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We show how a fully nonlinear variational method can be used to design a more non-
linearly stable laminar shear flow by quantifying the effect of manipulating the boundary
conditions of the flow. Using the example of plane Couette flow, we demonstrate that by
forcing the boundaries to undergo spanwise oscillations in a certain way, it is possible
to increase the critical disturbance energy for the onset of turbulence by 41%. If this
is sufficient to ensure laminar flow (i.e. ambient noise does not exceed this increased
threshold), nearly four times less energy is consumed than in the turbulent flow which
exists in the absence of imposed spanwise oscillations.

1. Introduction

There is a considerable ongoing effort directed at manipulating turbulent flows to
either reduce their drag or relaminarise them completely (see for example the recent
reviews of Kasagi et al. (2009) and Quadrio (2011)). The latter relaminarisation challenge
can be restated as the problem of delaying the onset of turbulence by some controlled
adjustment of the laminar flow. So far, theoretical work has concentrated on probing the
sensitivity of the linearised dynamics around the laminar state to disturbances in order
to design suitable controls. This approach has had some success in mitigating turbulence
transition using both open-loop and feedback-based approaches (Kim & Bewley (2007)).
For example, Högberg et al. (2003) used direct numerical simulation to demonstrate
that linear feedback control strategies can expand the laminar state’s basin of attraction
significantly for a range of flow Reynolds numbers. Also, in a channel flow subject to
streamwise travelling waves (induced by zero-net-mass-flux wall blowing and suction),
Moarref & Jovanović (2010) used a perturbation analysis in the wave amplitude of the
linearised Navier-Stokes equations to ‘design’ travelling waves which significantly reduce
the flow’s sensitivity. This suggested a viable control of turbulence transition which was
confirmed by fully nonlinear direct numerical simulation of the flow (Lieu et al. (2010)).
However, delaying the onset of turbulence in shear flows is a fully nonlinear problem.

Transition is triggered by finite-amplitude background disturbances and immediately
results in a temporally and spatially complex final state (see for example Schmid & Hen-
ningson (2001); Mullin & Kerswell (2005); Manneville (2008)) rather than progressing
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Figure 1. a) Schematic flow geometry showing coordinate system, laminar flow profile (solid
lines) and spanwise boundary oscillation (dashed lines). b) Schematic to illustrate how delaying
transition can save energy. The symbols indicate actual average dissipation rate data (relative
to the laminar unoscillated PCF value) from numerical simulations: red dots are for unoscillated
PCF and the blue square is for spanwise-oscillated PCF (note the turbulent dissipation rate for
oscillated PCF is very similar to that for unoscillated PCF).

through a series of bifurcations triggered by an initial linear instability of the laminar
state. Therefore, as discussed by Bewley (2001), there is a clear need for a fully non-
linear approach to investigate the sensitivity of the laminar state to finite amplitude
disturbances. This means understanding how the basin of attraction of the laminar state
changes when the flow is intentionally modified (for example by moving the boundaries in
a new way exemplified by Kawahara (2005)). In particular, if the point of minimal ‘am-
plitude’ (typically defined in terms of disturbance kinetic energy) on the basin boundary
for the laminar state can be quantifiably shown to move away (i.e. towards higher values
of initial disturbance energy) from the laminar state with a control, then the effectiveness
of the control is demonstrated.
Recently, just such a new theoretical method has emerged which allows the nonlinear

stability of a flow to be probed (see Pringle & Kerswell (2010); Cherubini et al. (2010);
Monokrousos et al. (2011); Pringle et al. (2012); Rabin et al. (2012); Cherubini & De
Palma (2013); Duguet et al. (2013) for applications to the Navier-Stokes equations, and
Juniper (2011) for an application to an idealised model of thermo-acoustics). This is
a variational method which seeks to maximise a functional (such as the disturbance
kinetic energy or the time- and space-integrated total dissipation) over all possible initial
disturbances of a given initial magnitude (with respect to some norm) which evolve
subject to the governing Navier-Stokes equations to a large but finite time horizon. The
result of this optimisation is then tracked as the initial disturbance norm is gradually
increased until a sudden jump is generically seen. This jump corresponds to the first
instance of the optimisation method encountering an initial disturbance lying outside
the basin of attraction under scrutiny. The increased value of the functional signals by
design the new (possibly turbulent) end-state of the subsequent evolution. Crucially, this
method constructively delivers the spatial structure of the disturbance of lowest energy
- christened the minimal seed in Pringle et al. (2012) - as well as the threshold value of
this chosen norm (typically the kinetic energy).
The central aim of this paper is to demonstrate the potential of this relatively new

