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Abstract 1 

Background 2 

Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is approximately four 3 

years, yet survival varies widely between patients. There are no well-established, gene expression signatures 4 

associated with prognosis. The aim of this study was to develop a robust prognostic signature for overall 5 

survival in HGSOC patients. 6 

Patients and methods 7 

Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, were measured 8 

using NanoString technology from formalin-fixed, paraffin-embedded (FFPE) tumour tissue from 3,769 women 9 

with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a 10 

prognostic model for 5-year OS, trained on 2702 tumours from fifteen studies and evaluated on an 11 

independent set of 1067 tumours from six studies.  12 

Results 13 

Expression levels of 276 genes were associated with OS [false discovery rate (FDR) < 0.05] in covariate-adjusted 14 

single gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1, and PTGER3 (P ≪	0.001). The best 15 

performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each 16 

gain of one standard deviation in the gene expression score (GES) conferred a greater than two-fold increase in 17 

risk of death [HR = 2.35 (2.02, 2.71); P ≪ 0.001]. Median survival by GES quintile was 9.5 (8.3, --), 5.4 (4.6, 7.0), 18 

3.8 (3.3, 4.6), 3.2 (2.9, 3.7) and 2.3 (2.1, 2.6) years. 19 

 20 

 21 
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Conclusion 22 

The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene 23 

expression signature may improve risk stratification in clinical trials by identifying patients who are least likely 24 

to achieve 5-year survival. The identified novel genes associated with the outcome may also yield 25 

opportunities for the development of targeted therapeutic approaches.  26 

 27 

Key words: high grade serous ovarian cancer, gene expression, prognosis, overall survival, formalin fixed 28 

paraffin embedded 29 

 30 

Highlights 31 

• A gene expression signature for high-grade serous ovarian cancer prognostic for two and five-year 32 

overall survival (OS). 33 

• The 101 gene expression signature performs substantially better than age and stage alone.   34 

• Median survival by quintile was 9.5, 5.4, 3.8, 3.2 and 2.3 years.  35 

• The top five genes associated with OS were TAP1, ZFHX4, CXCL9, FBN1, and PTGER3 (P ≪	0.001).  36 
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Introduction 37 

Epithelial ovarian cancer (EOC) causes approximately 125,000 deaths globally every year, and long-term 38 

survival rates have changed little in the past three decades[88]. Approximately 70% of women with EOC are 39 

diagnosed with advanced stage disease (stages III/IV), and fewer than 50% will survive more than 5 years[89].  40 

There are five major EOC histotypes – high-grade serous; low-grade serous; endometrioid; clear cell and 41 

mucinous[90].  High-grade serous ovarian cancer (HGSOC) comprises about two-thirds of cases, is responsible 42 

for most deaths and is characterized by profound genomic and clinical heterogeneity. 43 

The most informative prognostic factors for HGSOC are International Federation of Gynecology and Obstetrics 44 

(FIGO) stage, residual disease following debulking surgery[91], BRCA1 or BRCA2 germline mutation[92, 93] and 45 

tumour-infiltrating lymphocyte scores[94, 95].  Patients with HGSOC who carry a loss-of-function germline 46 

mutation in BRCA1 or BRCA2 have an increased sensitivity to platinum-based chemotherapy and PARP 47 

inhibitor treatment[96, 97] and a medium-term survival advantage[92]. However, the frequent development 48 

of drug resistant disease[93] limits the effectiveness of current therapies.  49 

Gene-expression data have been used to define four tumour molecular subtypes of HGSOC (C1/mesenchymal, 50 

C2/immune, C4/differentiated and C5/proliferative)[98, 99]. Using transcriptome-wide data from fresh frozen 51 

tissues, The Cancer Genome Atlas (TCGA) project used 215 tumours to identify an overall survival (OS) 52 

expression signature of 193 genes that has been validated on three other HGSOC gene expression data 53 

sets[99]. 54 

Despite these findings, gene expression biomarkers have not been implemented clinically owing to several 55 

important shortcomings. The majority of the individual markers comprising the 193 gene signature were not 56 

statistically significant across all studies, suggesting that the signature may not be robust. The sample sizes in 57 

other discovery efforts have been too small for robust statistical inference [99]. Also, previous studies used 58 
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fresh frozen samples, resulting in logistic and cost barriers to examining large clinically relevant data sets, and 59 

translation to the clinical setting.  60 

The aim of this study was to identify a robust and clinic-ready prognostic HGSOC profile that can be applied to 61 

formalin fixed paraffin embedded (FFPE) tumour tissue. 62 

Patients and methods 63 

Twenty studies provided pre-treatment, FFPE tumour samples from 4,071 women diagnosed with HGSOC 64 

(Supplemental Table S1).  All HGSOC cases with available tissue were included. During this time period HGSOC 65 

patients were treated with chemotherapy (carboplatin and paclitaxel) after primary debulking surgery. Study 66 

protocols were approved by the respective Institutional Review Board / ethics approval committee for each 67 

site (Supplemental Table S1).  68 

A schematic of the overall study design is shown in Figure 1.  There were four main components: gene 69 

selection, gene-expression assay, development of prognostic gene signature in a training set and validation of 70 

prognostic signature in an independent validation set. 71 

Gene selection 72 

Candidate prognostic genes were identified by carrying out an individual participant meta-analysis of six 73 

transcriptome-wide microarray studies[98-103], which included tumour samples from 1,455 participants.  74 

Gene expression association with overall survival was evaluated by Cox proportional hazards regression 75 

adjusted for molecular subtype (Supplemental Table S2).  In total, 200 genes from the meta-analysis, most 76 

achieving a permutation-based FDR[104] of less than 0.05, and an additional 313 candidate genes based on the 77 

literature and unpublished data were selected (Supplemental Tables S3 and S4, Figure S1; for more details see 78 

Supplemental Material). Five genes, RPL19, ACTB, PGK1, SDHA, and POLR1B, were included as house-keeping 79 

genes for normalization. 80 
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Gene expression assay in study participants samples 81 

FFPE tumour samples were processed with the NanoString nCounter technology at 3 different locations, 82 

Vancouver, Los Angeles and Melbourne. A control set of 48 FFPE tumour samples were run at each location 83 

and the average intraclass correlation coefficient (ICC) was 0.987. Approximately 2 percent of the samples 84 

were run in duplicate and the average Spearman correlation r2 was 0.995. Single-patient classification methods 85 

were used with reference samples to control for batch effects[105]. The data in this publication have been 86 

deposited in NCBI's Gene Expression Omnibus[106]; GEO Series accession number GSE132342 87 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132342).  Three thousand eight hundred and 88 

twenty-nine samples passed quality control of which 3,769 had survival data and assessable gene expression 89 

for 513 genes.  Data can be found in NCBI GEO: Accession numbers GSE132342 and GPL26748. 90 

