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Summary	
Despite	 remarkable	 advances	 in	 our	 understanding	 of	 the	 drivers	 of	 human	

malignancies,	new	targeted	therapies	often	fail	to	show	sufficient	efficacy	in	clinical	

trials.	Indeed,	the	cost	of	bringing	a	new	agent	to	market	has	risen	substantially	in	the	

last	several	decades,	fuelled	partly	by	lack	of	efficacy	in	late	phase	clinical	trials.	Even	

in	cases	where	a	new	agent	is	deemed	'successful',	the	development	of	resistance	is	

often	seen	as	inevitable	and	clinical	responses	can	be	fleeting.	Typically,	resistance	to	

targeted	therapies	is	thought	to	arise	from	pre-existing	populations	within	the	tumour,	

rather	than	from	de	novo	evolution,	yet	 few	studies	have	experimentally	 tested	this	

understanding.	Indeed,	recent	reports	in	the	literature	have	described	epigenetically	

regulated	drug	tolerant	populations	within	cancers,	defined	by	cell-cycle	regulation	

and/or	 quiescent	 repopulation	 dynamics,	 drug	 induced	 chromatin	 remodelling	 or	

differential	transcription	factor	binding,	that	can	be	transient	or	permanent	in	nature.	

This	thesis	will	outline	experiments	using	high	complexity	molecular	barcodes	to	trace	

the	fate	of	individual	cellular	clones	in	the	development	of	drug	resistance.	With	this	

technique,	cellular	clones	can	be	uncoupled	from	their	genomic	backgrounds,	giving	a	

new	 depth	 to	 our	 understanding	 of	 clonal	 selection	 in	 cancer.	 In	 particular,	 high	

complexity	barcodes	are	used	to	identify	a	pre-existing	tamoxifen	resistant	population	

in	 the	MCF7	 cell	 line.	 This	 resistance	 phenotype	 is	 then	 linked	 to	 the	 induction	 of	

embryonic	 transcription	 factor	 OCT4.	 Finally,	 we	 use	 our	 molecular	 barcoding	

technique	 to	 interrogate	 the	 repopulation	 dynamics	 of	 a	 breast	 cancer	 PDX	model,	

supporting	their	use	as	complex	model	systems	suitable	for	studying	the	origins	and	

consequences	of	tumour	heterogeneity.		
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Chapter	1	-	Introduction	
	
1.0	Introduction		
Cancer	has	been	known	to	be	heterogeneous	since	 its	detailed	study	by	experimental	

pathologists	 began	 at	 the	 start	 of	 the	 19th	 century.	 At	 first,	 differences	 in	 cellular	

morphology	 were	 described	 (1),	 followed	 by	 heterogeneity	 across	 surface	 marker	

expression	(2)	and	later	differences	in	tumour	growth	rates	(3)	and	response	to	therapy	

(4).	Recently,	large	and	small	scale	profiling	endeavours	have	helped	elucidate	the	true	

scale	of	diversity	across	human	neoplasms	(5).	Early	work	in	breast	cancer,	for	example,	

allowed	 stratification	 of	 patients	 based	 on	 the	 presence	 of	 oestrogen	 receptor	 alpha	

(ERα),	 which	 led	 to	 the	 successful	 targeting	 of	 tamoxifen	 for	 ERα	 positive	 (ERα+)	

patients	(6).	More	recent	work	has	enabled	comprehensive	stratification	of	breast	and	

other	cancers	(5,7).	For	example,	in	breast	cancer,	a	50	gene	signature	(PAM50)	can	be	

used	 to	 stratify	 patients	 into	 four	 intrinsic	 subtypes	 (luminal	 A,	 luminal	 B,	 HER2-

enriched	 &	 basal-like)	 with	 distinct	 clinical	 outcomes	 (8,9).	 Our	 lab	 has	 recently	

integrated	copy	number	(CN)	data	with	transcriptomics	to	improve	on	this	classification	

and	 uncover	 11	 distinct	 Integrative	 Clusters	 of	 breast	 cancer	 (7).	 Defined	 in	 2,000	

tumours,	 this	 classification	was	 validated	 in	 over	 7,500	 tumours	 (10)	 and	 shown	 to	
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clearly	 associate	with	 discrete	 clinical	 outcomes,	 suggesting	 these	 clusters	 represent	

distinct	biological	entities.	Improving	the	taxonomy	of	cancer	is	the	initial	step	towards	

a	 better	 understanding	 of	 the	 drivers	 of	 tumour	 growth	 and	 consequently	 towards	

improved	 precision	 medicines.	 It	 is	 hoped	 that	 this	 strategy	 may	 ultimately	 lead	 to	

development	of	the	next	generation	of	targeted	therapies	(11).	

	

Further	to	heterogeneity	between	patients,	it	has	long	been	known	that	tumours	harbour	

distinct	 cellular	 populations	within	 their	 bulk	 (1,12).	 For	 example	 Fidler	 and	Kripke	

reported	 in	 1977	 that	 clonal	 populations	derived	 from	mouse	metastatic	melanomas	

varied	extensively	 in	 their	 ability	 to	 seed	metastasis	 in	 syngeneic	hosts	 (13).	Of	note	

amongst	 the	 relatively	early	 research	 into	 tumour	heterogeneity,	were	 the	 important	

observations	using	human	patients,	although	highly	unethical	by	today’s	standards	these	

offered	unequivocal	 evidence	 for	 functional	heterogeneity	and	 fuelled	 five	decades	of	

subsequent	research.	For	example,	various	studies	around	the	late	1960s	showed	by	in	

vivo	 radiolabelling	 that	 the	 morphologically	 distinguishable	 populations	 of	 human	

leukemic	 cells	 differed	 remarkably	 in	 their	 proliferative	 potential	 (14–16).	 The	

observation	that	human	cancers	contain	functionally	different	populations	was	echoed	

by	Southam	et	al.,	who	in	1962	showed	that	autologous	engrafted	human	tumour	cells	

differ	in	their	ability	to	reform	tumours	(17).		

	

These	early	studies	showed	that	tumours	are	not	simply	a	growth	of	homogeneous	cells	

with	 equal	 proliferative	 potential	 and	 tumour	 forming	 ability,	 but	 a	 heterogeneous	

mixture	of	cellular	populations.	The	observation	that	tumour	cells	differ	in	their	ability	

to	xeno-	and	auto-transplant	was	added	to	by	seminal	studies	on	teratocarcinomas	(18),	

small	cell	lung	carcinomas	(19)	and	mammary	adenocarcinomas	(20),	to	give	rise	to	the	

cancer	stem	cell	(CSC)	model	of	tumour	development	and	heterogeneity.	Early	evidence	

that	genetic	aberrations	were	the	cause	of	a	tumours	phenotypic	traits	(21)	supported	

the	 idea	 that	 somatic	 evolution	 of	 genomic	 clones	 could	 occur,	 allowing	 Darwinian	

selection	in	response	to	spatial	and	temporal	selective	pressures	(12).	Together	these	
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theories	have	influenced	a	significant	proportion	of	the	cancer	research	occurring	today.	

However,	translation	of	this	research	into	the	clinical	setting	has	been	slower;	hampered	

by	the	realisation	that	traditional	pre-clinical	models	lack	the	heterogeneity	of	human	

malignancies	(22).	Recently,	patient	derived	tumour	xenografts	(PDXs)	have	emerged	as	

powerful	preclinical	models	capable	of	recapitulating	most	of	their	originating	tumour’s	

heterogeneity	(23).	As	such,	studies	on	PDXs	are	showing	strong	basic	and	translational	

impact	in	the	field,	which	is	crucial	in	order	to	avoid	the	unsustainable	rates	of	attrition	

in	oncological	drug	development.		

	

Although	 often	 considered	 disparate,	 the	 causes	 and	 consequences	 of	 intertumour	

heterogeneity	 (i.e.	 different	 sub-classifications	 of	 tumours	 from	 the	 same	 originating	

organ)	 and	 intratumour	 heterogeneity	 (i.e.	 different	 sub-clonal	 architectures)	 are	

inherently	 linked.	Moreover,	 compelling	models	 of	 tumour	 heterogeneity,	 linking	 the	

competing	theories	of	CSCs	and	somatic	evolution	have	recently	been	proposed	(24).	As	

computational	 and	 preclinical	 models	 improve,	 and	 as	 high-throughput	 single	 cell	

studies	become	mainstream,	we	will	begin	a	new	chapter	in	our	understanding	of	the	

causes	 and	 consequences	 of	 tumour	 heterogeneity.	 It	 is	 hoped	 that	 this	 new	 era	 of	

research	will	 lead	to	new	insights	 into	the	complex	ecosystem	that	 is	cancer	and	that	

these	 insights	 can	 be	 translated	 into	 the	 clinic	 to	 accurately	 stratify	 tumours	 and,	

ultimately,	improve	clinical	outcome.	
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1.1	Genomic	Drivers	of	Tumour	Heterogeneity		
Cancer	 is,	 first	 and	 foremost,	 a	 disease	 of	 the	 genome.	 Indeed,	 both	 inter-	 and	

intratumour	heterogeneity	 can	 be	 explained	 by	 the	 genomic	 instability	 inherent	 to	 a	

tumour’s	 biology	 &	 the	 sequential	 acquisition	 of	 driver	 mutations.	 For	 example	

Adenomatous	polyposis	coli	(APC)	loss	in	colorectal	cancer	(CRC))	which	fuels	the	first	

stages	of	clonal	expansion	(25,26).	Though	changes	in	a	tumour’s	microenvironment	(for	

example	increase	inflammation	or	immune	cell	infiltrate)	or	epigenetic	regulation	(for	

example	MLH1	promotor	methylation	in	microsatellite	unstable	CRC)	are	undoubtedly	

required	to	transform	a	clonal	expansion	of	benign	cells	into	a	malignancy	(21,	23,	70,	

77),	this	section	will	focus	on	the	aforementioned	genomic	drivers.		

	

Through	the	course	of	tumour	initiation	and	progression,	cancer	cells	undergo	repeated	

mutational	events,	which	may	or	may	not	confer	a	survival	advantage	('fitness')	on	their	

progeny.	 With	 time,	 this	 process	 generates	 a	 dominant	 clone	 that	 will	 expand	 and	

dominate	the	site	where	it	was	generated	through	Darwinian	selection	in	response	to	

spatial	 and	 temporal	 selective	 pressures	 (12).	 When	 clones	 arise	 with	 an	 increased	

fitness	 (or	 when	 selective	 pressures	 change),	 less	 advantaged	 clones	 will	 either	

disappear	or	will	be	maintained	as	sub-clones	alongside	the	dominant	clone,	acting	as	a	

reservoir	from	which	evolution	can	continue	(27).	This	compelling	theory	was	first	put	

forward	 by	 Peter	Nowell	 in	 1976	 (12)	 and	 supported	 by	 early	 evidence	 that	 genetic	

aberrations	 were	 the	 cause	 of	 a	 tumours	 phenotypic	 traits	 (21)	 and	 more	 recent	

genomics	research	(28,29).	It	is	now	accepted	that	tumours	harbour	various	layers	of	

genomic	 complexity	 and	 the	 resultant	 heterogeneity	 can	 have	 profound	 effects	 on	

disease	progression.	Moreover,	genomic	instability,	which	fuels	the	diversity	essential	

for	any	Darwinian	process	is	intertwined	with	both	the	development	and	maintenance	

of	tumour	heterogeneity,	and	the	clinical	consequences	thereof.		
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Figure	1.1	–	Tumour	Heterogeneity	

	Figure	1.1	 shows	an	overview	of	 tumour	heterogeneity.	 From	 left	 to	 right;	 intertumour	

heterogeneity	ensures	that	no	two	malignancies	are	the	same;	genomic	clonal	populations	

exist	 within	 a	 tumour	 (coloured)	 and	 functional	 heterogeneity	 (shape)	 exists	 within	

isogeneic	 populations.	 This	 non-genomic	 intratumour	 heterogeneity	 is	 due	 to	 intrinsic	

epigenetic	 differences	 (not	 shown),	 interaction	with	 the	 immune	 infiltrate	 (top	 panel),	

differences	 in	 tumour	metabolism	 (e.g.	 hypoxia;	middle	panel)	and	 interaction	with	 the	

extracellular	 matrix	 and	 stromal	 component	 (bottom	 panel).	 Each	 of	 the	 depicted	

environments	 could	 have	 different	 effects	 on	 cellular	 functions.	 Highlighting	 functional	

consequences	 of	 heterogeneity,	 in	 the	 lower	 half,	 two	 genomic	 clones	 are	 depicted	 as	

resistant	to	chemotherapy	and	able	to	repopulate	the	tumour	after	treatment.	Dead	cells	

are	 coloured	 black	 in	 the	 centre	 of	 the	 lower	 panel.	 These	 resistant	 clones	 could	 be	

genomically	 distinct	 or	 isogenic	 but	 functionally	 distinct.	 Adapted	 from	 (11).	 Figure	

overleaf.		
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1.1.1	Genomic	Instability	&	Tumour	Heterogeneity			
According	to	Hanahan	and	Weinberg,	genomic	 instability	is	an	enabling	characteristic	

that	helps	generate	the	hallmarks	of	cancer,	and	is	the	major	driving	force	behind	intra-	

and	 intertumoral	 heterogeneity	 (30,31).	 Throughout	 the	 process	 of	 tumour	

development,	cancer	cells	can	accrue	thousands	of	mutations,	some	of	which	can	even	

involve	the	gain	or	loss	of	entire	chromosome	arms	(32).	However,	there	is	evidence	that	

the	 number	 of	 mutations	 cannot	 increase	 endlessly	 without	 adversely	 affecting	 cell	

fitness	(33–37),	implying	the	existence	of	a	limit	of	tolerance.	Hence,	cancer	cells	must	

exist	in	constant	balance	between	instability-driven	cell	growth	and	the	point	where	the	

consequences	of	gross	genomic	changes	become	lethal	to	the	cell	(32).		

	

Solid	 tumours	 can	be	 classified	based	on	 the	dominance	of	single	nucleotide	variants	

(SNVs),	 i.e.	M-class	 tumours,	or	copy	number	aberrations	(CNAs),	 i.e.	C-class	 tumours	

(38).	 The	 contribution	 of	 each	 class	 of	 somatic	 mutation	 to	 genomic	 instability,	 the	

balance	between	instability-driven	cell	growth	&	cell	death,	and	tumour	heterogeneity,	

is	varied.	For	example,	the	total	burden	of	SNVs	at	a	given	time	depends	on	the	efficacy	

of	SNV	appearance	and	clearance	by,	for	example,	p53-induced	apoptosis	(32).	In	some	

cancers,	e.g.	microsatellite	instability	(MSI)	high	CRCs,	SNV	burden	is	increased	by	a	loss	

of	DNA	mismatch	repair	and	this	is	linked	to	a	favourable	outcome.	Intolerance	to	a	high	

SNV	burden	could	be	due	 to	 increased	 immune	clearance.	 Indeed	MSI	high	CRCs	and	

metastatic	melanomas1	have	both	been	shown	to	respond	well	 to	 immune	checkpoint	

inhibitors	(39–43).		

	

Simulation	studies	have	provided	 insight	 into	how	natural	selection	adjusts	mutation	

rate	 in	 tumours	 with	 a	 high	 SNV	 burden	 (34,44).	 One	 such	 study	 found	 that	 under	

fluctuating	environmental	conditions	(e.g.	oxygen	availability	or	temperature),	the	rate	

of	SNV	accumulation	increased	linearly	until	reaching	a	critical	limit.	SNV	accumulation	

																																																								
1	The	high	mutation	burden	in	metastatic	melanoma	is	linked	to	prolonged	exposure	to	ultraviolet	(UV)	
light	and	the	resultant	C>T	transitions	(76).		
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at	 a	 rate	above	 this	variable	 threshold	 led	 to	population	 level	 extinction	events	 (45).	

Another	simulation	study	found	that	a	high	SNV	accumulation	rate	initially	leads	to	rapid	

tumour	growth,	but	that	beyond	a	certain	threshold,	leads	to	negative	clonal	selection	

and	is	consequently	less	favourable	for	cellular	expansion	(46).	Interestingly,	concepts	

such	as	immune	surveillance,	which	limit	the	proportion	of	cells	with	a	high	SNV	burden2	

are	not	easy	to	adapt	to	explain	the	toxicity	associated	with	a	high	rate	of	SNV	formation.	

However,	there	does	exist	a	theoretical	framework,	seen	in	the	development	of	life,	for	a	

limiting	threshold	in	DNA	replication	error	rate	(47).	Specifically,	it	has	been	proposed	

that	if	a	SNV	error	rate	were	to	exceed	some	catastrophic	threshold,	then	the	information	

in	 the	genome	would	be	effectively	decayed	and	 the	 fidelity	of	genome	 	maintenance	

across	generations	would	be	severely	impacted	(34,48).	This	conceptual	framework	is	

supported	by	theoretical	models	and	evolutionary	experiments	(33–36,49),	applicable	

to	 unicellular	 organisms,	 multicellular	 organisms,	 and	 neoplastic	 cells	 (50,51).	

Mechanistically,	 it	 is	 though	 that	SNV	error	 rate	 limits	are	 supported	by	 ‘gatekeeper’	

genes	 (such	 as	 TP53)	 which	 may	 be	 induced	 by	 oxidative	 stress	 and/or	 high	 SNV	

mutation	rates,	halting	the	cell	cycle	and	initiating	apoptosis	(52–55).			

	

CNAs	differ	from	SNVs	in	that	they	can	encompass	a	vast	region	of	a	cell’s	genome.	CNAs	

are	 thought	 to	 confer	 substantial	 phenotypic	 plasticity,	 through	 gene	 duplication	 or	

deletion,	 and	have	been	described	as	 the	driving	 force	of	 genetic	diversification	 (19).	

Indeed,	 there	 is	 evidence	 supporting	 the	more	 central	 role	of	CNAs	 than	SNVs	 in	 the	

development	and	maintenance	of	neoplastic	cell	population	diversity	(56–58).	However,	

CNAs	appear	limited	by	a	similar	overall	rate	and	burden	limit	(32,59,60).	For	example,	

in	one	study,	fluorescent	in	situ	hybridisation	(FISH)	of	the	centromeres	of	chromosomes	

2	 and	 15	 was	 used	 to	 define	 CNA	 driven	 genomic	 instability	 in	 ERα-	 breast	 cancer	

patients3.	The	authors	 found	that	cases	where	45%	of	 tumour	cells	had	chromosomal	

abnormalities	 had	 a	 significantly	 better	 prognosis	 than	 cases	 with	 lower	 number	 of	

																																																								
2	If	we	consider	that	high	SNV	burden	translates	to	an	increased	frequency	of	neoantigen	formation.		
3	Chromosomes	2	and	15	were	chosen	due	to	their	relatively	rare	specific	alteration	frequency	in	breast	
cancer,	the	authors	reasoned	CNAs	in	these	chromosomes	would	be	indicative	of	overall	instability	(7).		
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chromosomal	 abnormalities	 (60).	 Similarly,	 TNBCs	with	 a	 gene	 expression	 signature	

associated	with	high	chromosomal	instability	are	associated	with	increased	time	until	

relapse	 compared	 with	 those	 with	 low	 predicted	 instability	 (59).	 Limits	 on	 CNA	

abundance	could	be	explained	by	biophysical	constraints	(e.g.	chromosome	size	limiting	

alignment	 to	 the	 centre	of	 the	nucleus	and	 therefor	metaphase	efficiency)	 (61),	 gene	

dosage	(e.g.	amplification	of	neoantigens	or	tumour	suppressors	in	a	duplicated	region)	

(62)	or	apoptosis	 initiated	by	DNA	damage	 (e.g.	DNA	double-strand	breaks	 initiating	

p53-dependent	signal	transduction)	(63,64).			

	

In	summary,	genomic	instability	is	a	major	driver	of	tumour	heterogeneity,	yet	whilst	

heterogeneity	 may	 be	 associated	 with	 a	 poor	 prognosis,	 instability	 itself	 may	 be	

associated	 with	 better	 patient	 outcome.	 These	 observations	 can	 be	 reconciled	 by	

considering	that	a	high	CNA	burden	may	result	from	multiple	clones	with	low	levels	of	

CNA	burden	or	of	a	few	clones	with	high	levels	of	CNA	burden	(32).	When	CNA	burden	is	

spread	among	many	clones,	the	associated	prognosis	is	less	favourable,	indicating	that	it	

is	the	CNA	burden	per	clone	that	limits	tumour	viability.	Thus,	genomic	instability	gives	

rise	to	heterogeneity	and	a	polyclonal	tumour,	but	an	overly	high	CNA	or	SNV	burden	in	

any	specific	clone,	limits	its	viability.	Genomic	instability	and	tumour	heterogeneity	is	

best	 considered	 as	 a	delicate	 balance	 between	 favourable	 growth	 characteristics	 and	

cellular	toxicity	(32).		

	

	

1.1.2	Intertumour	Heterogeneity		
The	earliest	events	in	a	tumour’s	evolution	are	fuelled	by	specific	genomic	aberrations,	

which	can	have	profound	effects	on	intertumour	heterogeneity.	For	example	ESR1	and	

ERBB2	amplification,	 leading	 respectively	 to	 ERα	 (65)	 and	 human	 epidermal	 growth	

factor	receptor	2	(HER2)	(66)	protein	upregulation,	can	be	early	events	in	breast	cancer	
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initiation 4 .	 These	 events	 might	 be	 prognostic	 and	 predictive	 of	 drug	 responses,	

suggesting	they	can	be	used	to	classify	cancer	into	different	subtypes.	For	example,	ERα+	

tumours	(80%	of	breast	cancers)	tend	to	have	a	better	prognosis	and	are	treated	with	

oestrogen	 receptor	 antagonists	 (e.g.	 tamoxifen)	 or	 aromatase	 inhibitors	 (e.g.	

anastrozole),	 whereas	 HER2+	 tumours	 (20%	 of	 breast	 cancers)	 are	 generally	 faster	

growing,	 more	 aggressive	 and	 are	 treated	 with	 antibodies 5 	against	 HER2	 (e.g.	

trastuzumab)	(67).	ESR1	and	ERBB2	amplification	can	also	occur	in	the	same	tumours,	

with	or	without	the	presence	of	progesterone	receptor	(PR).	Indeed,	the	first	molecular	

based	classification	that	dramatically	changed	clinical	practice	and	breast	cancer	patient	

outcome	was	based	on	ERα,	PR	and	HER2	status	(67).	Continued	technological	advances	

have	made	clear	that	a	wide	range	of	(epi)genomic	aberrations	can	drive	the	tumorigenic	

process.	Recently,	a	driver-based	taxonomy	of	breast	cancer	has	been	defined	based	on	

copy	 number	 and	gene	 expression	 data	 (7,10).	 The	 11	molecular	 subtypes	 identified	

show	distinct	prognosis	and	molecular	drivers,	reaffirming	breast	cancer	heterogeneity.			

	

Beyond	the	effects	of	individual	genomic	aberrations,	the	order	in	which	cells	acquire	

mutations	 can	 have	 profound	 effects	 on	 intertumour	 heterogeneity	 and	 disease	

progression.	 For	 example,	 in	 Philadelphia	 chromosome	 negative	 myeloproliferative	

neoplasms	(MPNs),	recent	work	has	demonstrated	that	within	patients	harbouring	both	

a	Janus	kinase	2	(JAK2)	and	Tet	methylcytosine	dioxygenase	2	(TET2)	mutation,	those	who	

acquired	 the	 TET2	mutation	 first	 were	 less	 likely	 to	 present	 with	 the	 MPN	 subtype	

polycythemia	 vera	 than	 with	 essential	 thrombocythemia 6 	(68).	 Thus,	 complete	

phenotypic	heterogeneity	is	observed	between	patients	with	the	same	mutational	load	

depending	on	the	order	of	mutational	events.		

	

																																																								
4	It	is	worth	noting	that	somatic	alterations	in	the	genome	are	likely	not	enough	to	drive	tumour	initiation	
in	the	absence	of	mitigating	factors	such	as	local	inflammation	or	immune	cell	infiltrate.		
5	Small	molecular	inhibitors	of	the	internal	tyrosine	kinase	domains	of	HER2	(and	other	receptor	tyrosine	
kinases)	are	often	used	as	an	alternative	to	antibodies	targeting	external	domains.	In	breast	cancer,	the	
dual	inhibitor	of	HER2	and	EGFR	kinase	domains,	lapatinib,	is	approved	for	HER2-positive	breast	cancer.		
6 	The	 author’s	 explanation	 was	 that	 TET	 mutations	 caused	 differential	 DNA	 methylation	 signatures,	
affecting	target	transcriptional	programs	of	oncogenic	JAKV617F.		
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Significantly,	some	of	these	early	oncogenic	driver	events	can	also	shape	the	subsequent	

clonal	 evolution	 that	 heavily	 influences	 intratumour	 heterogeneity.	 Taking	 the	 most	

extreme	example,	hypermethylation	or	mutation	of	MutL	homolog	1	(MLH1)	leads	to	a	

hypermutator	 phenotype	 in	 colorectal	 cancer	 (69).	 This	 microsatellite	 instability	

phenotype	 both	 distinguishes	MLH1	 mutant	 tumours	 from	 other	 CRCs	 and	 leads	 to	

widespread	intratumour	heterogeneity	(70),	which	has	been	linked	to	higher	resistance	

to	therapy.	More	recently,	mutant	phosphatidylinositol	3-kinase	alpha	catalytic	subunit	

(PIK3CA)	has	been	shown	to	enable	plasticity	in	differentiated	breast	cells,	paving	the	

way	 towards	 functional	 intratumour	 heterogeneity	 in	 breast	 cancers	 with	 PIK3CA	

mutations	(71,72).	More	broadly,	PIK3CA	or	other	members	of	the	phosphatidylinositol	

3-kinase	(PI3K)	pathway	are	amongst	the	most	commonly	mutated	in	breast	cancer	(73)	

and	cross-talk	between	signalling	networks	emanating	 from	mutant	PIK3CA	 and	ERα	

have	 been	 shown	 to	 impact	 significantly	 on	 breast	 cancer	 initiation	 and	 progression	

(74,75).		

	

	

1.1.3	Intratumour	Heterogeneity		
The	 acquisition	 and	 order	 of	 driver	 mutations	 can	 have	 profound	 implications	 for	

intertumour	heterogeneity.	However,	 tumours	are	characterised	by	continuous	clonal	

evolution	as	they	develop	(76).	Progeny	of	founder	clones	undergo	repeated	mutational	

events	 that	may	 confer	 a	 fitness	 advantage	with	 regards	 specific	 spatial	 or	 temporal	

selective	 pressures	 (12).	 Clonal	 evolution	 is	 present	 in	 precancerous	 and	 advanced	

lesions	and	helps	define	both	inter-	and,	in	particular,	intratumour	heterogeneity.	For	

example,	sequencing	data	on	234	biopsies	of	normal	skin	from	four	individuals	showed	

multiple	cancer-associated	genes	were	under	positive	selection	even	 in	normal	 tissue	

(77).	The	authors	observed	clonal	expansion	of	skin	cells	with	early	driver	mutations	

across	patients	and	overall	found	driver	mutations	at	a	density	of	140	per	cm2	of	sun-

exposed	skin.	As	this	study	focussed	on	pre-cancerous	tissues,	we	cannot	know	if	any	of	

these	 early	 lesions	would	 lead	 to	 tumour	 growth	 but	 the	 authors	 do	 present	 strong	
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evidence	 that	 clonal	 evolution	 occurs	 even	 in	 the	 earliest	 stages	 of	 a	 neoplasm’s	

development	(77).		

	

Numerous	 groups	 have	 been	 able	 to	 reconstruct	 the	 clonal	 hierarchy	 of	 individual	

tumours.	 For	 example	Nik-Zainal	 et	 al.,	 	were	able	 to	 combine	 deep	 sequencing	with	

novel	bioinformatics	tools	to	reconstruct	the	clonal	history	of	21	breast	cancers	(28).	The	

authors	showed	that	breast	cancers	evolve	through	the	infrequent	acquisition	of	driver	

mutations;	each	of	which	allows	clonal	expansion	and	eventual	dominance.	Interestingly,	

as	the	most	recent	common	ancestor	appeared	relatively	early,	minor	clones	were	able	

to	 coexist	 and	 diversify	 alongside	 the	 dominant	 clone	 (28).	 This	model	 of	 branched	

evolution	 allows	 for	 a	 genetic	 pool	 of	minor	 clones	 able	 to	 fuel	 new	 stages	 of	 clonal	

evolution	if	selective	pressures	change.	In	agreement	with	this	study,	by	reconstructing	

the	clonal	composition	of	104	triple	negative	breast	cancer	(TNBC),	our	group	observed	

a	complete	spectrum	of	molecular	and	clonal	compositions	at	patient	diagnosis	(78).	

	

Alongside	 this	 model	 of	 branched	 evolution,	 the	 survival	 of	 multiple	 sub-dominant	

clones	can	be	explained	by	the	spatial	segregation	of	clones	across	the	tumour	as	a	whole.	

This	pattern	was	hinted	at	 in	 the	pre-cancerous	clonal	expansions	of	 the	normal	skin	

(77)	and	fully	considered	in	renal	cell	carcinoma	(79)	and	lung	cancers	(80).	Indeed,	in	

a	recent	study	from	Caravagna	et	al.,	the	temporal	order	of	some	genomic	changes	in	a	

tumour	could	be	inferred	from	multiregional	sequencing	(81).	The	authors	used	transfer	

learning7	to	 transition	 neural	networks	 trained	 on	 their	own	datasets	 to	 large	multi-

region	sequencing	datasets	from	lung,	breast,	renal,	and	colorectal	cancer,	in	each	case	

detecting	repeated	evolutionary	trajectories	in	subgroups	of	patient.	A	public	release	of	

the	 author’s	 software	 package,	 ‘REVOLVER’,	 could	 empower	 researchers	 to	 stratify	

patient	groups	based	on	the	basis	of	how	their	tumour	evolved	(81).		

	

																																																								
7	Transfer	learning	is	a	strategy	in	deep	learning	whereby	hyperparameters	from	a	neural	network	trained	
on	a	well-labelled	dataset	may	be	used	to	tune	the	hyperparameters	of	a	future	convolutional	network	
applied	to	a	similar	dataset	or	problem	(475).	
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Furthermore,	the	notion	that	some	clonal	populations	may	cooperate	through	reciprocal	

signalling	pathways	can	further	contribute	to	tumour	heterogeneity	(82).	In	this	model,	

the	survival	of	a	minor	clone	can	be	assured	if	it	contributes	some	degree	of	paracrine	

signalling	to	the	dominant	clone.	Ensuring	expansion	of	the	latter	will	never	come	at	the	

expense	 of	 the	 former.	 Interestingly,	 this	 model	 does	 not	 require	 that	 cellular	

populations	are	genomically	distinct,	indeed	functional	heterogeneity	has	been	observed	

even	in	isogenic	populations	(83).		
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1.2	The	Epigenomic	Landscape	in	Cancer			
Like	genomic	mutations,	epigenetic	modifications	are	characteristic	of	all	tumours	(84).	

Indeed,	it	has	been	shown	that	the	somatic	mutation	burden	is	so	inextricably	linked	to	

cell-of-origin	 specific	 chromatin	 accessibility	 and	 modification,	 that,	 together	 with	

replication	timing,	this	can	explain	up	to	86%	of	the	variance	in	mutation	rates	across	a	

cancer	 genome	 (85).	 Additionally,	 genomic	 heterogeneity	 itself	 cannot	 explain	 the	

complete	phenotypic	diversity	of	tumours:	even	genetically	homogenous	populations	of	

cancer	 cells	 show	 remarkable	 diversity	 in	 their	 response	 to	 therapeutic	 selective	

pressure	and	other	sources	of	environmental	stimuli	(83,86).	This	observation	suggests	

profound	 epigenomic	 heterogeneity	 may	 play	 a	 clinically	 important	 role	 in	 tumour	

biology.		

	

	

1.2.1	Regulation	of	the	Epigenome		
Epigenetics	is	the	study	of	heritable	mechanisms	of	phenotypic	regulation	independent	

of	 genetic	 variation.	 As	 the	 vast	 majority	 of	 cells	 in	 an	 adult	 organ	 are	 genetically	

identical,	 cell	 type	heterogeneity	and	 the	 control	of	 cell	 fate	during	development,	 are	

attributed	 to	 epigenomic	 regulators	 (87).	 On	 the	 molecular	 level,	 mechanisms	 of	

developmental	control	are	 frequently	co-opted	by	tumours	during	their	development,	

these	 include:	 post-translational	 modification	 of	 histones;	 histone	 variants;	 DNA	

methylation;	 differential	 utilisation	 of	 non-coding	 RNAs	 as	 well	 as	 chromatin	

remodelling	(88).	Indeed,	the	idea	that	such	epigenetic	changes	may	be	direct	drivers	of	

tumour	progression,	rather	than	simply	passenger	events,	was	first	proposed	by	Robin	

Holliday	in	1979	and	has	since	been	shown	in	ovarian	cancer	(89)	and	B-cell	lymphomas	

(90).		

	

In	particular,	 two	classes	of	 epigenomic	 regulators,	DNA	methylation	and	histone	 tail	

modification,	 have	 been	 extensively	 studied	 as	 contributors	 to	 tumour	heterogeneity	

(91).	 Each	 is	 thought	 to	 contribute	 to	 transcriptional	 regulation	 through	 control	 of		
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functional	 genomic	 boundaries	 between	 open	 (euchromatin)	 and	 tightly	 packed	

(heterochromatin)	 DNA	 (92).	 The	 blurring	 of	 euchromatin	 and	 heterochromatin	

boundaries	during	tumour	progression	is	thought	to	lead	to	more	global	restructuring	of	

the	 genomic	 architecture	 (93,94)	 and	 potentially	 to	 specific	 cell-to-cell	 phenotypic	

variability	(92).	Moreover,	as	both	DNA	methylation	and	histone	tail	modification	are		

enzymatically	controlled	processes,	it	has	been	suggested	that	they	may	be	differentially	

inherited	by	daughter	cells,	further	leading	to	phenotypic	plasticity	across	the	tumour	

and,	ultimately,	tumour	heterogeneity	(93).		

	

More	 generally,	 epigenetic	 regulation	 is	 tightly	 associated	 to	 a	 cell’s	 transcriptional	

activity	(95)	and	consequently	may	influence	its	reaction	to	external	stimuli,	including	

cancer	therapies	(96–98).	Aside	from	transcriptional	control,	profound	heterogeneity	is	

seen	 in	 the	 post-transcriptional	 landscape	 in	 breast	 cancer	 (99–101).	 By	 integrating	

mRNA	and	microRNA	expression	data	from	1,302	breast	tumours,	our	group	was	able	to	

identify	 multiple	 prognostic	 microRNA	 expression	 signatures	 (99).	 These	 prognostic	

signatures	were	associated	with	immune	infiltrate	and	could	only	be	externally	validated	

in	CNA-devoid	breast	cancer	subtypes,	suggesting	a	particular	role	of	microRNAs	in	the	

progression	 of	 this	 breast	 cancer	 subtype	 (99).	 Interestingly	 expression	 of	 specific	

microRNAs	 has	 also	 been	 associated	with	 clinically	 relevant	 phenotypes,	 such	 as	 the	

progression	of	epithelial	to	mesenchymal	(EMT)	(102,103)	and	the	development	of	drug	

resistance	(104).		

	

In	summary,	the	study	of	epigenetic	intratumor	heterogeneity	is	necessary	for	a	holistic	

understanding	 of	 clonal	 evolution	 and	 therapy	 resistance.	 By	 understanding	

heterogeneity	 in	 epigenetic	 regulatory	 mechanisms,	 we	 may	 gain	 a	 greater	

understanding	of	overall	tumour	heterogeneity.	
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1.2.2	Somatic	Mutations	in	Epigenomic	Modulators			
Mutations	in	epigenetic	writers,	readers,	and	erasers	as	well	as	members	of	chromatin-

remodelling	complexes,	are	pervasive	in	multiple	specific	cancer	types,	with	more	than	

30	 frequently	 mutated	 genes8	known	 to	 play	 an	 active	 role	 in	 dysregulation	 of	 the	

epigenome	 (84,105).	 Those	 most	 frequently	 mutated	 include	 histones	 themselves;	

histone	 acetyltransferases;	 histone	 deacetylases;	 histone	 methyltransferases;	 histone	

demethylases;	 DNA	 methyltransferases	 and	 chromatin	 remodelling	 factors	 (84).	

Interestingly,	mutations	in	epigenetic	regulators	are	particularly	common	in	cancers	that	

relapse	 or	 that	 are	 otherwise	 resistant	 to	 therapy.	 For	 example	 in	 ovarian	 clear	 cell	

carcinoma,	where	mutations	in	the	chromatin	modulator	ARID1A	have	been	seen	in	up	

to	57%	of	cases,	but	are	not	at	all	found	in	the	less	aggressive	high-grade	serous	ovarian	

carcinoma	subtype	(106,107).		

	

Genomic	 mutations	 occur	 in	 noncoding	 regulatory	 regions	 of	 the	 genome	 at	 nearly	

double	 the	 frequency	 of	 protein	 coding	 regions	 (108).	 Such	 mutations	 have	 been	

identified	in	multiple	promoters	and	enhancer	elements	across	a	range	of	cancer	types	

and	 stages	 (109,110).	 For	 example,	 mutations	 in	 the	 promotor	 region	 of	 telomerase	

reverse	 transcriptase	 (TERT)	 are	 seen	 in	 more	 than	 70%	 of	 melanomas	 (111,112).	

Interestingly,	mutations	within	the	coding	region	of	TERT	are	uncommon,	but	those	in	

promotor	regions	are	thought	to	increase	TERT	expression	by	creating	a	de	novo	binding	

motif	 for	 E26	 transformation-specific	 (ETS)	 transcription	 factors.	 In	 breast	 cancer,	

however,	a	recent	study	found	TERT	promotor	mutations9	in	only	0.9%	of	the	319	cases	

analysed	 (113),	 reflecting	 intertumour	 heterogeneity	 across	 somatic	 mutations	 in	

epigenetic	regulators.		

	

	

																																																								
8 	If	 we	 define	 common	mutations	 as	 those	 included	 in	 the	 catalogue	 of	 somatic	 mutations	 in	 cancer	
(COSMIC)	database.		
9	Although	the	authors	focussed	only	on	the	hotspot	mutations	C228T	and	C250T	(113).	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance																														Chapter	1	–	Introduction	

	 	 	

	
-17-	

1.3	Context	Dependent	Sources	of	Heterogeneity		
In	addition	to	genomic	and	heritable	epigenomic	diversity,	environmental	and	non-cell	

autonomous	sources	of	epigenomic	variation	may	play	a	role	in	tumour	heterogeneity.	

Indeed,	cells	within	a	tumour	are	characterised	by	functional	heterogeneity	related	to	

their	specific	tumour	microenvironment	(TME).	Components	of	the	TME	(encompassing	

immune	 infiltrate,	 stromal	 compartment	 and	 extracellular	 matrix	 (ECM))	 vary	

significantly	 between	 tumours	 and	 contribute	 to	 spatial	 heterogeneity	 in	 individual	

neoplasms.	Moreover,	localised	signalling	from	stromal	and	immune	cells	could	lead	to	

phenotypic	plasticity	within	isogenic	populations.	For	these	reasons,	we	should	consider	

a	 tumour	as	a	complex	ecosystem	functioning	at	a	 level	 far	 exceeding	the	some	of	 its	

parts	(29).		

	

	
1.3.1	Tumour	Microenvironment		
Tumour	development	depends	on	the	co-evolution	of	neoplastic	cells	along	with	ECM,	

stromal	 compartment,	 tumour	vasculature	and	 immune	cells.	These	 tumour	extrinsic	

factors	 collectively	 comprise	 the	 TME	 and	 are	 required	 for	 successful	 outgrowth	 of	

tumours	and	eventual	metastases	(114).	The	dynamic	topology	of	the	tumour,	together	

with	its	microenvironment,	varies	drastically	both	between,	and	within	the	same	lesions	

(114).	Thus,	the	individual	compartments	of	the	TME	have	profound	influence	on	both	

inter-	and	 intratumour	heterogeneity.	Perhaps	the	most	relevant	 facet	of	 the	TME	for	

tumour	stratification,	given	 the	success	of	 immunotherapies,	 is	 the	 tumour’s	 immune	

infiltrate	(43,115).	For	example,	Th1	and	cytotoxic	(CD8+)	T-cell	content	was	recently	

found	to	be	the	strongest	prognostic	factor	in	overall	survival	at	all	stages	of	CRC	(116).	

Other	studies	have	highlighted	the	vast	heterogeneity	seen	in	immune	infiltrates	of	CRC	

patients	 (117).	 As	 such,	 stratification	of	 CRCs	based	 on	 immune	 infiltrate	 could	 both	

provide	 more	 accurate	 prognosis	 information,	 and	 potentially	 identify	 patients	 who	

would	benefit	most	from	immunotherapy.		
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In	breast	cancer,	efforts	to	develop	immune	based	subclasses	are	already	underway.	One	

study	used	immunohistochemical	grading	of	CD8+	T-cells,	regulatory	T-cells	(Tregs)	and	

Natural	 Killer	 (NK)	 cells	 to	 define	 three	 breast	 cancer	 subtypes	 (118).	 Analysis	 of	

training	 (n=440)	 and	 validation	 (n=382)	 cohorts	 confirmed	 these	 subtypes	 had	

significant	prognostic	value	for	relapse	free	and	overall	survival	(118).	Moreover,	our	

own	studies	have	shown	Programmed-death	ligand	1	(PD-L1)	expression	is	correlated	

with	infiltrating	lymphocytes	and	is	highly	enriched	in	basal-like	breast	tumours	(119).	

Anti-PD-L1	antibodies	have	shown	efficacy	in	early	clinical	trials	for	metastatic	breast	

cancer;	it	seems	likely	that	stratification	of	breast	cancers	based	on	immune	infiltrate	or	

PD-L1	 expression	will	 aid	 in	 improving	 the	 efficacy	 of	 such	 agents	 (120).	Moreover,	

integration	 of	 immune	 and	 genomic-based	 classifications	 will	 further	 increase	 our	

resolution	 of	 intertumour	 heterogeneity	 and	 allow	 a	 more	 rational	 stratification	 of	

patients.		

	

	
1.3.2	Phenotypic	Plasticity		
The	epigenomic	landscape	can	be	conceptualised	as	containing	‘hills’	(unstable	states)	

and	 ‘valleys’	 (stable	states).	A	pluripotent	cell	begins	 its	differentiation	process	at	 the	

peak	of	a	hill	and	progresses	into	a	stable	state	(the	valley)	as	it	becomes	restricted	to	a	

specific	lineage	(121).	Directing	the	cell	down	its	lineage-restricted	path	are	a	multitude	

of	environmental	(e.g.	topology	of	the	ECM	(122))	and	biochemical	cues	(autocrine	and	

paracrine	signalling)	which	directly	stimulate	the	transition	from	one	epigenetic	state	to	

the	 next	 (123).	 During	 tumour	 development,	 genomic	 instability,	 the	 acquisition	 of	

numerous	 passenger	 mutations,	 coupled	 with	 irregular	 activation	 of	 signalling	

pathways,	 contributes	 to	 instability	 in	 these	 epigenetic	 ‘attractor	 states’	 (124).	 Thus,	

cancers	 are	 often	 described	 as	 caricatures	 of	 their	 normal	 tissue	 architecture,	 with	

phenotypic	states	that	may	be	less	stable	and	more	susceptible	to	heterogeneity	in	the	

TME	than	their	normal	tissue	equivalents	(124).		
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As	cancers	develop,	tight	regulation	of	the	ECM	is	lost	and	tissue	architecture	begins	to	

degrade	(125).	Solid	state	ECM	interactions	are	necessary	for	cells	to	maintain	potency	

and	regulated	ECM	helps	maintain	the	stem	cell	niche	(126).	As	cancer	is	often	associated	

with	a	blurring	of	 the	boundaries	between	stem	and	differentiated	cells,	 it	 is	possible	

that	 a	 loss	 of	 structured	 ECM	 is	 essential	 for	 the	 stability	 of	multiple	 sub-dominant	

cellular	 clones	within	a	 tumour	 (124).	A	 recent	 study	by	Wang	et	al.,	 provides	direct	

evidence	 that	 ECM	 dependent	 signalling	 confers	 dynamic	 switching	 between	

transforming	growth	factor	β	receptor	3	(TGFBR3)	and	 jun	D	proto-oncogene	(JUND)	

related	 expression	 signatures	 (127).	 Hence,	 depending	 on	 ECM	 stiffness	 and	

composition,	heterogeneity	in	signalling	pathways	could	be	generated	across	a	tumour.		

	

More	broadly,	post-transcriptional	regulation	of	gene	expression,	for	example	microRNA	

modulation	of	mRNA–mRNA	interactions,	can	have	profound	consequences	on	context-

dependent	 heterogeneity,	 for	 example	 in	 cell	 adhesion	 and	 Wnt	 signalling 10 	(99).	

Moreover,	cells	may	be	able	to	enter	transient	drug-tolerant	states	based	on,	for	example,	

histone	 demethylase-mediated	 chromatin	 remodelling11	(86).	 In	 summary,	 cells	 exist	

not	in	isolation,	but	in	a	milieu	growth	factors,	cytokines,	morphogens,	and	biophysical	

cues.	Through	contact	guidance,	differential	ECM	features	are	able	 to	drive	the	 initial	

complexity	 of	 a	 developing	 organ,	 and	 could	 have	 similarly	 profound	 effects	 on	 the	

context	specific	regulation	of	a	tumours	biology	(126).		

	

	
	

	

	

																																																								
10	Two	of	 the	behaviours	described	by	Dvinge	et	al.,	by	profiling	 the	expression	of	850	miRNAs	 in	 the	
METABRIC	cohort	(99).		
11	As	seen	in	reversible	Jarid1A-mediated	erlotinib	resistance	in	PC9	cells	(86).			
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1.4	Clinical	Implications	of	Tumour	Heterogeneity		
	

The	 typical	 attrition	 rate	 of	 new	 investigational	 drugs	 submitted	 for	 clinical	 trials	 is	

around	88%	(128).	Consequently,	the	average	cost	of	bringing	a	new	therapeutic	agent	

through	 to	 regulatory	 approval,	 a	 process	 that	 can	 take	 a	 decade,	 is	 over	 $2.56B	

(128,129).	In	order	to	reduce	the	attrition	of	experimental	cancer	agents	and	improve	

the	outcome	of	patients	treated	with	approved	targeted	agents,	we	must	develop	a	more	

comprehensive	 picture	 of,	 and	 pre-clinical	 models	 able	 to	 capture,	 tumour	

heterogeneity.		

	

1.4.1	Stratified	Medicine		
The	first	and	most	profound	consequence	of	tumour	heterogeneity	for	clinical	practice	

is	 that	 chemotherapy	 and	 targeted	 agents	 do	 not	 have	 uniform	 efficacy	 across	

malignancies	 of	 the	 same	 subtype	 or	 even	 across	 the	 same	 tumour	 (130).	 In	 breast	

cancer,	for	example,	the	earliest	subtype	stratifications	were	defined	by	the	presence	or	

absence	of	hormone	receptors	(ERα/PR)	and	HER2.	This	 first	molecular	stratification	

had	unprecedented	clinical	implications,	exemplified	by	the	strong	benefit	of	oestrogen	

pathway	inhibitors	in	ERα+,	and	anti-HER2	therapy	in	HER2+,	breast	cancers.	With	the	

advent	of	large	scale	sequencing	projects,	our	stratification	of	breast	cancer	has	become	

more	 precise	 (131).	 Early	 genomic	 classifications	 based	 on	 single	 parameter12 	have	

evolved	 into	 complex	 integrative	 methodologies	 designed	 to	 capture	 heterogeneity	

across	multiple	levels,	such	as	the	11	Integrative	Clusters	defined	by	Curtis	et	al.,	(7),	see	

Figure	 1.4.	 Multi-parameter	 stratification	 continuous	 to	 improve.	 Now,	 efforts	 are	

underway	to	stratify	both	breast	(132)	and	colorectal	cancers	(133)	based	on	immune	

infiltrates	and	immunogenomic	signature.	Such	classification	could	allow	more	rational	

use	of,	for	example,	novel	immunotherapies	(43).		

	

																																																								
12 	For	 example	 50-gene	 PAM50	 expression	 signature	 used	 to	 define	 the	 four	 intrinsic	 breast	 cancer	
subtypes	(luminal	A,	luminal	B,	basal-like	and	HER2-enriched)	still	used	in	many	research	studies	(8,9).		
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Figure	1.4	–	Integrative	Clusters	defined	in	the	METABRIC	cohort	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	1.4	–	Integrative	Clusters	defined	in	the	METABRIC	cohort.		

Figure	1.4	shows	a	Kaplan–Meier	plot	of	disease-specific	survival	(truncated	at	15	years)	

for	the	ten	original	integrative	cluster	defined	in	the	METABRIC	cohort.	For	each	cluster,	

the	 number	 of	 samples	 at	 risk	 is	 indicated	 as	 well	 as	 the	 total	 number	 of	 deaths	 (in	

parentheses).	Figure	is	adapted	from	Curtis	et	al.,	(7).		
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1.4.2	Resistance	to	Cancer	Therapy			
Differences	in	clonal	populations	within	the	same	tumour	can	have	a	profound	influence	

on	 response	 to	 therapy,	 the	 emergence	 of	 drug	 resistance	 and	 disease	 progression.	

Currently	our	ability	to	predict	the	emergence	of	drug	resistance	in	tumours	requires	a	

priori	 knowledge	 of	 resistance	 mechanisms	 and	 the	 identification	 of	 resistance-

associated	 clones	 within	 a	 tumour.	 However,	 there	 is	 some	 evidence	 that	 the	

development	 of	 resistance	 is	 an	 inevitable	 consequence	 of	 single	 agent	 targeted	

therapies	(134),	suggesting	a	more	universal	strategy	for	identification	of	relapse	risk	

may	be	possible.		

	

Typically,	 resistance	 results	 from	 the	 outgrowth	 of	 specific	 pre-existing	 populations	

within	 a	 tumour	 rather	 than	 from	 de	 novo	 evolution	 (135).	 Indeed,	 the	 wider	 the	

diversity	of	minor	clonal	populations	in	a	tumour,	the	more	likely	it	is	that	resistance	will	

arise.	Such	an	association	between	tumour	heterogeneity	and	drug	resistance	has	been	

noted	in	ovarian	(136),	and	oesophageal	(137)	cancers.	Additionally,	basal-like	TNBCs	

have	previously	been	linked	with	shorter	disease	free	survival	compared	to	non-basal-

like	TNBCs	and	tend	to	be	associated	with	higher	clonal	diversity	(78).	Thus,	there	may	

be	multiple	routes	to	the	development	of	resistance	within	any	single	tumour.	Epidermal	

growth	factor	receptor	(EGFR)	is	a	well-established	driver	of	CRC	and	anti-EGFR	therapy	

shows	clear	benefit	in	a	subset	of	the	metastatic	disease.	However,	a	plethora	of	events	

have	 been	 shown	 to	 predict	 drug	 sensitivity	 (primary	 resistance)	 and	 acquired	

resistance	to	anti-EGFR	therapy	in	this	setting	(134).		

	

Interestingly,	resistant	populations	have	been	shown	with	mutations	in	RAS,	BRAF	and	

PIK3CA	or	amplifications	in	KRAS,	ERBB2	and	MET.	While	the	mechanisms	of	resistance	

are	genetically	heterogeneous,	 they	 functionally	 converge	on	key	 signalling	pathways	

which	might	aid	the	identification	of	biomarkers	of	disease	progression	(138).	Similarly,	

numerous	 avenues	 to	 poly	 ADP	 ribose	 polymerase	 (PARP)-inhibitor	 resistance	 have	

been	 described	 in	 breast	 and	 ovarian	 cancers	 in	 either	 a	 BRCA1	 dependent	 or	
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independent	(e.g.	53BP1/REV7	loss)	fashion	(139,140).	Each	mechanism	of	resistance	

results	in	a	clone	regaining	the	ability	to	undergo	homologous	recombination,	suggesting	

that	functional	biomarkers	of	resistance	may	be	possible.		

	

Genomic	instability	is	the	driving	force	of	tumour	heterogeneity.	Although	intratumour	

heterogeneity	is	linked	with	poor	patient	outcome,	genomic	instability	is	only	associated	

with	poor	prognosis	to	a	point.	A	recent	study	examined	1,000	treatment-naïve	tumours	

and	 found	 that	 the	 total	 number	 of	 genomic	 clones	 had	 significant	 association	with	

overall	 survival	 (141).	 However,	 the	 authors	 note	 that	 high	 clone	 number	 was	 only	

indicative	of	survival	up	to	a	maximum	clonal	diversity	of	 four.	 Indeed,	a	diversity	of	

more	 than	 four	 sub-clones	 was	 associated	 with	 longer	 overall	 survival	 (141).	 The	

authors	used	a	10%	cell	frequency	cut	off	in	their	studies,	yet,	it	is	rare	clonal	populations	

which	are	thought	to	have	evolved	most	recently	(142)	and	may	be	more	associated	with	

resistance	to	 targeted	therapy13	(143–145).	This	could	go	some	way	to	explaining	the	

apparent	discrepancy	seen	between	this,	and	other	studies.		

	

Although	 anti-cancer	 therapies	 introduce	 a	 strong	 selective	 pressure,	 they	 do	 not	

necessarily	 lead	 to	 a	 reduction	 in	 overall	 clonal	 diversity	 or	 tumour	 genomic	

heterogeneity	(92).	For	example,	in	a	study	of	47	breast	cancer	patients,	strong	changes	

in	cellular	phenotype	were	seen	before	and	after	chemotherapy,	with	no	corresponding	

changes	 in	 genetic	 diversity,	 implying	 that	 a	 shift	 in	 the	 epigenomic	 landscape	 had	

resulted	 from	 exposure	 to	 chemotherapeutic	 selective	 pressures	 (146).	 In	 addition,	

several	studies	have	identified	the	role	of	transient	epigenetic	states	in	the	resistance	to	

cancer	therapy.	For	example,	Sharma	et	al.,	consistently	detected	a	subpopulation	of	cells	

with	>100-fold	reduced	erlotinib	sensitivity	across	a	panel	of	eight	cancer	cell	lines	(86).		

The	authors	found	that	this	drug-tolerant	phenotype	was	transiently	acquired	and	lost	

																																																								
13	Conceptually,	a	clone	may	be	at	a	fitness	disadvantage	relative	to	the	tumour	whole	in	the	treatment	
naïve	scenario,	limiting	clonal	expansion.	With	the	addition	of	temporal	selective	pressure	(i.e.	treatment)	
the	clones	relative	fitness	may	increase,	causing	clonal	expansion	and	eventual	dominance.			
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by	 individual	 cells	within	 the	 population	 in	 a	 process	 linked	 to	 IGF-1	 signalling	 and	

histone	demethylase-mediated	chromatin	remodelling	(86).		

	

Hence,	both	intra-	and	intertumour	heterogeneity	have	profound	clinical	consequences	

in	terms	of	differential	response	to	therapy,	development	of	drug	resistance	and	disease	

progression.	 Beyond	 stratified	 medicine,	 a	 better	 understanding	 of	 the	 causes	 and	

consequences	of	clonal	heterogeneity	within	a	tumour	will	allow	a	deeper	understanding	

of	the	emergence	of	drug	resistance.	New	analysis	tools	such	as	the	REVOLVER	package	

could	empower	researchers	to	stratify	patient	groups	based	on	the	basis	of	how	their	

tumour	evolved	(81)	and	perhaps	allow	prediction	of	a	tumours	evolutionary	trajectory	

and	 a	 corresponding	 therapeutic	 strategy.	 Moreover,	 a	 greater	 understanding	 of	

genomic	 instability	 and	 its	 contribution	 to	 treatment	 resistance,	 and	 sensitivity,	 is	

needed.		

	

	

1.4.3	Metastatic	Progression				
Metastasis	 is	 the	 ultimate	 cause	 of	 90%	 of	 all	 cancer	 deaths	 (147).	 Aside	 from	 the	

development	of	resistance	and	recurrence	of	disease,	heterogeneity	among	cancer	cells	

widens	 the	 diversity	 available	 for	 the	 evolution	 of	metastatic	 populations.	 The	 long-

standing	 observation	 that	 some	 cells	 within	 a	 tumour	 were	 able	 to	 form	 secondary	

tumours	at	a	higher	 frequency	than	others	was	one	of	 the	key	arguments	 for	 the	CSC	

hypothesis	 (17).	 However,	multi-region	 sequencing	 studies	 have	 found	 that	multiple	

distinct	 genomic	 clones	 are	 able	 to	 form	 metastases	 in	 pancreatic	 cancer	 (148),	

suggesting	 that	 a	 single	 'CSC	 clone'	 is	 not	 necessary	 responsible	 for	 cancer	

dissemination.		

	

Metastasis	 is	 thought	 to	 be	 the	 end	 result	 of	 a	multistage	 process	 that	 includes	 local	

invasion	by	the	primary	tumour	cells,	intravasation	into	the	blood	or	lymphatic	system,	

survival	 in	 circulation	 (hematogenous	 and/or	 lymphatic),	 arrest	 at	 a	 distant	 organ,	
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extravasation,	 survival	 in	 a	 new	 environment,	 and	 metastatic	 colonization	

(125,149,150).	Each	of	these	steps	relies	on	specific	phenotypic	features	of	the	tumour	

cell,	 as	well	 as	 interactions	with	 the	host	microenvironment	and	 the	 immune	system	

(151,152).	The	long-standing	observation	that	some	cells	within	a	tumour	were	able	to	

form	secondary	tumours	at	a	higher	frequency	than	others	was	one	of	the	key	arguments	

for	the	CSC	hypothesis	(17),	i.e.	a	cell	able	to	possess	a	phenotype	amenable	to	each	stage	

in	 the	 metastatic	 process	 was	 likely	 possessed	 of	 some	 transcriptional	 plasticity.	

However,	multi-region	 sequencing	 studies	 have	 found	 that	multiple	 distinct	 genomic	

clones	are	able	to	form	metastases	in	pancreatic	cancer	(148),	suggesting	that	a	single	

'CSC	clone'	is	not	necessary	responsible	for	cancer	dissemination.		

	

There	are	two	general	models	of	metastatic	dissemination:	the	linear	progression	model	

and	the	parallel	progression	model	(150).	Both	models	assume	that	the	primary	tumour	

and	its	metastases	are	clonally	related,	in	that	they	derive	from	a	common	ancestral	cell.	

In	the	linear	progression	model,	metastases	emerge	from	late	occurring	advanced	clonal	

subpopulations	(153).	The	parallel	model	suggests	that	a	metastasis	is	seeded	early	in	

molecular	 time	 from	 the	 primary	 site	 and	 progresses	 through	 the	 independent	

acquisition	 of	 mutations	 which	 may	 be	 different	 to	 the	 primary	 (124).	 A	 third	

mechanism,	the	cascade	hypothesis,	suggests	that	a	polyclonal	metastasis	is	in	part	due	

to	direct	metastasis-to-metastasis	seeding	(154,155).		

	

Recently,	McPherson	et	al.,	performed	phylogenetic	analysis	of	68	samples	from	seven	

patients	 with	 high-grade	 serous	 ovarian	 cancer	 (156).	 Through	 phylogenetic	 tree	

reconstruction	from	whole	genome	and	single	cell	sequencing,	the	authors	find	that	both	

unidirectional	monoclonal	seeding	and	polyclonal	spread	with	reseeding	contributed	to	

the	 formation	 of	 intraperitoneal	metastatic	 deposits.	 Importantly,	 only	 a	minority	 of	

patients	exhibited	extensive	migration	and	reseeding	of	polyclonal	mixtures	at	multiple	

sites,	 implying	 that	 selection	of	 clones	 in	 the	peritoneal	 cavity	was	non-uniform.	The	
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authors	 propose	 that	 this	 observation	 is	 linked	 to	 specific	 microenvironmental	

properties	of	the	peritoneal	cavity	itself	(156).		

	

In	another	study,	Yates	et	al.,	 investigated	the	patterns	of	genomic	evolution	between	

primary	and	metastatic	breast	cancers,	across	299	samples	from	170	patients	(157).	The	

authors	found	that	genomic	clones	seeding	metastasis	primarily	disseminated	from	late	

primary	 tumours,	 but	 continue	 to	 acquire	 mutations	 through	 similar	 mutational	

processes	as	their	corresponding	primary	(157).	These	results	potentially	reconcile	the	

linear	and	parallel	models	for	metastatic	spread	(150).	Indeed,	most	distant	metastases	

acquired	driver	mutations,	many	of	them	clinically	actionable,	not	seen	in	the	primary	

tumour.		

	

Hence,	there	is	still	much	confusion	regarding	the	presence	of	a	metastatic	clone	or	set	

of	clones,	with	studies	in	ovarian	cancer	favouring	monogenomic	spread	from	primary	

tumours	and	in	breast	cancer	polygenomic	seeding,	with	further	parallel	evolution,	from	

late	 stage	primary	 tumours.	Additionally,	new	research	 suggests	 that	metastatic	 sites	

must	be	‘primed’	before	disseminating	cells	can	form	distant	metastasis	(158,159).	It	is	

possible	 that	 clonal	 cooperation	 could	 contribute	 to	 this	 effect,	 with	 one	 cellular	

population	 releasing	 cytokines	 and	 the	 other	 disseminating	 into	 the	 circulation.	 In	

summary,	though	much	is	still	unknown,	by	studying	the	evolution	of	clonal	populations	

we	may	 be	 able	 to	 predict,	 and	 ultimately	 counter,	 the	 emergence	 metastatic	 clonal	

populations	within	a	tumour.		
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1.5	Breast	Cancer	Tumour	Initiating	Cells	(BC-TICs)		
	

The	 CSC	 hypothesis	 was	 developed	 in	 part	 to	 explain	 intratumour	 heterogeneity.	

According	to	this	hypothesis,	many	cancers	have	a	unique	subset	of	cells,	referred	to	as	

CSCs	or	tumour	initiating	cells	(TICs)	that	have	the	capacity	to	self-renew	and	give	rise	

to	other	cancer	cells,	creating	a	hierarchically	organised	tumour	(160).	Over	time,	the	

theory	has	been	adapted	and	developed	 to	explain	various	properties	of	 the	 tumour;	

CSCs	have	been	linked	to	disease	relapse,	the	development	of	drug	resistance	and	the	

seeding	of	metastases.		

	

In	 breast	 cancer,	 early	 fluorescent	 cytometry	 studies	 showed	 that	 a	 CD44+/CD24-/low	

population	 could	 be	 isolated	 from	 bulk	 tumours	 and	 had	 enriched	 tumourigenic	

potential	 in	 limiting	 dilution	 transplantation	 assays	 (LDA)	 in	 immunocompromised	

murine	 models	 (161,162).	 This	 putative	 BC-TIC	 population	 maintained	 its	 tumour-

initiating	 advantage	 over	 multiple	 passage	 and	 could	 repeatedly	 reconstitute	

phenotypically	 heterogeneous	 tumours	 (161,162).	 More	 recent	 work	 has	 implicated	

further	 surface	 markers	 (Protein	 C	 Receptor	 (PROCR),	 alpha-6	 integrin	 (CD49f),	

Thy1+/CD24+	etc.	(163–165))	in	various	breast	cancer	models.	Cells	with	high	aldehyde	

dehydrogenase	 (ALDH)	 activity	 have	 been	 shown	 to	 be	 enriched	 in	 BC-TIC	 content,	

forming	xenografts	in	nude	mice	at	1000-fold	efficiency	of	ALDH-negative	populations	

(166).	However,	it	is	important	to	note	that	expression	of	these	stem	cell	markers	varies	

between	breast	cell	 lines	and	primary	tumours	and	these	markers	do	not	universally	

enrich	for	BC-TICs	(167).		

	

Though	LDA	assays	remain	the	gold	standard	for	 functional	 identification	of	BC-TICs,	

mammosphere	forming	assays	(MFAs)	have	been	developed	and	widely	adopted	as	an	

in	vitro	surrogate	of	TIC	content	(168,169).	Pleural	effusions	isolated	from	breast	cancer	

patients	 were	 shown	 to	 be	 highly	 enriched	 in	 both	 sphere	 forming	 ability	 and	

xenoplantation	 potential	 in	 immunocompromised	mice,	 but	 there	was	 no	 correlation	
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with	 CD44+/CD24low/-	 populations.	 Similarly,	 in	 primary	 human	 breast	 cancers,	

CD44+/CD24low/-	expression	is	not	an	independent	predictor	of	survival	(170).	The	same	

study	 found	that	 in	4,125	patients	CSC	markers	tended	to	associate	with	ERα-	breast	

cancer	 and	 the	 BC-TIC	 markers	 ALDH1A1	 (for	 ALDH	 positivity)	 and	 CD49f	 were	 of	

independent	 prognostic	 value	 for	 ERα-	 patients	 (171).	 In	 general,	 BC-TIC	 associated	

signatures	 are	 most	 prominent	 in	 TNBC,	 belonging	 to	 either	 basal-like	 or	 claudinlow	

subtypes	and	are	indicative	of	a	worse	overall	prognosis	compared	to	luminal	A	tumours	

(159,172,173).		

	

Perhaps	most	significant,	however,	is	the	association	between	BC-TICs	and	resistance	to	

common	therapies.	Following	chemotherapy,	residual	breast	cancer	cells	are	enriched	

in	 CD44high/CD24low	 subpopulations,	 have	 increased	 mammosphere	 forming	 efficacy	

(MFE)	and	increased	tumour	initiation	potential	by	LDA	(174–177).	BC-TICs	have	been	

hypothesised	 to	 be	 quiescent	 in	 nature,	 demonstrating	 this,	 isolated	 BC-TICs	 show	

increased	dye	retention	and	a	decrease	in	cell	cycle	related	expression	markers	(178–

181).	 This	 quiescent	 nature	may	 confer	 on	BC-TICs	 their	 demonstrated	 resistance	 to	

such	 drugs,	 since	 efficient	 induction	 of	 apoptosis	 by	 traditional	 cytotoxic	

chemotherapies	 requires	 cell	 division	 (175,182).	 Even	 in	 cell	 line	 models,	

CD44high/CD24low	 are	 slow	 cycling,	 enriched	 in	 MFE	 and	 are	 resistant	 to	 some	

chemotherapies.	Additionally,	side-population14	cells	isolated	from	the	MCF7	cell	line	are	

enriched	 for	 these	 BC-TIC	 features	 and	 for	 the	 expression	 of	 P-glycoprotein,	 a	 well	

characterised	 ATP-binding	 cassette	 (ABC)	 multidrug	 resistant	 transporter	 protein,	

potentially	hinting	at	a	more	complex	mechanism	of	drug	resistance	(181,183).		

	

There	 is	 evidence	 to	 suggest	 that	 BC-TICs	 and	 non-TICs	 are	 inter-convertible,	 either	

spontaneously	or	through	induction	(184–186).	This	apparent	plasticity	in	BC-TICs	has	

also	been	hypothesised	as	an	obstacle	in	treating	breast	cancer,	although	facilitating	the	

transformation	of	TICs	to	non-TICs	has	been	suggested	as	a	novel	therapeutic	strategy	

																																																								
14	Defined	as	a	distinct	flow	cytometry	population	with	lower	overall	positivity	for	Hoechst	33342	staining.		
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(160).	In	breast	cancer	cell	lines,	a	state	of	phenotypic	equilibrium	appears	to	exist,	in	

that	single	CD44high/CD24high	cells	give	rise	to	CD44high/CD24low	progeny	and	vice	versa,	

apparently	following	a	stochastic	pattern	as	predicted	by	Markov	models	(184,186).		

	

Further	 demonstrating	 this	 plasticity,	 in	 transformed	 human	 mammary	 epithelial	

(HMLER)	 cells,	 the	 CD44low	 subpopulation	 can	 convert	 spontaneously	 to	 a	 CD44high	

phenotype	in	vitro	and	in	vivo.	The	underlying	mechanism	of	these	interconversions	has	

yet	to	be	fully	elucidated,	but	has	been	linked	to	the	EMT	transcriptional	program	and	

TGFb	signalling	(187).	For	example,	the	Zinc	finger	e-box1	(ZEB1)	promotor	undergoes	

conformational	changes	in	response	to	TGFb	signalling	to	drive	breast	cancer	plasticity	

and	 the	 conversion	 of	 CD44+/CD24+	 luminal-like	 cells	 to	 CD44+/CD24-	

myoepithelial/basal-like	 cells	 is	 governed	 by	 Activin/Nodal	 initiated	 TGFb	 signalling	

(186,188).	 Several	 caveats	 in	 these	 studies	 exist,	 for	 example	 EMT	 transcriptional	

programs	have	yet	to	be	described	in	this	context	in	vivo	and	TGFb	signalling	is	known	

to	be	highly	context	dependent	in	its	action	(159).	For	example,	Bruna	et	al.,	studied	the	

effects	of	TGFb	 on	BC-TICs	and	EMT	 in	a	panel	of	breast	 cancer	 cell	 lines	 (159).	The	

authors	found	that	TGFb	increased	MFE	in	claudinlow	cell	lines	by	orchestrating	a	specific	

gene	signature	enriched	in	stem	cell	processes	and	predictive	of	worse	overall	clinical	

outcome	 in	 breast	 cancer	 patients.	 Similarly,	 the	 authors	 found	 that	 TGFβ	 induced	

progenitor	 activity	 in	 normal	 mammary	 epithelial	 cells	 only	 in	 the	 basal/stem	 cell	

compartment,	where	claudinlow	cancers	are	presumed	to	arise	(159).		

	

Recent	 research	 in	 the	 stem	 cell	 field	has	 identified	 various	 tissues	with	 dormant	 or	

quiescent	stem	cell	populations	with	the	ability	to	regenerate	tissues	on	damage	(189–

191).	These	cells	are	resistant	to	normal	genotoxic	stress	(of	the	type	used	in	chemo-	and	

radiotherapies)	 by	 virtue	 of	 their	 slow	 cycling	 nature.	 For	 these	 reasons	 and	 others,	

Kreso	and	Dick	have	recently	put	forth	a	unifying	model	of	CSCs	and	clonal	evolution	of	

genomic	 clones	 (24).	 The	 authors	 propose	 that	 certain	 cellular	 phenotypes	 within	

genomic	clones	may	adopt	a	 ‘dormant’	state	but	be	able	 to	reacquire	malignancy	 in	a	
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context	specific	manner,	Figure	1.5.	Such	cellular	populations	have	been	described	in	a	

CRC	PDX	models	(83)	where	quiescent	cellular	clones	were	linked	to	the	acquisition	of	

chemoresistance	 and	 later	 found	 to	 express	 the	 putative	 stem	 cell	marker	 polycomb	

group	RING	finger	protein	4	(BMI1)		(192).		

	

The	 realisation	 that	 oncogenic	 driver	 mutations	 can	 lead	 to	 reacquisition	 of	

multipotency	 has	 profound	 implications	 for	 this	model	 (71,72).	 Rather	 that	 resulting	

from	oncogenic	transformation	of	normal	tissue	stem	cells	(193),	a	CSC-like	phenotype	

could	be	the	result	of	specific	mutational	events	in	a	particular	genomic	clone.	Moreover,	

as	cells	may	transition	between	different	epigenetic	attractor	states	in	cancer,	cellular	

dedifferentiation,	reacquisition	of	multipotency	and	acquisition	of	a	CSC-like	phenotype	

could	be	driven	by	the	epigenome	(194).	Thus,	the	CSC	and	clonal	evolution	models	of	

tumour	development	can	be	reconciled	by	considering	that	genomic	clones	may	contain	

a	 heterogeneous	mixture	 of	 cellular	 phenotypes.	 These	 cellular	 phenotypes	 could	 be	

maintained	 by	 the	 diversity	 in	 epigenetic	 state	 and	 TME-mediated	 (spatially	

heterogeneous)	signalling	pathways	across	a	tumour.	This	unified	model	reinforces	the	

need	to	study	tumour	growth	and	heterogeneity	in	model	systems	that	are	able	to	retain	

the	complexity	of	human	malignancies.	
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Figure	1.5	–	Kreso	and	Disk’s	Unified	Theory	of	Tumour	Heterogeneity.	Adapted	from	(24).	

Figure	1.5	depicts	the	unified	theory	of	tumour	heterogeneity	as	proposed	by	Kreso	&	Dick	

(24).	A)		Top	panel	shows	acquisition	of	favourable	mutations	resulting	in	clonal	expansion	

of	the	founder	cell.	Bottom	panel	depicts	CSCs	as	non-static	entities	able	to	evolve	over	the	

lifetime	of	a	cancer.	The	 figure	also	depicts	CSCs	as	 functionally	different	depending	on	

genomic	clone	background.	Specifically,	developmental	hierarchy	may	be	steep	(i.e.	only	

few	self-renewing	CSCs	exist	among	a	large	number	of	non-CSCs;	left),	or	subclone	may	have	

high	 self-renewal	 potential,	 where	 most	 cells	 are	 tumorigenic.	 B)	 Clonal	 structures,	

depicted	 by	 different	 colours,	 contain	 a	mixture	 of	 cells	 that	 differ	 in	 stemness	 and/or	

proliferative	ability.	Chemotherapy	may	reduce	tumour	burden	by	eliminating	the	highly	

proliferative	cells	within	a	subclone,	as	seen	with	Type	IV	clones	in	(24).	Figure	Overleaf.		
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1.6	Interrogating	Tumour	Heterogeneity		
	

Multiple	 groups	 have	 attempted	 to	 define	 clonal	 dynamics	 based	 on	 either	 lentiviral	

tagging	(cellular	clones)	or	mutational	clustering	(genomic	clones)	by	population	and	

single	cell	based	computational	approaches15	(195–197).	In	our	biobank	of	breast	cancer	

PDX	models,	we	rely	heavily	on	PyClone	 for	 the	 inference	of	 clonal	 structures	during	

tumour	repopulation	and	drug	treatment	(198).	Additionally,	seminal	studies	by	both	

Kreso	et	al.,	(colorectal	cancer)	(196)	and	Nguyen	et	al.,	 (breast	cancer)	(197)	utilised	

lentiviral	lineage	tracing	to	mark	the	progeny	of	individual	tumour	cells	in	PDX	models.	

Each	group	found	a	spectrum	of	clonal	behaviours	on	serial	xenograft	passage	and	were	

able	to	draw	clinically	relevant	conclusions	from	measures	of	tumour	heterogeneity.		

	

	

1.6.1	Genomic	Clustering	Techniques				
Several	 computational	 methods	 exist	 to	 group	 somatic	 mutations	 based	 on	 shared	

frequency.	 These	 techniques	 attempt	 to	 reflect	 true	 genomically	 distinct	 populations	

within	a	tumour.	For	example,	PyClone	is	a	Bayesian	clustering	method	for	grouping	sets	

of	somatic	mutations	into	putative	clonal	clusters.	PyClone	estimates	cellular	prevalence	

of	 clones	 and	 accounts	 for	 allelic	 imbalances	 introduced	 by	 segmental	 copy	 number	

changes	(199).	Eirew	et	al.,	were	able	to	reconstruct	the	genomic	clonal	dynamics	of	a	

panel	 of	 breast	 cancer	 PDX	 models	 using	 PyClone	 (195).	 In	 each	 of	 the	 15	 cases	

examined,	 clonal	 selection	 on	 engraftment	 was	 observed.	 This	 varied	 from	 extreme	

engraftment	bias,	selecting	minor	clones	present	in	the	sample	of	origin	(<5%	starting	

population),	to	only	moderate	clonal	selection	and	polyclonal	engraftment.	Remarkably,	

similar	clonal	dynamics	were	observed	in	parallel	xenografts	established	from	the	same	

																																																								
15	Strictly	speaking,	techniques	allowing	us	to	trace	the	progeny	of	single	cells	(such	as	lentiviral	lineage	
tracing)	are	better	equipped	to	define	‘clones’	than	those	designed	to	cluster	somatic	variations	based	on	
shared	frequency.	Even	if	such	techniques	were	perfectly	accurate,	parallel	evolution	of	the	same	genotype	
by	two	‘clones’	in	separate	evolutionary	trajectories	cannot	be	ruled	out.	However,	following	convention,	
in	our	work,	we	will	refer	to	genomic	and	cellular	clones.		
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sample,	suggesting	deterministic	kinetics	of	repopulation.	In	a	separate	study,	Ding	et	al.,	

found	PDX	models	established	from	a	basal	like	breast	cancer	were	more	representative	

of	 the	 patient’s	 metastatic	 lesion	 than	 primary	 tumour	 (153).	 Eirew	 et	 al.,	 further	

observed	variable	clonal	dynamics	between	PDXs	established	from	different	molecular	

subtypes,	underscoring	the	need	for	better	representation	of	tumour	molecular	subtypes	

(7,195).	 In	Bruna	et	 al.,	we	 study	clonal	 architecture	 in	 individual	breast	 cancer	 PDX	

samples	and	clonal	dynamics	upon	engraftment	and	across	serial	passage	in	104	samples	

from	22	distinct	models	(198).	Consistent	with	Eirew	et	al.,	we	observe	clonal	selection	

on	initial	engraftment,	but	find	only	20%	of	the	distinct	structures	identified	by	PyClone	

change	 in	cellular	prevalence	between	passages.	 Interestingly,	only	4	of	 the	38	clonal	

clusters	 that	 changed	significantly	after	engraftment	or	during	passaging	 contained	a	

driver	mutation16.	These	data	suggest	that	proliferative	advantage	may	not	be	central	to	

clonal	dynamics	in	vivo	(198).	Together,	these	observations	suggest	that	deterministic,	

fitness-based	mechanisms	 underline	 tumour-dependent	 clonal	 selection	 observed	 on	

engraftment.	

	

	

1.6.2	Phenotypic	Lineage	Tracing	Technologies					
Multiple	studies,	across	multiple	areas	of	biology,	have	used	the	heritable	nature	of	DNA	

to	 link	 mother	 and	 daughter	 cells	 in	 lineage	 tracing	 experiments.	 Typically,	 such	

technologies	rely	on	viral	DNA	integration	in	the	host	cell,	however	detection	techniques	

can	 be	 varied.	 For	 example,	 Buczacki	 et	 al.,	 used	 pulse-chase	 labelling	 of	 transgenic	

Cyp1a1-H2B-YFP	mice	 to	 define	 quiescent	 label	 retaining	 cells	 in	 the	 intestinal	 crypt	

(189),	whereas	Davis	et	al.,	used	a	multicolour	lineage	tracing	approach,	coupled	with	

advanced	 3D	 imaging,	 to	uncover	 the	 unipotent	 nature	of	 adult	mammary	 stem	 cells	

(200).	 For	 longer	 term	 lineage	 tracing	 studies,	 researchers	 have	 typically	 relied	 on	

integration	site	analysis	and/or	high	complexity	nucleotide	barcoding	sequencing	(201–

																																																								
16	Driver	mutations	were	defined	based	on	Vogelstein	et	al.,	(452).	Genes	in	which	these	were	found	are:	
ubiquitin	 carboxyl-terminal	hydrolase	 (BAP1)	 in	STG139;	 lysine	 (K)-specific	demethylase	6A	 (KDM6A)	 in	
HCI004;	mitogen-activated	protein	kinase	kinase	kinase	1	(MAP3K1)	in	STG143	and	PIK3CA	in	HCI008.	
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203).	For	example,	Nguyen	et	al.,	used	high	complexity	barcodes	to	track	individual	cells	

in	 cell-line	 derived	 xenograft	 and	 PDX	 models	 of	 breast	 cancer	 (197).	 The	 authors	

focussed	on	 interrogating	 the	BC-TIC	phenomenon,	 finding	 that	 ‘clone-initiating’	 cells	

were	 present	 in	 the	 samples	 at	 frequencies	 of	 between	~1/10	 and	~1/10,000	 cells.	

Interestingly,	in	the	cell-line	xenograft	models,	clone-initiating	frequency	was	negatively	

affected	 in	transplants	of	more	than	20,000	cells,	suggesting	that	growth	competition	

negatively	 affects	 xenograft	 diversity.	 The	 authors	 describe	 up	 to	 five	 clonal	 growth	

patterns	 when	 studying	 PDX	 repopulation	 dynamics	 (unchanging,	 expanding,	

diminishing,	fluctuating	or	of	delayed	onset)	(83,197).		

	

Cell	 lines	 are	 often	 considered	 monoclonal,	 having	 lost	 diversity	 through	 numerous	

cycles	of	in	vitro	culture	(204).	Porter	et	al.,	utilised	cellular	barcoding	to	simultaneously	

track	 the	 clonal	dynamics	 in	 common	 cell	 lines	 including	HeLa,	 K562	 and	HEK293-T	

(204).	 Each	 cell	 line	 exhibited	 ongoing	 clonal	 dynamics,	 even	 in	 optimal	 culturing	

conditions.	Interestingly,	the	authors	found	that	re-deriving	K562	line	from	a	single	cell	

before	barcoding	and	clonal	tracking,	reduced	but	did	not	eradicate	clonal	dynamics	in	

the	 model	 (204).	 These	 experiments	 suggest	 rapid	 phenotypic-clonal	 dynamics	 are	

ongoing	in	commonly	cultured	cell	line	models.		

	

	

1.6.3	Origins	of	Drug	Resistance	by	Lentiviral	Lineage	Tracing		
In	two	studies	published	in	Nature	Medicine,	researchers	used	the	ClonTracer	barcode	

library	 to	 trace	 the	 origins	 of	 resistance	 to	 EGFR	 inhibitors	 erlotinib,	 WZ4002	 and	

gefitinib	 (135,205).	 ClonTracer	 enables	 the	 labelling	 and	 tracking	 of	 >1	 million	

individual	cells	with	a	unique	30-nucleotide	long	semi-random	DNA	sequence	tag	(135).	

The	ClonTracer	library	was	designed	to	have	a	balanced	GC	content	to	ensure	uniform	

PCR-amplification	 efficiency	 and	 has	 a	 theoretical	 complexity	 of	 73	 million	 unique	

barcodes	(135).	Collectively,	these	studies	show	the	power	of	lineage	tracing	using	high	

complexity	barcoding	for	interrogating	the	emergence	of	drug	resistance.		
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In	the	first	study,	the	library	was	used	to	track	the	emergence	of	erlotinib	resistance	in	

the	 non-small	 cell	 lung	 cancer	 (NSCLC)	 cell	 line	HCC827	 (135).	HCC827	harbours	 an	

activating	EGFR	mutation	that	confers	sensitivity	to	EGFR	inhibitors	and	has	been	widely	

used	 to	 study	 resistance	 to	 this	 class	of	 drug	 (206–208).	 The	 authors	 found,	 by	 next	

generation	 sequencing	 (NGS)	 of	 barcode	 amplicons,	 that	 0.05%	 of	 HCC827	 cells	

harboured	 a	 pre-existing	 resistance	 to	 erlotinib.	 Further	 analysis	 of	 this	 population	

found	MET	amplification,	and	treatment	with	the	c-Met	inhibitor	crizotinib	significantly	

reduced	the	diversity	of	resistant	populations.	A	small	proportion	of	cells	were	resistant	

to	 both	 inhibitors,	 and	 the	 authors	 noted	 that	 this	 sub-population	 tended	 to	 have	 a	

mesenchymal	 morphology.	 Gene	 expression	 profiling	 by	 RNA	 sequencing	 (RNA-seq)	

confirmed	upregulation	of	EMT	pathways,	previously	linked	to	EGFR	resistance	(209).	

This	study	went	on	to	monitor	the	therapeutic	response	of	the	KCL-22	cell	line	to	three	

ABL1	inhibitors.	KCL-22	is	a	chronic	myeloid	leukaemia	(CML)	cell	line	derived	from	a	

patient	 in	 blast	 crisis	 and	 harbours	 the	 BCR–ABL1	 translocation	 (210).	 The	 authors	

performed	 unsupervised	 hierarchical	 clustering	 on	 the	 100	most	 enriched	 barcodes	

from	 each	 replicate	 across	 each	 treatment	 group	 and	 found	 clustering	 of	 barcodes	

enriched	 in	nilotinib	and	imatinib	treatment	arms,	but	not	GNF-2.	These	data	suggest	

similar	 pre-existing	 clones	 drove	 resistance	 to	 imatinib	 and	 nilotinib	 (both	 catalytic	

subunit	 inhibitors),	 but	 that	 GNF-2	 (an	 allosteric	 inhibitor)	 resistance	was	 driven	 by	

separate	 cellular	 populations	 (211).	 Consistent	 with	 this	 notion,	 genomic	 analyses	

revealed	 that	 all	 of	 the	 imatinib-	 and	 nilotinib-treatment	 replicates	 harboured	T315I	

mutations	in	ABL1	on	the	population	level,	whereas	all	five	GNF-2	replicates	displayed	

an	A337V	variant	in	ABL1	(135).		

	

In	a	second	study,	ClonTracer	was	used	to	further	interrogate	anti-EGFR	resistance	in	

NSCLC	 and	 delineate	 two	 separate	 evolutionary	 trajectories	 for	 resistance	 (205).	

Specifically,	acquired	resistance	caused	by	the	EGFRT790M	gatekeeper	mutation	can	occur	

either	by	selection	of	pre-existing	EGFRT790M-positive	clones	or	via	genetic	evolution	of	
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initially	 EGFRT790M-negative	 drug-tolerant	 cells.	 Interestingly,	 these	 distinct	 paths	 to	

drug	resistance	were	first	hinted	at	by	the	variable	time	required	to	develop	resistance	

in	two	PC9	sublines.	On	further	investigation,	the	authors	found	that	whilst	both	PC9-

GR2	 (6	 weeks	 to	 resistance)	 and	 PC9-GR3	 (24	 weeks	 to	 resistance)	 had	 diminished	

upregulation	of	Bcl-2-like	protein	11	(BIM),	a	key	mediator	of	apoptosis	in	EGFR-mutant	

NSCLC	 (211),	 induction	 of	 BIM	 protein	 levels	 after	 drug	 treatment	 was	 significantly	

lower	in	PC9-GR3	cells	than	in	PC9-GR2	or	parental	cells.	Additionally,	WZ4002	elicited	

a	cytotoxic	response	in	vitro	and	induced	tumour	regression	in	vivo,	in	PC9-GR2	but	not	

PC9-GR3	cells.	Cellular	barcoding	studies	using	the	ClonTracer	library	helped	delineate	

that	pre-existing	resistant	clones	harbouring	EGFRT790M	mutations	were	present	in	the	

bulk	PC9	population,	but	that	these	clones	were	distinct	from	clones	initially	found	to	be	

EGFRT790M	 negative	 by	 allele	 specific	 PCR,	 and	 later	 shown	 to	 develop	 EGFRT790M	

mutations.	Although	initially	the	acquisition	of	a	resistance	mutation	in	the	time	scale	of	

the	performed	experiments	seems	surprising,	the	authors	mathematically	modelled	de	

novo	acquisition	of	 the	EGFRT790M	mutation	during	drug	treatment	and	calculated	the	

fraction	 of	 drug-tolerant	 pools	 that	 were	 predicted	 to	 acquire	 mutations	 during	 16	

weeks	of	gefitinib	treatment.	Using	a	variable	set	of	parameters	 for	mutation	and	cell	

division	 rates,	 the	 model	 predicted	 emergence	 of	 EGFRT790M	 mutations	 over	 a	 time	

period	corresponding	to	several	months,	in	line	with	results	found	experimentally	(212).		
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1.7	Oestrogen	Receptors	in	Breast	Cancer		
Oestrogen	 and	 its	 primary	 receptor,	 ERα,	 play	 a	 major	 role	 in	 the	 initiation	 and	

progression	of	breast	cancer.	 Indeed,	70%	of	breast	cancer	patients	express	ERα,	PR,	

and/or	oestrogen-responsive	and	ERα-dependent	gene	products	(213).	ERα	status	was	

first	 recognised	 as	 an	 independent	 prognostic	 factor	 for	 early	 recurrence	 in	 breast	

cancer	as	early	as	1977	and	40	years	later	ERα	remains	the	cornerstone	of	breast	cancer	

stratification	and	clinical	management	(214).		

	

	

	

	

	

	

	

	

	

	

	

	
	
	
	

Figure	1.7	–	Oestrogen	and	tamoxifen	action	at	ERα.	

Diagram	shows	the	action	of	oestrogen	(E)	and/or	estradiol	(E2)	action	at	ERα,	together	

with	 classical	models	 of	 tamoxifen	 (T)	 antagonism	 and	 possible	 biased	 agonism	 at	 the	

receptor.	mER	is	membrane	bound	ER,	CoR	is	coregulator	and	TF	is	transcription	factor.	

Green	 arrows	 denote	 stimulation	 and	 red	 inhibition,	 grey	 arrows	 represent	 the	 flow	 of	

ligands	amnd/or	ligand	bound	receptor	through	the	cytoplasm.	Figure	Overleaf.		
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Figure	1.7	-	Oestrogen	and	tamoxifen	action	at	ERα	
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1.7.1	Oestrogen	Receptor	Structure	and	Function			

Oestrogen’s	cellular	function	is	mediated	by	two	classes	of	receptor;	ERa	and	ERb,	each	

a	 member	 of	 the	 48	 member	 nuclear	 receptor	 (NR)	 superfamily	 (215)	 of	 ligand-

regulated	transcription	factors.	NR	ligands,	including	oestrogen,	progesterone,	retinoic	

acid,	 oxysterols	 and	 thyroid	hormones,	 are	 generally	 lipophilic	 and	 cross	 the	 plasma	

membrane	to	directly	interact	with	NRs	inside	the	cell	(216).	NR	regulated	transcription	

controls	 a	 variety	 of	 cellular	 processes	 including	 proliferation,	 development	 and	

metabolism.	In	addition,	oestrogen	has	been	shown	to	act	through	ERα	in	the	cytoplasm	

of	certain	cell	types	to	rapidly	activate	signalling	pathways	directly;	such	as	in	regulating	

vascular	tone	in	endothelial	cells	(217).		

	

Both	classes	of	ER	share	several	evolutionarily	conserved	functional	domains,	including	

the	 central	 DNA-binding	 domain	 (DBD),	 involved	 also	 in	 DNA	 recognition	 (218).	

Transcriptional	activation	is	dependent	on	two	distinct	activation	functions	(AFs),	AF-2	

resides	in	the	COOH-terminal	ligand-binding	domain	and	AF-1	(which	is	constitutively	

active)	 in	 the	 variable	 NH2	 terminus	 (219).	 On	 ligand	 activation,	 cell-specific	

transcriptional	 response	 to	 oestrogen	 is	 governed	 by	 a	 plethora	 of	 associated	

coregulatory	 proteins	 and	 pioneer	 factors,	 allowing	 context	 dependent	 effector	

functions	of	oestrogen	signalling	in	a	given	cell	or	tissue	(220).		Recruited	coregulators	

(CoRs)	 carry	 out	 all	 the	 reactions	 required	 for	 the	 entire	 transcriptional	 process;	

different	 receptors	 binding	 to	 the	 same	 genetic	 sequence	 can	 recruit	 different	

coactivators	and	thereby	provide	different	transcriptomic	response.	Similarly,	different	

ligands	occupying	 the	 same	 receptor	 at	 the	 same	 site	 can	 induce	 different	 structural	

conformations	 in	 that	 receptor	 and	 lead	 to	 recruitment	of	 different	 coactivators,	 and	

consequently,	different	gene	expression	patterns	(221).		

	

More	than	450	coregulators	of	steroid	hormone	NRs	have	been	reported	in	the	literature	

(222).	 The	 Src	 family	 are	 the	 best	 characterised	 ERα	 coactivators.	 On	 primary	

recruitment	 by	 hormone	 bound	 ERα,	 Srcs	 serve	 as	 bridging	 molecules	 to	 bring	 in	
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coregulators	 such	 as	 p300	 (a	 histone	 acetyltransferase)	 and	 Coactivator	 Associated	

Arginine	Methyltransferase	1	(CARM1)	(a	histone	methyltransferase)	(223,224).	Src-1	

and	 Src-3	 also	 contain	 intrinsic	 acetyltransferase	 activity	 toward	 histones	 (225).	

Interestingly,	 genome-wide	 chromatin	 Immunoprecipitation	 followed	 by	 sequencing	

(ChIP-seq)	experiments	in	MCF7	cells	have	shown	that	genes	regulated	by	Src-3	are	not	

shared	with	the	other	two	Src	proteins,	suggesting	that	they	play	non-redundant	roles	in	

breast	cancer	maintenance	(226).	Indeed,	Src-3	is	amplified	in	10%	of	breast	cancers	and	

forced	expression	in	the	mouse	mammary	gland	causes	tumour	development	(227).		

	

In	 addition	 to	 coactivators,	 there	 are	 a	 group	 of	 transcription	 factors	 termed	

corepressors	which	oppose	 the	action	of	 coactivators	 in	NR-mediated	 transcriptional	

regulation.	Nuclear	receptor	corepressor	1	(N-CoR1)	and	nuclear	receptor	corepressor	

2	(N-CoR2)	are	the	best	characterised	members	of	 this	group	(228,229).	Each	has	no	

intrinsic	enzymatic	activity	and	instead	acts	as	a	scaffolding	protein	for	recruitment	of	

histone	deacetylases,	including	histone	deacetylase	3	(HDAC3)	(230).				

