
1	
	

Genetically-encoded biosensors in plants: pathways to discovery 
 
Ankit Walia1, Rainer Waadt2*, Alexander M. Jones1 

 

1 Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, United Kingdom; email 
ankit.walia@slcu.cam.ac.uk, alexander.jones@slcu.cam.ac.uk 
2 Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Heidelberg, 69120, 
Germany; email rainer.waadt@cos.uni-heidelberg.de 

* Equal contribution 
 
To whom correspondence should be addressed: alexander.jones@slcu.cam.ac.uk 
 

Keywords 
Genetically encoded biosensors, live imaging, cell biology, calcium, dynamics, FRET 

 

Abstract 
Genetically encoded biosensors that directly interact with a molecule of interest were 

first introduced over twenty years ago with the advent of fusion proteins that served as 

fluorescent indicators for calcium ions in solution. Since then the technology has 

matured into a diverse array of biosensors that have been deployed to improve our 

spatiotemporal understanding of molecules, like calcium, whose dynamics have 

profound influence on plant physiology and development. In this review, we will address 

several types of biosensors with a focus on genetically encoded calcium indicators that 

are today the most diverse and advanced group of genetically encoded biosensors. We 

will then consider the discoveries in plant biology made using biosensors for calcium, 

pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, 

and nutrients such as zinc, phosphate, nitrate and ammonium. These discoveries were 

dependent on the engineering, characterization and optimization required to develop a 

successful biosensor and also on the methodological developments required to 

express, detect and analyze the readout of such biosensors in planta. As these steps 

are iterative for current biosensors and as most extant biosensors have yet to be 

deployed in plants, the contribution of genetically encoded biosensors to plant biology 

stands to grow in the future. 
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Introduction 

In most plants, highly disparate metabolic activities occur in photosynthetic leaves, 

reproductive tissues, and subterranean root systems. Coordinating these activities in a 

dynamic environment necessitates continual mobilization of resources and information 

across the plant body-plan. Revealing how resources and information such as nutrients, 

metabolites, and signaling molecules are spatially distributed over time is thus a crucial 

step towards understanding how plants cope with the challenge of coordinating many 

cellular activities into a multicellular whole and do so in dynamic environments. Thus, 

there is a need to measure the levels of important molecules at physiologically relevant 

spatial and temporal scales and to make such measurements in vivo. Towards this end, 

many fields in which transgenesis is feasible have turned to genetically encoded 

fluorescent or luminescent biosensors to acquire high-resolution information with 

minimally invasive methodologies. Clearly a lack of such biosensors specific for a given 

analyte would limit a biosensing approach, but an ever-growing array of biosensors is 

available (144) many of which sense analytes relevant in plant biology.  

 

Definition of Biosensors 
'Biosensor' is a general term applied to many technologies that describes a molecule, 

organism, or device in a biological context that couples the sensing of a specific 

molecule of interest (analyte) or biological process to the emission of a quantifiable 

signal (6; 144; 161). The term 'bio' can imply a biological component of the biosensor or 

simply that it is incorporated into a biological system (6; 144). Idealized requirements for 

a 'sensor' are that it: 1) is highly selective for a specific analyte or biological process, 2) 

enables a quantitative readout overbiologically meaningful spatial, temporal, and 

concentration ranges, 3) exhibits a high signal-to-noise ratio and 4) does not perturb the 

biological process that it measures or the biological system in which it is integrated 

(144; 161; 198). A broad treatment of advances in analytic techniques including mass-

spectrometry as well as ectopic and genetically encoded biosensors was recently 

published with a focus on the plant hormones (142). In this article we mainly focus on 

genetically encoded fluorescent biosensors and the latest achievements in plants using 

such biosensors. 
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Genetically Encoded Fluorescent Biosensor Types 
Genetically encoded fluorescent biosensors generally consist of a sensory module 

coupled to fluorescent proteins (FPs) that are detected by fluorescence microscopy 

(161). Based on their biochemical properties and requirements for interactions with the 

cellular environment, genetically encoded fluorescent biosensors are categorized into 

indirect, typically irreversible biosensors that require additional cellular components to 

report on an analyte and direct, typically reversible biosensors that function 

independently of the cellular environment (108; 187). According to this definition, a 

recombinant direct biosensor can also monitor analyte concentration changes in vitro, 

while an indirect reporter cannot. Examples for indirect reporters are transcription-, 

degradation-, and translocation-based reporters or reporters that consist of more than 

one molecule. The first direct biosensors were developed to monitor cellular [Ca2+] two 

decades ago (Miyawaki et al., 1997 - 9278050; Persechini et al., 1997 - 9330791). 

 Genetically encoded fluorescent biosensors are further categorized based on the 

properties of their sensory module and attached FPs. If the FP by itself senses the 

analyte, it can be considered an ‘intrinsic’ biosensor (144), whereas a chimera of FPs 

fused to a sensory module that is derived from another protein or proteins (144) is 

considered an ‘extrinsic’ biosensor. A sensory module is not necessarily a polypeptide 

sequence, but could also be encoded in a nucleotide sequence, for example in 

transcriptional reporters. 

 Another categorization of genetically encoded fluorescent biosensors is based on 

the number of incorporated FPs and whether the fluorescent readout is intensiometric or 

ratiometric. Single-FP biosensors are generally intensiometric with one excitation (Ex) 

and one emission (Em) maximum. However, single-FP biosensors can also be 

ratiometric when the FP has two excitation wavelengths that respond differentially to an 

analyte, for example the pH-sensitive ratiometric pHluorin (121) and redox-sensitive 

roGFPs (72). Alternatively, singe-FP ratiometric biosensors can exhibit two emission 

readouts that respond differentially to an analyte (73; 205). Two-FP biosensors also 

enable a ratiometric readout when the two FPs respond differentially to an analyte (62) 

or, as in Förster Resonance Energy Transfer (FRET)-based biosensors, when the two 
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FPs form a FRET pair and the amount of energy transfer responds to an analyte. FRET-

based biosensors have typically harbored a cyan FP and yellow FP variant that function 

as a FRET-pair with a ratiometric readout calculated from (ExCFPEmYFP)/(ExCFPEmCFP) 

(Okumoto et al., 2012 - 22404462; Uslu and Grossmann, 2016 - 26802805). Recently, a 

new type of ratiometric genetically encoded fluorescent biosensor has been designed 

based on dimerization-dependent FP (ddFP) exchange (5; 50). In the following, we will 

describe the principles of different genetically encoded fluorescent biosensors types in 

more detail and give an overview of what we learned from biosensor-based approaches 

in plant systems. 

