Since
P ∈ Secr C is generic, this proves (H1). Since n /∈ {0, 2r} and ξ1, . . . , ξr 6= 0, the
matrix (10) is non-singular. Therefore rank Ω(P ) = 2r and this proves (H3). �
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Proof of (H2): We write n = 2r and Secr−1C = {F1 = F2 = 0} where F1 and F2

are forms of degree r. We must show that the form
n∑

i,j=1

∂F1

∂xi
Ωij

∂F2

∂xj
(11)

is identically zero. A generic point P ∈ Secr C = Pn−1 may be written P =
[
∑r

i=1 ξiPi] for some 0E 6= P1, . . . , Pr ∈ E distinct and ξ1, . . . , ξr 6= 0. In addition
we may assume that 2(P1 + . . . + Pr) 6∼ H where H is the hyperplane section. This
ensures that the vectors P1, . . . ,Pr, dP1, . . . dPr are linearly independent. We choose
co-ordinates on Pn−1 so that [P1] = (1 : 0 : . . . : 0), [P2] = (0 : 1 : 0 : . . . : 0), . . . ,
dPr = (0 : . . . : 0 : 1). Since F1 and F2 vanish on Secr−1C they vanish on the linear
span of any r− 1 of the [Pi]. Replacing F1 and F2 by suitable linear combinations we
may assume

F1(x1, . . . , xr, 0, . . . , 0) = 0,

F2(x1, . . . , xr, 0, . . . , 0) = x1x2 . . . xr.

Therefore at P = (ξ1 : . . . : ξr : 0 : . . . : 0) we have

(∂F1

∂x1
(P ), . . . , ∂F1

∂xn
(P )) = (0, . . . , 0, ∗, . . . , ∗),

(∂F2

∂x1
(P ), . . . , ∂F2

∂xn
(P )) = (

∏
i 6=1

ξi, . . . ,
∏
i 6=r

ξi, ∗, . . . , ∗).

By Lemma 6.2 we have

Ω(P ) =

(
∗ Ξ
−Ξ 0

)
where Ξ is the matrix (10). Since n = 2r the coefficients in each row and column of
Ξ sum to zero. Therefore the form (11) vanishes at P . Since P ∈ Pn−1 is generic, this
shows that the form is identically zero. �

This completes the proof of Theorem 1.1.

7. EXPLICIT FORMULAE

In this section we give an explicit formula for the matrix Ω defined in Section 5. As
before E is the elliptic curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with invariant differential ω = dx/(2y + a1x+ a3). We embed E in Pn−1 via

(x0 : x2 : x3 : . . . : xn) = (1, x, y, x2, xy, x3, x2y, x4, . . .) (12)

Notice there is no x1. The indicator function of a set X is denoted 1X . We define
linear forms in indeterminates {xm : m ∈ Z} as follows. The relation to the notation
ḟ = df/ω used in Section 5 will be explained below.

ẋm = m
2

(2xm+1 + a1xm + a3xm−2) + 1odd(m)
6∑
i=1

(−1)i(m− i
2
)aixm+1−i

xm = 1
2
(2xm+1 + a1xm + a3xm−2) + 1odd(m)

6∑
i=1

(−1)iaixm+1−i
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where by convention a5 = 0. For x ∈ R we let sign(x) = −1, 0, 1 according as x is
negative, zero or positive. For r, s ∈ Z we define

Ars = xrẋs − xsẋr,

Brs =
∞∑

k=−∞

sign(k + 1
2
)(xr+2kxs−2k − xs+2kxr−2k).

Theorem 7.1. Let C ⊂ Pn−1 be the image of E under the embedding (12).

(i) A = (Ars)r,s=0,2,...,n and B = (Brs)r,s=0,2,...,n are n × n alternating matrices
of quadratic forms in x0, x2, . . . , xn+1.