	

	

1.7.2	ERα	Signalling	in	Cell	Fate	Decisions			
The	 adult	 mammary	 epithelium	 comprises	 two	 predominant	 lineages;	 luminal	 cells	

forming	 the	 ductal	 system	 and	 milk-secreting	 cells	 of	 the	 alveoli	 and	 myoepithelial	

(basal)	cells	lining	the	ducts	and	helping	in	milk	secretion	during	lactation	(231).	There	

is	a	great	deal	of	debate	currently	surrounding	the	maintenance	of	each	lineage	in	the	

adult	 gland.	 Whilst	 transplantation	 assays	 report	 bipotent	 progenitors	 in	 each	

compartment	 with	 complete	 regenerative	 potential,	 lineage	 tracing	 studies	

predominantly	 identify	 unipotent	 progenitors	 as	 responsible	 for	 maintenance	 of	 the	

gland	 in	 the	 absence	 of	 perturbation	 (200,231–233).	 It	 has	 been	 proposed	 that	

mammary	repopulating	cells	(identified	by	transplantation)	are	distinct	from	mammary	

stem	cells	under	physiological	conditions.	Functionally,	it	seems	likely	that,	as	identified	

in	 other	 tissues,	 there	 are	 a	 population	 of	 normally	 lineage	 restricted	 progenitors	
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capable	 of	 repopulating	 the	 entire	 gland	 in	 injury.	 Indeed,	 recent	 studies	 have	

demonstrated	 lineage	 restricted	 cell	 populations	 can	 regain	 multipotency	 by	 the	

activation	 of	 oncogenic	 PI3K	 signalling,	 highlighting	 further	 potential	 sources	 of	

complexity	(71).		

	

Independent	of	exact	identity,	it	has	been	demonstrated	that	mammary	stem	cells	are	

dependent	 on	 oestrogen	 signalling	 for	 self-renewal	 and	 maintenance.	 Indeed,	

ovariectomised	 mice	 show	 markedly	 depleted	 mammary	 stem	 cell	 number	 and	

repopulation	potential	in	vivo	(234).	Whilst	cells	of	the	myoepithelial	compartment	are	

predominantly	 ERα-,	 those	 of	 the	 luminal	 epithelium	 may	 be	 either	 ERα+	 or	 ERα-.	

Interestingly,	 the	majority	 of	 luminal	 progenitors	 and	milk	 secretory	 cells	 are	 ERα-,	

suggesting	 a	 role	 for	 oestrogen	mediated	 paracrine	 signalling	 between	 cells	 of	 each	

compartment	(235).		

	

In	 general,	 organogenesis,	 development	 and	maintenance	 by	 stem	 cell	populations	 is	

controlled	 by	 a	 network	 of	 interactions	 between	 key	 transcription	 factors	 and	 their	

transcriptional	programs.	ERα	has	been	shown	to	play	a	central	role	within	this	network	

in	the	context	of	mammary	gland	development	and	maintenance,	in	concert	with	a	group	

of	pioneer	factors:	transcription	factors	that	can	directly	bind	to	condensed	chromatin	

and	recruit	other	transcription	factors	and	histone	modifying	enzymes	(236,237).	These	

pioneer	 factors	 can	 bring	 positive	 or	 negative	 effects	 on	 transcriptional	 programs	

depending	on	the	specific	cellular	context.		

	

Two	 ERα	 pioneer	 factors;	 GATA-binding	 protein	 3	 (GATA3)	 and	 Forkhead	 box	 A1	

(FOXA1)	are	thought	to	play	an	essential	role	in	mammary	gland	fate	determination	and	

in	ERα	cancer	specific	biology.	FOXA1	is	a	member	of	the	forkhead	transcription	factor	

family,	 found	 to	 bind	 at	more	 than	 50%	of	ERα	binding	 sites	 (238).	 FOXA1	 is	 highly	

expressed	in	luminal	cells	of	the	terminal	end	bud	(TEB)	where	it	plays	a	critical	role	in	

ERα	function;	Foxa1	null	mice	are	associated	with	a	loss	of	TEB	formation	but	no	defects	
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in	embryonic	development	(239).	FOXA1	is	thought	to	contribute	to	ERα	functionality	in	

mammary	cell	fate	primarily	by	modulating	basal	expression	and	functional	activity	of	

ERα.	Loss	of	Gata3	similarly	results	in	severe	defects	in	mammary	development	due	to	

failure	of	TEB	formation.	Furthermore,	GATA3	has	been	shown	to	participate	in	luminal	

epithelial	differentiation	required	for	lobuloalveolar	development	and	forced	expression	

of	 GATA3	 in	mammary	 stem	 cell	 enriched	 populations	 promotes	 differentiation	 into	

luminal	 cells	 (234,237,239).	Further,	ERα	 induces	GATA3	expression	 in	 luminal	 cells,	

implying	there	is	an	interdependence	of	FOXA1,	ERα	and	GATA3	in	the	maintenance	of	

luminal	cells	(239).		

	

	

1.7.3	ERα	as	a	Target	of	Cancer	Therapies			
The	 first	 targeted	 antiestrogenic	 therapy	 for	 breast	 cancer,	 tamoxifen,	 has	 been	 a	

cornerstone	 of	 the	 clinical	 management	 of	 ERα+	 breast	 cancers	 for	 the	 past	 three	

decades	 and	 is	 thought	 to	 have	 saved	 thousands	 of	 lives.	 Tamoxifen	 is	 a	

triphenylethylene	derivative,	selective	ERα	modulator	(SERM)	with	significant	clinical	

utility	in	hormone	sensitive	breast	cancers	(240).	Tamoxifen	itself	is	a	prodrug,	having	

relatively	little	affinity	for	its	target	protein.	It	is	metabolised	in	the	liver	by	cytochrome	

P450	isoforms	CYP2D6	and	CYP3A4	into	the	active	metabolites	4-hydroxytamoxifen	(4-

OHT;	afimoxifene)	and	N-desmethyl-4-hydroxytamoxifen	(endoxifen),	each	of	which	has	

30-100	times	more	affinity	for	ERα	than	the	parent	compound	(241).		The	major	clinical	

limitation	of	 tamoxifen	 therapy	 is	 the	development	of	 endocrine	resistance	 in	a	 large	

proportion	of	patients,	including	almost	all	with	advanced	metastatic	disease	(238,242).	

	

Tamoxifen,	 and	 later	 derivatives	 such	 as	 raloxifene	 act	 by	 competing	 for	 oestrogen	

binding	at	ERα.	An	alternative	strategy	is	to	reduce	expression	of	ERα	directly	on	breast	

cancer	 cells.	 The	 first	 selective	 oestrogen	 receptor	degrader	 (SERD),	 fulvestrant,	was	

approved	by	the	FDA	in	2002	as	a	second	line	therapy	for	those	who	have	progressed	

following	endocrine	therapy	(243,244).	However,	a	more	direct	mechanism	may	be	to	
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inhibit	production	of	oestrogen	itself;	via	ovariectomy	in	premenopausal	women	and	use	

of	 aromatase	 inhibitors	 (AIs)	 in	 postmenopausal	women.	 AIs	work	 by	 inhibiting	 the	

action	 of	 aromatase,	 which	 converts	 androgens	 into	 oestrogens	 in	 a	 process	 called	

aromatization	 (245).	 In	 the	 adjuvant	 setting,	 AIs	 have	 proven	 more	 effective	 in	

prolonging	disease-free	survival	and	are	quickly	replacing	the	other	endocrine	therapies	

in	the	management	of	ERα+	breast	cancer.	Ten-year	analysis	of	the	ATAC	clinical	trial	

published	 in	 2010	 confirmed	 superior	 efficacy	 and	 safety	 of	 anastrozole	 (a	 third	

generation	AI)	over	tamoxifen	as	 initial	adjuvant	 therapy	 for	postmenopausal	women	

with	hormone-sensitive	early	breast	cancer	(246).		

	

	

1.7.4	Mechanisms	of	Resistance	to	Endocrine	Therapies			
Almost	50%	of	patients	with	advanced	breast	cancer	develop	resistance	to	tamoxifen.	

Although	 AIs	 have	 a	 slight	 clinical	 benefit	 over	 tamoxifen,	 acquired	 and	 de	 novo	

resistance	is	still	common	(245).	Fulvestrant	has	demonstrated	efficacy	in	patients	who	

have	relapsed	for	a	second-time	following	treatment	with	tamoxifen	or	AIs,	but	further	

randomised	clinical	trials	are	needed	(243,244,247).	Despite	their	great	successes	over	

the	past	three	decades,	the	major	cause	of	lack	of	efficacy	of	endocrine	therapies	remains	

the	 development	 of	 resistance	 (213,238,248).	 Several	 mechanisms	 for	 acquired	 (de	

novo)	and	innate	resistance	to	endocrine	therapies	have	been	proposed.		

	

ERα	 expression	 is	 the	main	 predictor	 of	 response	 to	 endocrine	 therapy,	 and	 lack	 of	

expression	is	the	principle	mechanism	for	innate	resistance	to	hormonal	therapy	(249).	

Interestingly,	 several	 studies	 point	 to	 the	 possibility	 of	 reactivating	 silenced	 ERα	

expression	 and	 thus	 increasing	 sensitivity	 to	 endocrine	 therapies	 (250–252).	 For	

example,	the	co-treatment	with	inhibitors	of	DNA	methyltransferase-1	(DNMT-1),	such	

as	5-aza-2-deoxycytidine	(AZA),	and	histone	deacetylase	(HDAC),	such	as	Trichostatin	A	

(TSA)	and	suberoylanilide	hydroxamic	acid	(SAHA),	induce	ERα	gene	expression	in	ERα	

negative	(ERα-)	breast	cancer	cells	and	restore	sensitivity	to	anti-oestrogens	(253,254).	
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However,	 around	 a	 quarter	 of	 patients	 with	 acquired	 resistance	 to	 tamoxifen	 have	

reduced	expression	of	ERα,	but	will	respond	to	second	line	ERα	inhibitors	such	as	AIs	or	

fulverstrant	(255).	This	suggests	that	loss	of	ERα	expression	and	function	may	not	be	the	

only	mechanism	of	acquired	resistance	to	tamoxifen.		

	

Cross-talk	 between	 mitogenic	 growth	 factor	 and	 ERα-signalling	 pathways	 has	 been	

shown	 to	 play	 a	major	 role	 in	 acquired	 resistance	 to	 endocrine	 therapies	 (256).	 For	

example,	reporter	gene	constructs	in	tamoxifen	resistant	cell	lines	have	indicated	that	

the	 EGFR/	 mitogen	 activated	 protein	 kinase	 (MAPK)	 pathway	 can	 result	 in	

phosphorylation	of	ERα	AF-1	at	serines	118	and	167	(257).	Phosphorylation	of	AF-1	can	

lead	 to	 ligand	 independent	 ERα	 activation,	 coregulator	 recruitment	 and	 oestrogen	

regulated	gene	transcription	even	in	the	presence	of	tamoxifen-bound-ERα	(258–261).	

Similarly,	 in	 MCF-7/HER2-18	 cells	 manipulated	 to	 express	 HER2	 alongside	 ERα,	

tamoxifen	behaves	as	a	full	ERα	agonist	and	stimulates	cell	growth	through	oestrogen	

regulated	 gene	 transcription.	 In	 this	 model,	 gefetinib,	 a	 selective	 inhibitor	 of	 EGFR,	

restores	sensitivity	to	tamoxifen	(262).	Additionally,	the	HER2	tyrosine	kinase	inhibitor	

AG1478	 has	 efficacy	 in	 tamoxifen	 resistant	 MCF7s	 and	 the	 anti-HER2	 antibody	

trastuzumab	 improves	 survival	 in	 patients	 with	 ERα+/HER2+	 breast	 cancer	 when	

administered	alongside	AIs	(263).	However,	in	this	case	it	is	unclear	whether	efficacy	is	

due	to	inhibiting	two	independent	cell	growth	pathways.		

	

ERα	can	also	associate	with	the	Insulin	like	growth	factor	receptor	1	(IGF-1)	receptor	

and	p85	regulatory	subunit	of	PI3K	at	the	plasma	membrane,	resulting	in	Akt	activation.	

Akt	can	then	phosphorylate	nuclear	ERα	at	serine	167	(AF-1	domain)	and	drive	ligand	

independent	activation	(264,265).	Although	a	similar	mechanism	to	ERα/HER2/EGFR,	

this	observation	could	have	profound	clinical	utility.	Mutations	in	PIK3CA	are	the	most	

common	genetic	 abnormality	 identified	 in	ERα+	breast	 cancers	 (73).	 Indeed	we	have	

recently	found	an	association	between	PIK3CA	mutation	and	reduced	survival	in	three	

distinct	subtypes	of	ERα+	breast	cancer	(73).	Combination	therapy	with	tamoxifen	and	
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BEZ235	(a	dual	PI3K	and	mTOR	inhibitor)	enhanced	apoptosis	in	four	breast	cancer	cell	

line	models,	relative	to	either	agent	acting	alone	(265).	In	patients	with	advanced	breast	

cancer	who	have	relapsed	on	AIs,	everolimus	(mammalian	target	or	rapamycin	(mTOR)	

inhibitor)	 has	 some	 clinical	 benefit	 in	 terms	 of	 time	 to	 progression	 and	 disease-free	

survival	(266).		

	

Tamoxifen	 has	 complex	 actions	 on	 the	 ERα.	 In	 the	 breast,	 it	 acts	 primarily	 as	 an	

antagonist	or	selective	agonist,	but	in	other	tissues	such	as	 the	uterus,	cardiovascular	

system	and	bone,	it	acts	as	a	full	ERα	agonist	(267).	This	nuanced	activity	is	attributed	to	

the	various	coregulatory	proteins	controlling	ERα	tissue	specificity	and	transcriptional	

programs.	 The	 ERα	 coactivator	 Src-3	 is	 amplified	 in	 10%	 of	 breast	 cancers	 and	 is	

associated	 with	 poor	 overall	 survival	 (227,268,269).	 Tamoxifen	 has	 been	 shown	 to	

induce	ERα-Src-3	interactions	in	HER2+	breast	cancers.	In	this	scenario,	tamoxifen	acts	

as	 a	 full	 ERα	 agonist	 and	 drives	molecular	 crosstalk	 with	 the	 HER2	 pathway	 (262).	

Tamoxifen	also	significantly	increases	the	expression	of	Src-1	and	Src-3,	both	of	which	

are	 associated	with	 the	 development	 of	 resistance	 (270,271).	 In	 addition,	 tamoxifen	

treatment	 increases	 co-localisation	 between	 Srcs	 and	 ERα	 in	 resistant	 cell	 lines	 and	

knock-down	of	 either	 coactivator	 in	 tamoxifen	 resistant	 cell	 lines	 restores	 endocrine	

sensitivity	(270,271).		

	

By	genome-wide	ChIP-Seq,	 the	Carroll	lab	has	made	major	advances	 in	characterising	

ERα	binding	profiles	in	tamoxifen	resistance.	Beginning	in	2008,	Hurtado	and	colleagues	

showed	that	both	oestrogen-ERα	and	tamoxifen-ERα	complexes	bound	directly	to	a	cis	

regulatory	 region	 in	 the	 ERBB2	 gene	 (272).	 When	 ERα	 recruited	 paired	 box	 gene	 2	

(Pax2),	 ERBB2	 expression	 was	 repressed	 but	 on	 the	 loss	 of	 PAX2,	 Src-3	 could	 turn	

expression	back	on	and	led	to	the	development	of	HER2	mediated	tamoxifen	resistance.	

In	 a	 separate	 study,	 Hurtado	 and	 colleagues	went	 on	 to	 map	 binding	 of	 the	 FOXA1	

pioneer	factor	and	ERα	in	tamoxifen	sensitive	and	resistant	models	(238).	The	authors	

demonstrated	that	FOXA1	was	required	for	ligand	independent	ERα-chromatin	binding	
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in	tamoxifen	resistance	and	that	FOXA1	was	negatively	regulated	upstream	by	11-zinc	

finger	protein	(CTCF).	By	studying	ERα-binding	events	in	both	good	and	bad	outcome	

ERα+	patients,	Ross-Innes	and	colleagues	were	able	to	reaffirm	that	tamoxifen	resistant	

cancers	were	 still	 able	 to	 recruit	 ERα	 to	 the	 chromatin	 (248).	 They	 found	 that	 those	

patients	who	would	go	on	 to	develop	 tamoxifen	 resistance	 had	 a	 unique	 set	 of	 ERα-

binding	 regions	 and	 that	 the	 acquisition	 of	 these	 binding	 regions	 was	 predictive	 of	

relapse.	This	study	underscored	ERα-binding	as	a	dynamic	process	regulated	by	pioneer	

factors	such	as	FOXA1.	The	authors	suggest	that	development	of	tamoxifen	resistance	

was	not	due	to	selection	of	a	rare	sub-clone	but	the	FOXA1	mediated	reprogramming	of	

ERα-binding	 on	 a	 rapid	 timescale.	 Finally,	 in	 2015	 Mohammed	 and	 colleagues	

demonstrated	 that	 PR	 is	 capable	 of	modulating	 ERα	 behaviour	 and	 antagonising	 the	

proliferative	 effects	 of	 oestrogen	 in	 ERα+	 cell	 lines	 (273).	 The	 authors	 found	 that	

progesterone	treatment	synergised	with	the	effects	of	anti-oestrogen	treatment	in	cell	

line	 and	 PDX	 models.	 This	 significant	 body	 of	 work	 demonstrates	 further	 that	 ERα	

chromatin	binding	is	a	complex	process	heavily	regulated	by	coregulators	and	pioneer	

factors	and	that	these	proteins	can	mediate	the	development	of	drug	resistance.		

	

The	central	role	of	FOXA1	in	the	development	of	tamoxifen	resistance	was	reconfirmed	

in	a	study	by	Patten	et	al.,	(376).	Through	genome	wide	ChIP-seq	in	47	metastatic	and	

primary	breast	cancer	samples,	the	authors	showed	a	phenotypic	clonal	population	with	

differential	 FOXA1	 binding	 was	 responsible	 for	 the	 development	 of	 resistance	 to	

endocrine	therapies	(376).	

	

	

1.7.5	Pluripotency	Transcription	Factors	in	Tamoxifen	Resistance			
The	CSC	hypothesis,	as	discussed	earlier	in	this	Chapter,	posits	that	a	small	population	

of	 cells	 within	 a	 tumour	 are	 primarily	 responsible	 for	 seeding	 metastasis	 and	 the	

development	of	drug	resistance	(24,274,275).		In	breast	cancer,	CSC	markers	can	be	as	

controversial	as	they	are	in	adult	breast	stem	cells,	which	may	contribute	to	conflicting	
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reports	of	their	importance	in	this	disease	(167).	Irrespective	of	the	contribution	of	BC-

TICs	to	normal	breast	cancer	biology,	 there	at	 least	appears	to	be	a	 link	between	the	

development	of	tamoxifen	resistance	and	transcriptional	programs	typically	deployed	in	

CSCs	and/or	other	stem	cell	populations.		

	

Perhaps	unsurprisingly	given	the	role	of	ERα	in	normal	breast	development	and	stem	

cell	differentiation,	exogenous	oestrogen	has	been	shown	to	reduce	the	proportion	of	

stem	cells	in	the	normal	human	mammary	gland,	and	in	breast	cancer	cells.	Simöes	et	al.,	

enriched	for	stem	cells	from	reduction	mammoplasties	by	ex	vivo	culture	as	organoids	

(276).	 The	 authors	 found	 that	 expression	 of	 three	 canonical	 master	 stem	 cell	

transcription	factors,	homeobox	transcription	factor	Nanog-delta	48	(NANOG),	octamer-

binding	transcription	 factor	4	 (OCT4)	and	sex	determining	region	Y	box	2	 (SOX2),	was	

higher	 in	 organoids	 than	 in	 differentiated	 cells	 from	 the	 same	 donor.	 Moreover,	

expression	 was	 reduced	 to	 a	 level	 more	 associated	 with	 differentiated	 cells	 by	 the	

addition	 of	 exogenous	 oestrogen.	 In	 MCF7	 mammospheres,	 the	 authors	 found	 that	

overexpression	 of	NANOG,	 POU5F1	or	 SOX2	 reduced	ESR1	 expression,	 the	 number	 of	

putative	BC-TICs	and	their	capacity	for	invasion.	Moreover,	tamoxifen	treatment	in	this	

model	 increased	 the	 number	 of	 mammospheres	 formed,	 and	 this	 corresponded	 to	

increased	NANOG,	POU5F1	or	SOX2	expression	(276).		

	

In	 a	 later	 study	 by	 the	 same	 group,	 it	was	 found	 that	 tamoxifen	 resistant	 cells	were	

enriched	for	mammospheres	forming	cells	and	showed	higher	expression	of	SOX2.	The	

authors	found	that	silencing	of	SOX2	by	siRNA	reduced	the	size	of	the	stem/progenitor	

cell	population	and	restored	sensitivity	to	tamoxifen	(277).	SOX2	has	a	controversial	role	

in	several	cancers.	For	example	in	two	papers	published	in	Oncogene	three	years	apart	

(2014	&	 2017),	 SOX2	was	 first	 found	 to	 play	an	 essential	 role	 in	 the	 self-renewal	 of	

melanoma	tumour	initiating	cells	and	hedgehog-induced	melanoma	cell	growth	(278),	

before	being	shown	by	CRISPR-Cas9	to	have	no	functional	role	in	melanoma	initiation,	

growth	 or	 metastasis	 formation	 (279).	 Authors	 of	 the	 second	 study	 posit	 that	 the	
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apparent	contradiction	could	reflect	a	distinct	stem	cell	program	active	in	neural	crest	

stem	cells	and	during	melanoma	formation	(279).		

	

OCT4,	 encoded	 for	 by	 the	 POU5F1	 gene	 and	 another	 master	 transcription	 factor	 of	

embryonic	stem	cells	required	to	reprogram	differentiated	cells	 into	 iPSCs	(280),	has	

been	 independently	 linked	 to	 poor	 prognosis	 in	 breast	 cancer	 (281).	 	 Specifically,	

POU5F1	expression	associates	with	the	stem	cell	marker	ALDH1	but	not	with	markers	of	

EMT.	In	survival	analysis,	POU5F1	expression	was	independently	associated	with	poor	

prognosis	in	319	cases	of	invasive	breast	cancer	and	in	the	ERα+,	but	not	ERα-,	subgroup	

(281).	Interestingly,	POU5F1	expression	was	particularly	associated	with	poor	clinical	

outcome	in	ERα+	patients	treated	with	tamoxifen.	OCT4	has	recently	been	described	as	

a	novel	ERα-associated	transcription	factor	involved	in	ERα	recruitment	to	tamoxifen,	

but	 not	 oestrogen,	 associated	 transcriptional	 sites	 (282).	 Further	 experiments	

uncovered	a	mechanism	by	which	Nkx3-1,	the	androgen	regulated	transcription	factor	

predominantly	 localised	 in	 the	 prostate	 epithelium	 (283),	 basally	 repressed	POU5F1	

expression	 in	MCF7	cells.	 	 Interestingly,	 the	authors	went	on	to	show	by	quantitative	

mass-spectrometry	 that	 tamoxifen	 treatment	 of	MCF7s	 elevated	 Nkx3-1	 degradation	

through	 a	 p38MAPK-dependent	 phosphorylation	 of	 the	 E3	 ligase,	 Skp2	 at	 serine-64	

(282).	

		

Interestingly,	 the	 third	 canonical	 transcription	 factor	 needed	 for	 derivation	 of	 iPSCs,	

kruppel-like	factor	4	(KLF4),	is	generally	associated	with	a	favourable	outcome	in	breast	

cancer	 (280,284).	 Jia	 et	 al.,	 found	 that	 higher	 expression	 of	 KLF4	 correlated	 with	

increased	 tamoxifen	 sensitivity	 in	 patients,	 and	 was	 positively	 correlated	 with	 ERα	

activity.	The	authors	went	on	to	knockdown	KLF4	 in	MCF7	and	BCAP37	cells,	 finding	

increased	 tamoxifen	 resistance.	 When	 ectopic	 expression	 was	 induced	 in	 T47D	 and	

TamR	lines,	the	authors	found	suppressed	growth,	invasion	and	migration,	together	with	

increased	responsiveness	to	 tamoxifen.	Mechanistically,	KFL4	was	shown	to	suppress	

ERK	and	p38	signalling,	which	were	generally	more	activated	in	resistant	lines,	pointing	
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to	 a	 potential	 role	 for	 targeting	 KLF4/MAPK	 signalling	 in	 tamoxifen	 resistant	 ERα+	

breast	cancer	patients	(284).		

	

Recently,	the	DNA	methylome	of	endocrine	sensitivity	was	characterised	by	Stone	et	al.,		

(285).	The	authors	found	that	in	tamoxifen	resistance,	DNA	hypermethylation	occurred	

at	oestrogen-responsive	enhancers.	This	was	associated	with	reduced	ERα	chromatin	

binding	 and	 consequently	 decreased	 gene	 expression	 of	 key	 oestrogen	 regulators.	 In	

another	 study	 by	 this	 group,	 promotor	 demethylation	 with	 5-Azacytidine	 (5-Aza),	

coupled	with	E2,	restored	ERα-regulated	gene	expression	in	TamR	lines	and	induced	a	

significant	anti-proliferative	effect	(97).	Cumulatively,	these	results	highlight	a	novel	role	

for	 ERα	 response	 element	 methylation	 in	 the	 induction	 of	 tamoxifen	 resistance.	

Interestingly,	embryonic	transcription	factors	OCT4,	SOX2	and	KLF4	each	have	roles	in	

regulating	 the	 methylome	 of	 stem	 and	 progenitor	 cells	 to	 control	 differentiation	

(286,287).	 Additionally,	 the	 oncogenic	 histone	methyltransferase	 and	 key	 embryonic	

regulator	(and	functional	enzymatic	component	of	the	Polycomb	Repressive	Complex	2	

(PRC2)),	EZH2,	has	been	shown	to	contribute	to	tamoxifen	resistance	by	silencing	the	

expression	of	ERα	cofactor	Growth	regulating	estrogen	receptor	binding	1	(GREB1)	(288).	

Together,	 these	 results	 highlight	 a	 potential	 mechanism	 by	 which	 embryonic	

transcription	factors	contribute	to	regulation	of	ERα	transcriptional	activity	and	hence	

influence	the	development	of	tamoxifen	resistance.		
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1.8	Pre-Clinical	Models	of	Breast	Cancer		
As	 discussed	 in	 this	 Chapter,	 breast	 cancer	 is	 a	 collection	 of	 diseases	 with	 distinct	

biological	 traits	 and	 clinical	 outcomes	 (289).	 Thus,	 no	 individual	 model	 would	 be	

expected	to	completely	recapitulate	human	breast	cancer	in	its	entirety.	Nevertheless,	

multiple	models	of	breast	 cancer	have	been	established	over	 the	years;	both	patient-

derived	and	artificially	engineered.	In	this	section,	the	models	most	often	utilised	in	basic	

research	are	considered.		

	

	

1.8.1	Breast	Cancer	Cell	Lines		
Breast	cancer	cell	 lines	have	 found	extensive	use	 in	 the	 investigation	of	proliferation,	

apoptosis,	 migration	 and	 the	 BC-TIC	 phenomenon.	 The	 first	 breast	 cancer	 cell	 line	

capable	of	 surviving	 in	 culture	 for	 longer	 than	 two	months	was	 isolated	 in	Detroit	 in	

1970	and	named	MCF7	(290).	This	ERα	positive	luminal	cell	line	has	been	heavily	relied	

on	in	the	study	of	tamoxifen	resistance,	leading	to	predictive	biomarkers	of	resistance	in	

patients	(248).	Together	MDA-MB-231	(a	triple	negative	cell	line),	T47D	(a	luminal	cell	

line)	 and	MCF7	 account	 for	more	 than	 two	 thirds	 of	 all	 abstracts	mentioning	 breast	

cancer	cell	lines	(291).	Experiments	in	cell	lines	were	crucial	in	the	development	of	one	

of	 the	 first	 targeted	therapeutic	agents	 launched	 in	1998;	 the	anti-HER2	trastuzumab	

(Herceptin®),	a	humanized	antibody	that	binds	to	the	ectodomain	of	HER2	(292)	and	

has	demonstrated	 remarkable	 clinical	 impact	 in	ERBB2	amplified	breast	 cancers.	Cell	

lines	have	also	helped	to	elucidate	the	mechanisms	of	primary	and	acquired	resistance	

to	 trastuzumab	 and	 are	 still	 being	 used	 for	 a	 significant	 proportion	 of	 breast	 cancer	

research	today.	These	early	successes	supported	the	use	of	cancer	cell	lines	for	both	drug	

development	and	biomarker	discovery	(293).			

	

The	artificial	2D	system	of	 in	vitro	 culture	has	many	drawbacks	and	several	attempts	

have	been	made	to	increase	the	relevance	of	these	incredibly	tractable	models.	A	seminal	

paper	published	in	2003	by	Al-Hajj	and	colleagues	demonstrated	the	presence	of	TICs	in	
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pleural	effusions	from	breast	cancer	patients,	which	later	were	shown	to	be	maintained	

in	suspension	as	3D	spheroids	called	mammospheres	(162,169).	Accumulating	evidence	

has	supported	the	use	of	this	system	to	better	understand	the	biology	of	specific	facets	

of	breast	cancer,	drug	resistance	and	metastasis	(274,294,295).	Mammosphere	cultures	

have	 also	 been	 used	 to	 unravel	 molecular	 mechanisms	 of	 signalling	 networks,	 for	

example	 those	 underlying	 the	 apparently	 paradoxical	 role	 of	 TGFb	 in	 breast	 cancer	

(159).	 Using	 these	 3D	mammosphere	 cultures,	 our	 group	 has	 identified	TGFb	 breast	

cancer	 subtype	 specific	 regulatory	 networks	 dictated	 by	 the	 epigenomic	 landscape	

(296).		

	

In	an	attempt	to	combine	the	high	trackability	of	breast	cancer	cell	line	models	with	the	

biological	relevance	of	in	vivo	cultures,	many	have	turned	to	cell	line	xenograft	models.	

In	 ERα+	 disease,	 for	 example,	 human	 breast	 cancer	 cells	 injected	 into	 the	 mouse	

mammary	stroma,	alongside	an	implanted	source	of	exogenous	human	oestrogen,	has	

been	adopted	as	a	more	biologically	relevant	readout	of	clinically	relevant	phenotypes	

(476).	Recently,	however,	Sflomos	et	al.	have	shown	that	such	cells	respond	to	the	high	

levels	of	TGF-β	in	their	new	microenvironment	through	basal	reprogramming,	perhaps	

explaining	their	relative	insensitivity	to	estrogen17	(477).	Interestingly,	the	same	study	

also	 characterised	 a	method	 of	using	 intraductal	 injections	 to	 introduce	 ERα+	breast	

cancer	cells	directly	into	the	mouse	mammary	duct.	Sflomos	et	al.,	found	this	method	was	

closer	physiologically	 to	 the	natural	environment	of	human	breast	cancer	cells	(477).	

More	 broadly,	 the	 developed	Mouse	Mammary	 Intraductal	 (MIND)	 syngeneic	models	

have	since	shown	utility	across	a	variety	of	human	cancer	subtypes,	allowing	researchers	

to	model	a	host	of	clinical	relevant	phenotypes	(478).	As	syngeneic	models	of	human	

cancers	can	be	used	to	study	the	immune	response,	they	could	be	of	particular	utility	as	

pre-clinical	models	for	testing	immune-oncology	agents.			

	

																																																								
17	Implantation	of	estrogen	pellets	that	produce	18–40	times	the	physiological	levels	of	estrogen	in	mice.		
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1.8.2	Breast	Cancer	Mouse	Models		
Despite	not	always	exhibiting	typical	histopathological	phenotypes	seen	in	human	breast	

cancers,	 genetically	 engineered	mouse	 (GEM)	models	 have	 been	 used	 extensively	 to	

investigate	 tumour	 initiation	 and	 progression.	 GEM	models	 generally	 fall	 into	 three	

distinct	histopathological	categories,	those	closely	resembling	non-GEM	tumours,	those	

with	 unique	 transgene-specific	 phenotypes	 and	 those	 that	 resemble	 human	

malignancies.	 The	 choice	 of	 gene	 promoter	 and	 the	 mechanism	 of	 induction	 greatly	

influence	the	histological	phenotype	of	the	resulting	tumour	and	this	needs	to	be	taken	

into	consideration	for	all	GEM	studies	(297).		

	

GEM	models	driven	by	the	mouse	mammary	tumour	virus	(MMTV)	promoter	were	used	

to	 characterize	 the	 effects	 of	 several	 now	 widely	 accepted	 oncogenes	 and	 tumour	

suppressors	in	breast	cancer	(including	tumour	suppressors	PTEN,	BRCA1,	TRP53	and	

oncogenes	 ERBB2,	MYC	 and	 CCND1)	 (298).	When	 combined	with	 advanced	 intravital	

imaging,	GEM	models	have	also	been	used	to	elucidate	the	precise	role	of	macrophages	

in	 breast	 cancer	metastasis.	 For	 example,	 the	 Pollard	 lab	 has	 relied	 heavily	 on	 these	

models	 to	 show	 that	 the	 purported	 metastasis-associated	 macrophages	 (MAMs)	 are	

active	promoters	of	the	metastatic	cascade	rather	than	bystanders	(299).	Like	syngeneic	

models	of	breast	cancer,	GEM	models	have	the	advantage	of	 including	native	stromal	

compartments	 of	 a	malignancy.	However,	 a	major	 limitation	 of	 early	GEM	models	 in	

particular	is	their	tendency	to	form	ERα	negative	tumours,	a	limitation	that	indicates	the	

study	of	 endocrine	modulating	 therapies	 such	as	 tamoxifen	 is	more	 suitable	 in	other	

platforms	(300,301).		

	

Heterogeneity	within	a	clonally	expanding	tumour	is	thought	to	be	maintained	because	

of	dynamic	selective	pressures	in	spatially	distinct	tumour	compartments.	However,	a	

recent	 study	 has	 uncovered	 a	 network	 of	 inter-clonal	 cooperation	 maintaining	

intratumour	heterogeneity	in	a	Wnt	driven	MMTV	GEM	breast	cancer	model	(82).	The	

authors	simulated	targeted	therapy	by	removing	Wnt1	and	found	that	relapsing	basal	
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populations	recruited	heterologous	Wnt-producing	luminal	cells	to	restore	cooperation.	

Alternatively,	tumours	evolved	to	rescue	Wnt	pathway	activation	through	some	other	

mutational	 event.	 In	 each	 case,	 drug	 resistance	 occurred	 from	 the	 cancer	 cell	

autonomous	compartment	in	a	fashion	that	could	not	easily	be	predicted.	If	such	inter-

clonal	 cooperation	 exists	 in	 human	 breast	 cancer,	 this	would	 underline	 the	 need	 for	

clonally	 diverse	 preclinical	 models.	 However,	 it	 is	 not	 clear	 how	 well	 such	 models	

represent	human	tumours;	Wnt,	for	example,	has	a	relatively	minor	role	in	most	breast	

cancer	seen	in	the	clinic	(7),	despite	heavy	reliance	on	the	MMTV	GEM	model	in	the	study	

of	breast	cancer	basic	biology.	

	

A	major	 limitation	 of	 breast	 cancer	mouse	models	 has	historically	 been	 their	 lack	 of	

representation	 of	 ERα+	 disease,	 with	 GEM	 models	 typically	 generating	 ERα-	 breast	

cancers	(476,479).	Due	to	the	lack	of	sporadic	and	human-relevant	cases	of	ERα+	disease	

in	 mice,	 the	 earliest	 experimental	 models	 used	 the	 chemical	 carcinogen	 7,12-

Dimethylbenz(a)anthracene	 (DMBA)	 to	 induce	 carcinogenesis	 (480).	 Though	 used	

extensively	in	early	research	into	ERα+	cancers,	rapid	DMBA-induced	mutagenesis	made	

these	models	unsuitable	to	model	the	earliest	driver	events	in	human	neoplasms.		

	

p53	is	a	well-known	tumour	suppressor,	often	deactivated	in	human	ERα+	breast	cancer.	

Consequently,	 one	 of	 the	 best-known	 GEM	 for	 ERα+	 breast	 cancer	 is	 the	Trp53	 null	

mouse	(481).	Limitations	with	this	model18,	however,	have	 led	to	 the	development	of	

other	GEM	models.	 In	 2012,	 for	 example,	 a	Stat1-/-	mouse	model	was	 developed	 and	

characterised	to	reliable	for	ERα+	breast	tumours	that	were	hormone	dependent	(482).	

Currently,	this	is	arguably	the	best	approximation	of	human	ERα+	breast	cancer	(476).		

	

	

																																																								
18	Notably	 the	 tendency	 for	Trp53-/-	 to	 form	 lymphomas	 in	mice,	 necessitating	 the	 transplantation	 of	
Trp53-/-	cells	in	cleared	mammary	fat	pads	of	Trp53+/+	mice,	and	the	fact	that	TP53	is	only	inactivated	in	
~30%	of	human	ERα+	breast	cancers.		
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1.8.3	In	vitro	Patient	Derived	Models	of	Breast	Cancer		
Realizing	 the	 importance	 of	 the	 cancer	 cell	 autonomous	 compartment	 in	 driving	

therapeutic	responses,	many	researchers	have	turned	to	organoid	cultures	to	study	a	

wide	variety	of	processes	in	development	and	disease.	Beginning	in	2009	the	Clevers	lab	

showed	that	single	leucine	rich	repeat	containing	G	protein-coupled	receptor	5	(LGR5)	

positive	Intestinal	Stem	Cells	(ISCs)	could	build	crypt-villus	structures	in	vitro	without	a	

supporting	mesenchymal	 niche	 (302).	 Subsequent	 research	 by	 this	 lab	 has	 identified	

culture	conditions	for	normal	and	malignant	pancreatic	(303)	and	liver	(190)	organoids,	

amongst	other	tissue	types.	Organoids	are	generally	genomically	stable	over	long	term	

passage	(304),	though	it	is	unclear	whether	mixed	organoid	cultures	of	primary	tumours	

can	truly	recapitulate	the	complex	clonal	heterogeneity	seen	in	vivo.		

	

Recently,	a	biobank	of	20	human	CRC	organoids	was	established	and	characterized	by	

exome-sequencing,	RNA	expression	analysis	and	high-throughput	drug	screening	(305).	

The	authors	show	CRC	organoids	largely	recapitulate	most	 features	of	 the	originating	

tumour	 sample,	 and	 the	 biobank	 captures	 most	 of	 the	 mutational	 and	 expression	

landscapes	observed	in	large	CRC	studies.	The	authors	screened	these	cultures	using	an	

83	compound	library	to	identify	molecular	signatures	associated	with	drug	responses	

(305).		

	

	

1.8.4	Patient	Derived	Xenografts			
Perhaps	the	model	best	reflecting	the	complexity	of	human	malignancies	is	the	patient	

derived	xenograft	(PDX)	(23).	In	this	model,	breast	cancer	clinical	samples	are	implanted	

and	 propagated	 in	 highly	 immunodeficient	 mice,	 typically	 NOD.Cg-Prkdcscid	

IL2rgtm1Wjl/SzJ	(NSG)	or	NOD.Cg-Rag1tm1Mom	 IL2rgtm1Wjl/SzJ	(NRG)	strains.	PDXs	reflect	

the	originating	sample’s	morphological	and	molecular	features	(306,307).	Genomically,	

they	 recapitulate	 most	 of	 the	 clonal	 architecture	 found	 in	 originating	 sample’s	 and	

remain	 predominantly	 stable	 throughout	 serial	 passaging	 (195,198).	 The	 current	
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iteration	 of	 these	 models	 do	 lack	 patient-matched	 stromal	 compartments	 and	 by	

necessity,	lack	a	functional	immune	system	(23).		

	

Early	 breast	 cancer	 PDX	 studies	 suffered	 from	 low	 transplantation	 efficiencies	 and	

consequently	a	limited	diversity	of	models	(298,308),	for	example	one	study	reported	

only	three	ERα+	models	in	a	cohort	of	32	stably	transplantable	PDXs	(309).	Clearly,	to	be	

useful	as	preclinical	models	the	early	bias	towards	aggressive	TNBCs	has	to	be	overcome.	

In	this	context,	a	new	protocol	involving	intra-ductal	injection	of	cells	in	female	mice	has	

been	developed	with	the	hope	to	dramatically	increase	engraftment	rates	especially	in	

less	aggressive	tumour	samples	(310).	

	

Recently,	a	PDX-based	drug	screening	program	of	unprecedented	scale	was	reported.	A	

large	collection	(n=1075)	of	molecularly	annotated	PDXs	derived	from	the	most	common	

adult	 cancer	 types	was	 shown	 to	 capture	 the	genomic	and	 transcriptomic	 features	of	

tumours	seen	in	the	clinical	population	as	a	whole.	The	majority	of	PDXs	in	this	collection	

were	treated	with	a	variety	of	targeted	compounds	in	a	strategy	dubbed	‘1x1x1’	for	‘one	

animal	per	model	per	 treatment’.	This	approach	mimics	 the	 reality	of	human	clinical	

trials,	which	do	not	allow	for	technical	or	biological	replicates.	One	of	the	key	findings	of	

this	 study	 was	 that	 a	 population	 of	 PDXs	mimicked	 the	 spectrum	 of	 human	 clinical	

responses,	reinforcing	the	translatability	of	 these	models	 to	predict	population-based	

drug	 responses.	 Moreover,	 known	mechanisms	 of	 resistance	 were	 identified	 by	 this	

strategy;	for	example	three	PDXs	treated	with	encorafenib	developed	resistance	through	

BRAF	 amplification,	 a	 clinically	 relevant	 resistance	mechanism	 (311).	 It	 follows	 from	

these	data	that	there	is	a	strong	rationale	for	performing	drug	screens	in	PDX	models	to	

investigate	population-based	treatment	responses.		

	

We	have	recently	published	a	biobank	of	breast	cancer	PDX	models	with	comprehensive	

molecular	 profiles	 and	 drug	 response	 profiles	 (198),	 Figure	 1.8.	 Significantly,	 drug	

response	data	highly	correlate	across	biological	and	technical	replicates	and	compounds	
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with	similar	 target	specificities	or	mechanism	of	action	cluster	 together.	For	example,	

similar	responses	were	observed	in	14	out	of	the	19	models	tested	with	PARP	inhibitor	

BMN-673	and	Cisplatin	(a	DNA	cross-linking	agent),	both	of	which	exert	their	effects	by	

increasing	the	frequency	of	mis-repaired	double	strand	breaks	in	the	absence	of	effective	

homologous	recombination.	Also,	 inhibitors	of	 the	PI3K-Akt-mTOR	pathway	shared	a	

similar	 pattern	 of	 response	 across	 all	 samples	 tested.	 Recognising	 the	 importance	 of	

combination	 therapies	 in	 achieving	 long-lasting	 responses	 (312),	 we	 also	 tested	 and	

validated	 the	 PDX	 platform	 in	 a	 high	 throughput	 combinatorial	 drug	 screen	 with	

standard	of	 care	 chemotherapeutic	 agents	 (Cisplatin	and	Paclitaxel)	 and	 six	 clinically	

relevant	targeted	compounds.	Together	this	work	validates	the	use	of	PDX	models	as	an	

integral	part	of	the	breast	cancer	drug	discovery	and	development	pipeline.	Crucially,	as	

such	models	 largely	 preserve	 heterogeneity	 found	 in	 their	 originating	 samples,	 they	

could	be	used	to	study	the	clonal	drivers	of	resistance	to	therapy.		
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Figure	1.8	–	Establishment	of	a	large	clinically	annotated	PDX	cohort.		

Figure	1.8	shows	establishment	of	large	clinically	and	molecularly	annotated	PDX	cohort	

as	described	by	Bruna	and	colleagues	(198).	 	Figure	 is	adapted	 from	(289)	&	(198).	A)	

Depicts	derivation	of	a	highly	diverse	cohort	of	breast	Cancer	PDX	models.	B)	All	models	

were	profiled	for	DNA,	RNA,	methylation	and	protein	expression	and	heterogeneity	found	

to	be	stable	across	breast	cancer	patients,	PDX	models	and	PDTCs.	C)	An	innovative	PDX-

PDTC	 pipeline	 was	 developed	 for	 high	 throughput	 studies	 on	 PDX	 models.	 D)	 High	

throughput	drug	screens	can	be	performed	on	PDTC	biobank.	E)	Multiple	analysis	processes	

of	 control	 and	 treated	 PDX/PDTCs	 allow	 the	 identification	 of	 complexes,	 multi-omic,	

biomarkers	of	drug	response	or	resistance.	Figure	overleaf.		
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1.9	Summary		
	

Diversity	 within	 a	 tumour	 has	 long	 been	 recognised.	 Indeed,	 as	 early	 as	 1958,	

evolutionary	biologist	Julian	Huxley	commented	on	‘‘genetic	inhomogeneity’’	in	cancer	

(313).	It	was	not	until	the	1970’s	that	theories	of	tumour	diversity	were	combined	with	

Darwinian	 evolution	 to	 explore	 the	 causes	 and	 consequences	 of	 tumour	 evolution.	

Building	 on	 a	 study	 the	 previous	 year	 suggesting	 most	 cancers	 of	 the	 colon	 evolve	

through	the	now	familiar	polyp-cancer	sequence	(314),	Peter	Nowel	put	forward	the	first	

comprehensive	theory	describing	tumour	evolution	in	1975	(12).	Since	this	 time,	and	

particularly	with	the	advent	of	high	throughput	NGS	technologies,	our	understanding	of	

the	causes	and	consequences	of	tumour	evolution	has	progressed	at	a	rapid	pace.	Recent	

studies	 have	 uncovered	 the	 great	 diversity	 within	 tumours	 of	 the	 same	 organ,	 for	

example	 our	 own	work	 in	 delineating	 the	 11	 distinct	 diseases	 typically	 classified	 as	

breast	 cancer	 (7,73),	 and	 the	 degree	 of	 heterogeneity	 seen	within	 the	 same	 tumour	

(28,78).	Tumour	heterogeneity	has	profound	consequences	for	the	development	of	drug	

resistance	and	the	seeding	of	metastatic	sites,	making	its	study	of	prime	importance	for	

the	clinical	translation	of	cancer	research	(11,130,315).		

	

Crucially,	 tumour	 heterogeneity	 must	 be	 interrogated	 in	 our	 most	 widely	 used	

preclinical	models	of	tumour	biology.	Recent	studies	have	demonstrated	the	surprising	

complexity	in	even	routinely	cultured	cell	line	models	(135,204,205),	but	we	must	strive	

for	 the	use	of	more	complex	models	able	 to	capture	the	tumour	diversity	of	a	human	

neoplasm.	Recently,	PDX	models	have	been	profiled	extensively	for	clonal	repopulation	

dynamics	 and	 engraftment	 biases	 (83,195,198).	 Our	 own	work	 has	 shown	 that	 such	

models	 reflect	 most	 of	 the	 clonal	 structures	 of	 their	 originating	 samples	 and	 are	

amenable	 to	 a	 wide	 range	 of	 high	 throughput	 studies,	 including	 combination	 drug	

screens	(198).	However,	even	PDX	models	have	major	limitations,	notably	the	lack	of	a	

functional	human	immune	system,	and	so	we	must	strive	to	view	experimental	results	
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within	the	context	of	the	limitations	of	the	model	system	used	(23).	Best	practices	and	

improvements	to	the	PDX	system	put	forward	in	(11)	are	outlined	in	Figure	1.9.		

	

Breast	cancer	is	the	most	common	cancer	diagnosed	among	US	women	(excluding	skin	

cancers)	and	is	the	second	leading	cause	of	cancer	death	among	women	after	lung	cancer	

(316).	Approximately	70-80%	of	breast	cancers	are	ERα+	tumours	and	are	treated	with	

oestrogen	 receptor	 antagonists	 (e.g.	 tamoxifen)	 or	 aromatase	 inhibitors	 (e.g.	

anastrozole).	However,	50%	of	metastatic	ERα+	tumours	will	have	innate	resistance	to	

such	 endocrine	 therapies	 and	 nearly	 40%	 of	 initially	 responsive	 early-stage	 breast	

cancers	 will	 relapse	 with	 endocrine	 therapy	 resistant	 disease	 (317).	 Historically,	

tamoxifen	was	the	most	widely	prescribed	therapy	for	ERα+	breast	cancer,	its	continued	

clinical	 use	 means	 it	 remains	 as	 on	 the	 World	 Health	 Organisation’s	 2018	 list	 of	

“Essential	Medicines”	(318).	The	development	of	tamoxifen	resistance	has	been	widely	

studied,	 but	 unlike	 many	 cases	 of	 resistance	 to	 targeted	 agents,	 its	 origins	 remain	

controversial	 (213,255,272,319,320).	Crucially,	 the	 interplay	between	epigenetic	 (97)	

and	 transcriptional	 remodelling	 (238),	 embryonic	 and	 stem	 cell	 transcription	 factors	

(242,277,282,321)	and	resistance	to	tamoxifen	therapy,	promise	to	uncover	a	great	deal	

about	the	biology	and	regulation	of	ERα	in	health	and	disease.		

	

In	this	thesis,	we	describe	experiments	to	uncover	mechanisms	of	treatment	resistance	

in	breast	cancer.	First,	we	optimise	a	model	to	trace	the	clonal	origins	of	drug	resistance	

at	 single	 cell	 resolution,	uncovering	 the	 isogenic	but	multiclonal	origins	of	 tamoxifen	

resistance	in	the	MCF7	cell	line.	Secondly,	we	investigate	several	functional	features	of	

drug	resistance	models,	uncovering	a	role	for	the	embryonic	transcription	factor	OCT4	

in	both	the	development	of	tamoxifen	resistance	and	in	the	function	of	BC-TICs.	Finally,	

we	optimise	a	method	of	lentiviral	lineage	tracing	 in	a	PDX	model,	describing	cellular	

clonal	dynamics	and	laying	the	groundwork	for	drug	resistance	studies.		
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Figure	1.9	-	Maintaining	heterogeneity	in	PDX	models.	

A)	Shows	a	primary	breast	tumour	including	some	sources	of	heterogeneity	found	in	the	

native	 microenvironment.	 Reciprocal	 signalling	 pathways	 between	 tumour	 cells	 and	

tumour	 associated	 macrophages	 (TAMs)	 and	 CAFs	 are	 highlighted.	 ECM	 is	 shown	 as	

collagen	 fibres	 with	 associated	 fibroblasts	 and	 macrophage/dendritic	 cells	 with	 T/B	

lymphocytes	shown	as	part	of	 the	 immune	 infiltrate.	Other	cell	 types	(NK	cells,	myeloid-

derived	suppressors,	etc.)	have	been	omitted	for	simplicity.	B)	Patient-matched	fibroblasts	

and	immune	cells	as	possible	candidates	for	co-engraftment	in	the	next	generation	of	PDX	

models.	Current	PDXs	established	in	NSG	mice	lack	an	adaptive	immune	system	and	may	

have	impaired	innate	immune	cell	infiltrates	and	cytokine	signalling	due	to	defective	IL2	

receptor	signalling	(322).	CAFs	are	known	to	contribute	to	treatment	response,	although	

murine	fibroblasts	are	present	in	PDX	models,	it	is	unclear	how	faithfully	these	recapitulate	

their	 human	 counterparts	 (323).	 C)	 A	 PDX	 tumour	 in	 its	 native	 microenvironment.	

Questions	over	whether	pro-	and	antitumor	CAF/TAM	signalling	pathways	are	present	to	

the	same	extent	in	PDX	models	as	in	the	primary	tumour	are	highlighted.	Stromal	and	tissue	

architecture	 can	 have	 profound	 effects	 on	 transcriptional	 regulation	 but	 are	 often	

overlooked	in	the	establishment	of	PDX	models	(126).	To	highlight	potential	differences	in	

ECM	organization	between	the	native	microenvironment	and	that	of	the	PDX,	here	the	ECM	

is	shown	as	highly	organized	collagen	fibres	with	closely	associated	myofibroblasts.	Figure	

adapted	from	(23).	Figure	overleaf.		
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Chapter	2	-	Materials	&	Methods					
Materials	&	Methods					

 
2.1	Animal	Studies	
	

All	experiments	using	animals	were	conducted	under	a	UK	home	office	license	(Project	

License	707679)	 in	accordance	with	the	UK	Animals	(Scientific	Procedures)	Act	1986	

and	 the	 European	Union	Directive	 EU	86/609	 and	 underwent	 local	 ethical	 review	 at	

Cambridge	 University.	 Human	 tissues	 for	 PDX	 implantation	 were	 collected	 from	

consenting	patients	with	appropriate	approval	by	the	National	Research	Ethics	Service,	

Cambridgeshire	2	REC	(REC	reference	number:	08/H0308/178).	Some	PDX	models	were	

obtained	 from	 our	 network	 of	 collaborators,	 with	 appropriate	 Institutional	 Review	

Board	 agreement	 and	 under	 Materials	 Transfer	 Agreements.	 NOD.Cg-Prkdcscid	

IL2rgtm1Wjl/SzJ	 (NSG)	mice	were	 obtained	 from	Charles	River.	NSG,	 PDX	 and	 cell	 line	

xenograft	models	were	maintained	 and	 passaged	when	 necessary	 by	 the	 Cambridge	

Institute	Biological	Resources	Unit	(BRU).	
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2.1.1	PDX	Biobank	
Characterisation	of	our	PDX	models	is	covered	extensively	in	Bruna	et	al.,	(198).	Briefly,	

a	bank	of	human	breast	cancer	explants	has	been	maintained	at	the	CRUK	Cambridge	

Institute	over	the	past	six	years,	by	combining	efforts	from	Addenbrookes	Hospital	and	

collaborating	 hospitals	 in	 Europe	 (Institute	 Curie,	 Paris	 and	 VHIO,	 Barcelona),	 US	

(Huntsman	 Cancer	 Institute,	 Salt	 Lake	 City,	 Utah)	 and	 Canada	 (UBC,	 Vancouver).	

Surgically	resected	primary	breast	cancer	tissue,	biopsies	from	brain,	skin,	liver,	bone,	

axilla	and	lymph	node	metastasis,	and	pleural	effusions	or	ascites	samples	were	obtained	

from	 consenting	 patients.	 Tissue	 samples	 were	 embedded	 in	 Matrigel	 and	 then	

implanted	subcutaneously	into	two-four	female	severe	immune	compromised	NSG	mice.	

Pleural	effusion	and	ascites	samples	were	centrifuged,	washed	twice19	to	eliminate	red	

blood	cells,	and	cell	pellets	resuspended	in	50:50	Matrigel:	Foetal	Bovine	Serum	(FBS)	

solution	before	subcutaneous	injection	into	mice	(3-8	weeks	old).	Matrigel	and	FBS	were	

batch-matched	when	possible	 in	 routine	maintenance	 of	 the	 PDX	biobank.	 Though	 it	

should	be	noted	that	the	scale	and	long-term	propagation	of	the	biobank	requires	the	

use	of	more	than	one	batch	of	each,	which	could	introduce	variability	to	our	colony	20.	It	

should	also	be	noted	that	mice	were	not	oestrous	staged,	which	could	introduce	further	

variability	to	the	colony.	The	time	from	patient	collection	to	mouse	implantation	ranges	

from	30-180	minutes.	PDXs	were	serially	implanted	into	multiple	hosts	to	allow	in	vivo	

expansion	of	each	model.	Xenograft	samples	were	cryopreserved	in	liquid	nitrogen	and	

freezing	media	(FBS	with	10%	Dimethyl	Sulfoxide	(DMSO))	at	each	passage,	from	each	

mouse.	 Genotyping	 of	 all	 samples	 was	 performed	 to	 confirm	 matching	 with	 the	

originating	patient	derived	sample.	All	models	 tested	 to	date	 could	be	 rescued	by	 re-

implantation	of	cryopreserved	tissue.	Clinical	and	molecular	features	of	PDX	models	are	

shown	in	Table	2.1.3.	

	

																																																								
19 	With	 Hank’s	 Balanced	 Salt	 Solution	 (HBSS)	 with	 155mM	 ammonium	 chloride,	 0.1mM	
ethylenediaminetetraacetic	acid	(EDTA)	and	10nM	sodium	bicarbonate,	at	pH	7.2.			
20	New	batches	of	either	Matrigel	or	FBS	were	batch	tested	by	parallel	growth	of	one	PDX	model	in	the	
previous	and	new	batch,	coupled	with	superficial	inspection	of	heterogeneity	and	tumour	growth	curves	
to	identify	marked	differences	between	batches.		
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2.1.2	Generation	of	Patient	Derived	Tumour	Cells	(PDTCs)	
Patient	 Derived	 Tumour	 Cells	 (PDTCs)	 were	 harvested	 from	 PDX	 tumours	 using	

dissociation	mix21	by	the	following	protocol.	PDX	tumours	were	harvested	by	dissection	

post	mortem	and	minced	into	small	fragments.	Fragments	were	washed	in	HBSS	with	5%	

BSA	and	5%	4-(2-hydroxyethyl)-1-piperazineethanesulfonic	acid	(HEPES),	incubated	in	

dissociation	mix	at	5%	CO2	37°C	 for	1-2hrs	on	a	rotary	shaker.	Fragments	were	then	

washed	as	before	and	incubated	in	prewarmed	Trypsin:	Ethylenediaminetetraacetic	acid	

(EDTA)	 (0.5%	 Sigma)	 for	 5	minutes.	 Samples	were	washed	 and	 incubated	with	 2ml	

prewarmed	5mg/ml	Dispase	and	500μl	of	1mg/ml	DNase	I.	Samples	were	then	washed	

and	 resuspended	 in	 1:4	 mixture	 of	 cold	 HBSS	 (5%	 BSA):	 ammonium	 chloride	 to	

encourage	red	blood	cell	lysis.	Samples	were	again	washed	and	filtered	through	a	40μm	

strainer.	Viability	and	cell	numbers	could	then	be	ascertained.	PDTCs	were	maintained	

for	up	to	1	week	in	Mammary	Epithelial	Growth	Media	(MEGM)	(Bulletkit;	Lonza)	in	low	

adherent	conditions	(Corning	ultra-low	attachment	plates)	at	5%	CO2	37°C.		

	

	

2.1.3	In	vivo	Limiting	Dilution	Assay			
Cells	of	interest	were	grown	to	80%	confluence	before	media	was	changed	and	ligand	

added	if	appropriate	for	48hrs.	4-OHT	at	300nM	and	E2	at	10nM.	Following	treatment,	

cells	 were	 harvested	 as	 normal	 by	 trypsinisation	 and	 resuspended	 1	 x106	 cells/ml.	

Viable	cells	were	calculated	by	trypan	blue	exclusion	and	serially	diluted,	spun	down	and	

cell	pellets	resuspended	in	50%	Matrigel	such	that	50μl	cell:	Matrigel	suspension	would	

contain	1,000,	100	or	10	cells	as	appropriate.	50μl	was	injected	into	the	4th	mammary	fat	

pads	 of	 NSG	 mice	 along	 with	 0.72mg/90day	 slow	 release/17B	 Estradiol	 pellets	

(Innovative	Research	of	America)	injected	into	the	scruff.	Injected	regions	were	palpated	

																																																								
21	Dissociation	mix:	2ml	10X	Mouse	collagenase/Hyaluronidase,	13ml	Dulbecco	Modified	Eagle	Medium	
(DMEM):F12,	5ml	Bovine	Serum	Albumin	(BSA)	Fraction	V	(Gibco	7.5%),	10μl	Insulin	(final	concentration	
5μg/ml),	20μl	Gentamycin	(final	concentration	50μg/ml))	(all	Sigma	Aldrich).		
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for	 signs	 of	 tumour	 growth	 twice	 weekly	 for	 up	 to	 6months.	 We	 used	 the	 Extreme	

Limiting	Dilution	Analysis	(ELDA)	software	package	to	interpret	results	(324).	

	

	

2.1.4	Post-mortem	Protocol	for	Identifying	Metastatic	Sites				
At	the	end	of	the	experiment,	animals	were	euthanised	in	a	CO2	chamber	and	had	their	

femoral	 artery	 severed,	 as	 per	 local	 procedures	 and	 best	 practises.	 In	 some	 cases,	

euthanised	 mice	 were	 inspected	 in	 the	 Xenogen	 small	 animal	 imaging	 system	 for	

suspected	metastatic	sites.	Euthanised	mice	were	placed	in	dorsal	recumbency	on	a	clean	

dissection	board	and	an	 incision	made	across	the	 full	 length	of	 the	ventrum	(anus	 to	

chin),	 reflecting	 the	 skin	 and	 incising	 the	 abdominal	 wall,	 exposing	 the	 abdominal	

viscera,	 salivary	and	preputial/clitoral	 glands,	and	cervical	 and	axillary	 lymph	nodes.	

Skin	was	pinned	back	to	expose	the	PDX	tumour	site	(left	or	right	flank).	Tumour	was	

identified,	excised	and	stored	as	appropriate	(neutral	buffered	 formalin	 for	histology,	

serum	with	10%	DMSO	 for	 cryogenic	preservation	and	DMEM	+10%	FBS	 for	 further	

study,	 PDTC	 dissociation,	 dissection	 or	 reimplantation).	 Continuing	 with	 the	 post	

mortem	 examination,	 the	 rib	 cage	was	 cut	 open	 to	 expose	 and	 examine	 the	 thoracic	

viscera	by	making	two	cuts	laterally	up	each	side	of	the	ribcage,	then	one	across,	at	the	

top	of	the	sternum,	to	open	a	space	wide	enough	to	thoroughly	examine	all	the	lobes	of	

the	lung.	All	organs	were	visually	examined	for	abnormalities.	Specifically,	the	heart	and	

lungs	were	identified	in	the	thoracic	cavity	&	liver,	kidneys	and	spleen	in	the	abdominal	

cavity.	 Any	 colour	 changes,	 size	 differences,	 and	missing	or	mis-located	 organs	were	

noted.	The	consistency	of	surfaces,	any	additional	tissue	(e.g.	masses),	fluid	pockets,	or	

the	presence	of	fluid	in	the	abdominal	and	thoracic	cavities	was	noted.	In	some	cases,	

organs	with	suspected	metastatic	deposits	were	further	screened	in	the	Xenogen	small	

animal	 imaging	 system.	 We	 next	 checked	 the	 mesentery	 for	 enlarged	 lymph	 nodes	

and/or	masses,	harvesting	 the	abdominal	&	 inguinal	mammary	glands,	 together	with	

suspected	tumour	draining	lymph	nodes	(inguinal	and/or	lumbar).		
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2.2	Cell	Culture	Assays			
	

T47Ds,	MCF7s	and	HEK293-Ts	were	obtained	from	ATCC,	TamRs	were	a	kind	gift	from	

Dr	J	Carroll	and	were	derived	as	described	(325).	Cell	lines	underwent	regular	screening	

for	mycoplasma.	MCF7s	were	maintained	in	DMEM:	F12	(at	5%	CO2	37°C)	supplemented	

with	10%	FBS22	and	penicillin-streptomycin	(PenStrep)	(Sigma-Aldrich)	and	passaged	

by	 trypsinisation	 (0.25%	 trypsin	 EDTA;	 Life	 Technologies)	 every	 7	 days	 or	 at	 80%	

confluence.	 TamRs	 were	 cultured	 under	 the	 same	 conditions,	 though	 with	 charcoal	

striped	 FBS	 (Life	 Technologies)	 and	 DMEM:	 F12	 without	 phenol	 red	 to	 minimise	

oestrogens	and	pseudo-oestrogens.	Prior	to	cell	based	assays,	cells	were	briefly	serum	

starved	(media	+	0.1%	FBS)	for	24hrs	to	synchronise	cell	cycles.	Assay	media	containing	

1%	 FBS	 was	 used	 in	 all	 2D	 cellular	 assays.	 Viability	 was	 calculated	 by	 Trypan	 Blue	

exclusion	 assay;	 briefly,	 0.1ml	 trypan	 blue	 (ThermoFisher)	 was	 added	 to	 0.1ml	 cell	

suspension,	the	mixture	was	loaded	into	a	hemacytometer	and	examined	immediately	

under	a	microscope	at	low	magnification	(4x).	Cell	viability	should	be	at	least	95%	for	

healthy	log-phase	cultures.		

	

	

2.2.1	Mammosphere	Growth	Assays	
Monolayer	cells	were	trypsinised	as	normal	and	plated	in	Corning	ultra-low	attachment	

plates	in	mammosphere	media	(MM)23.	Mammospheres	were	cultured	in	low	adherent	

conditions	without	phenol	red	at	1,000	cells/ml.	Mammospheres	were	left	to	form	over	

7	days	(1st	generation	spheres)	with	the	addition	of	siRNA	and/or	treatment.	Single	cells	

were	then	generated	by	mechanical	dissociation	with	the	addition	of	prewarmed	0.5%	

trypsin:	 EDTA	 for	 5-10	 minutes.	 Cells	 generated	 from	 1st	 generation	 spheres	 were	

																																																								
22	To	minimise	experimental	variation,	FBS,	Charcoal-stripped	FBS	and	BSA	used	 in	experiments	were	
batch	and	lot	matched.	
23	MM:	DMEM/	F12	supplemented	with	BSA,	1x	B27	(minus	vitamin	A),	1x	insulin-transferrin-selenium,	
0.5	mg/ml	 hydrocortisone,	 2μg/ml	 human	 recombinant	 epidermal	 growth	 factor	 (EGF)	 (all	 from	 Life	
Technologies).		
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counted	and	scored	for	viability	using	a	Vi-CELL	 instrument	(Beckman	Coulter;	using	

manufacturers	 recommended	 protocols).	 Second	 generation	 spheres	 were	 then	

generated	 from	1,000	viable	cells/ml.	After	7	days	culture	 in	MM,	wells	were	 imaged	

using	a	Nikon	Eclipse	TS100	and	mammospheres	harvested	for	downstream	analysis.	4x	

magnification	images	were	taken	to	have	some	degree	of	overlap	and	stitched	together	

in	Adobe	Photoshop	CC	2014,	ensuring	no	mammospheres	were	scored	twice.	Images	

were	 then	 exported	 to	 ImageJ64	 (blinded	 by	 randomising	 file	 names)	 and	

mammospheres	were	manually	 fitted	to	circular	outlines	using	the	Region	of	 Interest	

plugin	(spheres	are	>50μm2).	Mammosphere	forming	efficiency	(MFE)	is	calculated	as	

number	of	2nd	generation	spheres	formed	divided	by	number	of	viable	cells	plated.	By	

capturing	information	from	both	MFE	and	mammosphere	size,	we	hope	to	minimise	the	

limitations	of	 this	 assay	–	namely	 that	mammospheres	may	be	a	product	of	multiple	

smaller	spheres	which	aggregate	together	rather	than	the	product	of	single	cells.	In	some	

experiments	we	used	a	modified	scale	up	protocol	for	mammosphere	culture.	Here,	cells	

were	trypsinised,	singularised	and	seeded	 in	500ml	volume	of	MM	at	5	x104	cells/ml	

density.	The	cell	suspension	was	grown	in	500ml	spinner	flasks	with	a	rotating	magnet	

within	the	 flask	 for	7	days	to	generate	mammospheres.	This	allows	 for	mixing	of	 the	

cultures	constantly	and	prevents	sticking	of	the	mammospheres	to	the	flask	walls.	

	

	

2.2.2	Wound	Healing	Assays		
Single	cells	were	plated	in	Essen	ImageLock	24	or	96-well	plates	(Essen	Biosciences)	and	

cultured	as	normal	to	90%	confluence.	Cells	were	then	serum	and	oestrogen	starved	for	

24hrs.	Monolayers	were	washed	with	phosphate	buffered	 saline	 (PBS)	and	 scratched	

using	 a	 24	 or	 96	 well	 wound	 maker	 as	 per	 manufacturer’s	 instructions	 (Essen	

Biosciences).	If	using	24-well	wound	maker,	pipette	tips	were	changed	after	each	plate.	

Monolayers	were	again	washed	(gently	in	PBS)	to	remove	dead	cells	and	assay	media	

(charcoal	 stripped,	 phenol	 red	 free	 1%	 FBS,	 +/-	 treatment)	 was	 added.	 Scratched	

monolayers	were	cultured	in	an	Essen	IncuCyte	FLR	for	up	to	three	days	with	images	
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acquired	 every	 2-4hrs.	 We	 aimed	 to	 avoid	 proliferation	 at	 the	 wound	 site	 to	 assay	

migration	independent	of	proliferation.	Thus,	the	assay	was	limited	by	visual	inspection	

of	 dividing	 cells.	 Wound	 closure	 was	 recorded	 by	 the	 IncuCyte	 running	 the	 wound	

healing	program.	Relative	wound	density	(measure	of	cells	covering	wound	site)	was	

used	as	the	primary	output	of	this	assay.		

	

	

2.2.3	Drug	Screens	and	Dose	Response	Assays		
Cells	 of	 interested	 were	 seeded	 in	 24-	 or	 96-well	 culture	 plates	 and	 grown	 to	 90%	

confluency	(~48hr).	Ligand	of	interest	was	then	added	to	experimental	wells,	and	carrier	

to	control	wells.	Ligands	were:	(Z)-4-Hydroxytamoxifen	(4-OHT)	≥98%	Z	isomer	(Sigma-

Aldrich;	4-OHT)	and	β-Estradiol	≥98%	(Sigma-Aldrich;	E2).	Tamoxifen	is	a	prodrug	that	

is	metabolically	activated	by	4-hydroxylation	to	the	potent	primary	metabolite	4-OHT	or	

via	 another	 primary	 metabolite	 N-desmethyltamoxifen	 (NDMTAM)	 to	 a	 biologically	

active	secondary	metabolite	endoxifen	through	a	cytochrome	P450	2D6	variant	system	

(CYP2D6)	 primarily	 expressed	 by	 the	 liver	 and	 certain	 areas	 of	 the	 central	 nervous	

system	 (e.g.	 substantia	 nigra)	 (326).	 Hence,	 direct	 use	 of	 4-OHT	 over	 the	 tamoxifen	

prodrug	was	 chosen.	 Plating	was	 such	 that	 possible	 sources	 of	 variance	 due	 to	well	

location	was	minimised	 by	 pseudo-randomisation.	Where	 possible,	 outer	wells	were	

filled	with	PBS	to	 further	reduce	variability.	After	 the	treatment	period	(typically	24-

48hrs),	media	was	aspirated,	and	cell	viability	quantified	by	CellTiter-Glo	Luminescent	

Cell	 Viability	 Assay	 (Promega)	 as	 per	 manufacturer’s	 instructions.	 Quantification	 of	

fluorescent	signal	intensity	was	performed	using	PHERAstar	FSX	Multimode	Microplate	

Reader	and	inbuilt	CellTiter-Glo	assay	protocol.	In	cases	where	multiple	dose	response	

curves	 were	 to	 be	 generated	 (for	 example	 in	 4-OHT	 studies)	 a	 control	 (in	 this	 case	

parental	MCF7)	was	included	on	each	plate	to	identify	inter-plate	variation.		
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2.2.4	Proliferation	Assays			
Single	cells	were	plated	in	Essen	ImageLock	96-well	plates	(Essen	Biosciences)	at	ultra-

low	density	(2,000	cells	per	well)	and	allowed	to	incubate	at	ambient	temperature	for	

20	minutes	followed	by	30	minutes	at	37 °C	in	an	Essen	IncuCyte	FLR	system	prior	to	

scanning.	Scanning	and	confluence	calculations	were	carried	out	every	2hrs.	After	the	

first	4hrs	culture,	confluence	was	averaged	across	the	two	completed	scans	and	used	to	

balance	ligand	addition	to	wells.	Wells	with	higher	(>10%)	or	lower	(<1%)	confluence	

than	normal	were	excluded	from	the	experiment.	Our	aim	was	to	ensure	no	ligand	had	

an	advantage	by	been	added	to	high	confluence	only	wells.	Cells	were	incubated	until	

confluence	(up	to	120hrs)	and	proliferation	kinetics	calculated	in	the	IncuCyte	software.			

	

	

2.2.5	Matrigel	3D	Growth	Assays				
Adherent	 cell	 lines	 or	 PDTCs	 were	 passaged	 as	 normal	 and	 resuspended	 at	 1	 x104	

cells/ml	 in	 appropriate	 media	 (supplemented	 with	 0.1%	 FBS	 and	 2%	 growth	 factor	

reduced	 (GFR)	 Matrigel,	 BD	 Biosciences).	 Cells	 were	 plated	 onto	 BD	 Falcon	 8-well	

CultureSlides	 (BD	Biosciences)	pre-coated	with	 60µl	 collagen:	Matrigel	mix	 (collagen	

used	was	type	IV	from	rat	tail,	Sigma)	and	incubated	for	up	to	2	weeks	at	37°C	5%	CO2,	

changing	media	every	four	days.	Protocol	was	adapted	from	the	Brugge	lab	at	Harvard	

Medical	 School	 (327),	 available	 at	 http://brugge.med.harvard.edu/.	 Spheres	 were	

visualized	 by	 phase	 contrast	microscopy	 or	 by	 4’,6-diamidino-2-phenylindole	 (DAPI)	

counterstain	 (DAPI	 dilactate,	 Invitrogen)	 and	 fluorescent	 microscopy.	 For	 3D	 acinar	

growth	assays,	cells	were	trypsinised	as	normal	and	dissociated	into	single	cells.	1	x105	

cells	 were	 resuspended	 in	 75%	Matrigel24 	(25%	 DMEM:	 F12)	 and	 plated	 as	 a	 50μl	

droplet	 the	 centre	 of	 a	 24	 well	 plate.	 Wells	 where	 Matrigel	 touched	 the	 sides	 were	

disregarded.	Matrigel	was	left	to	set	for	2	hours	at	room	temperature	before	MEGM	was	

added.	3D	acinar	structures	were	left	to	form	over	7	days	before	treatments	were	added.	

Images	were	collected	with	a	Nikon	Eclipse	TS100.		

																																																								
24	Matrigel	used	in	these	experiments	was	of	the	same	batch	and	lot	number.	
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2.2.6	In	vitro	Limiting	Dilution	Assays				
Cells	of	interest	were	grown	to	80%	confluence	before	media	was	changed	and	ligand	

added	if	appropriate	for	48hrs.	4-OHT	at	300nM	and	E2	at	10nM.	Following	treatment,	

cells	 were	 harvested	 as	 normal	 by	 trypsinisation	 and	 resuspended	 1	 x106	 cells/ml.	

Viable	 cells	were	 calculated	 by	 trypan	 blue	 exclusion	 and	 serially	 diluted	 to:	 Tube	 1	

(1,000	cells/well):	27,000	cells	in	5.4ml	media;	Tube	2	(100	cells/well),	10,000	cells	in	

20ml	media;	Tube	3	(10	cells/well),	2,000	cells	in	40ml	media;	Tube	4	(1	cell/well),	300	

cells	 in	60ml	media.	Suspensions	were	thoroughly	mixed	before	each	dilution,	before	

dispensing	200μl	of	each	into	sterile	non-tissue	culture	96	well	U-bottom	plates	to	give:	

24	wells	of	1,000	cells/well;	96	wells	of	100	cells/well;	192	wells	of	10	cells/well;	288	

wells	 of	 1	 cells/well.	 Plates	were	 topped	 up	with	 growth	media	 as	 appropriate	 and	

cultured	for	3	weeks	at	5%	CO2	37°C.	After	3	weeks,	plates	were	scored	for	spheroid	

growth	 by	 microscopic	 visualisation	 at	 4x.	 We	 used	 the	 ELDA	 software	 package	 to	

interpret	results	(324).	
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2.3	Cloning,	Plasmid	Preparation	&	Infection		
	

All	plasmids	were	obtained	via	Addgene.	The	ClonTracer	Library	was	a	generous	gift	

from	 the	 Stegmeier	 Lab	 (135),	 (plasmid	 #22240),	 the	 vector	 backbone	 is	 pRSI9-U6-

(sh)UbiC-TagRFP-2A-Puro.	pHIV-Zsgreen	(Plasmid	#18121),	vector	backbone	is	pSICO	

(6900bp	without	insert),	was	a	gift	from	the	Werb	lab	(328).	pLM-vexGFP-Oct4	(plasmid	

#22240)	was	a	generous	gift	from	the	Sadelain	lab	(329).	Plasmid	maps	are	shown	in	

Figure	 2.3.0	 A-C.	 Packaging	 plasmids	 for	 production	 of	 lentiviral	 vectors	 were:	

pMDLg/pRRE	 (Plasmid	 #12251)	 containing	 gag	 and	 pol	 genes,	 pRSV-Rev	 (Plasmid	

#12253)	 containing	 rev	 gene	 (both	were	 generous	 gifts	 of	 the	 Trono	 lab	 (330))	 and	

pCMV-VSV-G	 (Plasmid	 #8454)	 containing	 envelope	 genes,	 a	 generous	 gift	 of	 the	

Weinberg	lab	(331).	Packaging	plasmid	maps	are	shown	in	Figure	2.3.0	D-F.	

	

	

2.3.1	Cloning		
Plasmid	cloning	was	carried	out	by	the	heat-shock	method.	100ng	stock	plasmid	was	

added	to	chemically	competent	Escherichia	coli	(E.	coli)	(One	Shot	TOP10,	One	Shot	Stbl3,	

XL1-Blue	(all	Life	Technologies)	or	Turbo	Competent	(New	England	Biolabs))	thawed	on	

ice.	 Heat-shock	 was	 performed	 as	 per	 manufacturer’s	 instructions	 at	 42°C	 for	 30	

seconds.	 After	 recovery,	 cells	were	 plated	 on	appropriate	 antibiotic	 resistance	 plates	

(Luria	broth	(LB)	agar	with	0.1mg/ml	ampicillin	or	0.5	mg/ml	puromycin)	and	single	

colonies	picked	for	overnight	culture	at	37°C	(Stbl3	at	34°C).	Transformation	(HIV-ZSG)	

of	Stbl3	E.	coli	was	found	to	result	in	significantly	more	transformants	than	TOP10,	XL1-

Blue	or	Turbo	Competent	(NED),	and	so	was	chosen	for	further	studies	(Figure	2.3.1).	A	

control	plate	 containing	non-transformed	Stbl3	E.	 coli	was	always	 included	 to	ensure	

antibiotic	selection	effectiveness.	Single	colonies	were	selected	from	overnight	cultures	

and	expanded	overnight	in	LB	with	0.1mg/ml	ampicillin	(or	0.5	mg/ml	puromycin)	on	

orbital	shakers	(180	rpm,	37°C).		Plasmids	were	purified	using	Zymo	Plasmid	Maxiprep	

kits	according	to	manufacturer’s	instructions	(alternative	protocol).	Purified	plasmids	
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were	DNA	quantified	by	nanodrop,	digested	by	restriction	enzymes	(standard	protocols)	

and	run	on	a	1%	Agar	gel	 in	Tris	base,	acetic	 acid	and	EDTA	(TAE)	buffer	with	stock	

plasmid	to	visually	confirm	bands	migrated	at	the	same	level	(DNA	stained	with	SybrSafe	

1:10,000,	Life	Technologies).			

	

ClonTracer	Library	expansion	was	as	before	but	with	modifications	as	follows:	10	vials	

of	Stbl3	were	heat	shock	transformed	as	normal	and	allowed	to	recover.	Transformants	

were	plated	across	10x	30cm	culture	plates	coated	with	LB	agar	&	0.5	mg/ml	puromycin,	

giving	a	total	E.	coli	culture	area	of	9,000cm2.	A	2μl	sample	was	taken	from	each	Stbl3	

vial	 and	 plated	 on	 serial	 dilution	 plates	 (one	 at	 1:1,	 1:10,	 1:100,	 1:1000).	 Visual	

inspection	of	dilution	plates	enabled	estimation	of	the	total	number	of	resistant	colonies.	

If	we	estimated	<2	million	transformants	across	the	10	plates,	then	the	experiment	was	

discarded.	Maxipreps	were	conducted	directly	from	30cm	plate	colonies	without	liquid	

culture.	This	process	was	repeated	up	to	5	times	 for	lentiviral	preparation.	For	single	

ClonTracer	 barcode	 preparations,	 individual	 bacterial	 colonies	 present	 on	 dilution	

plates	with	>1cm	separation	from	neighbouring	colonies	were	isolated	and	cultured	for	

3hrs	in	LB	agar	&	0.5	mg/ml	puromycin	on	an	orbital	shaker	(180	rpm,	37°C),	bacteria	

were	re-plated	the	process	repeated	to	ensure	single	barcode	colonies.	Single	barcode	

colonies	were	expanded	in	liquid	LB	broth	&	0.5	mg/ml	puromycin	on	an	orbital	shaker	

(24hrs,	180	rpm,	37°C),	and	plasmids	were	purified	using	Zymo	Plasmid	Maxiprep	as	

before.		
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Figure	2.3.0	-	Plasmid	maps	

Figure	 2.3.0	 shows	 plasmid	 maps	 for	 plasmids	 obtained	 through	 Addgene.	 A)	 pHIV-

ZsGreen1	 (pHIV-ZSG),	 a	generous	gift	 from	 the	Werb	 lab	 (328).	B)	 pLM-vexGFP-Oct4,	a	

generous	 gift	 from	 the	 Sadelain	 lab	 (329).	C)	 ClonTracer	 Library	 (pRSI9-U6-(sh)-UbiC-

TagRFP-2A-Puro),	 a	 generous	 gift	 from	 the	 Stegmeier	 Lab	 (135).	 D)	 pMDLg/pRRE	

containing	 gag	 and	 pol	 genes,	 a	 generous	 gift	 of	 the	 Trono	 lab	 (330).	 E)	 pRSV-Rev,	

containing	rev	gene,	a	generous	gift	of	 the	Trono	 lab	(330).	F)	pCMV-VSV-G	containing	

envelope	genes,	a	generous	gift	of	the	Weinberg	lab	(331).	Figure	Overleaf.		
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Figure	2.3.0	–	Plasmid	maps		
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2.3.2	Lentiviral	Packaging			
Lentiviral	 plasmids	were	 packaged	 into	 virions	 in	 HEK293-Ts	 of	 low	 (<20)	 passage,	

cultured	in	10cm	tissue	culture	dishes.	Briefly,	HEK293-Ts	were	culture	in	DMEM:	F12	

10%	FBS	with	PenStrep	as	normal,	trypsinised	and	plated	at	2	x106	/15	cm	dish.	Cells	

were	 cultured	 undisturbed	 overnight,	 aiming	 for	 80%	 confluence.	 1hr	 prior	 to	

transfection,	 media	 was	 removed	 and	 replaced	 by	 5ml	 of	 DMEM:F12	 +	 5%	 FBS.	

Packaging	plasmids	 (pMDLg/pRRE,	pRSV-Rev	and	pCMV-VSV-G)	were	mixed	with	3X	

insert	plasmid	(e.g.	pHIV-Zsgreen)	for	a	final	concentration	of	15μg	/15cm	dish	(i.e.	2.5,	

2.5,	2.5	and	7.5μg	respectively).	DNA	was	mixed	with	250μl	NaCl	(150mM)	and	added	to	

40μl	 JetPEI	 (Polyplus)	 in	250μl	NaCl	 (150mM).	Mixture	was	 incubated	 for	30mins	at	

room	 temperature	 and	 added	 to	 each	 15cm	 dish	 (dropwise;	 as	 per	 manufacturer’s	

instructions).	5ml	fresh	media	was	added	to	each	dish	2hrs	post	transfection.	Media	was	

collected	and	filtered	through	a	0.45μm	filter	unit	after	24,	48	and	72hrs.		

		

Viral	supernatant	(HEK	media)	was	ultracentrifuged	(SW28	rotor	2hrs	4°C	@82700g)	in	

30ml	Konical	 tubes	 (Beckman	Coulter)	with	 an	 underlay	 of	 4ml	 sterile	 20%	 sucrose	

solution	25.	Up	to	four	sequential	spins	could	be	carried	out	in	the	same	Konical	tube	to	

concentrate	the	virus	(332).	Viral	pellets	were	resuspended	in	phospho-buffered	saline	

(PBS)	 with	 1%	 Bovine	 Serum	 Albumin	 (BSA)	 overnight	 at	 4°C.	 Concentrated	 viral	

solution	could	be	stored	at	-80°C	until	use.	For	ClonTracer	viral	preparation,	this	process	

was	significantly	scaled	up,	with	up	to	100x	15cm	dishes	in	each	viral	prep	(Figure	2.3.2).		

	

	

	

	

	

	

																																																								
25	sucrose	solution:	40g	sucrose,	4ml	5M	NaCl,	8ml	500mM	HEPES	pH	7.4,	0.4ml	0.5M	EDTA,	170ml	H2O,	
filter	sterilised.		
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Figure	2.3.1	–	Competent	E.	coli	coparison	

	

	

	
	

	

	

	

	

Figure	2.3.1	–	Competent	E.	coli	comparison		

Shows	 a	 comparison	 of	 commercially	 available	 competent	 E.	 coli	 preparations.	

Transforming	Stbl3	cells	resultant	in	significantly	more	drug	resistant	transformants	per	

pg	DNA.	Statistical	significance	by	one-way	ANOVA	with	Bonferroni	correction	is	denoted:	

*p<0.05;	**p<0.01;	***p<0.001.	Data	are	presented	as	mean	±	standard	deviation.		



Clonal	Origins	of	Drug	Resistance																																																																Chapter	2	–	Methods		

	 	 	

	
-80-	

Figure	2.3.2	–	ClonTracer	viral	production	

	

	

	

	
	

	

	

	

	

	

	

	

	

Figure	2.3.2	-	ClonTracer	viral	production.	

Figure	 2.3.2	 shows	 the	 viral	 production	 scale	 up	 for	 preparing	 ClonTracer	 lentiviral	

particles.	 HEK293-T	 cells	 are	 transformed	 with	 lentiviral	 constituent	 plasmids	 and	

supernatant	(containing	virions)	is	harvested	over	72hrs	and	ultra-centrifuged.			
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2.3.3	Viral	Titration	and	Multiplicity	of	Infection	(MOI)	
Lentiviral	infection	is	thought	to	follow	a	Poisson	distribution	of	equation:		

	

P(n)	=	e-m.mn/n!	
	

Where,	P(n)	is	the	fraction	of	cells	infected	by	n	virions	and	m	is	multiplicity	

of	infection	(MOI).		

	

The	 distribution	 of	 fraction	 of	 cells	 with	 a	 given	 number	 of	 integrations	 versus	 the	

number	of	integrations	(P(n)	vs	n),	given	by	this	equation	is	shown	in	Figure	2.3.3	A.	In	

our	studies,	a	of	0.1	was	targeted	to	ensure	that	most	cells	with	any	integration	events	

(~10%)	had	a	single	integration	event	(41).	Various	methods	exist	to	estimate	virus	titer,	

the	two	most	common	are	direct	p24	measurements	via	enzyme-linked	immunosorbent	

assay	(ELISA)	and	qPCR	for	viral	RNA.	Each	can	overestimate	the	number	of	infectious	

virions	 in	 a	 preparation	 as	 the	 measurement	will	 include	 defective	 particles	 and/or	

unintegrated	 viral	 particles.	 Functional	 titres	 calculate	 Transforming	 Units	 (TU),	 i.e.	

functional	virions,	as	shown	for	HIV-ZSG	in	Figure	2.3.3	B.			
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Figure	2.3.3	–	Multiplicity	of	infection	(MOI)	calculations		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	2.3.3	-	Multiplicity	of	infection	(MOI)	Calculations.	

Figure	2.3.3	shows	calculation	of	the	MOI.	A)	Shows	the	distribution	of	cells	with	a	given	

number	of	integrations	(P(n)	vs	n),	for	various	different	MOIs.	given	by	the	equation:	P(n)	

=	e-m.mn/n!	B)	Shows	calculation	of	virions	present	in	a	HIV_ZSG	viral	preparation,	using	

HEK293-T	cells	we	find	1.2	x109	transforming	units	(TUs)	per	ml.	Figure	Overleaf.		
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2.3.4	Lentiviral	Infection		
PDTCs	were	generated	from	PDX	tumours	as	described	and	cultured	in	MEGM	in	ultra-

low	attachment	plates	with	B27	–vitamin	A	added	to	the	growth	media.	MCF7	and	other	

established	cell	lines	were	cultured	as	described	in	normal	growth	media	until	~70%	

confluence	was	achieved.	Immediately	on	plating,	concentrated	virus	(equivalent	to	5	x	

10cm	 dish	 per	 well	 of	 6-well	 plate)	 was	 added	 to	 PDTCs	 with	 up	 to	 10μg/ml	

Hexadimethrine	bromide	(Polybrene).	Maximal	Polybrene	concentration	for	each	model	

was	determined	as	in	Figure	2.3.4	(showing	STG282x4	PDTCs	as	an	example).	For	cell	

lines,	virus	was	added	at	appropriate	MOI	with	up	to	10μg/ml	Hexadimethrine	bromide,	

media	was	changed	after	4hrs.	For	PDTCs,	virus	was	not	removed	during	the	infection	

process,	as	plates	would	require	centrifugation	to	change	media.	PDTCs	were	cultured	

in	 the	 presence	 of	 lentivirus	 for	 24-48hrs	 before	 flow	 cytometry,	 cell	 sorting	 or	

puromycin	selection.		

	

	

2.3.5	Puromycin	Selection		
Puromycin	toxicity	was	determined	in	MCF7s	using	the	same	protocol	as	for	4-OHT	dose	

response	analysis.	We	identified	toxicity	(defined	as	<1%	viability	after	48hr	culture)	of	

MCF7	cells	through	puromycin	titration	to	be	between	1,000ng/ml	and	2,000ng/ml,	in	

line	 with	 values	 found	 in	 the	 literature	 (43),	 and	 so	 used	 2,000ng/ml	 for	 48hrs	 in	

selection	 of	 infected	 MCF7s.	 Several	 PDTC	 models	 were	 found	 to	 be	 resistant	 to	

puromycin	at	concentrations	up	to	10,000ng/ml.	To	minimise	any	potential	off	 target	

effects	of	puromycin	in	these	cells,	we	opted	for	flow	cytometry	based	viral	titration.		
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Figure	2.3.4	–	Polybrene	optimisation	

	

	

	
	

	

	

	

	

	

Figure	2.3.4	-	Polybrene	optimisation.	

Figure	2.3.4	shows	a	calculation	of	effective	polybrene	concentration	for	aiding	in	infection	

of	PDTCs.	A)	Shows	viability	of	STG282x4	at	increasing	concentrations	of	polybrene	using	

a	CellTiter-Glo	Assay.	B)	Shows	phase	contrast	microscopy	of	the	same	STG282x4	cells	after	

3	days	in	culture	with	polybrene,	immediately	before	CellTiter-Glo	Assay.		
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2.3.6	Flow	Cytometry	and	Cell	Sorting			
24-48hrs	post	 infection,	PDTCs	were	mechanically	dissociated	 into	single	cells.	Media	

was	removed	and	PDTCS	were	blocked	in	HBSS	with	5%	normal	Rat	Serum	(Sigma)	at	

4°C	for	30	minutes.	Cell	lines	were	harvested	as	normal.	Cells	were	washed	in	MEGM	and	

filtered	 through	 a	 4μm	 cell	 strainer.	 For	 ALDH	 activity	 assays,	 the	 ALDEFLUOR	 Kit	

(Stemcell	Technologies)	was	used	as	per	manufacturer’s	 instructions.	For	 cell	sorting	

experiments,	cells	were	transferred	to	FACs	tubes	and	stained	with	pan	mouse	MHC-

I/MHC-II	 (H-2kb/H2-Db)	 conjugated	 fluorescein	 isothiocyanate	 (FITC)	 (Biolegend,	

Mouse	 C3H	 IgG2a,k) 26 .	 After	 30	 minutes,	 0.5μl	 	 DAPI	 	 was	 added	 for	 live/dead	

discrimination	and	PDTCs	were	analysed	by	flow	cytometry	using	standard	excitation	

and	emission	spectra	for	green	fluorescent	protein	(GFP;	in	place	of	specific	optimisation	

for	ZsGreen1)	or	red	fluorescent	protein	(RFP).	To	correct	for	spill-over,	spectral	overlap	

values	were	measured	for	all	fluorophores	and	in	all	detectors,	via	single-color	controls.	

The	spill-over	values	were	then	used	to	calculate	compensation	values	by	FlowJo	10.5.0	

(for	MacOS).	Cells	were	gated	and	sorted	 if	required	using	standard	protocols	 for	 the	

FACSAria.	 After	 flow	 sorting,	 cells	 were	 collected	 in	 MEGM	with	 20%	 PenStrep	 and	

washed	three	times	in	MEGM	supplemented	with	20%	PenStrep	(Life	Technologies)	to	

minimise	the	possibility	of	contamination	from	the	flow	cytometer.	For	mouse	studies,	

around	 1	 x105	 cells	 were	 resuspended	 in	 100μl	 and	 100μl	 Matrigel	 was	 added	

immediately	 prior	 to	 injection	 into	 the	 flank	 of	 21-day-old	 NSG	 mice27 .	 Cells	 were	

analysed	and	sorted	using	the	BD	FACSAria	or	the	BD	Influx	FACS	machine	with	data	files	

analysed	 using	 FlowJo	 10.5.0	 (for	MacOS).	 The	 CI	 Flow	 Cytometry	 Core	 aided	 in	 the	

completion	of	these	experiments.			

	

	

	

																																																								
26	H-2kb/H2-Db	has	been	validated	in	our	lab	as	93%	sensitivity	and	92%	specificity	for	detecting	host	
stromal	cells	in	PDX	models	by	using	mouse	whole	blood	as	a	positive	control	(198).	
27	Matrigel	used	in	these	experiments	were	of	the	same	batch	/lot	number.	However,	it	should	be	noted	
that	routine	passage	of	the	PDX	biobank	did	not	necessarily	use	the	same	Matrigel	batch,	which	could	lead	
to	variability	between	out	experimental	models	and	the	PDX	biobank.			
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2.3.7	siRNA	transfection				
Short	 interfering	RNAs	 (siRNAs)	 for	POU5F1	 (OCT4:	Chr.6:	31164337	 -	31170693	on	

Build	GRCh38,	catalogue	#AM16708)	and	SOX2	(SOX2:	Chr.3:	181711924	-	181714436	

on	Build	GRCh38,	catalogue	#106971)	were	reverse	transfected	into	MCF7	cells	with	the	

Stealth	siRNA	Lipofectamine	RNAiMAX	kit	(Invitrogen).	MCF7	cells	of	<10	passage	were	

maintained	 in	 D-MEM/F12	 supplemented	 with	 10%	 heat-inactivated	 foetal	 bovine	

serum,	2mM	glutamine,	and	penicillin/streptomycin	and	passaged	into	24-well	plates.	

