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Abstract 

Background:  This work is aimed at improving the understanding of cardiometabolic syndrome pathophysiology and 
its relationship with thrombosis by generating a multi-omic disease signature.

Methods/results:  We combined classic plasma biochemistry and plasma biomarkers with the transcriptional and 
epigenetic characterisation of cell types involved in thrombosis, obtained from two extreme phenotype groups 
(morbidly obese and lipodystrophy) and lean individuals to identify the molecular mechanisms at play, highlighting 
patterns of abnormal activation in innate immune phagocytic cells. Our analyses showed that extreme phenotype 
groups could be distinguished from lean individuals, and from each other, across all data layers. The characterisa-
tion of the same obese group, 6 months after bariatric surgery, revealed the loss of the abnormal activation of innate 
immune cells previously observed. However, rather than reverting to the gene expression landscape of lean individu-
als, this occurred via the establishment of novel gene expression landscapes. NETosis and its control mechanisms 
emerge amongst the pathways that show an improvement after surgical intervention.

Conclusions:  We showed that the morbidly obese and lipodystrophy groups, despite some differences, shared a 
common cardiometabolic syndrome signature. We also showed that this could be used to discriminate, amongst the 
normal population, those individuals with a higher likelihood of presenting with the disease, even when not display-
ing the classic features.
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Background
Cardiovascular disease (CVD) is the primary cause of 
death worldwide (17.9 million deaths in 2016, 31% of all 
deaths) [1] accompanied by an ever increasing number 
of overweight and obese individuals, which place a bur-
den of hundreds of billions of dollars on healthcare sys-
tems each year [2, 3]. Cardiometabolic syndrome (CMS) 
increases both CVD and type 2 diabetes (T2D) risk [4]. 
CMS is a cluster of interrelated features including: obe-
sity, dyslipidaemia, hyperglycaemia, hypertension and 
non-alcoholic fatty liver disease [5]. These features have 
overlapping components, including visceral fat deposi-
tion, high triglycerides, high low-density lipoprotein 
(LDL)-cholesterol, high fasting blood glucose, hyperten-
sion, decreased high-density lipoprotein (HDL)-cho-
lesterol and low-grade chronic inflammation [6–8]. The 
therapeutic approaches aim to mitigate these features 
and include: weight loss strategies [9], lipid lowering 
drugs [10], antiplatelet therapies [11], glucose lowering 
[12, 13] and anti-inflammatory drugs [14]. The relation-
ship between cardiometabolic health and body weight 
is complex [15]. CVD risk varies amongst individuals of 
similar body mass index (BMI) depending on adipose tis-
sue (AT) distribution and functionality [16–20]. AT acts 
as an active endocrine organ [21, 22] and, when dysfunc-
tional, plays a major role in metabolic disorders inducing 
peripheral insulin resistance, contributing to low-grade 
chronic inflammation [23].

While the participation of platelets and neutrophils in 
thrombosis, and that of macrophages in atherosclerotic 
plaque formation, are well established [24–26], the role of 
these cell types in atherogenesis and CVD onset has been 
appreciated only recently [27]. Additionally, prolonged 
exposure to low-grade inflammation is known to modify 
the functional phenotype of monocytes (an effect named 
trained immunity [28]), platelets [29, 30] and neutrophils 
[31, 32]. The molecular characterisation of these pheno-
typic changes remains incomplete, motivating the need 
for extended molecular phenotyping of these cells per-
formed here. Previous multi-omics studies in blood cells 
have identified pathways involved in CVD and obesity, 
and confirmed whole blood as a source of surrogate bio-
markers able to delineate the metabolic status [33]. Sev-
eral risk score algorithms have been developed to predict 
the risk of complications associated with obesity [34–
39]. However, a number of questions still remain open. 
CVD may also occur in the absence of other comorbidi-
ties, and certain events have a better clinical outcome 

in overweight and obese patients compared with their 
leaner counterparts (the so-called obesity paradox) [40]. 
We speculated that extreme phenotypes could be used 
to determine disease signatures, including new features, 
that are informative of disease aetiology in the general 
population.

Here, we present the molecular characterisation of the 
transcriptional (RNA sequencing, RNA-Seq) and epige-
netic (histone 3 lysine 27 acetylation, H3K27ac; reduced 
representation bisulfite sequencing, RRBS, and Illumina 
HumanMethylation450 BeadChip) changes in neutro-
phils, monocytes, macrophages and platelets in morbidly 
obese (BMI > 40  kg/m2; no obvious genetic cause [41]) 
and in familiar partial lipodystrophy type 2 (hereafter 
lipodystrophy; causal mutations in PPARG​ or LMNA 
genes, as verified by whole genome sequence [41, 42]) 
individuals. We also investigated the reversibility of these 
molecular changes in the obese group after bariatric sur-
gery. We found that proinflammatory gene expression 
programmes were downregulated, alongside more mod-
est differences in regulatory elements usage and almost 
no differences in DNA methylation profiles. Altogether, 
the data indicate a reduced ability of these cells to be 
activated and undergo extracellular traps (NETosis), 
which was further confirmed by neutrophil and platelet 
cell functional assays, which showed a reduced ability to 
adhere, the key initial step during their activation. Lastly, 
we indeed identified the molecular signatures for CMS 
and devised a penalised logistic regression approach to 
stratify individuals in the general population based on 
their CMS risk.

Results
Metabolic signatures in the obese and lipodystrophy 
groups
Participants were recruited as follows: controls (N = 20; 
from which metabolically healthy individuals, hereafter 
lean-Control, were selected, see Methods; Additional 
file  1: Fig. S1A), lipodystrophy (N = 10), morbidly obese 
referred for bariatric surgery (N = 11) and blood donors 
(hereafter BD; N = 202) [43]. We collected age and body 
weight (BW) and performed plasma biochemistry assays 
for the following: leptin, adiponectin, insulin, free fatty 
acid (FFA), glucose (GLC), serum lipid (triglycerides 
(TG), total cholesterol (TC), high-density lipoprotein 
(HDL-C), low-density lipoprotein (LDL-C)), activity of 
alanine and aspartate amino-transferases (ALT and AST, 
respectively) and high-sensitivity C-reactive Protein 
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Innate immune cells, Cardiometabolic syndrome



Page 3 of 24Seyres et al. Clinical Epigenetics           (2022) 14:39 	

(hsCRP). Additionally, we computed the following: lep-
tin-adiponectin ratio (LAR), Homeostatic Model Assess-
ment for Insulin Resistance (HOMA-IR) and Adipose 
Tissue Insulin Resistance (AT-IR) indices (Table  1 and 
Table S1). First, we wanted to determine whether the dif-
ferent groups could be separated based on their plasma 
biochemistry and anthropometric characteristics.

Compared to the other groups, the lipodystrophy 
group had elevated GLC, TC, TG, ALT, AST, insulin (and 
consequently HOMA-IR and AT-IR), whereas HDL-C 
and LDL-C were decreased. Instead, the obese group, 
compared to the other 3, had elevated LAR, LDL-C and 
hsCRP.

To visualise how these parameters separate obese, lipo-
dystrophy and BD, we performed a principal component 
analysis (PCA), which showed that obese, lipodystrophy 

and BD groups were distributed over distinct, albeit 
partially overlapping, dimensions (Fig. 1a). The first two 
components (PC1 and PC2) were sufficient to distin-
guish the different groups (Obese versus Lipodystrophy: 
p value = 0.002; Obese versus BD: p value < 2.2e−16; 
Lipodystrophy versus BD: p value < 2.2e−16; Hotelling’s 
T-squared test with F distribution). Lipodystrophy and 
obese were separated from BD along PC1, while they 
were separated from each other along PC2. Loading and 
contribution analysis (Fig. 1b) showed that the main con-
tributors to the separation along PC1 were BW, LAR, 
hsCRP, AST, ALT, GLC, AT-IR, HOMA-IR and TG.

Additionally, BW, LAR, hsCRP separated the obese 
from the lipodystrophy groups in one direction along 
PC2, while AST, ALT, GLC, AT-IR, HOMA-IR and TG 
separated them in the opposite direction.

Table 1  Descriptive characteristics of the study groups. Average value and standard deviation are indicated

Blood donors (n = 202) Controls (n = 20) Lipodystrophy (n = 10) Obese (n = 11) Post-surgery 
(n = 10)

Adiponectin (µg/ml) 10.1 ± 6.3 10.7 ± 3.7 3.2 ± 2.3 5.9 ± 1.9 6.4 ± 2.6

AGE(years) 57.3 ± 11.1 40.7 ± 11 45.1 ± 9.6 46.3 ± 12.3 43 ± 12.6

ALT (U/L) 34.6 ± 12 27.1 ± 7.5 56 ± 12.7 35.7 ± 9.4 36.1 ± 17

AST (U/L) 25.5 ± 11.1 21.8 ± 6.9 39 ± 16.8 22.6 ± 3.8 18.9 ± 6.9

AT-IR 2.6 ± 2.5 1.9 ± 2.5 8.4 ± 7 7.2 ± 11.2 4.8 ± 5.4

BMI (kg/m2) 26.4 ± 4.9  < 25  < 25 45 ± 5.1 –

BW (kg) 76 ± 14.9 – 73.2 ± 9.7 137.9 ± 35.2 –

FFA (µmol/L) 189.3 ± 132.8 156.5 ± 103.3 259.6 ± 174.9 293.1 ± 164.6 232.2 ± 141.5

GLC (mmol/L) 5.4 ± 1.8 4.9 ± 1 8.3 ± 3.4 5.3 ± 0.6 5.3 ± 1.5

HDL-C (mmol/L) 1.6 ± 0.5 1.7 ± 0.4 0.8 ± 0.6 1.3 ± 0.2 1.3 ± 0.2

HOMA-IR 4.3 ± 4.9 2.5 ± 2.2 13 ± 10.5 7.1 ± 11.3 8.6 ± 18.4

hsCRP (mg/L) 1.9 ± 1.8 2.2 ± 1.2 2.3 ± 3.3 7.4 ± 6.9 2.9 ± 5.6

Insulin (pmol/L) 118.4 ± 117.1 76.4 ± 55.6 261.7 ± 262.3 190.6 ± 276.2 178.7 ± 294.3