Overall survival analysis of individual genes 91 

Samples that contributed to the meta-analysis data set (n=211) were removed from subsequent selected 92 

analyses to enforce independence of study samples between the gene selection and final survival analysis.  93 

Time-to-event analyses were carried out for OS with right-censoring at 10 years and left-truncation of 94 

prevalent cases. Associations between log-transformed normalized gene expression and survival time were 95 

tested using likelihood ratio tests with Cox proportional hazards models adjusted for age, race, and stage, and 96 

stratified by study. Patients with missing race or stage information were assigned to ‘unknown’ categories. Age 97 

was modeled using a B-spline with a knot at the median age, which yielded a better fit than using knots at 98 

quartiles or categorical variables. Stage was dichotomized into early (International Federation of Gynecology 99 

and Obstetrics [FIGO] stage I/II) and advanced (FIGO stage III/IV). Genes were scaled to have a standard 100 

deviation of one, so hazard ratios correspond to a change of one standard deviation. A Benjamini-Hochberg 101 

(BH) false discovery rate (FDR) of less than 0.05 was used to identify notable associations. Since the expression 102 

of genes can be correlated, an analysis of correlated genes was performed using data from TCGA. Advanced 103 
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stage ovarian cancer usually has disease spread throughout the abdomen, therefore sensitivity analyses were 104 

performed to assess effects of the anatomical location of tumor samples included in the study by removing 105 

observations corresponding to samples known to be extraovarian (n = 437). 106 

Prognostic signature development and validation 107 

Studies were initially randomized to training set (N = 14) and validation set (N = 6).  The TRI study was 108 

randomized to the validation set, but, because 107 of the samples were part of the meta-analysis data used for 109 

gene selection, the study was split, so those 107 samples were included in the model training data set.  Thus 110 

2,702 samples from 15 studies were used for model training and 1,067 samples from 6 studies were used for 111 

validation (Supplemental Table S1).  In the training set, four modelling approaches (stepwise regression, elastic 112 

net regularized regression, boosting and random survival forests) were applied to construct competing gene 113 

expression-based biomarkers.  Each was evaluated in the training data using 10-fold cross-validation for its 114 

prognostic value for OS at two and five years of follow-up using an area under the curve (AUC) measure 115 

derived from receiver operator characteristic (ROC) analysis (see Supplemental Material for additional details).    116 

The best performing method, elastic net regularized regression, was applied to the full training set to 117 

determine the final gene signature and scoring method, which was then evaluated using the independent 118 

testing set. All models were constrained to include age and stage, where age was modelled as categorical 119 

based on quartiles of the training dataset with groups: less than 53 years old, 53 to 59, 60 to 66, and 67 or 120 

greater. Stage was modelled as described above for the OS individual gene analysis. 121 

Results 122 

Association of expression of individual genes with OS in HGSOC. 123 

In a gene-by-gene analysis of the full data set adjusted for age, race, and stage, and stratified by study, 276 of 124 

the 513 selected genes were associated with OS (FDR < 0.05). Of these, 138 were selected from the meta-125 
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analysis of six published microarray studies (Supplemental Table S2)[98-103] and 144 from candidate gene 126 

approaches (Supplemental Tables S5 and S6).  Hazard ratios (HR) for one standard deviation change in gene 127 

expression ranged from 0.84–1.19, with multiple genes exhibiting associations at very stringent significance 128 

levels (e.g., 19 genes with P < 1 x 10-8; Supplemental Tables S5 and S6). The five most significant genes were 129 

TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (Table 1). We did not find extensive evidence of high co-expression 130 

between these five genes and genes measured in TCGA project (Supplemental Table S7).  In sensitivity analyses 131 

we found that excluding samples from omentum and other extra-ovarian sites did not substantially affect the 132 

results (Supplemental Tables S8 and S9).  133 

Development of a novel prognostic gene signature 134 

The four predictive modelling approaches that were evaluated in the training data using 10-fold cross-135 

validation yielded median AUCs that ranged from 0.69 to 0.73 for two-year OS and 0.69 to 0.74 for five-year 136 

survival (Supplemental Figure S2) with better prediction of 5-year overall survival than at two years.  The 137 

elastic net approach yielded the highest median AUC for both two and five-year OS and was selected for final 138 

development of the signature.  Using the model on the full training data set resulted in a prognostic signature 139 

of 101 genes in addition to age and stage (Supplemental Table S10).  Of these, 66 genes were associated with 140 

OS (FDR < 0.05) in the single gene models. There was no obvious subset of signature genes that performed as 141 

well or nearly as well as the full 101 gene signature (Supplemental Figure S3). 142 

Performance of the signature including age and stage was AUC = 0.69 (95% CI 0.65-0.73) and 0.75 (95% CI 0.72-143 

0.78) for 2-yr and 5-yr OS, respectively (Figure 2, Figure 3, Supplemental Figure S4). This was substantially 144 

better than age and stage alone with AUC = 0.61 (95% CI 0.57-0.65) and 0.62 (95% CI 0.59- 0.67) for 2-yr and 5-145 

yr OS, respectively), particularly for the 5-yr OS outcome with non-overlapping 95% CI. One standard deviation 146 

change in the gene expression score was associated with a hazard ratio of 2.35 [95% CI = (2.02, 2.71); P = 147 

5.1x10-31], and median survival varied substantially across quintiles of the gene expression score [9.5 (8.3, ---), 148 
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5.4 (4.6, 7.0), 3.8 (3.3, 4.6), 3.2 (2.9, 3.7) and 2.3 (2.1, 2.6) years, respectively, from smallest to largest quintile; 149 

Table 2].  150 

For a subset of cases, there was clinical and experimental data for known prognostic factors. All samples had 151 

molecular subtype classification (Talhouk et al. submitted), residual disease was known for 1,771 cases, 152 

primary treatment for 687, germline BRCA mutation status for 904, and nuclear CD8 TIL counts[95] for 1,111 153 

(Supplemental Table S11). When examined by quintile of gene expression score there were differences, as 154 

expected, for each of the known prognostic factors, including age and stage that were included in the model 155 

(Table 3). However, in sensitivity analyses, applying the signature to specific patient groups, a robustness of 156 

stratification was demonstrated, suggesting that the prognostic power of the signature is not explained by the 157 

individual factors, residual disease, treatment, BRCA status, or CD8 score (Figure 3, Supplemental Figures S5-158 