6pM	siRNA	was	diluted	in	100µl	Opti-MEM	I	Medium	without	serum	in	each	transfection	

well.	1μl	Lipofectamine	RNAiMAX	was	added	and	mixture	incubated	for	25	minutes	at	

ambient	 temperature.	50,000	cells	 in	500μl	complete	growth	media	minus	antibiotics	

was	 added	 to	 each	well	 containing	 siRNA	+	 lipofectamine	 (final	 siRNA	 concentration	

10nM)	and	wells	plated	rocked	gently	for	5	minutes	at	ambient	temperature.	Cells	were	

then	 incubated	 for	48hrs	at	37°C	 in	a	5%	CO2	 incubator	until	ready	to	assay	 for	gene	

knockdown.	Control	cells	were	incubated	with	scrambled	control	siRNAs	supplied	in	the	

siRNA	kit	(Invitrogen).	Efficient	knockdowns	were	ensured	by	western	blot.		

	

	

2.3.8	Gel	Electrophoresis,	extraction	and	purification	
Analysis	 by	 gel	 electrophoresis	 was	 performed	 by	 adding	 5μl	 of	 digestion	 reaction	

together	with	1%	10x	loading	dye	into	the	wells	of	a	homemade	1%	agarose	Tris	base,	

acetic	acid	and	EDTA	(TAE)	gel	containing	a	1:10,000	dilution	of	SYBR	safe	DNA	gel	stain	

(Invitrogen)	and	run	at	75nV.	A	100bp	or	1kb	Quick-load	DNA	ladder	(NEB)	was	used	as	

appropriate.	As	soon	as	DNA	fragments	were	clearly	separated,	gel	sections	containing	

the	desired	fragments	were	extracted	and	purified	using	the	QIAquick	Gel	Extraction	kit	

(Qiagen),	following	the	manufacturers	recommended	protocol.	DNA	was	eluted	in	50μl	

of	nuclease-free	water	(Sigma).		
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2.4	Molecular	Profiling		
	

2.4.1	Real-time	quantitative	polymerase	chain	reaction	(RT-qPCR)	
RNA	extraction	was	carried	out	using	a	Tissue	Homogenising	Kit	(CK28-R,	Precellys)	and	

miRNeasy	Mini	Kit	(Qiagen)	according	to	manufacturer’s	instructions	(tissue	extraction	

protocol).	 Genomic	DNA	was	 removed	 from	RNA	 samples	 prior	 to	RT-PCR	using	 the	

Ambion	 DNase	 Treatment	 and	 Removal	 kit	 (Applied	 Biosystems),	 according	 to	

manufacturer’s	instructions	(rigorous	treatment	protocol).	RNA	was	quantified	using	a	

NanoDrop	instrument	(Thermo	Scientific).	Total	RNA	(1μg)	was	reverse	transcribed	to	

cDNA	using	a	Transcriptor	First-Strand	cDNA	synthesis	kit	(Roche)	in	duplicate	in	a	20μl	

reaction	mixture	as	per	manufacturer’s	instructions	(oligo	DTs	and	random	primers	or	

TaqMan	miRNA	specific	primers	as	appropriate).	qPCR	was	carried	out	using	TaqMan	

predesigned	probes	(Life	Technologies;	as	per	manufacturer’s	instructions)	and	TaqMan	

Fast	 Universal	 PCR	master	mix	 (2x)	 (Applied	 Biosystems)	 in	 an	 Applied	 Biosystems	

7900HT	 thermocycler	 (fast	 364-well	 protocol) 28 .	 A	 melting	 curve	 analysis	 was	

performed	from	70°C	to	95°C	in	0.3°C	intervals	to	demonstrate	the	specificity	of	each	

amplicon	 and	 to	 identify	 the	 formation	 of	 primer	 dimers.	 The	 geometric	mean	 of	 CT	

values	for	glyceraldehyde	3-phosphate	dehydrogenase	(GAPDH)	and	β2-Microglobulin	

(B2M)	was	used	as	a	reference	gene	to	normalise	all	data	(internal	control).	RQ	(relative	

gene	expression)	values	were	calculated	using	a	comparative	CT	method	(also	known	as	

delta	delta	CT	method	or	2-ΔΔ𝐶T)	(333).	TaqMan	probes	used	were	as	shown	in	Table	2.4.1.	

																																																								
28 	Conditions	 were	 as	 follows:	 95°C	 for	 15	 mins,	 followed	 by	 40	 cycles	 of	 three	 steps	 consisting	 of	
denaturation	at	94°C	for	15	secs,	primer	annealing	at	the	optimal	temperature	for	30	secs	and	primer	
extension	at	72°C	for	30	secs.	
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Table	2.4.1	–	qPCR	TaqMan	probes	from	Thermo-Fischer				

	

	

2.4.2	Western	Blotting			
Cells	 from	fresh	PDTC	or	cell	 line	preparations	were	trypsinised	to	make	a	single	cell	

suspension	and	washed	in	PBS	and	pelleted	in	1.5ml	Eppendorf	tubes.	Whole	cell	lysates	

or	cryopreserved	cell	lines	/PDTCs	previously	prepared	and	stored	in	Serum	and	10%	

DMSO	were	defrosted	on	ice,	vortexed	for	20	seconds	and	centrifuged	for	20	minutes	at	

14,000	 rpm	 (4°C).	 Fresh	 tissue	 was	 washed	 in	 PBS,	 homogenised	 using	 the	 Tissue	

Homogenising	Kit	(CK28-R,	Precellys)	and	trypsinised	to	make	a	single	cell	mixture.	Each	

preparation	was	treated	with	between	50-150μl	complete	lysis	buffer	29	(depending	on	

size	 of	 pellet),	mixed	 thoroughly	 by	 pipetting	 and	 incubated	 for	 30	minutes	 at	 37°C.	

Pierce	 BSA	 protein	 quantification	 assay	 was	 carried	 out	 as	 per	 manufacturer’s	

																																																								
29	5ml	1M	Tris-HCL	pH	7.5	(=50mM),	1ml	0.5M	EDTA	(=5mM),	10ml	1.5M	NaCl	(=150mM),	1ml	TritonX-
100	 (=1%),	 5ml	 1M	NaF	 (=50mM),	 2.5ml	 1M	β-glycerophosphate	 (=25mM).	Mixture	was	made	up	 to	
100ml	with	dH20	(75.5ml)	and	1x	Complete	EDTA-free	protease	inhibitor	cocktail	tablet	(Roche)	and	5μl	
Sodium	orthovanadate	1M	(Na3VO4)	added	per	10ml	of	protein	lysis	buffer.	Aliquots	could	be	stored	for	
up	to	1	month	at	-20°C.		
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instructions	 (Thermo	 Scientific)	 with	 an	 EnVision	 plate	 reader	 (PerkinElmer)	 and	

standard	curve	prepared	in	GraphPad	Prism	5	(for	MacOS).	5μl	loading	buffer	(Laemmli	

2x	 concentrate	 (Sigma	 Aldrich)	 was	 added	 to	 20μg	 protein	 from	 each	 sample	 and	

mixture	boiled.	Laemmli	buffer	contains	sodium	dodecyl	sulphate	(SDS)	to	negatively	

charge	 proteins	 and	 2-mercaptoethanol	 to	 reduce	 disulphide	 bridges.	 Samples	 were	

loaded	 and	 separated	 by	 gel	 electrophoresis 30 .	 Protein	 were	 transferred	 to	 a	

nitrocellulose	 membrane	 using	 an	 iBlot	 transfer	 device	 and	 iBlot	 transfer	 stacks	

(Invitrogen).	Membrane	was	blocked	overnight	(LI-COR	Odyssey	blocking	buffer)	and	

stained	with	primary	(Anti-SOX2	antibody	(Abcam,	ab97959),	Anti-Oct4	antibody	-	ChIP	

Grade	 (Abcam,	 ab19857))	 and	 secondary	 (LI-COR)	 antibodies	 as	 per	 manufacturers	

recommendations.		

	

	

2.4.3	Immunofluorescence	and	Confocal	Microscopy		
Monolayers	were	cultured	as	normal	in	Falcon	Culture	Slides	(Fisher)	and	mechanically	

scratched	when	80%	confluent	using	a	p10	pipette	tip.	24hrs	later,	cells	were	fixed	with	

4%	paraformaldehyde	for	30	minutes	at	room	temperature.	Cells	were	washed	with	PBS	

and	blocked	in	HBSS	with	10%	Normal	Rat	Serum	for	a	further	3hrs.	Cells	were	washed	

with	PBS	and	conjugated	northern	lights	fluorescent	antibodies	for	E-cadherin,	Vimentin	

and	SNAI1	were	added	at	1:250	(3	colour	EMT	kit,	R&D	Systems).	Cells	were	incubated	

with	antibodies	 for	24hrs	at	4°C	with	gentle	 rocking	and	protection	 from	 light.	After	

24hrs,	stained	cells	were	washed	in	PBS	and	images	were	acquired	using	a	Leica	Tandem	

Confocal	system	with	appropriate	excitation	strengths	and	filters	optimised	for	northern	

lights	conjugated	antibodies.	Microscope	settings	were	never	changed	between	images.		

	

	

	

																																																								
30	Conditions	were:	Nu-Page	tris	glycine	polyacramide	gel	10-20%;	2-(N-morpholino)	ethanesulfonic	acid	
(MES)	running	buffer;	Invitrogen),	LI-COR	molecular	weight	ladder	was	included.	
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2.4.4	Immunohistochemistry	and	Histology				
Immunohistochemistry	(IHC)	was	carried	out	by	the	histopathology	core	facilities	at	the	

CRUK	Cambridge	Institute	using	standard	procedures	and	protocols.	Dr	Hamid	Raza	Ali,	

a	breast	cancer	pathologist,	aided	in	the	interpretation	of	data	and	optimised	staining	

procedures	 for	 antibodies	 used.	 HER2	 staining	was	 performed	 at	 the	 Department	 of	

Histopathology	at	the	Addenbrooke’s	Hospital	using	the	diagnostic	standard	antibody,	

comprised	of	a	Dako	autostainer	and	the	Herceptest	kit	(Dako).		

	

Paraffin-embedded	 tissue	 blocks	 were	 sectioned,	 and	 sections	 dewaxed	 by	 2x	 10	

minutes	 immersions	 in	xylene	 (Fischer	Scientific).	Rehydration	was	achieved	by	2x	5	

minutes	immersions	in	100%	ethanol	(EtOH)	followed	by	a	5	minute	emersion	in	70%	

EtOH	 (Fischer	Scientific).	Dewaxing	and	hydration	were	 conducted	on	 the	automated	

Leica	ST5020	multistainer	system	(Leica	Microsystems).	Heat-induced	antigen	retrieval	

(with	sodium	citrate)	was	performed	at	100°C	and	protease-induced	antigen	retrieval	

(with	 Bond	 enzyme	 concentrate	 (Leica	 Microsystems))	 at	 37°C.	 IHC	 was	 performed	

using	the	Leica	BOND-MAX	autostainer	(Leica	Microsystems).	Bound	primary	antibodies	

were	 detected	 using	 a	 horseradish	 peroxidase	 (HRP)	 polymer-conjugated	 secondary	

antibody	 or	 a	 biotinylated	 secondary	 antibody	 (both	 from	 Bond	 Polymer	 Refine	

Detection	Kit;	Leica	Microsystems).	In	the	first	case,	primary	antibodies	raised	in	mouse	

or	rabbit	are	detected	by	a	secondary	linker	anti-mouse	antibody	raised	in	rabbit	(or	vice	

versa),	 followed	 by	 detection	 of	 the	 linker	 antibody	 by	 the	 HRP	 polymer-conjugated	

secondary	antibody.	Binding	of	the	secondary	is	visualised	using	3,3-diaminobenzidine	

tetrahydrochloride	 (DAB),	 which	 is	 a	 substrate	 for	 the	 HRP	 enzyme.	 Staining	 was	

intensified	 using	 DAB	 enhancer	 (Leica	Microsystems).	 In	 the	 case	 of	 Polymer	 Refine	

Detection,	biotinylated	secondary	antibodies	are	used	to	detect	bound	primary	antibody.	

The	biotinylated	secondary	is	then	detected	by	HRP-streptavidin	conjugated	antibody	

and	DAB	staining	performed	as	described.	Details	of	antibodies	used	are	detailed	in	Table	

2.4.4.1	(primary)	and	Table	2.4.4.2	(secondary).		
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2.5	Barcode	Analysis		
	

2.5.1	Next	Generation	Barcode	Sequencing	&	Analysis		
PCR-amplified	products	were	quantified	using	the	Standard	Sensitivity	NGS	Fragment	

Analysis	Kit	(Advanced	Analytical	Technologies)	on	the	Advanced	Analytical	Fragment	

Analyzer	Automated	CE	System.	Barcode	PCR	reaction	conditions	were	as	follows:	per	

50μl	reaction,	PCR-grade	water	up	to	50μl,	10x	Titanium	Taq	PCR	buffer	5μl,	50x	dNTP	

mix	(10mM	each)	1μl,	F	Seq	primer	(10μM)	1μl,	R	Seq	primer	(10μM)	1μl,	50x	Titanium	

Taq	DNA	polymerase	(CLONTECH)	1μl,	DMSO	2μl,	gDNA	template	(2μg	per	reaction)	31.		

Fragment	 sizes	 and	 concentrations	 of	 PCR	 amplicons	were	 analysed	 using	Advanced	

Analytical	PROSize	2.0	software.	PCR	amplicons	were	then	prepared	at	10nM	and	loaded	

at	3.5pM	for	sequencing	on	the	Illumina	HiSeq2500	sequencer	in	Rapid	Mode	using	the	

50	Cycle	TruSeq	Rapid	SBS	Kit,	TrueSeq	Rapid	SR	Cluster	Kit,	and	HiSeq	Rapid	SR	Flow	

Cell	(Illumina).	Barcode	Primers	are	shown	in	Table	2.2.5.1.		

																																																								
31	Cycling	conditions:	95°C	(5	minutes;	1	cycle),	35	cycles	of	95°C	(30	seconds)	66°C	(30	seconds)	72°C	(1	
minute),	1	cycle	of	72°C	(7	minutes).	Cycling	conditions,	including	cycle	numbers,	followed	the	protocol	
developed	by	Bhang	et	al.,	(334).	



Clonal	Origins	of	Drug	Resistance																																																																Chapter	2	–	Methods		

	 	 	

	
-93-	

	

Table	2.5.1	–	Primers	used	for	barcode	library	preparation.	

Table	 shows	primers	used	 for	 cell	 lines	and	PDX	models	 in	ClonTracer	 studies.	 Forward	

primer	 spans	 54bp	 upstream	 of	 the	 barcode	 insert,	 and	 forms	 Illumina	 P5	 adapter	 of	

amplicon.	Reverse	primer	spans	94bp	downstream	of	the	barcode	insert	and	forms	an	inline	

barcode	(for	demultiplexing)	and	the	P7	adapter	of	the	resultant	amplicon.		
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2.5.2	Barcode	Composition	Analysis			
FASTQ	files	were	prepared	from	the	barcode-sequencing	runs	to	count	the	number	of	

reads	and	the	fraction	of	barcodes	in	each	sample.	Demultiplexing	was	performed	using	

the	 FastX	 toolkit	 (adapter	 trimming	 function)	 allowing	 for	 up	 to	 one	 mismatch	

(http://hannonlab.cshl.edu/fastx_toolkit/).	 All	 further	 analysis	 was	 undertaken	 in	

python	using	the	ClonTracer	Analysis	package	(Algorithms	for	Deconvoluting	NGS	data	

V1.2)	 (https://bit.ly/2Lv5UVs)	 (135).	Reads	were	 then	 filtered	 to	keep	 those	 that	 (a)	

showed	 the	WS	×	15	 pattern;	 (b)	matched	 the	 expected	 sequence	 after	 the	WS	×	 15	

barcode	for	sequence	libraries	with	lengths	of	≥37	bp;	and	(c)	had	an	estimated	Phred	

quality	score	of	at	least	10	for	all	base	pairs	in	the	read,	with	an	average	Phred	quality	

score	greater	 than	30.	All	barcodes	observed	at	 least	 twice	 that	passed	 these	 criteria	

were	kept.	Sets	of	barcodes	were	then	merged	to	account	for	sequencing	errors	if	either	

(a)	the	test	barcode	was	a	hamming	distance	of	1	from	the	more	abundant	barcode	and	

observed	at	1/8th	of	the	count	or	(b)	the	test	barcode	was	a	hamming	distance	of	2	from	

the	more	 abundant	 barcode	 and	 observed	 at	 1/40th	 the	 count;	 this	 is	 similar	 to	 the	

approach	used	by	Lu	et	al.,	(202)	and	Bhang	et	al.,	(334).	For	those	sequence	libraries	

with	lengths	of	exactly	30	bp,	the	hamming	distance	also	allowed	insertions	or	deletions	

of	2	bp;	because	of	the	barcode	design	and	our	filtering	steps,	insertions	or	deletions	of	

odd-numbered	length	or	in	the	longer	reads	should	already	have	been	filtered	out.	After	

these	steps,	each	barcode	set	was	annotated	with	the	sequence	of	 the	most	abundant	

barcode,	counts	before	merging,	counts	after	merging,	and	fraction	with	respect	to	the	

total	count	of	all	barcodes	that	passed	the	read	filters.	

 

 

2.5.3	Calculation	of	Barcode	Overlap	Between	Samples				
To	establish	the	significance	of	sharing	between	samples	treated	with	different	drugs,	

we	computed	'sharing	ratios'.	The	sharing	ratio	was	defined	as	the	ratio	of	significant	

barcodes	of	one	replicate	seen	in	another	to	the	total	number	of	significant	barcodes	in	

that	replicate.	A	barcode	was	called	significant	if	it	was	seen	in	0.021%	of	the	total	(which	
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was	the	highest	fraction	observed	in	EtOH-treated	groups).	A	barcode	was	considered	

shared	between	two	samples	if	it	was	significant	in	both	samples	and,	to	rule	out	possible	

errors	due	to	low-level	contamination	during	sequencing,	the	fraction	of	the	barcode	in	

the	less	abundant	sample	was	at	least	1%	compared	to	the	fraction	in	the	more	abundant	

sample.	

	

	

2.5.4	Spike-in	Experiments		
HEK293-T	 cells	 were	 infected	 at	 a	 low	 MOI	 (<0.1)	 with	 one	 of	 10	 clonally	 derived	

ClonTracer	barcodes,	prepared	as	 lentiviral	 constructs	as	normal.	Known	numbers	of	

these	 individually-tagged	cells,	spanning	a	range	of	250	to	105	cells,	were	spiked	 into	

each	PDX	sequencing	run.	Genomic	DNA	was	extracted	from	single	barcoded	HEK293-T	

cells	samples,	mixed	with	degenerate	barcoded	PDX	cell	samples.	In	each	PDX	replicate,	

up	 to	 four	 separate	 HEK293-T	 dilutions	 were	 included.	 Additionally,	 one	 well	 per	

sequencing	run	contained	10	dilutions	of	between	250	to	105	cells.	From	combined	data	

across	each	sequencing	run,	we	therefor	had	116	known	dilutions	in	total.	The	sensitivity	

and	specificity	of	clone	detection	for	each	input	cell	number	(i.e.	clone	size)	could	thus	

be	calculated.	These	internal	controls	allowed	us	to	compute	the	estimated	clone	size	for	

each	calculated	barcode	abundance.	We	found	1,000	cells	or	above	had	a	sensitivity	and	

specificity	of	100%,	whilst	500	cells	had	a	sensitivity	of	~60%	and	specificity	of	~95%	

(one	false	positive	clone	(out	of	20)	fitting	barcode	detection	and	filtering	criteria	but	

not	present	in	spike-ins).	Our	limit	of	accurate	detection	was	thus	set	at	500	cells,	the	

relative	 barcode	 abundance	 (RBA)	 equivalent	 of	 which,	 varied	 slightly	 between	 test	

samples.	 Thus,	 these	 spike-ins	 acted	 as	 an	 internal	 control,	 allowing	 normalisation	

between	barcode	analysis	of	different	PDX	models.		
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2.6	Next	Generation	Sequencing			
NGS	libraries	were	prepared	by	the	CI	genomics	core,	with	bioinformatics	(VAF	filtering	

and	PyClone)	run	by	Dr	Oscar	Rueda,	using	protocols	defined	in	(198).		

	

	

2.6.1	Whole	Exome	Sequencing		
WES	libraries	were	prepared	using	Nextera	Rapid	Capture	Exome	(Illumina	Inc.,	USA)	

following	 manufacturer’s	 instructions	 (Enrichment	 Guide	 version	 #15037436	 Rev.	 J,	

Illumina	Inc.,	USA).	Pre-capture	libraries	were	quantified	using	qPCR	and	their	average	

length	was	assed	using	DNA1000	chip	on	Bioanalyzer	2100	(Agilent	Technologies	Inc.,	

USA).	500ng	of	each	library	was	pooled	for	three-plex	exome	capture,	and	after	11	cycles	

of	 PCR	 amplification	 were	 again	 normalized	 to	 15nM	 and	 pooled	 for	 high-coverage	

paired-end	exome	sequencing.	The	sequencing	was	performed	using	125bp	paired-end	

reads.	 Bam	 files	 were	 merged,	 sorted	 and	 indexed	 using	 samtools.	 Duplicates	 were	

marked	using	Picard	tools	and	 insertions	and	deletions	(indels)	were	realigned	using	

GATK.	HaplotypeCaller	was	employed	for	variant	calling,	and	after	 that	several	 filters	

were	applied	using	the	Bioconductor	package	VariantAnnotation:	for	single	nucleotide	

variants	 (SNVs),	 a	minimum	genotyping	 quality	 of	 20,	 at	 least	 5	 reads	 at	 the	 variant	

position,	 a	 strand	 bias	 Phred-scale	 p	 value	 smaller	 than	 40	 and	 no	 presence	 of	

homopolymers	 in	 the	 surrounding	 region.	 For	 indels,	 we	 increased	 the	width	 of	 the	

region	to	detect	nearby	homopolymers.	Genotypes	and	variant	allele	frequencies	(VAFs)	

were	computed	from	these	calls.		

	

	

2.6.2	Shallow	Whole	Genome	(sWGS)	
As	described	above	in	exome	sequencing	analysis,	libraries	were	prepared	using	Nextera	

Rapid	 Capture	 Exome	 (Illumina	 Inc.,	 USA).	 50	 bp	 single-read	whole-genome	 shallow	

sequencing	was	performed	in	parallel	with	the	exome	sequencing	to	provide	a	clean	and	
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accurate	estimate	of	copy	number.	Alignment	was	performed	using	BWA	and	data	were	

analysed	using	the	Bioconductor	package	QDNaseq.	Copynumber	(HOMD,	Homozygous	

deletions,	HETD,	Heterozygous	deletions,	NEUT,	neutral	copy	number,	GAIN,	single	copy	

gains	 and	 AMP,	 high-level	 amplifications),	 were	 called	 based	 on	 thresholds	 on	 the	

segmented	mean	log2-ratio	(-1,	-0.4,	0.25,	0.75).		

	

	

2.6.3	PyClone	Clonal	Reconstruction			
PyClone	takes	as	input	the	allele	frequencies	of	somatic	mutations	in	each	sample	and	

clusters	 mutations	 that	 shift	 together	 across	 the	 samples,	 predicting	 the	 cellular	

frequency	 for	 each	 cluster	 in	 each	 sample	 accounting	 for	 copy	 number	 changes	 and	

normal	cell	contamination.	PyClone	was	run	in	Python	using	recommended	settings	for	

40,000	 iterations	 with	 a	 burn	 in	 period	 of	 20,000	 iterations	 using	 a	 beta	 binomial	

parameter	of	500	(335).	To	measure	the	clones	whose	prevalence	changed	significantly	

between	time	points,	we	compute	the	90%	credible	intervals	and	those	clusters	that	had	

a	sample	not	overlapping	with	the	rest	were	called	significant.		
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2.7	Statistical	Analysis		
	

Data	were	tested	for	Gaussian	distribution	by	the	Shapiro-Wilk	Test	with	a	cut-off	of	0.05.	

For	normally	distributed	data,	comparisons	between	two	groups	were	made	by	the	2-

sample	t-test	and	more	than	two	groups	by	one-way	analysis	of	variance	(ANOVA)	with	

Bonferroni	 correction.	 All	 t-tests	 were	 two	 tailed.	 For	 non-Gaussian	 data,	 non-

parametric	comparisons	were	made	by	Mann-Whitney	or	Kruskal–Wallis	 for	multiple	

comparisons.	All	statistical	and	graphical	analysis	of	data	was	carried	out	in	GraphPad	

Prism	6.0	(for	MacOS).	Statistical	significance	 is	denoted	where	appropriate	(*p<0.05,	

**p<0.01,	***p<0.001,	****p<0.0001).	Statistical	significance	was	only	calculated	between	

groups	of	at	least	3	biological	replicates	and	if	possible	where	technical	replicates	were	

available	to	act	as	controls	(10%	variability	between	technical	replicates	was	considered	

acceptable	and	means	were	taken	forward	as	biological	replicates).	All	data	is	presented	

as	mean	±	standard	deviation,	unless	otherwise	noted.		

	
Molecular	Taxonomy	of	Breast	Cancer	 International	Consortium	(METABRIC)	(7)	and	

The	Cancer	Genome	Atlas	(TCGA)	Breast	Cancer	(336)	datasets	were	downloaded	from	

cBioportal	 (337,338)	 and	 the	 TCGA	 data	 portal	 (tcga-data.nci.nih.gov).	 Normalised	

RNASeqV2	expression	values	and	corresponding	clinical	metadata	were	manipulated	in	

R	Studio	 (Mac)	0.99.484	 (R	Studio:	https://www.rstudio.com/).	Combined	data	were	

analysed	in	Microsoft	Excel	(Mac	14.4.3)	and	R	Studio	with	results	plotted	in	GrpahPad	

Prism	6	(Mac).	Comparisons	between	two	groups	were	made	using	two-tailed	t-tests	or	

Mann–Whitney	 U-tests	 and	 more	 than	 two	 groups	 by	 one-way	 ANOVA	 or	 Kruskal–

Wallis,	multiple	 comparisons	were	 corrected	 for	 by	 the	 Bonferroni	method.	 Kaplan–

Meier	disease	free	survival	graphs	were	constructed	in	GraphPad	Prism	6	and	presented	

as	 whole	 population	 versus	 experimental	 population.	 Comparisons	 between	 curves	

were	made	by	Log-rank	(Mantel-Cox)	tests	with	the	Mantel-Cox	p	value	reported.	
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Chapter	3	-	Tracking	Resistance	
with	High	Complexity	Barcodes		
	

Tracking	Tamoxifen	Resistance	with		

High	Complexity	Barcodes	

	
Aims	of	the	chapter		

1. Establish	a	reproducible	method	for	induction	of	tamoxifen	resistance	in	breast	

cancer	MCF7	cell	line.			

2. Characterise	and	expand	a	high	complexity	barcode	library	and	label	a	population	

of	parental	MCF7s.			

3. Induce	resistance	in	barcoded	MCF7s	and	follow	each	cell’s	clonal	fait	by	NGS	of	

barcodes.		

4. Determine	whether	the	development	of	resistance	 in	 this	system	is	de	novo	or	

results	from	clonal	expansion	of	a	specific	resistant	population.	
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3.1	Introduction			
	
Despite	 remarkable	 advances	 in	 our	 understanding	 of	 the	 progression	 of	 human	

malignancies	and	the	molecular	events	 that	underpin	tumour	survival,	new	therapies	

often	 fail	 to	show	significant	efficacy	 in	clinical	 trials.	Even	with	patient	stratification,	

clinical	 responses	 can	 be	 fleeting,	 often	 adding	 only	 6-12	 months	 before	 disease	

progression	(339).	As	discussed,	tumours	have	long	been	known	to	be	heterogeneous	in	

nature	 and	 composed	 of	 multiple	 cellular	 phenotypes	 (340).	 This	 intratumour	

heterogeneity	 is	 governed	 by	 both	 cell-autonomous	 (e.g.	 genomic	 and	 epigenomic	

heterogeneity)	and	non-cell-autonomous	(e.g.	stromal	heterogeneity)	factors	(124)	and	

has	 clinical	 implications	 in	 patient	 specific	 responses	 to	 therapy	 and	 the	 rapid	

emergence	of	drug	resistance	(134).	In	this	chapter,	we	set	out	to	elucidate	the	role	of	

intratumour	heterogeneity	in	the	development	of	resistance	to	a	clinically	relevant	agent	

in	breast	cancer,	tamoxifen.		

	

ERα	is	the	defining	feature	of	the	majority	of	breast	cancers	and	is	thought	to	be	a	key	

mediator	 of	 proliferation,	 differentiation	 and	 apoptosis	 in	 ERα+	 tumours	 and	 the	

developing	mammary	gland	(341).	Tamoxifen,	an	ERα	antagonist	(via	its	metabolite	4-

hydroxytamoxifen	(4-OHT))	is	widely	used	as	an	anti-oestrogen	therapy	for	both	early	

and	late	stage	ERα-positive	(ERα+)	breast	cancer	in	pre-	and	post-menopausal	women	

(255).	 Despite	 significant	 benefit	 to	 the	 majority	 of	 ERα+	 patients,	 both	 innate	 and	

acquired	 resistance	 to	 tamoxifen	 are	 common	 clinical	 outcomes	 (255).	 Tamoxifen	

resistance	 in	 ERα+	 tumours	 is	 generally	 associated	 with	 differential	 ERα-binding	

programmes	 mediated	 by	 FOXA1,	 increased	 AIB-1	 expression	 and	 loss	 of	 ERBB2,	

repression	 by	 the	 ERα-PAX2	 complex	 (248,272,273).	 	 Along	 with	 large	 scale	

transcription	factor	binding	studies	in	patient	samples,	the	breast	cancer	cell	line	MCF7	

has	 been	 used	 extensively	 to	 study	 the	 acquisition	 of	 tamoxifen	 resistance	

(272,342,343).		
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The	 emergence	 of	 tamoxifen	 resistance	 in	 the	 ERα	 and	 progesterone	 receptor	 (PR)	

positive	(HER2	negative),	luminal	epithelial	cell	line	MCF7	is	a	well-documented	process	

(343,344).	 As	 the	 development	 of	 resistance	 is	 a	 predictable	outcome	 of	 treating	 the	

parental	cell	line	with	low	doses	of	tamoxifen,	it	is	possible	that	a	drug	resistant	clone	

exists	in	the	population	prior	to	treatment	(135).	MCF7s	are	amenable	to	extremely	high	

throughput	culture	with	few	technical	requirements.	Prolonged	culture	of	MCF7s	in	the	

presence	 of	 4-OHT,	 or	 in	 the	 absence	 of	 exogenous	 oestrogens,	 leads	 to	 the	 clonal	

outgrowth	of	resistant	cellular	populations.	Sub-lines	are	heterogeneous	in	nature	but	

are	typically	characterised	by	rapamycin	resistance	and	 increased	phosphorylation	of	

Akt/mTOR	pathway	members	(345).	Sub-lines	developed	in	the	absence	of	oestrogens	

are	 further	 characterised	 by	 the	 acquisition	 of	 PAX2	 expression	 and	 loss	 of	 active	

phospho-HER2	(345).	 Interestingly,	 there	 is	evidence	 for	 the	role	of	 the	transcription	

factor	 SOX2	 in	 MCF7s	 selected	 for	 tamoxifen	 resistance	 (‘TamR’	 cell	 lines),	 through	

supporting	a	stem/progenitor	cell	population		(342,346).	SOX2	is	best	known	for	its	role	

in	 maintaining	 pluripotency	 in	 embryonic	 stem	 cells	 (ES	 cells)	 and	 as	 one	 of	 four	

transcription	factors	required	to	induce	pluripotency	in	terminally	differentiated	cells	

(induced	pluripotent	stem	cell;	iPS	cells)	(280).	Additionally,	its	role	in	regulating	self-

renewal	and	tumourigenicity	of	melanoma-initiating	cells	has	recently	been	described	

(278).		

	

Typically,	in	cancer	cell	line	models,	resistance	to	targeted	therapies	is	thought	to	arise	

from	pre-existing	populations,	rather	than	from	de	novo	evolution	(135).	However,	these	

clonal	populations	can	be	defined	by	phenotypic	as	well	as	genomic	traits.	In	an	elegant	

study	by	Kreso	et	al.,	it	was	found	that	minor	‘Type	IV’	subclones	in	colorectal	PDXs	were	

able	 to	 repopulate	 the	 tumour	 bulk	 after	 treatment	with	 chemotherapy	 (196).	These	

quiescent	 cell	 populations	 were	 genetically	 similar	 to	 their	 highly	 proliferative	

counterparts,	and	were	later	linked	to	the	BMI1	positive	population,	thought	to	act	as	

reserve	stem	cells	of	the	intestinal	and	colonic	crypts	(192).	Recently,	high-complexity	

lentiviral	 barcodes	 relying	 on	 repeating	 sequences	 of	 degenerate	 bases	 have	 been	
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developed,	 increasing	 the	 resolution	 at	which	 heterogeneity	 can	 be	 studied	 in	 these	

phenotypic	clonal	tracing	studies	(135,197).	One	design,	originally	developed	for	lineage	

tracing	in	the	haematopoietic	system	(347)	and	later	adapted	for	use	in	breast	cancer	

PDX	models	(197),	utilises	12	degenerate	bases	in	a	sequence	25	base	pairs	long,	giving	

a	theoretical	complexity	greater	than	4	million.	However,	even	this	complexity	limits	the	

resolution	at	which	clonal	structures	can	be	traced	in	a	highly	heterogeneous	system.		

	

In	this	chapter	we	derive	and	characterise	tamoxifen	resistant	cell	lines	from	an	MCF7	

parental	 line.	 We	 utilise	 the	 ClonTracer	 barcode	 library,	 featuring	 a	 30-nucleotide	

degenerate-sequence	and	theoretical	complexity	of	~72	x106	(334),	in	order	to	track	the	

contribution	of	phenotypically	distinct	cellular	clones	to	the	development	of	resistance.	

We	 reasoned	 that	 having	 multiple	 replicates	 with	 comparable	 starting	 barcode	

representations	provides	 a	means	 to	distinguish	 pre-existing	 from	de	 novo	 acquired-

resistance	 clones.	 If	 resistance	 were	 mostly	 driven	 by	 de	 novo	 alterations,	 distinct	

barcoded	populations	would	emerge	in	independent	replicates;	if,	rather	resistance	was	

due	 to	 the	 outgrowth	 of	 a	 specific	 rare	 population,	 we	 would	 expect	 overlap	 in	 the	

enriched	barcodes	between	replicates.	Moreover,	we	use	PyClone	(335)	and	direct	VAF	

measurements	overtime	to	rule	out	genomic	clonal	selection,	and	putatively	examine	the	

contribution	of	quiescent,	Type	IV	or	slow	cycling,	cells	to	the	resistance	phenotype.		
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3.2	 Characterisation	 of	 an	 Established	 Oestrogen-

Insensitive	Cell	Line	Derived	from	MCF7s	
	

In	 order	 to	 establish	 a	 baseline	 for	 our	 studies,	 we	 sought	 to	 profile	 a	 previously	

described	MCF7-derived	 tamoxifen	 resistant	 cell	 line,	 termed	 TamR	 (a	 generous	 gift	

from	the	Carroll	Lab).	Profiling	would	focus	on	ERα	function,	including	cellular	response	

to	exogenous	ligands	(survival	and	proliferation)	and	downstream	gene	transcription	of	

ERα	target	genes.	TamR	cells	were	cultured	in	charcoal-stripped	FBS,	phenol-red-free	

media	as	previously	described	(238),	and	as	such	it	should	be	noted	that	they	are	likely	

to	exhibit	oestrogen	independence32.	In	addition	to	resistance	to	tamoxifen,	the	TamR	

subline	could	be	additionally	resistant	 to,	 for	example,	AIs	such	as	anastrozole,	which	

work	by	inhibiting	the	generation	of	oestrogen	from	androgen	precursors	in	the	ovaries	

of	premenopausal	women	and	peripheral	tissues	of	postmenopausal	women	(245).		

	

Figure	3.2.1A	depicts	4-OHT	dose	response	studies,	where	charcoal-stripped	media	was	

swapped	for	growth	media	(containing	FBS	and	phenol-red)	and	cells	were	treated	with	

4-OHT	(afimoxifene)	in	escalating	doses	for	48hrs.	The	concentration	at	which	50%	of	

cells	were	 found	 to	 be	 viable	 (Inhibitory	 Concentration	 50%	 (IC50))	 by	 trypan	 blue	

exclusion	 (348)	was	0.24µM	 for	 the	parental	MCF7	cell	 line	and	2.8µM	 for	 the	TamR	

derivative	(p<0.01;	extra	sum-of-squares	F	test).	Previous	studies	have	placed	the	IC50	

for	MCF7’s	 as	 0.39µM	 and	 several	MCF7-derivative,	 tamoxifen	 resistant,	 lines	 in	 the	

1.94µM	to	>10µM	range	(345),	putting	our	results	in	keeping	with	established	literature.	

ERα	is	known	to	bind	multiple	ligands	simultaneously,	reflected	in	the	Hill	Coefficient	of	

>1	in	each	cell	line.	ERα	has	been	shown,	by	competitive	binding	assay	with	oestradiol	

(E2)	and	4-OHT	at	constant	molar	ratios,	to	preferentially	bind	4-OHT,	which	competes	

with	 E2	 for	 active	 binding	 domains	 on	 the	 receptor	 surface	 (349).	 Additionally,	

																																																								
32	For	simplicity,	and	since	the	only	agent	tested	was	4-OHT,	we	will	refer	to	this	(and	cell	lines	derived	in	
other	studies)	as	tamoxifen	resistant.	
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cooperative	binding,	where	the	binding	of	an	initial	ligand	increases	receptor	affinity	for	

the	 second,	has	been	 shown	 for	both	E2	and	4-OHT	 (349,350).	 Interestingly,	 the	Hill	

Slope	of	~4	in	TamR	cells	treated	with	4-OHT	versus	~1.5	in	MCF7s,	suggests	that	this	

affect	may	be	amplified	in	tamoxifen	resistant	cells.		

	

To	further	investigate	this	phenomenon,	and	to	continue	characterisation	of	TamR	and	

MCF7	cell	lines	for	future	experiments,	we	profiled	ESR1	(ERα)	and	PGR	(PR)	expression	

in	 each	 cell	 line,	 treated	 with	 combination	 or	 singular	 ligands,	 by	 qPCR.	 In	 each	

experiment,	4-OHT	was	used	at	100nM	(<50%	if	IC50)	and	E2	at	10nM,	based	on	studies	

estimating	a	 typical	biological	concentration	and	showing	differential	gene	regulation	

significantly	above	or	below	this	level	(351).	Results	in	Figure	3.2.1B	are	an	average	of	at	

least	three	independent	biological	replicates,	and	are	presented	as	fold-change,	relative	

to	vehicle	(EtOH)	treatment	of	MCF7s,	normalised	to	the	geometric	mean	of	GAPDH	and	

B2M	CT	values	(both	of	which	are	commonly	used	housekeeper	genes	in	breast	cancer	

studies	(352)).	Treatment	was	for	24hrs,	and	statistical	significance	calculated	as	MCF7	

versus	 TamR	 (One-way	 ANOVA	 with	 Bonferroni	 correction).	 Interestingly,	 ESR1	

expression	was	significantly,	though	not	markedly,	lower	in	TamR	cells	than	MCF7s,	at	

baseline	 (p=0.0047).	Whereas	 E2	 appeared	 to	 have	 relatively	 little	 effect	 on	 baseline	

expression	of	ESR1	in	either	cell	line,	4-OHT	markedly	reduced	its	expression	in	MCF7	

cells	only.	A	combination	of	E2	&	4-OHT	similarly	reduced	expression	of	ESR1	in	MCF7s,	

though	 not	 to	 the	 same	 extent	 as	 4-OHT	 alone,	 suggesting	 competitive	 antagonism	

between	ligands.	Overall,	expression	of	ESR1	expression	was	relatively	unaltered	by	the	

presence	or	absence	of	either	ligand	in	TamR	cells.	To	test	the	function	of	ERα-related	

transcription,	we	next	profiled	cells	under	the	same	conditions,	for	PGR	expression,	as	a	

classical	marker	of	ERα	function	(353).	As	with	ESR1,	TamR	has	lower	expression	of	PGR	

in	baseline	(EtOH)	conditions	(p<0.00001),	the	addition	of	E2,	but	not	4-OHT,	increased	

PGR	expression	in	MCF7s	alone,	as	would	be	expected	from	functional	ERα	signalling.	

Interestingly,	 expression	 was	 reduced	 from	 baseline	 for	 TamRs	 treated	 with	 either	

ligand,	alone	or	in	combination,	suggesting	dysfunctional	ERα	signalling	in	this	cell	line.		
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To	 test	 this	 hypothesis	 functionally,	 each	 cell	 line	 was	 cultured	 in	 the	 IncuCyte	 live	

imaging	system	for	up	to	150hrs	in	the	presence	of	ligand,	and	assayed	for	proliferation	

(354).	Whilst	neither	ligand	appeared	to	have	an	effect	on	proliferation	of	TamRs,	4-OHT	

markedly	slowed	the	growth	of	MCF7s	(p<0.001;	non-linear	mixed	effects	model)	and	

exogenous	E2	 slightly	 increased	 their	proliferation	 (p>0.05).	Together,	 these	 findings	

suggest	the	presence	of	a	functionally	different	ERα	signalling	pathway	in	TamRs	versus	

MCF7s.	 Whilst	 further	 studies,	 for	 example	 interrogating	 phosphorylation	 of	

downstream	ERα	targets,	would	aid	us	in	a	complete	profile	of	the	different	signalling	

pathways,	our	aims	are	more	to	define	a	functional	baseline	with	which	to	compare	our	

own	tamoxifen	resistant	MCF7	sub-lines.		

		

	

	

	

	

	

	

	

	

	

Figure	3.2.1	–	E2	&	4-OHT	effects	on	MCF7s	&	TamRs	

A)	Dose	Response	of	TamR	and	MCF7,	showing	resistance	in	the	TamR	line.	p<0.01;	extra	

sum-of-squares	F	test.	IC50	value	is	molar	concentration.	B)	Expression	by	qPCR	of	ESR1	

and	PGR	 (ERα	 target)	 in	MCF7s	 and	TamRs	 treated	with	 10nM	E2,	100nM	4-OHT	or	 a	

combination.	 Shows	 loss	 of	 typical	 oestrogen	 response	 in	 TamRs.	 normalised	 to	 the	

geometric	mean	of	GAPDH	and	B2M	CT	values.	Treatment	was	 for	24hrs,	 and	statistical	

significance	calculated	as	MCF7	versus	TamR	(One-way	ANOVA	with	Bonferroni	post-hoc).	

Figure	Overleaf.		
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Figure	3.2.1	–	E2	&	4-OHT	effects	on	MCF7s	&	TamRs	
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Figure	3.2.2	–	E2	&	4-OHT	effects	on	MCF7	&	TamR	proliferation	

Incucyte	growth	curves	of	MCF7	parental	and	TamR	subline	 in	response	to	10nM	E2	or	

100nM	4-OHT.	A)	 Shows	E2	 induced	growth	and	4-OHT	 inhibition	of	growth	 in	MCF7s.	

Inhibition	by	4-OHT	was	statistically	different	from	NS	(control)	and	10nM	E2	(p<0.001;	

non-linear	mixed	effects	model,	E2	increases	in	proliferation	were	not	significant.	B)	shows	

the	 same	 experimental	 set-up	 for	 the	 TamR	 cell	 line.	 No	 differences	 were	 statistically	

significant.		Figure	Overleaf.		
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Figure	3.2.2	–	E2	&	4-OHT	effects	on	MCF7	&	TamR	proliferation	
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3.3	Selection	of	Tamoxifen	Resistant	MCF7	Sub-Lines		
	

To	derive	tamoxifen	resistant	MCF7s,	we	cultured	cells	in	T75	flasks	for	up	to	160	days	

in	 the	 presence	 of	 charcoal	 stripped	 serum	 (c/s	 serum)	 and	 phenol	 red	 free	media.	

Phenol	red,	a	pH	indicator	normally	included	in	cell	culture	media,	has	been	shown	to	

act	as	a	weak	oestrogen	in	cell	culture	(estrogenic	activity	at	15-45µM,	affinity	0.001%	

of	E2	in	MCF7s)	it	is	therefore	recommended	to	conduct	steroid	hormone	experiments	

in	its	absence	(355).	FBS	contains	multiple	oestrogen	and	oestrogen-like	compounds,	we	

therefore	opted	for	charcoal	stripped	serum,	through	this	method	is	far	from	perfect,	we	

sought	to	minimise	the	effects	of	remaining	oestrogens	by	using	serum	from	the	same	

lot	(356).	 In	order	to	mimic	more	closely	 the	physiological	development	of	 tamoxifen	

resistance	 in	 a	 breast	 cancer	 patient,	 we	 opted	 to	 include	 4-OHT	 in	 our	 long-term	

resistance	 cultures.	 It	 was	 reasoned	 that	 even	 if	 c/s	 serum	 contained	 residual	

oestrogens,	this	would	mimic	the	situation	in	vivo33.	4-OHT	was	kept	at	a	sub-IC50	dose	

and	removed	from	the	media	24hrs	before	any	experiments	to	ensure	residual	drug	did	

not	 to	 affect	 ERα	 binding	 experiments.	 Figure	 3.3.1	 shows	 the	 culture	 protocol	 (A)	

alongside	 representative	 phase	 contrast	 images	 from	 defined	 time-points,	 and	

corresponding	dose	response	graphs	(B).	 In	practice,	cells	were	passaged	after	phase	

contrast	 images	were	 taken,	 and	 re-plated	 to	 include	experimental	24-well	plates	 for	

parallel	 dose-response	 experiments,	 hence	 dose-responses	 were	 ~2-5	 days	 after	

associated	images	were	taken.	Media	was	changed,	and	cells	passaged	in	addition	to	the	

experimental	procedure	when	required.				

	

After	30	days	culture	in	4-OHT	(Figure	3.3.1A/B	i),	MCF7s	qualitatively	showed	slowed	

growth	and	pronounced	budding,	possibly	indicating	apoptosis.	At	this	time-point,	their	

IC50	 for	 4-OHT	 was	 practically	 unchanged	 from	 the	 control	 (MCF7s	 cultured	 in	 full	

																																																								
33	As	stated,	the	resultant	tamoxifen	resistant	lines	were	likely	resistant	to	both	AIs	and	Tamoxifen,	though	
due	to	the	mechanism	of	action	of	AIs	involving	inhibition	of	oestrogen	synthesis	in	the	ovaries,	testing	in	
vitro	would	likely	be	inefficient,	and	as	such	these	lines	will	be	referred	to	simply	as	tamoxifen	resistant.		
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serum	&	 EtOH,	 as	 the	 4-OHT	 carrier).	 At	 60	 days	 culture	 (Figure	 3.3.1A/B	 ii)	 4-OHT	

treated	 MCF7s	 showed	 increased	 cell	 growth,	 by	 qualitative	 analysis,	 and	 a	 slight	

increase	 in	 4-OHT	 IC50	 (0.269µM	 to	 0.397µM).	Whilst	 far	 below	 the	 aforementioned	

IC50	of	TamR	cell	lines	(2.8µM),	this	was	an	early	indication	of	resistance,	which	at	day	

90	 warranted	 an	 increase	 in	 the	 dose	 of	 4-OHT	 from	 400nM	 to	 600nM,	 which	 was	

calculated	to	kill	~90%	of	parental	MCF7s	(IC90).	After	120	days	culture	(Figure	3.3.1A/B	

iii),	clear	cell	growth	was	observed	by	phase	contrast	microscopy,	separation	in	the	dose	

response	curves	accompanied	this	pre-resistance	phenotype	(IC50	=	0.67µM;	p<0.001	

by	 extra	 sum-of-squares	 F-test).	 This	 was	 more	 pronounced	 after	 160	 days	 (Figure	

3.3.1A/B	iv)	where	the	IC50	for	our	cultured	resistant	cells	was	1.876µM,	and	our	control	

0.311µM	(p<0.001),	clear	growth	was	also	observed	by	phase	contrast.		

	

We	sought	to	phenotypically	profile	the	sub-cultured	line	(MCF7-R1)	and	to	compare	to	

established	TamR	lines.	Figure	3.3.2	A	shows	the	MCF7-R1	line	cultured	in	the	Incucyte	

cell	imaging	system,	‘NS’	refers	to	‘no-supplement’	(EtOH	carrier),	results	are	relative	to	

this	EtOH	control.	EtOH	controls	were	 consistently	no	different	 from	base	 line	MCF7,	

data	not	shown.	No	difference	was	observed	in	proliferation	of	MCF7-R1	in	the	presence	

of	either	ligand.	Expression	of	ESR1	&	PGR	was	profiled	as	before	by	qPCR,	results	are	

presented	as	normalised	to	internal	housekeeper	and	EtOH	control	in	Figure	3.3.2B.	4-

OHT	reduced	expression	of	both	genes,	both	on	 its	own	and	 in	 combination	with	E2.	

Whilst	this	was	only	seen	in	TamRs	for	PGR,	there	was	a	trend	for	decreased	expression	

of	 ESR1	 also	 (Figure	 3.2.1).	 It	 is	 possible	 that	 the	 discrepancy	 was	 caused	 by	 the	

comparatively	prolonged	(up	to	40	passages	post-induction)	time	that	TamRs	had	been	

cultured	in	oestrogen-free	conditions.	Interestingly,	whilst	the	Hill	Slope	found	in	each	

control	(MCF7	parental)	dose-response	in	Figure	3.3.1	was	close	to	2	(1.98,	1.817,	2.135	

&	1.8	for	i	through	iv),	the	MCF7-R1	line	progressed	from	1.9	to	4.3	by	the	end	of	the	

resistance	derivation	period	(though	a	dip	below	trend	to	from	3.6	to	2.1	was	observed	

between	60	and	120	days),	 further	reflecting	the	TamR	line	and	hinting	at	 increasing	

binding	affinity	in	resistant	cell	lines.		
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Figure	3.3.1	–	Deriving	4-OHT	resistant	MCF7s	

A)	Shows	Phase	Contrast	of	MCF7	over	time	with	4-OHT	and	a	schematic	for	induction	of	

resistance	 by	 continuous	 culture.	 Scale	 bar	 is	 100µm.	 Time	 points	 are	 labelled	 i-iv,	

corresponding	 to	 dose-responses.	 IC50	 values	 are	 molar	 concentration.	B)	 Shows	 dose	

response	 curves	 for	 parental	 and	 continuously	 cultured	 sublines	 in	 response	 to	 4-OHT	

treatment.	Shows	gradual	induction	of	tamoxifen	resistance.	iii	and	iv	(corresponding	to	

120-	 and	 160-days	 culture)	 were	 statistically	 significant	 (p<0.001,	 parental	 versus	

resistance	by	extra	sum-of-squares	F-test).	Figure	Overleaf.		
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Figure	3.3.2	-	Sensitivity	of	derived	resistant	lines	to	E2	&	4-OHT	

A)	 Proliferation	 study	with	MCF7-R1,	 data	 derived	 from	 the	 IncuCyte	 live	 cell	 imaging	

system.	No	supplement	(NS):	i.e.	EtOH	carrier	only.	E2	dose	was	10nM	and	4-OHT	100nM,	

as	before.	No	curves	were	statistically	different	by	non-linear	mixed	effects	model.	B)	qPCR	

RNA	 expression	 data	 confirming	 loss	 of	 normal	 oestrogen	 response	 in	 MCF7-R1	 cells.	

Results	are	normalised	to	carrier	(EtOH	control)	and	GAPDH/B2M	housekeeping	controls	

and	presented	as	 fold	change.	4-OHT	significantly	reduced	expression	of	both	ESR1	and	

PGR,	alone	or	in	combination	with	E2	(presented	as	versus	EtOH	control;	*p<0.05,	**p<0.01,	

***p<0.001;	one-way	ANOVA	with	Bonferroni	post-hoc).	Figure	Overleaf.		
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Figure	3.3.2	-	Sensitivity	of	derived	resistant	lines	to	E2	&	4-OHT	
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3.4	Generation	of	ClonTracer	MCF7	line	(MCF7-CT)				
	

Although	 targeted	 cancer	 therapies	 often	 yield	 impressive	 initial	 responses,	 tumours	

frequently	develop	resistance	(357–359),	this	is	no	more	obvious	than	in	ERα+	breast	

cancer,	where	the	development	of	resistance	to	tamoxifen	is	common	place	(213,272).	

Typically,	 resistance	 results	 from	 the	 outgrowth	 of	 specific	 pre-existing	 populations	

within	a	tumour	rather	than	from	de	novo	evolution	(135)	(see	Figure	3.4.1	A).	Indeed,	

the	wider	the	diversity	of	minor	clonal	populations	in	a	tumour,	the	more	likely	it	is	that	

resistance	will	arise	(11,124).	However,	the	acquisition	of	de	novo	mutations,	or	indeed	

transcriptional	programs,	conferring	drug	resistance	cannot	be	ruled	out.		

	

Tamoxifen	 resistant	 tumours	 are	 characterised	 by	 differential	 ERα-binding	 patterns	

with	prognostic	 capacity	exclusively	 in	ERα+	patients	 (248).	Differential	ERα-binding	

and	the	emergence	of	tamoxifen	resistance	in	patients	is	not	thought	to	be	associated	

with	the	selection	of	a	rare	subpopulation	of	cells	but	rather	rapid	reprogramming	of	

FOXA1	 binding	 events	 (238).	 FOXA1	 acts	 as	 a	 pioneer	 factor,	 recruiting	 ERα	 to	 the	

chromatin.	However,	what	directs	differential	FOXA1	binding	remains	to	be	established	

(248).	MCF7s	have	been	observed	to	give	rise	to	multiple	distinct	resistance	phenotypes	

when	 cultured	 for	 prolonged	 periods	with	 4-OHT,	 supporting	 the	 idea	 that	multiple	

tamoxifen	 resistant	 subpopulations	 exist	 within	 the	 parental	 cell	 line	 (345).	

Interestingly,	 MCF7s	 have	 an	 ‘intermediate’	 ERα	 binding	 profile	 between	 ‘good	

prognosis’	and	 ‘bad	prognosis’	profiles	characterised	by	Ross-Innes	et	al.,	 (248)	which	

could	reconcile	this	supposed	contradiction.	Whether	clonal	outgrowth	or	the	initiation	

of	 de	 novo	 resistance	 pathways,	 the	 development	 of	 drug	 resistance	 has	 profound	

implications	for	patients	and	warrants	further	study.		

	

In	 this	 section,	 we	 utilise	 the	 ClonTracer	 barcode	 library	 to	 individually	 label	 a	

population	of	MCF7s	(Figure	3.4.1B	&	C).	In	order	to	have	enough	starting	material	for	

lentiviral	 preparation	 and	 infection,	 we	 amplified	 the	 ClonTracer	 plasmid	 library	 as	



Clonal	Origins	of	Drug	Resistance																																											Chapter	3	–	Barcode	Resistance

	 	 	

	
-116-	

described	in	Methods	(Chapter	2,	section	2.3.1)	and	ensured	suitable	library	balance	and	

complexity.	 24	 individual	 colonies	were	 picked	 from	 across	 the	 amplification	 plates,	

plasmids	purified	and	analysed	by	qPCR.	Figure	3.4.2	A	shows	similar	CT	values	for	each	

preparation,	suggesting	no	significant	bias	 in	PCR	amplification	efficiency.	To	test	 the	

complexity	 of	 our	 amplified	 ClonTracer	 library,	 we	 serially	 diluted	 the	 pool	 to	 a	

theoretical	concentration	of	100	plasmid	molecules.	In	the	most	dilute	sample,	83	unique	

barcodes	were	found	out	of	a	theoretical	100,	in	the	most	concentrated,	100,836	out	of	

100,000.	 A	 linear	 correlation	 (R2=0.9989;	 p=0.0005)	 was	 seen	 between	 number	 of	

predicted	plasmid	molecules	and	number	of	unique	counted	barcodes	by	NGS	(Figure	

3.4.2	B).	It	is	likely	that	deviation	from	expected	templates	can	be	largely	accounted	for	

by	instrument	insensitivities	and	pipetting/	dilution	inaccuracies.		

	

Next,	we	prepared	lentiviral	constructs	of	our	ClonTracer	library	in	HEK293-T	cells	and	

optimised	 infection	 conditions	 in	 MCF7s.	 Lentiviral	 infection	 is	 thought	 to	 follow	 a	

Poisson	distribution,	in	our	studies,	a	MOI	of	0.1	was	targeted	to	ensure	that	most	cells	

with	an	integration	event	(~10%)	had	a	single	integration	event	(360).	Various	methods	

exist	 to	 estimate	 virus	 titer,	 the	 two	most	 common	 are	 direct	 p24	measurements	 by	

ELISA	and	qPCR	for	viral	RNA.	A	p24	ELISA	measures	all	p24	in	the	sample	regardless	of	

whether	or	not	it	is	incorporated	into	a	viral	particle.	Consequently,	titres	based	on	p24	

quantification	tend	to	be	overestimates	since	they	can	 include	 free	p24	and	defective	

viral	 particles.	 Direct	measurement	 of	 lentiviral	 RNA	 is	 one	 alternative	 to	 direct	 p24	

measurement.	In	this	approach,	viral	RNA	is	first	converted	to	cDNA	and	then	quantified	

using	qPCR	primers	targeting	specific	viral	components	such	as	long	terminal	repeats	

(LTRs),	gag,	woodchuck	hepatitis	virus	posttranscriptional	regulatory	element	 (WPRE),	

antibiotic	resistance-genes,	or	the	transgene	itself.	Similar	to	the	p24	assay,	titration	via	

measurement	of	viral	RNA	can	overestimate	the	amount	of	infectious	virus	due	to	the	

inclusion	of	potentially	defective	particles.	Virion	concentration	can	be	10-	to	1000-fold	

higher	 by	 such	 methods	 than	 by	 functional	 assays	 (361).	 The	 ClonTracer	 backbone	
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contains	a	puromycin	resistance	gene	to	aid	in	selection	of	infected	cells,	thus	we	opted	

to	calculate	a	functional	titer	directly	in	MCF7	cells.		

	

We	identified	MCF7	48hr	puromycin	toxicity	through	titration	to	be	between	1000ng/ml	

and	2000ng/ml	(Figure	3.4.3	A),	in	line	with	values	found	in	the	literature	(362),	and	so,	

opted	for	2000ng/ml	for	48hrs	in	selection	of	infected	MCF7s.	A	viral	titre	of	stock	(2	

x109	TU/ml	in	HEK293-Ts)	diluted	1	in	1,000	in	PBS/serum	was	selected	to	give	an	MOI	

of	<0.1	and	thus	the	majority	of	infected	cells	to	carry	a	single	barcode	integration.	The	

number	of	unique	barcode	sequences	provides	a	quantitative	readout	of	the	number	of	

clones	 the	 population	 originated	 from,	 and	 the	 counts	 per	 unique	 barcode	 offered	 a	

measure	 of	 the	 relative	 abundance	 of	 each	 clone,	 although	 double	 integrations	 could	

potentially	be	 removed	by	downstream	computational	 analysis.	Confirmation	of	viral	

titre	was	confirmed	by	flow	cytometry	analysis	of	infected	MCF7s	for	RFP	positivity.	An	

RFP	reporter	is	also	present	in	the	ClonTracer	construct.	Figure	3.4.4	A	shows	our	gating	

strategy,	first	a	wide	side	and	forward	scatter	populations	was	selected	to	minimise	cell	

debris,	 followed	 by	 a	 dead	 cell	 exclusion	 assay	 using	 propidium	 iodine,	 and	 doublet	

exclusion	 by	 both	 forward	 and	 side	 scatter	 discrimination.	 Figure	 3.4.4	B	 shows	 the	

proportion	of	RFP	positive	(RFP+)	cells	with	an	escalating	dose	of	ClonTracer	viral	prep.	

This	analysis	found	10.1%	of	cells	were	RFP+	with	a	viral	load	of	2	x106	TU,	showing	

reasonable	 concordance	with	 the	7.6%	of	 cells	 resistant	 to	puromycin	with	the	 same	

viral	 load.	 Differences	 could	 be	 due	 to	 relative	 insensitivity	 of	 puromycin	 titration	

compared	to	flow	cytometry.	However,	in	giving	the	more	conservative	estimate	of	MOI,	

and	 thus	 less	 likely	 to	 suffer	 from	 false	 positive	 infections,	 puromycin	 selection	was	

chosen	for	future	studies	34.		

	

Our	 optimised	 infection	 protocol	 was	 used	 to	 infect	 10	 x	 15cm	 dishes.	 Cells	 were	

puromycin	 selected	 for	 48hrs	 and	 dead	 cells	 removed,	 around	 20	 million	 viral	

integration	 events	were	 estimated	 over	 the	 pool.	 Dilutions	were	 prepared,	DNA	was	

																																																								
34	Though	our	data	suggests	this	would	underestimate	true	MOI.		
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extracted,	and	barcodes	analysed	by	NGS	as	before.	Good	concordance	was	seen	(Figure	

3.4.5	A)	between	observed	and	expected	unique	barcodes	(R2=0.986;	p=0.0007).	In	total	

96%	of	the	~1	x106	barcodes	sequenced,	around	96%	were	unique,	with	~3%	having	

just	 two	 reads	 (Figure	 3.4.5	 B).	 These	data	 suggest	 that	 the	majority	 of	 barcodes	 are	

represented	only	once	in	our	MCF7	pool.		

	

	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.4.1	-	ClonTracer	cellular	clone	tracking	schematic	

A)	Model	of	the	selection	of	resistant	clones	in	a	tumour.	Dead	cells	are	coloured	in	shades	

of	black,	other	colours	represent	clonal	populations.	B)	ClonTracer	library	consists	of	semi-

random	30-bp-long	DNA	barcodes	with	15	repeats	of	A	or	T	(“W”	for	weak)–G	or	C	(“S”	for	

strong).	C)	depiction	of	a	labelled	tumour	for	clonal	tracing,	each	cell,	and	its	progeny,	are	

uniquely	labelled	irrespective	of	genotype	(denoted	by	colours).		Figure	Overleaf.		
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Figure	3.4.2	–	Barcode	amplification	balance	

A)	24	plasmid	constructs	containing	a	DNA	barcode	were	isolated	from	E.	coli	colonies	used	

in	the	expansion	of	the	ClonTracer	library.	Remarkably	similar	CT	values	were	observed	for	

all	 24	 barcodes	 suggesting	 that	 the	 distinct	 barcode	 sequence	 did	 not	 introduce	 any	

significant	bias	in	their	PCR	amplification	efficiency.	B)	Plasmid	stock	was	serially	diluted	

to	 a	 calculated	 number	 of	 plasmids	 (by	 molecular	 weight).	 Plasmid	 dilutions	 were	

sequenced	by	NGS	and	unique	barcodes	counted	using	our	barcode	analysis	pipeline	(see:	

Methods,	section	2.5).	Good	correlation	between	observed	and	expected	unique	plasmids	

(R2=0.9989;	p=0.0005;	by	linear	regression)	suggests	the	majority	of	barcodes	are	unique	

and	library	complexity	is	preserved	through	amplification	protocols.	Figure	Overleaf.		
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Figure	3.4.2	–	Barcode	amplification	balance	
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Figure	3.4.3	–	Puromycin	toxicity	and	viral	titres	for	ClonTracer	in	MCF7	

A)	 Shows	 puromycin	 toxicity	 for	 optimising	 infected	 MCF7	 selection.	 The	 ClonTracer	

plasmid	contains	a	puromycin	resistance	cassette	to	aid	in	both	bacterial	and	mammalian	

cell	 selection.	 At	 2000ng/ml	 <99%	 of	 MCF7s	 survived	 48hrs	 of	 culture,	 as	 assessed	 by	

CellTitre-Glo.	 B)	 Viral	 titre	 of	 ClonTracer	 lentivirus,	 showing	 cut-off	 at	 MOI=0.1.	

Calculations	(Methods,	section	2.3.3)	suggest	this	will	result	in	the	majority	of	cells	being	

labelled	by	a	single	lentiviral	integration.	Figure	Overleaf.		
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Figure	3.4.3	–	Puromycin	toxicity	and	viral	titres	for	ClonTracer	in	MCF7	
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Figure	3.4.4	–	ClonTracer	MOI	by	flow	cytometry		

A)	Shows	our	gating	strategy,	first	a	wide	side	and	forward	scatter	population	was	selected	

to	minimise	cell	debris,	followed	by	a	dead	cell	exclusion	assay	using	propidium	iodine,	and	

doublet	exclusion	by	both	forward	and	side	scatter	discrimination.	B)	Shows	the	proportion	

of	RFP+	cells	with	an	escalating	dose	of	ClonTracer	viral	preparation.	Axis	labels	denote	the	

wavelength	of	the	excitation	laser	in	nm.	Excitation	was	collected	at	588nm	in	both	cases.		

Figure	Overleaf.		
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Figure	3.4.5	–	Complexity	of	barcodes	in	MCF7	pool	

A)	Analysis	as	 in	3.4.2	but	 for	pool	of	72hrs	 infected	&	puromycin-selected	MCF7s	(with	

dead	cells	removed	&	genomic	DNA	content	used	to	estimate	cell	number).	Good	correlation	

is	seen	between	observed	and	expected	unique	barcodes	(R2=0.9859;	p=0.0007;	by	linear	

regression)	suggesting	that	the	majority	of	labelled	cells	are	labelled	uniquely.	B)	In	total	

in	 this	 analysis,	 4%	 of	 barcodes	 in	 the	 cell	 preparation	 were	 non-unique.	 Suggesting	

complexity	is	primarily	maintained.		Figure	Overleaf.		
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Figure	3.4.5	–	Complexity	of	barcodes	in	MCF7	pool	
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3.5	Tamoxifen	Resistance	Studies	in	Barcoded	MCF7s		
	

We	sought	to	use	the	ClonTracer	system	to	monitor	clonal	dynamics	in	response	to	4-

OHT	treatment.	We	transduced	MCF7	cells	with	the	ClonTracer	library	with	the	aim	of	

labelling	approximately	10	million	cells	to	deeply	sample	the	potential	heterogeneity	of	

the	 cancer	 cell	population,	 similar	 to	 the	experimental	plan	designed	by	Bhang	et	al.,	

(334).	We	reasoned	that	having	multiple	replicates	with	comparable	starting	barcode	

representations	 would	 provide	 a	 means	 to	 distinguish	 pre-existing	 from	 de	 novo	

acquired-resistance	 clones.	 If	 resistance	 were	 mostly	 driven	 by	 de	 novo	 alterations,	

distinct	barcoded	populations	would	emerge	in	independent	replicates.	By	contrast,	if	

pre-existing	clones	were	the	major	source	of	resistance,	one	could	expect	the	selective	

enrichment	 of	 the	 same	 sets	 of	 barcodes	 (labelling	 the	 same	 pre-existing	

subpopulations)	in	replicate	experiments.		

	

To	explore	 this,	pooled	barcoded	MCF7s	 (MCF7-CT)	were	expanded	and	plated	 in	10	

replicates	with	10-fold	library	representation	each	(i.e.	10	x107	cells	each)	to	minimize	

stochastic	 loss	of	barcodes	during	plating	and	to	ensure	comparable	starting	barcode	

representations.	 Figure	 3.5.1	 shows	 our	 experimental	 design.	 Plating	 was	 such	 that	

resistant	and	control	replicates	of	the	same	number	(e.g.	MCF7-CT	res1	and	con1)	were	

derived	from	the	same	originating	Eppendorf,	allowing	direct	comparisons	to	be	drawn.	

To	accommodate	the	need	for	100	million	cells	per	replicate,	biological	replicates	(5	in	

each	arm)	consisted	themselves	of	5	x	15cm	dishes	(seeding	density	of	4	x106).	These	

technical	replicates	were	maintained	and	expanded	separately.	Thus,	5x	resistant	and	

control	pairs	(consisting	of	5x	technical	replicates)	were	established	and	propagated.		

	

4-OHT	resistance	was	established	in	the	treatment	arm	as	previously	optimised,	creating	

the	“MCF7-CT	res”	cell	lines	(1-5),	the	control	arm	was	treated	exactly	as	treatment,	but	

media	(+serum)	was	spiked	by	EtOH	rather	than	4-OHT,	giving	the	“MCF7-CT	con”	cell	

lines	(1-5).	Sampling	by	NGS	was	carried	out	after	3	and	6	months.	Figure	3.5.2	shows	
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the	 library	preparation	and	bioinformatic	pipelines	 for	processing	of	barcodes.	Aside	

from	the	FastX	toolkit	and	standard	NGS	Quality	Control	(QC)	checks,	all	processing	was	

carried	out	in	Python	using	the	ClonTracer	software	package	(135).	Sample	usable	read	

counts	are	given	for	one	NGS	run	in	the	bottom	panel	of	Figure	3.5.2.	Primer	sequences,	

and	more	experimental	details,	are	given	in	Methods,	section	2.5.		

	

After	6	months	culture,	we	profiled	each	barcoded	cell	line	(MCF7-CT	res1-res5	&	MCF7-

CT	con1-con5)	for	IC50	by	4-OHT	dose	response.	Each	control-barcoded	line	was	found	

to	 be	 sensitive	 to	 tamoxifen	 similarly	 to	 the	 parental	 line	 (Figure	 3.5.3	 A)	 and	 each	

resistant	cell	line	showed	an	increased	IC50,	suggesting	barcodes	did	not	interfere	with	

the	development	of	resistance	(Figure	3.5.3.2).	Resistant	IC50s	for	res1-res5	were	0.8µM	

(p<0.005),	1.5µM	(p<0.001),	1.2µM	(p<0.001),	1.6µM	(p<0.001)	and	1.1µM	(p<0.0005);	

all	 statistical	 analysis	 by	 extra	 sum-of-squares	 F-test).	 Interestingly,	 the	 Hill	 Slope	

followed	the	same	pattern	as	seen	in	Figure	3.3.1	(increased	slope	/potential	cooperative	

binding	in	resistant	lines),	with	the	exception	of	MCF7-CT	res1,	which	also	had	the	lowest	

calculated	 IC50.	 These	 results	 are	 likely	 the	 result	 of	 less	 than	 perfect	 curve	 fitting,	

though	 could	 represent	 heterogeneity	 amongst	 resistance	 lines.	 Next,	 three	

representative	 resistance	 lines	 were	 grown	 to	 confluence	 in	 the	 Incucyte	 live	 cell	

imaging	 system	 (Figure	 3.5.4	 A).	 MCF7-CT	 res1-3	 were	 slower	 growing	 than	 MCF7	

parental	line,	though	appear	to	be	relatively	similar	in	growth	to	TamR,	MCF7	parental	

was	significantly	faster	than	any	resistant	lines	(p<0.05;	non-linear	mixed	effect	model).	

The	slow	growth	of	cells	cultured	to	tamoxifen	resistance	is	a	well-documented	process	

(97)	and	could	be	linked	to	their	observed	adoption	of	a	mesenchymal-like	phenotype	

(319).	Interestingly,	MCF7-CT	res2	was	initially	slower	growing	that	any	other	resistant	

line,	 this	 is	most	 noticeable	 between	 42-54hrs	 of	 culture,	 where	 MCF7-CT	 res2	 was	

>50%	lower	in	confluence	than	the	other	resistant	lines.	This	result	was	not	statistically	

significant.		
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Control	lines	retained	response	to	E2	and	4-OHT	in	terms	of	ERα	function	(measured	by	

qPCR	of	PGR	expression)	(Figure	3.5.4	B)	but	this	was	lost	in	resistant	lines.	Specifically,	

MCF7-CT	res1	showed	slightly	elevated	ESR1	and	PGR	expression	on	the	addition	of	4-

OHT	(or	4-OHT	&	E2),	res2	showed	the	opposite	pattern,	with	slightly	lowered	ESR1	and	

PGR	expression	on	4-OHT	treatment.	Only	downregulation	of	ESR1	&	PGR	in	4-OHT	&	E2	

treated	 MCF7-CT	 res2	 was	 statistically	 different	 from	 the	 EtOH	 control	 (*p<0.05	 &	

**p<0.01	for	PGR	&	ESR1	respectively;	one-way	ANOVA	with	Bonferroni	correction).	In	

control	lines,	PGR	expression	was	significantly	elevated	in	both	lines	on	E2	treatment,	

and	significantly	reduced	on	4-OHT	treatment	and	without	E2).	ESR1	expression	was	

reduced	on	4-OHT	treatment	in	both	lines	(with	and	without	E2)	but	was	only	elevated	

by	E2	treatment	in	MCF7-CT	con1	(all	statistics	from	one-way	ANOVA	with	Bonferroni	

correction).	 In	 Figure	 3.5.4	 C,	 we	 see	 that	 resistant	 line	 MCF7-CT	 res4	 has	 lost	

proliferative	response	to	E2	and	4-OHT	in	culture,	and	these	were	retained	by	control	

line	MCF7-CT	 con4.	 Specifically,	 E2	 slightly	 increases	 proliferation	 of	MCF7-CT	 con4	

(*p<0.05),	where	4-OHT	markedly	reduces	proliferation	(***p<0.001),	neither	of	these	

effects	were	seen	in	MCF7-CT	res4	(statistics	by	non-linear	mixed	effects	model).				

	

Reports	 in	 the	 literature	have	shown	that	derived	tamoxifen	resistant	 lines	can	differ	

markedly	 in	 sensitivity	 to	 rapamycin	 and	 activation	 of	 mTORC1/2.	 Moreover,	

Everolimus	(rapamycin)	is	used	clinically	to	tackle	tamoxifen	resistant	breast	cancers.	

Slight	 differences	 in	 resistant	 line	 phenotypes	observed	 in	Figure	 3.5.3.2	 (IC50s	 of	 4-

OHT)	and	Figure	3.5.4	A	(proliferation)	led	us	to	question	whether	the	phenotypes	of	our	

five	 derived	 resistant	 cell	 lines	 were	 identical.	 Figure	 3.5.5	 shows	 rapamycin	 dose	

response	curves	 for	4-OHT	resistant	cell	 lines.	Large	differences	exist	between	 IC50s,	

which	 span	 from	 0.8µM	 to	 1.7µM.	 These	 results	 suggest	 that	 the	 mechanisms	 of	

resistance	acquired	by	res1-res5	may	not	have	been	identical.			
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Figure	3.5.1	–	Experimental	design	for	resistance	screen	

Schematic	 of	 screen	 for	 MCF7-CT	 lines.	 We	 aimed	 to	 label	 10	 million	 labelled	 cells.	

Puromycin	 selection	 was	 completed	 as	 previously	 described	 and	 resulting	 cells	 pooled.	

Plating	was	such	that	resistant	and	control	replicates	of	the	same	number	(e.g.	MCF7-CT	

res1	 and	MCF7-CT	 con1)	 were	 derived	 from	 the	 same	 originating	 Eppendorf,	 allowing	

direct	 comparisons	 to	 be	 drawn.	 To	 accommodate	 the	 need	 for	 100	 million	 cells	 per	

replicate,	 biological	 replicates	 (5	 in	 each	arm)	 consisted	 themselves	of	5	 x	15cm	dishes	

(seeding	density	of	4,000,000).	These	technical	replicates	were	maintained	and	expanded	

separately.	Thus,	5x	resistant	and	control	pairs	(consisting	of	5x	technical	replicates)	were	

established	and	propagated.	Resistant	 cells	were	maintained	 in	 culture	 for	6	months	 in	

charcoal	stripped	serum	and	with	 increasing	concentrations	of	drug,	during	which	time	

they	became	resistant	to	4-OHT	(MCF7-CT	res	lines).	Control	lines	were	cultured	in	serum	

containing	media	spiked	with	EtOH	carrier.	Figure	Overleaf.		
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Figure	3.5.2	–	Analysis	pipeline	for	ClonTracer	barcodes	

Barcode	of	interest	is	amplified	from	genomic	DNA	by	PCR,	Illumina	adapters	and	in-line	

barcodes	 are	 ligated	 before	 150bp	 paired	 end	 (PE)	 sequencing.	 After	 standard	QC	 and	

demultiplexing	with	FastX	(barcode	splitter	function),	total	usable	reads	are	tabulated,	and	

barcodes	 extracted	 using	 the	 ClonTracer	 v1.2	 python	 package.	 Counts	 and	 frequency	

distributions	were	then	processed	in	R.	Bottom	panel	shows	representative	output	of	one	

run,	with	usable	reads	(barcodes)	for	a	range	of	replicates	and	experimental	conditions.	

Figure	Overleaf.		
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Figure	3.5.2	–	Analysis	pipeline	for	ClonTracer	barcodes	
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Figure	3.5.3.1	–	4-OHT	response	in	sensitive	lines,	by	dose	response		

Confirmation	 of	 4-OHT	 sensitivity	 in	MCF7-CT	 con	 cell	 lines.	 Dose	 response	 curves	 and	

calculations	 carried	 out	 as	 previously,	 in	 Figure	 3.3.1.	 IC50	 values	 are	 consistent	 with	

parental	line	in	each	comparison.	These	data	suggest	that	prolonged	culture	of	control	cell	

lines	has	not	affected	their	resistance	to	4-OHT.	Figure	Overleaf.		
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Figure	3.5.3.1	–	4-OHT	response	in	sensitive	lines,	by	dose	response		
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Figure	3.5.3.2	–	4-OHT	response	in	resistant	lines,	by	dose	response									

Confirmation	 of	 4-OHT	 resistance	 in	MCF7-CT	 res	 cell	 lines.	 Dose	 response	 curves	 and	

calculations	carried	out	as	previously	Figure	3.3.1.	 IC50	values	are	universally	 larger	 in	

MCF7-CT	res	cell	lines,	confirming	the	development	of	tamoxifen	resistance	in	these	lines.	

Specifically,	IC50s	for	res1-res5	were	0.8µM	(p<0.005),	1.5µM	(p<0.001),	1.2µM	(p<0.001),	

1.6µM	(p<0.001)	and	1.1µM	(p<0.0005);	all	statistical	analysis	by	extra	sum-of-squares	F-

test).	Figure	Overleaf.		
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Figure	3.5.3.2	–	4-OHT	response	in	resistant	lines,	by	dose	response									
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Figure	3.5.4	–	Phenotypic	response	to	estrogen	of	resistant	lines			

A)	 Proliferation	 (presented	as	 relative	 confluence)	of	 resistant	 lines	 (res1,	 res2	&	 res3),	

together	with	controls	(MCF7	&	TamR)	over	90	hrs.	MCF7-CT	res1	&	res3	appear	similar	in	

proliferative	capacity	to	TamRs,	whilst	MCF7-CT	res2	are	initially	slightly	slower	growing.	

Proliferation	of	MCF7s	was	significantly	faster	than	all	other	cells	lines	(p<0.05;	non-linear	

mixed	effect	model),	though	the	differences	between	resistance	lines	was	not	statistically	

significant	in	any	comparison.	B)	Control	lines	retained	response	to	E2	(10nM)	and	4-OHT	

(100nM)	in	terms	of	ERα	function.	Res1	showed	slightly	elevated	ESR1	and	PGR	expression	

with	the	addition	of	4-OHT	(or	4-OHT	&	E2),	res2	showed	the	opposite	pattern,	with	slightly	

lowered	 ESR1	 and	 PGR	 on	 4-OHT	 treatment.	 No	 resistance	 results	 were	 statistically	

significant.	In	control	lines,	PGR	expression	was	significantly	elevated	in	both	lines	on	E2	

treatment,	 and	 significantly	 reduced	 on	 4-OHT	 treatment	 (with	 and	without	 E2).	 ESR1	

expression	was	reduced	on	4-OHT	treatment	in	both	lines	(with	and	without	E2)	but	was	

only	elevated	by	E2	treatment	in	con1	(all	statistics	from	one-way	ANOVA	with	Bonferroni	

correction).	C)	E2	slightly	increases	proliferation	of	MCF7-CT	con4	(p<0.05),	where	4-OHT	

markedly	reduces	proliferation	(p<0.001),	neither	of	 these	effects	were	seen	 in	MCF7-CT	

res4	(statistics	by	non-linear	mixed	effects	model).			Figure	Overleaf.		
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Figure	3.5.4	–	Phenotypic	response	to	estrogen	of	resistant	lines			
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Figure	3.5.5	–	Resistant	lines	differ	in	Rapamycin	sensitivity				

	

	
	

	

	

	

	

	

Figure	3.5.5	–	Resistant	lines	differ	in	Rapamycin	sensitivity				

Rapamycin	 dose	 response	 curves	 for	 4-OHT	 resistant	 cell	 lines.	 Large	 differences	 exist	

between	IC50s,	which	span	from	0.8µM	to	1.7µM.	Res2	has	the	lowest	IC50	and	Res4	the	

highest,	comparison	between	these	two	curves	was	statistically	significant	by	non-linear	

mixed	effects	model	(p<0.01)	but	this	was	lost	on	multiple	comparison	correction.		
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3.6	Barcode	Distribution	in	4-OHT	Resistance	
	

Following	the	development	of	tamoxifen	resistance	in	our	barcoded	cell	lines,	we	sought	

to	quantify	barcode	 abundance	 in	 each	 replicate.	Figure	 3.6.1	shows	 relative	barcode	

abundance	(RBA),	calculated	as	the	proportion	of	total	usable	barcodes	in	the	sample,	

represented	 by	 each	 unique	 barcode	 (along	 x-axis).	 RBA	 is	 a	measure	 of	 the	 relative	

selection	of	an	individual	cellular	clone	(i.e.	barcode)	in	a	population,	high	abundance	in	

few	barcodes	shows	reduction	of	population	complexity	and,	therefore,	a	selection	for	

clonal	populations.	Technical	replicates	of	MCF7-CT	res1	(Rep1-Rep5)	show	selection	of	

specific	barcodes	at	abundancies	ranging	from	0.04	to	0.06,	suggesting	that	4-6%	of	cells	

in	each	replicate	came	from	a	single	founding	cell.	Control	lines	(MCF7-CT	con1,	Rep1-5)	

show	RBA	consistently	below	0.01,	suggesting	fewer	than	1%	cells	originating	from	the	

same	 parental	 cell.	 These	 same	 data	 for	 all	 cell	 lines	 are	 presented	 in	 Figure	 3.6.2,	

showing	replicates	1-5	of	each	cell	line	in	the	same	plot.	Each	line	represents	a	specific	

unique	barcode,	with	abundance	represented	by	y-axis	height.	In	each	case,	control	lines	

show	little	specific	barcode	enrichment	compared	to	resistant	cells.	Loss	of	complexity	

and	 a	 tendency	 toward	 clonal	 dominance	 can	 be	modelled	 by	 the	 Shannon	Diversity	

Index	(SDI)	(204,363).	SDI	has	been	computed	for	each	cell	line,	with	results	printed	at	

the	top	of	each	panel,	lower	number	indicates	a	loss	of	diversity.	Each	control-resistance	

pair	had	a	statistically	significant	reduction	in	barcode	complexity	and	diversity:	con1-

res1	p=0.045;	con1-res1	p=0.009;	con1-res1	p=0.007;	con1-res1	p=0.008	&	con1-res1	

p=0.005	(one-way	ANOVA	with	Bonferroni	correction).		

	

Retroviral	based	therapies	have	been	known	to	 induce	oncogenic	 transformation	in	a	

proportion	 of	 patients.	 It	 is	 thought	 that	 oncogene	 activation	 is	 caused	 by	 viral	

integration	 in	 specific	 genomic	 regions	 (364).	 Lentiviral	 based	 vectors	 are	 generally	

considered	 safer,	 they	 are	 known	 to	 integrate	 preferentially	 in	 megabase-wide	

chromosomal	regions,	and	not	in	activating	regions	associated	with	cell	growth	(365).	

However,	we	sought	to	identify	any	potential	cases	of	oncogenic	viral	integration	in	our	



Clonal	Origins	of	Drug	Resistance																																											Chapter	3	–	Barcode	Resistance

	 	 	

	
-143-	

cell	lines	and	exclude	these	from	our	analyses.	Figure	3.6.3	A	shows	combined	RBA	data	

for	 control	 cell	 lines,	 we	 defined	 enrichment	 as	 any	 barcode	 present	 at	 a	

combined/cumulative	 RBA	 of	 0.03.	 The	 14	 most	 enriched	 barcodes	 in	 the	 control	

population	were	therefor	deemed	to	be	enriched	and	removed	from	analyses.	10	of	these	

14	unique	barcodes	are	also	found	(at	varying	RBA	values)	in	the	resistant	cell	lines,	and	

so	were	excluded	from	downstream	analyses	(Figure	3.6.3	B).	Clearly,	 the	majority	of	

barcodes	enriched	 in	 the	 resistance	 cell	 lines	were	not	also	enriched	 in	 control	 lines,	

suggesting	 that	 the	 influence	 of	 any	 oncogene	 induced	 by	 lentiviral	 integration	 is	

negligible.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.6.1	–	Barcode	enrichment	in	res1	&	con1	cell	lines	after	6	months	

Barcode	 counts	 (Relative	 Barcode	 Abundance;	 RBA)	 for	MCF7-CT	 Res1	 and	 Con1	were	

computed	from	NGS	of	6-month	cell	cultures	using	the	ClonTracer	bioinformatics	pipelines	

(Methods,	 section	 2.5)	 (334).	 Relative	 barcode	 abundance	 is	 the	 proportion	 of	 a	 single	

unique	barcode	to	the	total	usable	barcode	reads	in	a	specific	sample	(this	is	a	measure	of	

clone	size).	Figure	Overleaf.		
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Figure	3.6.1	–	Barcode	enrichment	in	res1	&	con1	cell	lines	after	6	months	
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Figure	3.6.2	–	Relative	Barcode	Abundance	(RBA)	in	each	cell	line	

Distribution	of	RBAs	across	each	cell	lines	and	replicates.	In	each	case,	control	lines	show	

little	 specific	 barcode	 enrichment	 compared	 to	 resistant	 cells.	 Each	 line	 represents	 a	

specific	unique	barcode,	with	abundance	represented	by	y-axis	height.	We	computed	the	

Shannon	Diversity	Index	for	each	cell	line	as	a	measure	of	population	diversity.	The	index	is	

more	 often	 used	 in	 ecology	 studies	 but	 has	 been	 applied	 to	 cell	 line	 diversity	 studies	

previously	 (204,363).	 Enrichment	 of	 barcodes	 was	 compared	 by	 one-way	 ANOVA	 with	

Bonferroni	 correction	 to	 correct	 for	 multiple	 comparisons.	 Reduction	 of	 diversity	 is	

observed	in	each	resistant	line	relative	to	its	paired	control	line	(con1-res1	p=0.045;	con1-

res1	 p=0.009;	 con1-res1	 p=0.007;	 con1-res1	 p=0.008	 &	 con1-res1	 p=0.005).	 Figure	

Overleaf.		
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Figure	3.6.2	–	Relative	Barcode	Abundance	(RBA)	in	each	cell	line	
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Figure	3.6.3	–	Cumulative	RBA	across	cell	lines	

Cumulative	enrichment	of	the	top400	represented	barcodes	across	independent	replicates.	

RBAs	were	summed	for	each	unique	barcode	across	replicates.	14	barcodes	are	seen	to	be	

enriched	 in	 independent	 replicates	 of	MCF7-CT	 controls	 and	 are	 excluded	 from	 further	

analysis.	It	is	possible	that	PCR/analysis-based	biases	contributed	to	enrichment,	though	

this	is	likely	random.	Figure	Overleaf.		
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Figure	3.6.3	–	Cumulative	RBA	across	cell	lines	
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3.7	Enrichment	of	Common	Barcodes	in	Resistance	
	

Although	 our	 tamoxifen	 resistant	 cell	 lines	 show	 substantial	 enrichment	 of	 specific	

barcodes	relative	to	controls,	we	reasoned	that	 this	could	have	been	due	to	the	near-

extinction	events	experienced	by	cells	during	the	development	of	tamoxifen	resistance.	

Because	of	the	exponential	nature	of	cellular	growth,	if	a	large	proportion	of	cells	in	a	

population	were	killed	or	experienced	slow	growth	for	a	prolonged	period,	population	

recovery	could	stochastically	advance	a	sub	population	of	cellular	clones,	and	barcode	

abundance	may	not	directly	indicate	cellular	fitness.	We	reasoned	that	fitness	would	be	

indicated	 by	 barcode	 abundance	 should	 the	 same	 barcodes	 be	 enriched	 in	 multiple	

replicate	plates.	Figure	3.7.1	shows	the	correlation	between	RBAs	for	the	top	50	enriched	

barcodes	 from	each	of	 two	 replicates	of	MCF7-CT	 res1,	 two	replicates	 from	MCF7-CT	

res2,	 two	 replicates	 from	 MCF7-CT	 con1	 &	 two	 replicates	 from	 MCF7-CT	 con2.	

Statistically	 significant	 association	 (p<0.0001)	 was	 seen	 between	 each	 resistance	

replicate	but	not	in	control	lines.	Pearson’s	r	scores	were	computed	for	each	replicate	

(versus	the	other	four)	of	each	cell	line	and	are	presented	in	Figure	3.7b.		

	

We	expanded	this	analysis	 to	all	replicates	of	each	cell	 line	(Figure	3.7.2.1	and	Figure	

3.7.2.2),	 this	 analysis	was	 also	 expanded	 to	 the	 top400	 barcodes	 (from	 top50	 shown	

earlier).	 The	mean	 correlation	 score	 (Pearson’s	 r)	 between	 control	 replicates,	 i.e.	 the	

average	 intra-replicate	 concordance,	was	 -0.01672,	with	 the	highest	 concordance	of	 -

0.0084	 seen	 in	 MCF7-CT	 con5	 (Figure	 3.7.2.1),	 no	 control	 line	 showed	 statistically	

significant	overlap	 in	enriched	barcodes.	By	contrast,	overlap	across	the	 independent	

resistance	 replicates	 was	 highly	 statistically	 significant	 on	 the	 basis	 of	 a	 Pearson	

correlation	test	(mean	r	=0.41776,	p<0.00001;	Figure	3.7.2.2).	The	most	concordant	cell	

line	 was	 res3	 (mean	 r=0.4824,	 p<0.0001)	 and	 least	 res2	 (mean	 r=0.3756,	 p<0.001;	

Figure	3.7b	ii).	These	results	show	a	high	degree	of	concordance	between	cells	enriched	

in	each	replicate	of	the	same	cell	line.	We	next	calculated	the	proportion	of	the	top100	

enriched	barcodes	shared	across	all	5	resistant	and	all	5	control	cell	lines.	Figure	3.7.3	A	
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shows	a	high	proportion	of	the	most	enriched	barcodes	are	shared	between	cell	lines	in	

the	resistance	models,	but	not	the	controls	(Figure	3.7.3	B).	Specifically,	an	average	of	

42%	of	the	most	frequent	barcodes	in	one	cell	line	were	also	enriched	in	each	of	the	other	

four.	Only	8%	of	the	most	frequent	barcodes	were	uniquely	enriched	in	that	cell	line	only.	

In	resistant	lines,	an	average	of	86%	of	barcodes	in	the	top100	in	one	cell	line	were	also	

in	 the	 top100	 of	 at	 least	 one	 more	 cell	 line	 (Figure	 3.7.3	 A).	 <1%	 of	 barcodes	 were	

similarly	enriched	across	more	than	a	single	control	line	(Figure	3.7.3	B).	On	average	49.6	

top100	barcodes	were	enriched	in	all	five	technical	replicates	of	a	single	resistance	cell	

line,	of	these,	83%	were	enriched	across	more	than	one	cell	line	(Figure	3.7.3	C).	Together	

these	results	indicate	a	reproducible	enrichment	of	discrete	numbers	of	barcodes	(i.e.	

cellular	clones)	in	response	to	prolonged	treatment	with	4-OHT.	As	the	same	barcodes	

tend	to	be	enriched	across	 independent	replicates,	we	can	conclude	that	certain	cells	

have	pre-existing	resistance,	or	are	at	least	primed	to	become	resistant.		