LAR 1.8 ± 2.1 2 ± 2.1 2.3 ± 1.9 13.7 ± 6.6 5.5 ± 4.5

LDL-C (mmol/L) 2.9 ± 0.9 2.7 ± 0.8 1.7 ± 0.5 2.4 ± 0.8 2.6 ± 1

Leptin (ng/ml) 14.2 ± 14.7 19.8 ± 17.1 7.6 ± 7.8 74.1 ± 30.4 29.9 ± 21

TC (mmol/L) 5.3 ± 1.1 4.9 ± 1 4.2 ± 1 4.5 ± 0.8 4.1 ± 1.4

TG (mmol/L) 1.6 ± 0.9 1.2 ± 0.9 5.6 ± 5.5 1.9 ± 0.7 1 ± 0.4

Fig. 1  Metabolic signatures in the obese and lipodystrophy groups. a Principal component analysis (PCA) of three groups: obese, green; 
lipodystrophy, blue; and blood donors (BD), light red. PCA was performed using the parameters below. b Representation of PCA loadings on: age, 
weight (BW), body mass index (BMI), leptin-adiponectin ratio (LAR), glucose (GLC), triglycerides (TG), total cholesterol (TC), high-density lipoprotein 
(HDL-C), low-density lipoprotein (LDL-C), alanine amino-transferase (ALT), aspartate amino-transferase (AST), Homeostatic Model Assessment 
for Insulin Resistance (HOMA-IR) and adipose tissue insulin resistance (AT-IR) indexes and high-sensitivity C-reactive Protein (hsCRP). Colour and 
arrow length scale represent contribution to variance on the first two principal components. c Metabolite module-trait associations using WGCNA 
consensus analysis and 988 metabolites. Each row corresponds to a module eigen  metabolites (ME) and each column to a parameter. Number of 
metabolites in each module is indicated in brackets. Cell colour represents Pearson’s correlation as shown by legend. Significance is annotated as 
follows: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001 (Fisher’s test p value corrected for multi-testing). d Heatmap of extreme phenotype groups’ 
MEs adjacencies in the consensus MEs network. The heatmap is colour-coded by adjacency, yellow indicating high adjacency (positive correlation) 
and blue low adjacency (negative correlation). e Beeswarm plot using average MEs per cluster presented in (d)

(See figure on next page.)
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We further characterised the differences between the 
obese and lipodystrophy groups by investigating plasma 
metabolites, whose levels are known to be influenced 
by both extreme phenotypes [44–47]. We identified and 
quantified 988 plasma metabolite species (Metabolonⓡ-; 
METHODS)), and we performed a weighted gene co-
expression network consensus analysis (WGCNA)[48] 
to identify groups of metabolites whose levels were cor-
related across samples. To recognise shared features 
and to reach the sample size as recommended for such 
analysis [48] the obese and lipodystrophy group were 
analysed together. This analysis identified 16 clusters of 
metabolites (named modules, M1 to M16; Table S2). To 

determine the relationship between modules, anthropo-
metric traits and plasma biochemistry, we investigated 
whether any correlation existed. Of the 208 tested asso-
ciations, we found that 11 modules showed significant 
associations with BW, LAR, TG, HDL-C, LDL-C, ALT 
and AST in the extreme phenotype groups (FDR adjusted 
Fisher p values < 0.05; Fig. 1c), while no associations were 
found in the BD cohort (not shown). To pinpoint which 
modules were associated with each of the two extreme 
phenotype groups, we analysed the modules eigen-
metabolite adjacencies (Fig.  1d). The module’s adjacen-
cies formed different clusters, C1 and C2 were found 
using extreme phenotype groups, C3 and C4 using BD 
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Fig. 2  Transcriptional and epigenetic signatures in extreme phenotype groups for three innate immune cell types and platelets. a Schematic 
overview of the comparisons made in the four different cell types (Monocytes: blue; Neutrophils: green; Macrophages: purple; Platelets: yellow). 
b, c Barplot showing the number of features significantly different: H3K27ac distribution (ChIP-Seq), gene expression (RNA-Seq) and DNA 
methylation (RRBS). Each bar is colour coded to represent the different cell types as in (a). b represents results when comparing lean-Control and 
obese individuals. c represents results when comparing lean-Control individuals and lipodystrophy patients. d Functional GO term annotation of 
upregulated genes when comparing lean-control versus obese group (top) and lean-control individuals versus lipodystrophy group (bottom), 
colour coded by cell types as above. The numbers near each dot indicate, from left to right: number of submitted genes, number of genes 
overlapping with the category and number of genes in the category
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samples (Additional file  2: Fig. S2A). Plotting the aver-
age eigen-metabolite value for each cluster (Fig.  1e) we 
showed that C1 and C2 represented the obese and lipo-
dystrophy groups, respectively, whereas clusters C3 and 
C4 could not discriminate between obese and lipodys-
trophy (Additional file 2: Fig. S2B). C1 metabolites were 
significantly enriched in alanine, aspartate and glutamate 
metabolism, phenylalanine metabolism, nitrogen metab-
olism and TCA cycle, whereas C2 metabolites we found 
glycine, serine and threonine metabolism and cysteine 
and methionine metabolism pathways (Table  S2). Our 
analysis demonstrated that the two extreme phenotype 
groups could be identified by their metabolic signatures, 
associated with clinical parameters, which also set them 
apart from the general population represented by BD.

Extreme phenotypes influence innate immune cell types 
and platelets transcriptional and epigenetic signatures
Next, we determined the influence of the changes in 
plasma on neutrophils, monocytes, macrophages and 
platelets, as these are some of the key players in athero-
genesis and thrombus formation [49] (Fig. 2a and Addi-
tional file  1: Fig. S1B). We compared gene expression 
(RNA sequencing), active chromatin (histone 3 lysine 27 
acetylation distribution) and DNA methylation (reduced 
representation bisulfite sequencing and Illumina arrays) 
in lean-Control and extreme phenotype groups. For each 
assay we performed the following comparisons: lean-
Control versus obese, lean-Control versus lipodystrophy 
and obese versus lipodystrophy (Fig. 2a and Table S7). For 
each comparison we identified differentially expressed 
genes (DEG; Table  S8-S11), differentially acetylated 
regions (DAcR; Table S12-S14) and differentially methyl-
ated CpG islands (Table S15-S17) at 5% FDR.

Cell type-specific functional annotation by gene 
ontology (GO) terms enrichment analysis for the DEG 
between the lean-Control and obese groups (Fig.  2d) 
found an enrichment for GO terms related to interferon 
alpha/beta signalling pathway, as well as focal adhesion 

in DEG upregulated in macrophages (Table  S18). In 
monocytes, upregulated DEG were enriched for GO 
terms related to inflammatory response and downregu-
lated DEG were enriched in GO terms related to pro-
grammed cell death and ion homeostasis (Table  S19). 
In neutrophils, downregulated DEG were enriched for 
genes responding to antithrombotic drugs (Table  S20). 
In the comparison between the lean-Control and lipo-
dystrophy groups (Fig.  2d), macrophages upregulated 
DEG were enriched in GO terms related to cholesterol 
biosynthesis and immune response activation. In mono-
cytes and neutrophils, upregulated DEG were enriched 
in terms related to interferon and immune responses. To 
determine whether these transcriptomic and epigenetic 
changes are reversible after exposures removal, a second 
blood sample was taken from the same obese individu-
als 6 months after bariatric surgery, and the same assays 
were performed.

Effect of bariatric surgery on transcriptional and epigenetic 
landscapes, and cell functions
Bariatric surgery is effective in the management of 
extreme obesity and associated comorbidities, including 
CMS risk [55], with well-established long-term benefits 
on weight loss, diabetes, hypertension and dyslipidae-
mia [56]. While the effect of this intervention has already 
been reported [57, 58], little is known about the under-
lying molecular mechanisms. Because we sampled the 
same individuals, robust pairwise comparisons could be 
used. In plasma biochemistry we observed a decrease 
for LAR, TG, hsCRP, AT-IR and AST and an increase 
of HDL-C (p values: 7.22*10–6, 2.63*10–9, 4.98*10–4, 
2.51*10–2, 1.48*10–3 and 1.86*10–3, respectively; condi-
tional multiple logistic regression, adjusted for age and 
sex; Fig.  3a; Table  S1). Transcriptional and epigenetic 
paired analyses (Fig. 3b) identified DEG in macrophages 
(599), monocytes (1931), neutrophils (2571) and plate-
lets (2883; Table  S8–S11), DAcR in monocytes (229) 
and neutrophils (788; Table  S13–S14) and differentially 

Fig. 3  Effect of bariatric surgery on transcriptional profile, epigenetic landscape and cell functions. a Body weight (BW) and biochemical values 
distribution across the four studied groups: obese (dark green); lipodystrophy (blue); blood donors (BD) (light red); and post-bariatric surgery 
patients (light green). Asterisks indicate result of significance from multiple logistic regression models and conditional multiple logistic regression 
for obese versus post-surgery comparison. Significance is annotated as follows: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. b Bar plot shows 
number of features significantly different when comparing obese individuals before and after bariatric surgery, coloured by cell types. c Volcano 
plot showing differentially abundant plasma proteins when comparing obese individuals before and after bariatric surgery. Whole blood-specific 
genes associated with differentially abundant proteins have been annotated. d RNA-Seq expression in the 4 different cell types of highlighted 
proteins in (c). Asterisks indicate if the gene was differentially expressed in at least one cell type. e Neutrophil ability to attach in the absence of any 
stimuli after bariatric surgery and it is expressed using the plate reader arbitrary units (RFU). f Adhesion percentage of neutrophils measured in the 
presence of different pro-inflammatory molecules in obese (dark green) and post-surgery (light green) individuals. Asterisks indicate the result of 
significance from paired t test. Significance is annotated as follows: *p ≤ 0.05; **p ≤ 0.01

(See figure on next page.)
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methylated CpGs in macrophages (201), monocytes [48] 
and neutrophils (198; Table S15–S17).