(ii) Ω = nB− 2A is an n×n alternating matrix of quadratic forms in x0, x2, . . . ,
xn. It satisfies the conclusions of Theorem 1.1 and

(n− 2)ω =
x2
jd(xi/xj)

Ωij(x1, . . . , xn)
for all i 6= j. (13)

Proof: It is part of the theorem that the indeterminates xm for m /∈ {0, 2, 3, . . . , n}
cancel from the formula for Ω. So when applying the theorem we simply set them to
be zero. However we will not do this in the proof. Since xm is a linear combination
of xm+1, xm, . . . , xm−5 each Brs is of the form

∑
ij cijxixj where each cij is a finite

sum. But it is not immediately clear that the Brs are polynomials, i.e. that cij = 0 for
all but finitely many pairs (i, j). We check this first.

If r ≡ s (mod 2) and r < s then

Brs = 2(xrxs + xr+2xs−2 + . . .+ xs−2xr+2) (14)

whereas if r is even and s is odd then

Brs = −a1xrxs +Qr,s+1 + a2Qr,s−1 + a4Qr,s−3 + a6Qr,s−5 −Qs,r+1 (15)

where

Qij =

 xixj + xi+2xj−2 + . . .+ xjxi if i < j + 2,
0 if i = j + 2,
−(xi−2xj+2 + xi−4xj+4 + . . .+ xj+2xi−2) if i > j + 2.

Since Bsr = −Brs this proves that the Brs are polynomials.
We show that the matricesA andB defined in the statement of the theorem represent

the linear maps A and B defined in Section 5. The theorem then follows from the
results of Sections 4, 5 and 6. In particular (13) follows from Lemma 5.2.

In the statement of the theorem the {xm : m ∈ Z} are indeterminates. However for
the proof they will be the following rational functions on E,

xm =

{
xm/2 if m is even,
x(m−3)/2y if m is odd.

As rational functions on E, we claim that ẋm = dxm/ω (in agreement with the nota-
tion in Section 5) and xm = 1

2
xm−2(2y+a1x+a3). In checking these claims, we start

with the right hand sides, since this also serves to motivate the definitions of ẋm and
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xm. For m even we have

dxm/ω = m
2
x(m−2)/2(dx/ω)

= m
2
x(m−2)/2(2y + a1x+ a3)

= m
2

(2xm+1 + a1xm + a3xm−2),

and
1
2
xm−2(2y + a1x+ a3) = 1

2
(2xm+1 + a1xm + a3xm−2).

For m odd we have

dxm/ω = m−3
2
x(m−5)/2y(dx/ω) + x(m−3)/2(dy/ω)

= m−3
2
x(m−5)/2(2y2 + a1xy + a3y) + x(m−3)/2(3x2 + 2a2x+ a4 − a1y)

= m−3
2
x(m−5)/2(−a1xy − a3y + 2x3 + 2a2x

2 + 2a4x+ 2a6)

+ x(m−5)/2(3x3 + 2a2x
2 + a4x− a1xy)

= x(m−5)/2
(
mx3 − m−1

2
a1xy − m−3

2
a3y +

∑3
i=1(m− i)a2ix

3−i)
= m

2
(2xm+1 + a1xm + a3xm−2) +

∑6
i=1(−1)i(m− i

2
)aixm+1−i,

and

1
2
xm−2(2y + a1x+ a3) = 1

2
x(m−5)/2(2y2 + a1xy + a3y)

= 1
2
x(m−5)/2(−a1xy − a3y + 2x3 + 2a2x

2 + 2a4x+ 2a6)

= 1
2
(2xm+1 + a1xm + a3xm−2) +

∑6
i=1(−1)iaixm+1−i.

It is now clear that A(xr ∧ xs) = Ars for all r, s ∈ Z. It remains to prove the same
for B. By definition of B we have

B(xr ∧ xs) =
yP + yQ + a1xQ + a3

xP − xQ
(xr(Q)xs(P )− xr(P )xs(Q))

∣∣∣∣
P=Q

where P,Q are points on E. Since xm = 1
2
xm−2(2y + a1x+ a3) we have

2xr(P )xs(Q) = (2yQ + a1xQ + a3)xr(P )xs−2(Q)

=
2yQ + a1xQ + a3

xP − xQ
(xr+2(P )xs−2(Q)− xr(P )xs(Q)).