fully nonlinear method for developing strategies to control flows. The specific setting used
here to illustrate our method is the simplest example of a shear flow - plane Couette flow
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(PCF) - in which a layer of fluid of kinematic viscosity ν is sheared between two infinite
parallel plates at y = ±h which move with velocities ±Uex. The simple shear basic
state, as shown in figure 1a, is linearly stable for all Reynolds numbers Re := Uh/ν
(Romanov (1973)) yet transition to turbulence is observed experimentally at Re as low
as 325 (Bottin & Chate (1998)). This transition is undesirable as the energy dissipation
rate significantly increases in the turbulent state. To enhance the nonlinear stability
of this low-dissipation basic state, we investigate the effect of superimposing spanwise
oscillations of the boundaries such that

u(x,±1, z, t) = ±ex +A sin(ωt+ 2πφ)ez (1.1)

where h and h/U are the units of distance and time, A is the amplitude, ω the frequency
and φ the phase of the oscillation. This choice is motivated by the large body of work
which has demonstrated (experimentally and through direct numerical simulations) that
such boundary motion can reduce turbulent drag by up to 40% (see Jung et al. (1992);
Laadhari et al. (1994); Baron & Quadrio (1996); Quadrio (2011), and also Moarref &
Jovanović (2012); Duque-Daza et al. (2012) for recent theoretical work).
The aim in those studies was to ameliorate the consequences of turbulence after it has

been triggered whereas here the focus is to delay the onset of turbulence (see figure 1b),
i.e. to ‘prevent’ rather than ‘cure’ turbulence. In more formal dynamical systems par-
lance, the previous work has investigated how spanwise boundary oscillations affect the
turbulent attractor, whereas here we now investigate how spanwise boundary oscillations
affect the basin of attraction of the underlying basic state. Interestingly, this modification
of the basin of attraction leads to a qualitative change in the structure of the minimal
seed from that which has recently been identified for unoscillated PCF (Monokrousos
et al. (2011); Rabin et al. (2012); Duguet et al. (2013)) due to the nontrivial modifica-
tion of the base flow in the immediate vicinity of the driving plates. In section 2, we
describe our nonlinear variational method and show how spanwise boundary oscillation
increases the critical initial perturbation energy of the minimal seed which can trigger
turbulence. In section 3 we discuss the change in the structure and properties of the
minimal seed due to spanwise boundary oscillation, showing the role played by the phase
φ of the oscillation in the time-evolution of minimal seeds towards turbulence. Finally,
section 4 offers some concluding remarks.

2. Variational Method

When the boundaries are oscillated, the basic fluid response to the enforced boundary
motion (1.1) is u = U := yex +W (y, t;A)ez and

W = A[f(y) sin(ωt+ 2πφ) + g(y) cos(ωt+ 2πφ)], (2.1)

with

f = cosh y+ cos y− + cosh y− cos y+)/Λ, (2.2)

g = −(sinh y+ sin y−+ sinh y− sin y+)/Λ, (2.3)

where

θ =
√

ωRe/2, y± = θ(1 ± y) and Λ = cos 2θ + cosh 2θ. (2.4)

The difference of the fluid response from the basic state, û = u − U (hereafter the
disturbance velocity) evolves under the Navier-Stokes equations

∂

∂t
û+U.∇û+ û.∇U+ û.∇û+∇p̂ =

1

Re
∇2û, (2.5)
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with incompressibility and the natural boundary conditions imposed:

∇ · û = 0, û(x,±1, z, t) = 0. (2.6)

If Ê(t) := 〈12 û(x, t)2〉 is the disturbance kinetic energy (where 〈 〉 is a volume average),
then nonlinear stability can be quantified by the minimum initial disturbance kinetic
energy for which the long time state is not the basic state,