DEG GO terms enrichment identified amongst the 
upregulated pathways: ribosome formation, metabo-
lism of amino acid and proteins, several immune-related 
pathways and cytoplasm translation and amongst the 
downregulated pathways: cholesterol metabolic process 
(through SREBF and miR33 [59]) and mRNA process-
ing pathways (Table  S18-S21). We found genes whose 
expression was reduced in obese, to revert to the levels 
observed in the lean-Control group: nine in macrophages 
(RHPN1, DGKQ, TCTEX1D2, MVD, LDL-R, BCAR1, 
ANKRD33B, FASN, COL5A3; overlap p value = 3.6*10–8, 
hyper-geometric test), seven in monocytes (EPB41L3, 
LRRC8B, STARD4, ZNF331, SEMA6B, DSC2, RGPD8; 
overlap p value = 5*10–6), five in neutrophils (NAIP, 
RP11-1319K7.1, LINC01271, LINC01270, DNAH17; 
overlap p value = 1.3*10–5) and ten in platelets (CTC-
429P9.4, XXbac-BPG300A18.13, RP11-386G11.10, 
MT-TG, TVP23C-CDRT4, SHE, MPZL3, CLIP1, RGPD1, 
RPL23AP7; overlap p value = 6.5*10–5). These indicate 
that lipoprotein metabolism (LDL-R), fatty acid synthesis 
(FASN) and cholesterol transport (STARD4) are restored 
after surgery. We also found two genes in macrophages 
(SNHG5, EVI2A; overlap p value = 0.03) and three in 
monocytes (XXbac-BPG32J3.22, MEIS2, MS4A14; over-
lap p value = 0.03) that move in the directions. However, 
the majority of DEG either did not revert to the values 
observed in lean-Control individuals or were not differ-
entially expressed in the comparison between the obese 
and lean-Control groups.

The effects of bariatric surgery at organism level were 
monitored with plasma proteomics. We quantified 3098 
plasma proteins; 604 of which were found to be differen-
tially abundant (DAP; Fig. 3c and Table S24) above ordi-
nal Q-value of 1*10–3. Proteins whose levels increased 
after bariatric surgery (n = 72) were enriched in GO 
terms related to tight junction and WNT, PI3K/AKT, 
sphingolipid signalling pathways. Proteins whose abun-
dance decreased after surgery (n = 532) were enriched 
in the following GO terms: cell cycle and DNA repair, 
ribosomal RNA metabolism and cell senescence, phago-
cytosis and T cell receptor signalling as well as FGF, 
IL2, VEGF and insulin signalling pathways (Table  S25). 
Amongst these we also found NLRP3, a critical media-
tor of inflammation [61] and several histones, normally 
released by cells undergoing apoptosis and NETosis 
[62]. No changes in full blood count that could explain 
these changes were observed. We only noted an increase 
in mean platelet volume (MPV; p value = 0.03; paired 
t test) and a reduction of lymphocytes (p value = 0.03) 
and eosinophils (p value = 0.03; Table  S1) counts. The 
plasma proteomic results showed that the changes after 

bariatric surgery were not limited to immune cells. To 
determine whether any of them could be ascribed to a 
specific tissue, we determined which genes were tissue-
specific, using the GTEx project database [63] (Table S26; 
METHODS). Tibial, coronary and aortic arteries, heart 
atrial appendage, heart left ventricle and blood displayed 
an enrichment for tissue-specific genes amongst DAP 
(p values: 1.6*10–2, 8*10–3, 2*10–2, 1.8*10–2, 1.6*10–2 and 
5*10–2, respectively; hyper-geometric test; Table S26). Of 
the 13 blood-specific genes encoding a DAP, six were also 
differentially expressed in at least one of the cell types 
(Fig. 3d). These six genes have roles in immune response 
and leptin resistance [64], immune pathways [65], neu-
trophils recruitment during thrombosis [66] and mac-
rophage differentiation and inflammatory response [67]. 
Furthermore, monocytes and macrophages data allowed 
us to explore the effect of bariatric surgery on trained 
immunity [53], which has been shown to play a role in 
atherosclerosis [68, 69]. Genes displaying an active pro-
moter (H3K4me3), with or without β-glucan treatment, 
significantly overlapped with DEG in the obese ver-
sus post-surgery comparison (p value = 4.5*10–2 and p 
value = 7.7*10–3; Table S27).

To determine the impact of the changes observed at 
molecular levels on the functional phenotypes of these 
cell types, we performed functional tests on neutrophils 
and platelets. After bariatric surgery, neutrophils showed 
a reduction in their ability to adhere both when unstimu-
lated (Fig. 3e), as well as, when subjected to a variety of 
stimuli (DTT, LBP, PAM3, PAF and fMLP; Fig.  3f ), but 
not when treated with TNF alpha or PMA. These results 
were accompanied by a reduction in the cell surface lev-
els of CD16 and CD32, but not CD66b, CD63, CD62L 
or CD11b (paired t test, all result in Table  S28). Along-
side, we also performed platelet functional tests, which 
showed a reduction in P-selectin surface exposure upon 
collagen stimulation, but not upon ADP or thrombin 
stimulation. These results were accompanied by a reduc-
tion in the cell surface levels of fibrinogen receptor (CD61 
and CD41b) and CD36, the thrombospondin receptor 
that acts as scavenger for oxidised LDL. No changes were 
observed for CD49b, CD42a, CD42b, CD29 and CD9 
(paired t test, all results in Table S28).

Data collected across several layers of evidence sug-
gested a diminished ability of the cells to use neutrophil 
extracellular traps (NETosis) [70] after bariatric surgery 
(Fig.  4). NETs are formed by chromatin (DNA and his-
tones), granular antimicrobial proteins and cytoplasmic 
proteins, and are normally found at low levels in the 
circulation [71]; however, in the presence of pathogens 
or sterile inflammation, such as the increase of reactive 
oxygen species observed in obese individuals [72], NETs 
levels are increased. We observed decrease plasma levels 
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of NLRP3 a critical mediator of the inflammasome [61], 
RAC2 a protein directly involved in NETs promotion 
[73], MYO1G, a protein-promoting immune cells inter-
action [74] and several histones, core component of the 
chromatin released during NETosis [74] (all in Fig.  3c). 
Additionally, the upregulated genes in obese individuals 
indicated increased activity of neutrophils and mono-
cytes (Table S19-S20).

Lastly, we also observed a decrease in the ability of 
neutrophils to adhere, alongside changes in their surface 
protein levels, such as CD16 and CDE32, also previously 
associated with NETosis [75] (Table  S28). In addition, 
genes associated with DAcR in neutrophils post-surgery 
showed enrichment in the T cell receptor signalling path-
way, in particular Th17 cell differentiation (Table  S22), 
which suggested a restored ability for neutrophils to acti-
vate T cell through NETosis.

The results of the comparisons between lipodystrophy 
and post-bariatric surgery and post-bariatric surgery and 

lean-Control (Additional file  3: Fig. S3) are available in 
Tables S8 to S17.

Multi‑omic signature classification of extreme phenotypes
Six lean (METHODS; hereafter named “Lean-BD”; Addi-
tional file 1: Fig. S1A) and six obese individuals, for which 
we had complete measurements on all layers, in mono-
cytes and in neutrophils, were used to define training sets 
(Additional file  1: Fig. S1C). Since multivariable selection 
approaches have provided an effective means to integrate 
multiple omics layers and elucidate disease signatures [76, 
77], we applied elastic-net-penalised logistic regression 
[78] to identify signatures associated with an increased 
probability of belonging to the obese group and therefore 
to have some or all features associated with CMS (Fig. 5a). 
We performed this analysis independently for each data 
layer (METHODS). The variables selected into each sig-
nature defined patterns characterising the groups (Fig. 5b; 
Table S29-31), and the biometric variables were then used 
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to construct multivariable logistic regression models, using 
either the variables selected from a single data layer or all 
selected variables, across omic layers (METHODS). All 
models, single-layer or multi-layer trained, allowed us to 
rank individuals according to their probability of belong-
ing to the obese group (Fig.  5c and Additional file  4: Fig. 

S4A). We quantified the log loss [79] (or cross-entropy loss; 
Fig.  5c and Additional file  4: Fig. S4A) and demonstrated 
that the multi-layer model provided the greatest separa-
tion, followed by the models trained on the RNA-seq, then 
those trained on metabolites and methylation. Qualitatively 
similar results were obtained when using the lean-BD and 
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lipodystrophy individuals as training data (Fig S4B), sug-
gesting that individuals belonging to the extreme pheno-
type groups tend to be more similar to one another, when 
taking into account all of the data layers, than to individu-
als outside these groups. We moreover noted that amongst 
the 20 BD predicted by the multi-layer model to belong to 
the obese group with highest probability, 4 were in the low-
est quartile for weight and 8 were in the lowest quartile 
for LDL (Table  S32), demonstrating that our multi-omic 
model is not simply recapitulating features of classic CMS 
presentation. External cohorts with similar data layers will 
be required to establish the predictive utility of our mod-
els and to fully validate the omic signatures identified in 
this study. However, because lipidomic data from external 
cohorts were available, we focused on the validation of the 
lipidomic signature. We prioritised a reduced set of nine 
lipid species from the signature to test for univariate asso-
ciation with known CMS risk factors (METHODS, Fig. 5d), 
including eight matched lipid species measured in a subset 
of 1507 participants in the Fenland study [80]. After cor-
recting for multiple testing, 61% (225/368) of associations 
remained significant. Triacylglycerol 52:2 and 50:1 were 
positively associated with several risks factors (fasting 
plasma glucose, fasting insulin level, HOMA-IR, a fatty liver 
index, HbA1c, leptin, LDL-C, hsCRP, TG, BMI, fat mass, 
ALT, and ferritin; Table S33) and inversely associated with 
adiponectin and HDL-C. Phosphatidylcholine (40:7), (38:7), 
(38:6), (35:2) and O (36:2) were inversely associated with all 
factors except for adiponectin and HDL-C. Further sup-
porting our findings, phosphatidylcholine (38:6 and 36:2) 
had previously been identified in obesity studies [81]; and 
triacylglycerol (50:1 and 52:2) had previously been linked 
to NAFLD [80] and NASH [82]. To assess the specificity of 
the results, we repeated the analysis with five lipid species 
randomly selected (METHODS) from those not included 
in the signature. Only 21% of associations were significant 
(49 out of 230 tests). The same pattern of associations was 
also found in our study (Fig. 5d; Table S33), as well as, in a 
biopsy-confirmed non-alcoholic steatohepatitis (NASH) 
cohort comprising 73 individuals [82] (Additional file 5: Fig. 
S5; Table S33). We showed the diagnostic value of the pri-
oritised lipid species through their association with major 
cardiometabolic risk factors in the Fenland study and in the 
present study; as well as, albeit not significantly due to the 
small sample size, in the NASH cohort.

Discussion
Our overarching goal was to develop an integrative multi-
omic strategy to obtain a signature for CMS that would 
combine information collected across different -omics 
layers in order to account for the impact that genetic 
and environmental differences have on each of them. To 
obtain a CMS signature we generated data from extreme 

metabolic phenotype groups (morbidly obese referred for 
bariatric surgery and individuals affected by lipodystro-
phy) because we hypothesised that the signals would be 
stronger across all layers. We then used this signature to 
determine the cardiometabolic status of a group of indi-
viduals (BD) that are at increased risk of developing CMS 
due to age.