  
Indirect biosensors 

Synthetic or native hormone responsive promoters or promoter motifs have been 

successfully used as an indirect readout for the hormone signaling strength in vivo (193; 

198). For example, the synthetic DR5 and DR5v2 promoters driving b-glucuronidase or 

fluorescent probes report on the transcriptional response to auxin accumulation (110; 

186). These reporters have been widely and successfully used to advance our 

understanding of auxin signaling dynamics in plant cells during plant development and 
environmental responses (23; 76; 110; 147; 160; 181; 186; 198).  

A similar promoter-reporter approach was used to explore dynamics of cytokinins 

(TCS::GFP and TCSn::GFP (22; 64; 133; 207), ethylene (EBS::GUS (179), and abscisic 

acid (53). One primary limitation of these transcriptional reporters, such as DR5 and 

TCS::GFP, is that they report the output of the hormone signaling pathway rather than 

the actual hormone content within a cell. Thus, the final output can vary with changes in 

the components of the corresponding signaling pathway and be affected by crosstalk 

from other pathways. Furthermore, there is often a temporal lag between the induction 

of the transcriptional reporter in response to an initial signaling event, reflecting the time 

needed for transcription, translation, and reporter protein maturation. The time-interval 

can be significantly improved by using fast-folding versions of GFP (such as the YFP 

variant VENUS) or luciferase as reporters (65; 170). For example, DR5::VENUS has 

been used to reveal changes in auxin levels during many developmental contexts, such 
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as developing primordia in the shoot apical meristem (76) and stomatal development 

(107). Despite the caveats inherent with promoter-reporter analyses, they have 

nonetheless been instrumental in our understanding of many physiological and 

developmental processes upstream and downstream of plant hormone distributions.  

Fluorescent probes fused to signaling components can also be used as biosensors. 

Because their dynamics being tracked, e.g. localization or protein degradation, does not 

involve/require de novo transcription and translation, these reporters can exhibit 

improved temporal resolution and reduced potential for crosstalk from other signaling 

pathways compared with transcriptional reporters. For example, changes in BZR1-CFP 

localization have been used to reveal spatiotemporal brassinosteroid signaling in 

Arabidopsis roots and hypocotyls (32; 154).  The localization of NIN-Like Protein7 

(NLP7-GFP) is regulated by nitrate through a nuclear retention mechanism in 

Arabidopsis and thus can report indirectly on nitrate levels (116). Dynamics of 

phospholipids that play an important role in plant development as well as mediating 

abiotic and biotic stress responses (135) have also been monitored through localization 
based fluorescent probes (176; 188; 189)  

Protein degradation-based reporters have also been widely used in plants, starting with 

GFP-DELLA fusion proteins whose stability is responsive to the phytohormone 

gibberellin (136).  This signaling event has been used to indirectly monitor GA levels 

through tracking the fluorescence of GFP-RGA fusion protein (1; 49; 175). Although 

GFP-RGA has been observed to be stabilized compared with endogenous and 

untagged AtRGA (52), GA-induced cell elongation in hypocotyl cells was preceded by 

reduction in GFP-RGA levels (164), and an increase in GFP-RGA levels was observed 

in the hypocotyls during photomorphogenesis (2), where light-induced signals inhibit GA 
and hypocotyl growth.  

In the field of auxin biology, a major advance was made where a novel biosensor, DII-

VENUS, was developed in which the DII-VENUS reporter system was coupled with the 

degron motif of AtIAA28 (29). The DII-VENUS biosensor fluorescence levels are 

inversely correlated to endogenous auxin levels, and the biosensor has been used to 

map auxin distribution with cellular resolution during various developmental processes 
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(14; 15; 29; 107). A Jas9-VENUS biosensor that is degraded in the presence of JA was 

used to map local changes in JA levels in Arabidopsis roots and revealed two distinct 

phases of JA accumulation in the root upon wounding of cotyledons (105). Whereas 

GFP-RGA, DII-VENUS, and Jas9-VENUS are intensiometric degradation-based 

reporters, a ratiometric version of DII-VENUS was developed in which plants express 

both, the auxin sensitive DII-VENUS and a stable mDII-tdTomato (110). This R2D2 

biosensor has been applied to indirectly measure auxin levels during seed development 

(56) and root elongation (16). Another ratiometric degradation-based biosensor, 

StrigoQuant, was engineered by linking AtSMXL6 with a firefly luciferase (FF) to monitor 

the strigolactone (SL) sensitive degradation of AtSMXL6. Inclusion of a normalization 

element in renilla luciferase (REN) that is not SL sensitive was used to allow a 

ratiometric readout. In StrigoQuant, both SM-FF and REN were engineered on a single 

construct separated by a self-processing 2A peptide that allowed for co-translation and 

cleavage from a single transcript (162). Arabidopsis protoplasts transiently expressing 

StrigoQuant were used to monitor the changes in ratio upon treatment with synthetic 

strigol-like SL analog (rac-GR24) as well as providing quantitative insights into the 

stereochemistry of strigolactone perception that has relevance at the level of receptor 
complex formation and initiation of SL signaling cascade. 

Direct intrinsic biosensors 
Intrinsic biosensors harbor modifications within the FP to make them sensitive to an 

analyte (144). pH-dependent excitation and emission properties are intrinsic features of 

FPs (144) and several FPs were engineered to monitor cellular pH changes (21; 63). 

Ratiometric pHluorin/phGFP is a dual excitation (395 nm and 475 nm) and one emission 

(508 nm) biosensor with a pKa of 6.9 (121; 130; 165). For phGFP 395 nm excitation 

increases and 475 nm excitation decreases with increasing pH (121). An alternative to 

phGFP is Pt-GFP from the organism Ptilosarcus gurneyi with dual excitation (390 nm 

and 502 nm) and one emission (508 nm) and a pKa of 7.3 (165). Note that for Pt-GFP 

390 nm excitation decreases and 502 nm excitation increases with increasing pH (165). 

The rather neutral pKa of phGFP and Pt-GFP suits them best for pH measurements in 

the cytoplasm. To monitor pH changes in a more acidic environment the dual excitation 
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and dual emission pH biosensor pHusion (pKa of 6) has been designed, consisting of 

an mRFP1-EGFP tandem FP-pair with EGFP being the pH sensitive moiety (62). 

 The pKa of YFP is dependent on the concentration of halide or nitrate ions and at 

pH 7 YFP fluorescence decreases with increasing concentrations of chloride or nitrate, 

making it suitable as a halide biosensor (87; 194). Based on these findings YFP-H148Q 

variants have been generated with improved anion sensitivities for iodide, chloride and 

nitrate (58). Through the fusion of chloride-sensitive YFP to the insensitive CFP a 

ratiometric FRET-based chloride biosensor has been developed, termed Clomeleon 

(101). ClopHensor (E2GFP fused to mDsRed) is a triple excitation and dual emission 

biosensor in which 458 nm excitation of E2GFP is pH-independent, 488 nm excitation of 

E2GFP is pH-dependent and 543 nm excitation of mDsRed is pH- and chloride-

independent, making ClopHensor suitable to assess pH and chloride concentration 

changes simultaneously (11). 