S7). The signature score showed modest differences by molecular subtype (Supplemental Figure S8), and 159 

adjusting for molecular subtype in the Cox analysis resulted in only minor changes to the HR estimates for 160 

signature quintiles (Table 2). The signature was shown to be prognostic within a homogenous group of 316 161 

stage 3C cases with no residual disease, within early stage cases (FIGO 1a and 1b), and within patients whose 162 

samples were collected from the omentum (Supplemental Figures S9-S10). Analysis of the signature score for 163 

paired ovary and omental tissue from 42 of the cases showed a highly significant Pearson correlation 164 

coefficient, r = 0.79 (p = 5.4 x 10-10) (Supplemental Figure S11). 165 

A geneset enrichment analysis was performed for the 101 genes in the signature, as well as for genes 166 

correlated with signature genes achieving r2 > 0.75 (Supplemental Table S12). For the correlated gene analysis, 167 

the three most significant pathways involved the immune system, including the adaptive immune system and 168 

cytokine signalling. A further ten immune pathways were significantly enriched and included interferon 169 

signalling, innate immune system, and TCR signalling and antigen presentation pathways. Restricting to the 170 

signature genes only, there was also enrichment in the immune system, but the top two pathways were PI-3K 171 

cascade and GPCR ligand binding. Four other pathways were related to the cell cycle and mitosis, with the 172 
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remaining enriched for fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (ERRB) 173 

signalling, and one pathway related to homologous combination repair. 174 

Discussion 175 

In a large-scale study of HGSOC patients, we identified a 101 gene expression signature able to predict 176 

clinically relevant differences in OS. Using methods that are both economical and applicable to standard 177 

clinical sampling techniques, we showed that the signature performs substantially better than age and stage 178 

alone for prognosis of both two and five-year OS.  The number of patients and samples included in this study is 179 

an order of magnitude greater than previous comparable studies of gene expression and OS in HGSOC 180 

patients[99, 107, 108]. Thus, we have been able to more precisely quantify the prognostic value of gene 181 

expression.  182 

We report definitive associations between OS and expression of 276 genes. Of the five most significant genes 183 

(TAP1, ZFHX4, CXCL9, FBN1, and PTGER3), four have been previously reported to be associated with survival in 184 

HGSOC. The top prognostic gene, TAP1, is involved in the antigen presenting pathway. Expression was reduced 185 

in metastatic HGSOC, positively associated with OS[109] as observed here, and linked to tumour regression in 186 

response to treatment[110]. Also, hypomethylation of TAP1 was associated with improved time to disease 187 

recurrence[111]. CXCL9 is a chemokine that mediates the recruitment of T-cells to solid tumours[112]. High 188 

expression of intratumoural CXCL9 was associated with higher OS[113] and higher lymphocytic infiltration, 189 

which is also a robust prognostic factor in HGSOC[95, 98, 114] and a feature of the immunoreactive HGSOC 190 

molecular subtype[98]. CXCL9 has also been proposed as a therapeutic target due to evidence that it inhibits 191 

angiogenesis and promotes antitumour adaptive immunity[115-117]. Strikingly, the signature was able to 192 

further refine prognostic groups within patients with high TIL counts suggesting that CXCL9 and TAP1 193 

expression may be strong indicators of immune competency in HGSOC. 194 
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FBN1 is an extracellular matrix (ECM) protein previously found to be a biomarker associated with early 195 

recurrence in ovarian cancer patients who are initially sensitive to chemotherapy[118] and strongly correlated 196 

with desmoplasia in HGSOC.  The prostaglandin E2 receptor PTGER3 is expressed in ovarian tumour cells and is 197 

associated with relapse-free survival[119]. In contrast, ZFHX4 does not have previous associations with HGSOC. 198 

Associations between the expression of specific genes in tumour tissues and OS in HGSOC patients may 199 

suggest new drug targets and lead to insights into biological variation in treatment response. For example, 200 

cases in the Q5 quintile with the poorest outcome had increased expression of IGF2, FGFR1, and MYC, a 201 

possible argument for the use of IGFR1, FGFR, Bromodomain (MYC), or a combination of PARP and CDK4/6 202 

inhibitors (MYC) [33].  More immediately, the signature may help clinicians identify patients most in need of 203 

intervention, patients that could potentially benefit from neo-adjuvant chemotherapy (NACT). Alternatively, in 204 

clinical trials it could be used to stratify randomization by patients’ risk, thereby reducing heterogeneity within 205 

subgroups and increasing heterogeneity between subgroups.  The signature will be incorporated into future 206 

prospective clinical trials to determine if it can predict response to specific treatments.  207 

Measurement of the signature required standard FFPE tissue used in routine histopathology. Also, data 208 

preprocessing and normalization were conducted on an individual level, thus translatable to a general patient 209 

population. That is, 5-year OS prognosis of future patients can be evaluated against the patient population 210 

reported here by i) following the same steps described here for generating the normalized gene expression 211 

data, 2) computing an individual signature score, and 3) assigning an HR based on the score or comparing it to 212 

the reported quintiles (Supplemental Material). NanoString gene expression is highly reproducible as seen by 213 

our quality control metrics (Supplemental Material) and the FDA approval of the ProSigna test for breast 214 

cancer.  215 

The question of heterogeneity by ancestry or ethnicity was beyond the scope of this study but should be 216 

pursued in future research. Another important question is whether molecular subtype can improve biomarker 217 
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performance. A substantial proportion of signature genes were identified by the subtype adjusted meta-218 

analysis, suggesting that the strong performance of the signature is not solely attributable to differences 219 

among molecular subtypes. Additionally, all of the individual genes used in the molecular subtype classification 220 

were included in development of the signature.  221 

Although the cases received chemotherapy, the FFPE samples used in this study were chemo-naïve, as few 222 

patients had NACT during the calendar period in which these samples were collected. Because the signature 223 

appears to be prognostic in omentum samples, future studies may assess the value in NACT patients, using 224 

pre-treatment omental biopsies or post treatment tumour samples.  Future work will also address if the 225 

signature can predict platinum-refractory patients. 226 

 We have developed a robust prognostic signature for HGSOC that can be used to stratify patients and identify 227 

those in need of alternative treatments. Gene set enrichment analysis applied to the signature indicates an 228 

important role for the immune system in overall survival and supports further investigation of immune-therapy 229 

in ovarian cancer. More generally, the identification here of high-confidence prognostic genes may lead to new 230 

hypotheses for targeted treatments. 231 
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Figure Legends 377 