	

	

	

	

	

	

	

	

	

	

	

Figure	3.7.1	–	Correlation	of	barcode	abundances	between	replicates	

Example	 correlations	between	RBA	of	 the	 top	50	 (by	 cumulative	RBA	across	 replicates)	

barcodes	found	in	two	sensitive	and	two	resistant	cell	lines.	Good	Pearson’s	r	score	suggests	

shared	abundance	between	 replicates	and	deterministic	selection	 in	 tamoxifen	resistant	

lines	only.		Figure	Overleaf.		
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Figure	3.7.1	–	Correlation	of	barcode	abundances	between	replicates	
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Figure	3.7.2.1	–	Shared	barcodes	in	sensitive	cell	line	replicates	

	

	

	Figure	3.7.2.1	–	Shared	barcodes	in	sensitive	cell	line	replicates	

Combining	 Pearson’s	 r	 scores	 for	 each	 pairwise	 comparison	 between	 control	 cell	 line	

replicates	to	create	a	boxplot.	Results	show	the	average	correlation	between	each	replicate	

and	 the	 other	 four	 replicates.	 Control	 lines	 show	 consistently	 low	 correlation	 between	

replicates,	suggesting	different	clonal	populations	are	enriched	in	each.			
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Figure	3.7.2.2	–	Shared	barcodes	in	resistant	cell	line	replicates	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.7.2.2	–	Shared	barcodes	in	resistant	cell	line	replicates	

	Combining	Pearson’s	r	scores	as	Figure	3.7.2.1	but	for	resistance	cell	 lines.	Results	show	

reproducibly	high	 correlations	between	 replicates	of	 resistance	 lines	and	 therefor	 likely	

clonal	selection	of	the	same	cellular	progeny.	Mean	Pearson’s	r	scores	were	0.4261	(res1),	

0.3756	 (res2),	 0.4824	 (res3),	 0.3876	 (res4)	 &	 0.4675	 (res5).	 All	 individual	 pairwise	

comparisons	were	statistically	significant	at	least	p<0.001	by	Pearson’s	r.		
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Figure	3.7.3	–	Shared	barcodes	across	cell	lines	

A)	Expanding	our	analysis	to	top100	most	abundant	barcodes	in	cell	 line	shows	that	the	

majority	of	enriched	populations	are	enriched	across	multiple	replicates	in	MCF7-CT	res	

lines.	Specifically,	an	average	of	42%	of	the	most	frequent	barcodes	in	one	cell	 line	were	

also	 enriched	 in	 each	 of	 the	 other	 four.	 Only	 8%	 of	 the	 most	 frequent	 barcodes	 were	

uniquely	enriched	in	that	cell	line	only.	B)	In	control	lines,	an	average	of	86%	of	barcodes	

in	 the	 top	 100	 enriched	 in	 one	 cell	 line	 unique	 to	 that	 cell	 line.	 <1%	of	 barcodes	 were	

enriched	across	more	than	two	control	lines.	Hence,	the	majority	of	enriched	barcodes	are	

unique	to	each	individual	replicate.	C)	Graphical	depiction	of	our	analysis.	In	each	cell	line,	

49.6	barcodes	were	seen	(RBA	in	top100)	in	all	five	technical	replicates,	of	these,	83%	were	

found	enriched	(i.e.	RBA	in	top100)	in	at	least	one	other	cell	line.	This	differs	from	(A)	in	

that	selected	barcodes	must	be	present	in	the	top100	across	all	replicates,	not	simply	have	

a	cumulative	RBA	in	the	top100	for	that	line.		Figure	Overleaf.		
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Figure	3.7.3	–	Shared	barcodes	across	cell	lines	
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3.8	Dynamics	of	Resistance	Over	Time		
	

Experiments	in	this	chapter,	have	shown	the	reproducible	selection	of	clonal	populations	

in	the	emergence	of	4-OHT	drug	resistance	in	an	MCF7	cell	line	model.	In	this	section,	we	

first	 investigate	 genomic	 selection	 in	 our	 resistance	 models,	 before	 reviewing	 the	

dynamics	of	barcode	selection.		

	

The	 development	 of	 tamoxifen	 resistance	 has	 been	 linked	 to	 reprogrammed	 FOXA1	

binding	 patterns	 (238),	 the	 emergence	 of	 an	 EMT	 profile	 (319,366),	 upregulation	 of	

ERBB2	(272)	and	the	development	of	mutations	in	ERα	itself	(345,367).	Hence,	at	least	

in	some	cases,	tamoxifen	resistance	could	be	linked	to	genomic	clonal	selection.	Several	

computational	approaches	have	been	developed	to	cluster	genetically	similar	cells	into	

putative	genomic	clonal	populations	(for	example	CloneHD	(368)	or	PyClone	(195)).	To	

investigate	genomic	clonal	selection	in	our	model	of	tamoxifen	resistance,	we	performed	

exome	sequencing	in	treatment	naïve	MCF7s,	and	the	same	cells	after	2	weeks,	3	months	

and	6	months	4-OHT	treatment,	in	the	same	resistance	protocol	as	shown	in	Figure	3.3.1.	

Figure	3.8.1	A	shows	unfiltered	VAF	plots	for	two	biological	replicates	of	each	time	point	

during	the	derivation	of	resistant	sub-populations.	Figure	3.8.1	B	presents	these	data	as	

resistant	(i.e.	6	months	treatment)	versus	sensitive	(i.e.	MCF7	parental)	with	bar	heights	

representing	the	range	across	biological	replicates.	In	either	case,	the	data	do	not	appear	

to	 support	 any	 evidence	 of	 selection	 for	 specific	 resistance	 conferring	 SNVs.	 Indeed,	

MCF7s	 appear	 to	 be	 relatively	 genomically	 stable	 during	 long	 term	 culture.	Next,	we	

applied	PyClone,	a	Bayesian	clustering	method	for	grouping	sets	of	somatic	mutations	

into	 putative	 clonal	 clusters.	 PyClone	 estimates	 cellular	 prevalence	 of	 clones	 and	

accounts	 for	allelic	 imbalances	 introduced	by	segmental	 copy	number	 changes	 (199).	

This	 analysis	 does	 not	 appear	 to	 support	 evidence	 for	 genomic	 selection	 during	 the	
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development	 of	 tamoxifen	 resistance	 in	 our	 models35 	(Figure	 3.8.1	 C).	 Interestingly,	

these	data	do	support	that	a	long-established	cell	line	is	capable	of	maintaining	several	

stable	genomic	clusters.	From	these	results,	we	can	putatively	assume	that	reproducibly	

selected	 barcodes	 predominantly	 mark	 isogenic	 but	 functionally	 distinct	 cellular	

populations,	with	a	predisposition	toward	becoming	resistant.		

	

Lentiviral	lineage	tracing	has	previously	been	applied	to	CRC	PDX	models	and	used	to	

study	the	development	of	resistance	to	chemotherapy	(63).	 In	 this	study,	human	CRC	

cells	were	tagged	by	lentiviral	integration	and	passaged	through	multiple	generations	of	

PDX	model,	before	being	treated	with	a	chemotherapeutic	agent.	By	following	lentiviral	

integration	sites,	the	authors	were	able	to	identify	individual	cellular	clones	and	describe	

their	 growth	 patterns.	 Of	 the	 five	 growth	 patterns	 described,	 ‘Type	 IV’	 clones	 were	

defined	as	being	below	the	level	of	detection	in	some	passages	but	reappearing	in	the	

tumour	later.	The	authors	describe	these	Type	IV	clones	as	being	quiescent	in	nature	and	

found	 them	 particularly	 likely	 to	 repopulate	 the	 tumour	 after	 chemotherapeutic	

treatment	(196).		

	

Although	 such	 resistant	 phenotypes	 are	 arguably	 more	 likely	 to	 be	 observed	 when	

studying	cytotoxic,	cell-cycle	stage-dependent	agents,	we	sought	to	investigate	the	clonal	

dynamics	of	tamoxifen	resistance	in	our	barcode	model.	Hence,	we	removed	excess	cells	

from	routine	passage	at	the	3-month	timepoint	during	the	development	of	resistance	(T-

3months)	 and	 analysed	 the	 barcode	 abundance	 in	 comparison	 to	 that	 of	 the	 final	 6-

month	timepoint	(T-6months).	Figure	3.8.2.1	shows	average	RBA	in	MCF7-CT	control	cell	

lines	 and	 Figure	 3.8.2.2	 resistant	 cell	 lines.	 In	 each	 case,	 RBA	 was	 averaged	 across	

technical	 replicates,	 and	 the	 100	most	 abundant	 barcodes	 in	 the	 final	 time	 point	 (T-

6months)	were	analysed.	Interestingly,	in	each	resistant	line,	the	~25%	most	enriched	

barcodes	at	6	months,	were	not	 in	 the	~25%	most	enriched	barcodes	after	3	months	

																																																								
35	It	is	worth	noting	that	exome	sequencing,	by	definition,	will	not	identify	SNVs	in	the	non-coding	genome	
(for	example,	mutations	in	the	promotor	or	enhancer	regions	of	genes).	We	cannot	rule	out	selection	of	a	
genomic	clone	defined	by	such	somatic	variations.		
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(Figure	 3.8.2.2).	 This	 was	 not	 the	 case	 in	 sensitive	 cell	 lines	 (Figure	 3.8.2.1)	 where	

abundance	of	specific	barcodes	at	3	and	6	months	was	relatively	stable.	It	appears	from	

these	results	that	the	eventual	dominant	resistant	clones	are	not	the	same	clones	with	

an	 initial	 proliferative	 advantage	when	 cultured	with	 4-OHT.	 This	 could	 suggest	 the	

development	of	a	delayed-onset	resistance	phenotype	or	simply	reflect	the	stochastic,	

time-point-dependent,	dominance	of	certain	clones	in	the	resistance	model.	

	

Further	 sampling	 timepoints	 are	 required	 to	 further	 delineate	 the	 contribution	 of	

quiescent	or	Type	IV	clones	in	the	development	of	tamoxifen	resistance	in	our	models.	

However,	as	a	final	experiment,	we	sought	to	identify	barcoded	populations	that	were	

relatively	quiescent	 in	control	replicates	 in	T0-months	to	T3-months	and	uncover	the	

contribution	of	these	‘quiescent-like’	cells	to	the	final	dominant	pool	of	resistant	cells	in	

our	MCF7-CT	res	cell	lines.	Figure	3.8.3	 shows	the	results	of	 this	analysis;	we	defined	

‘quiescent’	 clones	 as	 those	which	were	 not	 part	 of	 the	 top200	most	 frequently	 seen	

barcodes	in	any	of	the	control	lines.	Of	these,	we	ranked	based	on	prevalence	in	the	final	

(6	month)	resistant	pool.	100	of	such	barcodes	are	shown	in	Figure	3.8.3	A,	although	our	

analysis	 selects	 for	 these	 phenotypes,	 it	 is	 clear	 that	 relatively	 quiescent	 cells	 are	

contributing	to	the	development	of	resistance	to	tamoxifen.	Moreover,	if	we	consider	the	

most	 frequent	100	barcodes	seen	at	T-3months	and	T-6months	 in	our	treatment	arm	

and	 analyse	 their	 corresponding	 abundance	 in	 control	 lines	 (Figure	 3.8.3	 B)	we	 find	

significantly	higher	prevalence	of	T3-month	barcodes	 in	 the	 control	 lines	 than	at	T6-

months	 (p<0.0001).	 This	 suggests	 that	 relatively	 slower	 proliferating	 cells	 are	

responsible	for	the	eventual	dominant	resistant	clones.	Those	with	early	resistance	to	

tamoxifen,	are	at	least	in	part,	fuelled	by	faster	growth	in	even	control	conditions.		
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Figure	3.8.1	–	VAFs	and	PyClone	in	development	of	resistance	to	4-OHT	

Analysis	of	genomic	selection	in	our	MCF7	resistance	model.	A)	VAFs	of	MCF7	SNVs	during	

the	resistance	process.	Lines	denote	individual	SNVs	sampled	at	different	time	points.	Each	

time	point	consists	of	two	independent	replicates	of	exome	sequencing.	B)	Data	as	in	(A)	

but	focussing	on	6-month	culture	versus	parental	(untreated).	Differences	between	red	and	

blue	 bars	 (range	 over	 2	 replicates)	 suggest	 SNV	 enrichment.	 None	 is	 seen.	 C)	 PyClone	

statistical	 inference	 of	 clonal	 structures	 (SNV	 number	 contributing	 to	 each	 cluster	 in	

legend),	again	no	noticeable	clonal	selection	is	seen.	Figure	Overleaf.		
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Figure	3.8.1	–	VAFs	and	PyClone	in	development	of	resistance	to	4-OHT	
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Figure	3.8.2.1–	Dynamics	of	barcode	abundance	in	control	lines	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.8.2.1–	Dynamics	of	barcode	abundance	in	control	lines	

Samples	were	taken	during	the	development	of	tamoxifen	resistance		at	T3-months	culture	

and	 again	 at	 T6-months	 and	 barcode	 abundance	 analysed	 by	 NGS.	 RBA	was	 averaged	

across	technical	replicates,	and	the	100	most	abundant	barcodes	in	the	final	time	point	(T-

6months)	were	analysed.	Average	fold	change	for	each	cell	 line	was:	con1	=	1.78,	con2	=	

2.05,	con3	=	1.03,	con4	=	1.88	&	con5	=	0.99.			
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Figure	3.8.2.2	–	Dynamics	of	barcode	abundance	in	resistant	lines	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.8.2.2	–	Dynamics	of	barcode	abundance	in	resistant	lines	

As	Figure	3.8.21	but	showing	resistance	replicates.	Results	appear	to	show	that	resistance	

barcodes	 have	 a	 bimodal	 frequency,	with	 the	 dominant	 (most	 abundant)	 at	 T3-months	

typically	being	less	dominant	at	T6-months	and	vice	versa	(by	visual	analysis).	Average	fold	

change	for	each	cell	line	is	similar	to	controls:	res1	=	2.52,	res2	=	1.58,	res3	=	1.63,	res4	=	

2.29	&	res5	=	1.61.			
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Figure	3.8.3	–	Quiescence	in	resistant	cell	lines	

This	analysis	seeks	to	investigate	the	contribution	of	quiescent	or	slowly	dividing	cells	to	

the	 development	 of	 resistance.	 	A)	 Barcodes	 which	 were	 not	 part	 of	 the	 top200	 most	

frequent	in	any	control	lines	were	selected	as	putatively	quiescent.	They	were	then	ranked	

based	on	their	presence	in	the	final	resistant	cell	 line	mixed	pool	and	the	top100	plotted	

over	time.	Clearly	some	slow	growing	cells	under	normal	conditions	are	contributing	to	the	

development	of	resistance.	B)	Highest	RBA	in	controls	 for	 the	top100	barcodes	enriched	

across	resistance	lines	at	3	and	6	months.	Significantly	more	of	these	slow	growing	cells	

contribute	 to	 the	 6-month	 pool	 than	 3-month	 pool	 (Mann-Whitney	 p<0.0001).	 	Figure	

Overleaf.		
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Figure	3.8.3	–	Quiescence	in	resistant	cell	lines	
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3.9	General	Discussion			
	

In	this	chapter,	we	apply	lentiviral	lineage	tracing	technologies	to	a	well	characterised	

model	of	breast	cancer	drug	resistance,	that	of	the	outgrowth	of	MCF7	cells	exposed	to	

long-term	oestrogen	 free	 culture	 in	 the	 presence	 of	 4-OHT.	 Firstly,	we	 designed	 and	

optimised	a	 reproducible	method	of	producing	 tamoxifen	 resistant	derivatives	of	 the	

MCF7	line.	Previous	studies	have	derived	tamoxifen	resistant	cell	lines	using	a	variety	of	

protocols.	For	example,	Leung	et	al.,	established	five	separate	lines,	either	the	presence	

of	increasing	concentrations	of	tamoxifen	(TamR3,	TamR6	and	TamR7)	or	in	the	absence	

of	 oestrogen	 (TamC3	 and	 TamC6).	 TamR7	 cells	 were	 additionally	 cultured	 in	 the	

presence	 of	 oestrogen	 (345).	 Large	 differences	 in	 cell	 lines	 were	 uncovered	 in	 DNA	

content	 (ploidy),	 mode	 cell	 volume	 and	 cell	 cycle	 time.	 Cell	 lines	 could	 be	 further	

classified	based	on	drug	sensitivity.	Rapamycin	alone	or	in	combination	with	tamoxifen	

increased	 the	 level	 of	 phospho-Akt	 in	 parental	 MCF7	 cells	 and	 TamR7,	 TamC6	 and	

TamR6.	 Increases	 in	 phospho-Akt	 in	 some	 cells	 are	 due	 to	 an	 inhibitory	 feedback	

mechanism	between	the	mTOR	effector	p70	S6K	and	the	insulin	receptor	substrate-	PI3K	

upstream	of	Akt	(369).	Although	difficult	to	profile	in	vitro,	culture	conditions	used	in	

this	 Chapter	 (lack	 of	 exogenous	 oestrogens	 and	 increasing	 concentration	 of	 4-OHT)	

would	likely	result	 in	an	oestrogen	 independence	phenotype,	characterised	by	 lack	of	

sensitivity	to	both	4-OHT	and	AIs.	Resistant	cell	lines	derived	through	our	protocol	were	

characterised	 by	 a	 ~10-15x	 increased	 IC50	 for	 4-OHT,	 ERα	 expression	 but	 a	 lack	 of	

transcriptional	 response	 to	exogenous	ERα	 ligands	 (slight	downregulation	of	ESR1	&	

PGR	expression	in	each	case),	decreased	baseline	proliferation	and	lack	of	proliferative	

response	to	either	E2	or	4-OHT	(Figures	3.2.1	&	3.2.2,	3.3.1).		

	

Interestingly,	there	is	some	heterogeneity	in	oestrogen	signalling	amongst	resistant	cell	

lines	 described	 in	 the	 literature.	 In	 the	 example	 by	Leung	 et	 al.,	 lines	 cultured	 in	 the	

absence	 of	 oestrogen	 either	 tended	 to	 maintain	 high	 ESR1	 expression	 (and	 ERα	

responsiveness)	accompanied	by	an	increase	in	HER2	protein	levels,	or	to	slightly	reduce	
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ERα	expression	and	compensate	by	increased	phosphorylation	of	EGFR	(345).	Resistant	

lines	 cultured	 in	 the	 presence	 of	 oestrogen	 (with	 tamoxifen),	 in	 contrast,	 tended	 to	

decrease	ERα	expression.	ERα	shows	greater	binding	affinity	for	4-OHT	than	E2	in	most	

cases,	 so	 it	 is	puzzling	 that	 the	presence	of	both	 ligands	would	 significantly	alter	 the	

resistance	process	(370).	Interestingly,	in	each	case	of	our	resistant	lines,	we	observed	

an	increase	in	the	steepness	of	the	Hill	Slope	of	dose-response	curves.	This	is	typically	a	

measure	of	cooperative	binding,	so	it	is	possible	that	ERα	affinity	is	changed	during	the	

resistance	process	(371).	To	our	knowledge,	this	is	the	first	time	this	feature	of	tamoxifen	

resistance	has	been	reported.	Competitive	 ligand	binding	studies	would	be	needed	to	

further	elucidate	and	clarify	the	observation	(372).		

	

Heterogeneity	in	ERα+	breast	cancer,	reflected	in	histology	(373),	genetic	architecture	

(7,73)	and	transcriptional	regulation	(374),	is	common	place	and	is	thought	to	ultimately	

impact	 on	 the	 long-term	 response	 to	 endocrine	 therapy	 (375).	 Despite	 this,	 recent	

studies	in	ERα+	(luminal)	breast	cancers	have	found	that	driver	coding	mutations	do	not	

significantly	change	between	primary	and	metastatic	sites,	with	the	notable	exception	of	

ESR1	 mutations	 (157),	 suggesting	 that	 alternative	 non-genetic	 mechanisms	 may	

contribute	 to	 progression	 and	 resistance	 to	 endocrine	 therapy	 (157,376).	 Indeed,	

epigenetic	modifications	have	been	shown	to	modulate	ERα	binding	to	enhancers,	 for	

example	 by	 interacting	with	 ERα-associated	 pioneer	 factors	 (236,377).	 In	 addition,	 a	

recent	study	from	Hinohara	et	al.,	found	that	genetic	deletion	or	inhibition	of	the	KDM5	

histone	 H3	 lysine	 4	 demethylase	 family	 increased	 sensitivity	 to	 anti-oestrogens	 by	

modulating	ERα	signalling	and	decreasing	cellular	transcriptomic	heterogeneity	(483).		

	

Increasing	 evidence	 suggests	 that	 epigenetic	 information	 can	 actively	 transfer	 gene	

transcription	states	across	cell	division	(378–381),	delineating	a	plausible	mechanism	

by	which	epigenetic	clonal	evolution	could	give	rise	to	treatment	resistance	in	cancer.	A	

recent	study	by	Patten	et	al.,	revealed	several	critical	principles	underlying	phenotypic	

heterogeneity	in	breast	cancer	progression	(376).	By	comparing	samples	from	endocrine	
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therapy	resistant	metastatic	patients	with	treatment-naive	primary	samples,	the	authors	

uncovered	 a	 set	 of	 enhancers	marking	 phenotypic	 clones	 that	 significantly	 expanded	

during	 disease	 progression.	 The	 authors	 go	 on	 to	 present	 evidence	 that	 progressive	

activation	of	FOXA1	and	its	network	in	metastatic	samples	is	a	consequence	of	expansion	

of	 a	 phenotypic	 clone.	 This	 cellular	 clone	was	marked	 by	 an	 active	 FOXA1	 enhancer	

(376);	FOXA1	is	a	well	characterised	modulator	of	ERα-	chromatin	interactions	as	well	

as	a	critical	determinant	of	ERα-transcriptional	regulation	and	endocrine	response	 in	

breast	cancer	(238).	These	studies	present	a	viable	mechanism	by	which	evolution	of	

phenotypic,	 or	 epigenomically	 regulated,	 clonal	 populations	 could	 contribute	 to	 the	

rapid	development	of	endocrine	resistance	in	the	>40%	of	ERα	breast	cancer	patients	

who	ultimately	relapse	during	or	after	completion	of	adjuvant	endocrine	therapy	(382)	

	

Further	evidence	 for	 the	 functional	 role	of	FOXA1	 in	 resistance	 to	endocrine	 therapy	

comes	 from	 a	 study	 by	 Ross-Inness	 et	 al.,	 (248).	 In.	 this	 study,	 the	 authors	 mapped	

genome-wide	 ERα-binding	 events	 in	 primary	 breast	 cancer	 by	 chromatin	

immunoprecipitation	followed	by	high-throughput	sequencing	(ChIP-seq).	They	found	

that	 in	 patients	 with	 poor	 clinical	 outcomes,	 or	 in	 those	 with	 distant	 ERα-positive	

metastases,	ERα	was	still	recruited	to	the	chromatin	but	that	new	ERα-binding	regions,	

unique	to	poor	prognosis,	were	acquired.	Interestingly,	the	authors	found	that	these	new	

binding	regions	were	driven	by	the	ERα	pioneer	factor,	FOXA1,	and	that	FOXA1	binding	

could	 be	 altered	 by	 90	 minutes	 treatment	 with	 a	 mitogenic	 cocktail	 (containing	

epidermal	growth	factor	(EGF),	insulin-like	growth	factor-1	(IGF-1),	interleukin-6	(IL-6)	

and	tumour	necrosis	factor	alpha	(TNF-α)).	The	authors	conclude	that	the	differential	

ERα-binding	programme	observed	in	tumours	from	poor	prognosis	patients	was	not	due	

to	 the	 selection	 of	 a	 rare	 subpopulation	 of	 cells,	 rather	 a	 FOXA1-mediated	

reprogramming	of	ERα	binding	on	a	rapid	timescale	(248).	

	

More	 broadly,	 genomic	 intratumour	 heterogeneity	 is	 thought	 to	 drive	 a	 majority	 of	

resistance	 processes.	 Within	 the	 concept	 of	 population	 genetics,	 cancer	 cells	 are	
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genetically	 unstable	 and	 this	 instability	 drives	 heterogeneity	 in	 even	 established	

tumours	(383).	Indeed,	the	wider	the	diversity	of	minor	clonal	populations	in	a	tumour,	

the	 more	 likely	 it	 is	 that	 resistance	 will	 arise.	 Such	 an	 association	 between	 tumour	

heterogeneity	and	drug	resistance	has	been	noted	 in	ovarian	 (136),	 and	oesophageal	

(137)	cancers.	Additionally,	basal-like	TNBCs	have	previously	been	linked	with	shorter	

disease	free	survival	compared	to	non-basal-like	TNBCs	and	tend	to	be	associated	with	

higher	clonal	diversity	(78).	Thus,	cancer	has	been	described	as	a	‘moving	target’	as	the	

population	of	cells	constantly	shifts	during	therapy	(384).	A	better	understanding	of	the	

evolutionary	process	that	underlies	drug	resistance	is	needed	for	avoiding	or	postponing	

the	emergence	of	resistance.		

	

NGS	 has	 been	 heavily	 relied	 on	 in	 studies	 to	 elucidate	 the	 clonal	 origins	 of	 drug	

resistance.	However,	it	is	limited	to	a	sensitivity	of	0.1%	allelic	fraction	(385).	Given	that	

the	detectable	tumour	burden	is	estimated	to	be	approximately	10	x109	tumour	cells	at	

the	 time	 of	 diagnosis	 (134),	 this	 level	 of	 resolution	 is	 clearly	 insufficient	 to	

comprehensively	assess	pre-existing	cancer	subpopulations.	We	reasoned	that	cellular	

barcoding,	 which	 has	 been	 used	 to	 trace	 lineage	 during	 hematopoietic	 stem	 cell	

differentiation	 (201–203),	 could	 be	 used	 to	 address	 this	 question	 and	 overcome	 the	

limited	 sensitivity	 of	 current	 NGS	 approaches.	 To	 trace	 the	 origins	 of	 resistant	

populations	in	our	model	of	tamoxifen	resistance,	we	opted	to	use	the	high	complexity	

barcode	 library,	 ClonTracer,	 (see	 Figure	 3.4.1).	 These	molecular	 barcodes	 enable	 the	

labelling	and	tracking	of	>10	million	individual	cells	with	a	unique	30-nucleotide	long	

semi-random	DNA	sequence	tag	(135).	The	ClonTracer	library	was	designed	to	have	a	

balanced	 GC	 content	 to	 ensure	 uniform	 PCR-amplification	 efficiency	 and	 has	 a	

theoretical	 complexity	 of	 73	 million	 unique	 barcodes	 (135).	 Having	 established	 a	

protocol	 for	 the	 derivation	 of	 resistant	 cell	 lines,	 we	 sought	 to	 integrate	 complex	

molecular	barcodes	in	the	ClonTracer	platform	via	lentiviral	integration	in	unchallenged	

MCF7	cells.		
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Figure	3.5.1	shows	the	experimental	design	of	our	resistance	screen.	Plating	was	such	

that	resistant	and	control	replicates	of	the	same	number	(e.g.	MCF7-CT	res1	and	con1)	

were	derived	from	the	same	originating	Eppendorf,	allowing	direct	comparisons	to	be	

drawn.	To	accommodate	the	need	for	100	million	cells	per	replicate,	biological	replicates	

(5	 in	each	arm)	consisted	themselves	of	5	x	15cm	dishes	(seeding	density	of	4	x106).	

These	technical	replicates	were	maintained	and	expanded	separately.	Thus,	5x	resistant	

and	 control	 pairs	 (consisting	 of	 5x	 technical	 replicates)	 were	 established	 and	

propagated.	 Resistance	 phenotypes	 were	 as	 expected	 from	 our	 optimisation	 steps	

(Figures	 3.5.3.1,	 3.5.3.1,	 3.5.4	 &	 3.5.5).	 Interestingly,	 resistant	 lines	 were	 found	 to	 be	

relatively	 insensitive	 to	 exogenous	 E2	 (in	 terms	 of	 ESR1	 and	 PGR	 transcription),	 in	

keeping	with	 the	 assumption	 that	 long	 term	 culture	 in	 the	 absence	 of	 E2	 (alongside	

exogenous	 4-OHT)	 could	 lead	 to	 oestrogen	 independence.	 Further	 studies	 should	

confirm	whether	 our	MCF7-CT	 res	 lines	 are	 in	 fact	 doubly	 resistant	 to	 both	 AIs	 and	

SERMs,	such	as	tamoxifen.			

	

The	abundance	of	unique	barcodes	in	each	sample	were	computed,	as	detailed	in	Figure	

3.5.2,	and	complexity	of	the	library	ensured	pre	and	post	infection	(Figures	3.4.2	&	3.4.4).	

We	 reasoned	 that	 as	 each	 originating	 cell	 would	 be	 uniquely	 marked	 by	 the	 highly	

complex	 barcode	 library,	 fitness	 of	 cellular	 clones	 would	 be	 indicated	 by	 barcode	

abundance	 after	 drug	 treatment.	 Should	 the	 same	 barcodes	 be	 enriched	 in	 multiple	

replicate	plates,	this	would	indicate	the	presence	of	pre-existing	resistance	populations.		

	

Resistance	cell	lines	universally	displayed	enrichment	for	specific	barcodes	(Figure	3.6.1	

&	3.6.2),	which	was	not	seen	in	control	lines.	Interestingly,	14	barcodes	were	enriched	in	

control	 lines,	 though	 not	 to	 the	 same	 extent	 as	 the	 resistance	 lines	 (Figure	 3.6.3).	

Retroviral	based	therapies	have	long	been	known	to	induce	oncogenic	transformation	in	

a	 proportion	 of	 patients.	 It	 is	 thought	 that	 oncogene	 activation	 is	 caused	 by	 viral	

integration	 in	 specific	 genomic	 regions	 (364).	 Lentiviral	 based	 vectors	 are	 generally	

considered	 safer,	 they	 are	 known	 to	 integrate	 preferentially	 in	 megabase-wide	
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chromosomal	regions,	and	not	in	activating	regions	associated	with	cell	growth	(365).	

However,	we	sought	to	eliminate	any	potential	cases	of	oncogenic	viral	integration	in	our	

cell	lines	and	exclude	these	from	our	analysis,	and	so	removed	these	14	barcodes	from	

both	sensitive	and	resistance	cell	line	analyses	(Figure	3.6.3).		

	

Importantly,	 enriched	 barcodes	 show	 a	 high	 concordance	 between	 both	 technical	

replicates	and	across	resistant	cell	lines	(Figure	3.7.1,	3.7.2.1	&	3.7.2.2).	It	seems	likely	

that	this	is	evidence	of	increased	fitness	amongst	the	enriched	barcoded	clones,	rather	

than	stochastic	population	dynamics.	On	average,	49.6	barcodes	were	enriched	in	in	all	

five	technical	replicates	in	resistant	lines,	of	these,	83%	were	found	in	at	least	one	other	

cell	line	(Figure	3.7.3).	This	enrichment	is	not	accompanied	by	selection	for	specific	SNVs	

or	 genomic	 clonal	 populations	 as	 previously	described	 (Figure	 3.8.1)	 (317),	 although	

non-coding	SNVs	would	not	have	been	detected	by	our	analysis.	Thus,	it	appears	that,	at	

least	in	our	model,	prolonged	exposure	to	tamoxifen	results	in	the	expansion	of	isogenic	

clonal	 populations	 predisposed	 to	 tamoxifen	 resistance.	 In	 the	 majority	 of	 reported	

cases,	 clonal	 selection	 of	 resistance	 populations	 in	 cancer	 is	 associated	 with	 the	

outgrowth	of	a	genetically	distinct	subclone.	For	example,	the	development	of	resistance	

to	AIs	 in	ERα+	breast	cancer	has	been	 linked	to	activating	mutations	 in	 the	ERα	gene	

itself	 (ESR1)	(386,387).	Subclonal	activating	mutations	are	thought	 to	be	present	 in	a	

third	 of	 patients	 with	 prior	 AI	 exposure	 (388–391),	 and	 detection	 of	 specific	 ESR1	

mutations	in	circulating	tumour	DNA	(ctDNA)	has	recently	been	shown	as	an	effective	

early	 biomarker	 of	 AI	 resistance	 (392).	 Our	 results	 are	 relatively	 novel	 in	 showing	

cellular	 clonal	 selection	 without	 accompanying	 genomic	 changes	 in	 a	 well-studied	

resistance	process.		

	

Recently,	Hinohara	et	al.,	explored	the	role	of	KDM5	histone	H3	 lysine	4	demethylase	

family	in	the	development	of	endocrine	resistance	(483).	The	authors	found	that	deletion	

of	 KDM5A/B	 or	 inhibition	 of	 KDM5	 activity	 increased	 overall	 sensitivity	 to	 anti-

oestrogens	 through	modulation	 of	 ERα	 signalling.	 Further,	 the	 authors	 uncovered	 a	
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prognostic	KDM5	expression	signature	in	ERα+	human	breast	cancers	and	demonstrate	

a	 link	 between	 KDM5B	 expression	 and	 transcriptomic	 heterogeneity.	 Crucially,	

molecular	 barcoding	 of	 MCF7s	 using	 the	 ClonTracer	 system	 (135)	 revealed	 that	

development	of	both	tamoxifen	and	fulvestrant	resistance	was	due	to	the	selection	of	a	

rare,	 pre-existing,	 population	 of	 cells.	 Though	 only	 using	 four	 replicates	 for	 each	

condition,	the	authors	present	evidence	that	a	great	deal	of	overlap	existed	between	each	

population.		

	

Finally,	 in	 this	 Chapter,	 we	 sought	 to	 profile	 the	 dynamics	 of	 the	 development	 of	

tamoxifen	 resistance.	 Quiescent	 cellular	 populations	 have	 been	 described	 to	 drive	

resistance	to	cytotoxic	therapies	in	at	least	one	model	(83).	Because	of	limited	sampling	

points	 in	 our	 experiments,	 we	 opted	 to	 define	 quiescent	 clones	 based	 on	 barcode	

abundance	in	control	lines,	before	looking	to	the	contribution	of	these	populations	in	our	

resistance	 models.	 There	 was	 a	 clear	 tendency	 toward	 early	 dominant	 populations	

(those	 with	 highest	 abundance	 at	 3	 months)	 to	 be	 replaced	 by	 a	 slower	 growing	

population	after	full	resistance	was	developed	(Figure	3.8.2.2).	Interestingly,	not	only	did	

quiescent	cells	in	the	control	lines	appear	to	have	a	large	influence	on	resistance	in	the	

treatment	arm	(Figure	3.8.3	A),	there	appears	to	be	an	early	resistance	phenotype	driven	

by	relatively	proliferative	cells	(Figure	3.8.3	B)	but	eventually	replaced	by	these	slow	

cycling	cells.		

	

Overall,	 in	 this	 Chapter	 we	 have	 defined	 and	 optimised	 a	 method	 for	 developing	

resistance	to	tamoxifen,	and	potentially	complete	oestrogen	independence,	in	the	MCF7	

cell	line.	We	have	shown	that	resistance	is	typically	the	result	of	the	clonal	expansion	of	

isogenic	cellular	populations	with	a	predisposition	to	resistance.	These	populations	may	

tend	toward	quiescence	in	normal	culture	conditions,	though	more	work	is	required	to	

fully	investigate	this	point.		
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Chapter	 4	 –	 The	 Role	 of	 BC-TICs	 in	
Tamoxifen	Treatment	&	Resistance				
	

The	Role	of	BC-TICs	in	Tamoxifen	Treatment	&	

Resistance		
	

	

Aims	of	the	chapter		
1. Profile	the	tamoxifen	resistance	models	for	BC-TIC	signature.	

2. Characterise	the	BC-TIC	response	to	acute	tamoxifen	treatment.		

3. Investigate	the	role	OCT4	in	tamoxifen	resistance	and	the	BC-TIC	phenotype.			
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4.1	Introduction	
	

Numerous	routes	to,	and	causes	of,	tamoxifen	resistance	have	been	proposed	in	the	

literature.	These	generally	fall	into	two	broad	categories;	activation	of	alternative	

oncogenic	 signalling	 pathways,	 such	 as	 PI3K/EGFR/HER2	 (258,266,344,345),	

typically	resulting	 in	Akt	activation,	or	reprogramming	of	ERα	recruitment	to	 the	

chromatin,	 involving	PAX2/GATA3/FOXA1	(236,238,272).	These	mechanisms	are	

not	mutually	 exclusive,	with	 at	 least	 one	major	 study	 relating	 PAX2-related	 ERα	

reprogramming	to	enhanced	ERBB2	expression	(272).	A	third	mechanism,	reported	

by	numerous	studies	but	remaining	controversial,	is	the	activation	of	pluripotency	

factors	and	induction	of	EMT	(209,242,277,282,393–395).		

	

ERα	and	its	related	pioneer	factors	play	a	central	role	in	stem	cell	differentiation	and	

maintenance	 in	 the	normal	human	mammary	gland	(236,237).	 Indeed,	 it	 is	 these	

pioneer	 factors	 which	 determine	 the	 specific	 cellular	 context	 dependent	 role	 of	

oestrogen.	 For	 example,	 FOXA1	 is	 highly	 expressed	 in	 luminal	 cells	 and	 has	 an	

essential	role	in	formation	of	the	terminal	end	bud	(TEB).	Loss	of	GATA3	similarly	

results	in	severe	defects	in	mammary	development	due	to	failure	of	TEB	formation.	

Furthermore,	 GATA3	 has	 been	 shown	 to	 participate	 in	 luminal	 epithelial	

differentiation	 and	 lobuloalveolar	 development	 (234,237,239).	 Tamoxifen	 has	

complex	actions	on	the	ERα,	similarly	linked	to	the	various	coregulatory	proteins	

controlling	ERα	tissue	specificity	and	transcriptional	programs.	For	example,	in	the	

breast,	it	acts	primarily	as	an	antagonist	or	biased	agonist,	but	in	other	tissues	such	

as	the	uterus,	cardiovascular	system	and	bone,	it	acts	as	a	full	ERα	agonist	(267).		

	

At	least	one	study	has	shown	directly	that	oestrogen	reduces	the	overall	proportion	

of	 stem	cells	 in	 the	normal	gland	 (276).	Embryonic	 transcription	 factors	NANOG,	

POU5F1,	 and	SOX2	 expression	decreases	upon	differentiation	and	with	oestrogen	

treatment,	 and	 similarly	 overexpression	 of	 any	 of	 the	 three	 reduces	 ESR1	
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expression,	and	increases	the	number	of	stem	cells	in	the	normal	mammary	gland	

(276).	 Given	 the	 role	 of	 ERα	 in	 the	 developing	 mammary	 gland,	 and	 the	 direct	

regulation	 of	 embryonic	 transcription	 factors	 by	 oestrogen,	 it	 is	 probably	

unsurprisingly	that	resistance	to	ERα	inhibitors	has	been	linked	to	dedifferentiation.	

All	three	canonical	factors	required	for	iPSCs	have	been	variably	linked	to	tamoxifen	

treatment	 or	 resistance.	 For	 example,	 tamoxifen	 resistant	 cells	 are	 enriched	 for	

mammosphere	forming	cells	and	show	higher	expression	of	SOX2.	Silencing	of	SOX2	

by	siRNA	reduces	the	stem/progenitor	cell	population	and	restores	sensitivity	 to	

tamoxifen	 (277).	 Secondly,	 OCT4	 expression	 was	 shown	 to	 be	 independently	

associated	with	poor	prognosis	in	319	cases	of	invasive	breast	cancer	(281),	and	has	

recently	been	described	as	a	novel	ERα-associated	transcription	factor	involved	in	

ERα	recruitment	 to	 tamoxifen,	but	not	oestrogen,	 associated	 transcriptional	sites	

(282).	Conversely,	KLF4	is	generally	associated	with	a	favourable	outcome	in	breast	

cancer	 (280,284).	 Jia	et	al.,	 found	 that	higher	expression	of	KLF4	 correlated	with	

increased	tamoxifen	sensitivity	in	patients,	and	was	positively	correlated	with	ERα	

activity	(284).		

	

More	broadly,	the	development	of	tamoxifen	resistance	has	been	linked	to	the	BC-

TIC	phenotype	and	the	processes	associated	with	EMT	(366).	BC-TICs	are	thought	

to	 be	 slow	 cycling	 and	 highly	 expressing	 ABC	 multidrug	 resistant	 transporter	

proteins;	 both	 enriched	 following	 cytotoxic	 chemotherapy	 and	 endowed	 with	

inbuilt	resistance	(181,183).	This	phenotype	has	been	associated	with	upregulation	

of	ALDH1A1	(166,396),	downregulation	of	miR-375	(397),	downregulation	of	FOXA1	

with	 induction	 of	 IL6	 (398)	 and	 countless	 other	 mechanisms	

(104,149,187,188,399).	 Numerous	 studies	 have	 also	 linked	 breast	 cancer	 drug	

resistance	to	EMT	(104,393),	and	EMT	to	the	acquisition	of	a	BC-TIC-like	phenotype	

(394,400),	 though	 our	 own	 studies	 have	 found	 that	 these	 qualities	 are	 largely	

separable	(159).		
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Recently,	the	DNA	methylome	of	endocrine	sensitivity	was	characterised	by	Stone	et	

al.,	(285).	The	authors	 found	that	 in	 tamoxifen	resistance,	DNA	hypermethylation	

occurred	 at	 oestrogen-responsive	 enhancers.	 This	 was	 associated	 with	 reduced	

ERα-chromatin	 binding	 and	 consequently	 decreased	 gene	 expression	 of	 key	

oestrogen	regulators.	In	another	study	by	this	group,	promotor	demethylation	with	

5-Aza,	coupled	with	E2,	restored	ERα-regulated	gene	expression	in	TamR	lines	and	

induced	 a	 significant	 anti-proliferative	 effect	 (97).	 Moreover,	 Patten	 et	 al.,	 have	

recently	mapped	the	epigenome	of	47	primary	and	metastatic	ERα+	breast	cancers	

by	ChIP-seq	for	the	active	enhancer	marker,	H3K27ac	(376).	H3K27ac	is	a	modified	

Histone	H3,	associated	with	higher	activation	of	transcription,	and	so	allowed	the	

authors	 to	 build	 a	 comprehensive	 picture	 of	 clinically	 relevant	 active	 regulatory	

regions	 in	 clinical	breast	 cancer	 samples.	The	authors	 identified	YY1	as	a	 critical	

determinant	 of	 ERα	 transcriptional	 activity	 and	 a	 marker	 of	 phenotypic	 clonal	

populations	involved	in	the	development	of	resistance	to	endocrine	therapies	(376).	

Interestingly,	 an	earlier	 study	by	 the	 same	authors,	 linked	an	 invasive,	EMT,	 like	

phenotype	 to	 the	 development	 of	 acquired	 resistance	 to	 AI	 and	 to	 AI-induced	

epigenomic	 reprogramming,	 highlighting	 the	 potentially	 interdependency	 of	 an	

EMT-like	phenotype	and	resistance	to	endocrine	therapies	(401).			

	

Cumulatively,	 these	 results	 highlight	 a	 novel	 role	 for	 ERα	 response	 element	

methylation,	and	more	broadly	phenotypic	heterogeneity	in	the	epigenome,	in	the	

induction	 of	 resistance	 to	 endocrine	 therapies.	 Interestingly,	 embryonic	

transcription	 factors	 OCT4,	 SOX2	 and	 KLF4	 each	 have	 roles	 in	 regulating	 the	

epigenome	 of	 stem	 and	 progenitor	 cells	 to	 control	 differentiation	 (286,287).	

Additionally,	the	oncogenic	histone	methyltransferase	and	key	embryonic	regulator,	

EZH2,	 has	 been	 shown	 to	 contribute	 to	 tamoxifen	 resistance	 by	 silencing	 the	

expression	 of	 ERα	 cofactor	 GREB1	 (288).	 Together,	 these	 results	 highlight	 a	

potential	 mechanism	 by	 which	 embryonic	 transcription	 factors	 contribute	 to	
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regulation	of	ERα	transcriptional	activity	and	hence	influence	the	development	of	

tamoxifen	resistance.		

	

Given	our	previous	findings	that	the	development	of	tamoxifen	resistance	was	not	

due	 to	 selection	 of	 a	 specific	 genomic	 cluster	 defined	 by	 coding	 mutations,	 but	

polyclonal	in	nature	(see:	Chapter	3),	we	sought	to	profile	further	the	potential	roles	

of	EMT	and	BC-TIC-like	phenotypes	in	the	resistance	process.	Given	the	role	of	ERα	

in	 controlling	 differentiation	 in	 the	 normal	 human	 mammary	 gland,	 resistance	

induced	 pluripotency	 seems	 a	 plausible	 avenue	 in	 explaining	 the	 multitude	 of	

resistance	 mechanisms	 described	 in	 anti-oestrogen	 therapy.	 Specifically,	 in	 this	

chapter	we	profile	the	expression	and	function	of	pluripotency	related	transcription	

factors	 in	 the	 development	 of	 resistance	 and	 the	 maintenance	 of	 a	 BC-TIC	

phenotype.	 We	 use	 a	 BC-TIC	 surrogate	 assay	 of	 mammosphere	 formation	 to	

investigate	the	contribution	of	4-OHT	to	mammosphere	initiating	cells	(M-ICs).	Our	

analyses	uncover	a	tamoxifen-inducible	BC-TIC/M-IC	phenotype	in	cell	line	and	PDX	

models	 and	 we	 present	 evidence	 for	 an	 OCT4-related	 transcriptional	 program	

central	to	both	resistance	and	tumour	initiation.		
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4.2	M-ICs	are	enriched	by	4-OHT	treatment			
	

Resistance	 to	 tamoxifen	 has	 been	 linked	 to	 expression	 of	 several	 master	

transcription	factors	typically	associated	with	guiding	embryonic	stem	cell	fate	and	

differentiation.	 We	 sought	 to	 profile	 expression	 of	 these	 transcription	 factors	

alongside	putative	BC-TIC	markers	 in	a	panel	of	ERα+	tamoxifen	sensitive	(MCF7	

parental,	T47D,	MCF7-CT	con1-5)	and	resistance	(TamR,	MCF7-CT	res1-5)	cell	lines.	

Figure	4.2.1	shows	the	results	of	a	qPCR	panel	for	embryonic	transcription	factors	

OCT4	 (POU5F1),	 SOX2,	NANOG	 &	 KLF4	 alongside	 markers	 of	 BC-TICs	 CD44	 and	

PROCR	(167,402),	results	are	presented	as	fold-change	relative	to	MCF7	parental,	

statistical	 significance	 (by	 one-way	 ANOVA	 with	 Bonferroni;	 *p<0.05;	 **p<0.01;	

***p<0.001;	****p<0.0001)	is	also	presented	versus	MCF7	parental.	Several	markers	

appear	to	be	enriched	in	resistant	models.	This	is	clearest	in	POU5F1,	SOX2	&	PROCR	

where	resistant	and	sensitive	groups	have	mean	relative	expression	of	POU4F1:	3.42	

&	1.13,	SOX2:	3.53	&	1.21	&	PROCR:	2.79	&	0.93	respectively.	In	Figure	4.2.2,	mean	

expression	in	sensitive	and	resistant	models	are	combined.	Significant	differences	

are	 seen	 between	 sensitive	 and	 resistant	 groups	 (by	 one-way	 ANOVA	 with	

Bonferroni	correction)	for	POU5F1	(p=0.0023),	SOX2	(p=0.0057),	KLF4	(p=0.0015)	

&	 PROCR	 (p=0.00027)	 expression.	 There	 is	 also	 a	 slight	 enrichment	 in	 CD44	

expression	 in	 the	 resistant	 lines,	 though	this	 is	not	statistically	 significant.	These	

results	appear	to	be	in	keeping	with	the	literature:	KLF4	has	been	associated	with	

good	prognosis	and	 is	preferentially	enriched	 in	 sensitive	models	 (284);	 SOX2	&	

OCT4	have	been	directly	linked	to	tamoxifen	resistance	(277,282),	and	are	enriched	

in	our	resistant	models;	surface	markers	CD44	&	PROCR	are	thought	to	mark	BC-

TICs	 and/or	 mammary	 stem	 cells	 (164,167,403)	 and	 again	 are	 enriched	 in	 our	

resistant	models.		

	

We	 next	 sought	 to	 investigate	 the	 functional	 manifestations	 of	 enriched	 BC-TIC	

markers	in	our	resistant	models.	Sphere	formation	assays	were	first	developed	to	
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enable	the	growth	and	purification	of	putative	stem	cells	from	single	clones	in	non-

adherent,	serum	free	conditions,	and	have	since	been	applied	to	study	multiple	stem	

cell	and	phenotypes	 in	normal	and	cancerous	tissues	(404,405).	 In	breast	cancer	

research,	the	mammosphere	assay	has	been	heavily	relied	on	as	an	in	vitro	surrogate	

for	tumour	initiation	potential.	Hence,	M-ICs	are	thought	to	be	the	in	vitro	equivalent	

of	BC-TIC	(159).	Mammospheres	show	a	range	of	upregulated	stem	cell-associated	

signalling	 pathways	 (169)	 and	 their	 formation	 efficiency	 correlates	 with	 the	

tumorigenicity	 of	 their	 originating	 tissues,	 when	 ranked	 by	 LDAs	 in	 mouse	

xenografts	(170,185,406).	In	order	to	assay	both	mammosphere	proliferation	and	

mammosphere	forming	efficiency	(MFE),	we	designed	a	mammosphere	culture	and	

image	analysis	workflow.	Briefly,	single	cells	were	plated	in	low	adherent	conditions	

with	mammosphere	promoting	media,	with	or	without	the	last	24hrs	culture	being	

in	 the	presence	of	drug.	After	4	days,	 first	 generation	 spheres	would	 form,	 these	

could	 be	 passaged	 and	 a	 known	number	of	 single	 cells	 re-plated	 to	 form	 second	

generation	spheres.	The	number	of	M-ICs	in	the	first-generation	culture	could	then	

be	calculated	as	the	ratio	of	2nd	generation	spheres	formed	to	input	first	generation	

mammosphere	cells,	also	known	as	the	MFE.	Phase	contrast	images	were	captured	

and	stitched	together	in	ImageJ	before	automated	counting	and	size	discrimination.	

Formally,	we	define	MFE	as	the	number	of	2nd	generation	spheres	>50µm	formed	as	

a	proportion	of	plated	1st	generation	single	cells,	whilst	the	absolute	number	of	2nd	

generation	spheres	gives	a	measure	of	M-IC	number	in	the	1st	generation	culture.	

We	reasoned	that	our	assay	variation	could	also	give	us	a	measure	of	proliferative	

potential,	by	quantifying	mammosphere	size.		

	

Figure	4.2.3	A	shows	the	area	of	mammospheres	 formed	by	TamR	and	MCF7	cell	

lines,	Figure	4.2.3	B	shows	MFE.	TamR	cells	tend	to	form	significantly	more	(p<0.05;	

two-tailed	t-test),	but	significantly	smaller	mammospheres	than	MCF7s	(p<0.0001;	

two-tailed	t-test).	This	suggests	reduced	proliferation,	but	enhanced	M-IC	numbers	

in	 the	 tamoxifen	 resistant	 line.	 In	Figure	4.2.3	 C	we	see	 that	 all	 five	 replicates	of	
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barcoded	 resistant	 cell	 lines	 have	 significantly	 increase	 MFE	 relative	 to	 MCF7	

parental	and	MCF7-CT	control	lines	(statistical	significance	by	one-way	ANOVA	with	

Bonferroni	correction	denoted	(*p<0.05;	**p<0.01;	***p<0.001;	****p<0.0001).	The	

output	 of	our	 ImageJ	workflow	 for	 scoring	mammosphere	 numbers	 and	 areas	 is	

shown	representatively	for	MCF7	parental	and	TamR	cell	lines	in	Figure	4.2.3	D.		

	

We	next	asked	whether	acute	treatment	with	4-OHT	would	be	enough	to	induce	a	

CSC-like	 transcriptional	 profile	 and/or	 enrich	 cultures	 for	 M-ICs.	 Figure	 4.2.4	 A	

shows	expression	of	POU5F1,	SOX2	and	PROCR	 in	MCF7s	and	TamRs	cultured	for	

24hrs	in	a	variety	of	conditions.	In	MCF7s,	4-OHT	induced	expression	of	all	three	

markers	significantly	(p<0.05),	E2	had	little	effect	and	a	combination	of	E2	and	4-

OHT	had	a	similar	affect	 to	4-OHT	alone.	As	we	have	seen	 in	Figure	4.2.1,	models	

resistant	to	4-OHT	tend	to	have	a	higher	baseline	expression	of	all	three	markers.	

However,	 the	addition	of	either	 ligand,	 in	 this	experiment,	served	to	significantly	

reduce	TamR	expression	of	CSC	markers	(p<0.001	for	SOX2	&	PROCR;	p<0.05	for	

POU5F1	 (only	significant	with	E2)).	 Interestingly,	 increased	PROCR	expression	 in	

resistant	 versus	 control	 lines	 appeared	 to	 be	 relatively	 inconsistent	 between	

experiments	 (42-fold	 induction	 in	 Figure	 4.2.4	 A	 and	 3-fold	 in	 Figure	 4.2.1.	This	

variability	prompted	us	to	exclude	PROCR	from	future	experiments.	Functionally,	

treating	first	generation	mammospheres	with	4-OHT	leads	to	significantly	reduced	

size	mammospheres	in	the	2nd	generation	(p<0.001),	but	significantly	increases	the	

number	 of	 M-ICs	 ~3.5	 fold	 (Figure	 4.2.4	 B;	 p<0.01).	 The	 effect	 of	 4-OHT	 on	

mammosphere	size	appears	to	follow	a	dose-response	relationship:	Figure	4.2.4	B	

shows	a	 stepwise	 reduction	 in	mammosphere	size	at	higher	doses	of	4-OHT.	We	

found	smaller	mammospheres	overall	in	the	tamoxifen	resistant	line	(TamR),	but	

also	an	increased	baseline	MFE.	In	this	experiment,	4-OHT	addition	did	not	appear	

to	alter	MFE	to	a	great	degree	(Figure	4.2.4	B).		
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We	hypothesised	that	as	POU5F1	(OCT4)	expression	was	relatively	stable	in	TamRs	

treated	 with	 4-OHT,	 it	 may	 hold	 more	 significance	 to	 the	 BC-TIC	 phenotype.	

Mechanistically,	there	are	several	oestrogen	response	element	(ERE)	binding	sites	

in	a	validated	promotor	region	of	POU5F1	(Figure	4.2.5	A)	(407).	Further,	this	site	

overlaps	 with	 both	 an	 ERα/FOXA1	 binding	 site	 previously	 associated	 with	 the	

development	 of	 tamoxifen	 resistance	 and	 poor	 outcome	 in	 ERα+	 breast	 cancer	

patients	(248)	and	with	a	tamoxifen-ERα	specific	site	identified	by	Welboren	et	al.,	

(408).	This	second	study	used	ChIP-Seq	to	map	genome	wide	ERα-binding	sites	and	

RNA	polymerase	II	(RNAPII)	occupancy	in	MCF7s.	The	authors	found	that	tamoxifen	

and	fulvestrant	partially	reduced	ERα	binding	and	RNAPII	loading,	but	had	different	

effects	 on	 genes	 downregulated	 by	 E2.	 The	 authors	 conclude	 that	 a	 partially	

antagonist-loaded-ERα	(i.e.	with	tamoxifen	and	E2)	can	act	as	an	full	agonist	at	some	

sites	(408).	Though	this	conclusion	has	since	been	called	into	question	by	Hurtado	

et	al.,	(238),	even	this	study	found	that	tamoxifen	induced	ERα	binding	in	a	subset	

of	sites	induced	by	E2,	albeit	weaker	in	binding	intensity.	We	sought	to	understand	

the	 timing	 of	POU5F1	 induction	 by	 4-OHT	 treatment	 and	 so	 carried	 out	 a	 time-

course	qPCR	experiment	(Figure	4.2.5	B).	MCF7	monolayers	were	treated	in	24-well	

plates	with	 100nM	4-OHT	 and	 three	wells	 harvested	 periodically	 over	 a	 total	 of	

64hrs.	Each	timepoint	was	assayed	for	gene	expression	by	qPCR.	Alongside	POU5F1	

(OCT4),	we	assayed	three	genes	thought	to	be	strongly	associated	with	E2-ERα	only	

binding	events;	PGR1	(PR),	GREB1	and	WISP2	(238).	We	found	strong	induction	of	

POU5F1	expression	from	24hrs,	with	a	corresponding	decrease	in	PGR1,	GREB1	and	

WISP2	expression	(Figure	4.2.5	B).	It	is	important	to	note	that	only	ChIP-qPCR	(ChIP	

for	ERα	bound	4-OHT,	qPCR	for	POU5F1)	can	confirm	direct	regulation	of	POU5F1	

expression	 by	 tamoxifen/4-OHT	 bound	 ERα.	 However,	 these	 results	 point	 to	 a	

plausible	mechanism	by	which	POU5F1	expression	may	be	directly	 induced	by	4-

OHT	bound	ERα,	at	least	in	some	cases.			
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Interestingly,	we	also	find	that	mammospheres	tend	to	have	a	higher	tolerance	for	

4-OHT	 than	monolayer	 grown	 cells.	 Figure	 4.2.6	 A	 shows	 an	 IC50	 of	 0.85µM	 for	

MCF7s	grown	as	spheroids,	more	than	three	times	the	0.26µM	of	monolayer	cells	

(p<0.0001;	Extra	sum-of-squares	F-test).	This	is	a	feature	specific	to	M-ICs,	rather	

than	any	nuances	of	drug	penetration	 in	3D	structures.	We	 find	24hrs	 treatment	

with	 0.6µM	4-OHT	markedly	 effects	 the	 viability	 of	MCF7s	 grown	 in	Matrigel	 as	

acinar	structures	(Figure	4.2.6	B).	These	assays	are	typically	used	to	study	branching	

morphogenesis	in	normal	breast	cell	lines	(e.g.	MCF10A)	or	breast	stem	cells,	but	

can	be	a	useful	3D	model	to	study	cancer	cell	invasion	and	growth	in	vitro	(327).	

This	result	strongly	suggests	that	mammosphere	culture	enriches	for	specific	cell	

types	with	an	 inherent	 resistance	 to	4-OHT,	which	are	not	enriched	 for	 in	either	

monolayer	culture	or	in	3D	growth	and	morphogenesis	assays.	

	

It	has	been	suggested	that	chronic	exposure	to	anti-endocrine	therapy	may	impart	

specific	selective	pressures	on	breast	cancer	cells	that	are	ultimately	able	to	induce	

a	stable	change	in	cellular	phenotype	(401).	For	example,	resistance	to	AI	has	been	

linked	to	the	stable	upregulation	of	genes	involved	in	the	27-hydroxyl-cholesterol	

biosynthesis	 pathway	which	 consequently	 promote	 oestrogen-independent	 ERα-

chromatin	 binding	 at	 putative	 regulatory	 regions	 (401).	 It	 is	 conceivable	 that	

similar,	drug-induced,	transcriptional	changes	are	occurring	in	our	4-OHT	treated	

MCF7s.	 	 Thus,	 from	 the	 results	 presented,	 there	 are	 at	 least	 two	 plausible	

mechanisms:	either	ERα	bound	4-OHT	is	directly	increasing	the	absolute	number	of	

M-ICs,	 perhaps	 through	 induction	 of	 POU5F1	 expression,	 or	 4-OHT	 treatment	 is	

selectively	toxic	in	the	non-M-IC	population,	meaning	that	treatment	causes	de	facto	

enrichment	for	M-ICs.	A	schematic	of	two	possible	scenarios	is	presented	in	Figure	

4.2.7.	 We	 reasoned	 that	 if	 the	 same	 population	 of	 cells	 were	 responsible	 for	

resistance	to	4-OHT	and	comprised	the	bulk	of	M-ICs,	Figure	4.2.7	A,	then	we	would	

see	 the	 same	 ClonTracer	 barcodes	 enriched	 in	 4-OHT	 resistance	 and	 in	

mammosphere	culture.	A	similar	scenario	would	occur	if	a	subpopulation	of	MCF7s	
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were	 predisposed	 to	 become	 resistant,	 i.e.	 if	 a	 4-OHT	 inducted	 process	 led	 to	

resistance	 in	only	 a	 certain	 fixed	 treatment	 naïve	 phenotype.	 Alternatively,	 as	 in	

Figure	 4.2.7	 B,	 4-OHT	 could	 induce	 the	 same	 process	 across	 all	 cell	 phenotypes	

(perhaps	the	induction	of	POU5F1),	which	enables	some	degree	of	transcriptional	

plasticity	and	the	(relative)	stochastic	development	of	resistance	by	any	cell	in	the	

population.	This	 transient	 state	of	 enhanced	plasticity	may	enable	more	efficient	

mammosphere	formation,	or	the	final	resistant	cell	type	may	share	properties	of	M-

ICs.	 In	 either	 case,	 in	 this	 second	 scenario,	we	would	 be	more	 likely	 to	 see	 poor	

correlation	between	barcodes	enriched	in	resistant	cell	lines	and	sensitive	cell	lines	

cultured	as	mammospheres.		

				

Hence,	we	turned	to	our	MCF7	sub-lines	barcoded	with	the	ClonTracer	lentiviral	cell	

tracking	system.	Optimisation	and	derivation	are	detailed	extensively	in	Chapter	3.	

We	prepared	amplicons	spanning	unique	ClonTracer	sequences	from	MCF7-CT	con	

(sensitive	 to	 4-OHT)	 and	 MCF7	 res	 (resistant	 to	 4-OHT)	 2nd	 generation	

mammospheres	(shown	in	Figure	4.2.3	C).		Figure	4.2.8	A	shows	summary	data	for	

correlations	 between	 barcodes	 enriched	 in	 MCF7-CT	 res	 cell	 lines	 described	 in	

Chapter	 3	 and	 MCF7-CT	 con	 cell	 lines	 grown	 as	 mammospheres,	 Figure	 4.2.3	 A.	

Figure	4.2.8	B	shows	the	same	but	for	MCF7-CT	con	cell	lines	described	in	Chapter	3	

and	MCF7-CT	res	cell	lines	grown	as	mammospheres,	Figure	4.2.3	A.	Interestingly,	

we	see	good	overlap	between	cellular	populations	(barcodes)	enriched	in	M-ICs	in	

each	control	line	and	those	enriched	in	4-OHT	resistance	from	our	studies	in	Chapter	

3.	These	data	suggest	that	4-OHT	is	selecting	for	pre-existing	cellular	populations	

which	are	enriched	for	M-ICs.	Interestingly,	it	is	possible	that	such	a	population	may	

be	‘primed’	for	drug-induced	transcriptional	changes,	rather	than	truly	pre-existing	

prior	 to	 treatment	 (401).	 However,	 it	 is	 clear	 that	 it	 is	 M-ICs	 that	 ultimately	

dominate	in	4-OHT	resistant	cell	lines.	
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Figure	4.2.1	–	qPCR	for	stem	cell	markers		

Stem	cell	transcription	factors	NANOG,	POU5F1,	SOX2	and	KLF4	are	profiled	across	

tamoxifen	resistant	and	sensitive	models	by	qPCR.	Putative	surface	markers	PROCR	

and	CD44	are	also	profiled.	Results	are	normalized	by	comparative	CT	method	(2-ΔΔ𝐶T)	

(333)	to	the	geometric	mean	of	B2M	and	GAPDH,	and	MCF7	expression	(see	Methods,	

section	2.4.1).		Figure	Overleaf.	
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Figure	4.2.2	–	Combined	analysis	of	qPCR	for	stem	cell	markers		

Mean	expression	values	relative	to	MCF7	from	Figure	4.2.1	were	combined	for	resistant	

and	 sensitive	 groups.	 POU5F1,	 SOX2,	 CD44	&	 PROCR	were	 higher	 in	 resistant	 than	

sensitive	 models.	 KLF4	 was	 low	 in	 resistant	 and	 NANOG	 was	 relatively	 stable.	

Statistical	significance	was	computed	by	one-way	ANOVA	with	Bonferroni	correction	

and	is	presented	versus	MCF7	(*p<0.05;	**p<0.01;	***p<0.001;	****p<0.0001).		

Figure	4.2.2	–	Combined	analysis	of	qPCR	for	stem	cell	markers	
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Figure	4.2.3	–	Mammosphere	formation	assays	

A)	2nd	generation	mammospheres	>50	µm2	are	counted	and	measured.	TamR	cell	line	

tends	to	 form	significantly	smaller	mammospheres	(p<0.0001;	 two-tailed	t-test).	B)	

The	efficiency	of	MFE	is	the	percentage	of	1st	generation	mammosphere	cells	able	to	

self-renew	and	 form	new	spheres	on	passage.	TamRs	have	significantly	higher	MFE	

than	MCF7s,	~1%	MFE	for	MCF7	versus	~2.5%	for	TamR	(p<0.05;	two-tailed	t-test).	C)	

MFE	was	calculated	for	each	MCF7-CT	resistant	and	sensitive	lines.	Each	resistant	line	

had	 significantly	 higher	 MFE	 than	 sensitive	 lines.	 Statistical	 significance	 was	

computed	 by	 one-way	 ANOVA	 with	 Bonferroni	 correction	 and	 is	 presented	 versus	

parental	 MCF7	 (*p<0.05;	 **p<0.01;	 ***p<0.001;	 ****p<0.0001).	 Significant	

heterogeneity	exists	within	the	MCF7-CT	resistant	lines	in	terms	of	MFE.	MFE	is	highest	

in	Res5	(~7%	MFE)	and	lowest	in	Res1	(~2.1%),	the	difference	between	these	lines	is	

significant	(p<0.001).	D)	Output	of	our	mammosphere	counting	workflow	in	ImageJ.	

Images	are	stitched	together,	and	spheres	automatically	counted	and	measured.	Only	

those	with	an	area	>50	µm2	are	counted.	For	detailed	protocol	see	Methods,	section	

2.2.1.	Figure	Overleaf.	
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Figure	4.2.3	–	Mammosphere	formation	assays	
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Figure	4.2.4	–	Tamoxifen	M-IC	selection		

A)	Shows	qPCR	for	POU5F1,	SOX2	and	PROCR	in	MCF7s	and	TamRs	on	treatment	with	

4-OHT	 (Tam;	100nM	 for	24hrs)	and/or	10nM	E2.	 SOX2	and	PROCR	expression	was	

highly	significantly	reduced	in	TamRs	treated	with	4-OHT	(p<0.001	in	each	case).	E2	

was	the	only	ligand	significantly	reducing	expression	of	POU5F1,	though	4-OHT	and	4-

OHT/E2	combination	trended	toward	this.	All	three	genes	were	upregulated	in	MCF7s	

treated	with	4-OHT	(alone	or	in	combination,	but	only	statistically	significant	in	4-OHT	

only	(p<0.05	in	each	case).	B)	Mammosphere	sizes	and	MFE	for	MCF7	and	TamR,	with	

and	without	 4-OHT	 treatment	 (100nM	 4-OHT	 or	 200nM	 4-OHT	 for	 24hrs).	 4-OHT	

treatment	increased	MFE	but	decreases	size	of	mammospheres	in	MCF7s.	4-OHT	also	

significantly	 reduced	 the	 size	of	TamR	mammospheres	 (p<0.001)	but	 there	was	no	

statistically	 significant	 effect	 on	 TamR	 MFE.	 Statistical	 analysis	 was	 by	 one-way	

ANOVA	 with	 Bonferroni	 correction	 for	 multiple	 comparisons	 (*p<0.05;	 **p<0.01;	

***p<0.001;	****p<0.0001).	Figure	Overleaf.	
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Figure	4.2.4	–	Tamoxifen	M-IC	selection	
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Figure	4.2.5	–	OCT4	binding	site	in	ERα	promotor		

A)	Integrative	Genomics	Browser	(IGV)	schematic	(developed	by	the	Broad	Institute;	

available	at	software.broadinstitute.org/software/igv/)	of	 the	POU5F1	gene	region,	

highlighting,	 between	 red	 lines,	 a	 validated	 promotor	 site	 (407)	 containing	 ERE	

binding	regions.	The	region	overlaps	with	both	an	ERα/FOXA1	binding	site	previously	

associated	with	the	development	of	tamoxifen	resistance	and	poor	outcome	in	ERα+	

breast	cancer	patients	(248)	and	a	tamoxifen-ERα	specific	site	identified	by	Welboren	

et	al.,	 (408).	B)	MCF7s	 treated	 in	24-well	 plates	with	100nM	4-OHT	and	harvested	

periodically	over	a	total	of	64hrs.	Each	timepoint	was	assayed	for	gene	expression	by	

qPCR	(POU5F1	(Oct4),	and	PGR1	(PR),	GREB1	and	WISP2;	the	last	three	are	associated	

with	E2-ERα	only	binding	events	(238)).	Induction	of	POU5F1	expression	is	seen	from	

24hrs,	with	corresponding	decrease	in	PGR1,	GREB1	and	WISP2	expression.	This	trend	

is	sustained	to	the	end	of	the	assay	period.	Figure	Overleaf.	



Clonal	Origins	of	Drug	Resistance																																										Chapter	4	–	Tam	&	BC-TICs

	 	 	

	
-191-	

Figure	4.2.5	–	OCT4	binding	site	in	ERα	promotor	
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Figure	4.2.6	–	Mammospheres	are	resistant	to	tamoxifen		

A)	 2nd	 generation	 mammospheres	 were	 passaged	 and	 plated	 as	 monolayers	 and	

assayed	 versus	 non-mammosphere	 MCF7	 monolayer	 cultures	 by	 dose	 response	 for	

sensitivity	to	4-OHT.	Mammosphere	culture	resulted	in	an	IC50	of	0.85µM	for	MCF7s,	

more	than	three	times	the	0.26µM	of	monolayer	cells	(p<0.0001;	Extra	sum-of-squares	

F-test).		B)	MCF7s	were	grown	in	8-well	CultureSlides	pre-coated	with	60µl	collagen:	

Matrigel	mix	and	incubated	for	2	weeks	(for	more	details	see	Methods,	section	2.2.5).	

Acinar	structures	were	 treated	 for	24hrs	 treatment	with	0.6µM	4-OHT,	resulting	 in	

substantial	cell	death.	This	result	suggests	mammosphere	cultures,	but	not	other	3D	

culture	techniques,	enrich	for	4-OHT	resistance.	Figure	Overleaf.		
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Figure	4.2.6	–	Mammospheres	are	resistant	to	tamoxifen2	
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Figure	4.2.7	-	Schematic	of	MCF7	M-IC	selection	by	4-OHT	

	

	

	

Figure	4.2.7	–	Schematic	of	MCF7	M-IC	selection	by	4-OHT	

Schematic	depicting	two	possible	routes	of	M-IC	selection	by	4-OHT.	A)	A	population	

of	 cells	 enhanced	 in	M-ICs	and	 inherently	4-OHT	existence	 is	 selected	 for	by	4-OHT	

treatment.	B)	4-OHT	induces	a	state	of	plasticity	in	MCF7s	through	OCT4/SOX2	etc.	

which	stochastically	enables	cells	to	develop	resistance.		
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Figure	4.2.8	–	Barcode	correlation	between	M-ICs	and	4-OHT	resistance		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4.2.8	–	Barcode	correlation	between	M-ICs	and	4-OHT	resistance	

A)	Correlation	between	barcodes	enriched	in	M-ICs	from	each	of	MCF7-CT	control	cell	

lines	 (con1-5)	 with	 each	 of	 the	 4-OHT	 resistant	 cell	 lines	 (MCF7-CT	 res1-5).	 Data	

presented	as	box	plot	of	 five	pearsons	r	 scores	 representing	the	correlation	of	each	

MCF7-CT	con	line	with	the	five	resistant	lines.	B)	As	(A)	but	MCF7-CT	res	M-ICs	versus	

each	control	line	(con1-5)	
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4.3	OCT4	&	SOX2	in	mammosphere	formation	
	

The	previous	section	found	that	4-OHT	enriches	for	M-ICs,	and	for	SOX2	&	POU5F1	

expression.	These	embryonic	transcription	factors	are	thought	to	be	responsible	for	

epigenetic	 activation	 of	 cell-type-specific	 distal	 regulatory	 elements	 involved	 in	

determining	 cell	 identity	 during	 development	 and	 differentiation	 (409,410).	

Moreover,	 the	 ectopic	 expression	 of	 these	 transcription	 factors	 can	 lead	 to	

epigenetic	 reprogramming	 and	 the	 reacquisition	 of	 pluripotency	 (i.e.	 iPSCs)	

(410,411).	 Aside	 from	 the	 key	 regulatory	 roles	 of	OCT4,	 SOX2	 and	 other	master	

transcription	 factors,	 this	 highlights	 the	 degree	 of	 plasticity	 retained	 by	 the	

epigenome	 (401,411,412).	 Cancer	 cells	 have	 also	 been	 shown	 to	 remodel	 the	

epigenomic	 landscape	 in	 response	 to	 the	 selective	 pressures	 associated	 with	

therapy	(86,413),	for	example,	in	the	adaptation	to	oestrogen	deprivation	(413)	and	

to	 treatment	with	AIs	 (401),	 and	 there	 is	 a	 specific	 association	 between	 the	 CSC	

phenotype	and	epigenetic	remodelling	(414).	In	this	section,	we	sought	to	directly	

test	 the	 hypothesis	 that	 transcription	 factors	 SOX2	 and	 OCT4	 contribute	 to	

mammosphere	formation	(as	an	in	vitro	model	of	BC-TICs)	and/or	resistance	to	4-

OHT.	1st	generation	mammospheres	were	generated	either	in	the	presence	of	sham	

siRNAs	(for	GFP)	or	 targeted	siRNAs	for	SOX2/POU5F1	with/without	exposure	to	

100nM	4-OHT	for	24	hrs.	2nd	generation	mammospheres	were	then	generated	and	

MFE	scored	based	on	viable	input	cell	counts	and	spheres	formed	in	2nd	generation	

culture,	after	four	days.	Efficient	siRNA	knockdown	was	confirmed	by	western	blot	

(Figure	4.3.1	A	&	B).		

	

Treating	 MCF7s	 with	 4-OHT	 appeared	 to	 have	 little	 effect	 on	 gross	 sphere	

morphology	 (relative	 to	 Sham	 controls),	 whereas	 siOCT4	 visually	 appeared	 to	

reduce	sphere	size	and	potentially	aggregation	(Figure	4.3.2	A).	As	before,	treatment	

with	 4-OHT	 reduced	 the	 size	 of	mammospheres	 formed	 but	 enriched	 for	 M-ICs	

(Figure	 4.3.2	 B),	 thus	 enhancing	 MFE.	 Treatment	 with	 siOCT4	 reduced	
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mammosphere	growth	 (not	significant)	 and	 slightly	 increased	M-IC	number	 (not	

significant),	perhaps	suggesting	that	aggregation	of	smaller	spheres	into	larger	was	

inhibited.	 Interestingly,	 4-OHT	 treatment	 in	 the	 presence	 of	 siOCT4	 completed	

ablated	 the	 M-IC	 enhancing	 effects	 of	 4-OHT	 (p<0.01;	 one-way	 ANOVA	 with	

Bonferroni	correction).	Furthermore,	MFE	was	significantly	reduced	by	4-OHT	in	

the	 presence	 of	 siOCT4	 relative	 to	 siOCT4	 alone	 (p<0.05;	 one-way	 ANOVA	 with	

Bonferroni	 correction),	 suggesting	 that	 4-OHT	 becomes	 toxic	 to	 MCF7	

mammospheres	 in	 the	 absence	 of	 OCT4.	 In	 contrast,	 siSOX2	 almost	 completely	

removed	 the	 ability	 of	 cells	 to	 form	 mammospheres	 in	 either	 the	 presence	 or	

absence	 of	 4-OHT,	 suggesting	 that	 SOX2	 is	 a	 requirement	 for	 cells	 to	 form	

mammospheres	(Figure	4.3.2	A	and	B).	This	appears	to	be	 in	agreement	with	the	

literature,	with	 several	 studies	 finding	 SOX2	 is	 activated	 in	 breast	 CSCs/BC-TICs	

(415)	and	that	it	may	be	essential	to	mammosphere	formation	via	its	downstream	

target	Mucin-1	(416).		

	

Our	studies	have	shown	that	resistant	lines	tend	to	have	increased	basal	expression	

of	SOX2	and	POU5F1,	but	that	these	tend	to	be	downregulated	on	4-OHT	treatment.	

We	next	asked	whether	these	transcription	factors	contributed	to	survival	of	the	M-

IC	 fraction	 of	 TamR	 cells.	Figure	 4.3.3	 A	&	B	 show	 that	 both	 siOCT4	 and	 siSOX2	

drastically	reduced	mammosphere	formation	in	TamRs.	As	before	(Figure	4.3.2	B)	

we	see	a	slight,	non-significant	decline	in	the	MFE	of	TamRs	after	treating	with	4-

OHT	 (Figure	 4.3.3	 A	 &	 B).	 POU5F1/OCT4	 appears	 to	 have	 only	 a	 slight	 role	 in	

untreated	 MCF7	 M-IC	 number	 but	 is	 completely	 required	 for	 mammosphere	

formation	in	TamRs.		

	

Together,	these	results	highlight	the	importance	of	OCT4	and	SOX2	in	the	formation	

and/or	maintenance	of	M-ICs	and	4-OHT	resistance.	Interestingly,	OCT4	appears	to	

be	specifically	important	in	the	4-OHT	induced	M-IC	enrichment	process,	in	MCF7s.		
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Figure	4.3.1	–SOX2/OCT4	knockdowns	

	

	

	

	

	

	

	

	

	

Figure	4.3.1	–	SOX2/OCT4	knockdowns		

A)	Western	blot	for	SOX2	in	MCF7s	and	TamR	cells	with	and	without	siSOX2.	Efficient	

reduction	in	SOX2	protein	is	seen.	B)	Western	blot	for	OCT4	in	MCF7s	and	TamR	cells	

with	and	without	siSOX2.	Efficient	reduction	in	OCT4	protein	is	seen.		
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Figure	4.3.2	–	Role	of	SOX2/OCT4	in	MCF7	MFE	

A)	 Representative	 phase	 contrast	microscopy	 of	mammospheres	 formed	 by	MCF7s	

with/without	4-OHT	pretreatment	(200nM	for	24hrs)	and/or	siRNA	for	OCT4/SOX2.	

Mammospheres	 appear	 smaller	 in	 siOCT4	 and	 siSOX2	without	 4-OHT.	With	 4-OHT,	

both	 siOCT4	 and	 siSOX2	 show	 very	 few	 mammospheres.	 B)	 Quantification	 of	 (A)	

showing	a	significant	increase	in	MFE	with	4-OHT	and	Sham	siRNA	(p<0.01).	This	was	

completely	ablated	by	the	addition	of	siOCT4,	suggesting	an	essential	role	for	OCT4	in	

the	formation	of	mammospheres	and/or	enrichment	of	M-ICs	by	4-OHT	in	MCF7s.	SOX2	

siRNA	substantially	reduced	the	number	of	mammospheres	formed	irrespective	of	4-

OHT	treatment,	suggesting	an	essential	role	in	M-IC	maintenance.	Statistical	analysis	

was	by	one-way	ANOVA	with	Bonferroni	to	correct	for	multiple	comparisons	(*p<0.05;	

**p<0.01;	***p<0.001;	****p<0.0001).	Figure	Overleaf.	
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Figure	4.3.2	–	Role	of	SOX2/OCT4	in	MCF7	MFE	
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Figure	4.3.3	–	Role	of	SOX2/OCT4	in	TamR	MFE	

A)	 Representative	 phase	 contrast	microscopy	 of	mammospheres	 formed	 by	 TamRs	

with/without	4-OHT	pretreatment	(200nM	for	24hrs)	and/or	siRNA	for	OCT4/SOX2.	

Mammospheres	failed	to	form	when	either	siRNA	was	used.	B)	Quantification	of	(A)	

showing	no	significant	differences	in	size	or	MFE	of	TamRs	with	the	addition	of	4-OHT	

and	 a	 highly	 statistically	 significant	 drop	 in	mammosphere	 size	 and	 number	when	

either	 siOCT4	 or	 siSOX2	 was	 used	 (p<0.001).	 Statistical	 analysis	 was	 by	 one-way	

ANOVA	with	Bonferroni	to	correct	for	multiple	comparisons.	Figure	Overleaf.	
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Figure	4.3.3	–	Role	of	SOX2/OCT4	in	TamR	MFE	
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4.4	Generation	of	OCT4-Vex-Poly	MCF7	Cell	Line		
	

In	order	to	better	study	the	role	of	OCT4	in	the	development	of	tamoxifen	resistance	

and	in	the	regulation	of	M-ICs,	we	generated	an	MCF7	OCT4-vexGFP	POU5F1	over	

expressing	cell	line.	The	expression	insert	can	be	seen	in	Figure	4.4.1	A,	POU5F1	is	

downstream	of	a	phosphoglycerate	kinase	(PGK)	promoter	(329).	Parental	MCF7s	

were	 infected	with	 lentiviral	constructs	containing	OCT4-vexGFP,	confirmation	of	

efficient	infection	by	flow	cytometry	is	visualised	in	Figures	4.4.1	B	&	C.	With	overall	

positivity	 of	 83.7%	 GFP,	 we	 opted	 to	 sort	 a	 selection	 of	medium-intensity	 GFP-

positive	cells,	 in	order	to	capture	some	population	heterogeneity	in	terms	of	viral	

integrations	 and	POU5F1	 expression.	 The	 resulting	 cell	 line,	 OCT4-Vex-Poly	was	

maintained	 in	 standard	 monolayer	 culture	 conditions	 used	 for	 parental	 MCF7s.	

Figure	 4.4.1	 D	 shows	 qPCR	 results	 for	POU5F1	 expression,	 showing	 significantly	

greater	 mRNA	 representation	 of	 POU5F1	 in	 the	 OCT4-Vex-Poly	 line	 relative	 to	

parental	and	TamR.		

	

We	next	characterised	the	OCT4-Vex-Poly	cell	line	for	in	vitro	proliferation	and	4-

OHT	sensitivity.	Figure	4.4.2	A	shows	significantly	slower	proliferation	in	OCT4-Vex-

Poly	cells	versus	parental	(p=0.0432,	non-linear	mixed	effect	model).	A	key	feature	

of	tamoxifen	resistant	lines	in	our	studies	has	been	quiescence	or	slow	cell	cycling,	

we	reasoned	that	had	OCT4-Vex-Poly	taken	on	drug	resistant	phenotype,	we	would	

observe	slower	growth.	Figure	4.4.2	B	shows	the	result	of	dose	response	calculations	

for	OCT4-Vex-Poly,	which	is	slightly	more	resistant	to	4-OHT	than	parental	(IC50’s	

of	0.68	µM	and	0.27	µM	respectively;	p<0.05	by	Extra	sum-of-squares	F-test).			

	

We	next	sought	to	verify	reports	in	the	literature	linking	OCT4	to	BC-TIC-like	activity	

through	the	in	vitro	mammosphere	formation	surrogate	assay.	We	calculated	MFE	

for	OCT4-Vex-Poly,	MCF7	parental	and	MCF7	parental	plus	OCT4	siRNA,	with	each	

1st	generation	mammosphere	culture	treated	with	EtOH	vehicle	or	200nM	4-OHT	
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(Figure	 4.4.3	 A).	 Surprisingly,	 OCT4-Vex-Poly	 had	 no	 greater	 ability	 to	 form	 2nd	

generation	 mammospheres	 than	 MCF7	 parental	 (plus	 a	 control	 siRNA	 for	 GFP).	

However,	we	confirmed	earlier	findings	that	pre-treatment	with	4-OHT	significantly	

increased	MFE	 in	 the	 parental	MCF7	 cell	 line	 (p<0.01).	Moreover,	we	 found	 this	

affect	was	markedly	amplified	 in	 the	OCT4-Vex-Poly	cell	 line.	OCT4-Vex-Poly	had	

10-fold	greater	MFE	when	pre-treated	with	4-OHT	compared	to	control	(p<0.001).	

As	we	had	found	earlier,	siRNAs	for	POU5F1	made	little	difference	to	M-ICs	when	

cells	 were	 treated	 with	 EtOH	 alone,	 but	 with	 the	 addition	 of	 4-OHT,	 MFE	 was	

completed	 ablated	 (p<0.05;	 all	 by	 one-way	 ANOVA	 with	 Bonferroni	 correction).	

These	results	are	shown	visually	by	representative	bright	field	images	in	Figure	4.4.3	

B.		

	

Mammosphere	assays	have	been	shown	to	predict	BC-TIC	content	by	measuring	M-

IC	numbers	in	an	in	vitro	surrogate	of	a	tumour	formation	assay.	However,	the	assay	

has	many	well-known	limitations,	not	least	that	aggregation	of	smaller	spheres	into	

larger	ones	could	impact	on	assay	sensitivity.	We	sought	to	confirm	the	synergistic	

role	of	OCT4	and	4-OHT	treatment	in	enriching	for	M-ICs,	and	so	performed	in	vitro	

limiting	 dilution	 assays	 (LDA;	 Figure	 4.4.4).	 Based	 on	 seeding	 increasingly	 small	

numbers	of	single	cells	generated	from	1st	generation	mammospheres,	and	counting	

the	resulting	spheroids	formed.	We	employed	the	ELDA	statistical	package	(324)	to	

estimate	the	functional	M-IC	content	of	each	group.	In	the	untreated	control,	OCT4-

Vex-Poly	had	the	highest	M-ICs	frequency	at	1/51.5	cells,	this	was	1/99.4	for	MCF7	

parental	 (plus	 control	 siRNA)	and	1/872.7	 for	 siOCT4	 (Figure	4.4.4	A).	When	we	

dose	 1st	 generation	 mammospheres	 with	 4-OHT	 prior	 to	 conducting	 the	 assay,	

OCT4-Vex-Poly	had	the	highest	M-IC	frequency	at	1/13.2	cells,	this	was	1/36.2	for	

MCF7	parental	 (plus	 control	siRNA)	and	1/1452.2	 for	siOCT4	 (Figure	4.4.4	B).	 In	

both	 the	 control	 and	 treated	 groups	 each	 cell	population	was	highly	 statistically	

significantly	(p	value	reported	is	calculated	via	Chi2)	different	from	each	of	the	other	
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two	groups,	giving	us	a	high	confidence	that,	at	least	in	vitro,	there	is	a	true	effect	of	

OCT4	on	increasing	M-IC	number.			

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4.4.1–	Generation	of	OCT4-Vex-Poly	MCF7	cell	lines		

A)	 Diagram	 of	 OCT4-Vex-GFP	 insert.	 Insert	 was	 packaged	 in	 lentiviral	 vector	 (2nd	

generation)	 as	 described	 in	Methods,	 section	 2.3.2,	 and	 lentiviral	 particles	 used	 to	

infect	MCF7s.	B)	Shows	 flow	 cytometry-based	 analysis	 of	 infection	 efficiency,	mode	

normalised	GFP	detection	by	405nm	laser	is	shown.	C)	Shows	derivation	of	the	OCT4-

Vex-Poly	cell	line	from	the	infected	MCF7	population.	OCT4-Vex-Poly	were	cell	sorted	

from	 the	 central	 region	 of	 VexGFP	 positive	 cells.	 83.7%	 of	 cells	 were	 positive	 for	

vexGFP.		D)	Confirmation	by	qPCR	of	over-expression	of	POU5F1	in	OCT4-Vex-Poly	cell	

line	 versus	TamR	and	MCF7	 (p<0.001).	 OCT4-Vex-Poly	 shows	 4-fold	 overexpression	

relative	to	TamR	and	7-fold	relative	to	MCF7.		

Figure	Overleaf.	
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Figure	4.4.1–	Generation	of	OCT4-Vex-Poly	MCF7	cell	lines	
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Figure	4.4.2	–	Characterization	of	OCT4-Vex-Poly	MCF7s	

A)	In	vitro	proliferation	of	OCT4-Vex-Poly	versus	MCF7	parental	in	the	IncuCyte	live	

cell	 imaging	system.	OCT4-Vex-Poly	was	significantly	slower	growing	than	parental	

(p<0.05	by	non-linear	mixed	effects	model).	B)	Shows	dose	response	analysis	for	OCT4-

Vex-Poly	to	calculate	4-OHT	sensitivity.	OCT4-Vex-Poly	is	slightly	more	resistant	to	4-

OHT	than	parental	(IC50’s	of	0.68	µM	and	0.27	µM	respectively;	p<0.05	by	Extra	sum-

of-squares	F-test).		Figure	Overleaf.	
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Figure	4.4.2	–	Characterization	of	OCT4-Vex-Poly	MCF7s	
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Figure	4.4.3	–	MFE	in	OCT4-Vex-Poly	MCF7s	

A)	Calculated	MFE	for	OCT4-Vex-Poly,	MCF7	parental	and	MCF7	parental	plus	OCT4	

siRNA	cell	lines	(+/-	4-OHT	pre-treatment	at	300nM	48hr).	Several	conclusions	can	be	

drawn:	OCT4-Vex-Poly	had	no	greater	ability	to	form	2nd	generation	mammospheres	

than	MCF7	 parental;	 pre-treatment	 with	 4-OHT	 significantly	 increased	MFE	 in	 the	

parental	MCF7	cell	 line	(p<0.01);	this	affect	was	amplified	in	the	OCT4-Vex-Poly	cell	

line	 (10-fold	 greater	MFE	when	 pre-treated	with	 4-OHT	 (p<0.001))	&	 siOct4	made	

little	 difference	 to	 vehicle	 treated	 MFE,	 but	 completed	 ablated	 MFE	 with	 4-OHT	

treatment	 (p<0.05;	 all	 by	 one-way	 ANOVA	 with	 Bonferroni	 correction).	 B)	

Representative	images	from	the	analysis	in	(A).	Figure	Overleaf.	
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Figure	4.4.3	–	MFE	in	OCT4-Vex-Poly	MCF7s		
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Figure	4.4.4	–	in	vitro	LDA	of	OCT4-Vex-Poly	MCF7s	

A)	 Increasingly	 small	 numbers	 of	 single	 cells	 generated	 from	 1st	 generation	

mammospheres	were	seeded	in	mammosphere	conditions,	and	spheroids	counted	after	

3	weeks	in	culture.	Further	details	on	seeded	cell	numbers	can	be	found	in	Methods,	

section	2.2.6.	The	ELDA	statistical	package	(324)	was	employed	to	estimate	functional	

M-IC	cell	count	in	each	group.	Output	of	this	analysis	is	shown	in	the	accompanying	

table:	OCT4-Vex-Poly	had	the	highest	M-IC	frequency	at	1/51.5	cells,	MCF7	parental	

(plus	control	siRNA)	was	1/99.4	and	siOCT4	was	1/872.7.	Each	cell	population	was	

highly	statistically	significantly	different	from	each	of	the	other	two	groups	(p	value	

reported	is	calculated	via	Chi2).	B)	As	(A),	but	cells	dosed	with	200nM	4-OHT	48hrs	

during	1st	generation	mammosphere	growth.	Here,	OCT4-Vex-Poly	had	the	highest	M-

IC	 frequency	 at	 1/13.2	 cells,	 MCF7	 parental	 (plus	 control	 siRNA)	 had	 1/36.2	 and	

siOCT4	 had	 1/1452.2.	 As	 before,	 each	 cell	 population	 was	 highly	 statistically	

significantly	different	from	each	of	the	other	two	groups	(p	value	reported	is	calculated	

via	Chi2).	Figure	Overleaf.	
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4.5	EMT	in	OCT4-Vex-Poly,	TamR	and	MCF7s									
	

Numerous	studies	have	linked	breast	cancer	drug	resistance	to	the	process	of	EMT	

(104,393),		and	EMT	to	the	acquisition	of	a	BC-TIC-like	phenotype	(394,400).	With	

one	study,	for	example,	linking	DMXL2	expression	to	Notch	pathway	activation	and	

EMT	in	ERα	positive	breast	cancer	patients	that	progress	after	endocrine	therapy	

(366).	Notch	itself	has	been	shown	to	regulate	cell	fate	(417),	proliferation	(418),	

apoptosis	 (419),	 as	well	 as	 stem	 cell	 survival	 and	 self-renewal	 (417,420,421).	 In	

breast	 cancer,	 increased	 expression	 of	 Notch-1	 predicts	 poorer	 overall	 survival	

(422)	and	has	been	shown	to	promote	proliferation	and	CSC	survival	in	a	subset	of	

HER2+	disease	(423).		

	

We	 next	 sought	 to	 understand	 the	 potential	 contributions	 of	 EMT	 to	 tamoxifen	

resistance	in	our	models.	Mammospheres	from	OCT4-Vex-Poly	experiments	(Figure	

4.4.3)	were	harvested	and	prepared	for	IHC	(Figure	4.5.1).	ERα	and	Ki67	were	seen	

to	 colocalise	 in	 OCT4-Vex-Poly,	 suggesting	 at	 least	 some	 oestrogen	 dependence.	

Moreover,	 OCT4-Vex-Poly	 mammospheres	 appeared	 variably	 enriched	 for	 the	

ALDH1A	marker	 of	 CSCs/BC-TICs.	N-Cadherin,	 E-Cadherin	 and	EpCam	were	 also	

profiled	 to	 investigate	 whether	 OCT4-Vex-Poly	 mammospheres	 had	 undergone	

EMT.	However,	no	major	differences	between	markers	expressed	by	MCF7	parental	

and	OCT4-Vex-Poly	mammospheres	is	immediately	obvious.	As	OCT4-Vex-Poly	are	

enriched	 for	 M-ICs	 resistance	 to	 4-OHT,	 it	 is	 interesting	 that	 they	 do	 not	 share	

properties	of	EMT.		

	

We	sought	to	further	profile	EMT	in	4-OHT	resistant	cell	lines.	TamR	cells	tend	to	

have	a	more	mesenchymal	stellate	phenotype	when	grown	as	a	monolayer,	Figure	

4.5.2	 A	 (393).	 Their	 migration,	 measured	 by	 a	 wound	 healing	 assay,	 is	 also	

significantly	faster	than	parental	MCF7s,	though	both	cell	lines	are	inhibited	in	this	

regard	by	4-OHT,	suggesting	a	functional	role	for	ERα	signalling	and	migration	even	
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in	resistant	models,	Figure	4.5.2	B	&	C.	Future	studies	should	in,	for	example,	MDA-

MB-231	cells	as	a	positive	control	for	a	migratory	phenotype.	EMT	is	associated	with	

differential	expression	of	key	marker	genes.	Putative	makers	of	an	epithelial	type	

phenotype	include	E-Cadherin,	Claudin3	and	Claudin4	whereas	markers	of	a	more	

mesenchymal	phenotype	include	SNAI1,	TGFB1,	Vimentin	and	Twist	(209,424).	By	

comparing	 gene	 expression	 patterns	 of	 TamRs	 and	 MCF7s	 in	 monolayer	 and	

mammosphere	culture,	we	find	that	mesenchymal-type	genes	dominate	in	TamRs	

whereas	 epithelial-type	 genes	 dominate	 in	 MCF7s	 (Figure	 4.5.3	 A).	 This	 is	 most	

apparent	in	mammosphere	(3D)	conditions.		
	