Adding this to the same expression with (r, s) replaced by (s − 2, r + 2) and then
setting P = Q gives

Brs −Br+2,s−2 = 2(xrxs + xs−2xr+2) = B(xr ∧ xs)−B(xr+2 ∧ xs−2). (16)

Rather more obviously, replacing (r, s) by (r+2, s+2) changesBrs andB(xr∧xs) in
the same way, that is, by shifting the subscripts up by 2. So to prove B(xr∧xs) = Brs

for all r, s ∈ Z it suffices to prove it for all r ∈ {0, 1} and s ∈ {0, 1, 2, 3}. This is a
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finite calculation. We give two examples:

B(x0 ∧ x3) =
yP + yQ + a1xQ + a3

xP − xQ
(yP − yQ)

∣∣∣∣
P=Q

=
(y2
P + a1xPyP + a3yP )− (y2

Q + a1xQyQ + a3yQ)

xP − xQ
− a1yP

∣∣∣∣
P=Q

= (x2
P + xPxQ + x2

Q − a1yP + a2(xP + xQ) + a4)
∣∣
P=Q

= 2x0x4 + x2
2 − a1x0x3 + 2a2x0x2 + a4x

2
0,

and

B(x2 ∧ x3) =
yP + yQ + a1xQ + a3

xP − xQ
(yP (xQ − xP ) + xP (yP − yQ))

∣∣∣∣
P=Q

= (−yP (yP + yQ + a1xQ + a3) + xP (x2
P + xPxQ + . . .+ a4))

∣∣
P=Q

= (x2
PxQ + xPx

2
Q − yPyQ − a1xQyP + a2xPxQ − a6)

∣∣
P=Q

= 2x2x4 − x2
3 − a1x2x3 + a2x

2
2 − a6x

2
0.

It is easy to check using (15) that these are equal to B03 and B23. The other cases we
need can then be checked using (16) and the fact that B is alternating. �

8. PROOF OF THEOREM 1.2

Let Ω = nB−2A be as in Theorem 7.1. Then c4(Ω) = fn(a1, . . . , a6) and c6(Ω) =
gn(a1, . . . , a6) for some polynomials fn and gn. We consider the effect of a change of
Weierstrass equation, with notation as in [S, Chapter III].

Lemma 8.1. Let a1, . . . , a6 and a′1, . . . , a
′
6 be the coefficients of two Weierstrass equa-

tions related by x = u2x′ + r and y = u3y′ + u2sx′ + t. Then

fn(a1, . . . , a6) = u4fn(a′1, . . . , a
′
6)

gn(a1, . . . , a6) = u6gn(a′1, . . . , a
′
6)

Proof: This follows from Corollary 2.3 and u−1ω′ = ω. �

It follows by Lemma 8.1, and the standard procedure for converting a Weierstrass
equation to the shorter form y2 = x3 + ax + b, that fn and gn are scalar multiples of
the usual polynomials c4 and c6 in a1, . . . , a6. Explicitly,

fn(a1, . . . , a6) = ξn(b2
2 − 24b4) = ξn(a4

1 + . . .),

gn(a1, . . . , a6) = ηn(−b3
2 + 36b2b4 − 216b6) = ηn(−a6

1 + . . .),
(17)

where b2 = a2
1 + 4a2, b4 = 2a4 + a1a3 and b6 = a2

3 + 4a6.
To complete the proof of Theorem 1.2 we must compute the constants ξn and ηn. For

any given value of n these can be read off from a single numerical example. However
we need to compute these constants for all n. We write

Ω = Ω(0) + a1Ω(1) + a2Ω(2) + a3Ω(3) + a4Ω(4) + a6Ω(6).

Since c4(Ω) and c6(Ω) have degrees 4 and 6 in the coefficients of the entries of Ω, we
see by (17) that it suffices to compute the invariants of Ω(1).
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We put

γrs = (−1)max(r,s) sign(s− r)n − 2
(
(−1)sb s

2
c − (−1)rb r

2
c
)
.