 378 

 379 

 380 
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Figure 1. Schematic of study design. * The TRI study was split across the training and validation sets due to 107 382 

samples overlapping with the meta-analysis.  383 

 384 
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Figure 2. ROC curves for prognostic performance of the gene expression signature in independent HGSOC 386 

patients (testing data). There was no overlap between studies or patient data used to develop models (training 387 

data) and compute ROC curves and AUC values shown here (testing data). All models included age and stage as 388 

described in Methods. TP denotes the true positive rate (sensitivity) and FP denotes the false positive rate (1 – 389 

specificity). 390 
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Figure 3. KM curves of overall survival for patients A) in the training and B) testing sets. Patients were assigned 393 

to quintiles (Q1-Q5) of the signature score including age and stage. Shaded areas indicate 95 percent 394 

confidence regions, only included for plots representing larger sample sizes. Due to limited sample size, the 395 

following plots represent all such patients in the entire data set, training or testing, C) no macroscopic residual 396 

disease after debulking surgery, D) primary treatment ≥ 4 cycles of IV carboplatin AUC 5 or 6 & paclitaxel 135 397 

or 175 mg/m² every 3 weeks (actual dose known or presumed), E) BRCA1 or BRCA2 germline mutation, and F) 398 

CD8 > 19. 399 
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Table 1. Hazard ratios and 95% CIs for top 5 prognostic genes in covariate-adjusted single gene analyses.  402 

Gene HR (95% CI) P Selection Correlated gene* rs 

TAP1 0.84 (0.80, 0.87) 8.3x10-18 Meta PSMB9 0.89 

ZFHX4 1.19 (1.14, 1.25) 1.4x10-15 Meta LOC100192378 0.74 

CXCL9 0.85 (0.82, 0.88) 1.8x10-15 Meta and candidate CXCR6 0.89 

FBN1 1.18 (1.13, 1.24) 4.2x10-14 Candidate SPARC^ 0.91 

PTGER3 1.18 (1.13, 1.24) 1.2x10-13 Meta COL8A1 0.67 

*Most correlated gene according to Spearman’s rank correlation coefficient, rs, computed in The Cancer 403 

Genome Atlas (TCGA) Ovarian Serous Cystadenocarcinoma RNA-seq data set.  404 

^ SPARC was included in this project and was less significant.  405 

 406 

 407 

Table 2. Hazard ratios and 95% CIs for quintiles of the gene expression signature score in validation data. 408 

     Adjusted for  
Age and Stage 

Adjusted for 
M. Subtype  

Age and Stage 
Quintile N Deaths Median Survival* HR (95% CI) HR (95% CI) HR (95% CI) 

Q1 214 81 9.47 (8.32, ------) 0.44 (0.33, 0.58) 0.34 (0.22, 0.55) 0.37 (0.23, 0.59) 

Q2 213 117 5.38 (4.63, 6.97) 0.73 (0.57, 0.93) 0.71 (0.55, 0.91) 0.74 (0.58, 0.96) 

Q3 213 145 3.80 (3.34, 4.60)    

Q4 213 158 3.23 (2.85, 3.68) 1.56 (1.25, 1.96) 1.56 (1.24, 1.97) 1.56 (1.24, 1.96) 

Q5 214 179 2.27 (2.09, 2.62) 2.23 (1.78, 2.78) 2.11 (1.67, 2.67) 2.07 (1.63, 2.61) 

*Median survival (95% CI) in years for patients in the validation set.  409 
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Table 3. Clinical data for the 3769 patients that passed quality control and the percentage of patients in each 410 
quintile of the gene expression score. 411 

  Total Q1 Q2 Q3 Q4 Q5 p-value 

N 3769 754 754 753 754 754   
median survival (years) 4.1 9.5 5.4 3.8 3.2 2.3   

% 5-year survival 41 75 57 39 25 10   
        Age median 63 58 57 61 64 70   

Age range 25-89 39-78 25-86 36-82 27-89 39-86   
        

Age quartile q1 894 30.8 31.3 20.0 13.4 4.5 <1x10-50 
Age quartile q2 838 21.5 20.0 22.9 21.2 14.3   
Age quartile q3 961 16.0 20.2 21.4 23.6 18.7   
Age quartile q4 1076 13.5 10.4 16.4 21.3 38.5   

        

FIGO stage I / II 607 97.4 2.6 0.0 0.0 0.0 <1x10-50 
FIGO stage III/IV 3067 3.8 23.0 24.1 24.4 24.6   

        Primary chemo* 1 136 16.2 22.1 23.5 19.1 19.1 0.163 

Primary chemo* 2 190 16.3 20.0 21.6 22.1 20.0   
Primary chemo* 3 361 11.1 16.9 22.4 20.5 29.1   

        Residual disease No 614 32.4 22.1 17.8 15.5 12.2 <1x10-50
 

Residual disease Yes 1157 6.0 19.2 24.1 24.5 26.2   
        germline BRCA1 mutation 130 23.8 31.5 26.2 11.5 6.9 2.22x10-7 

germline BRCA2 mutation 71 28.2 26.8 18.3 18.3 8.5   
germline no mutation 663 19.6 16.7 18.7 20.7 24.3   

        CD8 TIL score 0 192 19.8 14.6 12.5 21.4 31.8 2.46x10-14 
CD8 TIL score 1-2 186 18.3 14.0 18.8 21.5 27.4   

CD8 TIL score 3-19 515 19.8 24.1 20.8 17.9 17.5   
CD8 TIL score >20 218 34.4 31.2 16.5 11.5 6.4   

        Molecular subtype C1.MES 1105 5.4 10.4 20.7 27.4 36.0 <1x10-50 
Molecular subtype C2.IMM 907 23.2 28.8 21.2 16.2 10.7  
Molecular subtype C4.DIF 1144 32.6 25.5 17.9 12.8 11.2  
Molecular subtype C5.PRO 613 18.1 14.0 20.7 25.8 21.4  

        FIGO stage 1A & 1B 111 96.4 3.6 0.0 0.0 0.0 <1x10-50 
FIGO stage 3C 1979 3.1 23.7 24.6 24.1 24.6 <1x10-50 

        FIGO stage 3C Residual 

disease No 

316 6.3 31.0 24.4 20.9 17.4 6.24x10-45 
FIGO stage 3C Residual 

disease Yes 

846 2.6 21.5 25.3 24.6 26.0   

Q1 is the quintile with the best survival and Q5 the worst survival. Samples with missing data are reported in 412 
Supplementary Table S11. P-values for BRCA1/2 mutation status were calculated for BRCA1 or BRCA2 mutation 413 
vs no mutation. * Treatment: 1 = known to have received first line chemotherapy treatment of ≥ 4 cycles of IV 414 
carboplatin AUC 5 or 6 & paclitaxel 135 or 175 mg/m² every 3 weeks.  2 = known to have received first line 415 
chemotherapy treatment of ≥ 4 cycles of IV carboplatin & paclitaxel 3-weekly but at doses presumed to be 416 
carboplatin AUC 5 or 6 & paclitaxel 135 or 175 mg/m². 3 = all remaining cases with chemo regimens that do 417 
not fit criteria 1 or 2 and include unknown or no chemotherapy. 418 
  419 
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Supplemental Methods 511 