Ec(A) := min
û(x,0):û(x,t→∞) 6=0

Ê(0) = 〈1
2
û(x, 0)2〉. (2.7)

Here that means turbulence is triggered (the dependence of Ec on Re and ω is suppressed
for clarity). Recently, we found (see Rabin et al. (2012) for more details of our method and
the results) that Ec(0) = 2.232× 10−6 for Re = 1000 using a fully nonlinear variational
method (Pringle et al. (2012)) in a computational box 4.08π-periodic in x and 1.05π-
periodic in z with a time horizon T ≈ 300. Our nonlinear variational method determines
the spatial structure of the incompressible initial velocity perturbation with given initial
perturbation kinetic energy which maximises perturbation kinetic energy at a certain
target time, by a four-step algorithm, effectively a nonlinear generalization of the ‘direct-
adjoint’ looping algorithm as described in Schmid (2007). In the first step, an initial
condition guess of the disturbance ‘forward’ flow velocity û(0) with initial disturbance
energy Ê0 is integrated ‘forwards’ as a solution of the nonlinear Navier-Stokes equations
(2.5) to a target time T to yield û(T ). In the second step, this final flow velocity is
rescaled to yield a terminal state of the ‘adjoint’ velocity field v(T ) = û(T )/E0. This
adjoint velocity field is then integrated ‘backwards’ in time from t = T to t = 0 as a
solution of the nonlinear adjoint Navier-Stokes equations

∂

∂t
v + (U+ û).∇v − (∇ ⊗ [û+U]).v +∇q =

1

Re
∇2v, (2.8)

where, using the Einstein summation convention, [(∇ ⊗ u).v]i = vj∂uj/∂xi, and q is
an adjoint ‘pressure’ imposing incompressibility. If v(0) does not have exactly the same
spatial structure as û(0), then the fourth step of the algorithm is to use some appropriate
search algorithm (such as steepest descent) to update the initial guess û(0), so that when
passing again around the direct-adjoint loop, the adjoint disturbance velocity eventually
satisfies v(0) ≈ cû(0) to within some tolerance for some constant c.
This iterative algorithm is a strategy to solve the Euler-Lagrange equations of a vari-

ational problem to maximise the disturbance energy gain Ê(T )/Ê(0) at a target time T
subject to various constraints imposed by Lagrange multipliers: the constant c imposing
the initial disturbance energy Ê(0); the pressures p̂ and q imposing the incompressibility
of û and v respectively; and the adjoint velocity field v(x, t) imposing the requirement
that û satisfies the full nonlinear three-dimensional ‘forward’ Navier-Stokes equations
(2.5). Setting to zero the variations of the Lagrangian including the disturbance energy
gain subject to these constraints with respect to û yields the requirement that v satis-
fies the nonlinear three-dimensional ‘adjoint’ Navier-Stokes equations (2.8). As in Rabin
et al. (2012), we use a modified version of the Diablo CFD solver (Taylor (2008)), which
is spectral in x and z and finite-difference in y, to solve these forward and adjoint equa-
tions, using resolutions up to 128× 1536× 32 to ensure adequate convergence. Such high
resolution in the cross-stream y−direction seemed to help convergence when the initial
energy Ê(0) of perturbation was close to Ec, otherwise a lower resolution of 256 was
perfectly adequate. Direct numerical simulation confirms that the modified base flow
remains linearly stable for A < 1. If it is not, Ec(A) = 0 as defined in (2.7) and our
optimisation algorithm cannot be applied.
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3. Results

To explore if Ec can be increased with A, we fix Re = 1000, adopt the same geometry
as in Rabin et al. (2012), i.e. 4.08π-periodic in x and 1.05π-periodic in z, and again choose
the disturbance energy gain Ê(T )/Ê(0) as the key functional to be optimised, using a
fixed long target time horizon of T = 300. In unoscillated flow at the same Reynolds
number, this target time is sufficiently large to identify whether the flow will undergo
the transition to turbulence or not for the accuracy in Ê(0) sought (Rabin et al. (2012)).
For example, reducing the energy of the minimal seed in the unoscillated situation by
1.4% clearly leads to relaminarisation by t = T (see figure 7 of Rabin et al. (2012)). The
oscillation frequency is chosen as ω = 0.01 so that the boundary oscillation modifies the
interior flow significantly (the nondimensional Stokes boundary layer width 1/

√
ωRe is

≈ 0.3) yet is large enough so that the induced flow is still significantly time-varying over
the timescale T for disturbances to reach turbulence. For this size of ω and the accuracy
to which we work (3 significant figures in Ê(0)), whether an initial disturbance decays
or triggers transition is still clearly discernible by T = 300.