Lemma 8.2. The alternating matrix Ω(1) has entries above the diagonal

γrsxrxs + (−1)sn1even(r + s)
∑(s−r)/2−1

k=1 xr+2kxs−2k. (18)

Proof: Since Ω = nB − 2A we have Ω(1) = nB(1) − 2A(1) where the superscripts
indicate that we are taking the coefficient of a1. Then A(1) has (r, s) entry(

(−1)sb s
2
c − (−1)rb r

2
c
)
xrxs

whereas (14) and (15) show that if r < s then B(1) has (r, s) entry{
(−1)s(xrxs + xr+2xs−2 + . . . xs−2xr+2) if r ≡ s (mod 2)
(−1)sxrxs if r 6≡ s (mod 2).

�

Lemma 8.3. The matrices Ω(1), Ω′ =
(
γrsxrxs

)
r,s=0,2,3,...,n

and

Λ =
(
(sign(j − i)n− 2(j − i))xixj

)
i,j=0,1,...,n−1

all have the same invariants c4 and c6.

Proof: We first explain why Ω(1) and Ω′ have the same invariants, despite the “extra
terms” in (18). We start with Ω(1). The only entries involving x0 are in the first row
and column. We replace x0 by λ−1x0 and multiply the first row and column by λ. By
Lemma 2.2 this does not change the invariants, but setting λ = 0 removes the extra
terms from the first row and column. Now the only entries involving x2 are in the
second row and column. We replace x2 by λ−1x2 and multiply the second row and
column by λ. This does not change the invariants, but setting λ = 0 removes the extra
terms from the second row and column. We repeat this procedure for all subsequent
rows and columns. In the end we remove all the extra terms, and are left with the
matrix Ω′.

We define a bijection π : {0, 1, . . . , n− 1} → {0, 2, 3, . . . , n} by

π(i) =

{
2i if i ≤ n/2,
2(n− i) + 1 if i > n/2.

We then compute

γπ(i),π(j) =


sign(j − i)n− 2(j − i) if i ≤ n/2 and j ≤ n/2,
−n− 2(−(n− j)− i) if i ≤ n/2 and j > n/2,
n− 2(j + (n− i)) if i > n/2 and j ≤ n/2,
sign(j − i)n− 2(−(n− j) + (n− i)) if i > n/2 and j > n/2.

In all cases we have γπ(i),π(j) = sign(j− i)n−2(j− i). Therefore Ω′ and Λ are related
by a permutation matrix. It follows by Lemma 2.2 that they have the same invariants.

�
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Lemma 8.4. The alternating matrix of quadratic forms

Λ =



0 (n− 2)x1x2 (n− 4)x1x3 (n− 6)x1x4 · · · (2− n)x1xn
0 (n− 2)x2x3 (n− 4)x2x4 · · · (4− n)x2xn

0 (n− 2)x3x4 · · · (6− n)x3xn

− ...
. . . (n− 2)xn−1xn

0


has invariants c4(Λ) = (n− 2)4 and c6(Λ) = −(n− 2)6.

Proof: We have Λ = (λrsxrxs)r,s=1,...,n where λrs = sign(s−r)n−2(s−r). Following
the definitions of c4 and c6 in Section 1 we put

Mij =
n∑

r,s=1

∂Λir

∂xs

∂Λjs

∂xr
= µijxixj

Nijk =
n∑
r=1

∂Mij

∂xr
Λrk = νijkxixjxk

where µij = (
∑n

r=1 λirλjr)−λ2
ij and νijk = µij(λik +λjk). It is not hard to show that

n∑
r=1

sign(i− r) sign(j − r) = n− 2|i− j| − δij,

n∑
r=1

(i− r) sign(j − r) = 2ij − j2 − (n+ 1)i+ n(n+ 1)/2,

n∑
r=1

(i− r)(j − r) = nij − (i+ j)n(n+ 1)/2 + n(n+ 1)(2n+ 1)/6.