First, we explored the data to determine the similari-
ties and differences between the two extreme phenotype 
groups. The comparison of anthropometric traits and the 
different blood plasma biochemistry assays showed that 
the separation of the extreme phenotype groups from the 
general population, represented by BD, is driven by BW, 
LAR, hsCRP, AT-IP, HOMA-IR, TG, GLC, ALT and AST. 
The directionality of the same parameters also separates 
obese from lipodystrophy, suggesting that while AT dys-
function is a shared feature, its influences were different 
in the two groups (Fig. 1a, b). Additional differences were 
observed in the Metabolonⓡ assay data, where different 
groups of metabolites (modules) were associated with 
plasma biochemistry assays (Fig.  1c) and formed two 
larger clusters highlighting the role of the metabolism 
of different amino acids in separating the two conditions 
(Fig. 1a, b). Of note, these were not the branched chain 
amino acids which were found to be part of an obesity 
signature [83].

At the transcriptional (RNA-seq) and epigenetic levels 
(H3K27ac and DNA methylation), we observed mod-
est changes in all comparisons (Fig. 2b, c and Additional 
file  3: Fig. S3B), whereas larger differences have been 
previously observed other tissues [50, 51]. The larg-
est number of changes was found in active chromatin 
(3616 DAcR) in the comparison between macrophages 
of the obese and lipodystrophy groups (Additional file 3: 
Fig. S3B) and was not accompanied by nearly as many 
changes in gene expression. This indicates that either 
similar transcriptional outputs were achieved using dif-
ferent regulatory landscapes [52], or that these cells have 
been differently primed to respond to acute stimuli [84]. 
These results were in agreement with the absence of over-
laps between DEG, both in the lean versus obese and lean 
versus lipodystrophy comparisons, and genes previously 
associated with trained immunity [53]. The enrichment 
in GO terms linked to inflammation and inflammatory 
response in the DEG reflects the environment to which 
these cells are exposed. These findings expand on pre-
vious observations made in whole blood [54]. With the 
above exception in macrophages, these data showed 
that the two extreme phenotype groups were overall, as 
expected, more similar to each other than to the lean 
group, again reflecting the underlying AT dysfunction.

Because the morbidly obese individuals were selected 
amongst those referred for bariatric surgery, we had the 
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opportunity to determine the effects of the procedure 
and the associated weight loss. Post-surgery we observed, 
not only the expected changes in plasma biochemistry 
parameters (Fig.  3a), but also changes in gene expres-
sion and chromatin modifications of a larger magnitude 
(Fig.  3b, c) than those observed when comparing obese 
and lean individuals. We found genes (LDL-R, FASN, 
STARD4) that reverted to the expression level observed 
in lean individuals, indicating that lipoprotein metabo-
lism, fatty acid synthesis and cholesterol transport are 
restored after surgery. However, the majority of DEG 
observed in these four cell types were not highlighted in 
the comparison between obese and lean individuals and 
no enrichment was found for GO terms related to inflam-
mation. This suggests that the reduction in inflammatory 
signatures after bariatric surgery was achieved with the 
establishment, at least in the time frame investigated, of 
novel gene expression landscapes.

A few notable observations can be made from these 
analyses: (1) the overall small number of observed 
changes in DNA methylation, together with the short life 
span of the hematopoietic cells analysed, indicated that 
the change in exposure had little effect on the hematopoi-
etic stem cell epigenome, and that the effects observed in 
animal models [60] were either species specific or diluted 
and then lost with the turnover of the hematopoietic pro-
genitor pool in 6 months. (2) Bariatric surgery had a posi-
tive impact on innate immune cells and indicated that 
trained immunity acts downstream of the hematopoietic 
stem cell pool; with its effects being diluted and even-
tually lost with the pool renewal. (3) The integration of 
gene expression and proteomic data showed that some of 
the changes at transcriptional level were directly involved 
in the reduction of the proinflammatory environment, 
but also highlighted a conspicuous involvement of other 
intermediate levels of regulation. (4) Several pathways 
involved in thrombus formation, including NETosis, have 
reduced ability to respond to stimuli after bariatric sur-
gery, possibly explaining some of the beneficial effects of 
this procedure.

Given the limited number of changes identified using 
single-layer univariate comparisons, we sought to iden-
tify multivariable signatures by combining informa-
tion across layers, to better discriminate between the 
extreme phenotype and lean groups. We found that the 
rank assigned to each participant was different depend-
ing on the -omics layer considered. Aside from the full 
model, the rank provided by the gene expression layer 
had the highest discriminatory potential and DNA meth-
ylation the lowest, as judged by the position of the lipo-
dystrophy individuals on the model trained on obesity. 
Indeed, despite the differences between the two groups, 

lipodystrophy individuals had the highest probabilities of 
belonging to the obese group, with 8 out of 10 lipodys-
trophy individuals predicted to belong to the obese group 
in the complete model. These results indicated that our 
initial hypothesis that the extreme groups would share a 
CMS signature, and that different layers would capture 
its different components, was correct. Some differences 
were observed when comparing the models trained using 
the lipodystrophy individuals, these likely reflect the 
higher homogeneity in the latter, due to the high pen-
etrance genetic causes. The strengths of the multi-omic 
approach have been extensively discussed in a separate 
manuscript [123], in which simulation studies to assess 
precision and recall under a variety of different settings 
were performed, and in which we compared our cho-
sen method to alternative approaches. The approach 
presented here is to be preferred if we wish to select as 
many relevant predictors as possible (i.e. high sensitivity/
recall, low false negative rate), while also achieving good 
predictive (classification) performance. This approach is 
therefore highly suitable for hypothesis generation set-
tings, in which we wish to provide many potentially rel-
evant predictors. We are also aware of the limitations of 
the results we presented. Due to the limited sample size 
it is possible that using a larger number of participants 
some of the features we identified might not be signifi-
cant while others might be pushed above the significance 
threshold. Moreover, we note the absence of other simi-
lar cohorts for a complete independent replication of our 
results. However, we have shown that the lipids signature 
is informative of disease features in two independent 
cohorts, with similar results.

Conclusions
Our overall goal was to develop an integrative multi-omic 
strategy to combine information collected across differ-
ent -omics layers in order to account for the impact of 
genetic and environmental differences on each of them. 
We generated data from extreme metabolic phenotype 
groups to obtain a signature for CMS and then used 
this signature to determine the cardiometabolic status 
of a group of individuals (BD) that, due to age, are at 
increased risk of developing CMS. Substantial annota-
tions in our analysis identified the reduction of inflamma-
tion and the reduction of the ability to form extracellular 
traps as key consequences of bariatric surgery in innate 
immune cells and platelets. Further investigation of the 
molecular basis underlying the priming of these innate 
immune cells will help to understand which features, 
such as small molecules or metabolites, promote abnor-
mal inflammation and extracellular traps formation, pro-
viding possible avenues for future clinical treatments.
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Methods
Cell types isolation
Whole blood (50 ml) in citrate tubes was obtained after 
informed consent. Platelet-rich plasma (PRP) was sepa-
rated from the cellular fraction by centrifugation (20’, 
150 g and very gentle break) for platelet isolation. Plate-
lets were then isolated from PRP after 2 more spins as 
above and leukodepleted using anti-CD45 Dynabeads 
(Thermofisher) following the manufacturer’s instruc-
tions. Purified platelets were stored in TRIzol (Invit-
rogen) until RNA extraction. The remaining cells were 
resuspended in buffer 1 and separated on a Percoll gradi-
ent. Neutrophils were harvested from the red blood cell 
pellet after red cell lysis (4.15  g NH4Cl, 0.5  g KHCO3 
and 18.5  mg EDTA (triplex III, 0.01%) in 500  ml of 
water) and aliquots prepared for RNA extraction (TRI-
zol), DNA extraction for RRBS (snap-frozen pellet) and 
ChIP-Seq (formaldehyde fixation, see below). Monocytes 
were isolated from the peripheral blood mononuclear 
cell (PBMC) layer by CD14 positive selection (Miltenyi) 
and aliquots prepared for RNA extraction (TRIzol), DNA 
extraction for RRBS (snap-frozen pellet) and ChIP-Seq 
(formaldehyde fixation, see below). Macrophages were 
cultured by plating 14*106 PBMC resuspended in 2  ml 
macrophage media (Macrophage-SFM [with L-Glu-
tamine without Antibiotics], Fisher Scientific UK LTD). 
After 1 h, 30’ non-adherent cells were removed and 1 ml 
fresh macrophage media added together with 400  μl of 
autologous serum. Culture media were replaced after 3 
or 4 days. On day 7 cells were harvested for RNA extrac-
tion (TRIzol), DNA extraction for RRBS (snap-frozen 
pellet) and ChIP-Seq (formaldehyde fixation). Cell purity 
was determined by flow cytometry as follows: neutro-
phils CD66b (BIRMA17c, FITC, 9453 https://​ibgrl.​blood.​
co.​uk/), CD16 (VEP13, PE, 130–091-245 Miltenyi) and 
CD45 (HI30, PE-CY5.5, MHCD4518 Invitrogen); mono-
cytes CD14 (MφP9, FITC, 345784 BD), CD16 (B73.1 
/ leu11c, PE, 332779 BD), CD64(10.1, PerCP-Cy5.5, 
561194 BD), CD45 (HI30, PE-CY7, MHCD4512 Invitro-
gen); macrophages panel 1: CCR7/CD197 (150503, FITC 
561271 BD), CD25-PE MACS 120–001-311 (10ul/test), 
CD14 (TuK4, PE-Cy5.5, MHCD1418 Invitrogen), CD40 
(5C3, PE-Cy7, 561215 BD). Panel 2: CD206 (19.2, PE, 
555954 BD), CD36 (SMΦ, FITC, 9605–02 Southern Bio-
tech), CD45 (HI30, PE-Cy5.5, MHCD4518 Invitrogen). 
Samples whose purity was below 90% were discarded. BD 
samples isolation has been extensively described in Chen 
et al. [43].

RNA sequencing
RNA extraction
RNA extraction from samples stored in TRIzol was per-
formed following the manufacturer’s instructions. Briefly, 

tubes were retrieved in small batches and thawed on 
ice. Prior to extraction samples were vortexed for 30″ 
to ensure complete lysis and let for 5’ at room tempera-
ture. Samples were then transferred to heavy phase lock 
tubes (5prime) to separate RNA in the aqueous phase 
from the organic phase. RNA was precipitated from the 
former with isopropanol and glycogen. The RNA pellet 
was resuspended in RNase free water. Purified RNA was 
stored in single-use aliquots. Each sample was quality 
controlled by a Bioanalayser (Agilent) and quantified via 
Qubit (Thermofisher).