The presence of the phase φ in the wall oscillations means the variational calculations
(which study the fate of disturbances added at t = 0) must be run for each φ ∈ [0, 1

2 ) to
deliver a threshold energy Eφ

c (A, φ) which depends on φ. Note that Ec(−A) = Ec(A) so
the results for φ ∈ [ 12 , 1) repeat those for [0,

1
2 ). The overall threshold energy for transition

for disturbances which are introduced at any time (but then are assumed to evolve in
isolation) is then

Ec(A) = min
06φ< 1

2

Eφ
c (A, φ). (3.1)

Figure 2a shows how Ec(A)/Ec(0) varies with A. Unsurprisingly, large values of A (>
0.4) lead to destabilization at reduced initial energies compared to the unoscillated flow.
However, oscillations with A < 0.4 actually increase Ec(A) above Ec(0), and for the ‘best
choice’ of A = 0.35, Ec(A) ∈ (3.01, 3.02)× 10−6 so Ec(A)/Ec(0) = 1.35± 0.01 which is a
significant improvement of nonlinear stability. An exploratory set of computations varying
ω actually gave our overall best stabilization result for A = 0.35 and ω = 0.01333. For
these parameters, we found Ec(A) ∈ (3.15, 3.16)×10−6, corresponding to Ec(A)/Ec(0) =
1.41, as plotted on 2a with a red square. The substantial variation of Eφ

c (A, φ) with φ (see
figure 2b) as well as A suggests that not only the magnitude of the background oscillation,
but also its timing relative to the growth of nonlinear perturbations are significant in
delaying transition to turbulence. For the choice of parameters A = 0.35, ω = 0.01, a
phase of φ = 0.485 yielded Ec(A). Of interest is the apparently anomalously high value
of Eφ

c (0.35, 0.31), and we discuss the reasons for this below.

To understand the apparent stabilizing effect of the boundary oscillation, we examine
the spatial and temporal behaviour of the minimal seed, labelled S0 and of initial distur-
bance energy Ec(0), which is the first disturbance as Ê(0) increases to trigger transition
in unoscillated PCF (A = 0). This disturbance S0 is localised away from the walls to
minimise its kinetic energy yet retains sufficient nonlinearity to trigger transition (Rabin
et al. (2012), top left plot in figure 3). Rescaling this disturbance from initial energy
Ec(0) ≈ 2.232 × 10−6 to 3.01 × 10−6, i.e. just below Ec(0.35) leads to turbulence at
T ≈ 100 (and A = 0), well before the time horizon of T ≈ 300 in the variational calcula-
tions, at which turbulence would only just be reached for Ê(0) = Ec(0)

+. Cross-sections
of the evolving flow (left panels of figure 3) show that the disturbance quickly expands
under shearing to produce large scale streaks (regions of faster and slower flowing fluid
in the streamwise direction) which fill the channel and then break down to small scales
predominantly at the wall (see Pringle et al. (2012) and Duguet et al. (2013) for more
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Figure 2. a) Estimated values (plotted with filled circles) or upper bounds given by
Eφ

c (A,φ)/Ec(0) for some φ (hollow circles) of Ec(A)/Ec(0) for various amplitudes A of oscillation
at ω = 0.01. Our overall best stabilization result of Ec(A) ∈ (3.15, 3.16)× 10−6 at A = 0.35 and
ω = 0.01333 corresponding toEc(A)/Ec(0) = 1.41 is shown as a red square. b) Eφ

c (0.35, φ)/Ec(0)
for various values of phase φ and ω = 0.01. The minimum value Ec(0.35) ≃ 1.35 occurs for
φ = 0.485 and is plotted with a solid symbol.