 Beyond intrinsic pH and halide sensitivity, FPs have been engineered to either 

enhance or introduce intrinsic sensitivity to metals (33; 155), redox conditions (rxYFP 

and roGFP, (72; 146), and calcium (CatchER, (182).  

 

Direct extrinsic biosensors: Calcium Indicators as Prototypes 

The possibilities for designing direct extrinsic fluorescent biosensors can be best 

illustrated by the development of genetically encoded calcium indicators (GECIs). The 

development of the first GECIs two decades ago initiated the advent of direct 

biosensors. Since then, more than 40 fluorescent GECIs have been described (151) 

and the numbers are steadily increasing (Figure 1). Therefore, fluorescent GECIs are 

the most advanced and widely adopted direct fluorescent biosensors. 

 Two early design strategies for direct GECIs continue to be widely applied. 

These are single-FP intensiometric biosensors (13; 138; 140) and two-FP ratiometric 

FRET-based biosensors (124; 153). Single-FP GECIs use FPs that are split at a certain 

position (between amino acids 144 and 145 for GFP) and in which their original N-

terminus is re-fused to the C-terminus via a short flexible linker (13). Fusion of sensory 

modules to such circular permutated FPs (cpFPs) with altered FP topology can have a 

profound effect on the FP fluorescence. This principle has been used to design two 
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types of cpFP based GECIs, dependent on the insertion site of the sensory module. In 

Camgaroos the calcium-binding calmodulin (CaM) was inserted in between the cpFP 

fragments (13; 66), whereas in Pericams and GCaMPs the CaM-binding M13 fragment 

from myosin light-chain kinase (M13) was fused to the N-terminus, and CaM was fused 

to the C-terminus of the cpFP (138; 140). GCaMPs have been extensively engineered 

to improve their signal-to-noise ratio and calcium-binding properties (4; 39; 180; 185). 

However, the latest achievements based on the GCaMP design include single-FP 

GECIs that emit fluorescence at different wavelengths (3; 205) or that enable 

photoactivation/photoconversion (24; 57; 79). 

 Two-FP ratiometric GECIs are typically FRET-based and grouped into three 

different classes. These are the yellow cameleons (124), the FIP-CA indicators (153) 

and troponin C based biosensors (75; 115; 183). In yellow cameleons the calcium-

binding CaM-M13 sensory module was inserted between N-terminal ECFP as the FRET 

donor and C-terminal EYFP as the FRET acceptor (124). Another configuration was 

used for FIP-CA indicators, in which the M13 peptide linked both FPs and CaM was 

located at the C-terminus (153). Cameleons and troponin C based biosensors were 

both committed to several rounds of improvements, including the use of cpFPs as FRET 

acceptor (139), a re-design of the sensory module to reduce perturbation of cellular 

components (148) and the modification of the CaM-M13 linker to increase their calcium 

affinity (80). 

 It is also worth mentioning a new design for ratiometric GECIs based on ddFPs 

(50). A ddFP consists of a monomer (copy A) that contains a chromophore, and a 

monomer (copy B) that does not form a chromophore but increases the fluorescence of 

copy A after AB heterodimer formation. Copy B can form heterodimers with green (GA) 

or red (RA) copies to form functional green or red ddFPs. The ddFP based GECI is a 

combination of all three monomer copies that are linked via RA-CaM-B-M13-GA (50). 

According to the calcium-dependent structural conformation of the CaM and M13 

domains the B copy forms either a functional ddFP with the GA or RA copy resulting in 

calcium-dependent changes in red/green emission ratio changes. The ddFP-based 

biosensor design opens new possibilities and has been applied to monitor various 

biological processes (5; 6; 50). 
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 Single-FP GECIs exhibit higher signal-to-noise ratios compared to FRET-based 

GECIs (151). However, at high magnifications and during prolonged imaging, 

ratiometric biosensors are preferred as they are internally normalized and can 

compensate for small focal drifts or variations in GECI concentrations (143). To 

combine the high signal changes of single-FP GECIs with a ratiometric readout, a 

reference FP was fused to the C-terminus of single-FP GECOs and GCaMP6f (Waadt 

et al., In Press) or the reference FP LSSmOrange was inserted within the cpFP of 

GCaMP6s (Ast et al., In Press, Figure 1). 

 

Choice of the right biosensor variant and design 
The huge number of GECIs not only illustrates the variety of biosensor designs but also 

implies the question why we need so many GECIs and which ones are the best to use 

for a certain experiment. Efforts to improve GECIs followed the goals to increase the 

signal-to-noise ratio, modify the binding affinity, improve the binding kinetics, decrease 

the buffering capacity, make them less invasive, enable subcellular analyses and 

multicolor approaches (Figure 2). Generally it is recommended to use latest biosensor 

versions as they likely exhibit improved properties. However, the choice of the right 

biosensor depends on the available microscopic setup and the experimental 

requirements (151; 158). Especially for subcellular analyses there are certain 

biochemical requirements that need to be considered. Analyte concentrations, pH and 

autofluorescence can vary between different cellular compartments and tissues. To 

enable reliable and adequate analyses the analyte binding affinity of the biosensor 

should be close to the steady state analyte concentration in the respective 

compartment. Most FPs are sensitive to acidic environments (169; 170). Therefore the 

pKa of a chosen FP should not match the compartment pH, unless monitoring of pH is 

desired (170). Plants contain many fluorescent compounds (61). Therefore, FPs should 

be chosen of which excitation and emission can be spectrally separated from the 

autofluorescent compounds that are present in the imaged compartment. 

 The different configurations and biosensor designs provide some flexibility for the 

design of novel direct biosensors. However, it requires an idea about a potential 

sensory module. If a three-dimensional structure of the sensory module is available, the 



10	
	

biosensor configuration (cpFP- or FRET-based) should be chosen dependent on the 

structural orientation of the sensory module N- and C-termini. As the further 

development appears empirical (144), screening technologies using a high 

combinatorial space of sensory module variants and FRET-pairs (89) eventually leads 

to the identification of candidate biosensors for further optimization. Optimizations 

strategies can be structure guided followed by random site directed mutagenesis (4; 

185) or guided by large screenings of mutant biosensor libraries in E. coli (111; 152; 

205). Recently a novel strategy for the identification of cpFP insertion sites into sensory 

modules has been described (137). In this approach, cpGFP was randomly inserted into 

maltose-binding protein using a transposon-based cloning strategy followed by FACS 

sorting and next generation sequencing. Through the use of next generation 

sequencing the authors could provide a comprehensive view of hotspots for insertion 

sites (137). 
 