We use these to compute

n∑
r=1

λirλjr = 2n|i− j|2 − 2n2|i− j| − δijn2 + (n3 + 2n)/3

and then subtract off

λ2
ij = 4|i− j|2 − 4n|i− j|+ (1− δij)n2

to get

µij = 2(n− 2)(|i− j|2 − n|i− j|) + n(n− 1)(n− 2)/3.

Noting the symmetries µij = µji and νijk = νjik, and using computer algebra to check
our calculations, we find

n∑
i,j,r,s=1

∂2Mij

∂xr∂xs

∂2Mrs

∂xi∂xj
= 4

∑
i≤j

µ2
ij = (16/3)n(n− 2)2

(
n+ 3

5

)
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and
n∑

i,j,k,r,s,t=1

∂3Nijk

∂xr∂xs∂xt

∂3Nrst

∂xi∂xj∂xk

= 4
∑
i≤j≤k

(νijk + νjki + νkij)
2

= 4
∑
i≤j≤k

(λij(µik − µjk) + λjk(µij − µik) + λik(µij − µjk))2

= 64(n− 2)2
∑
i≤j≤k

(i− 2j + k)2(n+ i+ j − 2k)2(n+ 2i− j − k)2

= 64n(n− 2)3

(
n+ 5

7

)
.

The final sums are evaluated using the standard formulae for
∑n

i=1 i,
∑n

i=1 i
2, etc. In

practice it is simpler to observe that the answer is a polynomial in n, say of degree at
most d, and then check the result for d+ 1 distinct values of n.

Finally scaling by the constants included in the definitions (4) and (5) it follows that
c4(Λ) = (n− 2)4 and c6(Λ) = −(n− 2)6. �

The last two lemmas show that ξn = (n − 2)4 and ηn = (n − 2)6. Therefore
c4(Ω) = (n− 2)4c4(E) and c6(Ω) = (n− 2)6c6(E). Let ω = dx/(2y+ a1x+ a3). By
the formulae in [S, Chapter III] we have

(E,ω) ∼= (y2 = x3 − 27c4(E)x− 54c6(E), 3dx/y).

Therefore

(E, (n− 2)ω) ∼= (y2 = x3 − 27c4(Ω)x− 54c6(Ω), 3dx/y).

Recalling from Theorem 7.1 that Ω = nB − 2A represents the invariant differential
(n− 2)ω, this completes the proof of Theorem 1.2.

9. HIGHER SECANT VARIETIES

In this final section we give references and proofs for the facts about higher secant
varieties we used earlier in the paper.

Theorem 9.1. Let C ⊂ Pn−1 be a genus one normal curve of degree n ≥ 3.
(i) Secr C ⊂ Pn−1 is an irreducible variety of codimension max(n− 2r, 0).

(ii) The vector space of forms of degree r + 1 vanishing on Secr C has dimension
β(r + 1, n), where

β(r, n) =

(
n− r
r

)
+

(
n− r − 1

r − 1

)
is the number of ways of choosing r elements from Z/nZ such that no two
elements are adjacent.

(iii) If n− 2r ≥ 2 then the homogeneous ideal I(Secr C) is generated by forms of
degree r + 1.

(iv) if n− 2r = 1 then Secr C is a hypersurface of degree n.
(v) If n− 2r ≥ 1 then Secr C has singular locus Secr−1C.
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Proof: (i) This is a general fact about curves. See for example [L, Section 1].
(ii), (iii), (iv). More generally the minimal free resolution for I(Secr C) was computed
in [vBH, Section 8]. See [GP, Section 5] for the cases r = 1, 2, and [F2, Section 4]
for further discussion.
(v) This is [vBH, Proposition 8.15]. �

9.1. Computing equations for higher secant varieties. The following two propo-
sitions may be used to compute equations for Secr C from equations for C. We say
that a form f vanishes on C with multiplicity r if (passing to affine co-ordinates) the
Taylor expansion of f at each point P ∈ C begins with terms of order greater than or
equal to r.