We	 sought	 to	 confirm	 these	 results	 by	 immunofluorescence	 in	 TamR	 and	MCF7	

monolayers	(Figure	4.5.3	B).	Levels	of	Vimentin	and	E-Cadherin	appear	to	correlate	

with	mRNA	levels	from	Figure	4.5.3	A,	though	the	expected	mesenchymal	phenotype	

of	cells	having	undergone	EMT	is	not	perfectly	observed.	For	example,	Vimentin	is	

expected	 to	 be	 up-regulated	 significantly	 after	 EMT	 and	 follow	 a	 fibrous	 type	

expression	 pattern,	 whereas	 in	 our	 studies	 expression	 changes	 are	 minor	 and	

Vimentin	 appears	 to	 be	 localised	 in	 foci	 in	 TamRs	 (425).	 Vimentin	 intermediate	

filaments	 have	 been	 shown	 to	 interact	with	 the	 centrosome	 if	 expression	 is	 low	

(426),	suggesting	that	whilst	Vimentin	is	up-regulated	in	TamRs	protein	levels	are	

still	 low.	 Interestingly,	E-Cadherin	loss	 is	seen	as	 the	hallmark	of	EMT	and	TamR	

cells	 show	 evidence	 of	 two	 distinct	 populations	 distinguished	 by	 differential	 E-

Cadherin	 expression.	One	 population	 expresses	 E-Cadherin	 and	 SNAI1	 similar	 in	

pattern	to	parental	MCF7s,	the	other	expresses	Vimentin	foci	along	with	SNAI1.		

	

As	mammospheres	are	enriched	for	mesenchymal	markers	by	qPCR,	these	results	

indicate	 that	 the	 E-Cadherinlow	 subpopulation	 of	 TamR	 cells	may	 account	 for	 its	

increased	M-IC	number.	However,	E-Cadherin	has	been	shown	to	be	essential	in	the	

formation	of	mammospheres.	Iglesias	et	al.,	found	that	knock	down	of	E-cadherin	in	

MCF7s	completely	ablated	their	ability	to	form	mammospheres	(427).	The	authors	

also	 found	 that	 whilst	 SKBR3	 cells	 could	 not	 normally	 sustain	 long	 term	
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mammosphere	 cultures,	 over-expression	 of	 E-cadherin	 allowed	 them	 to	 form	

mammospheres	 (427).	 It	 is	 therefore	 unclear	 whether	 the	 presence	 of	 an	 E-

Cadherinlow	subpopulation,	enriched	in	EMT	markers,	could	mark	M-ICs	the	TamR	

cell	line.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4.5.1	–	Mammosphere	IHC	

Mammospheres	 from	Figure	4.5.5.1	were	harvested	and	prepared	 for	 IHC.	ERα	and	

Ki67	 were	 seen	 to	 colocalise	 in	 OCT4-Vex-Poly.	 OCT4-Vex-Poly	 mammospheres	

appeared	enriched	 for	ALDH	versus	parental	MCF7s.	No	major	 differences	between	

EMT	 markers	 (N-Cadherin,	 E-Cadherin	 and	 Epcam)	 was	 obvious,	 suggesting	 that	

whilst	this	line	has	similar	properties	to	BC-TIC-like-cells,	it	has	not	undergone	EMT.	

Figure	Overleaf.	
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Figure	4.5.2	–	TamR	cells	have	a	migratory	phenotype	

A)	Phase	contrast	microscopy	of	MCF7	and	TamR	cells,	showing	stellate	and	slightly	

mesenchymal-like	 TamR	 cell	 shape.	 B)	 Wound	 healing	 assay	 showing	 TamRs	 are	

significantly	 (p<0.001)	 more	 migratory	 than	 MCF7s.	 In	 both	 cell	 lines,	 4-OHT	 is	

inhibitory	to	migration	at	100nM,	suggesting	ERα	response	is	still	active	in	TamRs	in	

terms	 of	 migratory	 repression.	 Statistical	 analysis	 was	 by	 non-linear	 mixed	 effect	

model	 (*p<0.05;	 **p<0.01;	 ***p<0.001;	 ****p<0.0001).	 C)	 Phase	 contrast	 of	 wound	

healing	assay	as	carried	out	using	the	Essen	Biosciences	96	well	wound	maker	and	

associated	software,	images	were	captured	using	the	IncuCyte	FLR	in	build	software,	

darker	region	represents	computed	wound	barrier.	Figure	Overleaf.	
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Figure	4.5.3	–	TamR	cells	have	some	features	of	EMT	

A)	 qPCR	profiling	of	EMT	markers	 in	 each	 cell	 line	and	 in	2D	 (monolayer)	 and	3D	

(mammosphere)	culture.	Relative	expression	is	computed	by	comparative	CT	method	

(2-ΔΔ𝐶T)	 (333)	 to	 the	 geometric	 mean	 of	 B2M	 and	 GAPDH,	 and	 MCF7	 expression.	

Significance	was	calculated	by	one-way	ANOVA	with	Bonferroni	to	correct	for	multiple	

comparisons	(*p<0.05;	**p<0.01;	***p<0.001;	****p<0.0001).	B)	Immunofluorescence	

of	 key	 EMT	 regulatory	 and	 indicator	 proteins:	 Vimentin	 (pseudocolored	 green),	 E-

Cadherin	(pseudocolored	white)	and	SNAI1	(pseudocolored	red)	in	each	cell	line.		

Figure	Overleaf.	
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Figure	4.5.3	–	TamR	cells	have	some	features	of	EMT	
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4.6	 in	 vivo	 characteristics	 of	 OCT4-Vex-Poly	

MCF7s	
	

We	have	previously	found	that	MCF7	OCT4-Vex-Poly	is	markedly	slower	growing	in	

vitro	 than	 its	 parental	 line	 (Figure	 4.4.2).	 We	 have	 also	 found	 evidence	 of	 ERα	

dependent	growth	in	this	line,	in	terms	of	Ki67	and	ERα	staining	overlap	by	IHC	of	

mammospheres	(Figure	4.5.1).	We	sought	to	investigate	the	tumour	forming	ability,	

and	oestrogen	dependence,	of	OCT4-Vex-Poly	 compared	 to	parental	 lines.	Figure	

4.6.1	A	shows	in	vivo	growth	curves	of	subcutaneously	injected	MCF7	and	OCT4-Vex-

Poly	 cell	 lines	 in	 NSG	mice	with	 slow	 release	 human	 oestrogen	 pellets	 to	 aid	 in	

tumour	growth.	OCT4-Vex-Poly	tends	to	form	palpable	tumours	in	a	high	oestrogen	

environment	at	a	slightly	slower	rate	than	parental	MCF7s	(Figure	4.6.1	A).	Figure	

4.7.1	B	shows	 tumours	harvested	 from	 the	 flanks	of	NSG	mice	80	days	 following	

implantation,	 reasonable	 concordance	 between	 palpable	 tumour	 size	 and	 actual	

volume	can	be	confirmed	visually,	as	can	the	slower	growth	rate	of	MCF7	OCT4-Vex-

Poly	 tumours	 relative	 to	 parental.	 Next,	 we	 repeated	 this	 experiment	 in	 non-

oestrogen	 supplemented	NSGs.	 Interestingly,	 in	 this	 low	oestrogen	 environment,	

OCT4-Vex-Poly	cell	lines	form	palpable	tumours	at	a	markedly	faster	rate	than	MCF7	

parental	 (Figure	 4.6.2	 A).	 At	 110	 days	 the	 experiment	 was	 ended,	 and	 tumours	

harvested,	Figure	4.6.2	B	shows	freshly	harvested	tumours	from	each	arm.			

	

IHC	of	OCT4-Vex-Poly	tumours	grown	in	Figure	4.6.1	reveal	a	markedly	more	fibrous	

structure	 in	 OCT4-Vex-Poly	 versus	 parental	 MCF7	 (Figure	 4.6.3).	 GFP	 is	 clearly	

marked,	and	is	heterogeneous	in	localisation,	this	could	reflect	the	polyclonal	nature	

of	our	derived	cell	line,	a	preferential	localisation	of	POU5F1	expressing	cells	in	the	

tumour,	or	simply	the	fibrous	nature	of	the	tumours.	Interestingly,	OCT4-Vex-Poly	

tumours	maintain	ERα	expression	comparable	to	MCF7	parental	tumours	and	there	
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appears	to	be	a	co-localisation	with	Ki67,	suggesting	the	maintenance	of	oestrogen	

or	ERα	dependent	growth.		

	

Next,	 we	 sought	 to	 investigate	 the	 presence	 of	 BC-TICs	 in	 OCT4-Vex-Poly	 and	

parental	MCF7s,	with	and	without	exposure	to	4-OHT.	Thus,	we	turned	to	the	in	vivo	

version	of	the	LDA	assay,	injecting	increasingly	dilute	numbers	of	pre-treated	cells	

into	 the	 flanks	 of	 oestrogen	 supplemented	 NSG	 mice.	 Tabulated	 and	 graphical	

results	are	shown	in	(Figure	4.6.4).	Statistical	analysis	by	ELDA	revealed	estimates	

of	1/87.70	BC-TICs	in	a	pool	of	MCF7s,	raising	to	1/14.33	when	pre-treated	with	4-

OHT	(p=0.0103).	In	OCT4-Vex-Poly	BC-TIC	frequency	was	1/35.14,	rising	to	1/4.81	

with	the	addition	of	4-OHT	(p=0.0016).	Thus,	4-OHT	is	found	to	enrich	for	BC-TICs	

in	both	parental	and	OCT4-Vex-Poly	cell	lines.		

	

These	 results	 are	 concordant	 with	 our	 in	 vitro	 surrogate	 assays.	 POU5F1	 over-

expression	significantly	enhances	the	selection	of	BC-TICs	by	4-OHT.	It	may	be	that	

OCT4	activity	is	a	feature	of	the	phenotypic	clones	responsible	for	the	development	

of	tamoxifen	resistance	defined	in	Chapter	3.	
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Figure	4.6.1	–	Characterization	of	tumour	growth	in	OCT4-Vex-Poly	MCF7s	

A)	In	vivo	tumour	growth	comparison	of	OCT4-Vex-Poly	versus	MCF7	parental	lines	

implanted	into	the	flank	of	oestrogen-pellet-supplemented	NSG	mice.	Tumour	size	was	

estimated	 periodically	 by	 palpation.	 OCT4-Vex-Poly	 derived	 tumours	 tended	 to	 be	

slower	 growing	 in	 E2	 supplemented	 NSGs	 relative	 to	 parental	 MCF7s.	 B)	 70-day	

tumours	were	harvested	and	measured,	reasonable	concordance	with	final	palpitation	

estimated	size	is	seen	by	visual	inspection.	Figure	Overleaf.	
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Figure	4.6.1	–	Characterization	of	tumour	growth	in	OCT4-Vex-Poly	MCF7s	
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Figure	4.6.2	–	E2	dependence	in	OCT4-Vex-Poly	MCF7	tumours		

A)	 OCT4-Vex-Poly	 and	 MCF7	 cells	 were	 injected	 into	 the	 flank	 of	 NSG	

immunocompromised	mice,	without	oestrogen	pellets,	 to	assay	 tumour	growth	 in	a	

low	 oestrogen	 environment.	 OCT4-Vex-Poly	 appeared	 to	 initiate	 tumours	 more	

effectively	 than	 MCF7	 in	 the	 low	 oestrogen	 environment,	 with	 markedly	 smaller	

tumours	at	100	days	in	parental	versus	POU5F1	overexpressing.	B)	Tumour	volume	

estimates	by	palpitation	are	validated	visually	by	100-day	harvested	tumours.	Figure	

Overleaf.	
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Figure	4.6.2	–	E2	dependence	in	OCT4-Vex-Poly	MCF7	tumours.		
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Figure	4.6.3	–	IHC	of	OCT4-Vex-Poly	MCF7	tumours		

OCT4-Vex-Poly	and	MCF7	parental-derived	tumours	from	Figure	4.5.2	were	stained	by	

IHC	 for	 GFP,	 ERα	 &	 Ki67	 and	 morphology	 investigated	 by	 H&E.	 OCT4-Vex-Poly	

exhibited	a	fibrous	tumour	morphology	by	H&E,	with	reduced	cellularity	relative	to	

MCF7	 parental.	 GFP	 is	 clearly	 stained,	 confirming	 OCT4-Vex-Poly	 integration	 and	

continued	 transgene	 expression,	 though	 expression	 appears	 heterogeneous	 in	

localisation.	OCT4-Vex-Poly	 tumours	maintain	ERα	expression	comparable	 to	MCF7	

parental	tumours	and	there	appears	to	be	a	co-localisation	with	Ki67,	suggesting	that	

these	cells	proliferate	in	response	to	ERα-pathway	activation	or	at	least	ERα	presence.	

Figure	Overleaf.	
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Figure	4.6.4	–	in	vivo	LDA	of	OCT4-Vex-Poly	MCF7s	

Shows	 results	 of	 an	 in	 vivo	 LDA.	 Following	 pre-treatment	 with	 4-OHT,	 where	

appropriate	(24	hrs	at	200nM),	cells	were	harvested,	serially	diluted	and	resuspended	

in	50%	Matrigel.	50μl	dilutions	containing	1,000,	100	or	10	cells	as	appropriate	were	

injected	 into	 the	4th	mammary	 fat	 pads	of	NSG	mice.	NSGs	were	 also	 injected	with	

0.72mg/90day	slow	release	E2	pellets.	Tumour	injection	sites	were	palpated	for	signs	

of	 tumour	 growth	 twice	 weekly	 for	 up	 to	 6	 months.	 Statistical	 analysis	 by	 ELDA	

revealed	estimates	of	1/87.70	BC-TICs	in	a	pool	of	MCF7s,	raising	to	1/14.33	when	pre-

treated	 with	 4-OHT	 (p=0.0103).	 In	 OCT4-Vex-Poly	 BC-TIC	 frequency	 was	 1/35.14,	

rising	to	1/4.81	with	the	addition	of	4-OHT	(p=0.0016).	These	results	again	highlight	

the	co-operative	nature	of	OCT4	and	4-OHT	in	enriching	for	BC-TIC-like	cells.	Figure	

Overleaf.	
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Figure	4.6.4	–	in	vivo	LDA	of	OCT4-Vex-Poly	MCF7	
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4.7	Tamoxifen	Resistant	PDX	Models	
	

From	our	established	biobank	of	breast	cancer	PDX	models	(198),	we	next	selected	

14	ERα+	models	 for	 further	study	and	confirmed	their	resistance	to	4-OHT.	Each	

model	 was	 dissociated	 into	 PDTCs	 for	 short	 term	 ex	 vivo	 culture	 as	 previously	

described,	(198).	PDTCs	were	then	treated	with	an	escalating	dose	of	4-OHT	and	

IC50s	were	calculated.	Figure	4.7.1	A	shows	combined	dose	response	curves	for	each	

model,	 with	 IC50	 values	 (in	Molar	 concentration)	 in	 the	 figure	 legend.	We	 have	

previously	 calculated	 area	 under	 the	 curve	 (AUC)	 from	 dose	 response	 curves	 of	

multiple	 PDX	 models	 for	 multiple	 drugs	 and	 combination	 therapies	 by	 high	

throughput	 screens	 (HTS)	 (198).	 Eight	 models	 had	 data	 available	 for	 4-OHT	

treatment.	Figure	4.7.1	B	shows	good	correlation	between	IC50s	calculated	in	these	

experiments	 and	 previously	 found	 AUCs	 (R2	 =	 0.6533;	 p	 =0.0047),	 hence	 we	

interpolated	AUCs	from	models	not	tested	in	HTS.	Results	were	as	follows:	IC06-x5	

0.361;	 IC06_TAMR-x4	 0.206;	 VHIO131-x4	 0.311;	 HCI006-x4	 0.343;	 STG335-x5	

0.294.	We	took	a	cut-off	of	AUC	0.2	to	designate	models	as	resistant	to	4-OHT,	based	

on	analysis	of	our	HTS	(198).	We	included	any	model	with	IC50	of	over	1	x10-6	M,	

representing	the	five	most	right	shifted	dose	response	curves	in	Figure	4.7.1.	Thus,	

eight	PDX	models	were	deemed	sensitive	to	tamoxifen	(STG195,	STG335,	HCI002,	

HCI005,	 HCI006,	 VHIO098,	 VHIO131	 &	 VHIO244),	 and	 six	 deemed	 resistant	

(STG143,	IC06,	IC06_TAMR,	HCI011,	STG201,	&	IC07).		

	

As	 discussed,	 resistance	 to	 tamoxifen	 has	 been	 linked	 to	 expression	 of	 several	

master	transcription	factors	typically	associated	with	guiding	embryonic	stem	cell	

fate	 and	 differentiation.	 We	 profiled	 each	 selected	 PDX	 model	 for	 embryonic	

transcription	factors	OCT4	(POU5F1),	SOX2,	NANOG	&	KLF4	alongside	putative	BC-

TIC	 markers	 CD44	 and	 PROCR	 (167,402).	 Figure	 4.7.2	 shows	 the	 results	 of	 this	

analysis.	Several	markers	appear	to	be	enriched	in	resistant	models.	This	is	clearest	

in	POU5F1	and	SOX2,	though	in	Figure	4.7.3	we	see	several	differences	between	the	
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mean	expression	 for	each	marker	 in	each	model.	 Significant	differences	are	 seen	

between	 sensitive	 and	 resistant	 groups	 (by	 one-way	 ANOVA	 with	 Bonferroni	

correction)	for	POU5F1	(p=0.0065)	and	SOX2	(p=0.0412)	expression.		

	

Aldehyde	dehydrogenase	(ALDH)	activity	is	a	key	marker	of	mammary	stem	cells	

and	BC-TICs	(161,166).	High	ALDH	expression	has	been	reported	 for	normal	and	

cancer	 precursor	 cells	 of	 various	 lineages,	 including	 hematopoietic,	 mammary,	

endothelial,	mesenchymal,	and	neural	(428).	We	next	used	an	ALDH	activity	assay	

(ALDEFLUOR,	see	Methods,	section	2.3.6)	to	assay	PDX	models,	treated	with	200nM	

4-OHT	 for	 24hrs	 by	 flow	 cytometry.	 Figure	 4.7.4	 A	 shows	 a	 representative	 flow	

cytometry	 plots	 from	 STG335x3,	with	 greatly	 increased	 numbers	 of	 ALDH+	 cells	

seen	after	acute	treatment	with	4-OHT.	Overall,	we	found	three	out	of	six	resistant	

models	had	significantly	reduced	ALDH+	cells	following	treatment.	Conversely,	six	

out	of	eight	sensitive	models	were	significantly	enriched	for	ALDH+	cells	following	

treatment	(Figure	4.7.4	B).		

	

Next,	we	used	the	ALDH	activity	assay	to	derive	separate,	 and	potentially	BC-TIC	

enriched,	populations	from	four	PDX	models.	Figure	4.7.5	A	shows	a	flowcytometry	

gating	 strategy	 to	 derive	 ALDH+	 and	 ALDH-	 populations	 from	 STG335-x4.	 Flow	

sorted	cells	were	separately	plated	and	grown	for	up	to	seven	days	ex	vivo	as	PDTCs,	

and	 4-OHT	 dose	 response	 analyses	were	 performed.	We	 find	 that	 resistant	 PDX	

models	(ICO6	&	STG143)	have	little	difference	between	4-OHT	sensitivity	in	ALDH+	

and	ALDH-	populations,	but	that	4-OHT	sensitive	models	(STG195	&	STG335)	show	

significant	disparity	in	the	drug	resistance	of	ALDH	cell-sorted	populations.	In	both	

cases,	 the	 ALDH+	 population,	 is	 significantly	more	 resistant	 to	 4-OHT	 treatment	

than	 either	 the	 bulk	 population	 or	 the	 ALDH-	 cells	 (by	 one-way	 ANOVA	 with	

Bonferroni	 correction).	 These	 data	 are	 consistent	 with	 our	 cell	 line	 studies;	

populations	enriched	for	ALDH+	cells	or	M-ICs,	have	a	higher	4-OHT	tolerance	than	

their	non-enriched	counterparts.		
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Figure	4.7.1	–	4-OHT	resistance	in	PDX	models		

A)	Dose	response	data	for	4-OHT	in	14	ERα+	breast	cancer	PDX	models,	cultured	short	

term	ex	vivo	as	PDTCs.	IC50	values	are	computed	and	shown	in	the	legend.	There	is	a	

10-fold	spread	in	IC50	values	across	the	models,	STG195	is	the	most	sensitive	to	4-OHT	

with	an	IC50	of	0.19µM,	ICO7	is	the	most	resistant	with	an	IC50	of	1.8µM.	B)	Area	under	

the	curve	(AUC)	analysis	from	our	high	throughput	(HTS)	PDX	drug	screens	(198)	is	

compared	 to	 IC50	 from	 (A).	 A	 good	 correlation	 is	 seen,	 R2=0.6533	 p=0.0047,	 and	

missing	AUC	values	at	interpolated.	Results	are	as	follows:	IC06	x5	0.361;	IC06_TAMR	

x4	0.206;	VHIO131	x4	0.311;	HCI006	x4	0.343;	STG335	x5	0.294.	Figure	Overleaf.	
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Figure	4.7.1	–	4-OHT	resistance	in	PDX	models	
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Figure	4.7.2	–	qPCR	for	stem	cell	markers		

Stem	cell	transcription	factors	NANOG,	POU5F1,	SOX2	and	KLF4	are	profiled	across	

tamoxifen	resistant	and	sensitive	models	by	qPCR.	Putative	BC-TIC	surface	markers	

PROCR	and	CD44	are	also	profiled.	Results	are	normalized	by	comparative	CT	method	

(2-ΔΔ𝐶T)	(333)	to	the	geometric	mean	of	B2M	and	GAPDH,	and	STG195	expression	(see	

Methods,	section	2.4.1).	Figure	Overleaf.	
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Figure	4.7.2	–	qPCR	for	stem	cell	markers	
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Figure	4.7.3	–	Combined	analysis	of	qPCR	for	stem	cell	markers	

	

	

	

	

	

Figure	4.7.3	–	Combined	analysis	of	qPCR	for	stem	cell	markers		

Mean	expression	values	relative	to	MCF7	from	Figure	4.7.2	were	combined	for	resistant	

and	 sensitive	 groups.	 POU5F1	 &	 SOX2	 were	 significantly	 upregulated	 in	 resistant	

versus	sensitive	models.	Statistical	significance	was	computed	by	one-way	ANOVA	with	

Bonferroni	correction	and	is	presented	versus	MCF7	(*p<0.05;	**p<0.01;	***p<0.001;	

****p<0.0001).		
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Figure	4.7.4	–	Tamoxifen	ALDH+	selection	

PDTCs	were	assayed	for	ALDH	activity	by	flow	cytometry	in	the	ALDEFLUOR	assay	(see	

Methods,	section	2.3.6).	A)	shows	representative	flow	cytometry	plots	showing	ALDH	

activity	 increasing	 in	 STG335	 after	 24hrs	 of	 200nM	 4-OHT.	 B)	 Shows	 this	 assay	

repeated	 across	 PDTC	 models.	 Overall,	 we	 found	 3	 out	 of	 6	 resistant	 models	 had	

significantly	reduced	ALDH+	cells	following	treatment.	Conversely,	6	out	of	8	sensitive	

models	 were	 significantly	 enriched	 for	 ALDH+	 cells	 following	 treatment.	 Statistics	

computed	by	one-way	ANOVA	with	Bonferroni	 correction	 for	multiple	 comparisons	

(*p<0.05;	**p<0.01;	***p<0.001;	****p<0.0001).	Figure	Overleaf.	
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Figure	4.7.4	–	Tamoxifen	ALDH+	selection	
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Figure	4.7.5	–	ALDH+	sorted	PDTCs	are	resistant	to	4-OHT	

A)	 PDTCs	 isolated	 from	 four	 PDX	 models	 were	 assayed	 for	 ALDH	 activity.	 Gating	

strategy	is	shown	for	selection	of	high	ALDH	activity	(ALDH+)	and	low	ALDH	activity	

(ALDH-)	 populations.	 ALDH+	 and	 ALDH-	 cells	 were	 flow	 sorted	 and	 individually	

culture.	B)	ALDH+,	ALDH-	and	bulk	PDTC	cultures	were	assayed	for	4-OHT	sensitivity	

by	dose	response	assay.	In	both	4-OHT	sensitive	models	(STG195	&	STG335),	ALDH+	

populations	were	significantly	more	resistant	to	4-OHT	than	either	bulk	or	ALDH-	cells.	

In	resistant	models	(IC06	&	STG143),	there	were	no	significant	differences	in	sensitivity	

to	4-OHT	between	populations.	Significance	was	computed	by	one-way	ANOVA	with	

Bonferroni	 correction	 (*p<0.05;	 **p<0.01;	 ***p<0.001;	 ****p<0.0001).	 	 Figure	

Overleaf.	
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Figure	4.7.5	–	ALDH+	sorted	PDTCs	are	resistant	to	4-OHT	
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4.8	BC-TIC	Markers	in	the	METABRIC	cohort	
	

Having	 shown	 significant	 enrichment	 of	 markers	 for	 BC-TIC	 activity	 in	 our	

tamoxifen	resistant	models,	we	sought	to	understand	the	potential	clinical	impact	

by	 interrogating	 the	 METABRIC	 dataset	 of	 >2000	 breast	 cancer	 patients	 (7,73).	

Several	 differences	 exist	 in	marker	 expression	 across	 the	 11	 integrative	 clusters	

(ICs)	of	breast	cancer,	Figure	4.8.1.	For	example,	SOX2	appeared	to	be	enriched	in	

IC1	 (ERα+)	&	 IC5	 (HER2+	&	ERα+/HER2+).	 Interestingly,	 the	opposite	pattern	 is	

seen	with	CD44,	which	had	the	lowest	expression	in	IC1	&	IC5.	KLF4	and	PROCR	were	

highly	variably	expressed	between	the	clusters,	with	KLF4	appearing	to	show	some	

enrichment	 in	 IC3	 and	PROCR	 in	 IC4	ERα-.	POU5F1	 and	NANOG	 are	more	 stable	

across	the	clusters,	with	no	obvious	bias.	Surprisingly,	we	find	none	of	the	BC-TIC	

markers	or	transcription	factors	were	enriched	in	IC10,	a	cluster	highly	enriched	for	

TNBC,	 typically	 thought	 to	 be	 dedifferentiated	 and	 BC-TIC	 rich	 (173,429–431).	

NANOG	in	particular	has	recently	been	 linked	 to	TNBC,	with	one	study	reporting	

that	 the	 connexin	Cx26	can	promote	BC-TIC	 self-renewal	by	 forming	a	 signalling	

complex	between	NANOG	and	focal	adhesion	kinase	(FAK)	(429).		

	

Next,	we	isolated	ERα+	patients	who	had	gone	through	hormonal	therapy	from	the	

METABRIC	dataset.	Surprisingly,	we	find	CD44	depleted	in	ERα+	patients	who	have	

gone	through	hormonal	therapy,	but	not	in	the	ERα+	subgroup	as	a	whole	(Figure	

4.8.2	 A).	 Both	 PROCR	 and	 KLF4	 were	 significantly	 enriched	 in	 both	 ERα+	 and	

hormone-treated	 patient	 groups	 (p<0.05;	 one-way	 ANOVA	 with	 Bonferroni	

correction).	 However,	 taking	 overexpression	 as	 a	 z-score	 threshold	 of	 2.0	 (from	

Illumina	 Human	 v3	 microarray),	 we	 find	 relatively	 little	 difference	 in	 overall	

survival	 for	 patients	 enriched	 for	 any	 of	 our	 BC-TIC	 markers	 versus	 the	 ERα+	

population	as	a	whole	(Figure	4.8.2	B).	Though	differences	do	exist	in	median	overall	

survival,	 for	 example	 with	 POU5F1	 overexpression	 translating	 to	 151	 months	

median	 survival	 (n=82)	 compared	 to	162	months	median	 survival	 for	ERα+	 as	 a	
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whole	(n=1515).	Overall,	the	survival	curves	were	not	significantly	different	by	the	

Logrank	test	for	trend,	with	p=0.61.	

	

To	 further	 investigate	 the	 role	 of	 OCT4	 in	 tamoxifen	 resistance,	 we	 compared	

POU5F1	 expression	 in	 ERα+	 patients	 from	 the	 METABRIC	 cohort	 who	 had	 not	

responded	 to	 their	 hormone	 therapy	 and	 ultimately	 died	 of	 their	 cancer,	 versus	

those	 treated	 with	 hormone	 therapy	 and	 still	 alive.	 Interestingly,	 we	 found	

significantly	 (p=0.0052;	 two-tailed	 t-test)	 increased	POU5F1	 expression	 in	 those	

who	had	died	(n=393)	of	ERα+	hormone-treated	breast	cancer	compared	to	those	

still	alive	(n=495)	(Figure	4.8.3	A).	Further,	patients	in	the	ERα+	hormone-treated	

group	with	high	POU5F1	expression	(in	the	top100)	had	worse	overall	survival	than	

those	with	low	POU5F1	expression	(bottom100)	(p	=	0.045;	Logrank	(Mantel-Cox)	

test)	 (Figure	 4.8.3	 B).	 These	 analyses	 highlight	 the	 potential	 role	 of	 BC-TICs	

expressing	 embryonic	 transcription	 factors	 such	 as	 Oct4	 in	 the	 development	 of	

tamoxifen	resistance	and	in	poor-outcome	ERα+/hormone	treated	breast	cancer.		

	

	

	

	

	

	

	

Figure	4.8.1	–	BC-TIC	phenotype	in	the	METABRIC	dataset	

Log	Intensity	Expression	values	from	Illumina	Human	v3	microarray	of	BC-TIC	marker	

expression	 across	 the	 2000	 breast	 cancer	 patients	 of	 the	 METABRIC	 dataset	 are	

presented	 for	 SOX2,	POU5F1,	KLF4,	NANOG,	PROCR	&	CD44.	 Several	 trends	 toward	

Integrative	Cluster	(IC)	enrichment	were	observed.	For	example,	SOX2	appears	to	be	

enriched	in	IC1	&	IC5,	CD44	is	lowest	expression	in	IC1	&	IC5,	KLF4	&	PROCR	are	highly	

variable	between	the	clusters.	Figure	Overleaf.	
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Figure	4.8.1	–	BC-TIC	phenotype	in	the	METABRIC	dataset	
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Figure	4.8.2	–	METABRIC	survival		

A)	SOX2,	POU5F1,	KLF4,	NANOG,	PROCR	&	CD44	expression	is	compared	in	METABRIC	

patients	with	hormone/no	hormone	therapy	and	those	who	are	ERα+	and	ERα-.	CD44	

expression	was	 significantly	 (though	 not	markedly)	 reduced	 in	 ERα+	 patients	 who	

have	gone	through	hormonal	therapy,	but	not	in	the	ERα+	subgroup	as	a	whole,	PROCR	

and	 KLF4	 were	 significantly	 enriched	 in	 both	 ERα+	 and	 hormone-treated	 patient	

groups	 (p<0.05;	 one-way	 ANOVA	 with	 Bonferroni	 correction).	 B)	 Taking	

overexpression	 as	 a	 z-score	 threshold	 of	 two,	 we	 find	 relatively	 little	 difference	 in	

overall	survival	for	patients	enriched	for	any	of	our	BC-TIC	markers	versus	the	ERα+	

population	as	a	whole	by	Kaplan-Myer	analysis.	Figure	Overleaf.	
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Figure	4.8.2	–	METABRIC	survival	
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Figure	4.8.3	–	POU5F1	in	METABRIC	

A)	POU5F1	is	moderately	higher	expressed	in	ERα+	patients	who	have	died	from	their	

disease	 versus	 those	 who	 are	 alive	 (p=0.0052;	 two-tailed	 t-test).	 B)	 POU5F1	 has	

prognostic	 value	 in	 ERα+	 patients	 undergoing	 hormonal	 therapy,	 high	 POU5F1	

expression	 is	 significantly	 (p=0.045)	 associated	 with	 worse	 overall	 survival	 in	 this	

patient	group	(p	=	0.045;	Logrank	(Mantel-Cox)	test).	Figure	Overleaf.	
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Figure	4.8.3	–	POU5F1	in	METABRIC	
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4.9	General	Discussion						
	

In	 this	 chapter,	we	have	experimentally	 investigated	 the	 link	between	 tamoxifen	

resistance	and	a	CSC-like	phenotype,	described	in	vitro	by	M-IC	assays	and	in	vivo	by	

BC-TIC	assays.	We	uncover	evidence	that	treatment	with	4-OHT	enriches	for	both	

M-ICs	and	BC-TICs	in	initially	tamoxifen-sensitive	cell	line	and	PDX	models.	This	is	

verified	in	functional	BC-TIC	assays	in	vivo,	as	well	as	in	characterising	expression	

of	 canonical	 embryonic	 stem	 cell	 transcription	 factors.	M-IC	 enrichment	 is	 likely	

through	selective	cell	death,	but	 there	 is	a	suggestion	that	4-OHT-ERα	is	perhaps	

able	to	induce	POU5F1	expression	directly.	We	find	that	OCT4	is	essential	for	the	M-

IC	enrichment	process,	but	not	for	normal	M-IC	maintenance,	and	find	a	plausible	

mechanism	through	which	ERα	or	4-OHT-ERα	may	directly	induce	the	expression	

of	POU5F1.	Much	more	work	is	required	to	uncover	and	validate	a	comprehensive	

molecular	mechanism	to	explain	all	of	our	results,	however,	the	results	herein	are	a	

valuable	step	in	beginning	to	explain	apparent	contradictions	in	the	development	of	

tamoxifen	resistance	described	in	Chapter	3.		

	

The	 CSC	 theory	 of	 tumour	 initiation	 and	 progression	 was	 born	 from	 early	

observations	that	 tumour	cells	differ	 in	 their	ability	 to	xeno-	and	auto-transplant	

(17)	 and	 added	 to	 by	 seminal	 studies	 of	 teratocarcinomas	 (18),	 small	 cell	 lung	

carcinomas	 (19)	 and	 mammary	 adenocarcinomas	 (20).	 The	 theory	 posits	 that	

cancer	 follows	 the	same	principles	as	embryogenesis	 and	normal	 tissue	 renewal.	

Thus,	cancer	‘stem’	cells	produce	all	compartments	of	the	tumour	much	as	normal	

stem	 cells	 produce	 differentiated	 cells	 of	 the	 adult	 tissue	 (24).	 This	 model	 is	

sometimes	 seen	as	 controversial,	particularly	as	 robust	markers	 for	 the	 isolation	

and	purification	of	CSCs	are	not	available	for	all	malignancies.	Nevertheless,	stem	

cell	 signatures	 do	 show	prognostic	 features	 across	multiple	 tumour	 types	 (431–

434)	 and	 that	 fact	 that	 tumour	 cells	 differ	 in	 their	 capacity	 to	 xeno-	 and	 auto-

transplant	 remains.	Moreover,	 recent	 breakthroughs	 in	 technology	 development	
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and	in	our	understanding	of	stem	cell	biology	could	reignite	the	field.	To	highlight	

three	such	advances:	1)	single	cell	NGS	analysis	showing	stem-cell-like	expression	

patterns	in	human	metastatic	breast	cancer	cells	(435);	2)	various	tissues	have	been	

found	 to	 contain	 dormant	 or	 quiescent	 stem	 cell	 populations	with	 the	 ability	 to	

regenerate	 tissues	 on	 damage	 (189–191);	 3)	 certain	 oncogenic	 driver	mutations	

have	been	found	to	promote	the	reacquisition	of	multipotency	(71,72).	For	these	

reasons	and	others,	Kreso	and	Dick	have	put	 forth	a	unifying	model	of	CSCs	and	

clonal	evolution	of	genomic	clones	(24).	The	authors	propose	that	certain	cellular	

phenotypes	 within	 genomic	 clones	 may	 adopt	 a	 ‘dormant’	 state	 but	 be	 able	 to	

reacquire	 malignancy	 in	 a	 context	 specific	 manner.	 Thus,	 the	 CSC	 and	 clonal	

evolution	models	 of	 tumour	 development	 can	 be	 reconciled	 by	 considering	 that	

genomic	clones	may	contain	a	heterogeneous	mixture	of	cellular	phenotypes.	Such	

cellular	populations	have	been	described	in	CRC	PDX	models	(83),	where	quiescent	

cellular	clones	were	linked	to	the	acquisition	of	chemoresistance	and	later	found	to	

express	the	putative	stem	cell	marker	BMI1	(192).		

	

In	Chapter	 3,	we	 identified	 isogenic	 cellular	 clones	which	 gave	 rise	 to	 tamoxifen	

resistance	 in	 MCF7s	 (Figures	 3.6.2,	 3.7.2.2,	 3.7.3	 &	 3.8.1).	 Considerable	 overlap	

between	 barcodes	 enriched	 in	 separate	 replicates	 was	 observed,	 leading	 us	 to	

conclude	that	an	average	of	49.6	resistant	clonal	populations	were	present	in	each	

replicate	and	that	83%	were	enriched	consistently	in	more	than	one	cell	line.	This	

enrichment	 process	 was	 not	 the	 result	 of	 genomic	 clonal	 selection,	 however	

resultant	 resistant	 phenotypes	 did	 show	 heterogeneity	 (for	 example	 in	 4-OHT	

sensitivity,	 ERα	 function,	 rapamycin	 sensitivity	 and	 proliferation;	 Figures	 3.5.3.2,	

3.5.4	&	3.5.5).	Moreover,	we	 found	evidence	 that	 resistant	 cellular	 clones	may	be	

slow-cycling	or	even	quiescent	in	nature	(Figures	3.8.2.2	&	3.8.3).	If	barcoded	clones	

enriched	 in	 tamoxifen	 resistance	 were	 indeed	 dedifferentiated,	 this	 could	 help	

explain	the	heterogeneity	we	observed	in	isogenic	populations	in	our	system	and	

perhaps	 even	 the	 wider	 heterogeneity	 in	 tamoxifen	 resistance	 reported	 in	 the	
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literature	(104,277,288,436,437).	Supporting	this	notion,	embryonic	transcription	

factors,	 ERα	 binding	 plasticity	 and	 (dys)regulation	 of	 the	 epigenome	 have	 been	

inextricably	linked	to	each	other	and	to	the	development	of	tamoxifen	resistance	in	

the	literature	(256,285,321).	Thus,	in	this	Chapter,	we	sought	to	further	investigate	

the	role	of	BC-TICs	in	our	models	of	tamoxifen	resistance.		

	

We	begin	 this	Chapter	by	profiling	a	 selection	of	ERα+	cell	 lines,	 the	majority	of	

which	are	derived	from	MCF7s,	for	expression	of	embryonic	transcription	factors	

and	putative	surface	markers	of	BC-TICs.	Resistant	lines	were	enriched	for	PROCR	

(Figures	4.2.1	&	4.2.2)	and	expression	of	embryonic	 transcription	 factors	(SOX2	&	

POU5F1;	 but	not	KLF4	or	NANOG;	Figures	4.2.1	&	4.2.2).	Each	of	 the	 four	assayed	

transcription	factors	have	been	linked	to	tamoxifen	treatment	or	resistance.	We	find	

enrichment	 of	 POU5F1	 and	 SOX2	 in	 resistant	 models,	 each	 of	 which	 has	 been	

positively	 associated	 with	 the	 development	 of	 resistance	 (277,438),	 SOX2	

overexpression	 even	 has	 a	 non-significant	 trend	 toward	 poor	prognosis	 in	 ERα+	

METABRIC	patients	(Figure	4.8.2).	Conversely,	KLF4	is	generally	associated	with	a	

favourable	outcome	in	breast	cancer	(280,284)	and	in	our	models,	it	was	associated	

with	tamoxifen	sensitivity.		

	

Resistant	cell	lines	derived	from	MCF7-CT	were	invariably	enriched	for	MFE	(Figure	

4.2.3)	 and,	 perhaps	 unsurprisingly,	 we	 find	 mammospheres,	 but	 not	 other	 3D	

cultures,	 are	 resistant	 to	 4-OHT	 treatment	 (Figure	 4.2.6).	 Treatment	 of	 first	

generation	 mammospheres	 with	 4-OHT	 also	 enriches	 for	 MFE	 (Figure	 4.2.4).	

Moreover,	 we	 find	 similar	 cellular	 populations	 are	 enriched	 in	 mammosphere	

culture	(i.e.	M-ICs)	and	in	tamoxifen	resistance	(Figure	4.2.8).	Together	these	results	

suggest	 that	4-OHT	 treatment	preferentially	affects	non-M-ICs	and	will	 therefore	

enrich	 the	 proportion	 of	 M-ICs	 in	 a	 culture.	 This	 affect	 is	 accompanied	 by	 an	

upregulation	of	POU5F1,	SOX2	and	PROCR	(Figure	4.2.2)	suggesting	that	these	genes	

are	preferentially	expressed	in	M-ICs.	We	see	a	similar	pattern	with	ALDH	activity	
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assays	in	PDX	models.	4-OHT	increases	the	ALDH+	population	size	(Figure	4.6.4)	and	

the	ALDH+	population	is	more	resistant	to	4-OHT	(Figure	4.6.5).		

	

Our	experiments	have	also	shown	the	obligate	need	for	POU5F1	expression	in	4-OHT	

treated	mammospheres.	Whereas	SOX2	is	required	for	all	mammosphere	formation,	

OCT4	 appears	 to	 be	 functionally	 tied	 to	 4-OHT-selection	 of	 BC-TICs	 in	 MCF7s	

(Figures	4.4.2	&	4.4.3).	Moreover,	we	find	a	plausible	mechanism	by	which	4-OHT	

could	 trigger	 OCT4	 activity:	 a	 validated	 promotor	 region	 in	 the	 POU5F1	 gene	

containing	 EREs	 (407),	 a	 poor	 prognosis	 ERα/FOXA1	 binding	 site	 (248)	 and	

putative	 tamoxifen-ERα	specific	binding	 site	 (408)	 (Figure	4.2.5).	 In	profiling	our	

OCT4-Vex-Poly	 MCF7	 cell	 line,	 we	 also	 found	 evidence	 of	 pre-existing	 4-OHT	

resistance	(Figure	4.4.2)	and	a	reduced	necessity	 for	E2-mediated	growth	(Figure	

4.6.1	&	Figure	4.6.2).	Phenotypically,	we	find	OCT4-Vex-Poly	to	be	slow	growing	and	

enhanced	 in	 BC-TICs	 /M-ICs	 by	 LDA,	 both	 of	which	 traits	were	 profiled	 in	 vitro	

(Figures	4.4.2	&	 4.4.4)	 and	 in	 vivo	 (Figures	4.6.2	&	4.6.4).	Most	 strikingly,	we	 find	

OCT4	 co-operates	 with	 4-OHT	 selection	 to	 increase	 BC-TIC	 activity	 in	 the	 Gold-

Standard,	in	vivo,	LDA.	Together	these	results	hint	at	a	functional	role	for	OCT4	in	

the	 development	 of	 tamoxifen	 resistance.	 Whilst	 many	 of	 the	 reports	 in	 the	

literature	 on	 4-OHT	 inducing	 a	 BC-TIC-like	 phenotype	 can	 be	 explained	 by	 the	

observed	enrichment	for	a	pre-existing	population,	OCT4	appears	to	be	functionally	

required	for	this	enrichment.		

	

Interestingly,	in	our	studies,	even	though	POU5F1	overexpressing	tumours	are	slow	

growing	and	not	associated	with	poor	prognosis	in	most	breast	cancers,	there	is	a	

significant	 association	 with	 worse	 overall	 survival	 in	 ERα+	 patients	 who	 are	

currently	undergoing	hormonal	therapy	(Figure	4.8.3).	In	the	METABRIC	cohort,	we	

also	find	KLF4	expression	enriched	in	ERα+	patients	and	in	ERα+	patients	treated	

with	hormone	therapy,	by	Kaplan-Myer,	we	see	a	non-significant	survival	benefit	in	

those	patients	with	upregulated	KLF4	(Figures	4.8.1	&	4.8.2).	NANOG	has	recently	
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been	shown	to	drive	tumorigenesis	in	TNBC	by	stabilising	with	Cx26	and	activating	

FAK	 (429).	 In	 our	 analysis,	 however,	 NANOG	 is	 neither	 associated	 with	 the	

development	 of	 resistance	 or	 enrichment	 in	 the	 TNBC	 rich	 Integrative	 Clusters	

(IntClusters)	such	as	IC10	(Figures	4.8.1	&	4.8.2).		

Recently,	Bhatt	et	al.,	characterised	the	role	of	OCT4	as	a	novel	ERα	binding	partner	

involved	 in	 a	 tamoxifen	 specific	 ERα	 binding	 program	 and	 ultimately	 tamoxifen	

resistance	(438).	The	authors	performed	motif	analysis	of	tamoxifen	specific	ERα	

binding	sites	identified	by	Welboren	et	al.,	in	MCF7s	(408)	and	found	an	enrichment	

for	 Nkx3-1	 and	 Oct-transcription	 factor	 homodimer	 motifs.	 The	 finding	 was	

subsequently	 confirmed	 by	 ChIP	 assays	 for	 OCT4,	 demonstrating	 its	 specific	

recruitment	to	regulatory	sites	of	genes	induced	by	tamoxifen,	but	not	oestradiol,	

bound	 ERα.	 Interestingly,	 further	 experiments	 found	 POU5F1	 expression	 to	 be	

basally	 repressed	 by	Nkx3-1	 in	MCF-7	 cells,	 and	 that	 4-OHT	was	 able	 to	 elevate	

Nkx3-1	 degradation	 through	 a	 p38MAPK-dependent	 phosphorylation	 of	 the	 E3	

ligase,	Skp2.	The	authors	conclude	by	presenting	evidence	that	OCT4	participates	in	

ERα	 transcriptional	 complexes	 along	 with	 p38MAPK	 and	 Skp2	 in	 a	 tamoxifen-

dependent	 manner,	 and	 that	 this	 activity	 leads	 to	 activation	 of	 a	 4-OHT-

transcriptional	program	and	proliferation	of	the	TamR	cell	line	(438).		

	

In	another	study,	Cho	et	al.,	 found	downregulation	of	carboxy	terminus	of	HSP70-

interacting	protein	(CHIP)	E3	ubiquitin	ligase	in	MCF7s	and	MDA-MB-231s	cultured	

as	 mammospheres	 (439).	 The	 authors	 found	 that	 CHIP	 depletion	 increased	

mammosphere	 formation,	 whereas	 over-expression	 reduced	 formation.	 By	mass	

spectrometry	 interactome	reconstruction,	 the	authors	 identified	OCT4	as	a	direct	

binding	partner	of	CHIP,	and	 later	 functional	studies	 found	CHIP	over-expression	

decreased	 OCT4	 stability	 through	 ubiquitination	 and	 proteasomal	 degradation,	

together	with	decreased	proliferation	and	CSC-like	side-population	size	(439).	The	

authors	 conclude	 that	 CHIP-induced	 OCT4	 ubiquitination	 is	 important	 in	 breast	

CSCs	and	suggest	regulation	of	CHIP	expression	and/or	OCT4	stability	as	a	potential	
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future	therapeutic	strategy	 for	ERα+	breast	cancer	(439).	Together,	 these	studies	

serve	to	corroborate	the	crucial	role	of	OCT4	for	M-IC	maintenance	and	link	to	4-

OHT	resistance	described	in	this	Chapter.		
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Chapter	5		
	

	

Lineage	Tracing	of	PDX	models	with	High	Complexity	

Barcodes					
	

	

Aims	of	the	chapter		
1) Optimise	lentiviral	infection	protocols	to	genetically	modify	breast	cancer	PDXs.		

2) Ensure	genomic	stability	of	PDX	models	on	lentiviral	infection.			

3) Passage	and	expand	barcoded	PDX	models.		

4) Interrogate	clonal	repopulation	dynamics	by	NGS	of	CT	barcoded	PDX	models.			

5) Investigate	clonal	selection	in	the	PDX	metastatic	setting.			
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5.1	General	Introduction		
	

Despite	 remarkable	 advances	 in	 our	 understanding	 of	 the	 progression	 of	 human	

malignancies	and	the	molecular	events	 that	underpin	tumour	survival,	new	therapies	

often	fail	to	show	significant	efficacy	in	clinical	trials.	It	could	be	argued	that	clinical	trials	

fail	to	sufficiently	stratify	patients	based	on	relevant	biomarkers	of	drug	response:	the	

response	rate	of	an	unscreened	population	to	a	molecularly	targeted	therapy	typically	

lies	between	10	and	20%	(339).	Patient	stratification	based	on	molecular	determinants	

of	drug	efficacy	and	tumour	heterogeneity	allows	for	significantly	greater	responses	-	

exemplified	by	the	success	of	ALK	kinase	inhibitors	in	EML4-ALK	positive	non-small	cell	

lung	cancers	(440).	However,	even	with	patient	stratification,	clinical	responses	can	be	

fleeting,	 often	 adding	 only	 6-12	months	 before	 disease	 progression	 (339).	 	We	 have	

argued	previously	that	these	limitations	are	driven,	at	least	in	part,	by	extensive	reliance	

on	preclinical	models	 that	 fail	 to	accurately	reflect	 tumour	heterogeneity	(23,289).	 In	

order	 to	 halt	 unsustainable	 rates	 of	 attrition	 in	 the	 drug	 discovery	 process,	 and	 to	

develop	 cancer	 medicines	 giving	 lasting	 patient	 benefit,	 we	 must	 develop	 a	 new	

generation	of	preclinical	models	capable	of	reflecting	the	complex	heterogeneity	found	

in	human	cancers.	PDX	models	prevail	 as	arguably	 the	most	powerful	 in	 this	 regard;	

because	they	capture	multiple	aspects	of	tumour	heterogeneity	(195,196,198).			

	

By	 capturing	 intra-	 as	 well	 as	 intertumour	 heterogeneity,	 PDX	 models	 have	 a	 clear	

advantage	over	traditional	models,	supporting	their	use	in	oncological	drug	discovery	

and	 preclinical	 development.	 PDX	 models	 recapitulate	 cell-autonomous	 drivers	 of	

heterogeneity:	 exhibiting	 genomic	 clonal	 dynamics	 reminiscent	 of	 their	 originating	

tumour	sample	(195,197).	For	example,	Eirew	et	al.,	reconstructed	the	genomic	clonal	

dynamics	of	a	panel	of	breast	cancer	PDX	models	using	PyClone	(195).	In	each	of	the	15	

cases	examined,	clonal	diversity	was	reduced	by	xenotransplantation.	This	varied	from	

extreme	engraftment	bias,	selecting	minor	clones	present	in	the	sample	of	origin,	to	only	

moderate	clonal	selection.	In	a	separate	study,	Ding	et	al.,	found	PDX	models	established	
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from	 a	 basal	 like	 breast	 cancer	were	more	 representative	 of	 the	 patient’s	metastatic	

lesion	 than	 primary	 tumour	 (153).	 Together,	 these	 observations	 suggest	 that	

deterministic,	fitness-based	mechanisms	underline	tumour-dependent	clonal	selection	

observed	 on	 engraftment.	 Eirew	 et	 al.,	 further	 observed	 variable	 clonal	 dynamics	

between	PDXs	established	from	different	molecular	subtypes	but	similar	dynamics	 in	

parallel	xenografts	established	from	the	same	sample,	underscoring	the	need	for	better	

representation	of	tumour	molecular	subtypes	(7,195).		

	

Moreover,	 phenotypically	 distinct	 isogenic	 cellular	 clones	 have	 been	 shown	 to	 drive	

resistance	to	chemotherapy	in	colorectal	PDX	models	(196).	In	an	elegant	study	by	Kreso	

et	 al.,	 it	 was	 found	 that	 minor	 ‘Type	 IV’	 subclones	 in	 colorectal	 PDXs	 were	 able	 to	

repopulate	the	tumour	bulk	after	treatment	with	chemotherapy	(196).	These	quiescent	

cell	populations	were	genetically	similar	to	their	highly	proliferative	counterparts,	and	

were	 later	 linked	to	the	BMI1+	population	thought	 to	act	as	reserve	stem	cells	of	 the	

intestinal	 and	 colonic	 crypts	 (192).	 As	 the	 cellular	 clones	 defined	 in	 this	 study	were	

isogenic,	their	phenotype	may	have	been	driven	by	microenvironmental	cues	capable	of	

modulating	cellular	transition	between	distinct	gene	expression	patterns	or	epigenetic	

attractor	states	(441).	Hence,	composition	of	the	TME	could	profoundly	alter	both	a	cells	

propensity	 to	malignancy	and	 the	heterogeneity	we	hope	 to	preserve	 in	PDX	models,	

underscoring	many	of	the	limitations	of	this	model.		

	

Aside	from	clonal	dynamics	driven	by	intrinsic	differences	in	a	cell’s	genetic	or	epigenetic	

background,	intratumour	heterogeneity	can	be	influenced	by	tumour-extrinsic	factors	in	

the	non-cell-autonomous	compartment	(23).	As	cancers	develop,	tight	regulation	of	the	

ECM	 is	 lost	 and	 tissue	 architecture	 begins	 to	degrade	 (125).	 ECM	driven	 oscillations	

between	signalling	pathways	 such	as	 those	described	could	have	profound	effects	on	

propensity	to	malignancy.	Furthermore,	solid	state	ECM	interactions	are	necessary	for	

cells	to	maintain	stem	cell	properties	and	a	regulated	ECM	helps	maintain	the	stem	cell	

niche	(126).	As	cancer	is	often	associated	with	a	blurring	of	the	boundaries	between	stem	
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and	differentiated	cells,	 it	is	possible	that	a	loss	of	structured	ECM	is	essential	for	the	

stability	of	multiple	 sub-dominant	 cellular	 clones	within	a	 tumour	 (124).	The	TME	 is	

further	 characterised	 by	 an	 influx	 of	 stromal	 cells.	 Infiltrating	 cancer	 associated	

fibroblasts	(CAFs)	can	often	confer	resistance	to	cytotoxic	and	targeted	therapies	(442),	

however,	 recent	 studies	 confer	on	 fibroblasts	a	degree	of	plasticity,	with	anti-tumour	

properties	observed	in	some	populations	(323).	Due	to	the	high	levels	of	CAF	infiltrates	

seen	in	some	tumour	types,	heterogeneity	within	their	population	would	undoubtedly	

confer	differential	properties	to	the	tumour	bulk.	We,	and	others,	have	found	that	human	

stromal	 cells	 are	 gradually	 replaced	 by	murine	 equivalents	 upon	 engraftment	 in	 the	

mouse,	 suggesting	 that	 implanted	 human	 cells	 retain	 the	 ability	 to	 recruit	 murine	

accessory	cells	to	their	niche	(23,198).	However,	it	should	be	noted	that	some	differences	

exist	 between	 ligand	 repertoires	 of	 human	 and	 murine	 fibroblasts	 (443)	 and	 more	

research	is	required	to	properly	understand	how	faithfully	the	TME	is	recapitulated	in	

the	murine	host.		

	

Finally,	 considering	 the	 crucial	 role	 of	 the	 immune	 system	 in	 tumour	 progression,	

perhaps	 the	 most	 obvious	 limitation	 of	 PDX	 models	 is	 the	 necessity	 for	 severely	

immunodeficient	 host	 animals	 (23).	 The	 pro-inflammatory	 microenvironment	

established	by	CD8+	T	 cells,	M1	polarised	TAMs,	NK	cells	 and	others	 can	 lead	 to	 the	

recruitment	 of	 numerous	 immune	 suppressive	 components	 inhibitors	 (23,43,444).	

TAMs	and	myeloid	derived	suppressor	cells	have	been	implicated	in	resistance	to	anti-

angiogenic	 therapy.	 Additionally,	macrophage	and	CD4+	T	 cell	 recruitment	 following	

intensive	 chemotherapy	 in	 breast	 cancer	 patients	 is	 associated	 with	 significantly	

reduced	recurrence	 free	survival	(444).	Clearly,	 the	 future	co-engraftment	of	 immune	

components	into	PDX	models	would	facilitate	both	the	study	of	novel	therapies	targeting	

tumour-immune	interactions	and	allow	for	basic	research	into	patient	specific	cross-talk	

between	tumour	progression	and	immune	surveillance.		
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Recently,	 we	 have	 described	 a	 biobank	 of	 breast	 cancer	 PDX	models	with	 extensive	

molecular,	genomic	and	clinical	annotation	(198).	Our	study	adds	to	a	growing	body	of	

evidence	that	PDX	models	reflect	 the	complex	molecular	and	architectural	 features	of	

their	originating	patient	tumour	samples	(23,307,445,446).	Moreover,	we	developed	an	

integrated	platform	allowing	the	use	of	our	PDXs	in	high	throughput	combinatorial	drug	

screening.	 Our	work,	 together	with	 other	 preclinical	 studies,	 for	 example,	 a	 recently	

published	drug	screen	in	1,000	PDTX	models,	provided	crucial	evidence	supporting	the	

future	utility	PDX	models	in	predicting	human	clinical	trial	drug	responses	(198,447).		

	

In	summary,	PDX	models	can	partially	recapitulate	the	complex	population	dynamics	of	

a	 human	malignancy.	 Reproducible	 patterns	 of	 clonal	 dynamics	 suggest	 engraftment	

bias	may	represent	a	non-stochastic	selection	event,	which	defines	a	PDX	model	rather	

than	limits	its	utility.	However,	many	limitations	of	this	model	exist,	and	as	with	all	model	

systems,	we	must	be	careful	to	interpret	our	results	within	the	context	of	the	limitations	

of	our	tools.		

	

In	this	chapter,	we	describe	efforts	to	extend	our	lentiviral	clonal	tracing	technology	to	

our	breast	 cancer	PDX	cohort.	The	ability	 to	deconvolute	 cellular	and	genomic	 clonal	

dynamics	in	these	highly	complex	models	of	human	malignancy	offers	the	potential	to	

redefine	our	understanding	of	tumour	heterogeneity	(289).	Our	models	have	established	

utility	 in	 studying	 the	 mechanisms	 of	 drug	 response	 and	 resistance,	 and	 this	 new	

development	could	extend	their	utility	as	a	powerful	tool	to	unravel	the	clonal	dynamics	

in	response	to	therapeutic	perturbation	and	the	role	of	 tumour	heterogeneity	 in	drug	

response.		
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5.2	Lentiviral	Infection	of	PDX	Models				
	

We	sought	to	track	the	fate	of	individual	cellular	clones	through	repopulation	of	multiple	

rounds	 of	 PDX	model	 passage.	 It	was	 reasoned	 that	 a	 heritable	molecular	 barcoding	

strategy,	similar	to	those	detailed	in	Chapter	3,	would	allow	an	assessment	of	the	relative	

growth	 dynamics	 and	 fitness	 of	 individual	 cell	 in	 our	 PDX	 biobank.	 We	 could	 then	

introduce	selective	pressures,	such	as	chemotherapeutic	treatment	regimen,	to	assess	

the	relative	contribution	of	each	cellular	clone	to	clinically	meaningful	phenotypes,	such	

as	the	development	of	drug	resistance	and	the	processes	associated	with	metastasis.	This	

molecular	barcoding	technique	would	require	high	resolution	labelling	of	~1	x106	PDX	

cells	 in	 order	 to	 begin	 capturing	 heterogeneity	 on	 the	 scale	 present	 in	 human	

malignancies.	 The	 ClonTracer	 library,	 established	 and	 characterised	 by	 Bhang	 et	 al.,	

features	a	30-nucleotide	degenerate-sequence	and	theoretical	complexity	of	~72	x106	

(334).	Hence,	this	system	was	again	selected	for	these	studies.	The	ClonTracer	library	

has	been	used	to	individually	label	>1	x106	cells	and	asses	their	relative	contributions	to	

drug	resistance	in	models	of	CRC	(334)	and	breast	cancer	(Chapter	3),	but	has,	to	our	

knowledge,	never	been	applied	to	track	the	fate	of	cellular	clones	in	PDX	models.		

	

We	 sought	 to	 introduce	 ClonTracer	 degenerate	 barcodes	 into	 our	 PDX	 models	 by	

lentiviral	infection,	using	a	similar	process	as	developed	for	MCF7s	during	our	tamoxifen	

resistance	studies,	detailed	in	Chapter	3.	Complexity	calculations	are	detailed	extensively	

in	Chapter	3	(Section	3.4)	and	Chapter	2	(Methods,	Section	2.3).	Briefly,	we	have	shown	

highly	 significant	 concordance	 between	 calculated	 number	 of	 plasmid	molecules	 and	

unique	barcode	sequences	by	NGS	Figure	3.4.2,	and	that	in	a	sampling	of	1x106	barcodes,	

96%	are	unique,	Figure	3.4.5.	We	have	also	shown	no	PCR	bias	in	a	random	sampling	of	

24	individual	barcode	clones	(Figure	3.4.2)	and	have	successfully	used	the	technology	to	

label	 and	 track	 a	 highly	 diverse	 population	 of	 MCF7s	 during	 the	 development	 of	

resistance	 to	 4-OHT	 (Figures	 3.6.1,	 3.6.2	 &	 3.7.2).	 Here,	 we	 sought	 to	 use	 the	 same	

ClonTracer	 lentiviral	 library	 to	 characterise	 the	 repopulation	 dynamics	 in	our	 breast	
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cancer	 PDX	models.	 It	 is	 hoped	 that	 characterisation	 of	 this	 initial	 model	 will	 allow	

resistance	studies	in	our	highly	annotated	PDX	biobank.		

	

Using	the	same	lentiviral	preparation	as	produced	and	reported	in	Figure	3.4	we	infected	

in	vitro	PDTC	cultures	of	a	HER2-	ERα-	breast	cancer	PDX	model,	STG282.	Several	PDTC	

cultures	 tested	 were	 found	 to	 be	 resistant	 to	 puromycin	 at	 concentrations	 up	 to	

10,000ng/ml.	In	Figure	5.2.1	A	we	show	resistance	in	STG282-x3	at	concentrations	up	to	

5,000ng/ml.	 The	 ClonTracer	 insert	 contains	 a	 red	 florescent	 protein	 (RFP)	 reporter	

alongside	a	puromycin	resistance	cassette,	to	minimise	any	potential	off	target	effects	of	

puromycin	in	these	cells,	we	opted	for	flow	cytometry	based	viral	titration.	Figure	5.2.1	

B-F	 shows	 the	 gating	 strategy	 used	 when	 selecting	 RFP	 expressing	 (RFP+)	 cell	

populations.	 First,	 we	 selected	 a	 population	 based	 on	 forward	 (size)	 and	 side	

(granularity)	 scatters	 to	 likely	 minimise	 debris	 collection	 (Figure	 5.2.1	 B),	 doublet	

discrimination	 by	 both	 forward	 scatter	 (FSC),	 Figure	 5.2.1	 C,	 and	 side	 scatter	 (SSC),	

Figure	 5.2.1	 D,	 was	 then	 performed	 to	 ensure	 single	 cells	 in	 downstream	 analyses.	

Doublets	have	been	shown	to	adversely	affect	the	purity	of	cell	sorted	populations	(448),	

and	our	PDTC	models	grow	as	organoid-like	structures	ex	vivo	(198),	hence	we	used	both	

forward	and	side	scatter	exclusion	to	ensure	as	pure	an	RFP+	population	as	possible.	

Next,	we	excluded	dead	cells	from	our	analysis	using	DAPI	as	a	viability	marker	(Figure	

5.2.1	E),	and	selected	only	human	cells,	using	a	marker	of	mouse	major	histocompatibility	

complex	 (MHC)	 pan	 MHC-I/MHC-II	 (H-2kb/H2-Db;	 Figure	 5.2.1	 F).	 Compensation	 for	

fluorescent	 bleed	 in	 this	 multicolour	 flow	 cytometry	 experiment	 was	 carried	 out	 in	

FlowJo	 (version	 10.5.0)	 by	 analysing	 single	 stained	 controls	 accompanying	 each	

experiment.	The	panels	shown	in	Figure	5.2.1	are	representative	of	the	majority	of	our	

flow	experiments;	PDTCs	tend	to	be	high	in	doublets	and	25-30%	comprised	of	murine	

cells.	H-2kb/H2-Db	has	been	validated	in	our	lab	as	93%	sensitivity	and	92%	specificity	

for	detecting	host	stromal	cells	in	PDX	models	by	using	mouse	whole	blood	as	a	positive	

control	(198).		
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We	first	optimised	our	lentiviral	infection	techniques	in	PDTCs	using	HIV-ZsGreen1,	in	

order	 to	 preserve	 stocks	 of	 a	 validated	 ClonTracer	 lentiviral	 cocktail.	 Figure	 5.2.2	 A	

shows	infection	of	STG282-x3	with	1	x1010	TU/ml	of	Lenti-HIV-ZsGreen1	as	determined	

by	functional	titre	in	HEK293s	(see;	Methods,	Section	2.3.3).	Only	8.22%	of	viable	human	

single	cells	were	successfully	infected	with	this	relatively	high	viral	titre.	We	reasoned	

that	such	a	low	efficiency	of	selection	could	indicate	that	only	a	subpopulation	of	PDTCs	

were	 susceptible	 to	 lentivirus,	 however,	 HIV-ZsGreen1	 positive	 cells	 seem	 to	 be	

relatively	evenly	distributed	across	forward	and	side	scatter	distributions	(Figure	5.2.2	

B).	 Certain	 primary	 human	 cells,	 particularly	 those	 that	 are	 quiescent	 in	 nature,	 are	

reproducibly	 challenging	 to	 transduce	 with	 lentiviral	 constructs	 (449,450).	 Clearly,	

quiescent	 (e.g.	 Type	 IV	 clones	 (196))	 could	 hold	 particular	 importance	 in	 our	 later	

functional	studies	(451),	and	a	molecular	barcoding	technique	which	selected	for	non-

quiescent	cells	should	be	avoided.		

	

ZsGreen1+	 cells	 were	 isolated	 from	 the	 bulk	 ZsGreen1-	 STG282-x3	 population	 by	

fluorescence	activated	cell	sorting	(FACS)	and	implanted	into	the	flank	of	NSG	mice	as	

described	in	Methods,	Section	2.1.	Implanted	regions	were	palpated	periodically	for	signs	

of	 tumour	growth,	 and	estimated	tumour	volume	recorded	by	 the	BRU.	 Interestingly,	

implanted	ZsGreen1+	STG282	cells	were	markedly	slower	growing	when	compared	to	

models	 of	 the	 same	 passage	 (Figure	 5.2.2	 C).	 Ninety-five	 days	 after	 implantation,	

ZsGreen1+	tumours	were	only	beginning	to	become	palpable;	STG28-x3s,	on	average,	

were	800mm3	by	this	point.	However,	after	100	days,	ZsGreen1+	tumours	grew	at	a	rate	

not	dissimilar	to	parental	STG282s.	After	140	days,	tumours	had	grown	to	900mm3	and	

so	animals	were	 culled	and	PDX	 tumour	 fragments	 re-implanted	 into	 four	 secondary	

NSGs.	Each	resultant	STG282-x3	HIV-ZsGreen1	x2	tumour	grew	at	a	rate	not	dissimilar	

to	wild	type	STG282-x3	(Figure	5.2.2	D).		

	

We	reasoned	delayed	growth	on	implantation	could,	thus,	be	at	least	partially	attributed	

to	 the	 process	 of	 flow	 sorting	 rather	 than	 selective	 infection	 of	 a	 slow	 growing	 sub-
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population	 of	 cells.	 Although	 quiescent	 cells	 have	 been	 shown	 as	 less	 likely	 be	

successfully	transduced	by	lentivirus,	slow	growth	of	our	infected	xenograft	models	due	

to	the	potential	physical	stress	associated	with	flow	sorting	would	mask	this	affect.		

	

Next,	we	went	on	to	infect	STG282-x3	cells	with	the	same	ClonTracer	lentiviral	library	

as	developed	and	validated	 in	Chapter	3	 (Section	3.4)	and	Chapter	2	 (Methods,	Section	

2.3).	1	x107	PDTCs	were	isolated	from	frozen	stocks	of	STG282x3	and	cultured	ex	vivo	in	

the	presence	of	ClonTracer	lentiviral	construct.	After	24hrs,	PDTCs	were	screened	for	

RFP+	cells	by	flow	cytometry.	Figure	5.2.3	A	shows	the	gating	strategy	for	isolation	of	

RFP+	cells	 following	our	 live	human	singlet	 gating	process	detailed	 in	Figure	5.2.1.	A	

lentiviral	 dose	 of	 1.2	 x1011	 TU/ml	 resulted	 in	 9.34%	 RFP+	 cells	 by	 flow	 cytometry,	

suggesting	that	the	majority	of	cells	would	be	individually	labelled	(the	result	of	a	single	

integration	 event	 (360)).	 As	 with	 previous	 viral	 constructs,	 integration	 events	 were	

spread	across	a	 spectrum	of	 forward	and	side	 scatter	discriminated	particles	 (Figure	

5.2.3	B).	The	resultant	“STG282CT”	cells	(9	x105)	were	isolated	by	FACS	and	implanted	

in	the	flank	of	an	NSG	mouse,	following	the	same	experimental	procedures	as	with	HIV-

ZsGreen1	infected	cells,	shown	in	Figure	5.2.2.	Viability	staining	by	trypan	blue	exclusion	

(348)	 following	 flow	 sorting	 but	 prior	 to	 implantation	 showed	 viability	 at	 64%.	 As	

before,	 infected	 cells	 resulted	 in	 slower	 growing	 tumours	 on	 first	 implantation,	 but	

normal	 growth	 rates	 were	 restored	 on	 passage	 (Figure	 5.2.3	 C).	 STG282CT-x0	 was	

harvested	after	135	days,	dissociated	into	single	cells	and	re-implanted	into	10	NSG	mice	

in	an	attempt	to	increase	barcode	library	representation.	A	sample	was	also	taken	for	

histology,	with	staining	by	H&E,	together	with	IHC	for	EpCam	and	ECadherin,	shown	in	

Figure	5.2.5.	Heterogeneity	in	protein	expression	of	each	marker	is	seen	to	be	maintained	

from	parental	STG282x3	to	the	STG282CT-x0	derivative.		

	

Finally,	we	profiled	STG282CT	by	shallow	whole	genome	sequencing	(sWGS)	to	identify	

copy	number	variations	associated	with	lentiviral	integration	hotspots,	and/or	a	loss	of	

heterogeneity	associated	with	selective	pressures	from	lentiviral	infection	itself,	or	the	
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subsequent	 flow	 sorting	 process.	 Visualisation	 is	 provided	 through	 the	 QDNaseq	

Bioconductor	package.	Figure	5.2.5	A	shows	the	originating	STG282	metastatic	tumour	

sample,	 Figure	 5.2.5	 B	 a	 representative	 example	 of	 STG282CT-x4	 and	 Figure	 5.2.5	 C	

STG282CT-x0.	No	overt	differences	were	observed	by	visual	or	quantitative	analysis	of	

the	copy	number	profiles	of	infected	STG282CT	and	either	the	originating	sample	or	a	

long	 term	 PDX	 culture.	 The	 degree	 to	 which	 PDX	 models	 preserve	 the	 genomic	

heterogeneity	of	their	originating	sample	is	covered	extensively	in	Bruna	et	al.,	(198).		

	

	

	

	

	

	

	

	

Figure	5.2.1	–	Puromycin	resistance	&	PDTC	gating	strategy		

A)	 Shows	 resistance	 to	puromycin	 in	STG282	 (up	 to	5,000ng/ml),	 presented	as	 viability	

versus	 non-treated	 control	 (NT)	 by	 Cell-TitreGlo	 viability	 assay.	 B-F)	 show	 our	 gating	

strategy	 by	 flow	 cytometry	 to	 isolate	 individual,	 human,	 live	 cells	 carrying	 a	 lentiviral	

construct	of	 interest.	 Specifically,	B)	A	population	with	 suitable	 forward	 (size)	and	 side	

(granularity)	scatter	parameters	to	minimise	cellular	debris,	to	likely	minimise	debris.	C)	

doublet	 discrimination	 by	 forward	 (FSC)	 and	D)	 Side	 (SCC)	 scatter.	 E)	Dead	 cells	 are	

Excluded	by	DAPI	and	F)	murine	stromal	cells	were	excluded	by	pan	mouse	MHC-I/MHC-II	

(H-2kb/H2-Db).	 Multicolour	 flow	 cytometry	 compensation	 was	 carried	 out	 using	 the	

recommended	manufacturers	procedures	and	single	stained	samples	(DAPI	positive	control	

was	 achieved	 by	 boiling	 a	 suspension	 for	 20mins	 to	 reduce	 cell	 viability).	 Cells	 were	

analysed	and	sorted	using	the	BD	FACSAria	or	the	BD	Influx	FACS	machine	with	data	files	

analysed	 using	 FlowJo	 10.5.0	 (for	 MacOS).	 The	 CI	 Flow	 Cytometry	 Core	 aided	 in	 the	

completion	of	these	experiments.		Figure	Overleaf.	
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Figure	5.2.1	–	Puromycin	resistance	&	PDTC	gating	strategy		
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Figure	5.2.2	–	STG282x3	HIV-ZsGreen1	implantation		

A)	STG282-x3	were	cultured	 in	 the	presence	of	1	x1010	TU/ml	of	Lenti-HIV-ZsGreen1	as	

determined	by	 functional	 titre	 in	HEK293-Ts	 (see;	Methods,	 Section	2.3.3)	 in	 conditions	

optimised	 to	 encourage	 lentiviral	 infection.	 8.22%	 of	 viable	 human	 single	 cells	 were	

ZsGreen1	positive	after	24hrs	 infection.	B)	STG282CT-HIV-ZsGreen1+	cells	 seemed	 to	be	

relatively	evenly	distributed	across	 forward	and	side	scatter	distributions.	C)	ZsGreen1+	

cells	were	isolated	by	FACS	and	implanted	into	the	flanks	of	NSG	mice.	Tumour	size	was	

estimated	by	palpation	periodically	and	animals	maintained	by	BRU	staff.	After	140	days,	

tumours	had	grown	to	900mm3	and	so	animals	were	culled	and	STG282CT-HIV-ZsGreen1	

re-implanted	into	four	secondary	NSGs.	D)	By	passage	x2,	infected	tumours	grew	at	a	rate	

similar	to	parental	models.		Figure	Overleaf.	
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Figure	5.2.2	–	STG282x3	HIV-ZsGreen1	implantation		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Clonal	Origins	of	Drug	Resistance																																																Chapter	5	–	Barcoded	PDX	

	 	

	
-268-	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.2.3	–	STG282x3	ClonTracer	infection	&	implantation		

STG282x3	cells	were	 infected	with	the	same	ClonTracer	 lentiviral	 library	developed	and	

validated	in	Chapter	3	(Section	3.4)	and	Chapter	2	(Methods,	Section	2.3).	A)	1	x107	PDTCs	

were	 isolated	 from	 frozen	 stocks	 of	 STG282x3	 and	 cultured	 ex	 vivo	 in	 the	 presence	 of	

ClonTracer	 lentiviral	construct	(1.2	x1011	TU/ml).	After	24hrs,	PDTCs	were	screened	 for	

RFP+	cells	by	flow	cytometry,	we	found	9.34%	RFP+.	This	MOI	suggests	singular	integration	

events	in	the	majority	of	cells	(360).	B)	Integration	events	were	spread	across	a	spectrum	

of	forward	and	side	scatter	discriminated	particles.	C)	The	resultant	“STG282CT”	cells	(9	

x105)	were	isolated	by	FACS	and	implanted	in	the	flank	of	an	NSG	mouse.	Viability	staining	

by	trypan	blue	exclusion	(348)	 following	 flow	sorting	but	prior	 to	 implantation	showed	

viability	 at	 64%.	 As	 before,	 infected	 cells	 resulted	 in	 slower	 growing	 tumours	 on	 first	

implantation,	but	normal	growth	rates	were	restored	on	passage.	The	CI	BRU	aided	in	the	

running	and	analysis	of	these	experiments.	Figure	Overleaf.	



Clonal	Origins	of	Drug	Resistance																																																Chapter	5	–	Barcoded	PDX	

	 	

	
-269-	

Figure	5.2.3	-	STG282x3	ClonTracer	infection	&	implantation	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Clonal	Origins	of	Drug	Resistance																																																Chapter	5	–	Barcoded	PDX	

	 	

	
-270-	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.2.4	–	STG282x3	ClonTracer	x0	(STC282CT-x0)	histology		

Representative	 images	 of	 samples	 STG282CT-x0.	 Staining	 shows	 H&E	 and	 EpCam	 &	

ECadherin	IHC.	Comparison	to	parental	 lines	shows	maintained	heterogeneity	in	protein	

expression	 of	 each	marker.	 Dr	H	Raza	Ali	 and	 the	 CI	Histopathology	 Core	 aided	 in	 the	

running	and	analysis	of	these	experiments.	Figure	Overleaf.	
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Figure	5.2.4	-	STG282x3	ClonTracer	x0	(STG282CT-x0)	histology		
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Figure	5.2.5	–	STG282CT-x0	sWGS	

STG282CT	 was	 profiled	 by	 sWGS	 to	 identify	 copy	 number	 variations	 associated	 with	

lentiviral	 integration	 hotspots,	 and/or	 a	 loss	 of	 heterogeneity	 associated	with	 selective	

pressures	 from	 lentiviral	 infection	 itself,	 or	 the	 subsequent	 flow	 sorting	 process.	

Visualisation	is	provided	through	the	QDNaseq	Bioconductor	package.	Analysis	was	carried	

out	by	Dr	Oscar	Rueda.	A)	shows	the	originating	STG282	metastatic	tumour	sample,	B)	a	

representative	example	of	STG282CT-x4	and	C)	STG282CT-x0.	No	overt	differences	were	

observed	 by	 visual	 or	 quantitative	 analysis	 of	 the	 copy	 number	 profiles	 of	 infected	

STG282CT	and	either	the	originating	sample	or	a	long	term	PDX	culture.	Figure	Overleaf.	
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Figure	5.2.5	-	STG282CT-x0	sWGS	
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5.3	Loss	of	Diversity	in	STG282CT	PDX	Models		
	

Having	established	a	barcoded	PDX	model,	STG282CT,	we	sought	to	expand	this	model	

across	multiple	passages.	We	reasoned	that	by	analysing	barcode	presence	at	different	

passages	and	in	different	arms	we	could	study	clonal	selection	and	competition	in	our	

PDX	models,	and	that	by	analysing	their	relative	abundance	we	could	derive	a	model	of	

clonal	fitness.	Moreover,	the	ability	to	trace	the	fate	of	individual	barcoded	cells	in	this,	

and	future,	PDX	models,	could	give	us	insight	into	the	clonal	origins	of	drug	resistance	

and	metastasis.	Figure	5.3.1	shows	a	schematic	of	the	expansion	of	the	STG282CT	model.	

Model	numbers	in	red	represent	those	where	NGS	and	barcode	analysis	was	performed,	

and	red	triangles	indicate	models	in	which	micro	or	local	metastases	where	found.	

	

After	 lentiviral	 infection,	 flow	 sorting	 and	 implantation	 (Figure	 5.2.3),	 we	 estimated	

labelling	of	approximately	900,000	individual	PDTCs.	Viability	staining	by	trypan	blue	

exclusion	(348)	found	36%	of	cells	were	non-viable,	suggesting	~600,000	individually	

labelled	 PDTCs.	 A	 typical	 PDX	 fragment	 (for	 reimplantation	 or	 PDTC	 dissociation)	

contains	between	1	x106	and	5	x106	viable	cells	(198),	with	each	tumour	containing	1	

x107		to	5	x107		cells.	Assuming	complete	mixing	of	barcoded	populations,	together	with	

equal	growth	propensity	and	clone	forming	ability,	we	calculated	that	reimplantation	of	

STG282CT-x0	into	10	NSG	hosts,	followed	by	tumour	expansion	and	PDTC	harvesting,	

would	 result	 in	>150-fold	 library	 representation.	PDTCs	 from	 this	STG282CT-x1	pool	

could	then	be	mixed	and	re-implanted	into	NGS	to	allow	equal	barcode	distribution	in	

passage	x2	models.	We	hoped	to	validate	this	library	expansion	and	representation	so	

that	 future	 drug	 resistance	 lines	 could	 directly	 compare	 the	 fate	 of	 cellular	 clones	 in	

treatment	and	control	arms	of	a	drug	resistance	study,	similar	to	that	designed	in	Chapter	

3.	 Figure	 5.3.2	 A	 shows	 our	 STG282CT	 expansion	 and	 pooling	 strategy	 to	 increase	

barcode	library	representation.		
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ClonTracer	barcode	regions	were	amplified	from	genomic	DNA	by	PCR	and	analysed	by	

NGS	as	detailed	 in	Chapter	2,	Methods	2.5.	Briefly,	Barcode	 sequences	were	extracted	

from	NGS	data	after	standard	QC	and	demultiplexing	with	FastX,	and	analysed	using	the	

ClonTracer	 software	 package	 (135).	 Counts,	 frequency	 distributions	 and	 barcode	

abundances	were	then	processed	in	R.	Figure	5.3.2	A	shows	a	pooling	strategy	to	check	

library	complexity	in	STG282CT-x1	models.	Despite	a	theoretical	complexity	of	900,000	

uniquely	marked	cells,	with	up	to	500-fold	representation,	we	found	only	1,034	unique	

barcode	 sequences	 in	 a	 sampling	 of	 mixed	 cells	 from	 10	 STG282CT-x1	 models	

(STG282CT-x1_mix;	Figure	5.3.2	B).	In	total,	1	x106	cells	from	this	pool	were	sequenced,	

to	 a	 depth	 of	 approximately	 120	 x106	 reads,	 with	 resultant	 analysis	 showing	

approximately	57	x106	barcode	sequences	falling	into	1,034	unique	sequences	(clones).		

	

Of	the	10	progeny	tumours	from	this	mix	(STG282CT-x2_1	through	STG282CT-x2_10),	

three	 were	 sequenced	 for	 barcode	 analysis.	 These	 second-generation	 tumours	

harboured	 a	 total	 of	 1,231	 unique	 barcode	 sequences,	 of	 which	 578	were	 unique	 to	

passage	x2	models	and	653	were	also	seen	in	STG282-x1	(Figure	5.3.2	B).	With	>50%	of	

barcodes	from	a	deeply	sequenced	population	of	cells	(STG282CT-x1)	potentially	going	

undetected,	we	sought	to	better	understand	clonal	growth	patterns.	Figures	5.3.2	C,	D	&	

E	show	the	relative	abundance	of	the	top	100	unique	barcodes,	i.e.	the	fraction	of	usable	

reads	 in	 each	 sample	 represented	 by	 each	 of	 100	 unique	 barcodes	 across	 the	 three	

samples.	In	each	pairwise	comparison,	there	is	significant	overlap	in	barcode	abundance	

(p	<0.001),	though	the	correlation	is	far	from	perfect	(r2	=0.35,	0.11	&	0.41	for	panels	C,	

D	&	E	respectively).			

	

In	 STG282CT-x2_8	 &	 STG282CT-x2_4,	 for	 example,	 abundance	 of	 unique	 barcodes	

ranged	from	1.1	x10-4	 to	0.8	x10-1	and	1.3	x10-4	 to	1.4	x10-1,	meaning	that	a	detected	

barcode	could	be	present	in	as	few	as	0.01%	or	as	many	as	14%	cells.	Moreover,	the	same	

barcode	could	be	detected	in	10%	of	cells	in	one	sample	(in	this	case	STG282CT-x2_4)	

and	 as	 few	 as	 0.02%	 in	 another	 (STG282CT-x2_8).	 This	 wide	 variability	 in	 barcode	
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abundance	between	samples	led	us	to	consider	that	asymmetric	growth	patterns	of	cells	

in	PDX	models	may	ultimately	preclude	an	exact	matching	of	barcodes	between	a	control	

and	treatment	arm,	as	we	had	developed	for	MCF7s	(see:	Figure	3.5.1).		

	

In	an	elegant	study	by	Nguyen	et	al.,	 known	numbers	of	single-barcoded	control	cells	

were	 sequenced	 alongside	 barcoded	 PDX	 and	 cell	 line	 xenograft	 models	 in	 order	 to	

estimate	 cell	 number	 from	 relative	 barcode	 abundance	 (197).	 We	 sought	 to	 further	

understand	 the	dynamics	of	 clonal	repopulation	 in	our	models	by	 following	a	similar	

protocol.	Hence,	we	prepared	clonally	derived	(i.e.	single	barcode	sequence)	ClonTracer	

constructs	prepared	by	E.	coli	transfection,	prepared	lentiviral	constructs	in	HEK293-Ts	

and	 transduced	 fresh	 HEK293	 cell	 preparations	 at	 <10%	 MOI	 (0.5-1.5	 x109	 TU/ml	

concentrated	viral	titres	for	each	individual	barcode).	After	puromycin	selection,	known	

concentrations	 of	 single	 cell	 HEK293-ClonTracer	 cell	 suspensions	 were	 spiked	 into	

STG282CT	samples	prior	to	DNA	extraction	and	NGS	barcode	sequencing.	See	Methods,	

Sections	2.3	&	2.5.4.		

	

Across	 24	 sequenced	 PDX	 samples,	 barcodes	 spiked	 in	 at	 500	 or	 more	 cells	 were	

detectable	in	100%	of	cases,	and	a	good	correlation	was	observed	between	the	number	

of	 cells	 input	 and	 relative	 barcode	 abundance	 (r2	 =0.998,	p	<0.0001;	Figure	 5.3.3	 A).	

Below	 500	 cells,	 the	 correlation	 between	 input	 cells	 and	 barcode	 abundance	 was	

markedly	 less	 clear,	 and	 our	 ability	 to	 detect	 clones	 fell	 to	 60%.	 Of	 note,	 the	 strong	

correlation	between	 input	cell	number	and	relative	barcode	abundance	enabled	us	to	

derive	 an	 equation	 relating	 the	 two	 variables	 (insert;	 Figure	 5.3.3	 A).	 We	 used	 this	

relationship	to	calculate	estimated	cell	number	for	spike	in	controls	(Figure	5.3.3	B)	and	

found	good	concordance	with	the	known	number	of	spike-in	cells,	across	a	wide	range	

of	values	(~1,000	to	50,000	cells;	r2	=0.998,	p	<0.0001),	though	the	estimated	clone	size	

fell	markedly	below	actual	clone	size	at	500	cells	or	below.		
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This	analysis	reinforced	the	need	for	a	threshold	of	confident	detection	and	enables	us	

to	 relate	 relative	 barcode	 abundance	 to	 actual	 clone	 size	 in	 future	 studies.	We	 set	 a	

barcode	 abundance	 threshold	 of	 ~4	 x10-6	 (equivalent	 to	 500	 cells),	 as	 our	 limit	 of	

confident	detection.	This	limit	was	slightly	variable	in	terms	of	RBA	in	each	model,	but	

always	 equivalent	 to	 500	 cells,	 offering	 a	 useful	 internal	 control	 to	 directly	 compare	

clonal	size	in	matched	replicate	implantations.	

	

Aside	 from	 estimating	 the	 absolute	 size	 of	 a	 clone,	 in	 terms	 of	 cell	 number,	 this	

relationship	 allowed	 us	 to	 estimate	 the	 clone-initiating	 cell	 (CIC)	 frequency,	 i.e.	 the	

proportion	 of	 input	 cells	 of	 a	 given	 clone,	 able	 to	 establish	 a	 detectable	 clone	 on	

transplantation.	In	all,	we	found	remarkably	fewer	clones	than	input	barcode	numbers.	

Across	26	sequenced	samples,	we	find	a	total	of	2,637	unique	barcodes,	suggesting	that	

as	few	as	1	/189	cells	are	able	to	form	clones.	Though	the	complexity	in	terms	of	unique	

barcode	count	was	 lower	than	originally	expected,	 this	 figure	 is	relatively	concordant	

with	a	study	by	Nguyen	and	colleagues,	who	used	barcoded	PDX	and	cell	line	xenograft	

models	to	study	tumour	initiation	(197).	The	authors	report	decreasing	CIC	frequency	

values	 over	 more	 than	 two	 orders	 of	 magnitude	 (from	 1	 /7	 to	 1	 /3,000	 of	 cells	

transplanted	in	one	model,	and	1	/160	to	1	/12,500	in	another)	as	an	inverse	function	of	

the	input	cell	number	(197).		

	

The	above	analyses	led	us	to	question	the	possibility	of	universally	increasing	barcode	

representation	for	drug	resistance	screens,	by	expansion	in	separate	animals	followed	

by	cell	pooling.	We	sought	to	understand	how	clonal	diversity	increased	or	decreased	

across	our	models.	Diversity	indexes	are	often	used	in	ecology	to	assign	a	quantitative	

measure	 that	 reflects	 how	 many	 different	 species	 can	 be	 found	 in	 a	 dataset	 or	

community,	whilst	 simultaneously	 considering	how	evenly	 the	basic	 entities	 (such	as	

individuals)	are	distributed	among	those	species.	We	computed	one	such	measure,	the	

SDI	 (H’),	 to	 quantify	 diversity	 amongst	 cellular	 clones	 in	 our	 PDX	models	 (204,363).	

Figure	 5.3.4	 shows	 cumulative	 RBA	 as	 a	 function	 of	 the	 number	 of	 unique	 barcodes	
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counted,	 alongside	 the	 SDI	 for	 each	 of	 three	 parallel	 passage	 trees	 from	 our	 PDX	

expansion	map	(Figure	5.3.4).	In	each	case,	diversity	is	seen	to	decrease	on	passage.	Not	

surprisingly,	the	earliest	passage	PDX	(STG282-x1)	was	comprised	of	a	diverse	group	of	

relatively	low	frequency	clones	(showing	a	lower	running	total	of	barcode	abundance	as	

the	number	of	unique	barcodes	increases).	Moreover,	with	an	SDI	of	324,	this	is	by	far	

the	 most	 diverse	 sample	 analysed.	 In	 each	 cumulative	 RBA	 plot,	 the	 corresponding	

STG282-x2	sample	shows	early	dominance,	indicating	the	presence	of	a	handful	of	highly	

abundant	barcodes,	in	each	case,	the	SDI	is	similarly	markedly	lower	for	STG282-x2	than	

STG282-x1.	In	Figure	5.3.4	A,	passage	x2	and	x3	show	relatively	similar	SDIs,	with	both	

passage	x4	models	actually	nearly	1.5-fold	more	diverse	than	either.	Indeed,	although	

this	arm	shows	an	overall	trend	for	decreased	diversity	with	passage,	the	association	is	

not	significant	(r2	=	0.3159;	p	=0.0908).	The	arm	depicted	in	Figure	5.3.4	B	is	most	clear	

in	the	trend	of	decreasing	diversity	over	time	(r2	=	0.9411;	p	<0.0001).	Whereas	in	Figure	

5.3.4	C,	we	see	similar	SDIs	in	both	passage	x2	and	x3	(r2	=	0.6982;	p	=0.078).	Overall	

these	analyses	demonstrate	a	reduction	in	diversity	of	cellular	clonal	populations	on	PDX	

passage.		