Gene selection based on transcriptome-wide meta-analysis 512 

A meta-analysis was conducted of six transcriptome-wide microarray studies, including 1,455 participant’s 513 

tumors, to investigate the role of gene expression in HGSOC OS (Supplemental Table 2)[98-103]. The objective 514 

was to identify prognostic genes whose effects were consistent across studies and were not surrogates for 515 

molecular subtype. The total number of genes tested was 15,345, however, the number of genes in each study 516 

differed due to differing microarray platforms used across the studies as well as different data processing and 517 

quality control work flows. Expression data were normalized, batch corrected, and extreme outliers removed 518 

on a probe-specific level for each study. Extreme outliers were defined as values greater than 2.5 times the 519 

interquartile range from the upper or lower quartile, under the constraint that no more than three percent be 520 

classified as such. That is, no more than three percent of observations were removed as outliers. According to 521 

the microarray platform design, some genes are represented by more than one expression feature. To yield a 522 

single expression feature per gene, principal components analysis (PCA) was applied to probe sets within each 523 

study, taking the first PC to represent the gene. This approach is similar to that used for the The Cancer 524 

Genome Atlas (TCGA) unified gene expression data[99]. To reduce the dependency of the identified genes on 525 

the analytic approach, four types of analyses were conducted to evaluate genes for selection. 526 

1) Consistency of OS association across studies. Cox proportional hazards regression was conducted separately 527 

for each study, adjusting for age, stage and study-provided molecular subtype (C1/mesenchymal, C2/immune, 528 

C4/differentiated and C5/proliferative). The median of the study-specific p-values for association between 529 

gene expression and prognosis was used as the statistic for an omnibus test across studies.  Missing p-values 530 

were set to one.  Consistency in direction of effect was accounted for by setting the median p-value to one if 531 

the signs of the effects differed for any of the studies with p-values equal to or smaller than the median p-532 

value. To account for multiple-testing and possible unknown characteristics of the null distribution of the 533 
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median p-value, we employed a permutation-based false discovery rate (FDR) approach[104] with 100 534 

replicate permutations, considering the median p-value to be our test statistic. Permutation analyses were 535 

conducted by permuting sample labels on the expression data within each study, while maintaining the 536 

observed relationships between genes and between the outcome and adjustment covariates, including 537 

molecular subtypes. Thus, for each gene and each of the 100 permutations, a median p-value was computed 538 

under the null by grouping the permutation p-values according to the permutation index. This analysis resulted 539 

in 115 genes (Supplemental Table S2) identified at FDR < 0.05 level (Supplemental Figure S1. A), all of which 540 

were selected for the follow-up study.  Note that this significance threshold corresponds to a median p-value 541 

that is slightly greater than 0.05.  Nevertheless, this threshold defines statistical significance because it is 542 

evaluated against the distribution of median p-values under the null hypothesis of independence between 543 

gene expression and outcome. 544 

2) Stratified analysis of marginal effects. A Cox model was fitted and a likelihood ratio test (LRT) conducted for 545 

each gene, adjusted for age, stage, and molecular subtype (differentiated, immunoreactive, mesenchymal, and 546 

proliferative)[120], and stratifying on study. The result was an additional 12 genes at an FDR significance level 547 

of 0.05. 548 

3) Evidence of interaction with molecular subtype on OS. For each gene, a stratified Cox model adjusted for 549 

covariates was fitted as in (1), but molecular subtype×gene interaction terms were included to identify genes 550 

whose effects differed across subtypes. LRTs were conducted for interaction terms, yet no additional genes 551 

were identified in this analysis at the 0.05 FDR significance level. 552 

4) Stratified analysis with multi-degree-of-freedom tests of main effects and interactions. For fitted models in 553 

(3), LRTs were conducted to jointly assess gene main effects and interactions. This analysis yielded an 554 

additional eight genes. 555 
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An additional 65 genes were added that were suggestive in one of the meta-analysis described above, but that 556 

did not meet the 0.05 significance level, based on evidence in prior literature and public knowledge databases 557 

such as MSigDB and REACTOME. In total 200 genes were selected from the meta-analysis (Supplemental Table 558 

S3).   559 

Selection of additional candidate genes 560 

An additional 304 candidate genes were selected based on one of the following criteria (a) evidence of 561 

association with prognosis or potential drug targets from the literature, (b) residing within a 1 MB region of a 562 

potential survival GWAS hit p<5x10-6 and showing a survival association in the publicly available TCGA data (c) 563 

utility in molecular subtype classification (Talhouk et al, in preparation), (d) other specific hypothesis.  Five 564 

genes, RPL19, ACTB, PGK1, SDHA, and POLR1B, were included as house-keeping genes for normalisation[105]. 565 

An additional six genes, TBP, GAPDH, KIF3B, GUSB, BMS1, and RPL41, were included to evaluate consistency 566 

with previous codeset analysis but were not used in the normalisation[105]. Finally, ten genes were selected as 567 

a “tagging” approach to increase representation of the gene expression patterns of other genes that are 568 

correlated using the methods in Rudd et al[121]. For this study, we chose a threshold of 99% correlation, 569 

observed in all four of the largest publicly-available HGSC ovarian cancer gene expression datasets[98, 99, 103, 570 

122].  We determined that the 503 genes already selected included 99% correlated gene expression 571 

information for an additional 2,617 genes. Another 10 genes were selected in order to maximize gene 572 

expression data in other parts of the transcriptome that were not represented, and these 10 genes represent 573 

gene expression for another 49 genes. Seven of the candidate genes overlapped with genes selected from the 574 

meta-analysis, therefore 313 additional genes were added to the custom code set (Supplemental Table 4).   575 

Single gene analysis of associations with OS. 576 

Time-to-event analyses were carried out for OS with right-censoring at 10 years and left-truncation of 577 

prevalent cases. For most genes, the association between log-transformed normalized gene expression for 578 
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each gene and survival time was evaluated using Cox proportional hazards models applied to the full data set. 579 

However, in the analysis of those genes that were selected due to the meta-analysis results, the 211 cases that 580 

were also represented in the meta-analysis data set were excluded.  All single-gene models were adjusted for 581 

age, race, and stage, and stratified by study. Patients with missing race or stage information were assigned to 582 