Proposition 9.2. Let C ⊂ Pn−1 be a variety contained in no hyperplane. Let f be a
form of degree r + 1.

(i) If r ≥ 1 then

f ∈ I(Secr C) ⇐⇒ f vanishes on C with multiplicity r.

(ii) If r ≥ 2 then

f ∈ I(Secr C) ⇐⇒ ∂f

∂xi
∈ I(Secr−1C) for all i = 1, . . . , n.

Proof: (i) We choose P1, . . . , Pn ∈ C spanning Pn−1. By a change of co-ordinates we
may assume P1 = (1 : 0 : . . . : 0), P2 = (0 : 1 : 0 : . . . : 0), . . . , Pn = (0 : 0 : . . . : 1).
If f ∈ I(Secr C) then it vanishes on the linear span of any r of the Pi. Therefore the
monomials appearing in f involve at least r+ 1 of the xi, and since f has degree r+ 1
must be squarefree. But then f vanishes at P1 with multiplicity r. Since P1 ∈ C was
arbitrary it follows that f vanishes on C with multiplicity r.

Conversely, suppose f vanishes on C with multiplicity r. Let Π be an (r − 1)-
plane spanned by points P1, . . . , Pr ∈ C. By a change of co-ordinates we may assume
P1 = (1 : 0 : . . . : 0), P2 = (0 : 1 : 0 : . . . : 0), . . .. Then f(x1, . . . , xr, 0, . . . , 0) has
total degree r + 1, but has degree at most 1 in each of the variables. It follows that
f vanishes on Π. By definition Secr C is the Zariski closure of the union of all such
(r − 1)-planes. Therefore f ∈ I(Secr C) as required.
(ii) Since char(K) = 0 this follows from (i). �

Now let C ⊂ Pn−1 be a genus one normal curve. Taking r = 1 in Theorem 9.1
shows that the homogeneous ideal I(C) is generated by a vector space of quadrics of
dimension n(n − 3)/2. Suppose we know a basis for this space. Then by repeatedly
applying Proposition 9.2(ii) we can find a basis for the space of forms of degree r+ 1
vanishing on Secr C. Theorem 9.1(iii) tells us that if n − 2r ≥ 2 then these forms
define Secr C. The following proposition covers the remaining case.

Proposition 9.3. Suppose n− 2r = 1. Let f be a form of degree n. If r ≥ 2 then

f ∈ I(Secr C) ⇐⇒ ∂f

∂xi
∈ I(Secr−1C)2 for all i = 1, . . . , n.

Proof: “⇒” Let H be the divisor of a hyperplane section, and let P ∈ C be any point.
Let C+ ⊂ Pn and C− ⊂ Pn−2 be the images of C embedded via the linear systems
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|H ±P |. We choose co-ordinates so that the isomorphisms C+ → C → C− are given
by

(x1 : . . . : xn+1) 7→ (x1 : . . . : xn) 7→ (x1 : . . . : xn−1).

In particular P is the point (x1 : . . . : xn) = (0 : . . . : 0 : 1). By Theorem 9.1 we
know that I(Secr−1C−) is generated by forms g1, g2 ∈ K[x1, . . . , xn−1] of degree r.
By [F2, Corollary 2.3] there exist forms h1, h2 ∈ K[x1, . . . , xn] of degree r + 1 such
that fi = xn+1gi + hi ∈ I(Secr C+) for i = 1, 2. Then F = g1h2 − g2h1 belongs to

I(Secr C+) ∩K[x1, . . . , xn] = I(Secr C).

Since g1, g2 are coprime and f1, f2 are irreducible it is clear that F is non-zero. By
Theorem 9.1(iv) we have I(Secr C) = (F ). We compute

∂F

∂xn
=

∂f1

∂xn+1

∂f2

∂xn
− ∂f1

∂xn

∂f2

∂xn+1

.

On the other hand, for i = 1, 2 and j = n, n+ 1 we have
∂fi
∂xj
∈ I(Secr−1C+) ∩K[x1, . . . , xn] = I(Secr−1C).