Biological discoveries made with biosensors 
 

Calcium imaging 
Calcium is an important signaling molecule that mediates multiple physiological and 

developmental processes and exhibits rapid fluctuations in concentration in a variety of 

subcellular compartments (51; 100). Biological findings reported using fluorescent 

GECIs in plants have been described in currently approximately 80 publications. Here 

we will focus only on the most important and latest findings generated using fluorescent 

GECIs. 

 

Calcium imaging in guard cells 
Calcium imaging in plants using FRET-based yellow cameleons has been pioneered 

through work performed in guard cells (9). In guard cells yellow cameleons reported 

spontaneous cytoplasmic calcium oscillations, but also calcium oscillations that were 

triggered or modulated via external applications of calcium, ABA, MeJA, H2O2, changes 

in [CO2], sorbitol, yeast elicitor (YEL), chitosan, allylisothiocyanate, flg22, and chitin (7-

9; 82; 90-92; 112; 150; 184; 203; 204). Calcium transients in guard cells can be 
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artificially imposed via alternate perfusions with hyperpolarizing and depolarizing buffers 

(7). Using such a system, the optimal calcium pattern for stomatal closure was defined 

by three 5 min transients at periods of 10 min (7). 

 A challenge in guard cell calcium signaling research has been the identification of 

guard cell plasma membrane calcium-permeable (ICa) channels that are known to be 

activated by ABA, H2O2, MeJA, YEL and Chitosan (70; 92; 134; 150). Studies using 

yellow cameleons have contributed to the characterization of mutants mediating such 

calcium responses via ICa channels. For example, the gca2 mutant failed to activate ICa 

channels in response to H2O2 (150) and showed altered calcium patterns in response to 

external calcium,  ABA, and CO2 (7; 203). Plants with mutations in the calcium-

dependent protein kinase CPK6 were impaired in the generation of ABA-, MeJA- and 

YEL-induced calcium transients and the activation of ICa channels (129; 134; 202). 

AtrbohD/AtrbohF double mutants with reduced ROS production were impaired in 

mediating ABA-induced calcium transients and activation of ICa channels in guard cells, 

but responded to H2O2 (102). These findings point to the interdependence of calcium-, 

ABA- and ROS-signaling in guard cells. The interdependence of ABA and JA signaling 

was highlighted by the findings that the ABA synthesis mutant aba2-2 was suppressed 

in MeJA-induced calcium transients but responded to ABA (81). Beyond ICa channel 

activity, the use of yellow cameleons also contributed to the characterization of a 

potential role for vacuolar calcium sequestration (8) and plastidic calcium sensing in 

guard cell calcium patterns (71; 197).  

 Guard cell calcium imaging has been mainly performed on epidermal strips that 

were glued on glass slides (9). Recently, guard cell calcium imaging has been 

performed on intact leaves using either an inverted microscope to image the abaxial leaf 

surface while stimulating the adaxial leaf surface, or using an upright microscope for 

simultaneous imaging and stimulation of the abaxial leaf surface (90). Interestingly, 

treatments with the pathogen associated molecular patterns flg22 and chitin indicated 

different calcium response patterns dependent on the imaging setup. Indeed, flg22-

induced calcium oscillations in guard cells were only observed at the upright imaging 

setup (90). In contrast to previous studies that used yellow cameleons, this study 
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established the red emitting single-FP biosensor R-GECO1 for monitoring cytoplsmic 

calcium changes in guard cells. 

 

Calcium imaging in pollen tubes and during fertilization 
For a broader overview about the role of calcium in pollen tubes please refer to (94; 

178). Calcium imaging in pollen tubes was initially established using yellow cameleon 

YC2.1 in Lilium longiflorum and Nicotiana tabacum reporting a calcium gradient along 

with tip focused oscillations (149). During in vitro Arabidopsis pollen tube growth, tip 

focused calcium oscillations were found to be affected by calcium-permeable channel 

cyclic nucleotide-gated channel CNGC18 (60), ROS-producing NADPH oxidases 

AtRBOHH and AtRBOHJ (106), and D-Serine, probably via triggering glutamate 

receptor-like channels (GLRs) (68; 120). There is also pharmacological and genetic 

evidence that GLRs play a role in the self-incompatibility response (84). 

 During in vivo pollination in Arabidopsis, cytoplasmic calcium is increased in 

pollen grains at the pollen tube germination site and oscillates in the pollen tube tip after 

penetration of the papilla cell wall (86). In papilla cells cytoplasmic calcium increased 

during pollen hydration at the contact site with the pollen grain, after pollen protrusion, 

and during pollen tube penetration (86). During double fertilization, synergid cells 

displayed cytoplasmic calcium oscillations upon contact with the pollen tube tips, which 

also exhibited calcium oscillations. After growth acceleration, pollen tube burst induced 

a short calcium transient in the pollen tube tip that spread towards the shank. Pollen 

tube burst also induced a short calcium transient in eggand central cells as well as 

rupture of the receptive synergid. Finally another calcium transient appeared after 

successful fertilization of the egg cell (47; 69; 85; 141). This developmental process has 

been best illustrated through simultaneous visualization of calcium signals in pollen 

tubes using R-GECO1 and in synergids using YC3.6 and led to the conclusion that 

intercellular communications between the pollen tube and synergids coordinate their 

calcium dynamics and that synergids control sperm delivery through the FERONIA 

signaling pathway (141). 

 
Calcium imaging in roots 
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In Arabidopsis roots, calcium imaging using GECIs has been performed to study 

responses to gravity and mechanical stimulation, cold, changes in extracellular ion 

compositions (K+ and Na+), trivalent ions (Al3+, La3+ and Gd3+), osmotic stress, ATP, 

glutamate, H2O2, small peptides pathogen-associated molecular patterns and hormones 

(18; 27; 42; 74; 90; 98; 112; 126-128; 156)(Waadt et al. In Press). Generally these 

extracellular treatments induced local and transient cytoplasmic calcium concentration 

increases. However, the removal of extracellular triggers, such as the osmolyte sorbitol 

or K+, through perfusion with control- or depletion-, depolarization- and 

hyperpolarization buffers also induced calcium transients (18; 98; 112). Interestingly, K+ 

deficiency triggered two distinct responses, a rapid and transient calcium increase in the 

stelar tissue of the elongation zone and a sustained calcium elevation after 18 h in the 

root hair zone (18). It also has to be noted that commonly used calcium channel 

blockers such as La3+ and Gd3+initially induce rapid calcium transients in roots (156). 

Therefore, to block calcium channels using these chemicals, prolonged pre-treatments 

are required. 

 Gravistimulation triggered calcium signals at the side of the root located towards 

the gravity vector (128). Gravitropism is tightly associated with auxin signaling (163), 

and auxin also induced calcium signals in the root elongation zone (128; 172); Waadt et 

al., In Press). The cyclic nucleotide-gated channel 14 (CNGC14) appeared to be 

essential for auxin-induced calcium signals and cngc14 mutants were also impaired in 

gravitropic responses (172). Several members of the CNGC gene family have been 

characterized as calcium-permeable channels (60; 196)). Therefore, it is likely that 

CNGC14 represents the calcium-permeable channel activated by auxin. However, the 

mechanism for auxin-mediated CNGC14 activation remains to be elucidated. 