	

A	similar	loss	in	diversity	in	breast	cancer	PDX	models	was	reported	by	Nguyen	et	al.,	

(197).	 Indeed,	 it	was	 found	 that	 in	one	 cell	 line	xenograft	model,	 the	 total	number	of	

detectable	clones	decreased	from	185	to	12	in	just	three	passages.	Differences	in	growth	

rates	and/or	CIC	between	clones	could	preclude	these	models	from	use	in	experimental	

setups	of	a	similar	design	to	those	employed	in	tamoxifen	resistance	studies	detailed	in	

Chapter	3.		
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Figure	5.3.1	–	STG282CT	model	expansion		

Shows	 our	 STG282CT	 expansion	 and	 pooling	 strategy	 to	 increase	 barcode	 library	

representation.	900,000	individual	lenti-ClonTracer	PDTCs	at	64%	viability	by	trypan	blue	

exclusion	(348)	were	subcutaneously	injected	into	the	flank	of	an	NSG	host,	the	resulting	

model	 -	 STG282CT-x0	–	was	 engrafted	 into	10	NSGs	 (STG282CT-x1)	before	PDTCs	were	

harvested,	mixed	 and	 re-implanted	 into	 10	 further	NSGs	 (STG282CT-x2)	 in	 an	 effort	 to	

increase	 library	 representation.	 PDX	 models	 were	 expanded	 down	 specific	 lineages	 as	

detailed	 in	 the	 figure.	 Lines	denote	 the	 flow	of	PDX	material	 into	 subsequent	hosts,	 red	

coloured	 models	 were	 analysed	 by	 NGS	 (for	 barcode	 composition)	 and	 red	 triangles	

represent	suspected	sites	of	metastasis.	Figure	Overleaf.	
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Figure	5.3.2	–	Barcode	Complexity	in	STG282CT-x1	pool		

A)	 shows	 our	 STG282CT	 expansion	 and	 pooling	 strategy	 to	 increase	 barcode	 library	

representation.	B)	Despite	a	theoretical	complexity	of	900,000	uniquely	marked	cells,	with	

up	 to	 500-fold	 representation,	 only	 1,034	 unique	 barcode	 sequences	 were	 found	 in	 a	

sampling	of	mixed	cells	 from	10	STG282CT-x1.	 In	 total,	1	x106	cells	 from	 this	pool	were	

sequenced,	 to	a	depth	of	approximately	120	x106	reads,	with	resultant	analysis	showing	

approximately	 57	 x106	 barcode	 sequences	 falling	 into	 1,034	 unique	 sequences.	 Second-

generation	tumours	(STG282CTx2_1,	STG282CTx2_4	&	STG282CTx2_8)	harboured	a	total	

of	1,231	unique	barcode	sequences,	of	which	578	were	unique	to	passage	x2	models	and	

653	were	also	seen	 in	STG282x1.	C,	D	&	E)	Show	the	relative	abundance	of	 the	top	100	

unique	barcodes,	i.e.	the	fraction	of	usable	reads	in	each	sample	represented	by	each	of	100	

unique	barcodes	across	the	three	samples.	In	each	pairwise	comparison,	there	is	significant	

overlap	in	barcode	abundance	(p	<0.001),	though	the	correlation	is	far	from	perfect	(r2	

=0.35,	0.11	&	0.41	for	panels	C,	D	&	E	respectively).		Figure	Overleaf.	
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Figure	5.3.2	–	Barcode	complexity	in	STG282CT-x1	pool		
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Figure	5.3.3	–	Estimating	cell	number	from	barcode	abundance		

A)	 HEK293s	 infected	 with	 clonally	 derived	 (i.e.	 single	 barcode	 sequence)	 ClonTracer	

constructs	were	spiked	into	STG282CT	samples	prior	to	DNA	extraction	and	NGS	barcode	

sequencing.	Across	29	sequenced	PDX	samples,	barcodes	spiked	in	at	500	or	more	cells	were	

detectable	in	100%	of	cases,	and	a	good	correlation	was	observed	between	the	number	of	

cells	 input	and	 relative	barcode	abundance	 (r2	 =0.998,	p	<0.0001).	Below	 500	 cells,	 the	

correlation	between	input	cells	and	barcode	abundance	was	markedly	less	clear,	and	our	

ability	to	detect	clones	fell	to	60%.	We	set	a	threshold	of	500	cells	(roughly	equivalent	to	an	

RBA	of	4	x10-6),	as	our	limit	of	confident	detection	in	further	studies.	Importantly,	we	used	

spike	in	controls	present	in	each	sequenced	sample	to	locally	optimise	this	limit	of	detection	

and	act	as	an	internal	control	for	barcode	abundance	experiments.	The	limit	of	detection	

(in	 terms	of	RBA	value)	 is	 therefore	 slightly	 varied	 in	different	models.	B)	We	used	 the	

correlation	 between	 input	 cell	 number	 and	 relative	 barcode	 abundance	 to	 calculate	

estimated	cell	number	for	spike	in	controls	and	found	good	concordance	with	the	known	

number	of	spike-in	cells,	across	a	wide	range	of	values	(~1,000	to	50,000	cells;	r2	=0.998,	p	

<0.0001),	though	the	estimated	clone	size	fell	markedly	below	actual	clone	size	with	500	or	

fewer	spike-in	cells.	The	relationship	between	relative	barcode	abundance	and	clone	size	

across	all	samples	is	as	follows:		

	

Clone	Size	=	(RBA	–	(1.108	x10-5))	/	(6.188	x10-8)	

	

Figure	Overleaf.	
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Figure	5.3.3	–	Estimating	cell	number	from	barcode	abundance		
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Figure	5.3.4	–	Passage	reduces	clonal	barcode	complexity		

Cumulative	 relative	 barcode	 abundance	 (RBA)	 as	 a	 function	 of	 the	 number	 of	 unique	

barcodes	 counted,	alongside	 the	Shannon	Diversity	 Index	 (SDI;	H’)	 (204,363).	 A,	B	&	C)	

show	 three	parallel	passage	arms	 from	 our	PDX	expansion	map	 (Figure	5.3.1).	 	Figure	

Overleaf.	
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Figure	5.3.4	–	Passage	reduces	clonal	barcode	complexity		
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5.4	STG282-CT	repopulation	dynamics				
	

PDX	models	have	been	shown	to	be	remarkably	stable	over	serial	passage	by	ourselves	

(198)	and	others	(195).	However,	certain	changes	in	population	growth	and/or	clonal	

dominance	 have	 been	 observed.	 In	 our	 own	models,	we	 have	 shown	 the	majority	 of	

outright	clonal	selection	occurs	on	initial	implantation,	but	that	approximately	20%	of	

clonal	 populations,	 defined	 by	 PyClone	 (199),	 have	 significant	 changes	 in	 cellular	

prevalence	 across	 several	 years	of	 in	 vivo	 culture	and	maintenance.	 Interestingly,	we	

could	 attribute	 a	 putative	 driver	mutation	 to	only	 four	 of	 the	 38	 clonal	 clusters	 that	

changed	significantly	during	serial	passage	(based	on	a	ratiometric	method	to	identify	

and	classify	driver	events	proposed	by	Vogelstein	et	al.,	(452)).	Moreover,	in	analysing	

matched	 PDX	models	 derived	 from	 primary	 and	metastasis,	 or	 from	multiple	 punch	

biopsies	of	 the	same	metastatic	site,	we	have	 shown	remarkable	similarities	between	

clonal	clusters.	In	at	least	one	case	(STG139),	shared	clusters	contained	~80%	of	all	SNVs	

detected,	 comprising	putative	 truncal	 clusters	and	 sub-clonal	 clusters	with	estimated	

cellular	prevalence	<5%	(198).		

	

However,	 in	 our	 studies,	 and	 in	 those	 reported	 in	 the	 literature,	 changes	 in	 clonal	

prevalence	across	passages	has	been	observed.	One	study	sought	to	determine	whether	

such	 directional	 clonal	 kinetics	 were	 associated	 with	 deterministic	 or	 stochastic	

processes,	 such	 as	 random	 genetic	 drift	 (195).	 The	 authors	 found	 that	 80%	 of	 the	

directional	 changes	 seen	 in	 clonal	 structures	were	 repeated	 across	 multiple	 parallel	

passages	of	the	same	PDX	model.	This	included	the	reproducible	expansion	of	initially	

minor	subclones,	implying	a	high	likelihood	of	shared	deterministic	mechanism	rather	

than	repeated	rare	stochastic	events	(195).	Conceptually,	 this	could	be	 linked	to	both	

acquisition	 and	 reduction	 of	 selective	 pressures	 on	 transplantation	 from	 human	 to	

murine	host.	For	example,	mutations	aiding	in	the	suppression	of	the	immune	response	

would	likely	no	longer	confer	a	fitness	benefit	in	immunocompromised	mice,	meaning	
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that	 clonal	populations	able	 to	 suppress	 the	 immune	system	would	no	 longer	have	a	

selective	advantage	and	could	therefore	be	outcompeted	(23).		

	

In	cellular	clonal	tracing	experiments	with	lentiviral	barcodes,	variable	clonal	dynamics	

have	been	associated	with	the	emergence	of	resistance	to	chemotherapies.	Kreso	et	al.,	

found	several	repopulation	behaviours	 in	CRC	PDX	models,	certain	cells	reproducibly	

appearing	 in	 one	 passage	 before	 falling	 below	 the	 limits	 of	 detection	 in	 subsequent	

passages	 (196).	 In	examining	breast	 cancer	PDX	model	 repopulation	dynamics	 in	 the	

unperturbed	state,	Nguyen	et	al.,	(197)	found	both	symmetric	and	asymmetric	growth	

patterns	in	paired	replicate	models.	Interestingly,	the	authors	found	xenografts	derived	

from	the	MDA-MB-231	cell	line	demonstrated	the	most	asymmetry	in	growth	activity,	

with	33	to	40%	of	replicate	clones	showing	different	growth	trajectories.	Whereas	 in	

PDX	models,	80	to	98%	of	replicate	clones	showed	symmetry	of	growth	activity,	with	the	

majority	of	asymmetry	accounted	for	by	clones	decreasing	in	one	passage-replicate	and	

fluctuating	in	another	(197).		

	

We	sought	to	understand	the	kinetics	of	clonal	fluctuations	in	our	models	in	more	detail.	

Figure	5.4.1	shows	the	trajectories	of	individual	unique	barcodes,	depicted	as	grey	lines	

connecting	RBA	at	different	passages.	The	350	most	abundant	barcodes	at	 each	 time	

point	 (representing	 >92%	 of	 cells)	 were	 plotted	 in	 this	 analysis	 for	 ease	 of	

interpretation.	 Dotted	 grey	 boxes	 connect	 matched	 implantations	 and	 black	 arrows	

denote	 the	 original	 sample	 from	 which	 the	 next	 passage	 (or	 matched	

passages/transplants)	 were	 derived.	 The	 limit	 of	 accurate	 detection	 (~500	 cells)	 is	

shown	in	shaded	grey	at	the	base	of	each	plot	and	in	each	panel,	a	PDX	expansion	map	

relating	to	the	RBA	plots,	is	depicted	as	an	insert.	In	general,	relatively	flat	lines	denote	

stable	clonal	prevalence	between	two	passages,	downward	trends	represent	clonal	loss	

or	 reduction	 in	 clone	 size	 and	 upward	 trends	 represent	 resurgence	 of	 old	 clones,	

emergence	 of	 previously	 undetected	 clones,	 or	 clonal	 growth.	 Symmetric	 and	

asymmetric	clonal	growth	is	quantified	for	each	set	of	matched	implantations,	in	terms	
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of	percentage	of	clones	with	neutral	growth	(‘Neut’;	RBA	in	reimplantation	is	within	one	

SD	of	the	mean	fold	change	from	originating	sample),	those	that	decrease	in	prevalence	

(‘Down’;	RBA	 is	 lower	 in	 reimplantation	versus	originating	by	>1	SD)	and	 those	 that	

increase	in	prevalence	(‘Up’;	RBA	is	higher	in	reimplantation	versus	originating	by	>1	

SD).		

	

Figure	 5.4.1	 A	depicts	 such	 clonal	 dynamics	 for	 the	 STG282CT-x2_1	 to	 STG282CT-x5	

expansion	arm.	This	is	the	largest	collection	of	models	studied	together,	both	in	terms	of	

passage	 (covering	 four	 passages)	 and	 replicates,	 with	 both	 STG282CT-x2_1	 and	

STG282CT-x4_1	 being	 implanted	 into	 three	 replicates	 and	 STG282CT-x3_1	 implanted	

into	 two.	 Interestingly,	 visual	 analysis	 shows	 similar	 repopulation	 dynamics	 across	

paired	implantations.	For	example,	STG282CT-x2_1	implantation	reliably	results	in	the	

loss	of	a	group	of	clonal	populations,	the	maintenance	of	a	proportion	of	clones	at	around	

RBA	of	10-3,	and	the	enrichment	of	few	previously	undetected	barcodes.	Implantation	of	

STG282CT-x4_1	 into	 three	 replicate	models	 likewise	almost	universally	 results	 in	 the	

loss	of	(and	/or	downward	trend	of)	the	same	clones,	but	a	relatively	stable	overall	trend.	

STG282CT-x3_1,	shows	a	larger	proportion	of	divergent	clonal	repopulation	dynamics	in	

the	paired	implantations.	In	one	matched	replicate	(STG282CT-x4_1),	a	great	deal	of	new	

clones	were	detected,	and	 in	the	other	(STG282CT-x4_2),	 the	majority	of	clones	were	

relatively	 stable,	 coupled	with	 slight	 loss	 and/or	 downward	 trend	of	 clones	 typically	

seen	to	be	stable	in	prior	generations.	A	smaller	proportion	of	clones	showed	an	upward	

trend	 in	 STG282CT-x4_2	 than	 STG282CT-x4_1.	 These	 observations	 are	 quantified,	 in	

terms	of	the	percentage	of	clones	showing	divergent	(or	asymmetrical)	and	symmetrical	

growth	patterns	(positive,	neutral	or	negative)	between	replicates.	In	STG282CT-x3_1,	

all	 clone	 behaviours	 were	 largely	 symmetrical.	 STG282CT-x4_1	 showed	 >75%	 of	

downward	and	upward	trending	clones	following	the	same	pattern,	while	those	with	a	

neutral	path	were	56%	likely	 to	 follow	this	path	across	all	 three	replicates,	similarly,	

STG282CT-x2_1	showed	an	overall	majority	of	symmetrical	clonal	behaviours.		
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In	Figure	 5.4.1	 B	 the	 expansion	 of	 STG282CT-x2_8	 is	 followed	 through	 two	passages.	

Generally,	 clones	 present	 in	 STG282CT-x3_b1	 follow	 similar	 patterns	 of	 symmetric	

growth	on	transplantation,	though	approximately	70%	of	clones	with	an	upward	trend	

are	asymmetric.	This	can	largely	be	attributed	to	the	detection	of	78	new	clones	in	one	

model	 but	 not	 the	 other.	 Reimplantation	of	 STG282CT-x4_b2	 results	 in	 a	majority	 of	

asymmetric	growth	patterns	across	all	three	type	of	clonal	growth	behaviours.	Finally,	

Figure	5.3.1	C	shows	this	set	of	analysis	for	the	STG282CT-x2_4	expansion	arm.	In	this	

case,	 the	 majority	 of	 cellular	 populations	 were	 neutrally	 trending	 on	 passage.	

Symmetrical	growth	patterns	between	the	three	analysed	replicate	models	were	seen	in	

92%	of	 neutrally	 trending	 populations,	 65%	negatively	 trending	 and	 83%	 positively	

trending.	Interestingly,	barcodes	in	the	first	passage	of	this	arm	appeared	particularly	

tightly	grouped,	with	the	loss	of	the	majority	of	barcodes	with	an	RBA	of	~7	x10-3	and	

the	emergence	of	a	tight	cluster	of	barcodes	all	growing	to	an	abundance	of	~9	x10-4.	

Overall,	our	barcoded	PDX	models	showed	both	asymmetrical	and	symmetrical	growth	

patterns	 between	 replicates	 established	 from	 the	 same	 originating	 tumour.	 Growth	

patterns	 themselves	 were	 varied	 across	 populations	 and	 between	 independent	

expansion	of	STG282CT.	In	later	passages,	we	observed	repeated	detection	of	barcodes	

not	seen	in	earlier	models,	together	with	consummatory	loss	of	populations	which	had	

been	relatively	stable	across	multiple	passages.		
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Figure	5.4.1	–	STG282CT	Repopulation	dynamics		

Depicts	the	trajectories	of	individual	unique	barcodes,	grey	lines	connecting	their	RBA	at	

different	passages.	The	350	most	abundant	barcodes	in	each	passage	(representing	>92%	

of	cells)	are	plotted	for	ease	of	interpretation.	Dotted	grey	boxes	connect	matched	or	repeat	

passages	and	black	arrows	denote	the	original	sample	from	which	replicate	passages	were	

derived.	 For	 each	 parallel	 engraftment,	 we	 compare	 symmetric	 and	 asymmetric	

repopulation	dynamics.	 ‘Neut’;	RBA	 in	reimplantation	 is	within	one	SD	of	 the	mean	 fold	

change	from	originating	sample,	‘Down’;	RBA	is	lower	in	reimplantation	versus	originating	

by	>1	SD,	and	‘Up’;	RBA	is	higher	in	reimplantation	versus	originating	by	>1	SD.	The	limit	

of	accurate	detection	(~500	cells)	is	shown	in	shaded	grey	at	the	base	of	each	plot	and	in	

each	panel	a	PDX	expansion	map	relating	to	the	RBA	plots	shown,	is	depicted	as	an	insert.	

Importantly,	we	used	spike	in	controls	present	in	each	sequenced	sample	to	locally	optimise	

this	limit	of	detection	and	act	as	an	internal	control	for	barcode	abundance	experiments.	

The	limit	of	detection	therefore	slightly	varied	in	different	models.	A,	B	&	C)	Show	three	

parallel	passage	arms	from	our	PDX	expansion	map	(Figure	5.3.1).		Figures	Overleaf.	
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5.5	Phenotypic	subtyping	of	barcoded	clones					
	

In	Figure	5.4.1	we	observed	multiple	distinct	clones	that	were	initially	below	our	limit	of	

detection	(~500	cells)	reproducibly	appeared	in	multiple	replicates	of	later	passages.	In	

some	cases,	these	grew	to	>1.6	x105	cells	in	a	single	passage,	suggesting	that	we	were	not	

simply	 passaging	 slow	growing	 clones	or	 non-viable	 cells	 between	models,	 but	were	

witnessing	divergent	growth	kinetics	of	the	same	cells	over	time.	This	prompted	us	to	

further	 investigate	 the	presence	of	distinct	 clonal	phenotypes	present	 in	our	models,	

based	on	their	repopulation	kinetics.	Such	subtypes	have	been	described	previously	by	

multiple	accounts	in	the	literature.		

	

For	example,	Kreso	et	al.,	defined	five	lentiviral	clone	types	in	a	panel	of	CRC	PDX	models,	

with	 an	 experimental	 procedure	 relying	 on	 lentiviral	 insertion	 site	 mapping.	 Their	

experimental	design	had	an	estimated	limit	of	detection	(by	Southern	blot)	of	104	cells	

(196).	Type	I	(long-term	persistent	clones)	were	defined	as	those	detected	in	reliably	in	

each	passage.	Type	II	were	defined	by	their	presence	in	first	and	second	passages,	but	

absence	 in	 the	 last	passage,	demonstrating	clones	with	limited	CIC.	Type	III,	 transient	

clones,	were	defined	by	detection	in	the	first	passage,	but	not	again	in	any	later	passage,	

irrespective	of	how	many	additional	transplants	were	carried	out.	Type	IV,	quiescent	or	

resting	clones,	were	defined	by	their	 absence	 from	early	passages,	but	presence	 in	at	

least	one	later	passage.	These	clones	were	characterised	by	slow,	sustained	growth,	and	

resistance	to	chemotherapy.	Fluctuating,	or	transient	growth,	behaviour	was	attributed	

to	Type	V	clones,	which	were	detected	in	one	passage,	absent	from	another,	and	detected	

again	in	a	following	passage	(196).	Nguyen	et	al.,	likewise	defined	several	clusters	based	

on	the	kinetics	of	repopulation	in	their	breast	cancer	cell-line	xenografts	and	PDX	modes	

(197).	 In	 this	 case	 the	 authors	 relied	 on	 k-means	 clustering,	 a	 technique	 where	 n	

observations	are	partitioned	 into	k	 clusters	so	as	 to	minimize	within-cluster	variance	

(453).	For	each	experiment,	the	authors	thus	defined	several	distinct	kinetic	behaviours.	

For	MDA-MB-231	derived	xenografts,	three	clusters	were	defined:	i)	a	relatively	stable	
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clone	 size,	 ii)	 a	 relative	 clone	 size	 increasing	on	passage	and	 iii)	 a	 relative	 clone	 size	

decreasing	in	the	second	passage.	In	a	second	MDA-MB-231	experiment,	a	further	two	

clusters	were	 defined,	 both	 characterized	 by	 delayed	 clonal	 growth.	One	 cluster	was	

further	 characterised	 by	 being	 detectable	 in	 secondary	 passages	 but	 decreasing	 in	

tertiary	passages.	 SUM-149	derived	xenografts,	despite	being	 expanded	over	 a	 single	

passage	in	vivo,	yielded	six	and	seven	clusters,	though	these	were	variations	of	the	same	

neutral,	positive	and	negative	growth	trends.	PDX	models	analysed	by	the	group	shared	

only	 three	 of	 the	 patterns	 exhibited	 by	 the	 serially	 passaged	 cell	 lines;	 no	 change,	

decreasing	or	fluctuating;	but	not	clones	that	increased	in	size	or	showed	delayed	growth	

onset	(197).		

	

We	noted	that	 the	presence	of	clusters	beyond	the	 five	 identified	by	Kreso	et	al.,	was	

perhaps	not	additive	 to	our	biological	understanding	of	PDX	repopulation	kinetics	or	

clonal	fitness.	Furthermore,	discrepancies	between	these	and	those	described	by	Nguyen	

et	al.,	could	be	partially	attributed	to	experimental	design.	Barcoded	MDA-MB-231s	were	

expanded,	 at	 most,	 into	 two	 subsequent	 passages,	 SUM-149	 into	 one	 subsequent	

passage,	 and	patient	derived	models	 (T1,	T2	&	T3)	 into	 two,	one	or	zero	subsequent	

passages	(197).	This	relatively	short	follow-up	makes	detection	of	Type	IV	and	V	clones	

particularly	 challenging.	Moreover,	k-means	 clustering	 is	heuristic,	meaning	 it	 is	best	

suited	for	clustering	Gaussian	distributions,	and	may	not	be	as	accurate	when	grouping	

cellular	 growth	 patterns,	 which	 are	 typically	 exponential	 in	 nature	 (454).	 In	 our	

experiments,	we	opted	to	define	clones	based	on	the	Kreso	et	al.,	classification.	However,	

86	unique	barcodes	failed	to	meet	the	criteria	for	classification	in	any	of	the	five	clusters.	

This	 tended	 to	 be	 attributed	 to	 limitations	 in	 the	 experimental	 design:	 for	 example,	

unique	barcodes	falling	in	the	STG282CT-x2_4	expansion	arm,	with	loss	of	detection	in	

STG282CT-x2_4,	could	be	attributed	to	Type	III	had	a	fourth	passage	been	included	in	

this	arm.	Going	forward,	we	could	develop	a	bespoke	model-based	clustering	approach	

to	 remove	 any	 potential	 sources	 of	 bias	 and	 fully	 cluster	 the	 entirety	 of	 our	 unique	

barcoded	clones.		
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The	results	of	our	clonal	phenotype	analysis	are	shown	in	Figure	5.5.1.	Individual	unique	

barcodes	 seen	 in	any	passage	or	 replicate	of	 STG282CT	expansion	experiments	were	

classified	into	either	Type	I,	II,	III,	IV	or	V	based	on	repopulation	kinetics.	Figure	5.5.1	A	

shows	Type	I	 clones,	i.e.	those	detected	 in	each	passage	of	each	arm.	Contained	in	the	

colour	coded	boundary	box,	a	schematic	of	Type	I	inclusion	criteria	(top),	RBA	across	the	

three	independent	STG282CT	expansion	arms	(left)	and	the	RBA	of	each	barcode	shared	

between	expansion	arms,	expressed	as	the	median	across	repeat	transplantations	and	

parallel	expansion	arms	(right)	is	shown.		

	

In	total	there	were	824	unique	Type	I	clones	defined,	ranging	in	cell	content	from	628	to	

5.38	x106	cells	across	two	sequential	samplings	(passages).	Though	prevalence	of	Type	I	

clones	as	a	whole	was	relatively	stable	across	multiple	passages,	it	was	not	uncommon	

for	fold	changes	in	the	order	of	1-2	orders	of	magnitude	(in	either	direction)	when	we	

consider	 individual	 clones.	Figure	5.5.1	B	shows	Type	 II	 clones,	displayed	 in	a	similar	

fashion	to	Type	I	clones	in	Figure	5.5.1	A.	Type	II	clones	were	defined	as	those	detectable	

across	each	expansion	arm	in	x1,	x2	and	x3	model	passages,	but	were	not	detected	in	any	

passage	5	(x5)	arm	or	replicate.	In	total,	524	clones	matched	these	criteria	in	STG282CT-

x2_4	 and	 STG282CT-x2_8	 expansions,	 with	 392	 also	 present	 in	 the	 STG282CT-x_4	

expansion	arm.	As	this	arm	did	not	progress	to	passage	5,	we	could	not	be	sure	that	they	

would	also	show	Type	II	behaviour	in	this	arm.	Figure	5.5.1	C	shows	the	same	schematic	

for	identification	of	432	early	not-detected	Type	III	clones,	each	present	in	STG282CTx1	

and	STG282CTx2,	but	not	in	passage	x3	or	any	subsequent	passage.	The	majority	of	these	

Type	 III	 clones	 only	 showed	 a	 net	 loss	 (i.e.	median	RBA	<~4	 x10-6)	 from	passage	 x3	

onward,	whereas	a	great	deal	of	heterogeneity	across	passage	x2	replicates	was	seen,	

with	32%,	17%	&	48%	of	sequences	detected	in	STG282CTx1	lost	 in	STG282CT-x2_4,	

STG282CT-x2_1	&	 STG282CT-x2_8,	 respectively.	Figure	 5.5.1	D	 shows	Type	 IV	 clones,	

defined	by	an	RBA	below	the	limit	of	detection	until	at	least	STG282CT-x3,	at	which	point	

they	remained	detectable	in	each	subsequent	passage.	312	unique	Type	IV	clones	were	

detected	across	our	profiled	models.	Finally,	Figure	5.5.1	E	shows	Type	V	clones,	defined	
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by	fluctuating	repopulation	kinetics.	In	this	case,	barcodes	which	followed	the	pattern	or	

either	i)	detection,	loss,	detection,	loss	ii)	detection,	loss,	loss,	detection	or	iii)	loss,	detection,	

loss,	loss	in	any	sequence	of	four	or	more	passages,	were	defined	as	Type	V,	and	459	total	

barcodes	fit	these	criteria.			

	

Having	associated	each	cellular	clone	with	a	specific	pattern	of	repopulation	kinetics,	we	

next	sought	to	investigate	their	relative	contributions	to	the	cellular	population	in	each	

passage	of	our	barcoded	PDX	model.	Figure	5.5.2	shows	the	percentage	of	each	clonal	

phenotype	(Type	I,	II,	III,	IV	&	V;	defined	in	Figure	5.5.1)	by	total	cell	number.	Inserts	show	

the	total	number	of	unique	barcodes	seen	in	the	respective	sample,	while	arrows	denote	

the	path	of	 transplantation	and	boxes	separate	replicate	 implantations.	Figure	5.5.2	A	

presents	corresponding	data	for	the	STG282CT-x2_1	expansion	arm,	Figure	5.5.2	B	for	

STG282CT-x2_8	and	Figure	5.5.2	C	for	STG282CT-x2_4.	Not	surprisingly,	in	Figure	5.5.2	

A,	we	see	a	progressive	 loss	of	 first	Type	III,	 then	Type	II	 clones	 in	passage	x3	and	x4	

respectively.	 Loss	 of	Type	 III	 clones	 is	 accompanied	 by	 a	 reduction	 in	 the	 number	 of	

unique	barcodes	across	STG282CT-x3_1,	STG282CT-x3_2	&	xSTG282CT-x3_3,	from	608	

to	444,	385	&	383,	 respectively.	However,	 the	 loss	of	Type	 II	 clones	on	 the	 following	

transplantation	(i.e.	 in	STG282CT-x4_1	&	STG282CT-x4_2)	is	countered	by	substantial	

expansion	of	Type	IV,	slow	growing	or	quiescent,	clones	and	an	accompanying	increase	

in	overall	barcode	complexity	 in	 these	samples	(to	659	&	650).	Surprisingly,	 the	 fifth	

passage	 in	 this	 arm	 reverses	 this	 pattern	 again.	Type	 I	 clones	 are	 reduced	 in	 overall	

cellular	 representation,	 whereas	Type	 V	 transient	 clones	 increase	 in	 proportion,	 and	

Type	 IV	 clones	 remain	 relatively	 stable.	 Overall	 clonal	 count	 drops	 from	 659	 in	

STG282CT-x4_1	 to	380,	327	&	 305	 in	STG282CT-x5_1,	 STG282CT-x5_2	&	 STG282CT-

x5_3,	respectively.		

	

Thus,	 there	 is	 a	 reduction	 in	 total	 number	 of	 clones,	 representation	 of	Type	 I	 clones	

(typically	 stable)	and	an	 increase	 in	Type	V	 clones.	This	 trend	can	be	 rationalised	by	

analysing	the	estimated	cell	count	of	each	population:	STG282CT-x4_1	has	102	unique	
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barcodes	belonging	to	Type	I	clones,	58	Type	IV	clones	&	497	Type	V	clones.	On	passage,	

there	was	a	~2.5-fold	reduction	in	the	absolute	number	of	Type	V	barcodes	(to	225,	164	

&	139),	with	the	remaining	Type	V	clones	showing	a	near	~3-fold	increase	in	cell	content	

(from	 an	 average	 of	 4,500	 cells	 per	 barcode	 to	 13,000,	 15,550	 &	 15,200).	 This	 was	

accompanied	by	a	reduction	in	Type	I	complexity	(modestly,	from	102	to	91,	92	and	97	

barcodes)	and	average	size	of	Type	I	clones	(from	18,500	to	11,500,	8,150	&	7,900).	This	

shift	in	overall	population	dynamics	between	passage	x4	and	x5	resulted	in	the	changes	

shown	in	Figure	5.5.2	A.	Figure	5.5.2	B	shows	similar	data	but	presented	for	the	STG282x-

2_8	expansion	arm.	We	see	the	same	overall	pattern	as	in	Figure	5.5.2	A,	with	a	tendency	

toward	reduced	barcode	complexity	and	increased	dominance	of	Type	IV	and	V	clones	

on	 serial	 re-transplantation.	 This	 could	 simply	 be	 a	 feature	 of	 the	 clonal	 phenotype	

definitions;	with	Type	IV	&	V	obligated	to	occur	in	later	passages	and	Type	II	&	III	to	fall	

below	the	limit	of	detection	in	early	passages.		

	

In	 Figure	 5.4.1	 B,	 we	 found	 relatively	 discordant	 barcode	 dynamics	 between	 paired	

implantations	of	STG282CT-x3_b1	(asymmetric	growth	in	78%	growing,	41%	shrinking	

&	45%	neutral).	Similarly,	we	found	poor	concordance	in	STG282CT-x4_b2	(asymmetric	

growth	in	55%	growing,	68%	shrinking	&	74%	neutral).	In	this	secondary	analysis,	we	

now	see	 the	 five	 clonal	phenotypes	are	variably	dominant	 in	 repeat	 implantations	of	

STG282CTx3_b1	 (i.e.	 STG282CT-x4_b1	 &	 STG282CT-x4_b2).	 Indeed,	 the	 second	most	

dominant	 clonal	Type	 by	 cell	number,	 representing	~3	x106	cells,	 is	Type	 II	 (29%)	 in	

STG282CT-x4_b1	and	Type	IV	(34%)	in	STG282CT-x4_b2.	In	STG282CT-x4_b1	tumours,	

Type	IV	clones	make	up	just	2%	cells,	and	in	STG282CT-x4_b2	tumours,	Type	II	clones	

make	up	just	6%.	We	also	found	low	concordance	in	growth	patterns	between	replicate	

implants	 of	 STG282CT-x4_b2	 in	 Figure	 5.4.1	 B,	 and	 in	 this	 case,	 we	 can	 attribute	

differences	to	an	increase	in	Type	IV	clonal	prevalence,	and	a	reduction	in	the	presence	

of	Type	Vs	(Figure	5.5.2	B).	Lastly,	we	applied	this	analysis	to	progeny	of	STG282CT-x2_4.	

Figure	5.5.2	C	shows	a	similar	pattern	of	reduction	in	detection	of	Type	II	and	Type	III	

clones,	 concurrent	with	a	 reduction	 in	barcode	complexity.	The	distribution	of	 clonal	
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Types	was	remarkably	similar	across	repeat	implantations	of	STG282CT-x2_4,	down	to	

mirrored	percentages	of	Type	IV	clones	beginning	to	appear	in	passage	x3	tumours	(at	

3%,	2%	&	3%).		

	

Overall,	the	analyses	presented	in	this	section	have	confirmed	our	earlier	observation	

that	matched	transplants	resulted	in	relatively	similar	repopulation	kinetics	in	daughter	

tumours.	 By	 defining	 clonal	 populations	 based	 on	 the	 pattern	 by	 which	 they	 were	

observed	to	repopulate	a	tumour,	we	were	able	to	better	understand	instances	where	

matched	transplants	were	discordant.	For	example,	in	asymmetric	growth	in	STG282CT-

x3_b1	matched	transplants	(into	STG282CT-x4_b1	and	STG282CT-x4_b2;	Figure	5.4.1B	

&	Figure	5.5.2B)	was	due	to	the	appearance	of	a	group	of	clones	not	previously	seen	in	

any	 model	 (Type	 IVs).	 Moreover,	 asymmetric	 growth	 in	 further	 reimplantation	 of	

STG282CT-x4_b2	was	attributed	to	the	loss	of	Type	V	clones	in	only	one	model,	rather	

than	a	repetition	of	the	Type	IV	clone	selection	seen	in	the	previous	generation.	However,	

this	methodology	is	limited	by	experimental	design:	a	Type	IV	clone	could	be	classified	

as	 a	 Type	 V	 had	 the	 experiment	 consisted	 of	 a	 further	 passage	 (presuming	 it	 was	

undetected),	likewise,	a	Type	I	or	II	clone	could	in	fact	be	a	Type	IV.		
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Figure	5.5.1	–	STG282CT	clonal	phenotypes		

Shows	 individual	 unique	 barcodes	 seen	 in	 any	 passage	 or	 replicate	 of	 our	 STG282CT	

expansion	 experiments,	 classified	 into	 Type	 I,	 II,	 III,	 IV	 &	 V	 clonal	 behaviours.	 Putative	

clusters	had	to	fulfil	the	requirements	of	their	clonal	group	in	each	of	the	three	expansion	

arms,	 if	 present	 and	 if	 experimental	 conditions	allowed,	 in	 order	 to	 be	 designated	 as	 a	

member	of	that	clone.	A)	Shows	Type	I	clones,	i.e.	those	detected	in	each	passage	of	each	

arm.	Contained	 in	the	colour	coded	boundary	box,	Panel	A	shows	a	schematic	of	Type	 I	

inclusion	criteria	(top)	and	median	RBA	across	the	three	independent	STG282CT	expansion	

arms	(bottom).	B)	Shows	Type	II	clones,	displayed	in	a	similar	fashion	to	Type	I	clones	in	A.	

C)	Shows	the	schematic	for	identification	of	432	early	not-detected	Type	III	clones,	each	

present	 in	STG282CTx1	and	STG282CTx2	 in	passage	x1	or	x2,	but	not	seen	 in	x3	or	any	

subsequent	passage.	D)	Shows	Type	IV	clones	defined	by	barcodes	which	were	below	the	

limit	of	detection	until	at	least	STG282CT-x3,	at	which	point	they	remained	detectable	in	

each	 subsequent	 passage.	 312	 unique	 Type	 IV	 clones	were	 detected	 across	 our	 profiled	

models.	E)	Shows	Type	V	clones,	defined	by	fluctuating	repopulation	kinetics.	In	this	case,	

barcodes	which	followed	the	pattern	or	either	i)	detection,	loss,	detection,	loss	ii)	detection,	

loss,	loss,	detection	or	iii)	loss,	detection,	loss,	loss	in	any	sequence	of	four	or	more	passages,	

were	 defined	 as	 Type	 V.	 459	 barcodes	 were	 included	 in	 this	 classification,	 with	 the	

remaining	 86	 unique	 barcodes	 failing	 to	meet	 classification	 criteria	 for	 any	 of	 the	 five	

clusters.	Figure	Overleaf.	
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Figure	5.5.1	A,	B	&	C	–	STG282CT	clonal	phenotypes		
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Figure	5.5.1	D	&	E	–	STG282CT	clonal	phenotypes	
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Figure	5.5.2	–	Contribution	of	clonal	phenotypes	to	repopulation	kinetics		

Shows	the	percentage	of	each	clonal	phenotype	(Type	I,	 II,	 III,	 IV	&	V;	defined	 in	Figure	

5.5.1)	 by	 cell	 number.	 Inserts	 show	 the	 total	 number	 of	 unique	 barcodes	 seen	 in	 the	

respective	 sample,	while	arrows	denote	 the	path	of	 transplantation	and	boxes	 separate	

replicate	implantations.	A)	Presents	corresponding	data	for	the	STG282CT-x2_1	expansion	

arm,	B)	For	STG282CT-x2_8	and	C)	For	STG282CT-x2_4.	Figure	Overleaf.	
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5.6	Profiling	of	metastatic	sites	in	STG282CT				
	

STG282	was	derived	from	the	metastatic	deposit	of	a	TNBC.	TNBC	is	a	heterogeneous	

group	of	diseases,	characterised	and	defined	by	the	absence	of	ERα,	PR	and	HER2	surface	

expression.	Patients	with	TNBC	typically	have	a	relatively	worse	disease-free	survival	

than	those	with	other	breast	cancer	subtypes,	largely	owing	to	an	inherently	aggressive	

clinical	 behaviour	 and	 a	 lack	 of	 recognized	 molecular	 targets	 for	 therapy	 (455).	 On	

average,	TNBCs	carry	1.68	somatic	mutations	per	Mb	of	coding	regions	(~60	somatic	

mutations	in	each	tumour).	The	mutation	burden	is	not	uniform	across	TNBC,	and	some	

tumours	 have	 a	 high	 mutation	 burden	 (more	 than	 4.68	 somatic	 mutations	 per	 Mb)	

(38,336),	 and	 a	 frequent	 occurrence	 of	 multiple	 copy-number	 aberrations	 involving	

genes	that	lead	to	multiple	pathway	alterations	(7,38,73,78,198).	Our	group	has	helped	

delineate	 the	 diverse,	 variable	 genomic	 clonal	 composition	 of	 TNBC	 (456).	 By	 allelic	

frequency	 measurements	 of	 2,414	 somatic	 mutations	 in	 104	 TNBCs,	 a	 complete	

spectrum	of	molecular	and	clonal	compositions	was	characterised	at	diagnosis	(456).	

Aside	 from	 increased	 intratumour	 heterogeneity,	 and	 a	 lack	 of	 effective	 molecular	

targeted	therapies,	TNBC	has	been	linked	to	an	increased	propensity	for	metastasis	and	

the	process	of	EMT	(149,159).		

	

Metastases	 is	 the	ultimate	 cause	of	90%	of	 all	 cancer	deaths	 (147),	 though	questions	

remain	 around	 the	 origins	 and	 processes	 associated	 with	 metastatic	 spread.	 Distant	

metastases	has	been	reported	a	late	event	in	molecular	time,	though	we	reasoned	that	

through	lentiviral	lineage	tracing	in	our	PDX	models,	a	comprehensive	study	of	breast	

cancer	metastasis,	 together	with	 annotation	 of	metastatic-forming	 clonal	 populations	

could	 bring	 considerable	 advances	 to	 the	 field.	 Thus,	we	 sought	 to	 identify	 potential	

metastatic	deposits	across	our	STG282CT	expansion	arms.		

	

For	 each	 animal	 culled	we	 performed	 a	post-mortem	 procedure,	 detailed	 in	Methods,	

Section	2.1.5.	Briefly,	PDTCs	were	seeded	 in	the	 flank	of	NSG	mice,	 leading	to	tumour	
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formation	around	the	4th	and	5th	mammary	fat	pads.	Rapid	dissection	of	the	tumour	area	

allowed	 samples	 from	 abdominal	 and	 inguinal	 mammary	 glands,	 together	 with	

suspected	 tumour	 draining	 lymph	nodes	 (inguinal	 and/or	 lumbar)	 to	 be	 taken	 along	

with	 tumour	harvesting.	Lungs,	 liver	and	 spleen	were	 inspected	 (visually	or	with	 the	

Xenogen	 IVIS	 small	 animal	 imaging	 system)	 for	 potential	metastatic	 sites.	 Harvested	

tissues	 could	 then	be	dissected	and	 interrogated	by	 IHC/histology	 if	 required.	Figure	

5.6.1	 A	 shows	 a	 representative	 image	 of	 suspected	 micro-metastatic	 sites	 identified	

around	 the	 base	 of	murine	 right	 lower	 lung	 lobule	 (black	 arrows),	 as	 imaged	 by	 the	

Xenogen	 system.	 These	 regions	 were	 dissected	 and	 stained	 with	 H&E	 for	 visual	

inspection.	 In	 each	 case	where	 potential	micro-metastatic	 sites	were	 identified;	H&E	

showed	 no	 obvious	 tumour	 structures.	 In	 total,	 we	 isolated	 and	 inspected	 >100	

mammary	 glands	 and	 tumour	 draining	 lymph	 nodes	 before	 finding	 evidence	 of	

metastasis.		

	

In	one	case	(STG282CT-x3_1;	Figure	5.6.1B)	we	identified	a	small	cell	mass	(arrow	2)	at	

the	 base	 of	 the	 4th	 (abdominal;	 arrow	 3)	 mammary	 gland	 near	 the	 site	 of	 tumour	

fragment	implantation	(arrow	1).	Though	this	mass	was	not	physically	attached	to	the	

tumour	bulk,	it	could	have	resulted	from	cells	becoming	dislodged	during	implantation	

and	 may	 not	 in	 fact	 be	 a	 metastasis.	 Nevertheless,	 the	 fragment	 was	 isolated	 and	

dissociated	into	six	equally	sized	fragments,	one	for	NGS	and	barcode	analysis,	five	for	

reimplantation	into	NSG	mice.	Figure	5.6.2	shows	a	schematic	for	expansion	of	this	local	

metastasis	(designated	STG282CT-x3m)	together	with	the	results	of	ClonTracer	barcode	

analysis.	Barcodes	seen	in	previous	samples	(98%	of	those	identified)	were	assigned	a	

clonal	 Type	 (I-V)	 based	 on	 repopulation	 dynamics	 in	 Figure	 5.5.1.	 Interestingly,	

substantial	 differences	 existed	 between	 the	 proportion	 of	 clonal	 phenotypes	 in	

STG282CT-x3_1	and	its	matched	metastatic	sample,	STG282CT-x3m.	Figure	5.6.2	shows	

STG282CT-x3m	contains	 fewer	total	barcodes	than	STG282CT-x3_1	(345	versus	444),	

and	that	proportions	of	each	clonal	phenotype	are	markedly	different.	STG282CT-x3_1	

is	 primarily	 comprised	 of	 Type	 II	 (33%)	 and	 Type	 V	 (43%)	 clones,	 with	 a	 sizable	
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proportion	of	stable	Type	I	clones	(22%),	quiescent	Type	IV	clones	make	up	only	3%	of	

the	total	cell	number.	Whereas,	STG282CT-x3m	is	dominated	by	Type	IV	clones	(77%).	

When	 STG282CT-x3m	 was	 re-implanted	 into	 STG282CT-x3m_x1	 mice,	 we	 see	 a	

reduction	in	the	proportion	of	Type	IV	&	V	clones,	and	an	increase	in	Type	I	clones.		

	

Of	note,	two	out	of	five	STG282CT-x3m	progeny	formed	similar	suspected	metastasis	in	

local	mammary	glands	(as	in	Figure	5.6.1).	Prior	to	this	point,	STG282CT-x3m	was	the	

first	 recorded	metastatic	 lesion	 found	 in	 our	 analysis	 of	 >100	 glands	 and	 >50	 total	

instances	 of	 STG282CT	 injection	 into	 NSG	 mice.	 Hence,	 we	 reasoned	 that	 serial	

implantation	of	STG282CT-x3m	was	enriching	for	a	metastatic	phenotype.	Interestingly,	

2nd	 generation	 metastatic	 nodes	 (designated	 STG282CT-x3m_x1_1m	 &	 STG282CT-

x3m_x1_2m)	comprised	a	similar	proportion	of	Type	IV	clones	to	STG282CT-x3m	(79%	

&	85%	respectively).		

	

To	 quantify	 any	 specific	 enrichment	 within	 phenotypic	 clonal	 Types	 I-V,	 we	 next	

compared	 the	 relative	 abundance	 of	 152	 shared	 barcodes	 in	 paired	 metastatic	 and	

primary	STG282CT	models.	Figure	5.6.3	A	compares	barcode	abundance	 in	secondary	

metastases	to	their	paired	non-metastasis	primary	tumour	(STG282CTx3m_x1_1m	in	the	

left-hand	panel;	STG282CTx3m_x1_2m	in	the	left-hand	panel),	poor	correlations	are	seen	

in	each	case	(r2=0.0295,	p=0.0876	&	r2=0.0075,	p=0.39).	Figure	5.6.3	B	directly	compares	

abundance	between	secondary	metastases,	where	a	 significant	 correlation	 is	 seen	 (r2	

=0.402,	 p	 <0.0001).	 Figure	 5.6.3	 C	 compares	 abundance	 in	 STG282CTx3m	 versus	

secondary	 metastatic	 sites	 (STG282CTx3m_x1_1m	 in	 the	 left-hand	 panel;	

STG282CTx3m_x1_2m	in	the	right-hand	panel),	significant	correlations	are	seen	in	each	

case	 (r2=0.473,	p<0.0001	&	 r2=0.331,	p<0.0001).	Together,	 these	results	 indicate	 that	

Type	 IV	 clones	 are	 enriched	 in	 primary	 and	 secondary	 metastatic	 samples.	 Overall,	

secondary	metastatic	sites	are	more	similar	 to	STG282CT-x3m	than	their	paired	non-

metastatic	replicate	(STG282CT-x1_1	&	STG282CT-x1_2).		
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We	sought	to	better	understand	the	number	of	specific	clones	shared	between	matched	

metastasis	and	primary	STG282CT	samples,	Figure	5.6.4	shows	the	degree	of	overlap	in	

detected	barcoded	clones,	stratified	based	on	clonal	phenotype	(Type	I,	IV	&	V).	In	Figure	

5.6.4	A	we	can	clearly	see	the	majority	of	overlap	between	samples	in	Type	I	clones	is	

between	non-metastatic	sights.	Each	shared	59	barcodes	with	the	other,	and	a	total	of	

only	20	with	the	metastatic	samples.	Type	IV	clones	(Figure	5.6.4	B)	show	a	great	deal	of	

overlap	between	all	samples	(134	clones)	and	few	specific	to	metastatic	(42	specifically	

shared,	49	unique	to	metastatic	in	total)	or	primary	(14	specifically	shared,	69	unique	to	

primary	in	total)	samples.	Type	V	are	slightly	more	evenly	distributed,	though	still	show	

49	 clones	 shared	 between	 primary	 sights	 and	 23	 with	 metastatic	 samples.	 Hence,	

metastatic	deposits	show	consistent	enrichment	in	the	cellular	content	of	Type	IV	clones.	

These	clones	may	remain	dormant	in	primary	samples	before	seeding	and	expanding	in	

metastatic	sites.		

	

Finally,	we	 sought	 to	 rationalise	 the	 enrichment	 of	 clonal	populations	of	 a	 particular	

phenotype	to	metastatic	samples.	Aside	from	estimating	the	absolute	size	of	a	clone,	in	

terms	of	cell	number,	the	relationship	between	RBA	and	spiked	in	cell	number	derived	

in	 Figure	 5.3.3	 allowed	 us	 to	 estimate	 the	 “clone	 initiation	 capacity”	 (CIC),	 i.e.	 the	

proportion	of	input	cells	of	a	given	clone,	able	to	establish	a	detectable	clone	of	the	same	

background	upon	passage.	 CIC	 as	 a	 fraction	of	 input	 cell	 number	was	 calculated	 and	

averaged	across	passages	and	expansion	arms,	results	are	shown	in	Figure	5.6.5.	Each	

clonal	phenotype	was	highly	variable	in	CIC,	this	was	as	expected,	as	a	great	deal	of	clonal	

loss	and/or	fluctuation	was	seen	during	the	course	of	these	experiments.	Perhaps	also	

unsurprisingly,	Type	IV	and	V	 clones	had	significantly	higher	CIC	than	Type	I,	 II	or	 III.	

Both	Type	II	and	III	clones	are	defined	based	on	their	downward	trend	and	eventual	loss	

in	later	passages,	and	they	have	a	lower	calculated	ability	to	establish	clones	on	passage.	

Indeed,	the	ability	to	do	so	defines	both	Type	IV	and	V	clones.				
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Figure	5.6.1	–	Identification	of	metastasis	in	STG282CT		

A)	Shows	a	representative	image	of	suspected	micro-metastatic	sites	identified	around	the	

base	of	murine	right	 lower	 lung	 lobule	(black	arrows),	as	 imaged	by	the	Xenogen	small	

animal	 imaging	 system.	 These	 regions	 were	 dissected	 and	 stained	with	 H&E	 for	 visual	

inspection.	 In	 each	 case	 where	 potential	 micro-metastatic	 sites	 were	 identified;	 H&E	

showed	no	obvious	tumour	structures.	In	total,	we	isolated	and	inspected	>100	mammary	

glands	and	tumour	draining	lymph	nodes	without	finding	definite	metastatic	sites.	B)	We	

identified	 a	 <1	 cm3	 cell	 mass	 (arrow	 2)	 at	 the	 base	 of	 the	 4th	 (abdominal;	 arrow	 3)	

mammary	gland	near	the	site	of	 tumour	 fragment	 implantation	(arrow	1).	Though	this	

mass	was	 not	 physically	 attached	 to	 the	 tumour	 bulk,	 it	 could	 have	 resulted	 from	 cells	

becoming	 dislodged	 during	 implantation	 and	 may	 not	 in	 fact	 be	 a	 local	 metastasis.	

Nevertheless,	the	fragment	was	isolated	and	dissociated	into	six	equally	sized	fragments,	

one	for	NGS	and	barcode	analysis,	five	for	reimplantation	into	NSG	mice.	Figure	Overleaf.	
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Figure	5.6.1	–	Identification	of	metastasis	in	STG282CT		
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Figure	5.6.2	–	Clonal	phenotypes	in	STG282CT	metastatic	deposits		

Shows	 a	 schematic	 for	 expansion	 of	 this	micro-metastasis	 (designated	 STG282CT-x3m)	

together	with	the	results	of	ClonTracer	barcode	analysis.	Barcodes	seen	in	previous	samples	

(~100%	 of	 those	 isolated)	 were	 assigned	 a	 clonal	 Type	 (I-V)	 based	 on	 repopulation	

dynamics	of	the	barcode	in	Figure	5.5.1.	Two	out	of	five	STG282CT-x3m	progeny	formed	

similar	micro-metastasis	in	local	mammary	glands.	Figure	Overleaf.	
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Figure	5.6.3	–	Overlapping	barcode	abundance	in	metastases		

Comparison	of	 the	relative	abundance	of	152	shared	barcodes	 in	paired	metastatic	and	

primary	 STG282CT	 models.	 A)	 Compares	 secondary	 metastases	 to	 their	 paired	 non-

metastasis	primary	tumour.	B)	Directly	compares	RBA	in	secondary	metastases.	C)	Shows	

relative	 barcode	 abundance	 in	 STG282CTx3m	 versus	 secondary	 metastasis	 sites	

(STG282CTx3m_x1_1m	 in	 the	 left-hand	 panel;	 STG282CTx3m_x1_2m	 in	 the	 left-hand	

panel).	 Points	 are	 coloured	 by	 clonal	 phenotype,	 in	 the	 same	 colour	 scheme	 as	 before	

(purple	is	Type	I,	red	is	Type	IV,	orange	is	Type	V).	Figure	Overleaf.	
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Figure	5.6.3	–	Overlapping	barcode	abundance	in	metastases			
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Figure	5.6.4	–	Clonal	phenotype	representation	in	metastases		

Shows	 the	 degree	 of	 overlap	 in	 detected	 barcoded	 clones,	 stratified	 based	 on	 clonal	

phenotype	(Type	I,	IV	&	V).	A)	shows	Type	I	clones,	B)	Type	IV	clones	and	C)	Type	V	clones.	

Figure	Overleaf.	



Clonal	Origins	of	Drug	Resistance																																																Chapter	5	–	Barcoded	PDX	

	 	

	
-319-	

Figure	5.6.4	–	Clonal	phenotype	representation	in	metastases				
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Figure	5.6.5	–	Clone	Initiating	Capacity	(CIC)	of	barcoded	cells			

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.6.5	–	Clone	Initiating	Capacity	(CIC)	of	barcoded	cells	

We	used	the	relationship	between	RBA	and	spiked	in	cell	number	derived	in	Figure	5.3.3	

allowed	us	to	estimate	CIC,	i.e.	the	proportion	of	input	cells	of	a	given	clone,	able	to	establish	

a	detectable	clone	of	the	same	background	in	upon	passage.	CIC	as	a	fraction	of	input	cell	

number	was	calculated	and	averaged	across	passages	and	expansion	arms,	with	statistical	

significance	based	on	a	one-way	ANOVA	with	Tukey’s	multiple	comparison	correction	given	

in	the	table	below	the	figure.	(*p<0.05;	**p<0.01;	***p<0.001;	****p<0.0001).			
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5.7	General	Discussion		
	

We	 have	 recently	 described	 a	 biobank	 of	 breast	 cancer	 PDX	models,	 with	 extensive	

molecular,	 genomic	 and	 clinical	 annotation	 (198).	 Through	 characterisation	 of	 the	

specific	repopulation	dynamics	of	genomic	clones	in	these	models,	we	add	to	a	growing	

body	 of	 evidence	 showing	 PDX	 models	 largely	 reflect	 the	 complex	 molecular	 and	

architectural	 features	 of	 their	 originating	 patient	 tumour	 samples	 (23,307,445,446).	

Moreover,	we	have	developed	an	 integrated	platform	allowing	the	use	of	our	PDXs	 in	

high	throughput	combinatorial	drug	screening,	and	offered	extensive	commentary	on	

the	use	of	these	models	to	i)	maintain	and	study	intratumour	heterogeneity	(23)	and	ii)	

aid	in	the	preclinical	drug	discovery	process	(289).	The	experiments	described	in	this	

chapter	provide	a	framework	for	the	interrogation	of	cellular	clonal	populations	in	our	

PDX	models	through	high	resolution	lentiviral	lineage	tracing.	The	ability	to	deconvolute	

cellular	 and	 genomic	 clonal	 dynamics	 in	 these	 highly	 complex	 models	 of	 human	

malignancy	offers	the	potential	to	redefine	our	understanding	of	tumour	heterogeneity	

(289).	Reproducible	patterns	of	clonal	dynamics	across	paired	transplantations,	shown	

in	this	Chapter,	suggest	clonal	kinetics	may	represent	non-stochastic	selection	events.	In	

Chapter	3,	lentiviral	lineage	tracing	technology	was	used	to	trace	the	origins	of	tamoxifen	

resistance	 in	 the	MCF7	 cell	 line.	 It	 is	 hoped	 that	 following	 these	 optimisation	 steps,	

lentiviral	 lineage	 tracing	 could	 be	 applied	 in	 treatment	 resistance	 studies	 across	our	

biobank	of	PDX	models.		

	

In	this	Chapter,		we	established	a	methodology	for	lentiviral	transduction	of	PDX	models.	

In	particular,	we	modified	existing	protocols	to	optimise	for	hyper	concentration	of	viral	

supernatant	 using	 extensive	 ultracentrifugation	 with	 a	 sucrose	 gradient.	 Viral	 titres	

showed	our	supernatant	was	indeed	highly	concentrated	in	active	virions	(see:	Methods,	

Section	 2.3).	 Optimisation	 was	 primarily	 carried	 out	 with	 a	 biologically	 inert	 HIV-

ZsGreen1	 virus	 to	 avoid	 repeat	 freeze-thaw	 cycles	 or	 complete	 use	 of	 our	 validated	

ClonTracer	 lentiviral	 barcode	 library.	 PDX	 models	 were	 relatively	 resistant	 to	
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puromycin,	and	so	we	opted	for	an	RFP	based	titration	for	ClonTracer	virions	and	GFP	

based	 for	 HIV-ZsGreen1	 (Figure	 5.2.1).	 Puromycin	 is	 an	 amino	 nucleoside	 antibiotic	

produced	 by	 the	 bacterium	 Streptomyces	 alboniger.	 It	 inhibits	 protein	 synthesis	 by	

disrupting	peptide	transfer	on	ribosomes	causing	premature	chain	termination	during	

translation.	It	is	a	potent	translational	inhibitor	in	both	prokaryotic	and	eukaryotic	cells.	

Resistance	to	puromycin	is	conferred	by	the	puromycin	N-acetyl-transferase	gene	(pac)	

from	Streptomyces.	Puromycin	has	a	fast	mode	of	action,	causing	rapid	cell	death	at	low	

antibiotic	 concentrations.	 Adherent	 mammalian	 cells	 are	 typically	 sensitive	 to	

concentrations	of	2	to	5µg/ml,	while	cells	in	suspension	are	sensitive	to	concentrations	

as	 low	as	0.5	to	2µg/ml	(361,457–459).	Hence,	resistance	to	puromycin	at	5µg/ml	 in	

STG282	was	higher	than	expected	from	reports	in	literature	and	we	sought	to	avoid	any	

potentially	 off	 target	 effects	 of	 using	 puromycin	 at	 high	 doses.	 Both	 HIV-ZsGreen1	

(Figure	 5.2.2)	 and	 ClonTracer	 (Figure	 5.2.3)	 transduced	 STG282	 cells	were	 relatively	

slow	growing	when	injected	into	the	flanks	of	NSG	mice.	Certain	primary	human	cells,	

particularly	those	that	are	quiescent	in	nature,	are	reproducibly	challenging	to	transduce	

with	lentiviral	constructs	(449,450).	Clearly,	quiescent	(e.g.	Type	IV	clones	(196))	could	

hold	 particular	 importance	 in	 our	 later	 functional	 studies	 (451),	 and	 a	 molecular	

barcoding	technique	which	selected	for	non-quiescent	cells	should	be	avoided.	However,	

each	second	passage	transduced	tumour	(i.e.	STG282-x3_ZsGreen1x1	&	STG282CTx1)	

grew	 at	 a	 rate	 not	 dissimilar	 to	wildtype	 tumours.	We	 reasoned	 delayed	 growth	 on	

implantation	could,	 thus,	be	at	 least	partially	attributed	to	the	process	of	 flow	sorting	

rather	than	selective	infection	of	a	slow	growing	sub-population	of	cells.	

	

Delayed	 onset	 of	 growth,	 together	 with	 difficulties	 in	 achieving	 a	 high	 infection	

efficiency,	 led	 us	 to	 question	whether	we	were	 selecting	 for	 a	 subpopulation	of	 cells	

within	our	PDX	models.	Clearly,	as	we	hoped	to	study	the	causes	and	consequences	of	

tumour	heterogeneity,	any	method	which	selected	for	a	rare	subpopulation	should	be	

avoided.	 At	 least	 partially	 preservation	 of	 heterogeneity	 was	 confirmed	 by	 profiling	

infected	and	parental	PDX	models	by	sWGS	(Figure	5.2.5)	for	copy	number	and	IHC	for	
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protein	expression	(Figure	5.2.4).	Further	characterisation	could	have	been	performed	

by	 SNV	 profiling	 and/or	 PyClone	 reconstruction	 of	 clonal	 population.	 This	 work	 is	

ongoing.		

	

We	initially	planned	on	increasing	overall	barcode	representation	through	a	system	of	

implantation	 in	 multiple	 NSGs,	 tumour	 harvesting	 and	 pooling,	 followed	 by	 re-

transplantation.	In	this	way,	we	hoped	to	define	two	experimental	arms,	each	containing	

PDX	models	with	the	same	number	and	type	of	barcodes.	A	drug	resistance	screen	could	

then	be	designed	in	a	similar	fashion	to	that	described	with	MCF7s,	described	in	Chapter	

3.	However,	it	quickly	became	apparent	that	significant	clonal	selection	was	occurring	

on	PDTC	implantation	and	this	was	precluding	the	development	of	a	pool	of	barcoded	

cells	with	equal	distributions.		

	

Clonal	selection	and	a	progressive	loss	of	clonal	diversity	in	breast	cancer	PDX	models	

has	also	been	described	in	a	study	by	Nguyen	et	al.,	(197)	using	a	similar	approach	as	

described	in	this	Chapter,	the	authors	found	that	the	total	number	of	detectable	clones	

decreased	from	as	many	as	185	to	just	12	in	three	passages.	It	was	reasoned	that	this	

was	due	to	different	clone	initiation	frequencies	of	transplanted	cells,	which	was	found	

to	vary	from	~1/10	to	~1/10,000	(197).	In	our	models,	we	found	a	decrease	in	overall	

clonal	diversity,	measure	by	the	SDI,	from	an	average	of	~300	to	~100-150	(Figure	5.3.4).	

Overall	clone	numbers	dropped	from	~1000	in	passage	x1	to	~350	in	passage	x5	models.	

It	 is	 important	 to	 note	 that	 this	 reduction	 in	 clonal	 diversity	 does	 not	 necessarily	

translate	to	a	reduction	in	diversity	of	clonal	phenotypes.	The	probability	of	any	cellular	

clone	 contributing	 to	 any	 transplant	 is	 reflected	 in	 its	 relative	 distribution	 in	 the	

previous	donor	tumour;	abundant	clones	have	a	higher	probability	of	persisting	than	less	

abundant	clones.	Through	reconstruction	of	genomic	clonal	structures	(199),	we	have	

previously	 shown	 that	 the	 majority	 of	 outright	 clonal	 selection	 occurs	 on	 initial	

implantation,	 and	 that	 only	 ~20%	 of	 clonal	 populations	 show	 significant	 changes	 in	

cellular	prevalence	across	several	years	of	in	vivo	culture	(198).	It	would	be	interesting	
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to	further	characterise	the	heterogeneity	of	cellular	populations	in	our	models	through	

techniques	 such	 as	 single-cell	 RNAseq.	 Indeed,	 malignant	 cells	 can	 occupy	 diverse	

physiological	 states	 resulting	 from	 stress	 (hypoxia,	 DNA	 damage,	 starvation),	

quiescence,	 or	 cell	 cycle	 stage.	 Thus,	 heterogeneity	 may	 even	 exist	 across	 a	 single	

barcoded	clone;	advances	in	single-cell	RNAseq	may	enable	us	to	identify	and	describe	

complex	phenotypic	populations	even	between	cells	of	the	same	barcode	and	genomic	

background	(460).		

	

We	reasoned	that	by	analysing	barcode	presence	at	different	passages	of	our	STG282CT	

model,	 we	 could	 study	 clonal	 selection	 and	 competition	 over	 time.	 Furthermore,	 by	

analysing	their	relative	abundance	we	could	derive	a	model	of	clonal	fitness.	Figure	5.3.1	

shows	 a	 schematic	 of	 the	 expansion	 of	 the	 STG282CT	model.	Model	 numbers	 in	 red	

represent	 those	 where	 NGS	 and	 barcode	 analysis	 was	 performed,	 and	 red	 triangles	

indicate	models	 in	which	micro	 or	 local	metastases	where	 found.	 In	 Figure	 5.4.1	 we	

follow	 the	 fate	 of	 individual	 barcodes	 over	 several	 passages,	 noting	 patterns	 of	

symmetric	and	asymmetric	growth.	In	Figure	5.5.1	we	group	barcode	clones	into	clonal	

phenotypes	defined	by	Kreso	et	al.,	(196)	and	in	Figure	5.5.2	we	examine	the	proportion	

of	each	clonal	phenotype	in	each	passage	of	our	barcoded	PDX	models.		

	

Conceptually,	 variation	 in	 clonal	 behaviours	 could	 be	 stochastic	 or	 they	 could	 reflect	

specific	classes	of	breast	cancer	PDX	cells	 that	 function	 in	a	predictable	deterministic	

fashion.	 If	 the	 process	 is	 stochastic	 then	 the	 probability	 of	 any	 barcoded	 clone	

contributing	 to	 any	 transplant	 would	 be	 reflected	 in	 its	 relative	 distribution	 in	 the	

previous	donor	tumour;	abundant	clones	would	have	a	higher	probability	of	persisting	

than	less	abundant	clones.	By	contrast,	the	emergence	of	dominant	barcoded	clone	from	

minor	 or	 undetected	 barcodes	 would	 be	 a	 low	 probability	 event,	 especially	 if	 this	

occurred	 simultaneously	within	multiple	 paired	 implantation	 events.	 Examination	 of	

clonal	output	as	measured	in	parallel	recipients	at	each	passage,	either	by	individual	RBA	

or	by	proportion	of	clonal	phenotype	(Type	I,	II,	III,	IV,	V),	did	not	support	the	stochastic	
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model	in	our	samples.	Indeed,	in	the	majority	of	paired	implantations,	we	see	symmetric	

growth	patterns	(Figure	5.4.1)	coupled	with	similar	proportions	of	clonal	phenotypes	

(Figure	 5.5.2).	 The	 expansion	 arm	 following	 STG282CT-x2_1	 showed	 the	 most	

asymmetric	repopulation	dynamics.	For	example,	in	asymmetric	growth	in	STG282CT-

x3_b1	matched	transplants	(into	STG282CT-x4_b1	and	STG282CT-x4_b2;	Figure	5.4.1	B	

&	 Figure	 5.5.2	 B)	 was	 shown	 to	 be	 due	 to	 the	 appearance	 of	 a	 group	 of	 clones	 not	

previously	 seen	 in	 any	 model	 (Type	 IVs).	 Moreover,	 asymmetric	 growth	 in	 further	

reimplantation	of	STG282CT-x4_b2	was	attributed	to	the	loss	of	Type	V	clones	in	only	

one	model,	rather	than	a	repetition	of	the	Type	IV	clone	selection	seen	in	the	previous	

generation.		

	

We	 noted	 that	 the	 framework	 by	 which	 clonal	 phenotypes	 are	 defined	 is	 entirely	

dependent	on	experimental	design.	For	example,	a	Type	IV	clone	could	be	classified	as	a	

Type	V	had	the	experiment	consisted	of	a	further	passage	(presuming	it	was	undetected),	

likewise,	 a	Type	 I	or	 II	 clone	 could	 in	 fact	be	a	Type	 IV.	Nguyen	et	al.,	 defined	 several	

clusters	based	on	the	kinetics	of	repopulation	in	their	breast	cancer	cell-line	xenografts	

and	PDX	modes	(197).	In	this	case	the	authors	relied	on	k-means	clustering,	a	technique	

where	n	observations	are	partitioned	 into	k	 clusters	 so	as	 to	minimize	within-cluster	

variance	(453).	For	each	experiment,	 the	authors	thus	defined	several	distinct	kinetic	

behaviours,	and	in	many	cases	these	went	beyond	the	five	clusters	proposed	by	Kreso	et	

al.,	(196).	For	example,	in	MDA-MB-231	derived	xenografts	three	clusters	were	defined:	

i)	a	relatively	stable	clone	size,	ii)	a	relative	clone	size	increasing	on	passage	and	iii)	a	

relative	 clone	 size	 decreasing	 in	 the	 second	 passage.	 In	 a	 second	 MDA-MB-231	

experiment,	a	further	two	clusters	were	defined,	both	characterized	by	delayed	clonal	

growth.	One	cluster	was	further	characterised	by	being	detectable	in	secondary	tumours	

but	decreasing	in	tertiary	tumours.	SUM-149	derived	xenografts,	despite	being	expanded	

over	a	single	passage	in	vivo,	yielded	six	and	seven	clusters,	though	these	were	variations	

of	the	same	neutral,	positive	and	negative	growth	trends.	PDX	models	analysed	by	the	

group	shared	only	three	of	the	patterns	exhibited	by	the	serially	passaged	cell	lines;	no	
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change,	 decreasing	 or	 fluctuating;	 but	 not	 clones	 that	 increased	 in	 size	 or	 showed	

delayed	 growth	 onset	 (197).	 Ongoing	 work	 will	 aim	 to	 classify	 clonal	 repopulation	

dynamics	in	an	unsupervised	fashion.	This	will	likely	take	the	form	of	a	bespoke	model-

based	classifier:	k-means	clustering	is	heuristic,	meaning	it	is	best	suited	for	clustering	

Gaussian	 distributions,	 and	 may	 not	 be	 as	 accurate	 when	 grouping	 cellular	 growth	

patterns,	which	are	typically	exponential	in	nature	(454).	

	

Despite	the	noted	limitations	of	our	five	clonal	behaviours	clusters,	they	did	allow	us	to	

generate	 novel	 insights	 in	 three	 cases	 where	 suspected	 local	metastases	 were	 seen.	

Specifically,	Figure	5.6.2	shows	enrichment	of	specific	Type	IV	clones	in	STG282CT-x3m.	

When	this	metastasis	was	re-implanted	into	four	second	generation	models,	we	see	an	

overall	reduction	in	the	proportion	of	Type	IV	clones,	in	line	with	the	spread	of	clonal	

phenotypes	 typically	observed	 in	models	of	 this	passage.	Of	not,	 two	of	 these	 second	

generation	 STG282CT-x3m	 models	 (STG282CT-x3m_1	 &	 STG282CT-x3m_2)	 also	

showed	local	metastasis,	and	these	metastases	were	again	enriched	for	Type	IV	clones.	

Taking	 this	 analysis	 further,	 we	 find	 that	 both	 the	 secondary	 metastasis	 and	 their	

corresponding	primary	tumours	share	the	majority	of	Type	IV	clones	(Figure	5.6.4).	Thus,	

the	same	Type	IV	clones	are	present	in	both	primary	and	metastasis	sites	but	lay	dormant	

in	the	primary	and	dominate	the	metastasis.	Moreover,	across	all	passages	we	find	Type	

IV	clones,	along	with	Type	V,	have	significantly	enhanced	CIC	relative	to	Type	I,	II	&	III.		

	

Metastatic	disease	remains	largely	incurable	and	the	main	cause	of	cancer-related	death	

across	organ	sites.	Metastasis	is	thought	to	be	the	end	result	of	a	multistage	process	that	

includes	 local	 invasion	 by	 the	 primary	 tumour	 cells,	 intravasation	 into	 the	 blood	 or	

lymphatic	system,	survival	in	circulation	(hematogenous	and/or	lymphatic),	arrest	at	a	

distant	organ,	extravasation,	survival	in	a	new	environment,	and	metastatic	colonization.	

Each	of	these	steps	relies	on	specific	phenotypic	features	of	the	tumour	cell,	as	well	as	

interactions	with	the	host	microenvironment	and	the	immune	system	(151,152).	There	

are	two	general	models	of	metastatic	dissemination:	the	linear	progression	model	and	
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the	parallel	progression	model	(150).	Both	models	assume	that	the	primary	tumour	and	

its	metastases	are	clonally	related,	in	that	they	derive	from	a	common	ancestral	cell.	In	

the	linear	progression	model,	metastases	emerge	from	late	occurring	advanced	clonal	

subpopulations	(153).	The	parallel	model	suggests	that	a	metastasis	is	seeded	early	in	

molecular	 time	 from	 the	 primary	 site	 and	 progresses	 through	 the	 independent	

acquisition	 of	 mutations	 which	 may	 be	 different	 to	 the	 primary	 (124).	 A	 third	

mechanism,	 the	 concept	 of	metastasis-to-metastasis	 seeding,	 the	 cascade	 hypothesis,	

was	 proposed	 in	 1975,	 but	 until	 recently	 has	 remained	 somewhat	 under	 studied	

(154,155).	 This	 describes	 a	 process	 by	 which	 polyclonal	 seeding	 may	 result	 from	 a	

combination	of	 clones	 from	both	 the	primary	and	other	metastatic	 sites,	 as	has	been	

described	in	cases	of	lethal	metastatic	prostate	cancer	(461,462).	

	

In	 our	 models,	 we	 can	 consider	 similarity	 to	 the	 originating	 sample	 as	 indicative	 of	

parallel	progression	(as	both	metastasis	and	primary	are	seeded	by	the	same	proportion	

of	cells)	and	similarity	 to	 the	matched	primary	as	 indicative	of	 linear	progression	(as	

metastasis	is	seeded	from	a	late	stage	primary	with	the	corresponding	late	stage	primary	

composition	of	barcodes).	In	Figure	5.6.3	we	see	each	metastatic	site	has	a	higher	degree	

of	 concordance	with	 the	originating	sample	 than	 the	matched	primary.	This	 could	be	

indicative	of	parallel	seeding	of	metastasis;	however,	we	see	an	enrichment	of	Type	IV	

clones	 in	 all	 three	 cases	 of	 metastasis,	 but	 not	 primary	 PDX	 tumour	 derived	 from	

metastasis,	 suggesting	 at	 least	 some	 functional	 clonal	 selection	 is	 occurring.	 These	

conclusions,	together	with	other	indications	of	clonal	selection	and	mirrored	evolution	

in	our	models,	would	be	greatly	aided	by	genomic	analysis.	Further	implementations	of	

the	barcoded	PDX	program	are	likely	to	make	use	of	paired	genomic	and	cellular	clonal	

analysis,	as	we	have	carried	out	and	presented	in	Chapter	3.		

	

In	 summary,	 this	 chapter	 presented	 optimisation	 and	 establishment	 of	 a	 TNBC	 PDX	

model	with	a	methodology	 for	 clonal	 tracking	at	 a	 resolution	of	>500	cells.	Although	

clonal	 diversity	was	 reduced	 on	 serial	 transplantation,	 we	 have	 also	 shown	minimal	
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asymmetric	 clonal	 kinetics	 in	 paired	 transplantation	 assays.	 We	 also	 define	 clonal	

phenotypes	 (Type	 I-V)	 and	 find	 quiescent,	Type	 IV,	 clones	 are	 enriched	 in	metastatic	

deposits.	Further	work	will	 include	genomic	analysis	 in	 these	models	and	expand	the	

breadth	of	barcoded	models	to	encompass	the	high	degree	of	heterogeneity	in	human	

breast	cancers	represented	by	our	PDX	biobank	(7,198).		
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• Context	for	this	work:	Breast	Cancer	Incidence	&	the	Clinical	
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• Clonal	Tracing	in	Complex	Preclinical	Models			
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6.1	Context	for	this	work:	Breast	Cancer	Incidence	&	

the	Clinical	Importance	of	Tumour	Evolution				
	

The	 estimated	 global	 incidence	 of	 all	 cancer	 types	 in	 2015	 was	 17.5	 million	 (463).	

Fourteen	percent	of	all	deaths	in	2005	were	due	to	cancer,	which	increased	to	16%	in	

2015	 (464).	Breast	 cancer	 is	 the	most	 common	cancer	overall,	with	an	estimated	2.4	

million	new	diagnosis	 in	2015;	1	 in	14	women	and	1	 in	603	men	will	develop	breast	

cancer	 between	 birth	 and	 age	 79	 years.	 The	 vast	majority	 of	 breast	 cancers	 occur	 in	

women,	with	2.4	million	cases	versus	44,000	cases	in	men.	Breast	cancer	was	the	leading	

cause	of	 cancer	 in	all	 sociodemographic	 index	(SDI)	quintiles	except	 for	 the	high	and	

high-middle	SDI	quintiles	where	it	was	the	second	most	common	cancer	after	prostate	

and	lung	respectively	(463).	In	England,	breast	cancer	accounted	for	44,000	new	cancer	

registrations	in	2016	and	was	the	most	common	diagnosed	cancer	(465).		

	

As	a	quantitative	measure	of	the	burden	of	disease,	a	disability	adjusted	life	year	(DALY)	

can	be	thought	of	as	one	lost	year	of	healthy	life	and	is	computed	as	the	sum	of	years	of	

life	lost	(YLL)	due	to	premature	mortality	and	the	years	lost	due	to	disability	(YLD)	(465).	

Between	2005	and	2015,	many	countries	experienced	a	decrease	 in	 cancer	mortality	

despite	increasing	incidence	rates.	However,	as	of	2015,	breast	cancer	accounted	for	15.4	

million	DALYs	in	2015,	of	which	88%	came	from	YLLs,	and	12%	from	YLDs	(465).		

	

These	 observations	 reinforce	 the	 global	 burden	 due	 to	 breast	 cancer.	 A	 better	

understanding	of	breast	cancer	biology	coupled	with	advances	in	prevention,	detection	

and	treatment	will	become	increasingly	important	over	the	next	several	decades.	This	

includes	characterising	the	origins	and	development	of	breast	cancer	in	individuals	with	

the	expectation	 that	 a	greater	 fundamental	knowledge	of	 tumour	biology	will	 lead	 to	

improved	outcomes	through	the	development	of	new	clinical	strategies.		

	



Clonal	Origins	of	Drug	Resistance																																																Chapter	6	–	Conclusions	 	

	
-331-	

Tumour	evolution	has	been	a	key	conceptual	framework	in	cancer	biology	since	it	was	

first	put	 forth	by	Peter	Nowell	 in	1976	(12).	The	theory	postulates	 that	cancers	arise	

from	a	single	cell	that	has	a	selective	advantage	over	its	neighbours	and	that	cancer	can	

be	 understood	 based	 on	 the	 evolutionary	 principles	 of	 selection	 and	 adaptation	

originating	from	this	ancestral	cell.	Over	time,	cells	within	the	tumour	continue	to	adapt	

and	bestow	on	the	tumour	whole,	specific	traits	described	as	the	Hallmarks	of	Cancer	

(30,31).	These	ideas	have	been	developed	using	many	of	the	concepts	first	established	

in	 evolutionary	 biology	 (383,466);	 considering	 cancer	 as	 a	 disease	 of	 multicellular	

organisms	 in	 constant	 balance	 between	 Darwinian	 selection	 acting	 on	 the	 level	 of	 a	

single	 cell	 and	 the	 need	 for	 coordination	 between	multiple	 cells	 for	 the	 good	 of	 the	

organism	 (467,468).	 From	 this	 perspective,	 cancers	 occur	 when	 an	 individual	 cell	

behaves	 in	 an	 autonomous	 manner,	 escaping	 from	 the	 mechanisms	 in	 place	 to	

coordinate	cell	behaviour	(469).		

	

The	 classic	model	 of	 carcinogenesis	 describes	multiple,	 successive	 clonal	 expansions	

driven	by	 the	accumulation	of	 genomic	 changes	or	 ‘mutations’	 that	 are	preferentially	

selected	by	the	tumour	environment	(470).	However,	it	is	important	to	note	that	natural	

selection	acts	on	phenotypes	rather	than	genotypes.	Indeed,	selection	can	be	transient,	

favouring	a	specific	phenotype	in	response	to	fluctuating	changes	in	microenvironment.	

Indeed,	recent	work	has	uncovered	monogenomic	clonal	expansion	of	phenotypic	clones	

responsible	 for	 tamoxifen	 resistance	 in	 breast	 cancer	 (376)	 and	 chemotherapeutic	

resistance	in	CRC	PDX	models	(83,192).	More	broadly,	tumour	evolution	and	resultant	

heterogeneity	have	been	 linked	 to	 several	 clinically	 important	 facets	of	breast	 cancer	

(11,456,471),	and	further	study	to	understand	the	causes	and	consequences	of	tumour	

evolution	is	warranted.			
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6.2	Resistance	to	Endocrine	Therapy						
	

Breast	cancer	is	one	of	the	few	tumour	types	in	which	molecular	classification	(based	on	

the	presence	of	hormone	receptors	(ERα/PR)	and	HER2)	has	successfully	been	used	for	

the	design	of	individualized	therapies,	leading	to	significant	improvements	in	disease-

specific	survival	(472).	However,	despite	the	success	of	anti-endocrine	therapies	in	ERα+	

breast	cancer	the	development	of	treatment	resistance	is	commonplace,	and	ultimately	

around	40%	of	patients	will	relpase	during	or	after	the	completion	of	adjuvant	endocrine	

therapy	(375).	Resistance	to	the	endocrine	therapy,	and	WHO	essential	medicine	(318),	

tamoxifen,	 is	 thought	 to	 be	 due	 to	 differential	 ER	 chromatin	 recruitment	 by	 FOXA1.	

Resistance	has	variable	been	attributed	to	rapid	reprogramming	of	FOXA1	binding	on	a	

short	 time	scale	(238),	and	the	expansion	of	pheotypic	clonal	populations	marked	by	

active	FOXA1	enhancer	(376).		

	

In	Chapter	3,	we	utilise	the	ClonTracer	lentiviral	lineage	tracing	system	(334)	to	uniquely	

tag	over	1	million	MCF7	cells	and	follow	their	clonal	behaviours	during	the	development	

of	tamoxifen	(4-OHT)	resistance.	We	find	that	resistance	is	associated	with	the	selection	

of	a	subset	of	cellular	clones,	genomically	similar	to	those	sensitive	to	therapy.	Although	

we	find	remarkably	similar	clones	are	selected	across	replicates,	the	resultant	tamoxifen	

resistant	 sublines	 are	 characterised	 by	 several	 differentiating	 features:	 differences	 in	

proliferation	rates,	ERα-signalling	and	resistance	to	rapamycin	are	noted.	Future	work	

in	 this	 regarded	 should	 focus	 on	 an	 unbiased	 screen	 of	 the	 mechanisms	 by	 which	

resistant	cell	lines	differ.	An	RNA-seq	based	classification	of	resistant	lines	is	currently	

underway	 and	 should	 offer	 insight	 into	 regulatory	 pathways	 involved	 in	 the	 specific	

mechanism	of	tamoxifen	resistance	in	our	models.	Furthermore,	the	addition	of	further	

time	points	 in	our	NGS	analysis	would	afford	greater	 resolution	 in	 the	description	of	

clonal	phenotypes	in	our	control	clones.	For	example,	barcoded	clones	could	be	classified	

based	 on	 their	 passage-kinetics,	 in	 a	 similar	manner	 to	Kreso	 et	 al.,	 (83),	 this	would	
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enable	further	scrutiny	of	our	hypothesis	that	quiescent,	or	slowly	dividing,	MCF7s	are	

responsible	for	the	development	of	tamoxifen	resistance.		

	

Recently,	Hinohara	et	al.,	barcoded	MCF7s	using	the	ClonTracer	system	(135)	during	the	

development	 of	 both	 tamoxifen	 and	 fulvestrant	 resistance.	 The	 authors	 found	 that	

resistance	to	each	drug	was	due	to	the	selection	of	a	rare,	pre-existing,	population	of	cells	

(483).	Utilising	a	mathematical	model	of	 stochastic	population	dynamics,	 the	authors	

were	able	 to	estimate	the	 fraction	of	pre-existing	barcodes	 in	each	scenario.	Using	an	

expected	mutational	frequency	of	10-5	per	division,	the	authors	demonstrated	resistant	

clones	 at	 0.5-1%	 (for	 fulvestrant)	 and	 1%	 (for	 tamoxifen)	 frequency	 in	 the	 initial	

population.	These	fractions	are	consistent	with	our	own	calculations.	However,	contrary	

to	our	work,	the	authors	found	genomic	heterogeneity	in	resistant	populations	by	exome	

sequencing.	Gene	set	enrichment	analysis	showed	that	expression	of	genes	downstream	

of	some	of	the	identified	genetic	variants	were	significantly	altered	and	that	associated	

expression	 signatures	 were	 also	 present	 in	 metastatic	 sites	 of	 those	 relapsing	 on	

tamoxifen	 (483).	 Given	 the	 genomic	 instability	 of	 MCF7s,	 coupled	 with	 the	 near	

extinction	events	in	our	drug	treatment	arm,	it	would	be	interesting	to	model	whether	

any	 slight	 changes	 in	 VAF	 between	 naïve	 and	 resistant	 MCF7s	 would	 indeed	 be	

statistically	significant.		

	

Importantly,	 DNA	 hypomethylation	 at	 oestrogen-responsive	 enhancers	 has	 been	

associated	with	the	development	of	ERα+	breast	cancers,	and	the	reversal	of	this	process	

with	the	development	of	resistance	to	endocrine	therapy	(285).	Moreover,	heterogenity	

amougst	 tamoxifen	 resistant	models	 derived	 in	 parrallel	 processes	 has	 been	 studied	

previously	 (345)	 and	 the	 resistance	 process	 has	 been	 linked	 in	 the	 literature	 to	

pluriopotency	 factors	 such	 as	 SOX2	 (277)	 and	 OCT4	 (438,473).	 Taken	 together,	

tamoxifen	 resistance	 is	 broadly	 due	 to	 differential	 enhancer	 methylation	 and	 ERα	

chromatin	interaction	governed	by	pioneer	factor	recruitment.	Parrallels	between	this	

process	and	that	of	differentiaon	during	embryonic	development,	coupled	by	reports	of	
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the	importance	of	embryonic	transcription	factors	in	the	process,	led	us	to	question	the	

role	of	CSC	and/or	dedifferentiaion	in	our	models.		

	

In	Chapter	 4,	we	 study	 the	 role	 of	OCT4	 in	M-ICs	 and	 the	 development	 of	 tamoxifen	

resistance.	 Though	 resistance	 to	 4-OHT	 was	 the	 key	 phenotype	 under	 investigation,	

there	 is	 evidence	 that	our	 resistant	 lines	were	 oestrogen-independent	 and	may	 have	

shown	 resistance	 to	 AIs	 in	 vivo.	 We	 find	 that	 the	 M-IC	 and	 tamoxifen	 resistant	

phenoptypes	share	a	great	deal	of	overlap	and	that	both	are	enriched	for	POU5F1	(OCT4)	

and	SOX2	expression.	Indeed,	we	find	a	great	deal	of	overlap	between	barcoded	clones	

enriched	 in	our	resistant	studies	and	those	 in	mammosphere	cultures,	suggesting	the	

same	population	 of	 cell	may	 be	 responsible	 for	 both	 phenotypes.	We	 also	 uncover	 a	

mechanism	by	which	tamoxifen	bound	ERα	may	directly	drive	the	expression	of	POU5F1.	

Although	 backed	 by	 genome	 wide	 ChIP-seq	 studies	 (408),	 this	 should	 be	 further	

confirmed	by,	for	example,	ChIP-PCR	experiments	in	our	models.	Through	knock-in	and	

knock-down	experiments,	we	further	profile	the	role	of	OCT4	in	driving	a	M-IC	and	BC-

TIC	phenotype	in	MCF7s.	Finally,	we	find	POU5F1	is	prognostic,	in	the	METABRIC	cohort,	

of	poor	disease-specific	outcome	in	ERα+	patients	treated	with	endocrine	therapies.		

	

Intregingly,	 a	 recent	 study	by	Bhatt	 et	 al.,	may	 suggest	 an	alternative	mechanism	 for	

OCT4’s	interation	with	oestrogen	signalling	(282).	Specifically,	the	authors	performed	in	

silico	motif-enrichment	analyses	within	the	ER-binding	peaks	 in	response	 to	E2	or	4-

OHT,	to	identify	factors	that	would	specifically	recruit	ER	to	genomic	binding	sites	in	the	

presence	of	4-OHT	as	compared	to	E2.	The	authors	found,	and	verified	by	ChIP	analyses,	

Nkx3-1	 and	Oct-transcription	 factor	 homodimer	motifs	were	 enriched	 in	 4-OHT-ERα	

preferential	binding	sites.	Functionally,	and	like	our	own	studies,	the	authors	find	OCT4	

expression	increased	in	TamR	cell	lines	and	essential	to	both	tamoxifen	resistance	and	

MCF7	tumour	growth	in	the	presence	of	4OHT	in	vivo.	The	authors	conclude	that	OCT4	

is	 a	 novel	 ERα	 coregulator,	 responsible	 for	 tamoxifen	 speicifc	 gene	 transcriptional	
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programs	 which	 ultimatley	 lead	 to	 resistance	 (282),	 presumably	 through	 FOXA1	

reprogramming	or	similar	mechanisms.		

	

A	great	deal	of	further	work	could	be	undertaken	to	uncover	the	true	functional	role	of	

OCT4	in	breast	cancer	and	epigenetic	reprogramming	leading	to	tamoxifen	resistance.	In	

addition	 to	 uncovering	 related	 signalling	 pathways	 (related	 to	 the	 p38MAPK-Skp2-

Nkx3-1	axis	or	otherwise),	4-OHT-ERα	or	OCT4	ChIP	experiments	would	shed	further	

light	on	regulatory	mechanisms.	Further,	applying	the	ClonTracer	labelling	methodology	

to	 POU5F1	 overexpressing	 cells	 as	 they	 develop	 tamoxifen	 resistance,	 could	 help	

determine	 whether	 OCT4	 is	 a	 true	 enabling	 factor	 in	 the	 resistance	 process.	

Furthermore,	 the	 mechanisms	 by	 which	 OCT4	 contribute	 to	 transcriptional	

reprogramming	 could	 be	 uncovered	 through	whole	 genome	 epigenomic	 mapping	 in	

knock-in/out	cell	lines.			
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6.3	Clonal	Tracing	in	Complex	Preclinical	Models			
	

In	order	to	best	study	the	causes	and	consequences	of	tumour	evolution	and	resultant	

tumour	heterogeneity,	we	must	develop	and	characterise	pre-clinical	models	that	better	

reflect	this	heterogeneity	(23).	We	have	recently	published	a	well	annotated	biobank	of	

human	 breast	 cancer	 PDX	 models	 and	 adapted	 their	 use	 for	 high	 throughput	 drug	

screens	(198).	We	find	PDX	models	are	relatively	genomically	stable	over	multiple	in	vivo	

passages	 and	 accurately	 reflect	 the	 molecular	 and	 histological	 features	 of	 their	

originating	samples	(195,198).	In	Chapter	5,	we	develop	and	characterise	a	TNBC	PDX	

model	tagged	with	the	ClonTracer	lentiviral	lineage	tracing	system	(334).		

	

Through	multiple	rounds	of	in	vivo	passage,	we	find	reproducible	engraftment	kinetics	

across	thousands	of	cellular	clones	in	multiple	rounds	of	replicate	engraftments.	Marked	

populations	ranged	in	size	from	500	cells	(our	limit	of	accurate	detection)	to	more	than	

1.6	x105	cells.	Like	Nguyen	et	al.,	we	find	that	multiple	rounds	of	passage	generally	leads	

to	a	reduction	in	the	number	of	clonal	populations	detected	and	that	clones	vary	in	their	

CIC	(197).	By	following	a	framework	set	out	by	Kreso	et	al.,	we	classify	clonal	populations	

into	 five	 distinct	 types	 on	 the	 basis	 of	 their	 repopulation	 kinetics	 (83).	We	 find	 that	

relatively	quiescent	Type	IV	clones	dominate	in	local	metastasis	seen	in	our	models,	and	

that	on	re-implantation	a	metastatic	phenotype	linked	to	these	Type	IV	clones	is	selected.	

Although	when	previously	profiled	by	NGS	the	STG282	model	was	relatively	genomically	

stable	on	passage	 (195,198),	 future	work	 in	 this	 regard	 should	apply	genomic	 clonal	

clustering	 techniques,	 such	 as	 PyClone	 (199),	 specifically	 to	 our	 barcoded	 STG282CT	

model.	Genomic	clonal	selection	 in	our	 identified	metastatic	sites	will	be	of	particular	

interest.	 Moreover,	 such	 analyses	 will	 help	 us	 understand	 any	 clonal	 (or	 cell-type)	

selection	artefacts	introduced	by	our	lentiviral	infection	protocols.	As	a	model	system	

particularly	 suited	 to	 preserving	 intratumour	 heterogeneity,	 it	 is	 imperative	 that	

selection	of	subpopulation	of	cells	by	selective	pressures	associated	with	flow	cytometry	

or	lentiviral	infection	should	be	avoided.		
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Interestingly,	 a	 recently	 study	 from	 Echeverria	 et	 al.,	 (484)	 reported	 the	 use	 of	 the	

Cellecta	barcode	system	in	a	panel	of	TNBC	PDX	models	to	monitor	the	fate	of	individual	

tumour	cell	lineages	during	treatment	with	Adriamycin	combined	with	Cytoxan	(484).	

The	 authors	 found	 that	 PDXs	 initially	 exhibited	 partial	 sensitivity,	 followed	 by	

maintenance	 of	 residual	 tumours	 that	were	 resistant	 to	 chemotherapy	 and	 eventual	

relapse	of	 a	partially	 sensitive	 tumour.	 Interestingly,	 the	authors	report	 that	 residual	

tumours	 maintained	 the	 same	 clonal	 architecture	 as	 untreated	 tumours,	 but	 that	 a	

shared	 population	 of	 barcoded	 cells	 (representing	 ~20%	 of	 the	 total	 pool)	 were	

responsible	 for	 repopulation	 of	 the	 tumour	 following	 discontinuation	 of	 treatment.	

Further,	 exome	 sequencing	 revealed	 that	 mutant	 allele	 frequencies	 were	 largely	

conserved	during	the	same	process.	The	authors	go	on	to	suggest	that	residual	tumours	

exist	in	a	distinct	state	characterized	by	alterations	in	EMT,	metabolic,	and	cell	adhesion	

programs	 during	 treatment,	 but	 that	 these	 phenotypes	 reverted	 on	 continuation	 of	

tumour	 growth.	 In	 silico	 prediction	 of	 drug	 sensitivity,	 verified	 by	 pharmacological	

studies,	 revealed	 several	 potentially	 druggable	 drivers	 of	 resistance	 in	 the	 residual	

tumour	state,	offering	the	intriguing	possibility	of	a	specific	treatment	window	to	inhibit	

tumour	regrowth	following	the	cessation	of	chemotherapy	(484).		

	

Although	optimised	in	a	single	TNBC	PDX	model,	our	own	expansion	of	the	ClonTracer	

system	 across	 a	 comprehensive	 PDX	 biobank	 is	 ongoing.	 Aside	 from	 the	 case	 of	

tamoxifen	resistance,	studied	extensively	in	Chapter	3	and	Chapter	4,	the	ability	to	track	

the	 fate	 of	 individual	 cellular	 clones,	 perhaps	 in	 tandem	 with	 genomic	 clonal	

reconstruction,	 will	 be	 of	 great	 benefit	 in	 the	 study	 of	 multiple	 cases	 of	 treatment	

resistance	in	breast	cancer.	For	example,	RAD51	foci	has	recently	been	identified	as	a	

functional	 biomarker	 of	 homologous	 recombination	 repair	 and	 PARP	 inhibitor	

resistance	 in	 BRCA-mutated	 breast	 cancer	 (474).	 In	 one	 of	 our	 PDX	 models,	 PARP	

inhibitor	 resistance	 could	 be	 reverted	 on	 combination	 therapy	 with	 an	 ataxia-

telangiectasia	mutated	(ATM)	inhibitor.	Such	cases	offer	clinically	relevant	case	studies	
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where	high-resolution	cellular	tracking	could	significantly	aid	in	our	understanding	of	

the	development	of	drug	resistance.		
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Review

Maintaining Tumor Heterogeneity in
Patient-Derived Tumor Xenografts
John W. Cassidy, Carlos Caldas, and Alejandra Bruna

Abstract

Preclinical models often fail to capture the diverse hetero-
geneity of human malignancies and as such lack clinical pre-
dictive power. Patient-derived tumor xenografts (PDX) have
emerged as a powerful technology: capable of retaining the
molecular heterogeneity of their originating sample. However,
heterogeneity within a tumor is governed by both cell-auton-
omous (e.g., genetic and epigenetic heterogeneity) and non–
cell-autonomous (e.g., stromal heterogeneity) drivers.
Although PDXs can largely recapitulate the polygenomic archi-
tecture of human tumors, they do not fully account for het-
erogeneity in the tumor microenvironment. Hence, these mod-

els have substantial utility in basic and translational research in
cancer biology; however, study of stromal or immune drivers of
malignant progression may be limited. Similarly, PDX models
offer the ability to conduct patient-specific in vivo and ex vivo
drug screens, but stromal contributions to treatment responses
may be under-represented. This review discusses the sources
and consequences of intratumor heterogeneity and how these
are recapitulated in the PDX model. Limitations of the current
generation of PDXs are discussed and strategies to improve
several aspects of the model with respect to preserving hetero-
geneity are proposed. Cancer Res; 75(15); 2963 –8. !2015 AACR.