Therefore ∂F
∂xn
∈ I(Secr−1C)2. Since P ∈ C was arbitrary, and C spans Pn−1, the

result follows.
“⇐” Let P1, . . . , Pr be r distinct points on C. By a change of co-ordinates we may
assume P1 = (1 : 0 : . . . : 0), P2 = (0 : 1 : 0 : . . . : 0), . . .. By Proposition 9.2
we know that f vanishes on C with multiplicity 2(r − 1) + 1 = n − 2. Therefore
f(x1, . . . , xr, 0, . . . , 0) has total degree n, but has degree at most 2 in each of the
variables. Since 2r < n it follows that f vanishes on the linear span of P1, . . . , Pr.
By definition Secr C is the Zariski closure of the union of all such (r − 1)-planes.
Therefore f ∈ I(Secr C) as required. �

9.2. Proof of Proposition 4.2. Let C ⊂ Pn−1 be a genus one normal curve of degree
n. Let H be the divisor of a hyperplane section. We identify L(H) with the space of
linear forms on Pn−1. For D an effective divisor on C we write D ⊂ Pn−1 for the
linear subspace cut out by L(H −D) ⊂ L(H). We have

Secr C =
⋃

degD=r

D.

We also put D◦ = D \ ∪D′<DD′. The gcd and lcm of divisors
∑
mPP and

∑
m′PP

are
∑

min(mP ,m
′
P )P and

∑
max(mP ,m

′
P )P .

Lemma 9.4. Let D, D1, D2 be effective divisors on C.
(i) If degD < n then dimD = degD − 1.
(ii) The linear span of D1 and D2 is lcm(D1, D2).
(iii) If deg(lcm(D1, D2)) < n then D1 ∩D2 = gcd(D1, D2).

Proof: (i) By Riemann-Roch we have dimL(H −D) = n− degD.
(ii) We have L(H −D1) ∩ L(H −D2) = L(H − lcm(D1, D2)).
(iii) The inclusion “⊃” is clear. Equality follows by counting dimensions using (i)
and (ii). �

With the above notation, Proposition 4.2 becomes
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Proposition 9.5. Suppose n − 2r ≥ 1. Let D = P1 + . . . + Pr be an effective
divisor of degree r with P1, . . . , Pr ∈ C distinct. Then for any P ∈ D◦ we have
TP Secr C = 2D.

Proof: If P ∈ D′ forD′ an effective divisor of degree at most r, then by Lemma 9.4(iii)
we have D = D′. In particular P /∈ Secr−1C. It follows by Theorem 9.1(v) that P is
a smooth point on Secr C. The next lemma shows that 2D ⊂ TP Secr C, and equality
follows by comparing dimensions, using Lemma 9.4(i) and Theorem 9.1(i). �

Lemma 9.6. Let X be an affine variety and P1, . . . , Pr ∈ X . Let P =
∑
ξiPi where∑

ξi = 1. If ξi 6= 0 then TPi
X ⊂ TP (SecrX).

Proof: There is a morphism X × . . . × X → SecrX ; (a1, . . . , ar) 7→
∑
ξiai with

derivative TP1X × . . .× TPrX → TP (SecrX) ; (b1, . . . , br) 7→
∑
ξibi. �

In fact Proposition 9.5 is true without the hypothesis that P1, . . . , Pr are distinct.
However, since we do not need this, we omit the details.

9.3. Proof of Proposition 4.3. We must prove the following.

Proposition 9.7. Suppose n− 2r = 2 and write Secr C = {F1 = F2 = 0}. Then the
variety X ⊂ Pn−1 defined by

rank

(
∂F1

∂x1
· · · ∂F1

∂xn
∂F2

∂x1
· · · ∂F2

∂xn

)
≤ 1

has codimension 3.

If n = 4 then C = {F1 = F2 = 0} ⊂ P3 is the intersection of two quadrics. There
are 4 singular quadrics in the pencil spanned by F1 and F2, and each is singular at just
one point. Then X is the union of these 4 singular points, and so has codimension 3.