Library preparation and sequencing
For cell types isolated from obese and lipodystrophy 
patients and controls we used 100  ng of total RNA for 
neutrophils, monocytes and macrophages and 200  ng 
for platelets. o libraries were prepared for sequencing 
using the Kapa stranded RNA-Seq kit with riboerase 
(Roche) according to the manufacturer’s instructions and 
sequenced 150  bp paired end on Illumina HiSeq 2500 
or Illumina HiSeq 4000. BD RNA-Seq data (extensively 
described in Chen et al. [43]) were retrieved from Euro-
pean Genome-phenome Archive (EGA)—EMBL-EBI 
after application to the Data Access Committee.

Quantification
FastQ files were first checked for sequencing quality 
using FastQC (v.0.11.2) [https://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/​proje​cts/​fastqc/] and quality trimmed 
with TrimGalore! (v.0.3.7) [https://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/​proje​cts/​trim_​galore/].

Transcript-level abundance was estimated using 
Kallisto (v0.42) [85] with 100 bootstrap iterations in sin-
gle-end mode for extreme phenotype samples in order to 
minimise technical batch effect with BD cohort. Tran-
script abundances were then summarised to gene level 
with Tximport R package (v1.9) [86] by using tximport 
function and Ensembl reference transcriptome (Ensembl 
Genes 96) [86, 87]. This step provides an input count 
matrix for DESeq2 (v.1.21.21) [88]. DESeq2 was used 
to normalise counts by library size and transformed by 
variance stabilisation (VST). We corrected for sequenc-
ing batch effects by using Combat (from sva R package 
(v.3.29.1)) [88, 89] and individual status as covariate. 
Non-autosomal genes and those with no or low vari-
ance across individuals were removed. The final gene sets 
(including coding and non-coding genes) were formed 
of 10,925 genes for monocytes and of 26,634 for neutro-
phils. Quality metrics are reported in Table S4.

Differential analysis
For differential analysis, transcript-level abundance was 
estimated by Kallisto with 100 bootstrap iterations in 

https://ibgrl.blood.co.uk/
https://ibgrl.blood.co.uk/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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paired-end mode for each group (obese, post-surgery, 
lipodystrophy patients and control individuals) using 
Ensembl reference transcriptome (Ensembl Genes 96). 
Transcript abundances were then summarised to gene 
level with Tximport R package (v1.9) by using tximport 
function and DESeq2 object was created using DESeq-
DataSetFromTximport function from DESeq2 R pack-
age (v.1.21.21). Differential analysis was performed 
using the DESeq function from DESeq2 and we used 
age and gender as covariates. Log fold changes were cor-
rected with the lfcShrink function from DESeq2. Genes 
with FDR < 5% were marked as differentially expressed. 
Lean individuals were selected from control group, and 
named hereafter “Lean-Control”, by applying the follow-
ing criteria: BMI < 25, glycaemia (GLUC) < 5.4  mmol/L, 
TG < 1.7  mmol/L, LDL < 2.59  mmol/L, HDL > 1  mmol/L 
for men and > 1.3 mmol/L for women, HOMA score < 2.2. 
For obese versus post-surgery comparison, we considered 
only paired samples ([S01RS6;S022QS][S01Y9G;S022UK]
[S01WCI;S0232Z][S01TEQ;S0234V][S01WXD;S023EB]
[S01WFC;S023F9][S01Y7K;S023H5][S022TM;S023PQ]
[S01XJ0;S023RM][S01SYR;S0240Z][S022GB;S0245P]) 
and therefore performed a paired analysis by adding rela-
tionship information as covariate in the design formula.

For each cell type, functional annotation was per-
formed with genes differentially expressed in each com-
parison, taking into account fold change direction. Lists 
of genes were submitted to EnrichR using the R pack-
age EnrichR (v.1.0) [90, 91] and the following databases: 
BioCarta_2016, DSigDB, GO_Biological_Process_2018, 
GO_Cellular_Component_2018, GO_Molecular_Func-
tion_2018, HMDB_Metabolites, KEGG_2019_Human, 
Reactome_2016 and WikiPathways_2015.

Chromatin immunoprecipitation sequencing
Sample preparation
Cells were fixed immediately after purification with 1% w/v 
formaldehyde for 10 min and quenched using 125 mM gly-
cine before washing with PBS. Samples were sonicated using 
a Bioruptor (Diagenode), final SDS concentration of 0.1% 
w/v for 9 cycles of 30 s ‘on’ and 30 s ‘off’, and immunoprecipi-
tated using an IP-Star Compact Automated System (Diagen-
ode) using the histone H3K27ac antibody C15410196 (lot 
1723-0041D) Diagenode. Immunoprecipitated and input 
DNA were reverse cross-linked (65 °C for 4 h), treated with 
RNase and Proteinase K (65 °C for 30 min).

Library preparation and sequencing
DNA was recovered with Concentrator 5 columns 
(Zymo) and prepared for sequencing using Micro-
Plex Library Preparation Kit v2 (C05010012, Diagen-
ode). Libraries analysed using High Sensitivity 

Bioanalyzer chips (5067–4626, Agilent), quantified using 
qPCR Library Quantification Kit (KK4824, Kapa Biosys-
tems), pooled and sequenced with a 50-bp single-end 
protocol on Illumina HiSeq 2500 or Illumina HiSeq 4000.

Peak calling and quantification
FastQ files were first checked for sequencing quality 
using FastQC (v.0.11.2) and quality trimming was applied 
on reads with TrimGalore! (v.0.3.7). Trimmed FASTQ 
files were aligned to the human genome (Ensembl 
GRCh38.80) with BWA (v.0.7.12) [92] aln and samse 
functions with default parameters. Low mapping qual-
ity reads (-q 15), multi-mapped and duplicate reads 
were marked and removed with, respectively, samtools 
(v.1.3.1) [93] and picard (http://​broad​insti​tute.​github.​io/​
picard v.2.0.1).

A combination of quality metrics was used to assess 
sample quality: number of uniquely mapped reads, 
number of called peaks, NSC (normalised strand cross-
correlation) and RSC (relative strand cross-correlation) 
computed with Phantompeakqualtools (v.1.2) [94, 95], 
area under the curve (AUC), X-intercept and Elbow Point 
computed with plotFingerPrint function from deepTools 
suite (v.3.0.2) [96] with –skipZeros –numberOfSamples 
50000 options. Peaks were called with MACS2 (v.2.1.1) 
with –nomodel –shift -100 –extsize 200, a qvalue 
threshold of 1e-3 options and celltype matching input 
file scaled to sample read number. We used the MACS2 
randsample function to downscale inputs. We then com-
puted a score by summing values obtained for each range 
of these metrics. We applied a threshold of -3 (total) to 
select the best quality data. To build the ChIP-Seq layer 
for integrative analysis, we defined a master set of peaks 
and quantified H3K27ac ChIP-Seq signals under these 
peaks. Peaks shared by at least 5 individuals were merged 
using R package DiffBind (v2.9) [97]. We obtained 67,763 
and 49,188 peaks for monocytes and neutrophils, respec-
tively. Minimum merged peak size was 244  bp and 
235 bp, median peak size 1392 bp and 1648 bp and maxi-
mum peak size 75,534 bp and 60,528 bp for monocytes 
and neutrophils, respectively. We did not filter out very 
large merged peaks as they represent less than 3% of total 
peaks and indicate large acetylated regions. Read counts 
under merged peaks were TMM normalised using effec-
tive library size and logit transformed into count per mil-
lion (CPM). Sequencing centre batch effect was corrected 
with Combat (from sva R package (v.3.29.1)) using indi-
vidual status (Patient/Donor) as covariate. Non-autoso-
mal and no or low variance peaks across individuals were 
removed. The final master set of peaks counted 25,595 
regions in monocytes and 26,300 regions in neutrophils. 
Quality metrics are reported in Table S3.

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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-2 -1 0 1 2

Uniq reads (% raw 
reads)

 < 20  ≥ 20 and < 40  ≥ 40 and < 60  ≥ 60 and < 80  ≥ 80

Encode—NSC  < 0.9  ≥ 0.9 and < 1  ≥ 1 and < 1.1  ≥ 1.1 and < 1.2  ≥ 1.2

Encode—RSC  < 0.8  ≥ 0.8 and < 0.9  ≥ 0.9 and < 1  ≥ 1 and < 1.1  ≥ 1.1

Deeptools—AUC​  ≥ 0.4  ≥ 0.3 and < 0.4  ≥ 0.2 and < 0.3  ≥ 0.1 and < 0.2  < 0.1

Deeptools—X-
intercept

 ≥ 0.3  ≥ 0.2 and < 0.3  ≥ 0.15 and < 0.2  ≥ 0.1 and < 0.15  < 0.1

Deeptools—Elbow 
point

 < 0.65  > 0.65 and < 0.75  > 0.75 and < 0.85  > 0.85 and < 0.95  > 0.95

Peak number  < (e-10000)  ≥ (e-10000)
and < (e-5000)

 ≥ (e-5000)
and < (e-2000)

 ≥ (e-2000)
and < e

 ≥ e 
and < (e + 25,000)

incubation conditions (i.e. 16 cycles of 95  °C for 30  s, 
50C for 60  min; followed by 4C until further process-
ing). Purified bisulfite-treated DNA was eluted in 15 mL 
of M-Elution Buffer (Zymo Research). DNA methylation 
levels were measured using Infinium Human Methylation 
450 arrays (Illumina) according to the manufacturer’s 
protocol.