‘unknown’ categories.  Age was modelled using a B-spline with a knot at the median age, which yielded a 583 

better fit than using knots at quartiles or categorical variables.  Stage was dichotomized into early 584 

(International Federation of Gynecology and Obstetrics [FIGO] stage I/II) and advanced (FIGO stage III/IV).  585 

Expression of each gene was scaled to have a standard deviation of one, so hazard ratios correspond to a 586 

change of one standard deviation.  A Benjamini-Hochberg (BH) false discovery rate (FDR) of less than 0.05 was 587 

used to identify notable associations. Advanced stage ovarian cancer usually has disease spread throughout 588 

the abdomen, therefore sensitivity analyses were performed to assess effects of the anatomical location of 589 

tumor samples included in the study by removing observations corresponding to samples known to be 590 

extraovarian (N = 437). 591 

Gene-expression profiling 592 

For RNA extractions, all sites performing NanoString reactions followed standard operating procedures 593 

outlined in advance. RNA was extracted from FFPE tumor samples using the Qiagen miRNeasy FFPE kit and 594 

were processed with the NanoString nCounter technology using a custom codeset. Briefly, each day sites 595 

processed a maximum of 24 samples. Our standard operating procedure called for 500ng of total RNA, as 596 

measured from NanoDrop, combined with hybridization buffer and a custom NanoString reporter and capture 597 

CodeSet allowing hybridization for exactly 16 hours (short-hyb, 12 samples per day) or 20 hours (long-hyb, 12 598 

samples per day)  at 65°C in a pre-heated thermal cycler. Immediately at the end of the prescribed 599 

hybridization period samples were processed on an nCounter prep-station (NanoString) following standard 600 

procedures. Loaded cartridges (12 samples) were scanned at maximum resolution on an nCounter Digital 601 

Analyser (NanoString). The BC Cancer (Vancouver) site performed scanning on a Gen1 Digital Analyzer, while 602 



 39 

both USC (Los Angeles) and PMC (Melbourne, sometime denoted as AOC or Australian Ovarian Cancer study) 603 

performed scanning on Gen2 Digital Analyzers. Relevant variables including processing date, operator, site, 604 

and hybridization time were recorded/embedded into specimen information (CDF) and data files (RCC). In 605 

addition to unique HGSOC samples a number of controls and sample replicates were run at all sites to enable 606 

evaluation of data quality. 607 

Reference Pools. To monitor for technical bias across sites and allow for cross-CodeSet comparisons 35, we ran 608 

3 distinct control RNA pools. This reference-based normalization strategy is considered best practice for 609 

development of NanoString based clinical tests and is similar to the implementation already in use for 610 

Prosigna[123] and a number of other in development tests. Pools consisted of high-quality RNA from fresh-611 

frozen ovarian cancer samples believed to be representative of all molecular subtypes and/or various ovarian 612 

cancer histotypes. Pools were assembled en-mass and aliquoted (5ul, 100ng total RNA) for single use without 613 

multiple freeze thaws at all sites. Control aliquots were stored at -80°C until ready for use and shipped on dry 614 

ice to all processing sites. Pool1 was run approximately every month at each site. Pool2 and Pool3 were run 615 

alternatingly, every other month, at each site. 616 

 Cross-Site Controls. In addition to control pools, a subset of 48 samples were run once at each of the three 617 

processing centres (144 individual run files created, 1 failed QC). The first 36/48 consisted of randomly 618 

selected high-grade serous ovarian carcinoma specimens, 12 from each processing centre. In addition, the 619 

Vancouver site selected 12 samples from non-High-grade serous histology samples (3 clear cell, 3 620 

endometrioid, 3 low-grade serous, 3 mucinous). Aliquots of RNA chosen at each site were sent on dry ice to 621 

the other two processing centres. RNA from the 48 of the tumor samples were run on all three instruments to 622 

assess concordance and the average r-squared was 0.981 (range 0.758-0.996). RNA from 1-2% of the samples 623 

were randomly selected as technical replicates and run a second time to access concordance and to identify 624 

any systematic problems with sample labelling. All 98 pairs of samples were concordant and the average r-625 

squared was 0.978 (range 0.753-0.998). 626 
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Quality control and normalization of gene-expression data 627 

Raw data were assessed using several quality assurance (QA) metrics to measure imaging quality, 628 

oversaturation and overall signal to noise. 629 

1.       Imaging quality controls: Samples were flagged as imaging failures if the percentage of lane images FOV 630 

obtained was less than 75% of the requested number of fields.  631 

2.       Linearity of the assay: Samples were flagged as linearity failures if spiked-in positive control probes at 632 

different concentrations had R2<0.95. 633 

3.       Detection of Smallest Positive Control: Samples were flagged when the 0.5 fM positive control probe  634 

smaller than 2 standard deviations from the mean of the negative controls probes. 635 

4.       Sample Quality. Thresholds were set to maximize the number of samples of high quality included in the 636 

analysis. Sample Quality fails if either the Limit of Detection or Signal to Noise thresholds are not met. 637 

a.       % of Genes above Limit of Detection (LOD) of negative controls: LOD is an upper bound of the 638 

background noise in the system, computed as two standard deviations above the mean of the spiked-639 

in negative control probes. Samples below a 50% threshold were deemed of poor quality and 640 

considered failures. 641 

b.       Signal to noise ratio (S/N): calculated as a ratio between the geometric mean of housekeeping 642 

genes and lower limit of detection: geometric mean/LOD. Samples with signal to noise ratio below a 643 

170 threshold were deemed of poor quality and considered failures.  644 

5.      Overall QC. This is an overall quality control flag which fails if any of the Imaging, Linearity, or Smallest 645 

Positive Control conditions fail. 646 

Batch correction using control pools 647 
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The reference sample methods described in Talhouk et al was used. Briefly, assuming two batches A and B. To 648 

calibrate samples with gene expressing XB, that were run in batch B to samples with gene expression XA, that 649 

were run in batch A, 650 

·         Some number of reference samples (R) would be run in both batches A and B, resulting in expression 651 

RA and RB. 652 

·         To remove Batch Effect: XB-RB and XA-RA 653 

·         Or alternatively: XB + (RA − RB) would result in calibrating batch B to batch A. 654 

As the same CodeSet was observed at all three sites, little difference was observed across sites; for 655 

consistency, everything was calibrated to the Vancouver batch. The count data were log2 transformed and 656 

centered by the arithmetic mean of the selected housekeeping genes, RPL19, ACTB, PGK1, SDHA, and POLR1B. 657 