Introduction
Despite remarkable advances in our understanding of the pro-

gression of human malignancies and the molecular events that
underpin tumor survival, new therapies often fail to show signif-
icant efficacy in clinical trials. Projects such as The Cancer Genome
Atlas and METABRIC have demonstrated the remarkable hetero-
geneity across tumorspreviouslybelieved tobeof the samesubtype
(1). It could be argued that clinical trials fail to sufficiently stratify
patients based on relevant biomarkers of drug response: the
response rate of an unscreened population to a molecularly tar-
geted therapy typically lies between 10% and 20% (2). Patient
stratification based onmolecular determinants of drug efficacy and
tumor heterogeneity allows for significantly greater responses—
exemplified by the success of ALK kinase inhibitors in EML4-ALK–
positive non–small cell lung cancers (3). However, even with
patient stratification, clinical responses can be fleeting, often add-
ing only 6 to 12 months before disease progression (2). Thus,
understanding intertumor heterogeneity is the first step toward
improved drug efficacy and diminishing tumor relapse.

Intratumor heterogeneity is governed by both cell-autonomous
(e.g., genomic and epigenomic heterogeneity) and non–cell-
autonomous (e.g., stromal heterogeneity) factors. This heteroge-
neity has clinical implications in patient-specific responses to
therapy and the rapid emergence of resistance to targeted therapies
(4). By capturing intra and intertumor heterogeneity, patient-

derived tumor xenograft (PDX) models have a clear advantage
over traditional models, supporting their use in oncologic drug
discovery and preclinical development. PDX models largely reca-
pitulate cell-autonomousdriversofheterogeneity: exhibiting geno-
mic clonal dynamics reminiscent of their originating tumor sample
(5, 6). Moreover, phenotypically distinct isogenic cellular clones
have been shown to drive resistance to chemotherapy in colorectal
PDX models (7). The tumor microenvironment has long been
known to play an essential role in tumor progression and its role in
drug response is becoming apparent (8, 9). Although PDXs retain
the 3D architecture found in human tumors, stromal and immune
interactions may be altered by inter-species compatibility and
cellular component deficiencies in host models.

The poor performance of so many investigational drugs sug-
gests that preclinical tumor models lack clinical predictive power.
Indeed, one of the most often cited reasons for clinical failure is a
lack of preclinical models that recapitulate the complexity of
human cancers. It is with this in mind that many research and
pharmaceutical groups have turned to PDX models (10, 11).
The establishment and predictive power of PDXs have been
reviewed recently elsewhere (11). This review will focus on the
limitations of current PDX models and how these can be
addressed in the future, specifically in terms of maintaining the
heterogeneous nature of human cancers (summarized in Table 1).
PDXs are arguably the best models of tumor heterogeneity, and
therefore perhaps themost powerful tools for investigating tumor
biology. However, they may fail to fully account for many non–
cell-autonomous drivers of heterogeneity (Fig. 1A), and should be
adapted if they are to reach their full potential as predictors of
clinical efficacy in cancer drug development.

Clonal Dynamics and Tumor Heterogeneity
in PDX Models

Through the course of tumor initiation and progression,
cancerous cells undergo repeated mutational events that may
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or may not result in increased fitness relative to neighboring
cells. Dramatic increases in fitness are seen with the acquisition
of key driver mutations early in a tumor's evolution, for exam-
ple the loss of TP53 may lead to clonal dominance. However,
selection operates on phenotypes in response to stress-inducing
events, which may be stable or transient (12). A gain of fitness
in one clone relative to another does not necessarily imply the
loss of the latter in favor of the former. Rather, clonal popula-
tions within the tumor exist dynamically in space and time:
competing, and perhaps cooperating, to further increase fitness
of the tumor population as a whole (13). Clonal dynamics
derived from tumors' inherent heterogeneity are thus extremely
complex and can play key roles in tumor progression and
development.

This conceptual framework of clonal evolution in cancer pre-
dicts several clinically observable features (14). First, every muta-
tion or copy number aberration (CNA) present in the bulk tumor
need not be present in all cells; indeed, spatial variation exists in a
tumor's clonal composition. The existence of multiple subclones
explains variable response rates to therapy, even within a single
tumor mass, and the rapid emergence of drug resistance. For
instance, the presence of a minor KRAS-mutant clone can predict
colorectal cancer patients who will develop resistance to epider-
mal growth factor receptor (EGFR)–targeted therapy (4).

Our group has previously shown that breast cancer consists of
at least 10 distinct molecular subtypes with significant differences
in disease outcome and treatment responses (1). Furthermore, we
have helped delineate the diverse, variable clonal composition of

© 2015 American Association for Cancer Research

Genomic clonal
dynamics

Minor KRAS subclones predict
resistance to EGFR targeted
therapies in colorectal cancer.
Overall clonal diversity correlates
with drug resistance in ovarian
and oesophageal cancers.16, 17

Colorectal and breast PDX models

phenotypes.6, 7 ‘Type IV’ quiescent
clones were responsible for
resistance to chemotherapy in
colorectal cancer.7

Human stromal components are
replaced by murine equivalents
on PDX passage. It is unclear how

their human counterparts in
supporting tumor growth. Human

geneous in their ability to promote
treatment resistance.26, 27

Genomic clones reconstructed
in a panel of 15 breast cancer
PDX models revealed ongoing
clonal dynamics. Polyclonal
engraftment was possible, but
clonal selection was clearly
evident.5

Epigenetic ‘attractor states’
increase the phenotypic
heterogeneity within the
tumor and hence widen the
pool of cellular clones able
to contribute to treatment
resistance.20

on tumour progression is highly
complex. Checkpoint inhibitors
and other immunotherapeutics
are promising new treatment
strategies in oncology.

International collaborations such as
the EuroPDX Consortium should
facilitate sharing of expertise and
eventually lead to increased
engraftment with less pronounced
clonal selection.10

the native tumor microenvironment
should allow for more appropriate
epigenetic clonal diversity.

Patient matched stromal
components should be sourced
whenever possible. Although

in vitro, cell sorting may reduce

cells and this should be considered.

HuPDX immune models remain a
substantial technical challenge. But
the implications for study of tumor
biology are profound.

orthotopic models should be
considered where possible.
Synthetic human alternatives to
Matrigel should be investigated.

used for PDX implantation. The
NSG strain is characterised by a lack
of mature lymphocytes, the absence
of functional NK cells, defective
macrophages and defective
dendritic cells.33

Matrigel is currently used to increase

factors present in this murine base-
ment membrane extract could
support preferential engraftment of

ectopic implantation is commonly
used.23, 25

Regulated ECM maintains tissue
architecture and stem cell
compartments. Loss of structure
in cancer could contribute to
oscillation between distinct
transcriptional programs.21

Pro- and anti- tumor properties

populations of cancer associated

CAF or MSC populations could
confer heterogeneity on the
tumor bulk.26
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Primary tumor Relapse
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Implications for basic and
translational research Future prospectsRepresentation in

current PDX models

Table 1. Sources of tumor heterogeneity, their consequences in translational and basic cancer biology, and how they are currently represented in PDX models

NOTE: Strategies to improve themodel, by better representation of both cell-autonomous (genomic and epigenomic clones etc.) and non–cell-autonomous (stroma,
immune infiltrate etc.) drivers of heterogeneity are proposed.
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triple-negative breast cancers (TNBC; ref. 15). By allelic frequency
measurements of 2,414 somatic mutations in 104 TNBCs, a
complete spectrum of molecular and clonal compositions was
characterized at diagnosis. Aside from the prognostic features of
specific rare subclones (4), there is an association between clonal
diversity and treatment resistance for at least some tumor types—
notably ovarian (16) and esophageal (17). Basal-like TNBCs have
previously been linked with shorter disease-free survival com-
pared with nonbasal-like TNBCs and tend to be associated with
higher clonal diversity (15). Furthermore, integration of genomic
and drug response data from breast cancer PDXmodels generated
in our laboratory shows that polygenomically engrafted tumors
are more resistant to therapy than monogenomically engrafted
tumors (Bruna and colleagues,manuscript in preparation). Clear-
ly more work is still to be done, but it seems likely that the clonal
composition of tumors will have future utility in predicting
disease outcome and informing treatment choice.

Multiple groups have attempted to define clonal dynamics
based on either lentiviral barcoding (cellular clones) or muta-
tional clustering (genomic clones) by population and single cell–
based computational approaches (5, 18). For example, Eirew and
colleagues (5) reconstructed the genomic clonal dynamics of a
panel of breast cancer PDX models using PyClone: a Bayesian
clustering method for grouping somatic mutations. In each of the
15 cases examined, clonal diversity was reduced by xenotrans-
plantation. This varied from extreme engraftment bias, selecting
minor clones present in the sample of origin, to only moderate
clonal selection. Remarkably, similar clonal dynamics were
observed in parallel xenografts established from the same sample.
In a separate study, Ding and colleagues (19) found that PDX
models established from a basal-like breast cancer were more
representative of the patient's metastatic lesion than the primary
tumor. These observations suggest that deterministicmechanisms
underline the clonal selection found on engraftment. Eirew and

© 2015 American Association for Cancer Research

Cancer associated
fibroblast (CAF) Reciprocal
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Collagen ECM

Tumor cell
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Growth
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Some clonal
selection
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?

Patient matched co-engraftment
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Figure 1.
A, a primary breast tumor including some sources of heterogeneity found in the native microenvironment. Reciprocal signaling pathways between tumor
cells and TAMs and CAFs are highlighted. ECM is shown as collagen fibers with associated fibroblasts and macrophage/dendritic cells with T/B lymphocytes are
shown as part of the immune infiltrate, though other cell types (NK cells, myeloid-derived suppressors, etc.) have been omitted for simplicity. B, patient-matched
fibroblasts and immune cells as possible candidates for coengraftment in the next generation of PDX models. Current PDXs established in NSG mice lack an
adaptive immune system and may have impaired innate immune cell infiltrates and cytokine signaling due to defective IL2 receptor (33). CAFs are known to
contribute to treatment response; although murine fibroblasts are present in PDX models, it is unclear how faithfully these recapitulate their human counterparts
(26). C, a PDX tumor in its native microenvironment. Questions over whether pro- and antitumor CAF/TAM signaling pathways are present to the same extent
in PDX models as in the primary tumor are highlighted. Stromal and tissue architecture can have profound effects on transcriptional regulation but are often
overlooked in the establishment of PDX models (25). To highlight potential differences in ECM organization between the native microenvironment and that of the
PDX, here the ECM is shown as highly organized collagen fibers with closely associated myofibroblasts.

Maintaining Heterogeneity in PDXs
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colleagues (1, 5) further observed variable clonal dynamics
between PDXs established from different molecular subtypes,
underscoring the need for better representation of tumor molec-
ular subtypes. In summary, PDX models can, at least partially,
recapitulate the complex clonal dynamics of humanmalignancies
and engraftment biases may represent nonstochastic selection
events, which define a PDXmodel rather than limit its utility. The
variable tumor- and subtype-dependent engraftment rates (low
for some tumor types) and frequencies in the population mean
that PDX programs representative of intertumor heterogeneity
may require large multicenter collaborative efforts (such as the
EuroPDX consortium; ref. 10) and centralization of models.

Clonal evolution is a continuous process, and may be substan-
tially altered by the selective pressures applied during chemo- and
targeted therapy. Coupled with spatial heterogeneity within the
tumor, thismay result in the need formultiple-site repeat biopsies
to decipher the clonal composition and dynamics of a tumor and
inform treatment choice. Clearly these procedures will be highly
invasive and may not be technically possible; it is with this in
mind that many researchers have turned to liquid biopsies
(14, 20). If our hypotheses are correct, modeling of clonal evo-
lution in patient andmatched PDX by computational approaches
[such as PyClone (5) or CloneHD (18)] will allow unprecedented
basic and translational research into clonal drivers of tumor
progression and treatment response. Such studies will also be
necessary to determine the longevity of PDX models of each
cancer subtype, as it is unlikely that PDXs will remain patient-
relevant and genomically stable in perpetuity.

It has been proposed that aberrant DNA methylation patterns
in cancer can blur the lines between distinct phenotypic "attractor
states" (21). Thus, it may be important to consider cellular clones
as drivers of malignant progression, independent of their genetic
background. To track these isogenic cellular clones, lentiviral
tagging has been used tomark individual cells, and their progeny,
in breast and colorectal PDXmodels (6, 7). In an elegant study by
Kreso and colleagues (7), it was found that minor "type IV"
subclones in colorectal PDXs were able to repopulate the tumor
bulk after treatment with chemotherapy. These quiescent cell
populations were genetically similar to their highly proliferative
counterparts, and were later linked to the BMI1þ population
thought to act as reserve stem cells of the intestinal and colonic
crypts (22). As the cellular clones defined in this study were
isogenic, their phenotype may have been driven by microenvi-
ronmental cues capable ofmodulating cellular transition between
distinct gene expression patterns or epigenetic attractor states
(23). Hence, the microenvironment's composition could pro-
foundly alter both a cells propensity to malignancy and the
heterogeneity we hope to preserve in PDX models. Regardless,
we should not underestimate the significance of even a partial
translation of vastly heterogeneous human diseases into experi-
mental model systems.

Limitations of the PDX Model: Tumor-
Extrinsic Sources of Heterogeneity

Aside from clonal dynamics driven by intrinsic differences in a
cell's genetic or epigenetic background, intratumor heterogeneity
can be influenced by tumor-extrinsic factors in the non–cell-
autonomous compartment (Fig. 1A and Table 1; ref. 23). Cellular
interactions with the extracellular matrix (ECM) can alter gene
expression programs, drive differentiation, and profoundly alter

cell behavior. As cancers develop, tight regulation of the ECM is
lost and tissue architecture begins to degrade (8). A recent study by
Wang and colleagues (24) provides direct evidence that ECM-
dependent signaling confers dynamic switching between TGFBR3
(transforming growth factor b receptor 3)- and JUND (jun D
proto-oncogene)–related expression signatures. ECM-drivenoscil-
lations between signaling pathways such as those described could
have profound effects on propensity to malignancy. Furthermore,
solid-state ECM interactions are necessary for cells to maintain
stem cell properties and regulated ECM helps maintain the stem
cell niche (25). As cancer is often associated with a blurring of the
boundariesbetweenstemanddifferentiated cells, it is possible that
a loss of structured ECM is essential for the stability of multiple
subdominant cellular clones within a tumor (21). In PDXmodels,
Matrigel is often used to increase the engraftment efficiency;
however, it is worth noting that this is a murine basement
membrane extract and suitable synthetic human alternatives are
available. The presence of growth factors inMatrigel may favor the
engraftmentofone cell typeover another. Finally, asECMstructure
is tissue specific (25), researchers should consider the use of
orthotopic transplantations where possible.

The tumor microenvironment is further characterized by an
influx of stromal cells. Infiltrating cancer-associated fibroblasts
(CAF) can often confer resistance to cytotoxic and targeted ther-
apies (9); however, recent studies confer on fibroblasts a degree of
plasticity, with antitumor properties observed in some popula-
tions (26). Because of the high levels of CAF infiltrates seen in
some tumor types, heterogeneity within their population would
undoubtedly confer differential properties to the tumor bulk.We,
and others, have found that human stromal cells are gradually
replaced by murine equivalents upon engraftment in the mouse,
suggesting that implanted human cancer cells retain the ability
to recruit murine accessory cells to their niche. However, it should
be noted that some differences exist between ligand repertoires
of human and murine fibroblasts (27). Clearly stromal archi-
tecture and activity is mimicked in the murine host; however, it is
currently unclear how this reflects human stroma with regards to
supporting tumor growth and development.

It is with this in mind that many have begun to investigate the
coengraftment of human mesenchymal stem cells (MSC) or CAF
cell lines in PDXs (Fig. 1B and C). Here, care must be taken; the
role of MSCs in tumor development is still controversial andmay
represent patient (or tissue)-specific differences (28). If non–
patient-matched sources of stromal cells are implanted, hetero-
geneity between tumors derived from different patients could be
lost. Moreover, fibroblast cell lines vary considerably in their
ability to confer resistance to cytotoxic therapies through hepa-
tocyte growth factor (HGF)/c-Met signaling (9, 27). Patient-
derived fibroblasts can be isolated from tumor samples and
expanded in vitro, thus, coengraftment of matched stromal com-
ponents should be considered wherever possible. This would
significantly increase the advantages these models already have
in retaining the complex heterogeneity found in patient samples.

Considering the crucial role of the immune system in tumor
progression, perhaps the most obvious disadvantage of PDX
models is the necessity for severely immunodeficient host ani-
mals. Tumor cells are broadly thought to be antigenic: point
mutations in coding exons in a developed tumor results in a
large repertoire of neoantigens. Targeting of these neoantigens can
lead to significant CD8þ cytotoxic T-cell infiltration and tumor
cell death. However, most tumors eventually progress and evade
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the immune system—often through the dominant inhibitory
effects of suppressive pathways (so-called "immune checkpoints"
such as CTLA-4/B7 and PD-1/PD-L1). This is supported by the
prognostic value of the CD8þ to FOXP3þ (cytotoxic to regulatory
T-cell, Treg) ratio inmany solid tumors, and the recently reported
clinical efficacy of a variety of checkpoint inhibitors (29, 30).

The proinflammatory microenvironment established by CD8þ

T cells, M1 polarized tumor-associated macrophages (TAM), NK
cells, and others can lead to the recruitment of numerous
immune-suppressive components. TAMs and myeloid-derived
suppressor cells have been implicated in resistance to antiangio-
genic therapy. In addition, macrophage and CD4þ T-cell recruit-
ment following intensive chemotherapy in breast cancer patients
is associated with significantly reduced recurrence-free survival
(30). Clearly, the coengraftment of immune components into
PDX models (Fig. 1B) would facilitate both the study of novel
therapies targeting tumor-immune interactions and allow for
basic research into patient-specific cross-talk between tumor
progression and immune surveillance. Clone or patient-specific
differences in tolerization of dendritic cells, macrophage, and
neutrophil polarity and Treg infiltration could provide multiple
novel insights into tumor biology.

The most robust reconstitution of the human immune system
in immunodeficient mice is seen when bone marrow–derived
stem cells are coengrafted along with liver and thymus fragments
(BMT model; ref. 31). However, the highly invasive multisite
biopsy required renders this model impractical for patient-
matched humanized PDX models (huPDXs). CD34 marks a
population of hematopoietic stem and progenitor cells (HSPC)
found in the blood and bone marrow. Mice implanted with
CD34þ cells fromumbilical cord blood show robustmultilineage
engraftment of human immune populations, though with
reduced functionality relative to BMT mice. During chemother-
apy, CD34þ cells leave the bonemarrow and enter the circulation.
If patients are given granulocyte-macrophage colony stimulating
factor (GM-CSF; Leukine) to aid recovery from chemotherapy,
numbers of CD34þ cells in the circulation have been known to
exceed the bone marrow itself. Hence, CD34þ cells could poten-
tially be harvested from patient's blood to reconstitute a func-
tional, patient-matched, immune system in mouse models
(huCD34 model). As such, an immune system would mature in
the mouse and human immune cells would undergo central
tolerance to mouse antigens during development. However, as
theywould not be exposed to patient antigens during this process,
it is likely that theywouldmount a rapidnon–self-response to any
subsequently engrafted human tissue. One possible solution
comes from a recent study by Cosgun and colleagues (32),
showing immunodeficient adult mice carrying a mutation in the
Kit receptor could support robust, uniform, and sustained engraft-
ment of CD34þ cells. If patient-matched CD34þ HSPCs were
engrafted in adult Kit mutant mice with an established PDX
tumor, it is possible that a functional immune system could
develop in the presence of both human and mouse antigens.

The alternative, to engraft fully mature human immune cells, is
used in the huPBMC model. Here, mononuclear cells from the
peripheral blood mononuclear cells (PBMC) are isolated and
implanted in immunodeficient mice. PBMCs comprise around
75%CD4/CD8þT cellswith the remainder primarily containingB
and NK cells. As such, these models are well suited to short-term
experiments where lymphocyte function is of primary concern.
Aside from the lifetime of circulating cells, themajor limitation of

the huPBMC model is the rapid onset of graft versus host
disease (GVHD) as engrafted cells mount an immune response
against host murine tissue. The onset of GVHD can be delayed
somewhat by the use of NOD scid gamma (NSG) strains lacking
MHC I (33).

Undoubtedly, the reconstitution of a patient-matched immune
system in PDX models would be extremely valuable in the
development of novel oncologic drugs and, in particular, immu-
notherapeutics. The extent towhichfindingswould be valid in the
context of immunehyperactivation (againstmouse inhuPBMCor
against tumor in huCD34) is unclear.

Conclusions and Future Prospects—
Toward a huPDX Model

The PDX is arguably the most faithful model of cell-autono-
mous drivers of malignant progression. Sharing of expertise and
resources through collaborative initiatives, such as the EuroPDX
consortium, will lead to improved engraftment efficiencies and
increase the breadth of tumor subtypes available in these model
systems, contributing to a better representation of cancer hetero-
geneity in the laboratory (10).

Cooperation and competition between genetically and pheno-
typically distinct subclonal populations are thought to drive
tumor growth, resistance to therapy, and recurrence. Although
cell-autonomous sources of heterogeneity are clearly recapitulat-
ed in PDXmodels, current techniques fail to properly account for
non–cell-autonomous factors. The microenvironment has long
been known to play a significant role in tumor progression, but an
incomplete understanding of stromal influencesmakes coengraft-
ment of non–patient-matched cell compartments a risky strategy.
In order to maintain PDXs as models of diversity of human
malignancies, we must take care to engraft only patient-matched
stromal components. CAFs have known roles in resistance to
targeted therapy. It should, therefore, be a priority to ensure
patient fibroblasts are maintained in the tumor xenograft.

Reconstituting a patient-matched immune system in PDX
models is a significant challenge. Standard methods of engrafting
either CD34þHSPCs ormature circulating PBMCswill likely lead
to inappropriate immune responses against human or murine
tissues, respectively. In order to study long-term tumor–immune
interactions, a reconstituted immune systemmust simultaneous-
lymaintain tolerance to its human donor and acquire tolerance to
its new host. A solution could come from engrafting both mature
and na€"ve cell types. Maturing cells in the thymus and bone
marrowwould acquire central tolerance tomurine tissues, where-
as mature cells in the periphery could act to suppress inappro-
priate responses against human antigens.

PDX models are capable of recapitulating the complexity of
human malignancy remarkably well. These models have extraor-
dinary utility in basic cancer research and beyond this have
demonstrated clinical predictive power, allowing multiplexed
screening of novel therapeutics in vivo. However, the aforemen-
tioned limitations of this model must be carefully considered
when interpreting data. Although a significant amount of research
is still needed, patient-matched huPDX models with coengrafted
stromal and immune components would offer unprecedented
opportunity to study tumor biology and would be invaluable
models in oncologic drug development. In the future, huPDX
models could allow researchers and clinicians to both predict and
explain tumor response to novel targeted therapies.

Maintaining Heterogeneity in PDXs

www.aacrjournals.org Cancer Res; 75(15) August 1, 2015 2967

on February 11, 2019. © 2015 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst July 15, 2015; DOI: 10.1158/0008-5472.CAN-15-0727 



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-346-	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
Establishment of our Patient-Derived Tumour Xenograft models would not

be possible without the dedicated work of the Cambridge Breast Unit, the
Cambridge Institute Biological Resources Unit, and our collaborators in

EuroPDX consortium (http://www.EuroPDX.eu). J.W. Cassidy is grateful to
O.B. Harris for critical review of the first draft of this manuscript. In addition,
the authors are particularly grateful to the patients who donated tissues to
further our research and Cancer Research UK for supporting all authors.

Received March 16, 2015; revised April 27, 2015; accepted April 27, 2015;
published OnlineFirst July 15, 2015.

References
1. Curtis C, ShahSP,ChinS-F, TurashviliG, RuedaOM,DunningMJ, et al. The

genomic and transcriptomic architecture of 2,000 breast tumours reveals
novel subgroups. Nature 2012;486:346–52.

2. Huang M, Shen A, Ding J, Geng M. Molecularly targeted cancer therapy:
some lessons from the past decade. Trends Pharmacol Sci 2014;35:
41–50.

3. Shaw AT, KimD-W, Nakagawa K, Seto T, Crin!o L, AhnM-J, et al. Crizotinib
versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med
2013;368:2385–94.

4. Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular
evolution of acquired resistance to targeted EGFR blockade in colorectal
cancers. Nature 2012;486:537–40.

5. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of
genomic clones in breast cancer patient xenografts at single-cell resolution.
Nature 2014;518:422–6.

6. Nguyen LV, Cox CL, Eirew P, Knapp DJHF, Pellacani D, Kannan N, et al.
DNA barcoding reveals diverse growth kinetics of human breast tumour
subclones in serially passaged xenografts. Nat Commun 2014;5:5871.

7. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AMK, et al.
Variable clonal repopulation dynamics influence chemotherapy response
in colorectal cancer. Science 2013;339:543–8.

8. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression
and metastasis. Nat Med 2013;19:1423–37.

9. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al.
Tumour micro-environment elicits innate resistance to RAF inhibitors
through HGF secretion. Nature 2012;487:500–4.

10. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al.
Patient-derived xenograft models: an emerging platform for translational
cancer research. Cancer Discov 2014;4:998–1013.

11. Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft
models of breast cancer and their predictive power. Breast Cancer Res
2015;17. doi: 10.1186/s13058-015-0523-1.

12. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al.
Stochastic state transitions give rise to phenotypic equilibrium in popula-
tions of cancer cells. Cell 2011;146:633–44.

13. Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity
maintained by cooperating subclones in Wnt-driven mammary cancers.
Nature 2014;508:113–7.

14. Aparicio S, Caldas C. The implications of clonal genome evolution for
cancer medicine. N Engl J Med 2013;368:842–51.

15. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and
mutational evolution spectrum of primary triple-negative breast cancers.
Nature 2012;486:395–9.

16. Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. Distinct
evolutionary trajectories of primary high-grade serous ovarian cancers
revealed through spatial mutational profiling. J Pathol 2013;231:
21–34.

17. Maley CC, Galipeau PC, Finley JC,Wongsurawat VJ, Li X, Sanchez CA, et al.
Genetic clonal diversity predicts progression to esophageal adenocarcino-
ma. Nat Genet 2006;38:468–73.

18. Fischer A, V!azquez-García I, Illingworth CJR, Mustonen V. High-definition
reconstruction of clonal composition in cancer. Cell Rep 2014;7:1740–52.

19. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome
remodelling in a basal-like breast cancer metastasis and xenograft. Nature
2010;464:999–1005.

20. Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al.
Non-invasive analysis of acquired resistance to cancer therapy by sequenc-
ing of plasma DNA. Nature 2013;497:108–12.

21. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking
glass for cancer? Nat Rev Cancer 2012;12:323–34.

22. Kreso A, vanGalen P, PedleyNM, Lima-Fernandes E, FrelinC,Davis T, et al.
Self-renewal as a therapeutic target in human colorectal cancer. Nat Med
2014;20:29–36.

23. Michor F, Weaver VM. Understanding tissue context influences on intra-
tumour heterogeneity. Nat Cell Biol 2014;16:301–2.

24. Wang C-C, Bajikar SS, Jamal L, Atkins KA, Janes KA. A time- and matrix-
dependent TGFBR3-JUND-KRT5 regulatory circuit in single breast epithe-
lial cells and basal-like premalignancies. Nat Cell Biol 2014;16:345–56.

25. Cassidy JW. Nanotechnology in the regeneration of complex tissues. Bone
Tissue Regen Insights 2014;5:25–35.

26. Augsten M. Cancer-associated fibroblasts as another polarized cell type of
the tumor microenvironment. Front Oncol 2014;4:62.

27. Argent R, Kumari R, Clarke P, Onion D, Lobo D, Grabowska A, et al.
Restoration of paracrine signalling within the tumour microenvironment
increases tumour growth and activation of c-Met [abstract]. In: Proceedings
of the 10th NCRI Cancer Conference Poster Session C. Nottingham: NCRI;
2014. Abstract nr. LB186.

28. Yagi H, Kitagawa Y. The role of mesenchymal stem cells in cancer devel-
opment. Front Genet 2013;4:261.

29. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al.
Checkpoint blockade cancer immunotherapy targets tumour-specific
mutant antigens. Nature 2014;515:577–81.

30. Schmidt M, B€ohm D, Von T€orne C, Steiner E, Puhl A, Pilch H, et al. The
humoral immune system has a key prognostic impact in node-negative
breast cancer. Cancer Res 2008;68:5405–13.

31. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational
biomedical research. Nat Rev Immunol 2007;7:118–30.

32. Cosgun KN, Rahmig S, Mende N, Reinke S, Hauber I, Sch€afer C, et al. Kit
regulates HSC engraftment across the human-mouse species barrier. Cell
Stem Cell 2014;15:227–38.

33. King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M, et al.A new Hu-
PBL model for the study of human islet alloreactivity based on NOD-scid
mice bearing a targeted mutation in the IL-2 receptor gamma chain gene.
Clin Immunol 2008;126:303–14.

Cancer Res; 75(15) August 1, 2015 Cancer Research2968

Cassidy et al.

on February 11, 2019. © 2015 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst July 15, 2015; DOI: 10.1158/0008-5472.CAN-15-0727 



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-347-	

References	
1.		 Heppner	GH.	Tumor	heterogeneity.	Cancer	Res.	1984;44(6):2259–65.		

2.		 Dexter	D,	Spremulli	E,	Fligiel	Z.	Heterogeneity	of	cancer	cells	from	a	single	human	colon	

carcinoma.	Am	J	Med.	1978	Aug;71(6):A40.		

3.		 Danielson	 KG,	 Anderson	 LW,	 Hosick	 HL.	 Selection	 and	 Characterization	 in	 Culture	 of	

Mammary	 Tumor	 Cells	 with	 Distinctive	 Growth	 Properties	 in	 Vivo	 Selection	 and	

Characterization	in	Culture	of	Mammary	Tumor	Cells	with	Distinctive	Growth	Properties	

in	Vivo1.	Cancer	Res.	1980;(JULY	1980):1812–9.		

4.		 Barranco	 SC,	 Ho	 DHW,	 Drewinko	 B,	 Romsdahl	 MM,	 Humphrey	 RM.	 Differential	

Sensitivities	of	Human	Melanoma	Cells	Grown	in	Vitro	to	Arabinosylcytosine	Differential	

Sensitivities	 of	 Human	Melanoma	 Cells	 Grown	 in	 Vitro	 to	 Arabinosylcytosine	 l.	 Chart.	

1972;(DECEMBER):2733–6.		

5.		 Chang	K,	Creighton	CJ,	Davis	C,	Donehower	L,	Drummond	J,	Wheeler	D,	et	al.	The	Cancer	

Genome	Atlas	Pan-Cancer	analysis	project.	Nat	Genet.	2013;45(10):1113–20.		

6.		 Cole	MP,	Jones	CTA,	Todd	IDH.	A	New	Anti-oestrogenic	Agent	in	Late	Breast	Cancer:	An	

Early	Clinical	Appraisal	of	ICI46474.	Br	J	Cancer.	1971	Jun;25(2):270–5.		

7.		 Curtis	C,	Shah	SP,	Chin	S-F,	Turashvili	G,	Rueda	OM,	Dunning	MJ,	et	al.	The	genomic	and	

transcriptomic	 architecture	 of	 2,000	 breast	 tumours	 reveals	novel	 subgroups.	 Nature.	

2012	Jun;486(7403):346–52.		

8.		 Chia	SK,	Bramwell	VH,	Tu	D,	Shepherd	LE,	 Jiang	S,	Vickery	T,	et	al.	A	50-gene	 intrinsic	

subtype	classifier	for	prognosis	and	prediction	of	benefit	from	adjuvant	tamoxifen.	Clin	

Cancer	Res	[Internet].	2012	Aug	15	[cited	2018	Sep	18];18(16):4465–72.	Available	from:	

http://www.ncbi.nlm.nih.gov/pubmed/22711706	

9.		 Liu	MC,	Pitcher	BN,	Mardis	ER,	Davies	 SR,	 Friedman	PN,	 Snider	 JE,	 et	 al.	 PAM50	gene	

signatures	and	breast	cancer	prognosis	with	adjuvant	anthracycline-	and	taxane-based	

chemotherapy:	 correlative	 analysis	 of	 C9741	 (Alliance).	 npj	 Breast	 Cancer	 [Internet].	

2016	 Dec	 6	 [cited	 2018	 Sep	 18];2(1):15023.	 Available	 from:	

http://www.nature.com/articles/npjbcancer201523	

10.		 Ali	 HR,	 Rueda	 OM,	 Chin	 S-F,	 Curtis	 C,	 Dunning	 MJ,	 Aparicio	 S,	 et	 al.	 Genome-driven	

integrated	classification	of	breast	cancer	validated	in	over	7,500	samples.	Genome	Biol.	

2014;15(8):431.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-348-	

11.		 Cassidy	 JW,	 Bruna	 A.	 Chapter	 4	 -	 Tumor	 Heterogeneity	 BT	 	 -	 Patient	 Derived	 Tumor	

Xenograft	 Models.	 In	 Academic	 Press;	 2017.	 p.	 37–55.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/B9780128040102000047	

12.		 Nowell	PC.	The	clonal	evolution	of	tumor	cell	populations.	Sci	.	1976	Oct;194(4260):23–

8.		

13.		 Fidler	 I,	Kripke	M.	Metastasis	results	 from	preexisting	variant	cells	within	a	malignant	

tumor.	Science	(80-	).	1977;197(4306):893–5.		

14.		 GAVOSTO	 F,	 PILERI	 A,	 GABUTTI	 V,	 MASERA	 P.	 Non-self-maintaining	 Kinetics	 of	

Proliferating	Blasts	in	Human	Acute	Leukaemia.	Nature.	1967	Oct;216(5111):188–9.		

15.		 Clarkson	B,	Fried	J,	Strife	A,	Sakai	Y,	Ota	K,	Ohkita	T.	Studies	of	cellular	proliferation	in	

human	leukemia.	III.	Behavior	of	leukemic	cells	in	three	adults	with	acute	leukemia	given	

continuous	infusions	of	3H-thymidine	for	8	or	10	days.	Cancer.	1970	Jun;25(6):1237–60.		

16.		 Clarkson	B,	Ohkita	T,	Ota	K,	Fried	J.	Studies	of	Cellular	Proliferation	in	Human	Leukemia.	

I.	Estimation	of	Growth	Rates	of	Leukemic	and	Normal	Hematopoietic	Cells	in	Two	Adults	

with	Acute	Leukemia	Given	Single	Injections	of	Tritiated	Thymidine	*.	J	Clin	Invest.	1967	

Apr;46(4):506–29.		

17.		 Southam	C,	Brunschwig	A,	Dizon	Q.	Autologous	and	homologous	transplantation	of	human	

cancer.	 In:	 Brennan	 MJ,	 Simpson	 WL,	 editors.	 Biological	 interactions	 in	 normal	 and	

neoplastic	growth:	a	contribution	to	the	tumor-host	problem.	Boston:	Little,	Brown;	1962.	

p.	723–738.		

18.		 Pierce	G,	Dixon	F,	Verney	E.	Teratocarcinogenic	and	tissue-forming	potentials	of	the	cell	

types	comprising	neoplastic	embryoid	bodies.	Lab	Invest.	1960;9(1):583–602.		

19.		 Baylin	SB,	Weisburger	WR,	Eggleston	 JC,	Mendelsohn	G,	Beaven	MA,	Abeloff	MD,	et	al.	

Variable	 Content	 of	 Histaminase,	 L-Dopa	 Decarboxylase	 and	 Calcitonin	 in	 Small-Cell	

Carcinoma	of	the	Lung.	N	Engl	J	Med.	1978	Jul;299(3):105–10.		

20.		 Bennett	DC,	Peachey	LA,	Durbin	H,	Rudland	PS.	A	possible	mammary	stem	cell	line.	Cell.	

1978	Sep;15(1):283–98.		

21.		 Vogelstein	B,	Fearon	ER,	Hamilton	SR,	Kern	SE,	Preisinger	AC,	Leppert	M,	et	al.	Genetic	

Alterations	during	Colorectal-Tumor	Development.	N	Engl	J	Med.	1988	Sep;319(9):525–

32.		

22.		 Auman	JT,	McLeod	HL.	Colorectal	Cancer	Cell	Lines	Lack	the	Molecular	Heterogeneity	of	

Clinical	Colorectal	Tumors.	Clin	Colorectal	Cancer.	2015	Sep;9(1):40–7.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-349-	

23.		 Cassidy	 JW,	 Caldas	 C,	 Bruna	 A.	Maintaining	Heterogeneity	 in	 Patient	 Derived	 Tumour	

Xenografts.	Cancer	Res.	2015;75(15):1–6.		

24.		 Kreso	A,	Dick	JE.	Evolution	of	the	cancer	stem	cell	model.	Cell	Stem	Cell.	2014;14(3):275–

91.		

25.		 Sansom	OJ,	Reed	KR,	Hayes	AJ,	Ireland	H,	Brinkmann	H,	Newton	IP,	et	al.	Loss	of	Apc	in	

vivo	immediately	perturbs	Wnt	signaling	,	differentiation	,	and	migration.	2004;1385–90.		

26.		 Barker	N,	Ridgway	R	a,	van	Es	JH,	van	de	Wetering	M,	Begthel	H,	van	den	Born	M,	et	al.	

Crypt	 stem	 cells	 as	 the	 cells-of-origin	 of	 intestinal	 cancer.	 Nature.	 2009	

Jan;457(7229):608–11.		

27.		 Cairns	 J.	 Mutation	 selection	 and	 the	 natural	 history	 of	 cancer.	 Nature.	 1975	

May;255(5505):197–200.		

28.		 Nik-Zainal	S,	Van	Loo	P,	Wedge	DC,	Alexandrov	LB,	Greenman	CD,	Lau	KW,	et	al.	The	life	

history	of	21	breast	cancers.	Cell.	2012;149(5):994–1007.		

29.		 Tabassum	DP,	Polyak	K.	Tumorigenesis:	it	takes	a	village.	Nat	Rev	Cancer.	2015;(July):1–

11.		

30.		 Hanahan	D,	Weinberg	RA.	Hallmarks	of	cancer:	The	next	generation.	Vol.	144,	Cell.	2011.	

p.	646–74.		

31.		 Hanahan	D,	Weinberg	RA.	The	hallmarks	of	cancer.	Cell	[Internet].	2000	Jan	7	[cited	2018	

Sep	 18];100(1):57–70.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/10647931	

32.		 Andor	 N,	 Maley	 CC,	 Ji	 HP.	 Genomic	 Instability	 in	 Cancer:	 Teetering	 on	 the	 Limit	 of	

Tolerance.	 Cancer	 Res	 [Internet].	 2017	 May	 1	 [cited	 2018	 Sep	 18];77(9):2179–85.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/28432052	

33.		 Sniegowski	 PD,	 Gerrish	 PJ,	 Johnson	 T,	 Shaver	 A.	 The	 evolution	 of	 mutation	 rates:	

separating	causes	from	consequences.	BioEssays	[Internet].	2000	Nov	10	[cited	2018	Sep	

18];22(12):1057–66.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/11084621	

34.		 Nowak	 M,	 Schuster	 P.	 Error	 thresholds	 of	 replication	 in	 finite	 populations	 mutation	

frequencies	and	the	onset	of	Muller’s	ratchet.	J	Theor	Biol	[Internet].	1989	Apr	20	[cited	

2018	 Sep	 18];137(4):375–95.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/2626057	

35.		 Bagnoli	 F,	 C	 MB-IJ	 of	 MP,	 1998	 	 undefined.	 Eigen’s	 error	 threshold	 and	 mutational	

meltdown	in	a	quasispecies	model.	World	Sci	[Internet].	[cited	2018	Sep	18];	Available	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-350-	

from:	https://www.worldscientific.com/doi/pdf/10.1142/S0129183198000935	

36.		 Herr	 AJ,	 Ogawa	M,	 Lawrence	 NA,	Williams	 LN,	 Eggington	 JM,	 Singh	M,	 et	 al.	 Mutator	

Suppression	and	Escape	from	Replication	Error–Induced	Extinction	in	Yeast.	Copenhaver	

GP,	 editor.	 PLoS	 Genet	 [Internet].	 2011	 Oct	 6	 [cited	 2018	 Sep	 18];7(10):e1002282.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/22022273	

37.		 Crotty	S,	Cameron	CE,	Andino	R.	RNA	virus	error	catastrophe:	direct	molecular	 test	by	

using	 ribavirin.	 Proc	 Natl	 Acad	 Sci	 U	 S	 A	 [Internet].	 2001	 Jun	 5	 [cited	 2018	 Sep	

18];98(12):6895–900.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/11371613	

38.		 Ciriello	G,	Miller	ML,	Aksoy	BA,	Senbabaoglu	Y,	Schultz	N,	Sander	C.	Emerging	landscape	

of	oncogenic	signatures	across	human	cancers.	Nat	Genet.	2013;45(10):1127–33.		

39.		 Vesely	 M,	 of	 RS-A	 of	 the	 NYA,	 2013	 	 undefined.	 Cancer	 immunoediting:	 antigens,	

mechanisms,	 and	 implications	 to	 cancer	 immunotherapy.	Wiley	Online	Libr	 [Internet].	

[cited	 2018	 Sep	 18];	 Available	 from:	

https://onlinelibrary.wiley.com/doi/abs/10.1111/nyas.12105	

40.		 Santarpia	 M,	 medicine	 NK-C	 biology	 &,	 2015	 	 undefined.	 Tumor	 immune	

microenvironment	characterization	and	response	to	anti-PD-1	therapy.	ncbi.nlm.nih.gov	

[Internet].	 [cited	 2018	 Sep	 18];	 Available	 from:	

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493379/	

41.		 Angelova	 M,	 Charoentong	 P,	 Hackl	 H,	 Fischer	 ML,	 Snajder	 R,	 Krogsdam	 AM,	 et	 al.	

Characterization	 of	 the	 immunophenotypes	 and	 antigenomes	 of	 colorectal	 cancers	

reveals	distinct	tumor	escape	mechanisms	and	novel	targets	for	immunotherapy.	Genome	

Biol	 [Internet].	 2015	 Dec	 31	 [cited	 2018	 Sep	 18];16(1):64.	 Available	 from:	

http://genomebiology.com/2015/16/1/64	

42.		 Hodi	 FS,	 O’Day	 SJ,	McDermott	 DF,	Weber	 RW,	 Sosman	 JA,	 Haanen	 JB,	 et	 al.	 Improved	

survival	with	ipilimumab	in	patients	with	metastatic	melanoma.	N	Engl	J	Med	[Internet].	

2010	 Aug	 19	 [cited	 2018	 Sep	 18];363(8):711–23.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20525992	

43.		 Gubin	MM,	Zhang	X,	Schuster	H,	Caron	E,	Ward	JP,	Noguchi	T,	et	al.	Checkpoint	blockade	

cancer	 immunotherapy	 targets	 tumour-specific	 mutant	 antigens.	 Nature.	 2014	

Nov;515(7528):577–81.		

44.		 Eigen	M.	Error	catastrophe	and	antiviral	strategy.	Proc	Natl	Acad	Sci	U	S	A	[Internet].	2002	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-351-	

Oct	 15	 [cited	 2018	 Sep	 18];99(21):13374–6.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/12370416	

45.		 Jiang	 X,	 Mu	 B,	 Huang	 Z,	 Zhang	 M,	 Wang	 X,	 Tao	 S.	 Impacts	 of	 mutation	 effects	 and	

population	size	on	mutation	rate	in	asexual	populations:	a	simulation	study.	BMC	Evol	

Biol	 [Internet].	 2010	 Sep	 30	 [cited	 2018	 Sep	 18];10:298.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20920286	

46.		 Beckman	 RA.	 Mutator	 mutations	 enhance	 tumorigenic	 efficiency	 across	 fitness	

landscapes.	PLoS	One	[Internet].	2009	Jun	10	[cited	2018	Sep	18];4(6):e5860.	Available	

from:	http://www.ncbi.nlm.nih.gov/pubmed/19517009	

47.		 Schrödinger	E.	What	Is	Life?	the	physical	aspect	of	the	living	cell	and	mind	[Internet].	1944	

[cited	2018	Sep	18].	Available	from:	http://www.spaz.org/~jake/pix/schrodinger.pdf	

48.		 Biebricher	CK,	Eigen	M.	The	error	threshold.	Virus	Res	[Internet].	2005	Feb	[cited	2018	

Sep	 18];107(2):117–27.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/15649558	

49.		 Crotty	S,	…	CC-P	of	the,	2001		undefined.	RNA	virus	error	catastrophe:	direct	molecular	

test	 by	 using	 ribavirin.	 Natl	 Acad	 Sci	 [Internet].	 [cited	 2018	 Sep	 18];	 Available	 from:	

http://www.pnas.org/content/98/12/6895.short	

50.		 Zeyl	C,	Mizesko	M,	Evolution	JDV-,	2001		undefined.	Mutational	meltdown	in	laboratory	

yeast	 populations.	 Wiley	 Online	 Libr	 [Internet].	 [cited	 2018	 Sep	 18];	 Available	 from:	

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0014-3820.2001.tb00608.x	

51.		 Lynch	 M,	 Bürger	 R,	 Butcher	 D,	 Heredity	 WG-J	 of,	 1993	 	 undefined.	 The	 mutational	

meltdown	 in	 asexual	 populations.	 academic.oup.com	 [Internet].	 [cited	 2018	 Sep	 18];	

Available	from:	https://academic.oup.com/jhered/article-abstract/84/5/339/2186429	

52.		 Robles	AI,	Harris	CC.	Clinical	outcomes	and	correlates	of	TP53	mutations	and	cancer.	Cold	

Spring	 Harb	 Perspect	 Biol	 [Internet].	 2010	 Mar	 [cited	 2018	 Sep	 18];2(3):a001016.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/20300207	

53.		 Gambino	V,	De	Michele	G,	Venezia	O,	Migliaccio	P,	Dall’Olio	V,	Bernard	L,	et	al.	Oxidative	

stress	activates	a	specific	p53	transcriptional	response	that	regulates	cellular	senescence	

and	aging.	Aging	Cell	 [Internet].	2013	 Jun	[cited	2018	Sep	18];12(3):435–45.	Available	

from:	http://www.ncbi.nlm.nih.gov/pubmed/23448364	

54.		 Degtyareva	NP,	Heyburn	L,	Sterling	J,	Resnick	MA,	Gordenin	DA,	Doetsch	PW.	Oxidative	

stress-induced	mutagenesis	 in	 single-strand	DNA	 occurs	 primarily	 at	 cytosines	 and	 is	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-352-	

DNA	 polymerase	 zeta-dependent	 only	 for	 adenines	 and	 guanines.	 Nucleic	 Acids	 Res	

[Internet].	 2013	 Oct	 [cited	 2018	 Sep	 18];41(19):8995–9005.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23925127	

55.		 Denver	DR,	Dolan	PC,	Wilhelm	LJ,	Sung	W,	Lucas-Lledó	JI,	Howe	DK,	et	al.	A	genome-wide	

view	of	Caenorhabditis	elegans	base-substitution	mutation	processes.	Proc	Natl	Acad	Sci	

U	 S	 A	 [Internet].	 2009	 Sep	 22	 [cited	 2018	 Sep	 18];106(38):16310–4.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19805298	

56.		 Mroz	 EA,	 Tward	 AD,	 Tward	 AM,	 Hammon	 RJ,	 Ren	 Y,	 Rocco	 JW.	 Intra-tumor	 genetic	

heterogeneity	and	mortality	in	head	and	neck	cancer:	analysis	of	data	from	the	Cancer	

Genome	 Atlas.	 PLoS	 Med	 [Internet].	 2015	 Feb	 [cited	 2018	 Sep	 18];12(2):e1001786.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/25668320	

57.		 Chen	G,	Mulla	WA,	Kucharavy	A,	Tsai	H-J,	Rubinstein	B,	Conkright	J,	et	al.	Targeting	the	

adaptability	of	heterogeneous	aneuploids.	Cell	[Internet].	2015	Feb	12	[cited	2018	Sep	

18];160(4):771–84.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/25679766	

58.		 Chen	G,	Bradford	WD,	Seidel	CW,	Li	R.	Hsp90	stress	potentiates	rapid	cellular	adaptation	

through	 induction	 of	 aneuploidy.	 Nature	 [Internet].	 2012	 Jan	 29	 [cited	 2018	 Sep	

18];482(7384):246–50.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/22286062	

59.		 Birkbak	 NJ,	 Eklund	 AC,	 Li	 Q,	 McClelland	 SE,	 Endesfelder	 D,	 Tan	 P,	 et	 al.	 Paradoxical	

relationship	between	chromosomal	instability	and	survival	outcome	in	cancer.	Cancer	Res	

[Internet].	 2011	 May	 15	 [cited	 2018	 Sep	 18];71(10):3447–52.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/21270108	

60.		 Roylance	R,	Endesfelder	D,	Gorman	P,	Burrell	RA,	Sander	J,	Tomlinson	I,	et	al.	Relationship	

of	extreme	chromosomal	instability	with	long-term	survival	in	a	retrospective	analysis	of	

primary	 breast	 cancer.	 Cancer	 Epidemiol	 Biomarkers	 Prev	 [Internet].	 2011	Oct	 [cited	

2018	 Sep	 18];20(10):2183–94.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/21784954	

61.		 Ke	K,	Cheng	J,	Hunt	AJ.	The	distribution	of	polar	ejection	forces	determines	the	amplitude	

of	chromosome	directional	instability.	Curr	Biol	[Internet].	2009	May	26	[cited	2018	Sep	

18];19(10):807–15.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/19446456	

62.		 Fehrmann	RSN,	Karjalainen	JM,	Krajewska	M,	Westra	H-J,	Maloney	D,	Simeonov	A,	et	al.	

Gene	expression	analysis	 identifies	global	gene	dosage	sensitivity	 in	cancer.	Nat	Genet	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-353-	

[Internet].	 2015	 Feb	 12	 [cited	 2018	 Sep	 18];47(2):115–25.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/25581432	

63.		 Hastings	PJ,	Lupski	JR,	Rosenberg	SM,	Ira	G.	Mechanisms	of	change	in	gene	copy	number.	

Nat	Rev	Genet	 [Internet].	2009	Aug	[cited	2018	Sep	18];10(8):551–64.	Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19597530	

64.		 Nelson	WG,	Kastan	MB.	DNA	strand	breaks:	the	DNA	template	alterations	that	trigger	p53-

dependent	 DNA	 damage	 response	 pathways.	Mol	Cell	 Biol	 [Internet].	 1994	Mar	 [cited	

2018	 Sep	 18];14(3):1815–23.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/8114714	

65.		 Holst	F,	Stahl	PR,	Ruiz	C,	Hellwinkel	O,	Jehan	Z,	Wendland	M,	et	al.	Estrogen	receptor	alpha	

(ESR1)	gene	amplification	is	frequent	in	breast	cancer.	Nat	Genet.	2007	May;39(5):655–

60.		

66.		 Kallioniemi	 OP,	 Kallioniemi	 	 a,	 Kurisu	 W,	 Thor	 	 a,	 Chen	 LC,	 Smith	 HS,	 et	 al.	 ERBB2	

amplification	in	breast	cancer	analyzed	by	fluorescence	in	situ	hybridization.	Proc	Natl	

Acad	Sci	U	S	A.	1992;89(12):5321–5.		

67.		 Schnitt	 SJ.	 Classification	 and	prognosis	 of	 invasive	breast	 cancer:	 from	morphology	 to	

molecular	taxonomy.	Mod	Pathol.	2010	May;23(S2):S60–4.		

68.		 Ortmann	CA,	Kent	DG,	Nangalia	J,	Silber	Y,	Wedge	DC,	Grinfeld	J,	et	al.	Effect	of	Mutation	

Order	on	Myeloproliferative	Neoplasms.	N	Engl	J	Med.	2015	Feb;372(7):601–12.		

69.		 Cancer	T,	Atlas	G.	Comprehensive	molecular	characterization	of	human	colon	and	rectal	

cancer.	Nature.	2012	Jul;487(7407):330–7.		

70.		 Barnetson	R,	Jass	J,	Tse	R,	Eckstein	R,	Robinson	B,	Schnitzler	M.	Mutations	associated	with	

microsatellite	 unstable	 colorectal	 carcinomas	 exhibit	 widespread	 intratumoral	

heterogeneity.	Genes,	Chromosom	Cancer.	2000	Oct;29(2):130–6.		

71.		 Koren	S,	Reavie	L,	Couto	JP,	De	Silva	D,	Stadler	MB,	Roloff	T,	et	al.	PIK3CAH1047R	induces	

multipotency	and	multi-lineage	mammary	tumours.	Nature.	2015	Sep;525(7567):114–8.		

72.		 Van	Keymeulen	A,	Lee	MY,	Ousset	M,	Brohee	S,	Rorive	S,	Giraddi	RR,	et	al.	Reactivation	of	

multipotency	by	oncogenic	PIK3CA	induces	breast	tumour	heterogeneity.	Nature.	2015	

Aug;advance	on.		

73.		 Pereira	B,	Chin	S-F,	Rueda	OM,	Vollan	H-KM,	Provenzano	E,	Bardwell	HA,	et	al.	The	somatic	

mutation	 profiles	 of	 2,433	 breast	 cancers	 refine	 their	 genomic	 and	 transcriptomic	

landscapes.	Nat	Commun.	2016	May;7.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-354-	

74.		 Bhat-Nakshatri	 P,	Goswami	CP,	Badve	S,	Magnani	L,	 Lupien	M,	Nakshatri	H.	Molecular	

Insights	of	Pathways	Resulting	from	Two	Common	PIK3CA	Mutations	in	Breast	Cancer.	

Cancer	Res	[Internet].	2016	Jul	1	[cited	2018	Sep	24];76(13):3989–4001.	Available	from:	

http://www.ncbi.nlm.nih.gov/pubmed/27197157	

75.		 Nakshatri	H,	Goswami	C,	Badve	S,	Magnani	L,	Lupien	M,	Bhat-Nakshatri	P.	Abstract	P3-05-

15:	 Divergent	 activation	 of	 AKT1	 and	 AKT2	 isoforms	 downstream	 of	 PI3K	 mutation	

impacts	 response	 of	 breast	 cancer	 cells	 to	 estradiol	 and	 PI3K	 inhibitors.	 Cancer	 Res	

[Internet].	 2015	 May	 1	 [cited	 2018	 Sep	 24];75(9	 Supplement):P3-05-15-P3-05-15.	

Available	 from:	 http://cancerres.aacrjournals.org/lookup/doi/10.1158/1538-

7445.SABCS14-P3-05-15	

76.		 Alexandrov	 LB,	 Nik-Zainal	 S,	 Wedge	 DC,	 Aparicio	 SAJR,	 Behjati	 S,	 Biankin	 A	 V,	 et	 al.	

Signatures	of	mutational	processes	in	human	cancer.	Nature.	2013	Aug;500(7463):415–

21.		

77.		 Martincorena	I,	Roshan	A,	Gerstung	M,	Ellis	P,	Van	Loo	P,	McLaren	S,	et	al.	High	burden	

and	pervasive	positive	selection	of	somatic	mutations	in	normal	human	skin.	Sci	.	2015	

May;348(6237):880–6.		

78.		 Shah	SP,	Roth	A,	Goya	R,	Oloumi	A,	Ha	G,	Zhao	Y,	et	al.	The	clonal	and	mutational	evolution	

spectrum	of	primary	triple-negative	breast	cancers.	Nature.	2012	Jun;486(7403):395–9.		

79.		 Gerlinger	M,	Horswell	S,	Larkin	J,	Rowan	AJ,	Salm	MP,	Varela	I,	et	al.	Genomic	architecture	

and	evolution	of	clear	cell	renal	cell	carcinomas	defined	by	multiregion	sequencing.	Nat	

Genet.	2014	Mar;46(3):225–33.		

80.		 de	 Bruin	 EC,	 McGranahan	 N,	 Mitter	 R,	 Salm	M,	Wedge	 DC,	 Yates	 L,	 et	 al.	 Spatial	 and	

temporal	diversity	 in	genomic	 instability	processes	defines	 lung	cancer	evolution.	Sci	 .	

2014	Oct;346(6206):251–6.		

81.		 Caravagna	G,	Giarratano	Y,	Ramazzotti	D,	Tomlinson	I,	Graham	TA,	Sanguinetti	G,	et	al.	

Detecting	 repeated	 cancer	 evolution	 from	 multi-region	 tumor	 sequencing	 data.	 Nat	

Methods	 [Internet].	 2018	 Sep	 [cited	 2018	 Sep	 27];15(9):707–14.	 Available	 from:	

http://www.nature.com/articles/s41592-018-0108-x	

82.		 Cleary	AS,	Leonard	TL,	Gestl	S	a,	Gunther	EJ.	Tumour	cell	heterogeneity	maintained	by	

cooperating	 subclones	 in	 Wnt-driven	 mammary	 cancers.	 Nature.	 2014	

Apr;508(7494):113–7.		

83.		 Kreso		a.,	O’Brien	C	a.,	van	Galen	P,	Gan	OI,	Notta	F,	Brown		a.	MK,	et	al.	Variable	Clonal	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-355-	

Repopulation	Dynamics	Influence	Chemotherapy	Response	in	Colorectal	Cancer.	Science	

(80-	).	2012;339(6119):543–8.		

84.		 Timp	W,	 Feinberg	 AP.	 Cancer	 as	 a	 dysregulated	 epigenome	 allowing	 cellular	 growth	

advantage	at	the	expense	of	the	host.	Nat	Rev	Cancer	[Internet].	2013	Jul	13	[cited	2018	

Sep	24];13(7):497–510.	Available	from:	http://www.nature.com/articles/nrc3486	

85.		 Polak	P,	Karlić	R,	Koren	A,	Thurman	R,	Sandstrom	R,	Lawrence	MS,	et	al.	Cell-of-origin	

chromatin	 organization	 shapes	 the	mutational	 landscape	 of	 cancer.	 Nature	 [Internet].	

2015	 Feb	 19	 [cited	 2018	 Sep	 24];518(7539):360–4.	 Available	 from:	

http://www.nature.com/articles/nature14221	

86.		 Sharma	S	V.,	Lee	DY,	Li	B,	Quinlan	MP,	Takahashi	F,	Maheswaran	S,	et	al.	A	Chromatin-

Mediated	Reversible	Drug-Tolerant	State	in	Cancer	Cell	Subpopulations.	Cell	[Internet].	

2010	 Apr	 2	 [cited	 2018	 Sep	 24];141(1):69–80.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20371346	

87.		 Wu	 Ct	 C	 -t.,	 Morris	 JR.	 Genes,	 genetics,	 and	 epigenetics:	 a	 correspondence.	 Science	

[Internet].	 2001	 Aug	 10	 [cited	 2018	 Sep	 26];293(5532):1103–5.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/11498582	

88.		 Baylin	 SB,	 Jones	 PA.	 A	 decade	 of	 exploring	 the	 cancer	 epigenome	 —	 biological	 and	

translational	 implications.	 Nat	 Rev	 Cancer	 [Internet].	 2011	 Oct	 1	 [cited	 2018	 Sep	

26];11(10):726–34.	Available	from:	http://www.nature.com/articles/nrc3130	

89.		 Ehrlich	M,	Woods	CB,	Yu	MC,	Dubeau	L,	Yang	F,	Campan	M,	et	al.	Quantitative	analysis	of	

associations	between	DNA	hypermethylation,	hypomethylation	and	DNMT	RNA	levels	in	

ovarian	tumors.	Oncogene	[Internet].	2006	Apr	13	[cited	2018	Sep	26];25(18):2636–45.	

Available	from:	http://www.nature.com/articles/1209145	

90.		 De	S,	Shaknovich	R,	Riester	M,	Elemento	O,	Geng	H,	Kormaksson	M,	et	al.	Aberration	in	

DNA	Methylation	in	B-Cell	Lymphomas	Has	a	Complex	Origin	and	Increases	with	Disease	

Severity.	 Grimes	 HL,	 editor.	 PLoS	 Genet	 [Internet].	 2013	 Jan	 10	 [cited	 2018	 Sep	

26];9(1):e1003137.	Available	from:	http://dx.plos.org/10.1371/journal.pgen.1003137	

91.		 Domcke	 S,	 Bardet	 AF,	 Adrian	 Ginno	 P,	 Hartl	 D,	 Burger	 L,	 Schübeler	 D.	 Competition	

between	DNA	methylation	and	transcription	factors	determines	binding	of	NRF1.	Nature	

[Internet].	 2015	 Dec	 16	 [cited	 2018	 Sep	 26];528(7583):575–9.	 Available	 from:	

http://www.nature.com/articles/nature16462	

92.		 Assenov	Y,	Brocks	D,	Gerhäuser	C.	Intratumor	heterogeneity	in	epigenetic	patterns.	Semin	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-356-	

Cancer	 Biol	 [Internet].	 2018	 Aug	 [cited	 2018	 Sep	 24];51:12–21.	 Available	 from:	

https://linkinghub.elsevier.com/retrieve/pii/S1044579X17302262	

93.		 Hansen	KD,	Timp	W,	Bravo	HC,	Sabunciyan	S,	Langmead	B,	McDonald	OG,	et	al.	Increased	

methylation	variation	 in	epigenetic	domains	across	cancer	 types.	Nat	Genet	 [Internet].	

2011	 Aug	 26	 [cited	 2018	 Sep	 26];43(8):768–75.	 Available	 from:	

http://www.nature.com/articles/ng.865	

94.		 Marusyk	A,	Almendro	V,	Polyak	K.	Intra-tumour	heterogeneity:	a	looking	glass	for	cancer?	

Nat	 Rev	 Cancer	 [Internet].	 2012	May	 19	 [cited	2018	 Sep	14];12(5):323–34.	 Available	

from:	http://www.ncbi.nlm.nih.gov/pubmed/22513401	

95.		 You	JS,	Jones	PA.	Cancer	Genetics	and	Epigenetics:	Two	Sides	of	the	Same	Coin?	Cancer	

Cell	 [Internet].	 2012	 Jul	 10	 [cited	 2018	 Sep	 26];22(1):9–20.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S1535610812002577	

96.		 Lundstrom	K.	Personalized	Medicine	and	Epigenetic	Drug	Development.	In:	Personalized	

Epigenetics	 [Internet].	 Elsevier;	 2015	 [cited	2018	 Sep	 26].	 p.	 369–86.	 Available	 from:	

https://linkinghub.elsevier.com/retrieve/pii/B9780124201354000139	

97.		 Stone	A,	Valdés-Mora	F,	Gee	 JMW,	Farrow	L,	McClelland	RA,	Fiegl	H,	 et	 al.	 Tamoxifen-

induced	 epigenetic	 silencing	 of	 oestrogen-regulated	 genes	 in	 anti-hormone	 resistant	

breast	 cancer.	 PLoS	 One	 [Internet].	 2012	 [cited	 2018	 Aug	 22];7(7):e40466.	 Available	

from:	http://www.ncbi.nlm.nih.gov/pubmed/22808167	

98.		 Magnani	L,	Louloupi	A,	Zwart	W.	Histone	Posttranslational	Modifications	in	Breast	Cancer	

and	Their	Use	in	Clinical	Diagnosis	and	Prognosis.	Epigenetic	Biomarkers	and	Diagnostics	

[Internet].	 2016	 Jan	 1	 [cited	 2018	 Sep	 24];467–77.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/B9780128018996000231?via%3Di

hub	

99.		 Dvinge	H,	 Git	A,	 Gräf	 S,	 Salmon-Divon	M,	 Curtis	 C,	 Sottoriva	 A,	 et	 al.	 The	 shaping	 and	

functional	consequences	of	the	microRNA	landscape	in	breast	cancer.	Nature	[Internet].	

2013	 May	 5	 [cited	 2018	 Sep	 27];497(7449):378–82.	 Available	 from:	

http://www.nature.com/articles/nature12108	

100.		 Le	Quesne	J,	Caldas	C.	Micro-RNAs	and	breast	cancer.	Mol	Oncol	[Internet].	2010	Jun	[cited	

2018	 Sep	 27];4(3):230–41.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20537965	

101.		 Buffa	FM,	Camps	C,	Winchester	L,	Snell	CE,	Gee	HE,	Sheldon	H,	et	al.	microRNA-Associated	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-357-	

Progression	Pathways	and	Potential	Therapeutic	Targets	Identified	by	Integrated	mRNA	

and	microRNA	Expression	Profiling	in	Breast	Cancer.	Cancer	Res	[Internet].	2011	Sep	1	

[cited	 2018	 Sep	 27];71(17):5635–45.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/21737487	

102.		 Jurmeister	S,	Baumann	M,	Balwierz		a.,	Keklikoglou	I,	Ward		a.,	Uhlmann	S,	et	al.	MicroRNA-

200c	 Represses	 Migration	 and	 Invasion	 of	 Breast	 Cancer	 Cells	 by	 Targeting	 Actin-

Regulatory	Proteins	FHOD1	and	PPM1F.	Mol	Cell	Biol.	2012;32:633–51.		

103.		 Ottaviani	S,	Stebbing	J,	Frampton	AE,	Zagorac	S,	Krell	J,	de	Giorgio	A,	et	al.	TGF-β	induces	

miR-100	and	miR-125b	but	blocks	let-7a	through	LIN28B	controlling	PDAC	progression.	

Nat	 Commun	 [Internet].	 2018	 Dec	 10	 [cited	 2018	 Sep	 27];9(1):1845.	 Available	 from:	

http://www.nature.com/articles/s41467-018-03962-x	

104.		 Ward	A,	Balwierz	A,	Zhang	JD,	Küblbeck	M,	Pawitan	Y,	Hielscher	T,	et	al.	Re-expression	of	

microRNA-375	 reverses	 both	 tamoxifen	 resistance	 and	 accompanying	 EMT-like	

properties	 in	 breast	 cancer.	 Oncogene	 [Internet].	 2013	 Feb	 16	 [cited	 2018	 Aug	

24];32(9):1173–82.	Available	from:	http://www.nature.com/articles/onc2012128	

105.		 Forbes	SA,	Bindal	N,	Bamford	S,	Cole	C,	Kok	CY,	Beare	D,	et	al.	COSMIC:	mining	complete	

cancer	 genomes	 in	 the	 Catalogue	 of	 Somatic	 Mutations	 in	 Cancer.	 Nucleic	 Acids	 Res	

[Internet].	 2011	 Jan	 1	 [cited	 2018	 Sep	 24];39(Database):D945–50.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20952405	

106.		 Wiegand	KC,	 Shah	 SP,	 Al-Agha	OM,	 Zhao	 Y,	 Tse	 K,	 Zeng	 T,	 et	 al.	ARID1A	Mutations	 in	

Endometriosis-Associated	 Ovarian	 Carcinomas.	 N	 Engl	 J	 Med	 [Internet].	 2010	 Oct	 14	

[cited	 2018	 Sep	 24];363(16):1532–43.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20942669	

107.		 Jones	S,	Wang	T-L,	Shih	I-M,	Mao	T-L,	Nakayama	K,	Roden	R,	et	al.	Frequent	Mutations	of	

Chromatin	 Remodeling	 Gene	 ARID1A	 in	 Ovarian	 Clear	 Cell	 Carcinoma.	 Science	 (80-	 )	

[Internet].	 2010	 Oct	 8	 [cited	 2018	 Sep	 24];330(6001):228–31.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20826764	

108.		 Dawson	MA.	The	cancer	epigenome:	Concepts,	challenges,	and	therapeutic	opportunities.	

Science	[Internet].	2017	Mar	17	[cited	2018	Sep	25];355(6330):1147–52.	Available	from:	

http://www.ncbi.nlm.nih.gov/pubmed/28302822	

109.		 Perera	D,	 Poulos	RC,	 Shah	A,	Beck	D,	Pimanda	 JE,	Wong	 JWH.	Differential	DNA	 repair	

underlies	mutation	hotspots	at	active	promoters	 in	cancer	genomes.	Nature	 [Internet].	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-358-	

2016	 Apr	 14	 [cited	 2018	 Sep	 25];532(7598):259–63.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/27075100	

110.		 Katainen	R,	Dave	K,	Pitkänen	E,	Palin	K,	Kivioja	T,	Välimäki	N,	et	al.	CTCF/cohesin-binding	

sites	are	frequently	mutated	in	cancer.	Nat	Genet	[Internet].	2015	Jul	8	[cited	2018	Sep	

25];47(7):818–21.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/26053496	

111.		 Huang	 F,	 Hodis	 E,	 Xu	M,	 Kryukov	 G,	 …	 LC-,	 2013	 	 undefined.	 Highly	 recurrent	 TERT	

promoter	mutations	in	human	melanoma.	science.sciencemag.org	[Internet].	[cited	2018	

Sep	25];	Available	from:	http://science.sciencemag.org/content/339/6122/957.short	

112.		 Horn	 S,	 Figl	 A,	 Rachakonda	 P,	 …	 CF-,	 2013	 	 undefined.	 TERT	 promoter	 mutations	 in	

familial	and	sporadic	melanoma.	science.sciencemag.org	[Internet].	[cited	2018	Sep	25];	

Available	from:	http://science.sciencemag.org/content/339/6122/959.short	

113.		 Shimoi	 T,	 Yoshida	 M,	 Kitamura	 Y,	 Yoshino	 T,	 Kawachi	 A,	 Shimomura	 A,	 et	 al.	 TERT	

promoter	hotspot	mutations	in	breast	cancer.	Breast	Cancer	[Internet].	2018	May	8	[cited	

2018	 Sep	 27];25(3):292–6.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/29222734	

114.		 Junttila	 MR,	 de	 Sauvage	 FJ.	 Influence	 of	 tumour	 micro-environment	 heterogeneity	 on	

therapeutic	response.	Nature.	2013	Sep;501(7467):346–54.		

115.		 Pagès	F,	Galon	J,	Dieu-Nosjean	M-C,	Tartour	E,	Sautès-Fridman	C,	Fridman	W-H.	Immune	

infiltration	in	human	tumors:	a	prognostic	factor	that	should	not	be	ignored.	Oncogene.	

2010;29(8):1093–102.		

116.		 Hadrup	S,	Donia	M,	Thor	Straten	P.	Effector	CD4	and	CD8	T	cells	and	their	role	in	the	tumor	

microenvironment.	 Cancer	 Microenviron	 [Internet].	 2013	 Aug	 [cited	 2018	 Sep	

18];6(2):123–33.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/23242673	

117.		 Mei	Z,	Liu	Y,	Liu	C,	Cui	 	a,	Liang	Z,	Wang	G,	et	al.	Tumour-infiltrating	inflammation	and	

prognosis	 in	 colorectal	 cancer:	 systematic	 review	 and	 meta-analysis.	 Br	 J	 Cancer.	

2014;110(6):1595–605.		

118.		 de	Kruijf	E,	Engels	C,	van	de	Water	W,	Bastiaannet	E,	Smit	VHBM,	van	de	Velde	CH,	et	al.	

Tumor	immune	subtypes	distinguish	tumor	subclasses	with	clinical	implications	in	breast	

cancer	patients.	Breast	Cancer	Res	Treat.	2013;142(2):355–64.		

119.		 Ali	HR,	 Glont	 SS-E,	 Blows	FM,	 Provenzano	 E,	 Dawson	 S-JS,	 Liu	 B,	 et	 al.	 PD-L1	protein	

expression	in	breast	cancer	is	rare,	enriched	in	basal-like	tumours	and	associated	with	

infiltrating	lymphocytes.	Ann	Oncol.	2015;(April):1488–93.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-359-	

120.		 Gibson	 J.	 Anti-PD-L1	 for	 metastatic	 triple-negative	 breast	 cancer.	 Lancet	 Oncol.	

2015;16(6):e264.		

121.		 Waddington	CH.	The	strategy	of	 the	genes.	A	discussion	of	some	aspects	of	theoretical	

biology.	Taylor	&	Francis;	1957.	262	p.		

122.		 Cassidy	 JW,	 Roberts	 JN,	 Smith	 C-A,	 Robertson	M,	White	 K,	 Biggs	MJ,	 et	 al.	 Osteogenic	

lineage	 restriction	by	osteoprogenitors	 cultured	on	nanometric	 grooved	 surfaces:	The	

role	of	focal	adhesion	maturation().	Acta	Biomater	[Internet].	2014	Feb	23;10(2):651–60.	

Available	from:	http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907683/	

123.		 Mohn	 F,	 Schübeler	 D.	 Genetics	 and	 epigenetics:	 stability	 and	 plasticity	 during	 cellular	

differentiation.	Trends	Genet.	2009;25(3):129–36.		

124.		 Marusyk	A,	Almendro	V,	Polyak	K.	Intra-tumour	heterogeneity:	a	looking	glass	for	cancer?	

Nat	Rev	Cancer.	2012	May;12(5):323–34.		

125.		 Quail	DF,	Joyce	J	a.	Microenvironmental	regulation	of	tumor	progression	and	metastasis.	

Nat	Med.	2013	Nov;19(11):1423–37.		

126.		 Cassidy	JW.	Nanotechnology	in	the	Regeneration	of	Complex	Tissues.	Bone	tissue	Regen	

insights	 [Internet].	 2014	 Nov	 12;5:25–35.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471123/	

127.		 Wang	 C-C,	 Bajikar	 SS,	 Jamal	 L,	 Atkins	 K	 a,	 Janes	 K	 a.	 A	 time-	 and	 matrix-dependent	

TGFBR3-JUND-KRT5	 regulatory	 circuit	 in	 single	 breast	 epithelial	 cells	 and	 basal-like	

premalignancies.	Nat	Cell	Biol.	2014	Apr;16(4):345–56.		

128.		 Hutchinson	L,	Kirk	R.	High	drug	attrition	rates--where	are	we	going	wrong?	Nat	Rev	Clin	

Oncol.	2011;8(4):189–90.		

129.		 Moreno	L,	 Pearson	ADJ.	How	can	attrition	 rates	be	 reduced	 in	 cancer	drug	discovery?	

Expert	Opin	Drug	Discov.	2013	Feb;8(4):363–8.		

130.		 Aparicio	S,	Caldas	C.	The	implications	of	clonal	genome	evolution	for	cancer	medicine.	N	

Engl	J	Med.	2013	Feb;368(9):842–51.		

131.		 Weigelt	 B,	 Reis-Filho	 JS.	 Histological	 and	molecular	 types	 of	 breast	 cancer:	 is	 there	 a	

unifying	taxonomy?	Nat	Rev	Clin	Oncol.	2009	Dec;6(12):718–30.		

132.		 Engels	 CC,	 Fontein	 DBY,	 Kuppen	 PJK,	 de	 Kruijf	 EM,	 Smit	 VTHBM,	 Nortier	 JWR,	 et	 al.	

Immunological	subtypes	in	breast	cancer	are	prognostic	for	invasive	ductal	but	not	for	

invasive	lobular	breast	carcinoma.	Br	J	Cancer.	2014	Jul;111(3):532–8.		

133.		 Lal	 N.	 An	 immunogenomic	 stratification	 of	 colorectal	 cancer:	 implications	 for	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-360-	

development	of	targeted	immunotherapy.	Oncoimmunology.	2015;(September).		

134.		 Diaz	L	a,	Williams	RT,	Wu	J,	Kinde	I,	Hecht	JR,	Berlin	J,	et	al.	The	molecular	evolution	of	

acquired	 resistance	 to	 targeted	 EGFR	 blockade	 in	 colorectal	 cancers.	 Nature.	 2012	

Jun;486(7404):537–40.		

135.		 Bhang	HC,	Ruddy	D	a,	Krishnamurthy	Radhakrishna	V,	Caushi	JX,	Zhao	R,	Hims	MM,	et	al.	

Studying	clonal	dynamics	in	response	to	cancer	therapy	using	high-complexity	barcoding.	

Nat	Med.	2015;21(5).		

136.		 Bashashati	 A,	 Ha	 G,	 Tone	 A,	 Ding	 J,	 Prentice	 LM,	 Roth	 A,	 et	 al.	 Distinct	 evolutionary	

trajectories	 of	 primary	 high-grade	 serous	 ovarian	 cancers	 revealed	 through	 spatial	

mutational	profiling.	J	Pathol.	2013	Sep;231(1):21–34.		

137.		 Maley	CC,	Galipeau	PC,	Finley	JC,	Wongsurawat	VJ,	Li	X,	Sanchez	C	a,	et	al.	Genetic	clonal	

diversity	 predicts	 progression	 to	 esophageal	 adenocarcinoma.	 Nat	 Genet.	 2006	

Apr;38(4):468–73.		

138.		 Misale	S,	Di	Nicolantonio	F,	Sartore-Bianchi		a.,	Siena	S,	Bardelli		a.	Resistance	to	Anti-EGFR	

Therapy	 in	 Colorectal	 Cancer:	 From	 Heterogeneity	 to	 Convergent	 Evolution.	 Cancer	

Discov.	2014;4(11):1269–80.		

139.		 Lord	 CJ,	 Ashworth	 A.	 Mechanisms	 of	 resistance	 to	 therapies	 targeting	 BRCA-mutant	

cancers.	Nat	Med.	2013	Nov;19(11):1381–8.		

140.		 Xu	G,	Chapman	JR,	Brandsma	I,	Yuan	J,	Mistrik	M,	Bouwman	P,	et	al.	REV7	counteracts	DNA	

double-strand	break	resection	and	affects	PARP	inhibition.	Nature.	2015;521(7553):541–

4.		

141.		 Andor	N,	Graham	TA,	Jansen	M,	Xia	LC,	Aktipis	CA,	Petritsch	C,	et	al.	Pan-cancer	analysis	

of	the	extent	and	consequences	of	intratumor	heterogeneity.	Nat	Med	[Internet].	2016	Jan	

30	 [cited	 2018	 Sep	 18];22(1):105–13.	 Available	 from:	

http://www.nature.com/articles/nm.3984	

142.		 Kostadinov	R,	Maley	CC,	Kuhner	MK.	Bulk	Genotyping	of	Biopsies	Can	Create	Spurious	

Evidence	 for	 Hetereogeneity	 in	Mutation	 Content.	Wang	 E,	 editor.	 PLOS	 Comput	 Biol	

[Internet].	 2016	 Apr	 22	 [cited	 2018	 Sep	 18];12(4):e1004413.	 Available	 from:	

http://dx.plos.org/10.1371/journal.pcbi.1004413	

143.		 Jiang	L,	Chen	H,	Pinello	L,	Yuan	G-C.	GiniClust:	detecting	rare	cell	types	from	single-cell	

gene	expression	data	with	Gini	index.	Genome	Biol	[Internet].	2016	Dec	1	[cited	2018	Sep	

18];17(1):144.	 Available	 from:	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-361-	

http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1010-4	

144.		 Kennedy	SR,	 Schmitt	MW,	Fox	EJ,	Kohrn	BF,	 Salk	 JJ,	Ahn	EH,	 et	al.	Detecting	ultralow-

frequency	mutations	by	Duplex	Sequencing.	Nat	Protoc	[Internet].	2014	Nov	[cited	2018	

Sep	 18];9(11):2586–606.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/25299156	

145.		 Wang	Y,	Waters	J,	Leung	ML,	Unruh	A,	Roh	W,	Shi	X,	et	al.	Clonal	evolution	in	breast	cancer	

revealed	 by	 single	 nucleus	 genome	 sequencing.	 Nature	 [Internet].	 2014	Aug	 14	 [cited	

2018	 Sep	 18];512(7513):155–60.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/25079324	

146.		 Almendro	V,	Cheng	Y-K,	Randles	A,	Itzkovitz	S,	Marusyk	A,	Ametller	E,	et	al.	Inference	of	

Tumor	Evolution	during	Chemotherapy	by	Computational	Modeling	and	In	Situ	Analysis	

of	Genetic	and	Phenotypic	Cellular	Diversity.	Cell	Rep	[Internet].	2014	Feb	13	[cited	2018	

Sep	 26];6(3):514–27.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S2211124713007997	

147.		 Mehlen	 P,	 Puisieux	 A.	 Metastasis:	 a	 question	 of	 life	 or	 death.	 Nat	 Rev	 Cancer.	 2006	

Jun;6(6):449–58.		

148.		 Campbell	 PJ,	 Yachida	 S,	Mudie	 LJ,	 Stephens	 PJ,	 Pleasance	 ED,	 Stebbings	 LA,	 et	 al.	 The	

patterns	 and	 dynamics	 of	 genomic	 instability	 in	metastatic	 pancreatic	 cancer.	 Nature.	

2010	Oct;467(7319):1109–13.		

149.		 Chaffer	CL,	San	Juan	BP,	Lim	E,	Weinberg	RA.	EMT,	cell	plasticity	and	metastasis.	Cancer	

Metastasis	Rev	[Internet].	2016	Dec	22	[cited	2018	Aug	24];35(4):645–54.	Available	from:	

http://link.springer.com/10.1007/s10555-016-9648-7	

150.		 Turajlic	S,	Swanton	C.	Metastasis	as	an	evolutionary	process.	Science	[Internet].	2016	Apr	

8	 [cited	 2018	 Sep	 14];352(6282):169–75.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/27124450	

151.		 Valastyan	S,	Weinberg	RA.	Tumor	Metastasis:	Molecular	Insights	and	Evolving	Paradigms.	

Cell	 [Internet].	 2011	 Oct	 14	 [cited	 2018	 Sep	 14];147(2):275–92.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/22000009	

152.		 Sethi	N,	Kang	Y.	Unravelling	the	complexity	of	metastasis	—	molecular	understanding	and	

targeted	 therapies.	 Nat	 Rev	 Cancer	 [Internet].	 2011	 Oct	 1	 [cited	 2018	 Sep	

14];11(10):735–48.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/21941285	

153.		 Ding	L,	Ellis	MJ,	Li	S,	Larson	DE,	Chen	K,	Wallis	JW,	et	al.	Genome	remodelling	in	a	basal-



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-362-	

like	breast	cancer	metastasis	and	xenograft.	Nature.	2010;464(7291):999–1005.		

154.		 Naxerova	K,	 Jain	RK.	Using	tumour	phylogenetics	 to	 identify	the	roots	of	metastasis	 in	

humans.	Nat	Rev	Clin	Oncol	[Internet].	2015	May	20	[cited	2018	Sep	14];12(5):258–72.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/25601447	

155.		 Krøigård	AB,	Larsen	MJ,	Brasch-Andersen	C,	Lænkholm	A-V,	Knoop	AS,	Jensen	JD,	et	al.	

Genomic	 Analyses	 of	 Breast	 Cancer	 Progression	 Reveal	 Distinct	 Routes	 of	 Metastasis	

Emergence.	 Sci	 Rep	 [Internet].	 2017	 [cited	 2018	 Sep	 14];7:43813.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/28276460	

156.		 McPherson	A,	Roth	A,	Laks	E,	Masud	T,	Bashashati	A,	Zhang	AW,	et	al.	Divergent	modes	of	

clonal	spread	and	intraperitoneal	mixing	in	high-grade	serous	ovarian	cancer.	Nat	Genet	

[Internet].	 2016	 Jul	 16	 [cited	 2018	 Sep	 18];48(7):758–67.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/27182968	

157.		 Yates	LR,	Knappskog	S,	Wedge	D,	Farmery	JHR,	Gonzalez	S,	Martincorena	I,	et	al.	Genomic	

Evolution	of	Breast	Cancer	Metastasis	and	Relapse.	Cancer	Cell	[Internet].	2017	Aug	[cited	

2018	 Sep	 2];32(2):169–184.e7.	 Available	 from:	

https://linkinghub.elsevier.com/retrieve/pii/S1535610817302970	

158.		 Padua	D,	Zhang	XH-F,	Wang	Q,	Nadal	C,	Gerald	WL,	Gomis	RR,	et	al.	TGFβ	primes	breast	

tumors	 for	 lung	 metastasis	 seeding	 through	 angiopoietin-like	 4.	 Cell.	 2008	

Apr;133(1):66–77.		

159.		 Bruna	A,	Greenwood	W,	Le	Quesne	J,	Teschendorff	A,	Miranda-Saavedra	D,	Rueda	OM,	et	

al.	TGFβ	induces	the	formation	of	tumour-initiating	cells	in	claudinlow	breast	cancer.	Nat	

Commun.	2012;3:1055.		

160.		 Visvader	JE,	Lindeman	GJ.	Cancer	Stem	Cells:	Current	Status	and	Evolving	Complexities.	

Cell	 Stem	 Cell	 [Internet].	 2017	 Oct	 28;10(6):717–28.	 Available	 from:	

http://dx.doi.org/10.1016/j.stem.2012.05.007	

161.		 Charafe-Jauffret	E,	Ginestier	C,	Iovino	F,	Wicinski	J,	Cervera	N,	Finetti	P,	et	al.	ALDH1	is	a	

marker	of	 normal	 and	malignant	human	mammary	 stem	cells	 and	a	predictor	of	 poor	

clinical	outcome.	Breast	Cancer	Res.	2008	May;1(5):555–67.		

162.		 Al-Hajj	 M,	 Wicha	 MS,	 Benito-Hernandez	 A,	 Morrison	 SJ,	 Clarke	 MF.	 Prospective	

identification	 of	 tumorigenic	 breast	 cancer	 cells.	 Proc	 Natl	 Acad	 Sci	 .	 2003	

Apr;100(7):3983–8.		

163.		 Battula	VL,	 Shi	Y,	 Evans	KW,	Wang	R-Y,	 Spaeth	EL,	 Jacamo	RO,	 et	 al.	Ganglioside	GD2	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-363-	

identifies	 breast	 cancer	 stem	 cells	 and	 promotes	 tumorigenesis.	 J	 Clin	 Invest.	 2012	

Jun;122(6):2066–78.		

164.		 Ghebeh	H,	Sleiman	GM,	Manogaran	PS,	Al-Mazrou	A,	Barhoush	E,	Al-Mohanna	FH,	et	al.	

Profiling	of	normal	and	malignant	breast	tissue	show	CD44high/CD24low	phenotype	as	a	

predominant	 stem/progenitor	marker	when	used	 in	 combination	with	Ep-CAM/CD49f	

markers.	BMC	Cancer.	2013	Jun;13:289.		

165.		 Cho	RW,	Wang	X,	Diehn	M,	Shedden	K,	Chen	GY,	Sherlock	G,	et	al.	Isolation	and	molecular	

characterization	of	cancer	stem	cells	in	MMTV-Wnt-1	murine	breast	tumors.	Stem	Cells.	

2008	Feb;26(2):364–71.		

166.		 Ginestier	C,	Hur	MH,	Charafe-Jauffret	E,	Monville	F,	Dutcher	J,	Brown	M,	et	al.	ALDH1	is	a	

marker	of	 normal	 and	malignant	human	mammary	 stem	cells	 and	a	predictor	of	 poor	

clinical	outcome.	Cell	Stem	Cell.	2007	Nov;1(5):555–67.		

167.		 Hwang-Verslues	WW,	Kuo	W-H,	Chang	P-H,	Pan	C-C,	Wang	H-H,	Tsai	S-T,	et	al.	Multiple	

lineages	of	human	breast	cancer	stem/progenitor	cells	identified	by	profiling	with	stem	

cell	markers.	PLoS	One.	2009	Dec;4(12):e8377.		

168.		 Moraes	RC,	Zhang	X,	Harrington	N,	Fung	 JY,	Wu	M-F,	Hilsenbeck	SG,	et	al.	Constitutive	

activation	 of	 smoothened	 (SMO)	 in	 mammary	 glands	 of	 transgenic	 mice	 	 leads	 to	

increased	proliferation,	altered	differentiation	and	ductal	dysplasia.	Development.	2007	

Mar;134(6):1231–42.		

169.		 Dontu	G,	Abdallah	WM,	Foley	 JM,	 Jackson	KW,	Clarke	MF,	Kawamura	MJ,	et	al.	 In	vitro	

propagation	 and	 transcriptional	 profiling	 of	 human	 mammary	 stem/progenitor	 cells.	

Genes	Dev.	2003	May;17(10):1253–70.		

170.		 Grimshaw	MJ,	Cooper	L,	Papazisis	K,	Coleman	JA,	Bohnenkamp	HR,	Chiapero-Stanke	L,	et	

al.	Mammosphere	culture	of	metastatic	breast	cancer	cells	enriches	for	tumorigenic	breast	

cancer	 cells.	 Breast	 Cancer	 Res	 [Internet].	 2008	 Jun;10(3):R52.	 Available	 from:	

https://doi.org/10.1186/bcr2106	

171.		 Ali	HR,	 Dawson	 S-J,	 Blows	 FM,	 Provenzano	 E,	 Pharoah	 PD,	 Caldas	 C.	 Cancer	 stem	 cell	

markers	in	breast	cancer:	pathological,	clinical	and	prognostic	significance.	Breast	Cancer	

Res	[Internet].	2011	Nov;13(6):R118.	Available	from:	https://doi.org/10.1186/bcr3061	

172.		 Herschkowitz	 JI,	 Zhao	W,	Zhang	M,	Usary	 J,	Murrow	G,	Edwards	D,	 et	 al.	 Comparative	

oncogenomics	identifies	breast	tumors	enriched	in	functional	tumor-initiating	cells.	Proc	

Natl	Acad	Sci	U	S	A.	2012	Feb;109(8):2778–83.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-364-	

173.		 Prat	A,	 Parker	 JS,	Karginova	O,	 Fan	C,	 Livasy	C,	Herschkowitz	 JI,	 et	al.	 Phenotypic	and	

molecular	characterization	of	the	claudin-low	intrinsic	subtype	of	breast	cancer.	Breast	

Cancer	Res.	2010;12(5):R68.		

174.		 Creighton	CJ,	Li	X,	Landis	M,	Dixon	JM,	Neumeister	VM,	Sjolund	A,	et	al.	Residual	breast	

cancers	 after	 conventional	 therapy	 display	 mesenchymal	 as	 well	 as	 tumor-initiating	

features.	Proc	Natl	Acad	Sci	U	S	A.	2009	Aug;106(33):13820–5.		

175.		 Fillmore	CM,	Kuperwasser	C.	Human	breast	cancer	cell	lines	contain	stem-like	cells	that	

self-renew,	give	rise	to	phenotypically	diverse	progeny	and	survive	chemotherapy.	Breast	

Cancer	Res.	2008;10(2):R25.		

176.		 Li	X,	Lewis	MT,	Huang	J,	Gutierrez	C,	Osborne	CK,	Wu	M-F,	et	al.	Intrinsic	resistance	of	

tumorigenic	 breast	 cancer	 cells	 to	 chemotherapy.	 J	 Natl	 Cancer	 Inst.	 2008	

May;100(9):672–9.		

177.		 Yu	 F,	 Yao	 H,	 Zhu	 P,	 Zhang	 X,	 Pan	 Q,	 Gong	 C,	 et	 al.	 let-7	 regulates	 self	 renewal	 and	

tumorigenicity	of	breast	cancer	cells.	Cell.	2007	Dec;131(6):1109–23.		

178.		 Goodell	 MA,	 Brose	 K,	 Paradis	 G,	 Conner	 AS,	 Mulligan	 RC.	 Isolation	 and	 functional	

properties	of	murine	hematopoietic	stem	cells	that	are	replicating	in	vivo.	J	Exp	Med.	1996	

Apr;183(4):1797–806.		

179.		 Hirschmann-Jax	C,	Foster	AE,	Wulf	GG,	Nuchtern	JG,	Jax	TW,	Gobel	U,	et	al.	A	distinct	“side	

population”	of	cells	with	high	drug	efflux	capacity	in	human	tumor	cells.	Proc	Natl	Acad	

Sci	U	S	A.	2004	Sep;101(39):14228–33.		

180.		 Patrawala	 L,	 Calhoun	 T,	 Schneider-Broussard	 R,	 Zhou	 J,	 Claypool	 K,	 Tang	 DG.	 Side	

population	 is	 enriched	 in	 tumorigenic,	 stem-like	 cancer	 cells,	 whereas	 ABCG2+	 and	

ABCG2-	cancer	cells	are	similarly	tumorigenic.	Cancer	Res.	2005	Jul;65(14):6207–19.		

181.		 Zhou	 J,	 Wulfkuhle	 J,	 Zhang	 H,	 Gu	 P,	 Yang	 Y,	 Deng	 J,	 et	 al.	 Activation	 of	 the	

PTEN/mTOR/STAT3	pathway	in	breast	cancer	stem-like	cells	is	required	for	viability	and	

maintenance.	Proc	Natl	Acad	Sci	U	S	A.	2007	Oct;104(41):16158–63.		