details of the sequential hierarchy of the growth mechanisms of such minimal seeds).
Interestingly, if the boundary oscillation is switched on with A = 0.35 and ω = 0.01, the
evolution is very different with the flow relaminarising even if S0 is further rescaled to
have initial energy slightly above Ec(0.35) at 3.02× 10−6 (not shown).
The structure and evolution of the associated minimal seed, labelled SA for the os-

cillated flow (A = 0.35 and ω = 0.01) and rescaled down slightly to the same energy
Ê(0) = 3.01 × 10−6 . Ec(0.35), changes significantly. The right panels of figure 3 show
the same initial mid-channel localisation but the subsequent globalisation of the distur-
bance with time is noticeably different. Now the preferred (lowest starting energy) route
to transition is one in which the large scale streaks produced clearly avoid the spanwise
shear set up near the oscillating walls, typically located within 0.5 of the walls at ±1.
The clear implication is that the spanwise shear set up by the oscillating wall inhibits
the small-scale breakdown of the streaks due to ‘bending’ near the walls as discussed in
detail by Cherubini et al. (2011) and Duguet et al. (2013). In fact, streaks have trouble
forming near the wall in the first place as they get smeared out by the spanwise shear
(note this effect is absent for steady spanwise motion of the walls which simply advects
the streaks as a whole). So Ec is not only increased by spanwise oscillation, but impor-
tantly the form of the minimal seed too is changed qualitatively. To reiterate this, the
flow evolutions of the two situations are shown in figure 3. They are clearly different,
with the unoscillated PCF (left panels) remaining turbulent, while the oscillated PCF
eventually relaminarises, as the initial energy Ê(0) has been scaled to a value just below
the critical value Ec(0.35) for transition.
To understand better how the spanwise shear affects the flow we examine the volume-

averaged spanwise shear rate squared, H := 〈(dW/dy)2〉, whose dependence on φ (or
equivalently on time, since ω = 0.01, φ ∈ [0, 1] corresponds to t ∈ [0, 200π]) is shown
in figure 4a. The black dots mark the initial values of φ of the various minimal seeds
whose scaled initial energy is plotted against φ in figure 2b. The time evolutions of the
disturbance energies of these various minimal seeds are plotted in figure 4b, and they
demonstrate that, irrespective of φ, all of the minimal seeds require a similar amount of
time to ‘unpack’ and approach the spatially-global ‘edge state’ (relative attractor on the
laminar-turbulent boundary), in a manner discussed in Rabin et al. (2012). Subsequent
to reaching the energy plateau where the edge state exists it appears that the initial
value of φ heavily influences how long the flow remains close to the edge state before
transitioning to turbulence. On both plots in figure 4 we have marked φ = 0.15 and 0.3
(also due to periodicity 0.65 and 0.8), as between these values of φ the spanwise shear,
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Figure 3. Contours of the streamwise disturbance velocity (streaks) û.ex at t = 0, 48, 88
and 128 for the evolving minimal seeds S0 (left for A = 0) and SA (right for A = 0.35), both

rescaled to Ec(0) < Ê(0) = 3.01 × 10−6 . Ec(0.35). Red/dark indicate negative values and
white/light indicates positive values with 10 contours drawn across the following ranges: top
left down to bottom left [−0.001, 0.0006], [−0.1, 0.1], [−0.4, 0.5], [−0.6, 0.6]; top right to bottom
right [−0.0025, 0.0015], [−0.2, 0.2], [−0.2, 0.2], [−0.2, 0.2]. The black arrows on the right plot in-
dicate W (y, t) to highlight the changing spanwise shear near the walls (W = 0 on the left for
unoscillated PCF and φ = 0.485 on the right).