For RRBS, 100 ng of genomic DNA was digested for 6 h 
at 65  °C with 20 U TaqI (New England Biolabs) and 6 h 
hours at 37 °C with 20 U of MspI (New England Biolabs) 
in 30  μl of 1 × NEBuffer 2. To retain even the smallest 
fragments and to minimise the loss of material, end prep-
aration and adaptor ligation were performed in a single-
tube setup. End fill-in and A-tailing were performed by 
addition of Klenow Fragment 3’ – > 5’ exo- (Enzymatics) 
and dNTP mix (10 mM dATP, 1 mM dCTP, 1 mM dGTP 
New England Biolabs). After ligation to methylated Illu-
mina TruSeq LT v2 adaptors using T4 DNA Ligase rapid 
(Enzymatics), the libraries were size selected by perform-
ing a 0.75 × clean-up with AMPure XP beads (Beckman 
Coulter). The libraries were pooled based on qPCR data 
and subjected to bisulfite conversion using the EZ DNA 
Methylation Direct Kit (Zymo Research) with changes 
to the manufacturer’s protocol: conversion reagent was 
used at 0.9 × concentration, incubation performed for 20 
cycles of 1 min at 95 °C, 10 min at 60 °C and the desul-
phonation time was extended to 30 min. These changes 
increase the number of CpG dinucleotides covered, by 
reducing double-strand break formation in larger library 
fragments. Bisulfite-converted libraries were enriched 
KAPA HiFi HS Uracil + RM (Roche). The minimum 
number of enrichment cycles was estimated based on 
a qPCR experiment. After a 1 × AMPure XP clean-up, 
library concentrations were quantified with the Qubit 
Fluorometric Quantitation system (Life Technologies) 
and the size distribution was assessed using the Bioana-
lyzer High Sensitivity DNA Kit (Agilent).

Differential analysis
For differential analysis, we used DiffBind with the built-
in DESeq2 method for statistical analysis. We merged 
peaks present in at least 50% of individuals and asked 
that all individuals have a FRiP value (Fraction of Reads 
in Peaks) over 5%. We then applied a FDR threshold of 
5% to select H3K27ac peaks differentially acetylated 
peaks. We used age and gender as covariates. For obese 
versus post-surgery comparison, we considered only 
paired samples and therefore performed a paired analy-
sis by using the block factor in DESeq2. Differentially 
acetylated regions (DAcR) were annotated with HOMER 
(v.4.10) [98], annotatePeak function and Hg38 RefSeq 
genome annotation (http://​homer.​ucsd.​edu/​homer/​data/​
genom​es/​hg38.​v6.0.​zip).

Functional annotation was performed on genes within 
a window of 10  kb around each DAcR, taking into 
account fold change direction. Similarly to RNA-Seq, 
lists of genes were submitted to EnrichR interrogating 
the same databases. Annotation results are available in 
Table S22.

Illumina 450 K arrays and reduced representation bisulfite 
sequencing (RRBS)
Arrays and libraries preparation and sequencing
BD Infinium Human Methylation 450 arrays (Illumina) 
were retrieved from the European Genome-phenome 
Archive (EGA)—EMBL-EBI. DNA extraction and array 
generation have been described in detail in Chen et  al. 
[43]. Briefly, cells were lysed using guanidine hydrochlo-
ride, sodium acetate and protease lysis buffer. DNA was 
extracted using chloroform and precipitated in ethanol 
prior to washing and resuspension in ultra-pure water. 
500 ng of DNA for each monocyte and neutrophil sample 
was randomly dispensed onto a 96-well plate to reduce 
batch effects. Samples were bisulfite-converted using an 
EZ-96 DNA Methylation MagPrep Kit (Zymo Research) 
following the manufacturer’s instructions with optimised 

http://homer.ucsd.edu/homer/data/genomes/hg38.v6.0.zip
http://homer.ucsd.edu/homer/data/genomes/hg38.v6.0.zip
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Processing and quantification
All Infinium Human Methylation 450 array data pre-
processing steps were carried out using established ana-
lytical methods incorporated in the R package RnBeads 
(v.1.13.4) [99]. First, we performed background correc-
tion and dye-bias normalisation using NOOB [100], fol-
lowed by normalisation between Infinium probe types 
with SWAN [43, 101]. Next, we filtered out probes based 
on the following criteria: median detection p value 0.01 
in one or more samples; bead count of less than three 
in at least 5% of samples; ambiguous genomic locations 
[102]; cross-reactive and SNP-overlapping probes [103].

The RRBS samples were sequenced on Illumina 
HiSeq3000 platform in 50-bp single-end mode. Base 
calling was performed by Illumina Real Time Analysis 
(v2.7.7) software, and the base calls were converted to 
short reads using Illumina2bam (1.17.3 https://​github.​
com/​wtsi-​npg/​illum​ina2b​am) tool before de-multiplex-
ing (BamIndexDecoder) into individual, sample-specific 
BAM files. Trimmomatic (v0.32) [104] was used for 
trimming the adapter sequences. Trimmed short read 
sequences were aligned onto the GRCh38/hg38 human 
reference genome with BSMAP(v2.90) [105] aligner in 
RRBS mode which was optimised for aligning the RRBS 
data while being aware of the restriction sites and with 
the following options: -D C-CGG -D T-CGA -w 100 -v 
0.08 -r 1 -p 4 -n 0 -s 12 -S 0 -f 5 -q 0 -u -V 2. R pack-
age RnBeads were used to filter out low confidence sites: 
sites overlapping any SNP, having a coverage lower than 
5 and high coverage or missing in more than 5% or indi-
viduals were filtered out. Integration analysis required 
to attenuate technology effect between 450 K arrays and 
RRBS. To this goal, we generated RRBS data for 14 Blue-
Print donors for which we already have 450 K array data 
in monocytes, and 9 in neutrophils. We first removed 
non-reproducible sites between technologies as follows: 
for monocytes and neutrophils, 1) liftover 450  K sites 
to Hg38 using UCSC liftover tool [106], 2) keep over-
lapping sites between array and RRBS, 3) filter out sites 
with high variation in methylation percentage observed 
in more than 70% of individuals. We excluded 844 and 
1127 sites for monocytes and neutrophils, respectively. 
We have also excluded sites on sex chromosomes and 
imputed missing values using KNN networks (impute.
knn function from impute R package (v.1.55.0)) [Hastie 
T, Tibshirani R, Narasimhan B, Chu G (2019). impute: 
impute: Imputation for microarray data.] with 10 near-
est neighbours. Finally, we adjusted for batch effects 
using an empirical Bayesian framework, as implemented 
in the ComBat function of the R package SVA (v.3.29.1) 
and individual status as covariate, transformed beta val-
ues to M-values using beta2m function in R package lumi 

(v.2.33.0) [107, 108], normalise by quantile using normal-
ise.quantiles function from R package preprocessCore 
(v.1.43.0) [Bolstad B (2019). preprocessCore: A collec-
tion of pre-processing functions.] and remove zero or 
low variance sites. The final data matrix used for multi-
omic integration, comprised DNA methylation M-values 
across 24,311 CpG sites and 210 samples in monocytes 
and 24,217 CpG sites and 203 samples in neutrophils. 
Quality metrics are reported in Table S5 and S6.

Differential analysis
For differential analysis, we used the methylKit R pack-
age (v.1.8.1) [109] and we compared only RRBS data. We 
first extracted methylation ratios from BSMAP mapping 
results with methratio.py python script provided with 
BSMAP. We then removed all sex chromosomes sites 
and filtered out non-retained sites from RnBeads RRBS 
processing. Finally, we used the methRead function from 
methylKit R package in CpGs context at base resolution 
to read in the input files and calculateDiffMeth function 
correcting for overdispersion (overdispersion = "MN") 
and applying Chisq test. We used age and gender as 
covariates. Q Values are then computed using the SLIM 
method [109, 110]. We applied two thresholds: difference 
of methylation > 25 and qvalue < 0.05 and retrieved differ-
entially methylated sites (DMS) with getMethylDiff func-
tion specifying type = ”hypo” or type = ”hyper” option to 
get down and up methylated CpGs , respectively.

For obese (pre) versus post-surgery comparison, we 
considered only paired samples and therefore performed 
a paired analysis. DMS were annotated with HOMER 
(v.4.10), annotatePeak function and Hg38 RefSeq genome 
annotation (http://​homer.​ucsd.​edu/​homer/​data/​genom​
es/​hg38.​v6.0.​zip).

Functional annotation was performed on genes within 
a window of 10 kb around each DMS, taking into account 
fold change direction. Similarly to RNA-Seq and ChIP-
Seq, lists of genes were submitted to EnrichR interrogat-
ing the same databases. Annotation results are available 
in Table S23.

Plasma biochemistry assays
Plasma biochemistry assays were performed in the Core 
Biochemical Assay Laboratory, Cambridge University 
Hospitals (https://​www.​cuh.​nhs.​uk/​core-​bioch​emical-​
assay-​labor​atory) as described in Additional file  6: sup-
plementary material and methods. Homeostatic Model 
Assessment for Insulin Resistance (HOMA) score as 
follows: (glucose (mg/dL) × insulin (mIU/L)) / 405, and 
adipose tissue insulin resistance (AT) score as follows: 
insulin (µU/mL) × free fatty acids (mmol/L).

https://github.com/wtsi-npg/illumina2bam
https://github.com/wtsi-npg/illumina2bam
http://homer.ucsd.edu/homer/data/genomes/hg38.v6.0.zip
http://homer.ucsd.edu/homer/data/genomes/hg38.v6.0.zip
https://www.cuh.nhs.uk/core-biochemical-assay-laboratory
https://www.cuh.nhs.uk/core-biochemical-assay-laboratory
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Plasma metabolites measurement
Metabolites quantification
Metabolites profiling of obese and lipodistrophy patients, 
controls and blood donors (BD participants) was per-
formed by Metabolon Inc. (https://​www.​metab​olon.​
com/) using their standard protocol. Briefly, Metabo-
lon analytical platform incorporates two separate ultra-
high performance liquid chromatography/tandem mass 
spectrometry (UHPLC/MS/MS2) injections and one 
gas chromatography GC/MS injection per sample. The 
UHPLC injections are optimised for basic species and 
acidic species. The numbers of compounds of known 
structural identity (named biochemicals) as well as com-
pounds of unknown structural identity (unnamed bio-
chemicals) detected by this integrated platform were, 
respectively, of 793 and 362 for the first batch and 947 
and 433 for the second batch (with an overlap of 786 and 
359 compounds, respectively). All samples were rescaled 
to set the median to 1, and missing values were imputed 
using KNN networks (impute.knn function from impute 
R package (v.1.55.0) with the following options: number 
of nearest neighbours = 10, maximum missing values per 
metabolites < 50% and maximum missing values for indi-
viduals < 80%). Finally, we adjusted for batch effects using 
the ComBat function of the R package SVA (v.3.29.1) and 
individual status as covariate.