 658 

 659 

Prognostic signature 660 

To compare and evaluate competing methods for development of the signature, we used an AUC approach 661 

implemented in the “survivalROC” R software package, designed for a time-dependent setting with censoring 662 

where a lag exists between measurement of the biomarker and the disease outcome[124]. A ten-fold cross-663 

validation approach was used, thus each modelling approach was applied to a randomly selected nine-tenths 664 

of the training data, then the AUC was computed on the remaining one-tenth (out-of-bag sample; OOB) based 665 

on the continuous biomarker generated by the model. These AUC values guided selection of the best method, 666 

which was then applied to the full training dataset to identify the signature. Elastic net was the best 667 
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performing approach, hence the approach described below in B was applied to the full training dataset to 668 

develop the final model. This signature was then evaluated in the testing data that were set aside.  669 

A. Stepwise. Each gene was initially modelled separately, then those significant at a Bonferroni corrected 0.05 670 

level were jointly modelled using a backwards stepwise approach, sequentially removing genes that did not 671 

achieve a nominal 0.05 significance level.  This process yielded a final model with coefficients that defined a 672 

linear combination of adjustment covariates and expression features, forming a prognostic biomarker for OS.   673 

B. Elastic net.  In this regression method, a mixture of l1 (lasso) and l2 (ridge regression) penalties are applied. A 674 

version has been developed for the Cox proportional hazards model, available in the glmnet R software 675 

package[125].  For each step of the overall cross-validation, the penalty parameter, l, was selected as that 676 

with the minimum mean cross-validated error as measured by the Cox partial likelihood for each randomly 677 

selected nine-tenths of the training data, using the R function cv.glmnet from the glmnet R package. Thus, 678 

nested cross-validation was conducted. The covariates age and stage were included in the model as mandatory 679 

categorical variables by applying no penalization.  Genes with non-zero coefficients in the penalized Cox model 680 

were selected for the final model.   681 

C. Boosting. Component-wise gradient boosting, a machine learning method, employs gradient descent 682 

techniques to optimize a combined variable selection and model building strategy. It has been implemented 683 

for general linear models and Cox proportional hazards model in the R package mboost[126]. To constrain the 684 

model to account for age and stage we included an offset computed from the linear predictors from a Cox 685 

proportional hazards model. Boosting is an iterative strategy where at each step, parameters are updated by 686 

weak estimators according to a pre-specified loss function. An important tuning parameter that can influence 687 

over-fitting is the number of iterations, mstop.  We used 10-fold cross-validated estimates of empirical risk to 688 

choose mstop. Thus, nested cross-validation was performed for parameter tuning, similar to the elastic net 689 

approach. 690 
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D. Random Survival Forests. This machine learning approach designed for survival outcomes[127] is an 691 

ensemble method based on multiple decision trees, which are weakly predictive individually but combine to 692 

yield what can be a strong predictor. The analysis was conducted using the rfsrc function in the R package, 693 

randomForestSRC. To enhance performance in settings with large numbers of predictors, a preliminary feature 694 

selection step is sometime performed.  We conducted the analysis restricting to genes significant at a 0.05 695 

Bonferroni corrected alpha level, similar to the stepwise approach described above. The tuning parameters for 696 

these analyses included the number of trees, set to 200, and the maximum number of splits for each tree, set 697 

to 20. 698 

Prognostic signature performance in relation to gene set size 699 

To further assess the need for all 101 genes included in the signature, we computed AUC sequentially adding 700 

genes according to the magnitudes of the corresponding coefficients. The gene with the most extreme 701 

coefficient was added first, followed by the gene with the next most extreme coefficient, and so on. Age and 702 

stage were included in the signature, and the AUC was computed using individuals from the test set only. 703 

Genes correlated with genes in the prognostic signature 704 

To find additional genes co-expressed with genes within our NanoString panel a correlation analysis was 705 

performed within The Cancer Genome Atlas (TCGA) Ovarian Serous Cystadenocarcinoma RNA-seq data set. A 706 

correlation coefficient was estimated for each NanoString panel gene vs all other genes included in the TCGA 707 

dataset. Genes with FDR < 0.05 were considered truly coexpressed and were considered strongly co-expressed 708 

if both Pearson and Spearman correlation coefficients were greater than 0.75 in absolute value.  709 

Biological pathways that are enriched in the prognostic gene signature were investigated by computing 710 

overlaps between the 101 genes in the prognostic signature and the Reactome database1[128] using the 711 

Broad Institute’s Molecular Signature Database (MSigDB)[129]. Results were obtained for the top 20 pathways 712 

enriched within the gene set that had a FDR < 0.05. A similar analysis was performed to examine the biological 713 
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pathways that are enriched in genes that strongly co-expressed with the prognostic signature genes in the 714 

TCGA data set. 715 

Assigning signature score and hazard ratio to new patients 716 

For future use of this signature with individual patients, it is necessary to compute the signature score based 717 

on the coefficients for age, stage, and gene expression that are specified in Supplemental Table S10, 718 

GeneSignatureCoefficients. Once a new FFPE sample is obtained, the following steps are taken to generate the 719 

score: 720 

1. An FFPE tumor sample is processed and profiled using the NanoString platform and codeset developed 721 

for the current study (GEO GPL26748) according to methods described above. The quality controls 722 

steps and normalization must be adhered to as described, including use of the housekeeping genes 723 

included in the codeset.  724 

2. Patients are assigned to an age quartile group, and the corresponding variables, age.fq2, age.fq3, 725 

age.fq4, are assigned a 1 if the patient fits this category or 0 otherwise. Cut-points were based on our 726 

training data, ages 53, 60 and 67. Specifically 53 <= age.fq2 < 60, 60 <= age.fq3 < 67, age.fq4 >= 67. 727 

Patients under age 53 are in the reference group, thus the three age.fq variables are all assigned 0 for 728 

these patients.   729 

3. Patients are assigned to a stage group, and the corresponding variables, stage.f1 and stage.f8 are 730 

assigned a 1 if the patients fits this category or 0 otherwise.  stage.f1 is defined as FIGO I-II and stage.f8 731 

is assigned when FIGO is unknown. Patients with FIGO III-IV are in the reference category, thus stage.f1 732 

and stage.f8 are both assigned 0 for these patients.  733 

4. Each coefficient in Table S10 is multiplied by its corresponding age, stage or gene expression value.  734 

5. The products are then summed to compute the scores. That is, letting x denote the vector of values 735 

and b denote the vector of coefficients, the score, s, is equal to the matrix product, 𝑠 = 𝑥𝛽!. 736 
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The score can be used to estimate the HR relative to the median score observed here, which was  -737 