 Local salt stress in the root induced a calcium wave that traveled through the root 

cortex and endodermis at a speed of ~ 400 µm/s (42). This shoot-ward calcium wave 

was blocked through pretreatment with calcium channel blockers and affected salt-

induced gene expression in the shoot, indicating a long distance systemic salt stress 

response mediated by calcium (42). The speed of the salt-induced calcium wave was 

dependent on the vacuolar ion channel TPC1 and the ROS-producing NADPH oxidase 
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AtRBOHD (42; 54), indicating that an interplay between calcium and ROS is required for 

long distance calcium signal propagations (40; 178). 

 Calcium imaging using fluorescent GECIs has not only been applied in 

Arabidopsis but also in rice and legumes. Compared to Arabidopsis, calcium signals in 

rice displayed a lower signal amplitude and a greatly increased signal duration in 

response to glutamate and artificially-imposed calcium signals (19). In legumes GECI-

based calcium imaging has been mainly used to study the symbiosis with rhizobial 

bacteria and mycorrhizal fungi. Rhizobial bacteria and mycorrhizal fungi induced similar 

calcium patterns and required the same signaling components (95; 145; 173; 174). 

However, the calcium patterns depended on the stage of infection, with low frequency 

spiking during intracellular remodeling before infection, and high frequency during the 

initial stage of apoplastic cell entry (173). Symbiosis-induced calcium changes 

originated from nuclear membranes in Medicago truncatula root hairs and 

predominantly required the activity of the calcium ATPase MCA8 and cyclic nucleotide-

gated channels (30; 34). 

 

Subcellular targeting of GECIs 
GECIs have been targeted to several subcellular compartments and membranes (44) 

with recent targeting of YC3.6 and YC4.6 to the chloroplast stroma (113). While 

targeting of GECIs into organelles could help to discover organelle specific calcium 

responses, the attachment of GECIs to the cytoplasmic side of compartment-specific 

membranes might increase the spatial resolution of calcium response analyses (98).  

 There are controversial reports on whether the ER functions as a calcium store in 

plants. GECI-based calcium imaging in the ER lumen in combination with 

pharmacological treatments that induced calcium depletion from the ER suggested that 

the pollen tube ER serves as a calcium store  (83). On the other hand, imaging in roots 

indicated that ER calcium followed cytoplasmic calcium patterns in response to several 

stimuli, however with distinct ER-specific response dynamics (27). Based on these data, 

it has been suggested that the ER does not function as a source for calcium release for 

the contribution to cytoplasmic calcium patterns (27). 
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 Similar to the nucleus and ER, calcium signals in peroxysomes, mitochondria 

and chloroplasts followed cytoplasmic patterns with distinct response kinetics (112; 

113). Recently, YC3.6 has been used for the analyses of mitochondrial calcium 

responses in micu mutants that lack a mitochondrial calcium-binding protein with 

homology to components of the mitochondrial calcium uniporter machinery (195). 

Mitochondira of micu mutants displayed increased basal calcium levels and more rapid 

calcium responses with higher maximum calcium concentrations in response to ATP 

and auxin. It has been concluded that MICU functions as a throttle to control 

mitochondrial calcium uptake (195). 

 Compared to YC3.6 expressed in the cytoplasm, chloroplast stroma targeted 

YC3.6 exhibited decreased basal emission ratios in root plastids, indicative for lower 

basal calcium concentrations there (113). In response to a transition from white to low-

intensity blue light, stromal calcium increased steadily, but only in green tissues and 

independent of extrachloroplastic calcium. Single chloroplasts calcium imaging revealed 

infrequent stromal calcium spikes, that were dependent on extrachloroplastic calcium 

(113). 

 

Visualization of reactive oxygen species (ROS) and redox changes 
ROS are reactive forms of molecular oxygen and formed as toxic by-products in 

metabolic reactions but also act as signaling molecules to mediate metabolic-, growth- 

and developmental processes (93; 199). ROS levels are essential for life and need to 

be kept above a cytostatic- but below a cytotoxic level to enable proper redox biology 

(122). ROS levels are regulated through the concerted action of subcellular 

compartmentalized ROS-producing and ROS-scavenging mechanisms to maintain an 

optimal cellular redox state (123). 

 ROS/redox biosensors mainly include intrinsic probes (roGFPs; rxFPs) to monitor 

the glutathione redox state (2GSH/GSSG-ratio), and extrinsic biosensors for the 

NAD+/NADH-ratio, H2O2 (HyPer-family and modified roGFPs), and other ROS (26). 

Early work in plants using ROS/redox biosensors has been summarized previously (41). 

In plants roGFPs were mainly used to determine the subcellular glutathione redox 

potential (88; 159; 168), and to measure the glutathione redox state in mutants that are 
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involved in glutathione biosynthesis (118; 119). Recent experiments using roGFPs were 

performed to investigate the effects of abiotic stresses on organellar redox dynamics 

(28). Long term treatments indicated an increased glutathione oxidation in response to 

several stresses and some degree of organellar specificity dependent on the stress (28; 

168). 

 Short-term analyses of [H2O2] changes have been performed in Arabidopsis 

guard cells and roots using HyPer (20; 43; 77). Analyses indicated that H2O2 

scavenging in peroxysomes could be stimulated via artificial calcium elevations that 

might trigger the activation of catalases (43). 

 

pH measurements using pH-sensitive FPs 
pH homeostasis is important for secondary transport processes, protein modifications 

and sorting, and vesicle trafficking (166). Intracellular pH gradients are established 

through the coordinated activity of H+-pumps and associated ion transporters and 

indispensable for cellular compartmentalization and ion homeostasis (17; 166). Work in 

plants using pH sensitive FPs has been summarized previously (41; 63). Early work 

was performed using ratiometric pHluorin (Miesenböck et al., 1998 - 9671304) that was 

optimized for plants (termed phGFP) (130). phGFP enabled the visualization of pH 

gradients in Arabidopsis roots, with more acidic pH (6.5 - 7) in root-cap cells versus 

rather alkaline pH (7.3 - 7.6) in the elongation zone and an intermediate pH (7 - 7.3) in 

the meristematic zone (130). Ratiometric pHluorin reported pH gradients and pH 

oscillations in tobacco pollen tubes (31). Cytoplasmic pH oscillations were also 

observed in root hairs using the pH-sensitive GFP (H148D) (125). Ratiometric pHluorin 

has also been used to estimate apoplastic pH (59), and recently a whole palette of 

targeted ratiometric pHluorin variants has been used to map the pH in various 

subcellular compartments and organelles (117; 171).The reported data indicated a pH 

gradient within the endomembrane system (117; 171). 