Plasma lipids measurement
Plasma was frozen in dry ice immediately after collec-
tion and stored at − 80C until analysis. Samples were 
prepared essentially as previously described [111]. 
Briefly, a 15 μL sample, controls and blanks were placed 
in a predefined random order across 96-well plates 
(Plate + , Esslab, Hadleigh, UK). To which, 750 µL methyl 
tert-butyl ether was added, along with 150  µl of inter-
nal standard mix, containing the following six internal 
standards (IS): 1,2-di-o-octadecyl-sn-glycero-3-phospho-
choline (0.6  µM), 1,2-di-O-phytanyl-sn-glycero-3-phos-
phoethanolamine (1.2  µM), C8-ceramide (0.6  µM), 
N-heptadecanoyl-D-erythro-sphingosylphosphorylcho-
line (0.6  µM), undecanoic acid (0.6  µM), and trilaurin 
(0.6 µM), (Avanti Polar Lipids and Sigma-Aldrich). Qual-
ity controls were derived from pooling all samples and 
serially diluting with chloroform. Twenty-five microli-
tres of the sample/IS mixture was transferred to a glass-
coated 384-well plate and 90 µl mass spectrometry (MS) 
mix [7.5 mM NH4Ac IPA:MeOH (2:1)] added and then 
sealed. Lipidomics was performed using chip-based 
nanospray with an Advion TriVersa Nanomate (Advion) 
interfaced to the Thermo Exactive Orbitrap (Thermo 
Scientific). Briefly, a mass acquisition window from 200 
to 2000  m/z and acquisition in positive and negative 

modes were used with a voltage of 1.2  kV in positive 
mode and − 1.5 kV in negative mode and an acquisition 
time of 72 s. Raw spectral data were processed as previ-
ously described [112]. Raw data were then converted 
to.mzXML (usingMSconvert [113] with peakpick level 1), 
parsed with R, and 50 spectra per sample (scan from 20 
to 70) were averaged using XCMS42, with a signal cutoff 
at 2000. The files were aligned using the XCMS [114, 115] 
grouping function using “mzClust” with a m/z-window 
of 22 ppm and a minimum coverage of 60%. Compound 
annotation was automated using both an exact mass 
search in compound libraries as well as applying the ref-
erenced Kendrick mass defect approach. Signal normali-
sation was performed by summing the intensities of all 
detected metabolites to a fixed value to produce a correc-
tion factor for the efficiency of ionisation. Exact masses 
were fitted to the lipid species library and subsequently 
annotated to the peak as described before [82].

Plasma proteomics
Sample preparation
Plasma was precleared by centrifugation at 3000g for 
10  min and bound to 100 µL of calcium silicate matrix 
(CSM, 4 mg/mL) by rotation for 1 h. The sample was cen-
trifuged at 14000g for 1  min, and the supernatant was 
removed for further analysis. The pellet was washed in 
ammonium bicarbonate (50 mMoL, 1 mL) 3 times using 
the same centrifugation settings. The sample was then 
reduced for 30 min at 65  °C using 200 µL of DL-dithio-
threitol (DTT) premix (ADC 2%: ammonium bicarbo-
nate 50 mMoL: DTT 1 MoL in the ratio of 50:49:1) and 
alkylated for 30  min in the dark with iodoacetamide 
(IAA) at 20 mMoL. Ammonium bicarbonate was added 
to dilute the ADC to 0.5%. Trypsin was added in the 
ratio of 1:25 trypsin to plasma and incubated overnight 
at 37 °C. The ADC was precipitated with 1% formic acid 
(FA) and centrifuged at 14000g for 10 min. The peptides 
were isolated using solid phase EMPORE C18 discs 
which had been washed with 1 stem of methanol and 3 
stem of 0.1% FA. The sample was left to bind to the col-
umn for 30  min before washing with 0.1% FA and elut-
ing with 60% acetonitrile (ACN) with 0.1% FA and then 
80% ACN with 0.1% FA. The ACN was removed by speed 
vacuum for 1 h 15 min and freeze-dried overnight. Pep-
tide suspended in 30 µL of 0.1% FA and a peptide assay 
was performed to calculate the amount of peptides. Ten 
microlitres of peptides was removed from each sample 
and 0.1% FA added to equalise the volume and spiked 
with an internal standard protein (yeast alcohol dehydro-
genase, ADH), with a known amount of 50 fmol injected 
for each run.

https://www.metabolon.com/
https://www.metabolon.com/
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Waters NanoAcquity UPLC and Synapt G2S
Sample separation was performed using an Acquity 
UPLC Symmetry C18 trapping column (180 µm × 20 mm, 
5 µm) to remove salt and other impurities and a HSS T3 
analytical column (75 µm × 150 mm, 1.8 µm). Solvent A 
was compromised on 0.1% FA in HPLC grade water and 
solvent B contained 0.1% FA in ACN.

Time (minute) Flow 
rate (µL/
min)

Solvent A 
(Water + 0.1% FA)

Solvent B 
(ACN + 0.1% 
FA)

3 0.3 97 3

20 0.3 86 14

30 0.3 80 20

40 0.3 75 25

51–52.2 0.3 69 31

53–53.1 0.3 65 35

54 0.3 63 37

55 0.3 58 42

63 0.3 31 69

65 0.3 97 3

80 0.3 50 50

80.5 0.3 10 90

82.2–87.5 0.3 97 3

99.5 0.3 50 50

101.5 0.3 10 90

103.5–110 0.3 97 3

Table shows the gradient in 110 min of solvent A and B 
used in LC ESI-MS/MS analysis. The flow rate of solvents 
was 0.3  µL/min. Coupled directly to the Nano Acquity 
UPLC was a Water Synapt G2S mass spectrometer 
(Waters Corporation, Manchester, UK). The Synapt G2S 
includes a nanoelectrospray ionisation (ESI), StepWave 
ion guide, Quadrupole, TriWave and TOF (Additional 
file 2: Fig. S2).

Proteomic data processing and analysis
Progenesis QI for Proteomics (Nonlinear Dynamics, 
Waters Corporation, UK) was employed to identify and 
quantify proteins. The human database from UniProtKB 
was downloaded and used in FASTA format. The prot-
eomic raw data were searched using strict trypsin cleav-
age rules with a maximum of two missed cleavages. 
Cysteine (Carbamidomethyl C) was set as a fixed modi-
fication. Deamination N, Oxidation M and Phosphoryl 
STY were selected as variable modifications. Minimum 
of 2 fragments per peptide, minimum of 5 fragments 
per protein and minimum of 2 peptides per protein were 
set for parameters of identification. The maximum pro-
tein mass was set to 1000  kDa. The false rate discovery 
(FDR) for protein identification was set at a maximum 
rate of 1%. Then, proteomic data generated from using 

the Progenesis QI were exported to Microsoft Excel for 
further data analysis.

For differential analysis, we used LIMMA (v.3.37.4) 
[116]. Because we compared obese and post-surgery 
patients, we performed a paired analysis. We then applied 
a threshold of 0.1% on ordinary q value.

To define whole blood-specific genes, we exported 
GTEx project [117] expression table (in TPMs), con-
verted it into SummarizedExperiment container using 
SummarizedExperiment R package ((v.1.11.6); Morgan 
M, Obenchain V, Hester J, Pagès H SummarizedExperi-
ment: SummarizedExperiment container. (2019)) and 
used teGeneRetrieval function from the TissueEnrich 
R package (v.1.2.1) [118]. This package relies on Human 
Protein Atlas [119] to grouped genes as follows: tissue 
enriched (genes with an expression level greater than 1 
TPM that also have at least fivefold higher expression lev-
els in a particular tissue compared to all other tissues), 
group enriched (genes with an expression level greater 
than 1 TPM that also have at least fivefold higher expres-
sion levels in a group of 2–7 tissues compared to all other 
tissues, and that are not considered tissue enriched) and 
tissue enhanced (genes with an expression level greater 
than 1 TPM that also have at least fivefold higher expres-
sion levels in a particular tissue compared to the average 
levels in all other tissues, and that are not considered tis-
sue enriched or group enriched). With default parame-
ters, we identified 693 whole blood-specific genes. Finally 
we intersected genes coding for differentially abundant 
proteins and whole blood-specific genes.

Weighted correlation network analysis (WGCNA)
WGCNA [48] is a correlation-based method that 
describes and visualises networks of data points, whether 
they are gene expression estimates, metabolite concen-
trations or other phenotypic data. To increase statistical 
power, we merged the patient groups under the assump-
tion that they share similar associations of metabolites 
and phenotypic traits. We followed the protocols of 
WGCNA to create metabolic networks. Metabolites are 
clustered into co-abundant "modules". Low correlations 
can be suppressed either in a continuous ("soft") manner 
or the discontinuous ("hard") thresholding used in con-
structing unweighted networks. To maintain scale-free 
topology, we estimated an applied power by computing 
soft threshold with pickSoftThreshold function from 
WGCNA R package (v.1.64-1) [120]. To build network, 
we used blockwiseModules function with the follow-
ing options: TOMType = "signed", minModuleSize = 20, 
reassignThreshold = 0, mergeCutHeight = 0.25 and cor-
Type = "bicor". Each obtained module is notated by a 
unique colour. Additionally, we assigned a name to each 
consensus module. Each module abundance profile can 
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be summarised by one representative metabolite: the 
module eigen metabolite. Specifically, the module eigen 
metabolite was defined as the first right-singular vector 
of the standardised module expression data [121]. We 
performed 3 analysis: extreme phenotypes (obese indi-
viduals and lipodystrophy patients were combined to get 
minimal sample size for network analysis), donors (all 
BD individuals) and a consensus analysis. We identified 
8, 22 and 16 modules with donors, patients and consen-
sus data, respectively. Regarding consensus analysis, we 
considered 988 metabolites; of these, 375 were assigned 
to 15 different modules and the remaining 613 were put 
in an ad hoc extra module because they did not show 
any correlation. We computed eigenmodule and bio-
chemical parameters correlations (leptin-adiponectin 
ratio (LAR), glucose (GLC), triglycerides (TG), total cho-
lesterol (TC), high-density lipoprotein (HDL-C), low-
density lipoprotein (LDL-C), alanine amino-transferase 
(ALT), aspartate amino-transferase (AST), Homeostatic 
Model Assessment for Insulin Resistance (HOMA-IR) 
and adipose tissue insulin resistance (AT-IR) indexes 
and high-sensitivity C-reactive Protein (hsCRP) and 
also weight (WGT), BMI and age) using cor function 
from stats R base package (R version 3.5.0) and Pearson 
method (default). p value of each correlation was com-
puted using corPvalueStudent function from WGCNA R 
package.

Pathways enrichment analysis was performed with 
MetaboAnalyst [122] and in particular Pathway analysis 
module by submitting combined list HMDB identifiers 
for clusters C1 and C2, hyper-geometric test, relative-
betweenness centrality topology analysis and KEGG 
database. In addition, we submitted these lists to the 
Reactome database.