We now generalise this argument. Let H be the divisor of a hyperplane section. We
identify L(H) with the space of linear forms on Pn−1. Let D1 and D2 be divisors on
C of degree r+ 1 with D1 +D2 = H . Let Φ(D1, D2) be the (r+ 1)× (r+ 1) matrix
of linear forms representing the multiplication map

L(D1)× L(D2)→ L(H).

Since Φ(D1, D2) has rank at most 1 on C, it has rank at most r on Secr C. Therefore
det Φ(D1, D2) is a form of degree r + 1 vanishing on Secr C. In particular it belongs
to the pencil spanned by F1 and F2.

Lemma 9.8. Every linear combination of F1 and F2 arises in this way. Moreover
there are exactly 4 forms in the pencil arising as det Φ(D1, D2) with D1 ∼ D2.

Proof: We say that divisor pairs (D1, D2) and (D′1, D
′
2) are equivalent if D1 ∼ D′1

or D1 ∼ D′2. It is shown in [F2, Lemma 2.9] that if (D1, D2) and (D′1, D
′
2) are

inequivalent then Secr C = {det Φ(D1, D2) = det Φ(D′1, D
′
2) = 0} ⊂ Pn−1. In

particular these two forms are linearly independent.
We claim that the map (D1, D2) 7→ Φ(D1, D2) is a bijection between the equiva-

lence classes of divisor pairs and the pencil of forms spanned by F1 and F2. To prove
this let C be the image of an elliptic curve E embedded in Pn−1 by |n.0E|. Then
writing

det Φ(r.0E + P, (r + 2).0E − P ) = s(P )F1 + t(P )F2,
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for P ∈ E, we can see that s/t is a rational function on E. It therefore defines a
morphism (s : t) : E → P1. By the previous paragraph, this morphism is non-
constant, and indeed has fibres of the form {P,−P}. It must therefore be surjective.
This proves the claim.

For the final statement we note that r.0E + P ∼ (r + 2).0E − P if and only if
P ∈ E[2]. �

Lemma 9.9. Let S be the singular locus of V = {det Φ(D1, D2) = 0} ⊂ Pn−1. Then
S contains Secr−1C. Moreover

(i) If D1 6∼ D2 then S = Secr−1C.
(ii) If D1 ∼ D2 then S has codimension 3.

Proof: SinceC spans Pn−1 it is clear that for each P ∈ Secr−1C we have TP Secr C =
Pn−1. Therefore S contains Secr−1C.
(i) Let P ∈ V \ Secr−1C be any point. According to [F2, Theorem 1.3] the r × r
minors of Φ(D1, D2) generate I(Secr−1C). Therefore evaluating Φ(D1, D2) at P
gives a matrix of rank r. Moving P to (1 : 0 : . . . : 0) and picking suitable bases for
L(D1) and L(D2) we have

Φ(D1, D2) = x1


0 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

+ Φ′

where Φ′ is an (r + 1) × (r + 1) matrix of linear forms in x2, . . . , xn. Now the top
left entry of Φ(D1, D2) is an equation for TPV . Since the product of non-zero rational
functions on C is again non-zero, the entries of Φ(D1, D2) are non-zero. Therefore
P ∈ V is a smooth point.
(ii) Picking suitable bases for L(D1) and L(D2) we may suppose that Φ(D1, D2) is
symmetric. Since {rank Φ(D1, D2) ≤ r − 1} ⊂ S, and the quadratic forms of rank
at most m− 2 have codimension 3 in the space of all quadratic forms in m variables,
it follows that S has codimension at most 3. Suppose for a contradiction that S has
codimension at most 2. Then its intersection with Secr C = {F1 = F2 = 0} has
codimension at most 3. But this intersection is contained in the singular locus of
Secr C, which by Theorem 9.1 has codimension 4. This is the required contradiction.

�

To complete the proof of Proposition 9.7, we note thatX is the union of the singular
loci of the hypersurfaces defined by linear combinations of F1 and F2. It follows by
Lemmas 9.8 and 9.9 that X has codimension 3.
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