 Compared to phGFP, the pH biosensor Pt-GFP has been successfully 

established in Arabidopsis to monitor anoxia-induced acidification in roots (165) and to 

investigate whether changes in [CO2] affect guard cell pH (200). A third pH biosensor, 

apo-pHusion, targeted to the apoplast enabled the monitoring of auxin-induced 
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apoplastic alkalinization in the root elongation zone (62). In hypocotyls apo-pHusion 

reported auxin- and gravity-induced apoplastic acidifications that were dependent of the 

canonical TIR/AFB-AUX/IAA auxin signaling pathway (55). pHusion was also used to 

determine the steady-state pH in the TGN/early endosome and in trans-Golgi cisternae 

(114). Data indicated that reduced V-ATPase activity in the det3 mutant (167) affected 

the steady state pH in the TGN/EE but not in trans-Golgi cisternae (114). Note that 

steady state pH values in the TGN/EE (pH 5.6) and trans-Golgi (pH 6.3) determined 

using pHusion (114) were not consistent with values determined using ratiometric 

pHluorin (TGN pH 6.3 and 6.1, trans-Golgi pH 6.9) (117; 171). These differences might 

result from different calibration protocols. However, due to the more acidic pKa of 

pHusion, this biosensor more reliably reports the pH in acidic environments (62). 

 
Primary metabolites 

Although widely distributed, the concentration of central metabolites can vary across 

spatial and temporal scales depending on subcellular compartment, cell type, 

developmental stage, and physiological condition. In many cases, little is known about 

the concentration of a given metabolite in compartments of plant cells, or how 

metabolite concentrations are regulated at the cellular or subcellular level. The use of 

biosensors can help to fill these knowledge gaps, and early studies with metabolite 

biosensors have proven particularly valuable in both the discovery and characterization 

of metabolite transport activities. A seminal study which made use of a suite of four 

glucose biosensors (FLIPglu-Δ13) with a range of affinities ranging from Kd = 170 nM to 

Kd = 3.2 mM led to a first view that cytosolic glucose concentrations in leaf epidermal 

cells are lower than root cells (48). FLIPglu-Δ13 glucose biosensors with Kd = 2 µM and 

170 nM were responsive to pulsed treatments with exogenous glucose in root cells, but 

non-responsive in leaf cells owing to apparent saturation prior to treatment (48). The 

surprisingly large range of biosensors that were responsive to glucose in vivo indicated 

that glucose levels are not under tight homeostatic control in relation to exogenous 

glucose levels. Subsequently, improvements in root imaging modalities (Figure 3) that 

coupled tighter temporal control over the liquid perfusion environment resulted in better 

quantitation of root responses to treatements with exogenous sugars (e.g. glucose and 
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sucrose (35; 36) and glucose and galactose (67). FLIPglu-Δ13 glucose biosensors that 

have minimal response to sucrose in vitro responded to sucrose perfusion with 60-95% 

of their response to equimolar glucose treatments when expressed in root cells, 

demonstrating that sucrolysis is rapid under the conditions tested (36). Long-term 

perfusion time-course measurements of root growth and the FLII12Pglu-700µ∂6 

biosensor that detects glucose and galactose in vitro indicated that glucose stabilized 

root growth in darkness shortly after the start of perfusion but galactose stopped root 

growth completely after 5 hours of perfusion (67).  

Such perfusion experiments can also be used to probe transport properties, for example 

the accumulation of exogenous glucose as measured using FLIPglu–600μΔ13 and 

exogenous sucrose as measured using FLIPsuc–90μΔ1 (Figure 4, (36). Results 

indicated that the sugar transporters known at that time, which depend on the proton 

gradient, were not responsible for the observed transport properties. A subsequent 

screen in HEK293T cells expressing Arabidopsis proteins along with a FRET biosensor 

for glucose led to the discovery of the SWEET family of sugar uniporters that contribute 

to sugar export in vivo (38). A similar progression for studies in amino acid transport 

involved characterization of partly protonophore insensitive glutamine transport in 

Arabidopsis roots using a glutamine biosensor (201) followed by the discovery of the 

UMAMIT amino acid uniporters that can contribute to amino acid export in vivo (25; 103; 

132). Although the majority of studies have focused on imaging in Arabidopsis, 

expression of glucose biosensors in rice revealed rapid and reversible glucose 

increases in vivo in response to several signals and stresses beyond glucose, with 

these responses falling in the detection range of the FLIPglu–2 μΔ13 biosensor with Kd 
= 2 µM (206). 

Recently, an ATP sensor (ATeam (96)) that was originally characterized for use in 

mammalian cells was deployed in Arabidopsis. ATeam1.03-nD/nA reports MgATP2- and 

was targeted to the cytosol as well as two ATP producing organelles (i.e. the chloroplast 

stroma and the mitochondrial matrix) to reveal spatiotemporal patterns of MgATP2- 

during normal development as well as during energy stress induced by hypoxia (45). In 
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addition to characterizing MgATP2- steady state patterning, substantial plasticity in 
MgATP2- was revealed (45). 

Hormones 

Two FRET-based biosensors for the phytohormone abscisic acid (ABA) have been 

developed that report on ABA dynamics in response to exogenous ABA or challenge 

with stress conditions (89; 192). The ABACUS1 (abscisic acid concentration and uptake 

sensor) was engineered by linking an ABA sensory module (PYL1 fused to a highly 

truncated ABA interaction domain of ABI1) to edCerulean as FRET donor and edCitrine 

as FRET acceptor (89). The ABACUS1 biosensor was used to detect reversible and 

dose-dependent ABA accumulation following pulsed ABA treatments in roots growing in 

the RootChip16, and it was shown that ABA elimination rate was cell-specific and 

accelerated by ABA (89). A similar but distinct ABA biosensor, ABAleon2.1, was 

engineered by fusing an ABA sensory module (PYR1 linked to catalytic domain of the 

ABI1) to mTurquoise as FRET donor and cpVenus173 as FRET acceptor. ABAleon2.1 

reported on endogenous ABA concentrations in response to abiotic stresses and was 

used to track the long-distance translocation of ABA between root, hypocotyl and shoot 

tissues in response to exogenous application of ABA (192). 