H attains its maximum value and also because between these values of φ it appears
that no flow transitions from the edge state to turbulence. This appears to support our
previous conclusion that the spanwise shear disrupts the bending and destabilization of
the streamwise streaks which is the process that triggers the breakdown of the edge state.
Armed with this we can begin to understand why Eφ

c (0.35, φ)/Ec(0) varies so signifi-
cantly with φ and specifically why Eφ

c (0.35, 0.485)/Ec(0) is minimal and why
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Figure 4. a) Time variation of H = 〈(dW/dy)2〉 against φ. Black dots indicate values of φ

for which the time evolution of disturbance energy Ê(t) is presented below. The time interval

shown as φ ∈ [0, 1] corresponds to t ∈ [0, 200π]. b) Time evolution of Ê(t) against t over the
same time interval as panel a) for φ =0.01 (black line), 0.31 (blue line), 0.36 (green line),
and 0.485 (red line). The vertical dashed grey lines indicate the time intervals, associated with
the integrated spanwise shear where no flow appears to undergo transition from near the edge
state to turbulence. Note the variation of the initial Eφ

c (0.35, φ) of the different minimal seeds,
in particular the relatively large initial value for the φ = 0.31 case and the relatively small
initial value for the φ = 0.485 case. Each solution goes through three characteristic stages: an
‘unpacking’ and growth from an initially localised perturbation to the characteristic edge state
energy level with Ê ∼ O(10−3); a certain period of closeness to the edge state; and then an

ultimate transition to turbulence with further elevation of energy to Ê ∼ O(10−1).

Eφ
c (0.35, 0.31)/Ec(0) is so much higher than the surrounding values. It appears that for

φ = 0.485 (plotted with a red line) the duration of the initial ‘unpacking’ phase is such
that by the time the seed has ‘unpacked’ and approached the edge state the quantity H
has passed its maximum and is already decreasing, and so the shear rate is sufficiently
low to allow the flow to transition. Therefore because the flow remains close to the edge
state for a relatively short period of time the initial perturbation can have a lower energy,
as it is able to bypass the longer periods of time that other seeds must spend close to
the edge state. Effectively, it has arrived at the edge state just in time to ‘catch’ the
extra streak bending which triggers streak break down and hence transition. Although
not quite so well-timed, the behaviour for φ = 0.01 (plotted with a black line) is quite
similar, in that the flow remains close to the edge state for a relatively short time before
undergoing the transition to turbulence (recall the dynamics is periodic across φ ∈ [0, 1

2 ]).

Conversely, for φ = 0.31 (plotted with a blue line) it appears that the initial unpacking
phase ensures that the minimal seed arrives just too late at the edge state, and so it
has ‘missed’ its opportunity to undergo transition during the first low H time interval.
Therefore, although it can grow in amplitude during this low H time interval, it must
‘wait’ close to the edge state for an extended period of time until it is able to ‘catch’
the next opportunity for extra streak bending to trigger transition. Thus, in order that
the flow remains close to the edge for an extended period, this particular minimal seed
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requires a considerably larger initial energy than other seeds. For a neighbouring larger
value of the phase φ = 0.36 (plotted with a green line) the initial energy amplitude is
somewhat smaller as the amplification during the initial ‘unpacking’ phase is stronger,
but the subsequent evolution close in the vicinity of the edge state is very similar.
Imposing the spanwise oscillation at a fixed constant amplitude (an active, open-loop

control) consumes energy through driving the spanwise base flow W against viscous
dissipation, and it is only worthwhile if there is an overall energy saving. The dissipation
rate DB of the full base flow U = yex +Wez is defined as

DB =
1

Re
〈|∇U|2〉 = 1

Re

[

1 +
A2θ

2

(

sinh(2θ)− sin(2θ)

cosh(2θ) + cos(2θ)

)]

(3.2)

and takes the valueDB ≈ 1.14/Re = 1.14DB0 for the caseA = 0.35 and Re = 1000 where
the overline signifies averaging over one period of spanwise oscillation, and DB0 = 1/Re
is the dissipation rate of the unoscillated basic laminar PCF yex. In comparison, the
turbulent dissipation rate is approximately 4.3DB0, as shown in figure 1b. Thus, if the
system is operating in an environment where the ambient noise has (kinetic energy)
amplitude between Ec(0) and Ec(0.35), there should be a clear power saving of ≈ 3.1D
in maintaining the shear across the plates, as represented by the shaded region in figure
1b. The use of the word ‘should’ is deliberate since the computations described here
have considered only the ‘simplest’ fully nonlinear problem of disturbing the Navier-
Stokes equations with one finite-amplitude disturbance at one point in time. Studying a
multiply or continuously disturbed system is obviously the next step towards reality.
It is also worth noting that our stabilization result is not simply a renormalisation