0.1664587 (mean = -0.2965882). The estimated HR for a given patient relative to the median would be 738 

computed as exp((observed score – median) * 1.215), where 1.215 was the COX regression coefficient for 739 

the signature score in the testing group in the present study. Scores for future patients can be compared 740 

to the patient characteristics reported here by the quintile groups shown in Supplemental Table S11 by 741 

noting that the cut-points for the scores defining quintiles in the full dataset were -0.7320, -0.3126, -742 

0.0255, and 0.2658. 743 

  744 
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Supplementary figures 745 

 746 

Figure S1. Permutation-based FDR for microarray meta-analysis results. Plot A displays FDR estimates and 95 747 

percent confidence regions for a series of increasingly stringent significance thresholds defined by the median 748 

p-value across the six studies. Plots B-D are permutation-based FDR results for the joint analyses across the six 749 

studies. The Omnibus tests, C, allow the gene effect to vary across molecular subtype, whereas GxS tests, D, 750 

assess evidence for differences in effect across molecular subtypes. 751 
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 753 

Figure S2. Boxplots of AUC values generated from 10-fold cross validation for competing gene expression 754 

prognostic biomarker modelling approaches for two-year and five-year overall survival. Each approach was 755 

applied to 10 datasets, each of which was a randomly sampled nine tenths of the training data. AUC values 756 

were computed using these models applied to the remaining one tenths of the training data. Methods include 757 

boosting (Bst), elastic net (EN), random forests with BH feature selection (RF.BH), random forests with 758 

Bonferroni feature selection (RF.Bn), stepwise with BH selection (stp.BH), and stepwise with Bonferroni 759 

selection (stp.Bn). The superior performance of the elastic net method as compared to the backward stepwise 760 

approach may be explained by the ability of elastic net to account for dependencies among the genes. The fact 761 

that it performed better than random survival forests may indicate that Cox proportional hazards models are 762 

relatively good at modeling the relation between gene expression and OS.  763 
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 765 

 766 

 767 

 768 

 769 
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 771 

 772 

 773 

 774 

 775 

 776 

Figure S3. Graph of AUC from sequentially adding genes according to the magnitudes of the corresponding 777 

coefficients. Age and stage were included in the signature, and the AUC was computed using individuals from 778 

the test set only. The figure shows increasing AUC as the number of genes increases to the final size of 101, 779 

with no clear indication of an asymptote. While it may be possible to reduce the number of genes in the 780 

signature without impacting signature performance, the above results do not suggest specific genes that could 781 

be removed.  782 
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 783 

 784 

Figure S4. KM curves of overall survival for patients in the training (A) and testing (B) sets. Patients were 785 

assigned to quintiles by risk according to age and stage as estimated in Cox models. The smallest quintile has 786 

the lightest shade and increasingly darker shades correspond to larger quintiles. Quintiles were calculated 787 

independently for the training (A) and testing (B) sets. Shaded regions indicate 95 percent confidence regions. 788 
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 791 

Figure S5. KM curves of overall survival for patients with A) known primary treatment (≥ 4 cycles of IV 792 
carboplatin AUC 5 or 6 & paclitaxel 135 or 175 mg/m² every 3 weeks), B) known primary treatment with 793 
presumed standard doses (≥ 4 cycles of IV carboplatin & paclitaxel every 3 weeks) and C) all remaining cases 794 
with chemotherapy regimens that do not fit criteria in A or B, includes unknown or no chemotherapy. Patients 795 
were assigned to quintile groups, Q1 to Q5, based on the signature score, with Q1 having the lightest shade 796 
and increasingly darker shades corresponding to quintiles with greater scores. Quintiles were calculated 797 
independently for each of the three treatment groups. 798 
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 799 

 800 

Figure S6. KM curves of overall survival for patients with A) BRCA1, B) BRCA2, and C) no BRCA1 or BRCA2 801 
germline mutations. Patients were assigned to quintile groups, Q1 to Q5, based on the signature score, with 802 
Q1 having the lightest shade and increasingly darker shades corresponding to quintiles with greater scores. 803 
Quintiles were calculated independently for each of the three BRCA groups. 804 
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 806 

Figure S7. KM curves of overall survival for patients with A) CD8 score equal to 0, B) CD8 score equal to 1 or 2, 807 

and C) 2 < CD8 score < 20. Patients were assigned to quintile groups, Q1 to Q5, based on the signature score, 808 

with Q1 having the lightest shade and increasingly darker shades corresponding to quintiles with greater 809 

scores. Quintiles were calculated independently for each of the three CD8 groups. 810 
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 812 

Figure S8. Violin plots of 101-gene signature scores for all 3769 HGSOC patients according to their molecular 813 

subtype. The data used to assign molecular subtypes overlapped with the data used to compute the signature 814 

score, however, hazard ratios for overall survival across quintiles of the signature were only minimally 815 

impacted by molecular subtype adjustment (Table 2), implying that the predictive value of the signature score 816 

is largely independent of subtype.   817 
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 821 

Figure S9. KM curves of overall survival for patients with A) FIGO stage 1A, B) FIGO stage 1B, and C) FIGO stage 822 

1A and 1B, D) FIGO stage 3C, E) FIGO stage 3C patients with no residual disease, F) FIGO stage 3C patients with 823 

residual disease, and G) residual disease present, any FIGO stage. Patients were assigned to quintile groups, Q1 824 

to Q5, based on the signature score, with Q1 having the lightest shade and increasingly darker shades 825 

corresponding to quintiles with greater scores. Quintiles were calculated independently for each group. 826 
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 827 

Figure S10. KM curves of overall survival for patients with tissue from A) ovary, B) omentum, C) other 828 

extraovarian sites, and D) omentum combined with other extraovarian sites. Patients were assigned to quintile 829 

groups, Q1 to Q5, based on the signature score, with Q1 having the lightest shade and increasingly darker 830 

shades corresponding to quintiles with greater scores. Quintiles were calculated independently for each of the 831 

four tissue groups. 832 
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 845 

Figure S11. Signature scores in paired omentum vs. ovary tumor tissue samples collected from 42 HGSOC 846 
patients. The dashed line represents the line of identity, and the shaded area shows the 95% confidence region 847 
around the solid line, which is the least-squares fit to the points. These paired samples were processed and the 848 
101-gene score computed using the Nanostring platform and computations described in Methods. The 849 
apparent linear relation observed in the plot demonstrates a strong correspondence between tissue types as 850 
suggested by the high Pearson correlation coefficient, r = 0.79 (p = 5.4 x 10-10). 851 
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