A recent FRET-based biosensor, Gibberellin Perception Sensor 1 (GPS1), detects the 

phytohormone gibberellin (GA) and was engineered by fusing a GA sensory module 

(AtGID1C GA receptor linked to the DELLA domain of AtGAI) with edCerulean as FRET 

donor and edAphrodite as FRET acceptor (Rizza et al. In press). GPS1 responds to 

nanomolar concentrations of bioactive GAs (e.g. Kd 24 nM for GA4) and exhibits slow 

apparent reversibility in vitro (Rizza et al. In press). Thus, GPS1 expressed in vivo can 

report increases in GA, but would not report on GA depletions. Expression of GPS1 

from a p16 promoter (cite p16 paper), which circumvented silencing observed 

previously (36; 48; 89), permitted detection of a gradient of GA in dark-grown hypocotyls 

of wild-type and light signaling mutants (Rizza et al. In press). GPS1 reported higher GA 

levels in larger cells of the dark-grown hypocotyl as compared with smaller cells near 

the apical hook and the apparent GA accumulation in the dark was reduced in a 

phytochrome interacting factor quadruple mutant (Rizza et al. In press). GPS1 also 
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reported a GA gradient in primary root tips, and this gradient of endogenous GA was 

mirrored by an accumulation gradient of exogenous GA4 (Rizza et al. In press). This 

indicated that GA patterning could be achieved in roots independently of patterns of GA 

biosynthesis.   

Nutrients  

Inorganic Phosphate 

Plants acquire and assimilate phosphorous in the form of inorganic phosphate (Pi) 

which is required for important cellular processes such as energy transfer reactions, 

signal transduction, and enzyme activities. A second-generation FRET-based biosensor 

that detects inorganic phosphate (Pi), cpFLIPPi, consists of cyanobacterial Pi binding 

protein fused between eCFP as FRET donor and cpVenus (circularly permuted) as 

FRET acceptor, was recently developed and used in planta (131). The cpFLIPPi 

biosensor revealed changes in cytosolic Pi concentrations in root epidermal cells in 

response to Pi starvation and replenishment. In addition, a plastid-targeted version of 

the cpFLIPPi sensor was used to assess the role of plastidic Pi transporter PHT4;2 in Pi 

transport (131).  

Zinc 

High-affinity FRET-based Zn2+ sensors, called eCALWY-1, were developed that contain 

two metal binding domains, ATOX1 and WD4, linked via a flexible linker and flanked by 

cerulean as FRET donor and citrine as FRET acceptor (190). Binding of Zn2+ in 

between the two metal-binding domains causes a decrease in energy transfer that 

reports on Zn2+ concentrations. Using eCALWY-1 and modified versions in Arabidopsis 

root cells, Lanquar et. al (104) reported on cytosolic free Zn2+ concentrations in roots 

supplied with varied exogenous Zn2+ concentrations using the RootChip (PMID: 

22186371). By combining a FRET-based biosensor with the perfusion control afforded 

by the RootChip, these experiments indicated the involvement of low- and high- affinity 

uptake systems as well as release of internal stores of Zn2+ governing Zn2+ homeostasis 

in living cells (104). 

Nitrate and Ammonium Transport 
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Transporters for ammonium and nitrate ions act as dual function transporter/receptors, 

or transceptors (10; 97; 109; 191), but the activity status of a specific transporter is 

difficult to assess within a living plant.  De Michelle et al. (46) created an transport-

activity biosensor by inserting a circularly permutated GFP (mcpGFP) into the cytosolic 

loop of the Arabidopsis ammonium transporter AMT1;3. This intensiometric approach is 

based on tracking mcpGFP fluorescence changes that result from conformational 

changes in AMT1;3 that occur during transport. Yeast cells expressing AMT1;3-

mcpGFP biosensors (AmTracs) showed concentration-dependent fluorescence intensity 

changes in response to ammonium chloride treatments that correlated with the transport 

activity of AMT1;3. Two more ammonium transport activity state biosensors were 

created by utilizing the same approach, and these chimeric AmTrac1;2 and MepTrac 

biosensors maintained the transporter activity in yeast cells and exhibited intensiometric 

fluorescence responses to ammonium treatments (46). Ast et al. (12) characterized the 

photophysical properties of different AmTrac biosensors and replaced key amino acid 

residues in the mcpGFP of AmTrac to construct a set of ratiometric dual-emission 

AmTrac biosensors named deAmTracs (12).  

Ho and Frommer (78) sandwiched the nitrate transceptor CHL1 between mCerulean 

and Aphrodite, and exploited conformational rearrangements during the transporter 

cycle that quenched fluorescence of the mCerulean moiety. This chimera, NiTrac1, was 

used to report on the movement of nitrate through yeast cell membranes. 

Measurements of the NiTrac1 response in yeast cells demonstrated nitrate-induced 

quenching that was reversible in nature after removal of nitrate (78). Furthermore, 

similar constructs for the oligopeptide transporters PTR1, 2, 4, and 5 from Arabidopsis 

were created and found to exhibit peptide-specific quenching. Furthermore, NiTrac1 

expressed in yeast was used to facilitate testing the effects of CHL1 mutations and 

protein-protein interactions (78). 

Taken together, these investigations utilizing the activity state sensors in yeast cells 

have significantly increased our understanding of transporter behavior, though 

application of these biosensors to in planta characterizations awaits further 
experimentation. 
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Multicolor and Multiparameter Analyses Using Fluorescent Reporters 
Multicolor and multiparameter analyses rely on the principle that two or more genetically 

encoded fluorescent biosensors are co-expressed in the same plant and tissue and 

imaged simultaneously at the microscope. Multicolor fluorescent biosensors were first 

developed for calcium (3; 205) summarized in (151), and are also available for 

ROS/redox- (26) and pH measurements (21). Most fluorescent biosensors are FRET-

based or green-emitting (https://codex.dpb.carnegiescience.edu/db/biosensor). 

Therefore, key for the achievement of multicolor/multiparameter analyses was the 

development of red-emitting fluorescent biosensors. 

 Multicolor analyses describe the simultaneous imaging of the same analyte using 

fluorescent biosensors of separable emissions. Such approaches enable analyses with 

increased spatial resolution if the analyte is imaged from distinct subcellular locations or 

cell types. Multicolor calcium imaging has been described in which the cytoplasmic and 

nuclear localized red-emitting R-GECO1 was co-expressed with the cytoplasmic FRET-

based YC3.6 (90). Although, this study mainly compared the in vivo properties of both 

GECIs, it demonstrated that R-GECO1 exhibited more than 10-fold increased signal 

changes compared to YC3.6 in response to ATP and hyperpolarization buffer (90). 

Through the expression of R-GECO1 in pollen tubes and YC3.6 in synergids it was for 

the first time possible to spatially resolve calcium signals during double fertilization in 

both cell types simultaneously (141), demonstrating the huge potential of multicolor 

imaging approaches in plants. 

 Multiparameter analyses combine fluorescent reporters for distinct analytes. This 

has been recently employed to simultaneously image ABA using the FRET-based 

biosensor ABAleon2.1 and calcium using R-GECO1 (192; 205) Waadt et al., In Press). 