effect. Augmenting the base flow yex by a spanwise oscillation W (y, t)ez suggests that
Re should be renormalised to a higher value based on the combined average speed of
the walls. This would (generically) be expected to lower the threshold for transition (e.g.
Peixinho & Mullin (2007)). Instead, we have demonstrated an increase in the threshold
brought about by a qualitatively different, and more energetic base flow. One could also
argue that the threshold energy needs to be rescaled with the new underlying base energy
which includes the spanwise flow. Once again averaging over one period of spanwise
oscillation, the kinetic energy EB in the oscillating base flow can be shown to be

EB =
1

2
〈|U|2〉 = 1

6

[

1 +
3A2

4θ

(

sinh(2θ) + sin(2θ)

cosh(2θ) + cos(2θ)

)]

≈ 1.04

6
= 1.04EB0, (3.3)

for the case A = 0.35 and Re = 1000, where the unoscillated PCF flow has background
kinetic energy EB0 = 1/6. Therefore, the base kinetic energy is only 4% (on average)
larger than that of the unoscillated flow whereas the best increase in the energy threshold
we have found is approximately 41%.

4. Discussion

At the heart of our calculations reported here is a nonlinear optimisation problem
with the Navier-Stokes equations as a constraint and the important assumption that the
global optimal - the disturbance of a given initial norm which achieves the largest energy
gain at the end of a given period - has been identified, using a relatively new variational
iterative method which has been recently applied to several canonical flows (see also
Pringle & Kerswell (2010); Cherubini et al. (2010, 2011); Monokrousos et al. (2011);
Pringle et al. (2012); Rabin et al. (2012); Duguet et al. (2013); Cherubini & De Palma
(2013)). Since this problem is nonlinear and non-convex, proof of global optimality is
not ever likely to materialise. However, one can still gather supporting evidence for this
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claim by considering a suite of different starting guesses in the optimisation algorithm and
recovering the same optimal (e.g. see figures 14 and 15 of Pringle et al. (2012)). As further
reassurance, recently two groups have found what looks to be the same minimal seed in
PCF using variational problems built around different functionals (total dissipation in
Monokrousos et al. (2011) and energy gain at the end of a given period in Rabin et al.

(2012)).

In terms of effort, there is no escaping the fact that the method is computationally
expensive. Typically, O(50) iterations are needed in our calculations (each requires inte-
grating the Navier-Stokes equations forwards and ‘backwards’ across [0, T ]) to identify
the optimal solution at a given set of parameters (here Re, ω, A and φ). Given enough
cpu flops, there is no reason why the method cannot be scaled up to much larger (realis-
tic) domains, with the detailed dependence of the ensuing drag reduction on amplitude,
frequency and flow Reynolds number being determined. Realistically, however, this fully
nonlinear approach is not currently competitive with other approximate methods for
real-time decision-making in a feedback control context. Such approximate methods can
generate sub-optimal but nevertheless useful answers much more quickly. For example,
Jovanović (2008) conducted a sensitivity analysis of the linearised Navier-Stokes equa-
tions in laminar PCF subject to spanwise oscillations of a single wall and found an
‘optimal’ oscillation frequency of 5/Re which is only just under a half of that found
here. But computers are only getting more powerful and it is not hard to imagine that
nonlinear strategies will eventually come to the fore.

In summary, we have demonstrated, by using a nonlinear variational method, that it
is possible to stabilize PCF in an energetically efficient manner by imposing spanwise
oscillations. There is a ‘sweet spot’ in the amplitude and frequency of the spanwise
oscillations where the spanwise shear is sufficiently strong and reaches far enough from
the walls to stabilize disturbances which would otherwise trigger transition. The key
new capability demonstrated here is that we are able to quantify how the disturbance
threshold to trigger transition has moved under boundary manipulation, and to identify

the structure of the new ‘minimal seed’, i.e. the most dangerous initial perturbation. It
should be clear that this method is a very valuable new tool in analysing the nonlinear
behaviour of, for example, wall-bounded shear flows where classical linear analysis around
the basic state is known to be irrelevant.
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