Multi‑omic integration
Training datasets
We identified 16 BD individuals, named hereafter as 
lean-BD, according to the following criteria: BMI < 25, 
glycaemia (GLUC) < 5.4  mmol/L, TG < 1.7  mmol/L, 
LDL < 2.59  mmol/L, HDL > 1  mmol/L for men 
and > 1.3  mmol/L for women, HOMA score < 2.2. For 
training the multi-omics predictive model (see below), 
we used a reduced training dataset comprising the sub-
set of individuals having measurements across all omics 
layers. This reduced set comprised 6 lean-BD, 6 obese 
individuals and 10 lipodystrophy patients. For the clinical 
data, we first used multiple imputation by chained equa-
tions, as implemented in the mice R package (with default 
options) to impute missing values before construction of 
the training dataset. We used the same method to impute 
missing clinical values in the NASH cohort.

Variable selection: multivariable regression approach
For each of the omics layers considered independently, 
we used elastic net-penalised logistic regression as imple-
mented in the glmnet R package to identify putative 
signatures that discriminated between all patients (i.e. 
lipodystrophy + obese) versus lean-BD. We adjusted for 
age and sex by including them as unpenalised covariates 
in the multivariable model. The elastic-net ɑ parameter 
was fixed at ɑ = 0.1, while the λ parameter was deter-
mined using cross-validation. Since different cross-
validation splits resulted in different choices for λ, we 
performed multiple rounds of cross-validation and used 
the value of λ that resulted in the maximum number of 
selections. We have provided a full assessment of this 
approach relative to possible alternatives elsewhere [123].

Single‑layer predictive models
For each of the omics layers considered independently, 
we used the models fitted in the previous step to make 
predictions for the 96 individuals for which we had meas-
urements across all omics layers.

Clinical predictive model
We trained a ridge-penalised logistic regression model 
predictive of the binary response (i.e. patient/lean-BD 
status) using the clinical training dataset.

Multi‑omics predictive model
We used all omic variables selected by the multivari-
able approach described above (i.e. the full collection of 
selected variables, across all data layers), together with 
the clinical covariates, to train a ridge-penalised logis-
tic regression model predictive of the binary response 
(i.e. patient/lean-BD status). We fitted this model using 
the reduced training dataset described above. We used 
this model to make predictions for the 96 individuals 
for which we had measurements across all omics lay-
ers. To allow us to make predictions for those individu-
als for which we only had measurements on a subset 
of the omics datasets, we additionally fitted models to 
each combination of subsets. A detailed analysis of this 
approach for selecting variables and training a multi-
omic predictive model, including simulation studies to 
assess both predictive performance and ability to identify 
relevant predictors, is provided in Cabassi et al. [123].

Validation of selected lipids
To further investigate the lipidomic signature, we pri-
oritised a reduced set of nine lipid species that had been 
selected into the signature. These 9 species satisfied the 
following criteria: (1) they were selected into the lipid-
omic signature; and (2) using the Mann–Whitney test 
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with Storey’s q value method to correct for multiple 
testing, we were able to reject the null hypothesis of no 
difference in distribution for these lipids in all of the 
following comparisons: (1) obese versus lean-BD; (2) 
lipodystrophy versus lean-BD; and (3) {obese and lipod-
ystrophy} versus lean-BD. All tests were performed using 
data from the present study only. Of these 9 species, we 
were able to match 8 with lipid species that had been 
quantified in a subset of 1507 participants of the Fen-
land study [80, 82] which is a population-based cohort 
of 12,345 volunteers without diabetes born between 
1950 and 1975 and recruited within the Cambridgeshire 
region between 2005 and 2015. We used linear regression 
analysis to test for association between plasma levels of 
the 8 lipid species selected into the lipidomic signature 
and all relevant CMS parameters quantified in both the 
reduced Fenland cohort, and the BD cohort, adjusting for 
age and sex, and using the Bonferroni method to control 
for multiple testing. To create a negative control set, we 
identified lipids that satisfied the following criteria: (1) 
they were not selected into the lipidomic signature; (2) 
they could be matched with lipid species that had been 
quantified in the reduced Fenland cohort; and (3) using 
the Mann–Whitney test with Storey’s q-value method to 
correct for multiple testing, we were unable to reject the 
null hypothesis of no difference in distribution for these 
lipids in any of the following comparisons: (1) obese 
versus control; (2) lipodystrophy versus control; and (3) 
{obese and lipodystrophy} versus control. There were 37 
lipid species that satisfied these criteria. We ranked these 
according to their mean absolute Pearson correlation 
with the 9 prioritised lipid species and selected the 5 low-
est ranking as our negative control set.

Functional tests
Neutrophils adhesion method
Polymorphonuclear granulocytes were isolated via den-
sity gradient (1.078  g/mL) from 3.2% sodium citrated 
whole blood within 2  h of venipuncture. Neutrophil 
purity was assessed by haematology analyser (Sysmex, 
XN-450) to ensure purity levels were satisfactory (≥ 90%) 
for subsequent functional assays. Isolated cells were incu-
bated in a water bath at 37C for 30 min with fluorescently 
labelled Calcein-AM (4ug/mL, Molecular probes). Cells 
were washed twice with 1 × PBS and resuspended at 
2 × 106/ml in HEPES complete medium supplemented 
with calcium (1  mM). 1.6 × 105 fluorescently labelled 
neutrophils were then added to relevant duplicate wells 
in a 96-well plate containing the following stimuli; fMLP, 
10  µM; DTT, 10  mM; Pam3Cys, 20  µg/ml; LBP + LPS, 
50  ng/mL and 20  ng/mL; PAF, 1  µM; PMA, 1  µg/mL; 
TNF, 10 ng/mL or HEPES only as a control in a final vol-
ume of in 100 µl. Cells were incubated for 30 min at 37C 

in a 5% CO2 incubator, after which they were washed 
twice using 1 × PBS before lysing in 100  µl PBS with 
0.5% triton. A 100% adhesion control was generated by 
lysing 1.6 × 105 fluorescently labelled neutrophils in 
0.5% triton. Fluorescent intensity was measured using a 
Tecan Infinite® 200 PRO series plate reader (excitation 
of 485/20 nm and emission of 535/25 nm). The mean of 
duplicate values was calculated and the % adhesion over 
the hepes control calculated using the following formula: 
% adhesion = ((RFU stimuli − RFU HEPES)/ RFU 100% 
control) × 100.

CD63 expression
50ul of whole blood was incubated with antibodies:

CD16 PE VEP13 Miltenyi

CD63 APC H5C6 Miltenyi

CD11b APC ICRF44 BD Pharmingen™

CD62L FITC Dreg 56 BD Pharmingen™

CD32 FITC FLI8.26 BD Pharmingen™

CD14 APC MφP9 BD Pharmingen™

for 20 min, followed by a red cell lysis (BD FACS lyse) 
and resuspension in 0.2% formyl saline. Samples were 
analysed using flow cytometry (Beckman Coulter, FC500) 
within 4  h. Neutrophils were identified using scatter 
properties and CD16 positivity. BD CompBeads were 
used to generate compensation controls. The median 
fluorescence intensity (MFI) for each surface marker was 
calculated using Kaluza Analysis Software (Beckman 
Coulter).
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​022-​01257-z.

Additional file 1: Fig. S1. Overview of experimental design. A. Parameters 
used to define lean individuals amongst blood donors and controls. 
B. Overview of the analysis set-up to determine the effects of bariatric 
surgery. To minimise batch effects, 20 additional blood donors ("Con-
trols") were recruited and were not previously present in the original 
BluePrint cohort. We applied a set of filters (METHODS) to identify low risk 
individuals within the 20 Controls, designed hereafter as "Lean-Control". 
C. Overview of multi-omics integration. In brief, data from 202 individu-
als identified as blood donors ("BD") in the present study, were collected 
from BluePrint consortium. It included, for monocytes and neutrophils, 
H3K27ac ChIP-seq, RNA-seq and 450K methylation arrays. Additionally, we 
obtained anthropometric measurements (BW, BMI) and generated plasma 
biochemistry assays, plasma metabolomics, plasma lipidomics on samples 
collected from the same individuals at the same time. Case groups were 
composed of obese individuals referred for bariatric surgery and lipodys-
trophy patients. Data for these groups were generated in this study. We 
applied a set of filters (METHODS) to identify low risk individuals within the 
202 blood donors, designed hereafter as "Lean-BD".

Additional file 2: Fig. S2. Related to Figure 1—WGCNA analysis with BD 
individuals metabolite values and cluster functional annotation. A. Heat-
map of BD individuals eigen-metabolites adjacencies in the consensus 

https://doi.org/10.1186/s13148-022-01257-z
https://doi.org/10.1186/s13148-022-01257-z
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eigen-metabolites network. Each row and column correspond to one 
eigen  metabolite (labelled by consensus module colour). The heatmap 
is colour-coded by adjacency, yellow indicating high adjacency (positive 
correlation) and blue low adjacency (negative correlation) as shown by 
the colour legend. B. Beeswarm plot using average eigen metabolites per 
cluster. Colours indicate cohorts.

Additional file 3: Fig. S3. Related to Figure 2—Summary plots of different 
feature numbers in all comparisons. Barplots showing the number of fea-
tures significantly different for each comparison in H3K27ac distribution 
(ChIP-Seq), gene expression (RNA-Seq) and DNA methylation (RRBS). Each 
bar is colour coded to represent the different cell types.

Additional file 4: Fig. S4. Related to Figure 3—Multi-omic signatures of 
extreme phenotype groups and their use in prediction. A. Plots showing 
individuals ranked by their predicted probability of belonging to the 
obese group. As in Figure 3C, but for the Methylation (monocytes), RNA-
Seq (monocytes), Metabolites, and ChIP-Seq (monocytes) data layers. B. 
Multi-omic model trained using lipodystrophy patients often predicts 
obese individuals to belong to the lipodystrophy group. As in Figure 3C 
(final plot), but training the multi-layer model using the Lipodystrophy 
and Lean-BD groups (rather than the Obese and Lean-BD groups). Using 
this model, Obese individuals were often predicted as belonging to the 
Lipodystrophy group.

Additional file 5: Fig. S5. Related to Figure 3—A common pattern of 
associations between the prioritised lipid species and known CMS risk fac-
tors. The pattern of association between the prioritised lipids and known 
CMS risk factors in the NASH cohort (NASH cohort; left) agrees with the 
results from the present study (BD cohort; right).

Additional file 6. Extended methods describing biochemical profiling.
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