Hormone response analyses in young roots indicated that although ABA was rapidly 

taken up, it did not trigger rapid calcium signals. On the other hand, auxin induced 

calcium signals, but did not trigger rapid ABA concentration changes (Waadt et al., In 

Press). Through the use of R-GECO1 and other red-emitting biosensors for calcium, 

ROS/redox or pH (see above) it is now possible to resolve and correlate the dynamic 

changes of at least two of these molecules at the same time. In addition, red-emitting 

biosensors have the potential to be combined with any FRET-based and blue- or green-
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emitting biosensors. Finally, it is also possible to combine direct FRET-based readouts 

with indirect red-emitting transcriptional readouts. 

 

Summary and Outlook 
Molecules or molecular events whose variation in concentration or activity is 

physiologically relevant are prime targets for biosensing approaches. In the context of 

multiorganellar and multicellular eukaryotes, the spatiotemporal information obtainable 

using biosensors is particularly important. This is true for understanding both the 

regulatory and biochemical activities that influence the spatiotemporal patterns of a 

molecule or molecular event of interest and for the physiological consequences of such 

patterns. Starting from initial biosensor engineering, in vivo analysis of several analytes 

has now progressed sufficiently through optimization of biosensor performance, 

expression in planta, and imaging modalities such that novel spatiotemporal patterns 

are being discovered and characterized in a variety of biological systems. Most analytes 

still lack biosensors, however, and most extant biosensors have yet to be deployed in 

plants, and thus the potential of biosensor-based analysis is only just beginning to be 

tapped. Fortunately, new biosensors continue to be engineered based on high-

specificity sensory proteins, e.g. for MAP Kinase signaling (P. Krysan, personal 

communications), and there is further promise for a more generalized approach based 

on incorporating RNA aptamers or antibodies selected to have the requisite specificity 

into genetically encoded biosensors (142). Furthermore, direct biosensors developed for 

use in other organisms are often functional in plants with little to no reengineering (45; 

104), and thus the barrier to the first application of an extant biosensor in plants is often 

low. 
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Figure Legends 

Figure 1. Twenty years of fluorescent GECIs. Evolution of genetically-encoded calcium 
indicators over the last 20 years with biosensors plotted as dots on the year of 
publication that are colored according to the emission wavelength of their constituent 
fluorophores. Single FP biosensors are plotted at left and double-FP biosensors at right.  

Figure 2. Biosensor considerations. The successful engineering and use of genetically 
encoded biosensors relies on appropriate consideration of the key parameters 
diagrammed. To offer an example, the contrasting features and limitations of current 
ABA biosensors [ABACUS1-2µ and ABAleon2.1 (89; 192)] as well as a idealized ABA 
biosensors are plotted. An idealised biosensor should display high dynamic range of 
biosensor response, a dynamic range of analyte detection that is physiologically 
relevant, as well as high orthogonality. 

Figure 3. Biosensor imaging modalities. Schematic illustrations to show various imaging 
modalities for plants expressing biosensors (Currently presented as photos, suggest to 
convert to schematics/diagrams with the assistance of ARPB artists). (a) Agar- or 
vacuum grease-based approaches to monitor biosensor responses to short-term 
experimental treatments (128; 192), (Rizza et al, in press), (b) Chambers using 
adhesive restraint to monitor biosensor response to short-term treatments (35), (c) 
Perfusion based chambers using mechanical restraint to monitor biosensor responses 
(long-term or short-term) to various treatments using custom-built chambers (99; 164), 
IBIDI slides (37), and SecureSealTM (157), (d) Microfluidics-based perfusion chambers 
to monitor biosensor responses (long-term or short-term) in plant roots (67; 177). 

Figure 4. Biosensors for studying transport. (Left) Genetically encoded biosensors have 
been used in planta to monitor accumulation and elimination rates of during and 
following pulsed application of exogenous analytes (e.g. (48)). This approach allows the 
interrogation of transport activities in vivo and can be applied to indirectly probe affinity 
(e.g. (89)), mechanisms (e.g. (36)), and spatiotemporal patterning (e.g. Rizza et al. In 
press) of transport activities. Also, such analyses can reveal quantitative molecular 
phenotypes in mutant lines expressing biosensors (e.g. (131)). (Right) Biosensors have 
also been used in heterologous systems to screen for novel plant transporters (e.g. 
SWEET1 (38)), and, through the use of sensorized transporters, to rapidly interrogate 
the effects of mutations and protein interactions on activity of plant transporters (e.g. 
NRT1.1/CHL1/NPF6.3 (78)). 
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Further considerations
• Color (imaging, autofluorescence, multiplexing)
• Brightness
• Expression in vivo (silencing, cell-types) 
• Subcellular localization

• Intensiometric vs ratiometric
• In vivo control sensors
• Imaging modality
• Image analysis

Figure 2. Biosensor considerations. The successful engineering and use of genetically encoded 
biosensors relies on appropriate consideration of the key parameters diagrammed. To offer an 
example, the contrasting features and limitations of current ABA biosensors [ABACUS1-2µ and 
ABAleon2.1 (89; 192)] as well as a idealized ABA biosensors are plotted. An idealised biosensor 
should display high dynamic range of biosensor response, a dynamic range of analyte detection 
that is physiologically relevant, as well as high orthogonality.
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                       Idealized 
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Figure 3. Biosensor imaging modalities. Schematic illustrations to show various imaging modalities
for plants expressing biosensors (Currently presented as photos, suggest to convert to 
schematics/diagrams with the assistance of ARPB artists). (a) Agar- or vacuum grease-based 
approaches to monitor biosensor responses to short-term experimental treatments (128; 192), 
(Rizza et al, in press), (b) Chambers using adhesive restraint to monitor biosensor response to 
short-term treatments (35), (c) Perfusion based chambers using mechanical restraint to 
monitor biosensor responses (long-term or short-term) to various treatments using custom-built 
chambers (99; 164), IBIDI slides (37), and SecureSealTM (157), (d) Microfluidics-based perfusion 
chambers to monitor biosensor responses (long-term or short-term) in plant roots (67; 177).
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Figure 4. Biosensors for studying transport. (Left) Genetically encoded biosensors have been used
in planta to monitor accumulation and elimination rates of during and following pulsed application of 
exogenous analytes (e.g. (48)). This approach allows the interrogation of transport activities in vivo 
and can be applied to indirectly probe affinity (e.g. (89)), mechanisms (e.g. (36)), and spatiotemporal
patterning (e.g. Rizza et al. In press) of transport activities. Also, such analyses can reveal quantitative
molecular phenotypes in mutant lines expressing biosensors (e.g. (131)). (Right) Biosensors have also
 been used in heterologous systems to screen for novel plant transporters (e.g. SWEET1 (38)), and, 
through the use of sensorized transporters, to rapidly interrogate the effects of mutations and protein 
interactions on activity of plant transporters (e.g. NRT1.1/CHL1/NPF6.3 (78)).