182.		 Pece	S,	Tosoni	D,	Confalonieri	S,	Mazzarol	G,	Vecchi	M,	Ronzoni	S,	et	al.	Biological	and	

molecular	heterogeneity	of	breast	cancers	correlates	with	their	cancer	stem	cell	content.	

Cell.	2010	Jan;140(1):62–73.		

183.		 Doyle	LA,	Yang	W,	Abruzzo	L	V,	Krogmann	T,	Gao	Y,	Rishi	AK,	et	al.	A	multidrug	resistance	

transporter	 from	 human	 MCF-7	 breast	 cancer	 cells.	 Proc	 Natl	 Acad	 Sci	 U	 S	 A.	 1998	

Dec;95(26):15665–70.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-365-	

184.		 Gupta	PB,	Fillmore	CM,	Jiang	G,	Shapira	SD,	Tao	K,	Kuperwasser	C,	et	al.	Stochastic	state	

transitions	give	rise	to	phenotypic	equilibrium	in	populations	of	cancer	cells.	Cell.	2011	

Aug;146(4):633–44.		

185.		 Iliopoulos	D,	Hirsch	HA,	Wang	G,	Struhl	K.	Inducible	formation	of	breast	cancer	stem	cells	

and	 their	dynamic	 equilibrium	with	non-stem	cancer	 cells	 via	 IL6	secretion.	 Proc	Natl	

Acad	Sci	U	S	A.	2011	Jan;108(4):1397–402.		

186.		 Meyer	 MJ,	 Fleming	 JM,	 Ali	 MA,	 Pesesky	 MW,	 Ginsburg	 E,	 Vonderhaar	 BK.	 Dynamic	

regulation	of	CD24	and	the	invasive,	CD44posCD24neg	phenotype	in	breast	cancer	cell	

lines.	Breast	Cancer	Res.	2009;11(6):R82.		

187.		 Mani	 SA,	 Guo	 W,	 Liao	 M-J,	 Eaton	 EN,	 Ayyanan	 A,	 Zhou	 AY,	 et	 al.	 The	 Epithelial-

Mesenchymal	Transition	Generates	Cells	with	Properties	 of	 Stem	Cells.	 Cell	 [Internet].	

2008	 May	 16;133(4):704–15.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S0092867408004443	

188.		 Chaffer	CL,	Brueckmann	I,	Scheel	C,	Kaestli	AJ,	Wiggins	PA,	Rodrigues	LO,	et	al.	Normal	

and	neoplastic	nonstem	cells	can	spontaneously	convert	 to	a	stem-like	state.	Proc	Natl	

Acad	Sci	U	S	A.	2011	May;108(19):7950–5.		

189.		 Buczacki	SJA,	Zecchini	HI,	Nicholson	AM,	Russell	R,	Vermeulen	L,	Kemp	R,	et	al.	Intestinal	

label-retaining	 cells	 are	 secretory	 precursors	 expressing	 Lgr5.	 Nature.	 2013	

Mar;495(7439):65–9.		

190.		 Huch	M,	Dorrell	C,	Boj	SF,	Es	JH	Van,	Wetering	M	Van	De,	Li	VSW,	et	al.	In	vitro	expansion	

of	 single	 Lgr5+	 liver	 stem	 cells	 induced	 by	 Wnt-driven	 regeneration.	 Nature.	

2013;494(7436):247–50.		

191.		 Cheung	TH,	Rando	T	a.	Molecular	regulation	of	stem	cell	quiescence.	Nat	Rev	Mol	Cell	Biol.	

2013;14(6):329–40.		

192.		 Kreso	A,	van	Galen	P,	Pedley	NM,	Lima-Fernandes	E,	Frelin	C,	Davis	T,	et	al.	Self-renewal	

as	a	therapeutic	target	in	human	colorectal	cancer.	Nat	Med.	2014	Jan;20(1):29–36.		

193.		 Tomasetti	C,	Vogelstein	B.	Variation	in	cancer	risk	among	tissues	can	be	explained	by	the	

number	of	stem	cell	divisions.	Sci	.	2015	Jan;347(6217):78–81.		

194.		 Easwaran	H,	Tsai	H-CC,	Baylin	SBB.	Cancer	Epigenetics:	Tumor	Heterogeneity,	Plasticity	

of	Stem-like	States,	and	Drug	Resistance.	Mol	Cell.	2014	Jun;54(5):716–27.		

195.		 Eirew	P,	Steif	A,	Khattra	J,	Ha	G,	Yap	D,	Farahani	H,	et	al.	Dynamics	of	genomic	clones	in	

breast	cancer	patient	xenografts	at	single-cell	resolution.	Nature.	2015	Nov;		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-366-	

196.		 Kreso	 A,	 O’Brien	 C	 a,	 van	 Galen	 P,	 Gan	OI,	 Notta	 F,	 Brown	AMK,	 et	 al.	 Variable	 clonal	

repopulation	dynamics	 influence	chemotherapy	response	 in	colorectal	cancer.	Science.	

2013	Feb;339(6119):543–8.		

197.		 Nguyen	L	V,	Cox	CL,	Eirew	P,	Knapp	DJHF,	Pellacani	D,	Kannan	N,	et	al.	DNA	barcoding	

reveals	diverse	growth	kinetics	of	human	breast	tumour	subclones	in	serially	passaged	

xenografts.	Nat	Commun.	2014	Jan;5:5871.		

198.		 Bruna	A,	Rueda	OM,	Greenwood	W,	Batra	AS,	Callari	M,	Batra	RN,	et	al.	A	Biobank	of	Breast	

Cancer	 Explants	 with	 Preserved	 Intra-tumor	 Heterogeneity	 to	 Screen	 Anticancer	

Compounds.	Cell.	2016	Sep;167(1):260–274.e22.		

199.		 Roth	A,	Khattra	J,	Yap	D,	Wan	A,	Laks	E,	Biele	J,	et	al.	PyClone:	statistical	inference	of	clonal	

population	 structure	 in	 cancer.	 Nat	Methods	 [Internet].	 2014	Apr	 16	 [cited	2018	Aug	

22];11(4):396–8.	Available	from:	http://www.nature.com/articles/nmeth.2883	

200.		 Davis	 FM,	 Lloyd-Lewis	 B,	 Harris	 OB,	 Kozar	 S,	Winton	 DJ,	 Muresan	 L,	 et	 al.	 Single-cell	

lineage	 tracing	 in	 the	 mammary	 gland	 reveals	 stochastic	 clonal	 dispersion	 of	

stem/progenitor	 cell	 progeny.	 2016	 Oct	 25;7:13053.	 Available	 from:	

http://dx.doi.org/10.1038/ncomms13053	

201.		 Wu	 C,	 Li	 B,	 Lu	 R,	 Koelle	 SJ,	 Yang	 Y,	 Jares	 A,	 et	 al.	 Clonal	 tracking	 of	 rhesus	macaque	

hematopoiesis	highlights	a	distinct	lineage	origin	 for	natural	killer	cells.	Cell	Stem	Cell	

[Internet].	 2014	 Apr	 3	 [cited	 2018	 Aug	 20];14(4):486–99.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/24702997	

202.		 Lu	R,	Neff	NF,	Quake	SR,	Weissman	IL.	Tracking	single	hematopoietic	stem	cells	in	vivo	

using	 high-throughput	 sequencing	 in	 conjunction	 with	 viral	 genetic	 barcoding.	 Nat	

Biotechnol	 [Internet].	 2011	Oct	2	 [cited	2018	Aug	20];29(10):928–33.	Available	 from:	

http://www.nature.com/articles/nbt.1977	

203.		 Naik	SH,	Perié	L,	Swart	E,	Gerlach	C,	van	Rooij	N,	de	Boer	RJ,	et	al.	Diverse	and	heritable	

lineage	 imprinting	of	 early	haematopoietic	progenitors.	Nature	 [Internet].	 2013	Apr	3	

[cited	 2018	 Aug	 20];496(7444):229–32.	 Available	 from:	

http://www.nature.com/articles/nature12013	

204.		 Porter	SN,	Baker	LC,	Mittelman	D,	Porteus	MH.	Lentiviral	and	targeted	cellular	barcoding	

reveals	ongoing	clonal	dynamics	of	cell	lines	in	vitro	and	in	vivo.	Genome	Biol	[Internet].	

2014	 May	 30	 [cited	 2018	 Aug	 25];15(5):R75.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/24886633	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-367-	

205.		 Hata	AN,	Niederst	MJ,	Archibald	HL,	Gomez-Caraballo	M,	Siddiqui	FM,	Mulvey	HE,	et	al.	

Tumor	 cells	 can	 follow	 distinct	 evolutionary	 paths	 to	 become	 resistant	 to	 epidermal	

growth	factor	receptor	inhibition.	Nat	Med.	2016	Mar;22(3):262–9.		

206.		 Jakobsen	KR,	Demuth	C,	Madsen	AT,	Hussmann	D,	Vad-Nielsen	J,	Nielsen	AL,	et	al.	MET	

amplification	 and	 epithelial-to-mesenchymal	 transition	 exist	 as	 parallel	 resistance	

mechanisms	 in	 erlotinib-resistant,	 EGFR-mutated,	 NSCLC	 HCC827	 cells.	 Oncogenesis	

[Internet].	 2017	 Apr	 3	 [cited	 2018	 Sep	 18];6(4):e307.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/28368392	

207.		 Lopez	 Sambrooks	 C,	 Baro	 M,	 Quijano	 A,	 Narayan	 A,	 Cui	 W,	 Greninger	 P,	 et	 al.	

Oligosaccharyltransferase	 Inhibition	 Overcomes	 Therapeutic	 Resistance	 to	 EGFR	

Tyrosine	 Kinase	 Inhibitors.	 Cancer	 Res	 [Internet].	 2018	 Sep	 1	 [cited	 2018	 Sep	

18];78(17):5094–106.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/30026325	

208.		 Cheong	HT,	Xu	F,	Choy	CT,	Hui	CWC,	Mok	TSK,	Wong	CH.	Upregulation	of	Bcl2	in	NSCLC	

with	acquired	resistance	to	EGFR-TKI.	Oncol	Lett	[Internet].	2017	Nov	9	[cited	2018	Sep	

18];15(1):901–7.	 Available	 from:	 http://www.spandidos-

publications.com/10.3892/ol.2017.7377	

209.		 Byers	LA,	Diao	L,	Wang	J,	Saintigny	P,	Girard	L,	Peyton	M,	et	al.	An	epithelial-mesenchymal	

transition	gene	signature	predicts	resistance	to	EGFR	and	PI3K	inhibitors	and	identifies	

Axl	as	a	 therapeutic	 target	 for	 overcoming	EGFR	 inhibitor	 resistance.	 Clin	Cancer	Res.	

2013;19(1):279–90.		

210.		 Yuan	H,	Wang	Z,	Gao	C,	 Chen	W,	Huang	Q,	Yee	 J-K,	 et	 al.	BCR-ABL	Gene	Expression	 Is	

Required	for	Its	Mutations	in	a	Novel	KCL-22	Cell	Culture	Model	for	Acquired	Resistance	

of	Chronic	Myelogenous	Leukemia.	J	Biol	Chem	[Internet].	2010	Feb	12	[cited	2018	Aug	

25];285(7):5085–96.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/20007699	

211.		 Huang	L,	Fu	L.	Mechanisms	of	resistance	to	EGFR	tyrosine	kinase	inhibitors.	Acta	Pharm	

Sin	 B	 [Internet].	 2015	 Sep	 1	 [cited	 2018	 Aug	 25];5(5):390–401.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S2211383515001045	

212.		 Hata	AN,	Niederst	MJ,	Archibald	HL,	Gomez-Caraballo	M,	Siddiqui	FM,	Mulvey	HE,	et	al.	

Tumor	 cells	 can	 follow	 distinct	 evolutionary	 paths	 to	 become	 resistant	 to	 epidermal	

growth	 factor	 receptor	 inhibition.	 Nat	 Med	 [Internet].	 2016	 Mar	 1	 [cited	 2018	 Aug	

25];22(3):262–9.	Available	from:	http://www.nature.com/articles/nm.4040	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-368-	

213.		 Chang	M.	Tamoxifen	Resistance	in	Breast	Cancer.	Biomol	Ther	(Seoul)	[Internet].	2012	

May	 6;20(3):256–67.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794521/	

214.		 Knight	WA,	Livingston	RB,	Gregory	EJ,	McGuire	WL.	Estrogen	Receptor	as	an	Independent	

Prognostic	Factor	for	Early	Recurrence	in	Breast	Cancer.	Cancer	Res	[Internet].	1977	Dec	

1;37(12):4669	 LP-4671.	 Available	 from:	

http://cancerres.aacrjournals.org/content/37/12/4669.abstract	

215.		 Mangelsdorf	DJ,	Thummel	C,	Beato	M,	Herrlich	P,	Schutz	G,	Umesono	K,	et	al.	The	nuclear	

receptor	superfamily:	the	second	decade.	Cell.	1995	Dec;83(6):835–9.		

216.		 Sever	 R,	 Glass	 CK.	 Signaling	 by	 Nuclear	 Receptors.	 Cold	 Spring	 Harb	 Perspect	 Biol	

[Internet].	 2013	 Mar;5(3):a016709.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578364/	

217.		 Wu	 Q,	 Chambliss	 K,	 Umetani	 M,	 Mineo	 C,	 Shaul	 PW.	 Non-nuclear	 estrogen	 receptor	

signaling	in	the	endothelium.	J	Biol	Chem.	2011	Apr;286(17):14737–43.		

218.		 Klinge	CM.	Estrogen	receptor	interaction	with	estrogen	response	elements.	Nucleic	Acids	

Res	 [Internet].	 2001	 Jul	 15;29(14):2905–19.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC55815/	

219.		 Nilsson	S,	Makela	S,	Treuter	E,	Tujague	M,	Thomsen	J,	Andersson	G,	et	al.	Mechanisms	of	

estrogen	action.	Physiol	Rev.	2001	Oct;81(4):1535–65.		

220.		 Misiti	 S,	 Schomburg	 L,	 Yen	 PM,	 Chin	 WW.	 Expression	 and	 hormonal	 regulation	 of	

coactivator	and	corepressor	genes.	Endocrinology.	1998	May;139(5):2493–500.		

221.		 Jordan	 VC,	 O’Malley	 BW.	 Selective	 Estrogen-Receptor	 Modulators	 and	 Antihormonal	

Resistance	 in	 Breast	 Cancer.	 J	 Clin	 Oncol	 [Internet].	 2007	 Dec	 20;25(36):5815–24.	

Available	from:	https://doi.org/10.1200/JCO.2007.11.3886	

222.		 Feng	Q,	O’Malley	BW.	Nuclear	Receptor	Modulation	 -	Role	of	Coregulators	 in	Selective	

Estrogen	Receptor	Modulator	(SERM)	Actions.	Steroids	[Internet].	2014	Nov	16;90:39–

43.	Available	from:	http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192004/	

223.		 Chen	D,	Ma	H,	Hong	H,	Koh	SS,	Huang	SM,	Schurter	BT,	et	al.	Regulation	of	transcription	

by	a	protein	methyltransferase.	Science.	1999	Jun;284(5423):2174–7.		

224.		 Nagy	 L,	 Kao	 HY,	 Chakravarti	 D,	 Lin	 RJ,	 Hassig	 CA,	 Ayer	 DE,	 et	 al.	 Nuclear	 receptor	

repression	mediated	by	a	complex	containing	SMRT,	mSin3A,	and	histone	deacetylase.	

Cell.	1997	May;89(3):373–80.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-369-	

225.		 Spencer	 TE,	 Jenster	 G,	 Burcin	MM,	Allis	 CD,	 Zhou	 J,	Mizzen	CA,	 et	 al.	 Steroid	 receptor	

coactivator-1	is	a	histone	acetyltransferase.	Nature.	1997	Sep;389(6647):194–8.		

226.		 Zwart	W,	Theodorou	V,	Kok	M,	Canisius	S,	Linn	S,	Carroll	JS.	Oestrogen	receptor-co-factor-

chromatin	 specificity	 in	 the	 transcriptional	 regulation	 of	 breast	 cancer.	 EMBO	 J.	 2011	

Oct;30(23):4764–76.		

227.		 Lydon	 JP,	 O’Malley	 BW.	 Minireview:	 Steroid	 Receptor	 Coactivator-3:	 A	 Multifarious	

Coregulator	 in	 Mammary	 Gland	Metastasis.	 Endocrinology	 [Internet].	 2011	 Jan	 [cited	

2018	 Aug	 23];152(1):19–25.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/21047941	

228.		 Horlein	AJ,	Naar	AM,	Heinzel	T,	Torchia	J,	Gloss	B,	Kurokawa	R,	et	al.	Ligand-independent	

repression	by	the	thyroid	hormone	receptor	mediated	by	a	nuclear	receptor	co-repressor.	

Nature.	1995	Oct;377(6548):397–404.		

229.		 Chen	JD,	Evans	RM.	A	transcriptional	co-repressor	that	interacts	with	nuclear	hormone	

receptors.	Nature.	1995	Oct;377(6548):454–7.		

230.		 Wen	 YD,	 Perissi	 V,	 Staszewski	 LM,	 Yang	 WM,	 Krones	 A,	 Glass	 CK,	 et	 al.	 The	 histone	

deacetylase-3	complex	contains	nuclear	receptor	corepressors.	Proc	Natl	Acad	Sci	U	S	A.	

2000	Jun;97(13):7202–7.		

231.		 Lloyd-Lewis	B,	Harris	OB,	Watson	CJ,	Davis	FM.	Mammary	Stem	Cells:	Premise,	Properties,	

and	Perspectives.	Trends	Cell	Biol.	2017	Aug;27(8):556–67.		

232.		 Rios	AC,	Fu	NY,	Lindeman	GJ,	Visvader	JE.	In	situ	identification	of	bipotent	stem	cells	in	

the	mammary	gland.	Nature.	2014	Feb;506(7488):322–7.		

233.		 Scheele	CLGJ,	Hannezo	E,	Muraro	MJ,	Zomer	A,	Langedijk	NSM,	van	Oudenaarden	A,	et	al.	

Identity	and	dynamics	of	mammary	stem	cells	during	branching	morphogenesis.	Nature	

[Internet].	 2017	 Feb	 16;542(7641):313–7.	 Available	 from:	

http://dx.doi.org/10.1038/nature21046	

234.		 Asselin-Labat	M-L,	Sutherland	KD,	Barker	H,	Thomas	R,	Shackleton	M,	Forrest	NC,	et	al.	

Gata-3	 is	 an	 essential	 regulator	 of	 mammary-gland	 morphogenesis	 and	 luminal-cell		

differentiation.	Nat	Cell	Biol.	2007	Feb;9(2):201–9.		

235.		 Manavathi	B,	 Samanthapudi	VSK,	Gajulapalli	VNR.	Estrogen	 receptor	 coregulators	 and	

pioneer	 factors:	 the	 orchestrators	 of	 mammary	 gland	 cell	 fate	 and	 development				

[Internet].	Vol.	2,	Frontiers	 in	Cell	and	Developmental	Biology	 	 .	2014.	p.	34.	Available	

from:	https://www.frontiersin.org/article/10.3389/fcell.2014.00034	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-370-	

236.		 Jozwik	KM,	Carroll	 JS.	Pioneer	 factors	 in	hormone-dependent	cancers.	Nat	Rev	Cancer.	

2012	May;12(6):381–5.		

237.		 Kouros-Mehr	H,	Slorach	EM,	Sternlicht	MD,	Werb	Z.	GATA-3	maintains	the	differentiation	

of	the	luminal	cell	fate	in	the	mammary	gland.	Cell.	2006	Dec;127(5):1041–55.		

238.		 Hurtado	 A,	 Holmes	 KA,	 Ross-Innes	 CS,	 Schmidt	 D,	 Carroll	 JS.	 FOXA1	 is	 a	 critical	

determinant	of	Estrogen	Receptor	function	and	endocrine	response.	Nat	Genet	[Internet].	

2011	 Jan	 12;43(1):27–33.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024537/	

239.		 Bernardo	GM,	Lozada	KL,	Miedler	JD,	Harburg	G,	Hewitt	SC,	Mosley	JD,	et	al.	FOXA1	is	an	

essential	 determinant	 of	 ERalpha	 expression	 and	 mammary	 ductal	 morphogenesis.	

Development.	2010	Jun;137(12):2045–54.		

240.		 Davies	C,	Godwin	J,	Gray	R,	Clarke	M,	Cutter	D,	Darby	S,	et	al.	Relevance	of	breast	cancer	

hormone	receptors	and	other	factors	to	the	efficacy	of	adjuvant	tamoxifen:	patient-level	

meta-analysis	of	randomised	trials.	Lancet	(London,	England).	2011	Aug;378(9793):771–

84.		

241.		 Cronin-Fenton	DP,	Damkier	P,	Lash	TL.	Metabolism	and	transport	of	tamoxifen	in	relation	

to	its	effectiveness:	new	perspectives	on	an	ongoing	controversy.	Future	Oncol	[Internet].	

2014	 Jan;10(1):107–22.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319217/	

242.		 Jeselsohn	 R,	 Cornwell	M,	 Pun	M,	 Buchwalter	 G,	 Nguyen	M,	 Bango	 C,	 et	 al.	 Embryonic	

transcription	factor	SOX9	drives	breast	cancer	endocrine	resistance.	Proc	Natl	Acad	Sci		

[Internet].	 2017	 May	 30;114(22):E4482–91.	 Available	 from:	

http://www.pnas.org/content/114/22/E4482.abstract	

243.		 Croxtall	JD,	McKeage	K.	Fulvestrant:	a	review	of	its	use	in	the	management	of	hormone	

receptor-positive	 metastatic	 breast	 cancer	 in	 postmenopausal	 women.	 Drugs.	 2011	

Feb;71(3):363–80.		

244.		 Lee	 CI,	 Goodwin	 A,	 Wilcken	 N.	 Fulvestrant	 for	 hormone-sensitive	 metastatic	 breast	

cancer.	Cochrane	database	Syst	Rev.	2017	Jan;1:CD011093.		

245.		 Fabian	CJ.	The	what,	why	and	how	of	aromatase	inhibitors:	hormonal	agents	for	treatment	

and	prevention	of	breast	cancer.	 Int	 J	Clin	Pract	 [Internet].	2007	Dec;61(12):2051–63.	

Available	from:	http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228389/	

246.		 Cuzick	J,	Sestak	I,	Baum	M,	Buzdar	A,	Howell	A,	Dowsett	M,	et	al.	Effect	of	anastrozole	and	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-371-	

tamoxifen	as	adjuvant	treatment	for	early-stage	breast	 	cancer:	10-year	analysis	of	the	

ATAC	trial.	Lancet	Oncol.	2010	Dec;11(12):1135–41.		

247.		 Ciruelos	E,	Pascual	T,	Arroyo	Vozmediano	ML,	Blanco	M,	Manso	L,	Parrilla	L,	et	al.	The	

therapeutic	role	of	 fulvestrant	 in	 the	management	of	patients	with	hormone	receptor-

positive	breast	cancer.	The	Breast	[Internet].	2014	Jun	1	[cited	2018	Aug	22];23(3):201–

8.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S0960977614000174	

248.		 Ross-innes	CS,	Stark	R,	Teschendorff	AE,	Holmes	K	a,	Raza	H,	Dunning	MJ,	et	al.	Differential	

oestrogen	receptor	binding	is	associated	with	clinical	outcome	in	breast	cancer.	Nature.	

2012;481(7381):389–93.		

249.		 Rastelli	F,	Crispino	S.	Factors	predictive	of	response	to	hormone	therapy	in	breast	cancer.	

Tumori	 [Internet].	 [cited	 2018	 Aug	 23];94(3):370–83.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/18705406	

250.		 Liu	H,	Lee	E-S,	De	Los	Reyes	A,	Zapf	JW,	Craig	Jordan	V.	Silencing	and	Reactivation	of	the	

Selective	Estrogen	Receptor	Modulator-Estrogen	Receptor	Complex	1	[Internet].	Vol.	61,	

CANCER	 RESEARCH.	 2001	 [cited	 2018	 Aug	 23].	 Available	 from:	

http://cancerres.aacrjournals.org/content/canres/61/9/3632.full.pdf	

251.		 Saxena	NK,	Sharma	D.	Epigenetic	Reactivation	of	Estrogen	Receptor:	Promising	Tools	for	

Restoring	Response	 to	Endocrine	Therapy.	Mol	Cell	 Pharmacol	 [Internet].	 2010	 [cited	

2018	 Aug	 23];2(5):191–202.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/21499573	

252.		 Zhou	Q,	Atadja	P,	Davidson	NE.	Histone	deacetylase	inhibitor	LBH589	reactivates	silenced	

estrogen	 receptor	 alpha	 (ER)	 gene	 expression	without	 loss	 of	 DNA	 hypermethylation.	

Cancer	 Biol	 Ther	 [Internet].	 2007	 Jan	 [cited	 2018	 Aug	 23];6(1):64–9.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/17172825	

253.		 Yang	 X,	 Phillips	 DL,	 Ferguson	 AT,	 Nelson	 WG,	 Herman	 JG,	 Davidson	 NE.	 Synergistic	

activation	 of	 functional	 estrogen	 receptor	 (ER)-alpha	 by	 DNA	 methyltransferase	 and	

histone	deacetylase	inhibition	in	human	ER-alpha-negative	breast	cancer	cells.	Cancer	Res	

[Internet].	 2001	 Oct	 1	 [cited	 2018	 Aug	 23];61(19):7025–9.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/11585728	

254.		 Munster	PN,	Thurn	KT,	Thomas	S,	Raha	P,	Lacevic	M,	Miller	A,	et	al.	A	phase	II	study	of	the	

histone	deacetylase	 inhibitor	vorinostat	combined	with	tamoxifen	 for	 the	 treatment	of	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-372-	

patients	with	hormone	therapy-resistant	breast	cancer.	Br	J	Cancer	[Internet].	2011	Jun	7	

[cited	 2018	 Aug	 23];104(12):1828–35.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/21559012	

255.		 Riggins	RB,	Schrecengost	RS,	Guerrero	MS,	Bouton	AH.	Pathways	to	Tamoxifen	Resistance.	

2008;256(1):1–24.		

256.		 Schiff	R,	Massarweh	SA,	Shou	J,	Bharwani	L,	Mohsin	SK,	Osborne	CK.	Cross-talk	between	

estrogen	 receptor	 and	 growth	 factor	 pathways	 as	 a	 molecular	 target	 for	 overcoming	

endocrine	resistance.	Clin	Cancer	Res	[Internet].	2004	Jan	1	[cited	2018	Aug	23];10(1	Pt	

2):331S–6S.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/14734488	

257.		 Chen	M,	Cui	Y-K,	Huang	W-H,	Man	K,	Zhang	G-J.	Phosphorylation	of	estrogen	receptor	α	at	

serine	118	is	correlated	with	breast	cancer	resistance	to	tamoxifen.	Oncol	Lett	[Internet].	

2013	 Jul	 [cited	 2018	 Aug	 23];6(1):118–24.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23946788	

258.		 Massarweh	S,	Osborne	CK,	Creighton	CJ,	Qin	L,	Tsimelzon	A,	Huang	S,	et	al.	Tamoxifen	

resistance	in	breast	tumors	is	driven	by	growth	factor	receptor	signaling	with	repression	

of	classic	estrogen	receptor	genomic	function.	Cancer	Res	[Internet].	2008	Feb	1	[cited	

2018	 Aug	 23];68(3):826–33.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/18245484	

259.		 Heldring	N,	Nilsson	M,	Buehrer	B,	Treuter	E,	Gustafsson	J-A.	Identification	of	tamoxifen-

induced	coregulator	 interaction	surfaces	within	 the	 ligand-binding	domain	of	estrogen	

receptors.	 Mol	 Cell	 Biol	 [Internet].	 2004	 Apr	 [cited	 2018	 Aug	 23];24(8):3445–59.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/15060164	

260.		 Joel	PB,	Smith	J,	Sturgill	TW,	Fisher	TL,	Blenis	J,	Lannigan	DA.	pp90rsk1	regulates	estrogen	

receptor-mediated	 transcription	 through	 phosphorylation	 of	 Ser-167.	 Mol	 Cell	 Biol	

[Internet].	 1998	 Apr	 [cited	 2018	 Aug	 23];18(4):1978–84.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/9528769	

261.		 Bunone	 G,	 Briand	 PA,	 Miksicek	 RJ,	 Picard	 D.	 Activation	 of	 the	 unliganded	 estrogen	

receptor	by	EGF	involves	the	MAP	kinase	pathway	and	direct	phosphorylation.	EMBO	J	

[Internet].	 1996	 May	 1	 [cited	 2018	 Aug	 23];15(9):2174–83.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/8641283	

262.		 Shou	 J,	 Massarweh	 S,	 Osborne	 CK,	Wakeling	 AE,	 Ali	 S,	Weiss	 H,	 et	 al.	 Mechanisms	 of	

Tamoxifen	Resistance:	Increased	Estrogen	Receptor-HER2/neu	Cross-Talk	in	ER/HER2-



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-373-	

Positive	Breast	Cancer.	JNCI	J	Natl	Cancer	Inst	[Internet].	2004	Jun	16	[cited	2018	Aug	

23];96(12):926–35.	 Available	 from:	 https://academic.oup.com/jnci/article-

lookup/doi/10.1093/jnci/djh166	

263.		 Johnston	S,	Pippen	J,	Pivot	X,	Lichinitser	M,	Sadeghi	S,	Dieras	V,	et	al.	Lapatinib	Combined	

With	Letrozole	Versus	Letrozole	and	Placebo	As	First-Line	Therapy	for	Postmenopausal	

Hormone	Receptor–Positive	Metastatic	Breast	Cancer.	J	Clin	Oncol	[Internet].	2009	Nov	

20	 [cited	 2018	 Aug	 23];27(33):5538–46.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19786658	

264.		 Martin	MB,	Franke	TF,	Stoica	GE,	Chambon	P,	Katzenellenbogen	BS,	Stoica	BA,	et	al.	A	Role	

for	Akt	in	Mediating	the	Estrogenic	Functions	of	Epidermal	Growth	Factor	and	Insulin-

Like	 Growth	 Factor	 I	 1.	 Endocrinology	 [Internet].	 2000	 Dec	 [cited	 2018	 Aug	

23];141(12):4503–11.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/11108261	

265.		 Creighton	CJ,	Fu	X,	Hennessy	BT,	Casa	AJ,	Zhang	Y,	Gonzalez-Angulo	AM,	et	al.	Proteomic	

and	transcriptomic	profiling	reveals	a	link	between	the	PI3K	pathway	and	lower	estrogen-

receptor	(ER)	levels	and	activity	in	ER+	breast	cancer.	Breast	Cancer	Res	[Internet].	2010	

Jun	 22	 [cited	 2018	 Aug	 23];12(3):R40.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20569503	

266.		 Miller	 TW,	 Balko	 JM,	 Arteaga	 CL.	 Phosphatidylinositol	 3-Kinase	 and	 Antiestrogen	

Resistance	 in	 Breast	 Cancer.	 J	 Clin	 Oncol	 [Internet].	 2011	 Nov	 20	 [cited	 2018	 Aug	

23];29(33):4452–61.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/22010023	

267.		 Sommer	S,	Fuqua	SA.	Estrogen	receptor	and	breast	cancer.	Semin	Cancer	Biol	[Internet].	

2001	 Oct	 [cited	 2018	 Aug	 23];11(5):339–52.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/11562176	

268.		 Murphy	LC,	Simon	SL,	Parkes	A,	Leygue	E,	Dotzlaw	H,	Snell	L,	et	al.	Altered	expression	of	

estrogen	 receptor	 coregulators	 during	 human	 breast	 tumorigenesis.	 Cancer	 Res	

[Internet].	 2000	 Nov	 15	 [cited	 2018	 Aug	 23];60(22):6266–71.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/11103781	

269.		 Harigopal	M,	Heymann	J,	Ghosh	S,	Anagnostou	V,	Camp	RL,	Rimm	DL.	Estrogen	receptor	

co-activator	(AIB1)	protein	expression	by	automated	quantitative	analysis	(AQUA)	in	a	

breast	cancer	tissue	microarray	and	association	with	patient	outcome.	Breast	Cancer	Res	

Treat	 [Internet].	 2009	 May	 3	 [cited	 2018	 Aug	 23];115(1):77–85.	 Available	 from:	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-374-	

http://link.springer.com/10.1007/s10549-008-0063-9	

270.		 Redmond	AM,	Bane	FT,	Stafford	AT,	McIlroy	M,	Dillon	MF,	Crotty	TB,	et	al.	Coassociation	

of	 Estrogen	 Receptor	 and	p160	 Proteins	 Predicts	Resistance	 to	 Endocrine	 Treatment;	

SRC-1	 is	 an	 Independent	 Predictor	 of	 Breast	 Cancer	 Recurrence.	 Clin	 Cancer	 Res	

[Internet].	 2009	 Mar	 10	 [cited	 2018	 Aug	 23];15(6):2098–106.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19276281	

271.		 Haugan	Moi	LL,	Flågeng	MH,	Gandini	S,	Guerrieri-Gonzaga	A,	Bonanni	B,	Lazzeroni	M,	et	

al.	 Cancer	 Therapy:	 Clinical	 Effect	 of	 Low-Dose	 Tamoxifen	 on	 Steroid	 Receptor	

Coactivator	 3/Amplified	 in	 Breast	 Cancer	 1	 in	 Normal	 and	 Malignant	 Human	 Breast	

Tissue.	2010	[cited	2018	Aug	23];	Available	from:	www.aacrjournals.org	

272.		 Hurtado	 A,	 Holmes	 K	 a,	 Geistlinger	 TR,	 Hutcheson	 IR,	 Nicholson	 RI,	 Brown	 M,	 et	 al.	

Regulation	 of	 ERBB2	 by	 oestrogen	 receptor-PAX2	 determines	 response	 to	 tamoxifen.	

Nature.	2008;456(7222):663–6.		

273.		 Mohammed	H,	Russell	IA,	Stark	R,	Rueda	OM,	Hickey	TE,	Tarulli	G	a.,	et	al.	Progesterone	

receptor	modulates	ERα	action	in	breast	cancer.	Nature.	2015;		

274.		 Wicha	MS,	Liu	S,	Dontu	G.	Cancer	stem	cells:	An	old	idea	-	A	paradigm	shift.	Cancer	Res.	

2006;66(4):1883–90.		

275.		 Clarke	MF,	Hass	AT.	Cancer	Stem	Cells.	 In:	Encyclopedia	of	Molecular	Cell	Biology	and	

Molecular	Medicine	[Internet].	Weinheim,	Germany:	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA;	

2006	 [cited	 2018	 Aug	 24].	 Available	 from:	

http://doi.wiley.com/10.1002/3527600906.mcb.200300130	

276.		 Simões	BM,	Piva	M,	Iriondo	O,	Comaills	V,	López-Ruiz	JA,	Zabalza	I,	et	al.	Effects	of	estrogen	

on	the	proportion	of	stem	cells	in	the	breast.	Breast	Cancer	Res	Treat	[Internet].	2011	Aug	

22	 [cited	 2018	 Aug	 24];129(1):23–35.	 Available	 from:	

http://link.springer.com/10.1007/s10549-010-1169-4	

277.		 Piva	M,	Domenici	G,	Iriondo	O,	Rábano	M,	Simões	BM,	Comaills	V,	et	al.	Sox2	promotes	

tamoxifen	resistance	in	breast	cancer	cells.	EMBO	Mol	Med	[Internet].	2014	Jan	1	[cited	

2018	 Aug	 24];6(1):66–79.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/24178749	

278.		 Santini	R,	Pietrobono	S,	Pandolfi	S,	Montagnani	V,	D’Amico	M,	Penachioni	JY,	et	al.	SOX2	

regulates	self-renewal	and	tumorigenicity	of	human	melanoma-initiating	cells.	Oncogene.	

2014;(August	2013):1–12.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-375-	

279.		 Schaefer	 SM,	 Segalada	C,	 Cheng	PF,	Bonalli	M,	Parfejevs	V,	 Levesque	MP,	 et	 al.	 Sox2	 is	

dispensable	for	primary	melanoma	and	metastasis	formation.	Oncogene	[Internet].	2017	

Aug	 3	 [cited	 2018	 Aug	 24];36(31):4516–24.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/28368416	

280.		 Takahashi	K,	Yamanaka	S.	Induction	of	Pluripotent	Stem	Cells	from	Mouse	Embryonic	and	

Adult	Fibroblast	Cultures	by	Defined	Factors.	Cell.	2006;126(4):663–76.		

281.		 Gwak	 JM,	 Kim	 M,	 Kim	 HJ,	 Jang	 MH,	 Park	 SY.	 Expression	 of	 embryonal	 stem	 cell	

transcription	factors	in	breast	cancer:	Oct4	as	an	indicator	for	poor	clinical	outcome	and	

tamoxifen	 resistance.	 Oncotarget	 [Internet].	 2017	 May	 30	 [cited	 2018	 Aug	

24];8(22):36305–18.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/28422735	

282.		 Bhatt	S,	Stender	JD,	Joshi	S,	Wu	G,	Katzenellenbogen	BS.	OCT-4:	a	novel	estrogen	receptor-

α	 collaborator	 that	 promotes	 tamoxifen	 resistance	 in	 breast	 cancer	 cells.	 Oncogene	

[Internet].	 2016	 Nov	 11	 [cited	 2018	 Aug	 24];35(44):5722–34.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/27065334	

283.		 Gurel	B,	Ali	TZ,	Montgomery	EA,	Begum	S,	Hicks	J,	Goggins	M,	et	al.	NKX3.1	as	a	Marker	of	

Prostatic	Origin	in	Metastatic	Tumors.	Am	J	Surg	Pathol	[Internet].	2010	Aug	[cited	2018	

Aug	 24];34(8):1097–105.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20588175	

284.		 Jia	Y,	Zhou	J,	Luo	X,	Chen	M,	Chen	Y,	Wang	J,	et	al.	KLF4	overcomes	tamoxifen	resistance	

by	suppressing	MAPK	signaling	pathway	and	predicts	good	prognosis	in	breast	cancer.	

Cell	 Signal	 [Internet].	 2018	 Jan	 1	 [cited	 2018	 Aug	 24];42:165–75.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S0898656817302590?via%3Dihub	

285.		 Stone	A,	Zotenko	E,	Locke	WJ,	Korbie	D,	Millar	EKA,	Pidsley	R,	et	al.	DNA	methylation	of	

oestrogen-regulated	 enhancers	 defines	 endocrine	 sensitivity	 in	 breast	 cancer.	 Nat	

Commun	 [Internet].	 2015	 Dec	 14	 [cited	 2018	 Aug	 25];6(1):7758.	 Available	 from:	

http://www.nature.com/articles/ncomms8758	

286.		 Kashyap	V,	Rezende	NC,	Scotland	KB,	Shaffer	SM,	Persson	JL,	Gudas	LJ,	et	al.	Regulation	of	

stem	 cell	 pluripotency	 and	 differentiation	 involves	 a	mutual	 regulatory	 circuit	 of	 the	

NANOG,	OCT4,	 and	SOX2	pluripotency	 transcription	 factors	with	polycomb	 repressive	

complexes	and	stem	cell	microRNAs.	Stem	Cells	Dev	[Internet].	2009	Sep	[cited	2018	Aug	

25];18(7):1093–108.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/19480567	

287.		 Schmidt	 R,	 Plath	 K.	 The	 roles	 of	 the	 reprogramming	 factors	 Oct4,	 Sox2	 and	 Klf4	 in	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-376-	

resetting	 the	 somatic	 cell	 epigenome	during	 induced	pluripotent	stem	cell	 generation.	

Genome	Biol	 [Internet].	 2012	Oct	22	 [cited	2018	Aug	24];13(10):251.	Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23088445	

288.		 Wu	Y,	Zhang	Z,	Cenciarini	ME,	Proietti	CJ,	Amasino	M,	Hong	T,	et	al.	Tamoxifen	Resistance	

in	Breast	Cancer	Is	Regulated	by	the	EZH2-ERα-GREB1	Transcriptional	Axis.	Cancer	Res	

[Internet].	 2018	 Feb	 1	 [cited	 2018	 Aug	 25];78(3):671–84.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/29212856	

289.		 Cassidy	 JW,	 Batra	 AS,	 Greenwood	W,	 Bruna	 A.	 Patient-derived	 tumour	 xenografts	 for	

breast	cancer	drug	discovery.	Endocr	Relat	Cancer.	2016	Dec;23(12):T259–70.		

290.		 Soule	HD,	Vazquez	 J,	 Long	A,	Albert	 S,	Brennan	M.	A	Human	Cell	 Line	From	a	Pleural	

Effusion	Derived	From	a	Breast	Carcinoma	1,2.	1973;51(5):1409–16.		

291.		 Lacroix	 M,	 Leclercq	 G.	 Relevance	 of	 Breast	 Cancer	 Cell	 Lines	 as	 Models	 for	 Breast	

Tumours:	An	Update.	Breast	Cancer	Res	Treat.	2004;83(3):249–89.		

292.		 Carter	P,	Presta	L,	Gorman	CM,	Ridgway	JB,	Henner	D,	Wong	WL,	et	al.	Humanization	of	

an	anti-p185HER2	antibody	 for	human	cancer	 therapy.	Proc	Natl	Acad	Sci	U	S	A.	1992	

May;89(10):4285–9.		

293.		 Heiser	 LM,	 Sadanandam	 A,	 Kuo	W-L,	 Benz	 SC,	 Goldstein	 TC,	 Ng	 S,	 et	 al.	 Subtype	 and	

pathway	specific	responses	to	anticancer	compounds	in	breast	cancer.	Proc	Natl	Acad	Sci	

U	S	A.	2012	Feb;109(8):2724–9.		

294.		 Polyak	K.	Molecular	alterations	in	ductal	carcinoma	in	situ	of	the	breast.	Curr	Opin	Oncol.	

2002;14(1):92–6.		

295.		 Reya	T,	Morrison	SJ,	Clarke	MF,	Weissman	IL.	Stem	cells,	cancer,	and	cancer	stem	cells.	

Nature.	2001	Nov;414(6859):105–11.		

296.		 Tufegdzic-Vidakovic	A,	Rueda	OM,	Vervoort	SJ,	Batra	AS,	Goldgraben	MA,	Uribe-Lewis	S,	

et	 al.	 Context-Specific	 Effects	 of	 TGF-	 b	 /	 SMAD3	 in	 Cancer	 Are	 Modulated	 by	 the	

Epigenome	Article	Context-Specific	Effects	of	TGF-	b	/	SMAD3	in	Cancer	Are	Modulated	

by	the	Epigenome.	CellReports.	2015;13(11):2480–90.		

297.		 Cardi	RD,	Anver	MR,	Gusterson	BA,	Hennighausen	L,	 Jensen	RA,	Merino	MJ,	 et	 al.	 The	

mammary	 pathology	 of	 genetically	 engineered	 mice :	 the	 consensus	 report	 and	

recommendations	from	the	Annapolis	meeting	{.	2000;968–88.		

298.		 Vargo-gogola	 T,	 Rosen	 JM.	 Modelling	 breast	 cancer :	 one	 size	 does	 not	 fit	 all.	

2007;7(september):659–72.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-377-	

299.		 Wyckoff	 JB,	Wang	 Y,	 Lin	 EY,	 Li	 J,	 Goswami	 S,	 Stanley	 ER,	 et	 al.	 Direct	 Visualization	 of	

Macrophage-Assisted	Tumor	Cell	Intravasation	in	Mammary	Tumors.	2007;(6):2649–57.		

300.		 Medina	D,	Thompson	HJ.	A	Comparison	of	the	Salient	Features	of	Mouse,	Rat,	and	Human	

Mammary	 Tumorigenesis.	 In:	 Ip	 MM,	 Asch	 BB,	 editors.	 Methods	 in	 Mammary	 Gland	

Biology	and	Breast	Cancer	Research.	Boston,	MA:	Springer	US;	2000.	p.	31–6.		

301.		 Dabydeen	SA,	Furth	PA.	Genetically	engineered	ERα-positive	breast	cancer	mouse	models.	

Endocrine-Related	Cancer	.	2014	Jun;21(3):R195–208.		

302.		 Sato	T,	Vries	RG,	Snippert	HJ,	van	de	Wetering	M,	Barker	N,	Stange	DE,	et	al.	Single	Lgr5	

stem	cells	 build	 crypt–villus	structures	 in	 vitro	without	 a	mesenchymal	niche.	Nature.	

2009	May;459(7244):262–5.		

303.		 Huch	M,	Bonfanti	P,	Boj	SF,	Sato	T,	Loomans	CJM,	Wetering	M	Van	De,	et	al.	Unlimited	in	

vitro	 expansion	of	adult	 bi-potent	pancreas	progenitors	 through	 the	Lgr5	 /	R-spondin	

axis.	EMBO	J.	2013;32(20):2708–21.		

304.		 Huch	M,	Gehart	H,	 van	Boxtel	R,	Hamer	K,	Blokzijl	 F,	Verstegen	MM,	 et	 al.	 Long-Term	

Culture	 of	 Genome-Stable	 Bipotent	 Stem	 Cells	 from	 Adult	 Human	 Liver.	 Cell.	 2015	

Jan;160(1–2):299–312.		

305.		 van	de	Wetering	M,	Francies	HE,	Francis	JM,	Bounova	G,	Iorio	F,	Pronk	A,	et	al.	Prospective	

Derivation	 of	 a	 Living	 Organoid	 Biobank	 of	 Colorectal	 Cancer	 Patients.	 Cell.	 2015	

May;161(4):933–45.		

306.		 Bergamaschi	 A,	 Hjortland	 GO,	 Triulzi	 T,	 Sørlie	 T,	 Johnsen	 H,	 Ree	 AH,	 et	 al.	Molecular	

profiling	 and	 characterization	 of	 luminal-like	 and	 basal-like	 in	 vivo	 breast	 cancer	

xenograft	models.	Mol	Oncol.	2009	Dec;3(5–6):469–82.		

307.		 DeRose	YS,	Wang	G,	Lin	Y-C,	Bernard	PS,	Buys	SS,	Ebbert	MTW,	et	al.	Tumor	grafts	derived	

from	women	with	breast	cancer	authentically	reflect	tumor	pathology,	growth,	metastasis	

and	disease	outcomes.	Nat	Med.	2011	Jan;17(11):1514–20.		

308.		 Siolas	D,	Hannon	GJ.	Patient	Derived	Tumor	Xenografts:	transforming	clinical	samples	into	

mouse	models.	Cancer	Res.	2013	Sep;73(17):5315–9.		

309.		 Zhang	X,	Claerhout	S,	Prat	A,	Dobrolecki	LE,	Petrovic	I,	Lai	Q,	et	al.	A	Renewable	Tissue	

Resource	of	Phenotypically	 Stable,	Biologically	and	Ethnically	Diverse,	 Patient-Derived	

Human	Breast	Cancer	Xenograft	Models.	Cancer	Res.	2013	Jul;73(15):4885–97.		

310.		 Sflomos	G,	Dormoy	V,	Metsalu	T,	Jeitziner	R,	Battista	L,	Scabia	V,	et	al.	A	Preclinical	Model	

for	 ER&#x3b1;-Positive	 Breast	 Cancer	 Points	 to	 the	 Epithelial	 Microenvironment	 as	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-378-	

Determinant	 of	 Luminal	 Phenotype	 and	 Hormone	 Response.	 Cancer	 Cell.	 2016	

Mar;29(3):407–22.		

311.		 Shi	H,	Hugo	W,	Kong	X,	Hong	A,	Koya	RC,	Moriceau	G,	et	al.	Acquired	resistance	and	clonal	

evolution	in	melanoma	during	BRAF	inhibitor	therapy.	Cancer	Discov.	2014;4(1):1–15.		

312.		 Friedman	AA,	Amzallag	A,	Pruteanu-malinici	I,	Baniya	S,	Frederick	T,	Lawrence	DP,	et	al.	

Landscape	of	Targeted	Anti-Cancer	Drug	Synergies	in	Melanoma	Identifies	a	Novel	BRAF-

VEGFR	/	PDGFR	Combination	Treatment.	2015;1–21.		

313.		 HUXLEY	J.	CANCER	BIOLOGY:	COMPARATIVE	and	GENETIC.	Biol	Rev	[Internet].	1956	Nov	

1	 [cited	 2018	 Aug	 25];31(4):474–513.	 Available	 from:	

http://doi.wiley.com/10.1111/j.1469-185X.1956.tb01558.x	

314.		 Muto	T,	Bussey	HJ,	Morson	BC.	The	evolution	of	cancer	of	the	colon	and	rectum.	Cancer	

[Internet].	 1975	 Dec	 [cited	 2018	 Aug	 25];36(6):2251–70.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/1203876	

315.		 Mcgranahan	 N,	 Swanton	 C.	 Leading	 Edge	 Review	 Clonal	 Heterogeneity	 and	 Tumor	

Evolution:	 Past,	 Present,	 and	 the	 Future.	 2017	 [cited	 2018	 Aug	 25];	 Available	 from:	

http://dx.doi.org/10.1016/j.cell.2017.01.018	

316.		 DeSantis	CE,	Ma	J,	Goding	Sauer	A,	Newman	LA,	Jemal	A.	Breast	cancer	statistics,	2017,	

racial	disparity	in	mortality	by	state.	CA	Cancer	J	Clin	[Internet].	2017	Nov	1	[cited	2018	

Aug	25];67(6):439–48.	Available	from:	http://doi.wiley.com/10.3322/caac.21412	

317.		 Coser	KR,	Wittner	BS,	Rosenthal	NF,	Collins	SC,	Melas	A,	Smith	SL,	et	al.	Antiestrogen-

resistant	 subclones	 of	 MCF-7	 human	 breast	 cancer	 cells	 are	 derived	 from	 a	 common	

monoclonal	drug-resistant	progenitor.	Proc	Natl	Acad	Sci	[Internet].	2009	Oct	25	[cited	

2018	 Aug	 22];106(34):14536–41.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/2823256	

318.		 World	Health	Orgnization.	WHO	List	of	Essential	Medicines	[Internet].	2018	[cited	2018	

Aug	 25].	 Available	 from:	

http://www.who.int/medicines/publications/essentialmedicines/en/	

319.		 Yuan	J,	Liu	M,	Yang	L,	Tu	G,	Zhu	Q,	Chen	M,	et	al.	Acquisition	of	epithelial-mesenchymal	

transition	 phenotype	 in	 the	 tamoxifen-resistant	 breast	 cancer	 cell:	 a	 new	 role	 for	 G	

protein-coupled	 estrogen	 receptor	 in	mediating	 tamoxifen	 resistance	 through	 cancer-

associated	 fibroblast-derived	 fibronectin	 and	 β1-integrin	 signaling	 pathway	 in	 tumor	

cells.	Breast	Cancer	Res	[Internet].	2015	May	21	[cited	2018	Aug	22];17(1):69.	Available	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-379-	

from:	http://www.ncbi.nlm.nih.gov/pubmed/25990368	

320.		 Riggins	RB,	Schrecengost	RS,	Guerrero	MS,	Bouton	AH.	Pathways	to	tamoxifen	resistance.	

Cancer	 Lett	 [Internet].	 2007	Oct	 18	 [cited	2018	Aug	 23];256(1):1–24.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/17475399	

321.		 Notas	G,	 Pelekanou	V,	Kampa	M,	Alexakis	K,	 Sfakianakis	 S,	 Laliotis	A,	 et	 al.	 Tamoxifen	

induces	 a	pluripotency	 signature	 in	breast	 cancer	 cells	 and	human	 tumors.	Mol	Oncol	

[Internet].	 2015;9(9):1744–59.	 Available	 from:	

http://www.sciencedirect.com/science/article/pii/S1574789115001234	

322.		 King	M,	Pearson	T,	Shultz	LD,	Leif	J,	Bottino	R,	Trucco	M,	et	al.	A	new	Hu-PBL	model	for	

the	 study	 of	 human	 islet	 alloreactivity	 based	 on	 NOD-scid	 mice	 bearing	 a	 targeted	

mutation	in	the	IL-2	receptor	gamma	chain	gene.	Clin	Immunol	[Internet].	2008	Mar	[cited	

2018	 Sep	 18];126(3):303–14.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/18096436	

323.		 Augsten	M.	 Cancer-associated	 fibroblasts	 as	 another	 polarized	 cell	 type	 of	 the	 tumor	

microenvironment.	Front	Oncol.	2014	Jan;4(March):62.		

324.		 Hu	Y,	Smyth	GK.	ELDA:	Extreme	 limiting	dilution	analysis	 for	comparing	depleted	and	

enriched	populations	in	stem	cell	and	other	assays.	J	Immunol	Methods	[Internet].	2009	

Aug	 15	 [cited	 2018	 Aug	 30];347(1–2):70–8.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19567251	

325.		 Knowlden	JM,	Hutcheson	IR,	Jones	HE,	Madden	T,	Gee	JMW,	Harper	ME,	et	al.	Elevated	

levels	of	epidermal	growth	factor	receptor/c-erbB2	heterodimers	mediate	an	autocrine	

growth	 regulatory	 pathway	 in	 tamoxifen-resistant	 MCF-7	 cells.	 Endocrinology.	

2003;144(3):1032–44.		

326.		 Maximov	PY,	McDaniel	RE,	Fernandes	DJ,	Korostyshevskiy	VR,	Bhatta	P,	Mürdter	TE,	et	al.	

Simulation	with	 cells	 in	 vitro	 of	 tamoxifen	 treatment	 in	 premenopausal	 breast	 cancer	

patients	with	different	 CYP2D6	 genotypes.	 Br	 J	 Pharmacol	 [Internet].	 2014	Dec	 [cited	

2018	 Sep	 1];171(24):5624–35.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/25073551	

327.		 Debnath	 J,	 Muthuswamy	 SK,	 Brugge	 JS.	 Morphogenesis	 and	 oncogenesis	 of	 MCF-10A	

mammary	 epithelial	 acini	 grown	 in	 three-dimensional	 basement	 membrane	 cultures.	

Methods	 [Internet].	 2003	 Jul	 1	 [cited	 2018	 Aug	 30];30(3):256–68.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S104620230300032X?via%3Dihub	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-380-	

328.		 Welm	 BE,	 Dijkgraaf	 GJP,	 Bledau	 AS,	 Welm	 AL,	 Werb	 Z.	 Lentiviral	 Transduction	 of	

Mammary	Stem	Cells	for	Analysis	of	Gene	Function	during	Development	and	Cancer.	Cell	

Stem	 Cell	 [Internet].	 2008	 Jan	 10	 [cited	 2018	 Aug	 26];2(1):90–102.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/18371425	

329.		 Papapetrou	 EP,	 Tomishima	 MJ,	 Chambers	 SM,	 Mica	 Y,	 Reed	 E,	 Menon	 J,	 et	 al.	

Stoichiometric	and	temporal	requirements	of	Oct4,	Sox2,	Klf4,	and	c-Myc	expression	for	

efficient	human	iPSC	induction	and	differentiation.	Proc	Natl	Acad	Sci	[Internet].	2009	Aug	

4	 [cited	 2018	 Aug	 26];106(31):12759–64.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19549847	

330.		 Dull	 T,	 Zufferey	 R,	 Kelly	 M,	 Mandel	 RJ,	 Nguyen	M,	 Trono	 D,	 et	 al.	 A	 third-generation	

lentivirus	vector	with	a	conditional	packaging	system.	J	Virol	[Internet].	1998	Nov	[cited	

2018	 Sep	 1];72(11):8463–71.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/9765382	

331.		 Stewart	SA,	Dykxhoorn	DM,	Palliser	D,	Mizuno	H,	Yu	EY,	An	DS,	et	al.	Lentivirus-delivered	

stable	gene	silencing	by	RNAi	in	primary	cells.	RNA	[Internet].	2003	Apr	[cited	2018	Sep	

1];9(4):493–501.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/12649500	

332.		 Ichim	C	V,	Wells	R	a.	Generation	of	high-titer	viral	preparations	by	concentration	using	

successive	rounds	of	ultracentrifugation.	J	Transl	Med.	2011;9(1):137.		

333.		 Schmittgen	TD,	Livak	KJ.	Analyzing	real-time	PCR	data	by	the	comparative	CT	method.	Nat	

Protoc	 [Internet].	 2008	 Jun	 1	 [cited	 2018	 Sep	 1];3(6):1101–8.	 Available	 from:	

http://www.nature.com/articles/nprot.2008.73	

334.		 Bhang	HC,	Ruddy	DA,	Krishnamurthy	Radhakrishna	V,	Caushi	JX,	Zhao	R,	Hims	MM,	et	al.	

Studying	clonal	dynamics	in	response	to	cancer	therapy	using	high-complexity	barcoding.	

Nat	 Med	 [Internet].	 2015	 Apr	 13	 [cited	 2018	 Aug	 20];21(5):440–8.	 Available	 from:	

http://www.nature.com/doifinder/10.1038/nm.3841	

335.		 Roth	A,	Khattra	J,	Yap	D,	Wan	A,	Laks	E,	Biele	J,	et	al.	PyClone:	statistical	inference	of	clonal	

population	structure	in	cancer.	Nat	Methods.	2014;11(4):396–8.		

336.		 Koboldt	 DC,	 Fulton	 RS,	 McLellan	MD,	 Schmidt	 H,	 Kalicki-Veizer	 J,	 McMichael	 JF,	 et	 al.	

Comprehensive	molecular	portraits	 of	 human	breast	 tumours.	Nature	 [Internet].	 2012	

Sep	 23	 [cited	 2018	 Aug	 26];490(7418):61–70.	 Available	 from:	

http://www.nature.com/doifinder/10.1038/nature11412	

337.		 Cerami	 E,	 Gao	 J,	 Dogrusoz	 U,	 Gross	 BE,	 Sumer	 SO,	 Aksoy	 BA,	 et	 al.	 The	 cBio	 Cancer	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-381-	

Genomics	Portal:	An	open	platform	for	exploring	multidimensional	cancer	genomics	data.	

Cancer	Discov.	2012;2(5):401–4.		

338.		 Gao	J,	Aksoy	BA,	Dogrusoz	U,	Dresdner	G,	Gross	B,	Sumer	SO,	et	al.	Integrative	Analysis	of	

Complex	 Cancer	 Genomics	 and	 Clinical	 Profiles	 Using	 the	 cBioPortal.	 Sci	 Signal.	 2013	

Apr;6(269):pl1-pl1.		

339.		 Huang	M,	Shen	A,	Ding	J,	Geng	M.	Molecularly	targeted	cancer	therapy:	some	lessons	from	

the	past	decade.	Trends	Pharmacol	Sci.	2014	Jan;35(1):41–50.		

340.		 Albino		a	P,	Le	Strange	R,	Oliff		a	I,	Furth	ME,	Old	LJ.	Transforming	ras	genes	from	human	

melanoma:	a	manifestation	of	tumour	heterogeneity?	Nature.	1984;308(5954):69–72.		

341.		 Dontu	G,	El-Ashry	D,	Wicha	MS.	Breast	cancer,	 stem/progenitor	cells	and	 the	estrogen	

receptor.	Trends	Endocrinol	Metab.	2004;15(5):193–7.		

342.		 Sim	 BM,	 Piva	 M,	 Domenici	 G,	 Iriondo	 O,	 Miriam	 R,	 Zabalza	 I,	 et	 al.	 Sox	 2	 promotes	

tamoxifen	resistance	in	breast	cancer	cells.	2014;6(1):66–79.		

343.		 Nawata	 H,	 Bronzert	 D,	 Lippman	 ME.	 Isolation	 and	 characterization	 of	 a	 tamoxifen-

resistant	 cell	 line	 derived	 from	 MCF-7	 human	 breast	 cancer	 cells.	 J	 Biol	 Chem.	

1981;256(10):5016–21.		

344.		 Gutierrez	MC,	Detre	S,	Johnston	S,	Mohsin	SK,	Shou	J,	Allred	DC,	et	al.	Molecular	changes	

in	tamoxifen-resistant	breast	cancer:	Relationship	between	estrogen	receptor,	HER-2,	and	

p38	mitogen-activated	protein	kinase.	J	Clin	Oncol.	2005;23(11):2469–76.		

345.		 Leung	E,	Kannan	N,	Krissansen	GW,	Findlay	MP,	Baguley	BC.	MCF-7	breast	cancer	cells	

selected	 for	 tamoxifen	 resistance	 acquire	 new	 phenotypes	 differing	 in	 DNA	 content,	

phospho-HER2	 and	 PAX2	 expression,	 and	 rapamycin	 sensitivity.	 Cancer	 Biol	 Ther.	

2010;9(9):717–24.		

346.		 Ling	GQ,	Chen	DB,	Wang	BQ,	Zhang	LS.	Expression	of	the	pluripotency	markers	Oct3/4,	

Nanog	and	Sox2	in	human	breast	cancer	cell	lines.	Oncol	Lett.	2012;4(6):1264–8.		

347.		 Gerrits	A,	Dykstra	B,	Kalmykowa	OJ,	Klauke	K,	Verovskaya	E,	Broekhuis	MJC,	et	al.	Cellular	

barcoding	 tool	 for	 clonal	 analysis	 in	 the	 hematopoietic	 system.	 Blood.	

2010;115(13):2610–8.		

348.		 Strober	 W.	 Trypan	 Blue	 Exclusion	 Test	 of	 Cell	 Viability.	 In:	 Current	 Protocols	 in	

Immunology	[Internet].	Hoboken,	NJ,	USA:	John	Wiley	&	Sons,	Inc.;	2001	[cited	2018	Aug	

20].	p.	Appendix	3B.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/18432654	

349.		 Sasson	S.	Equilibrium	binding	analysis	of	estrogen	agonists	and	antagonists:	relation	to	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-382-	

the	activation	of	the	estrogen	receptor.	Pathol	Biol	(Paris)	[Internet].	1991	Jan	[cited	2018	

Aug	20];39(1):59–69.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/2011412	

350.		 Sasson	 S,	 Notides	 AC.	 Mechanism	 of	 the	 Estrogen	 Receptor	 Interaction	 with	 4-

Hydroxytamoxifen.	Mol	Endocrinol	[Internet].	1988	Apr	[cited	2018	Aug	20];2(4):307–

12.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/3380103	

351.		 Wang	D-Y,	Fulthorpe	R,	Liss	SN,	Edwards	EA.	Identification	of	Estrogen-Responsive	Genes	

by	Complementary	Deoxyribonucleic	Acid	Microarray	 and	Characterization	of	 a	Novel	

Early	Estrogen-Induced	Gene:	EEIG1.	Mol	Endocrinol	[Internet].	2004	Feb	1	[cited	2018	

Aug	 22];18(2):402–11.	 Available	 from:	 https://academic.oup.com/mend/article-

lookup/doi/10.1210/me.2003-0202	

352.		 Tilli	TM,	Castro	C	da	S,	Tuszynski	JA,	Carels	N.	A	strategy	to	identify	housekeeping	genes	

suitable	for	analysis	in	breast	cancer	diseases.	BMC	Genomics	[Internet].	2016	[cited	2018	

Sep	1];17(1):639.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/27526934	

353.		 Kastner	 P,	 Krust	 A,	 Turcotte	 B,	 Stropp	 U,	 Tora	 L,	 Gronemeyer	 H,	 et	 al.	 Two	 distinct	

estrogen-regulated	 promoters	 generate	 transcripts	 encoding	 the	 two	 functionally	

different	human	progesterone	receptor	forms	A	and	B.	EMBO	J	[Internet].	1990	May	[cited	

2018	 Aug	 20];9(5):1603–14.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/2328727	

354.		 Artymovich	 K,	 Appledorn	 DM.	 A	 Multiplexed	 Method	 for	 Kinetic	 Measurements	 of	

Apoptosis	and	Proliferation	Using	Live-Content	Imaging.	In:	Methods	in	molecular	biology	

(Clifton,	 NJ)	 [Internet].	 2015	 [cited	 2018	 Sep	 1].	 p.	 35–42.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/25308260	

355.		 Berthois	Y,	Katzenellenbogen	JA,	Katzenellenbogen	BS.	Phenol	red	in	tissue	culture	media	

is	 a	weak	 estrogen:	 implications	 concerning	 the	 study	 of	 estrogen-responsive	 cells	 in	

culture.	Proc	Natl	Acad	Sci	U	S	A	[Internet].	1986	Apr	[cited	2018	Aug	20];83(8):2496–

500.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/3458212	

356.		 Sikora	MJ,	 Johnson	 MD,	 Lee	 A	 V,	 Oesterreich	 S.	 Endocrine	 Response	 Phenotypes	 Are	

Altered	by	Charcoal-Stripped	Serum	Variability.	Endocrinology	[Internet].	2016	Oct	[cited	

2018	 Aug	 20];157(10):3760–6.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/27459541	

357.		 Weisberg	 E,	 Manley	 PW,	 Cowan-Jacob	 SW,	 Hochhaus	 A,	 Griffin	 JD.	 Second	 generation	

inhibitors	of	BCR-ABL	for	the	treatment	of	imatinib-resistant	chronic	myeloid	leukaemia.	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-383-	

Nat	Rev	Cancer	[Internet].	2007	May	1	[cited	2018	Aug	20];7(5):345–56.	Available	from:	

http://www.nature.com/articles/nrc2126	

358.		 Holohan	 C,	 Van	 Schaeybroeck	 S,	 Longley	DB,	 Johnston	 PG.	 Cancer	 drug	 resistance:	 an	

evolving	 paradigm.	 Nat	 Rev	 Cancer	 [Internet].	 2013	 Oct	 1	 [cited	 2018	 Aug	

20];13(10):714–26.	Available	from:	http://www.nature.com/articles/nrc3599	

359.		 Ohashi	K,	Maruvka	YE,	Michor	F,	Pao	W.	Epidermal	growth	factor	receptor	tyrosine	kinase	

inhibitor-resistant	 disease.	 J	 Clin	 Oncol	 [Internet].	 2013	 Mar	 10	 [cited	 2018	 Aug	

20];31(8):1070–80.	 Available	 from:	

http://ascopubs.org/doi/10.1200/JCO.2012.43.3912	

360.		 Figliozzi	RW,	Chen	F,	Chi	A,	Hsia	S-CV.	Using	the	inverse	Poisson	distribution	to	calculate	

multiplicity	of	 infection	and	viral	 replication	by	a	high-throughput	 fluorescent	imaging	

system.	Virol	Sin	[Internet].	2016	Apr	[cited	2018	Aug	22];31(2):180–3.	Available	from:	

http://www.ncbi.nlm.nih.gov/pubmed/26826079	

361.		 Geraerts	 M,	Willems	 S,	 Baekelandt	 V,	 Debyser	 Z,	 Gijsbers	 R.	 Comparison	 of	 lentiviral	

vector	 titration	 methods.	 BMC	 Biotechnol	 [Internet].	 2006	 Jul	 12	 [cited	 2018	 Aug	

21];6(1):34.	 Available	 from:	

http://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-6-34	

362.		 Ector	Hern	Andez-Vargas	H,	Ballestar	E,	Carmona-Saez	P,	Von	Kobbe	C,	Ba~	N	On-Rodr	

Iguez	I,	Esteller	M,	et	al.	Transcriptional	profiling	of	MCF7	breast	cancer	cells	in	response	

to	5-Fluorouracil:	Relationship	with	cell	cycle	changes	and	apoptosis,	and	identification	

of	novel	targets	of	p53.	Int	J	Cancer	[Internet].	2006	[cited	2018	Aug	21];119:1164–75.	

Available	from:	http://www.interscience.wiley.com/jpages/0020-7136/suppmat.	

363.		 Jost	L.	Entropy	and	diversity.	Oikos	[Internet].	2006	May	1	[cited	2018	Sep	2];113(2):363–

75.	Available	from:	http://doi.wiley.com/10.1111/j.2006.0030-1299.14714.x	

364.		 Hacein-Bey-Abina	S,	Von	Kalle	C,	Schmidt	M,	McCormack	MP,	Wulffraat	N,	Leboulch	P,	et	

al.	LMO2-Associated	Clonal	T	Cell	Proliferation	in	Two	Patients	after	Gene	Therapy	for	

SCID-X1.	Science	(80-	 )	 [Internet].	2003	Oct	17	 [cited	2018	Aug	21];302(5644):415–9.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/14564000	

365.		 Biffi	A,	Bartolomae	CC,	Cesana	D,	Cartier	N,	Aubourg	P,	Ranzani	M,	et	al.	Lentiviral	vector	

common	 integration	 sites	 in	 preclinical	 models	 and	 a	 clinical	 trial	 reflect	 a	 benign	

integration	bias	and	not	oncogenic	selection.	Blood	[Internet].	2011	May	19	[cited	2018	

Aug	 21];117(20):5332–9.	 Available	 from:	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-384-	

http://www.ncbi.nlm.nih.gov/pubmed/21403130	

366.		 Faronato	M,	Nguyen	VTM,	Patten	DK,	Lombardo	Y,	Steel	JH,	Patel	N,	et	al.	DMXL2	drives	

epithelial	to	mesenchymal	transition	in	hormonal	therapy	resistant	breast	cancer	through	

Notch	 hyper-activation.	 Oncotarget	 [Internet].	 2015	 Sep	 8	 [cited	 2018	 Sep	

24];6(26):22467–79.	Available	from:	http://www.oncotarget.com/fulltext/4164	

367.		 Tonetti	DA,	Jordan	VC.	The	role	of	estrogen	receptor	mutations	in	tamoxifen-stimulated	

breast	cancer.	J	Steroid	Biochem	Mol	Biol	[Internet].	1997	Jun	[cited	2018	Aug	22];62(2–

3):119–28.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/9393947	

368.		 Fischer	A,	Vázquez-García	I,	Illingworth	CJR,	Mustonen	V.	High-definition	reconstruction	

of	clonal	composition	in	cancer.	Cell	Rep.	2014;7:1740–52.		

369.		 Shi	Y,	Yan	H,	Frost	P,	Gera	J,	Lichtenstein	A.	Mammalian	target	of	rapamycin	inhibitors	

activate	the	AKT	kinase	in	multiple	myeloma	cells	by	up-regulating	the	insulin-like	growth	

factor	receptor/insulin	receptor	substrate-1/phosphatidylinositol	3-kinase	cascade.	Mol	

Cancer	Ther	[Internet].	2005	Oct	1	[cited	2018	Aug	22];4(10):1533–40.	Available	from:	

http://www.ncbi.nlm.nih.gov/pubmed/16227402	

370.		 Shiau	AK,	Barstad	D,	Loria	PM,	Cheng	L,	Kushner	PJ,	Agard	DA,	et	al.	The	structural	basis	

of	estrogen	receptor/coactivator	recognition	and	the	antagonism	of	this	 interaction	by	

tamoxifen.	Cell.	1998	Dec;95(7):927–37.		

371.		 Prinz	H.	Hill	coefficients,	dose-response	curves	and	allosteric	mechanisms.	J	Chem	Biol	

[Internet].	 2010	 Mar	 [cited	 2018	 Aug	 22];3(1):37–44.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19779939	

372.		 Maguire	 JJ,	Kuc	RE,	 Davenport	AP.	Radioligand	Binding	Assays	 and	Their	Analysis.	 In:	

Methods	in	molecular	biology	(Clifton,	NJ)	[Internet].	2012	[cited	2018	Sep	2].	p.	31–77.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/22674160	

373.		 Genestie	C,	Zafrani	B,	Asselain	B,	Fourquet	A,	Rozan	S,	Validire	P,	et	al.	Comparison	of	the	

prognostic	 value	 of	 Scarff-Bloom-Richardson	 and	Nottingham	 histological	 grades	 in	 a	

series	of	825	cases	of	breast	cancer:	major	importance	of	the	mitotic	count	as	a	component	

of	both	grading	systems.	Anticancer	Res	 [Internet].	 [cited	2018	Sep	23];18(1B):571–6.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/9568179	

374.		 Ciriello	 G.	 Comprehensive	molecular	 portraits	 of	 invasive	 lobular	 breast.	 Cancer	 Cell.	

2015;163:506–19.		

375.		 Aromatase	inhibitors	versus	tamoxifen	in	early	breast	cancer:	patient-level	meta-analysis	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-385-	

of	 the	 randomised	 trials.	 Lancet	 [Internet].	 2015	 Oct	 3	 [cited	 2018	 Sep	

23];386(10001):1341–52.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S0140673615610741?via%3Dihub	

376.		 Patten	DK,	Corleone	G,	Győrffy	B,	Perone	Y,	Slaven	N,	Barozzi	I,	et	al.	Enhancer	mapping	

uncovers	phenotypic	heterogeneity	and	evolution	in	patients	with	luminal	breast	cancer.	

Nat	Med	 [Internet].	 2018	 Sep	 23	 [cited	 2018	 Sep	 21];24(9):1469–80.	 Available	 from:	

http://www.nature.com/articles/s41591-018-0091-x	

377.		 Magnani	L,	Eeckhoute	 J,	Lupien	M.	Pioneer	 factors:	directing	transcriptional	regulators	

within	the	chromatin	environment.	Trends	Genet	[Internet].	2011	Nov	1	[cited	2018	Sep	

23];27(11):465–74.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S0168952511001107?via%3Dihub	

378.		 Falahi	F,	Huisman	C,	Kazemier	HG,	van	der	Vlies	P,	Kok	K,	Hospers	GAP,	et	al.	Towards	

sustained	 silencing	 of	 HER2/neu	 in	 cancer	 by	 epigenetic	 editing.	 Mol	 Cancer	 Res	

[Internet].	 2013	 Sep	 1	 [cited	 2018	 Sep	 23];11(9):1029–39.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23814024	

379.		 Laprell	 F,	 Finkl	 K,	 Müller	 J.	 Propagation	 of	 Polycomb-repressed	 chromatin	 requires	

sequence-specific	 recruitment	 to	DNA.	 Science	 [Internet].	 2017	Apr	7	 [cited	2018	Sep	

23];356(6333):85–8.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/28302792	

380.		 Wang	X,	Moazed	D.	DNA	sequence-dependent	epigenetic	inheritance	of	gene	silencing	and	

histone	 H3K9	 methylation.	 Science	 [Internet].	 2017	 Apr	 7	 [cited	 2018	 Sep	

23];356(6333):88–91.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/28302794	

381.		 Coleman	RT,	Struhl	G.	Causal	role	for	inheritance	of	H3K27me3	in	maintaining	the	OFF	

state	 of	 a	 Drosophila	 HOX	 gene.	 Science	 [Internet].	 2017	 Apr	 7	 [cited	 2018	 Sep	

23];356(6333):eaai8236.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/28302795	

382.		 Magnani	L,	Frigè	G,	Gadaleta	RM,	Corleone	G,	Fabris	S,	Kempe	H,	et	al.	Acquired	CYP19A1	

amplification	 is	 an	 early	 specific	mechanism	 of	 aromatase	 inhibitor	 resistance	 in	 ERα	

metastatic	 breast	 cancer.	 Nat	 Genet	 [Internet].	 2017	 Mar	 23	 [cited	 2018	 Sep	

23];49(3):444–50.	Available	from:	http://www.nature.com/articles/ng.3773	

383.		 Greaves	M,	Maley	CC.	Clonal	evolution	 in	cancer.	Nature	 [Internet].	2012	 Jan	19	[cited	

2018	 Aug	 22];481(7381):306–13.	 Available	 from:	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-386-	

http://www.ncbi.nlm.nih.gov/pubmed/22258609	

384.		 Foo	 J,	 Leder	 K,	 Mumenthaler	 SM.	 Cancer	 as	 a	 moving	 target:	 understanding	 the	

composition	and	rebound	growth	kinetics	of	recurrent	tumors.	Evol	Appl	[Internet].	2013	

Jan	 [cited	 2018	 Aug	 22];6(1):54–69.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23396647	

385.		 Robasky	 K,	 Lewis	NE,	 Church	 GM.	 The	 role	 of	 replicates	 for	 error	mitigation	 in	 next-

generation	 sequencing.	 Nat	 Rev	 Genet	 [Internet].	 2014	 Jan	 10	 [cited	 2018	 Aug	

20];15(1):56–62.	Available	from:	http://www.nature.com/articles/nrg3655	

386.		 Toy	W,	 Shen	 Y,	 Won	 H,	 Green	 B,	 Sakr	 RA,	Will	M,	 et	 al.	 ESR1	 ligand-binding	 domain	

mutations	 in	hormone-resistant	breast	cancer.	Nat	Genet	 [Internet].	2013	Dec	3	 [cited	

2018	Sep	2];45(12):1439–45.	Available	from:	http://www.nature.com/articles/ng.2822	

387.		 Fanning	SW,	Mayne	CG,	Dharmarajan	V,	Carlson	KE,	Martin	TA,	Novick	SJ,	et	al.	Estrogen	

receptor	 alpha	 somatic	 mutations	 Y537S	 and	 D538G	 confer	 breast	 cancer	 endocrine	

resistance	by	stabilizing	the	activating	function-2	binding	conformation.	Elife	[Internet].	

2016	 Feb	 2	 [cited	 2018	 Sep	 2];5.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/26836308	

388.		 Jeselsohn	R,	Yelensky	R,	Buchwalter	G,	Frampton	G,	Meric-Bernstam	F,	Gonzalez-Angulo	

AM,	et	al.	Emergence	of	Constitutively	Active	Estrogen	Receptor-		Mutations	in	Pretreated	

Advanced	Estrogen	Receptor-Positive	Breast	Cancer.	Clin	Cancer	Res	[Internet].	2014	Apr	

1	 [cited	 2018	 Sep	 2];20(7):1757–67.	 Available	 from:	

http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-13-2332	

389.		 Schiavon	G,	Hrebien	S,	Garcia-Murillas	I,	Cutts	RJ,	Pearson	A,	Tarazona	N,	et	al.	Analysis	of	

ESR1	 mutation	 in	 circulating	 tumor	 DNA	 demonstrates	 evolution	 during	 therapy	 for	

metastatic	 breast	 cancer.	 Sci	 Transl	 Med	 [Internet].	 2015	 Nov	 11	 [cited	 2018	 Sep	

2];7(313):313ra182-313ra182.	 Available	 from:	

http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aac7551	

390.		 Fribbens	C,	O’Leary	B,	Kilburn	L,	Hrebien	S,	Garcia-Murillas	I,	Beaney	M,	et	al.	Plasma	ESR1	

Mutations	and	the	Treatment	of	Estrogen	Receptor–Positive	Advanced	Breast	Cancer.	J	

Clin	 Oncol	 [Internet].	 2016	 Sep	 [cited	 2018	 Sep	 2];34(25):2961–8.	 Available	 from:	

http://ascopubs.org/doi/10.1200/JCO.2016.67.3061	

391.		 Chandarlapaty	 S,	 Chen	 D,	 He	 W,	 Sung	 P,	 Samoila	 A,	 You	 D,	 et	 al.	 Prevalence	 of	 ESR1	

Mutations	 in	 Cell-Free	 DNA	 and	 Outcomes	 in	 Metastatic	 Breast	 Cancer.	 JAMA	 Oncol	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-387-	

[Internet].	 2016	 Oct	 1	 [cited	 2018	 Sep	 2];2(10):1310.	 Available	 from:	

http://oncology.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2016.1279	

392.		 O’Leary	B,	Hrebien	S,	Morden	JP,	Beaney	M,	Fribbens	C,	Huang	X,	et	al.	Early	circulating	

tumor	 DNA	 dynamics	 and	 clonal	 selection	 with	 palbociclib	 and	 fulvestrant	 for	 breast	

cancer.	Nat	Commun	[Internet].	2018	Dec	1	[cited	2018	Sep	2];9(1):896.	Available	from:	

http://www.nature.com/articles/s41467-018-03215-x	

393.		 Hiscox	S,	Jiang	WG,	Obermeier	K,	Taylor	K,	Morgan	L,	Burmi	R,	et	al.	Tamoxifen	resistance	

in	 MCF7	 cells	 promotes	 EMT-like	 behaviour	 and	 involves	 modulation	 of	 β-catenin	

phosphorylation.	Int	J	Cancer	[Internet].	2006	Jan	15	[cited	2018	Aug	24];118(2):290–

301.	Available	from:	http://doi.wiley.com/10.1002/ijc.21355	

394.		 Wang	 D,	 Lu	 P,	 Zhang	 H,	 Luo	M,	 Zhang	 X,	Wei	 X,	 et	 al.	 Oct-4	 and	 Nanog	 promote	 the	

epithelial-mesenchymal	 transition	of	 breast	 cancer	 stem	cells	 and	are	 associated	with	

poor	prognosis	in	breast	cancer	patients.	2014;5(21).		

395.		 Dubrovska		a,	Hartung		a,	Bouchez	LC,	Walker	JR,	Reddy	V	a,	Cho	CY,	et	al.	CXCR4	activation	

maintains	a	stem	cell	population	in	tamoxifen-resistant	breast	cancer	cells	through	AhR	

signalling.	Br	J	Cancer.	2012;107(1):43–52.		

396.		 Wang	Q,	Jiang	J,	Ying	G,	Xie	X-Q,	Zhang	X,	Xu	W,	et	al.	Tamoxifen	enhances	stemness	and	

promotes	metastasis	of	ERα36+	breast	cancer	by	upregulating	ALDH1A1	in	cancer	cells.	

Cell	 Res	 [Internet].	 2018	 Mar	 [cited	 2018	 Aug	 26];28(3):336–58.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/29393296	

397.		 Fu	H,	Fu	L,	Xie	C,	Zuo	W-S,	Liu	Y-S,	Zheng	M-Z,	et	al.	miR-375	inhibits	cancer	stem	cell	

phenotype	and	tamoxifen	resistance	by	degrading	HOXB3	in	human	ER-positive	breast	

cancer.	Oncol	Rep	 [Internet].	 2017	 Jan	1	 [cited	2018	Aug	26];37(2):1093–9.	Available	

from:	https://www.spandidos-publications.com/10.3892/or.2017.5360	

398.		 Yamaguchi	N,	Nakayama	Y,	Yamaguchi	N.	Involvement	of	FOXA1	down-regulation	in	CSC-

like	properties	Down-regulation	of	Forkhead	Box	Protein	A1	(FOXA1)	Leads	to	Cancer-

stem	Cell-like	Properties	in	Tamoxifen-resistant	Breast	Cancer	Cells	through	Induction	of	

Interleukin-6	 Running	 title:	 Involvement	 of	 FOXA1	 down-regulation	 in	 CSC-like	

properties	 From.	 2017	 [cited	 2018	 Aug	 26];	 Available	 from:	

http://www.jbc.org/cgi/doi/10.1074/jbc.M116.763276	

399.		 Ponti	D,	Zaffaroni	N,	Capelli	C,	Daidone	MG.	Breast	cancer	stem	cells:	An	overview.	Eur	J	

Cancer.	2006;42(9):1219–24.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-388-	

400.		 Scheel	 C,	 Weinberg	 R	 a.	 Cancer	 stem	 cells	 and	 epithelial-mesenchymal	 transition:	

Concepts	and	molecular	links.	Semin	Cancer	Biol.	2012;22(5–6):396–403.		

401.		 Nguyen	 VTM,	 Barozzi	 I,	 Faronato	M,	 Lombardo	 Y,	 Steel	 JH,	 Patel	 N,	 et	 al.	 Differential	

epigenetic	 reprogramming	 in	 response	 to	 specific	 endocrine	 therapies	 promotes	

cholesterol	biosynthesis	and	cellular	invasion.	Nat	Commun	[Internet].	2015	Dec	27	[cited	

2018	 Sep	 24];6(1):10044.	 Available	 from:	

http://www.nature.com/articles/ncomms10044	

402.		 Sheridan	 C,	 Kishimoto	 H,	 Fuchs	 RK,	 Mehrotra	 S,	 Bhat-Nakshatri	 P,	 Turner	 CH,	 et	 al.	

CD44+/CD24-	 breast	 cancer	 cells	 exhibit	 enhanced	 invasive	 properties:	 an	 early	 step	

necessary	for	metastasis.	Breast	Cancer	Res.	2006;8(5):R59.		

403.		 Phillips	TM,	McBride	WH,	Pajonk	F.	The	response	of	CD24(-/low)/CD44+	breast	cancer-

initiating	cells	to	radiation.	J	Natl	Cancer	Inst.	2006	Dec;98(24):1777–85.		

404.		 Pastrana	 E,	 Silva-Vargas	 V,	 Doetsch	 F.	 Eyes	Wide	 Open:	 A	 Critical	 Review	 of	 Sphere-

Formation	as	an	Assay	for	Stem	Cells.	Cell	Stem	Cell	[Internet].	2011	May	6	[cited	2018	

Aug	30];8(5):486–98.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/21549325	

405.		 Reynolds	BA,	Weiss	 S.	Generation	of	neurons	 and	astrocytes	 from	 isolated	 cells	 of	 the	

adult	mammalian	central	nervous	system.	Science	[Internet].	1992	Mar	27	[cited	2018	

Aug	 30];255(5052):1707–10.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/1553558	

406.		 Ponti	D,	Costa	A,	Zaffaroni	N,	Pratesi	G,	Petrangolini	G,	Coradini	D,	et	al.	Isolation	and	In	

vitro	 Propagation	 of	 Tumorigenic	 Breast	 Cancer	 Cells	 with	 Stem/Progenitor	 Cell	

Properties.	 Cancer	 Res	 [Internet].	 2005	 Jul	 1	 [cited	 2018	 Aug	 30];65(13):5506–11.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/15994920	

407.		 He	H,	McHaney	M,	Hong	 J,	Weiss	ML.	Cloning	and	Characterization	of	 3.1kb	Promoter	

Region	of	the	Oct4	Gene	from	the	Fischer	344	Rat.	Open	Stem	Cell	J	[Internet].	2009	Jan	1	

[cited	 2018	 Sep	 2];1(1):30–9.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/22347989	

408.		 Welboren	W-J,	van	Driel	MA,	Janssen-Megens	EM,	van	Heeringen	SJ,	Sweep	FC,	Span	PN,	

et	al.	ChIP-Seq	of	ERα	and	RNA	polymerase	II	defines	genes	differentially	responding	to	

ligands.	EMBO	J	[Internet].	2009	May	20	[cited	2018	Sep	2];28(10):1418–28.	Available	

from:	http://www.ncbi.nlm.nih.gov/pubmed/19339991	

409.		 Xie	W,	 Schultz	MD,	 Lister	 R,	 Hou	 Z,	 Rajagopal	 N,	 Ray	 P,	 et	 al.	 Epigenomic	 Analysis	 of	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-389-	

Multilineage	Differentiation	of	Human	Embryonic	Stem	Cells.	Cell	[Internet].	2013	May	23	

[cited	 2018	 Sep	 24];153(5):1134–48.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23664764	

410.		 Schmidt	 R,	 Plath	 K.	 The	 roles	 of	 the	 reprogramming	 factors	 Oct4,	 Sox2	 and	 Klf4	 in	

resetting	 the	 somatic	 cell	 epigenome	during	 induced	pluripotent	stem	cell	 generation.	

Genome	Biol	 [Internet].	 2012	Oct	22	 [cited	2018	Aug	25];13(10):251.	Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23088445	

411.		 Polo	 JM,	Anderssen	E,	Walsh	RM,	 Schwarz	BA,	Nefzger	CM,	Lim	SM,	 et	al.	A	Molecular	

Roadmap	of	Reprogramming	Somatic	Cells	 into	 iPS	Cells.	 Cell	 [Internet].	 2012	Dec	21	

[cited	 2018	 Sep	 24];151(7):1617–32.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23260147	

412.		 Okamoto	OK,	Matheu	A,	Magnani	L.	Stem	Cells	 in	Translational	Cancer	Research.	Stem	

Cells	 Int	 [Internet].	 2015	 May	 11	 [cited	 2018	 Sep	 24];2015:281072.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/26078763	

413.		 Magnani	L,	Stoeck	A,	Zhang	X,	Lanczky	A,	Mirabella	AC,	Wang	T-L,	et	al.	Genome-wide	

reprogramming	of	 the	 chromatin	 landscape	underlies	 endocrine	 therapy	 resistance	 in	

breast	 cancer.	 Proc	 Natl	 Acad	 Sci	 [Internet].	 2013	 Apr	 16	 [cited	 2018	 Sep	

24];110(16):E1490–9.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23576735	

414.		 Toh	TB,	Lim	JJ,	Chow	EK-H.	Epigenetics	in	cancer	stem	cells.	Mol	Cancer	[Internet].	2017	

Dec	 1	 [cited	 2018	 Sep	 24];16(1):29.	 Available	 from:	 http://molecular-

cancer.biomedcentral.com/articles/10.1186/s12943-017-0596-9	

415.		 Leis	O,	Eguiara		a,	Lopez-Arribillaga	E,	Alberdi	MJ,	Hernandez-Garcia	S,	Elorriaga	K,	et	al.	

Sox2	expression	in	breast	tumours	and	activation	in	breast	cancer	stem	cells.	Oncogene.	

2012;31(11):1354–65.		

416.		 Jung	K,	Wang	P,	Gupta	N,	Gopal	K,	Wu	F,	Ye	X,	et	al.	Profiling	gene	promoter	occupancy	of	

Sox2	 in	 two	 phenotypically	 distinct	 breast	 cancer	 cell	 subsets	 using	 chromatin	

immunoprecipitation	 and	 genome-wide	 promoter	 microarrays.	 Breast	 Cancer	 Res.	

2014;16(6):1–13.		

417.		 Dontu	G,	Jackson	KW,	McNicholas	E,	Kawamura	MJ,	Abdallah	WM,	Wicha	MS.	Role	of	Notch	

signaling	 in	 cell-fate	determination	 of	 human	mammary	 stem/progenitor	 cells.	 Breast	

Cancer	 Res	 [Internet].	 2004	 Dec	 16	 [cited	 2018	 Sep	 24];6(6):R605.	 Available	 from:	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-390-	

http://www.ncbi.nlm.nih.gov/pubmed/15535842	

418.		 Cohen	B,	Shimizu	M,	Izrailit	J,	Ng	NFL,	Buchman	Y,	Pan	JG,	et	al.	Cyclin	D1	is	a	direct	target	

of	 JAG1-mediated	Notch	signaling	 in	breast	cancer.	Breast	Cancer	Res	Treat	 [Internet].	

2010	 Aug	 14	 [cited	 2018	 Sep	 24];123(1):113–24.	 Available	 from:	

http://link.springer.com/10.1007/s10549-009-0621-9	

419.		 Meurette	 O,	 Stylianou	 S,	 Rock	 R,	 Collu	 GM,	 Gilmore	 AP,	 Brennan	 K.	 Notch	 activation	

induces	Akt	signaling	via	an	autocrine	loop	to	prevent	apoptosis	in	breast	epithelial	cells.	

Cancer	Res	[Internet].	2009	Jun	15	[cited	2018	Sep	24];69(12):5015–22.	Available	from:	

http://www.ncbi.nlm.nih.gov/pubmed/19491273	

420.		 D’Angelo	RC,	Ouzounova	M,	Davis	A,	Choi	D,	Tchuenkam	SM,	Kim	G,	et	al.	Notch	reporter	

activity	in	breast	cancer	cell	lines	identifies	a	subset	of	cells	with	stem	cell	activity.	Mol	

Cancer	Ther	 [Internet].	2015	Mar	1	 [cited	2018	Sep	24];14(3):779–87.	Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/25673823	

421.		 Harrison	H,	Farnie	G,	Howell	SJ,	Rock	RE,	Stylianou	S,	Brennan	KR,	et	al.	Regulation	of	

breast	 cancer	 stem	 cell	 activity	 by	 signaling	 through	 the	Notch4	 receptor.	 Cancer	 Res	

[Internet].	 2010	 Jan	 15	 [cited	 2018	 Sep	 24];70(2):709–18.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/20068161	

422.		 Reedijk	 M,	 Odorcic	 S,	 Chang	 L,	 Zhang	 H,	 Miller	 N,	 McCready	 DR,	 et	 al.	 High-level	

Coexpression	of	JAG1	and	NOTCH1	Is	Observed	in	Human	Breast	Cancer	and	Is	Associated	

with	 Poor	 Overall	 Survival.	 Cancer	 Res	 [Internet].	 2005	 Sep	 15	 [cited	 2018	 Sep	

24];65(18):8530–7.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/16166334	

423.		 Baker	A,	Wyatt	D,	Bocchetta	M,	 Li	 J,	 Filipovic	A,	Green	A,	 et	 al.	Notch-1-PTEN-ERK1/2	

signaling	 axis	promotes	HER2+	breast	 cancer	 cell	proliferation	and	 stem	cell	 survival.	

Oncogene	[Internet].	2018	Aug	10	[cited	2018	Sep	24];37(33):4489–504.	Available	from:	

http://www.nature.com/articles/s41388-018-0251-y	

424.		 Lin	 X,	 Shang	 X,	 Manorek	 G,	 Howell	 SB.	 Regulation	 of	 the	 Epithelial-Mesenchymal	

Transition	by	Claudin-3	and	Claudin-4.	PLoS	One.	2013;8(6).		

425.		 Mendez	MG,	Kojima	S-I,	Goldman	RD.	Vimentin	induces	changes	in	cell	shape,	motility,	

and	adhesion	during	the	epithelial	to	mesenchymal	transition.	FASEB	J.	2010;24:1838–

1851.		

426.		 Trevor	KT,	McGuire	JG,	Leonova	E	V.	Association	of	vimentin	intermediate	filaments	with	

the	centrosome.	J	Cell	Sci.	1995;108	(	Pt	1:343–56.		



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-391-	

427.		 Manuel	 Iglesias	 J,	Beloqui	 I,	Garcia-Garcia	F,	Leis	O,	Vazquez-Martin	A,	Eguiara	A,	et	al.	

Mammosphere	Formation	in	Breast	Carcinoma	Cell	Lines	Depends	upon	Expression	of	E-

cadherin.	PLoS	One.	2013;8(10):1–12.		

428.		 Clark	DW,	Palle	K.	Aldehyde	dehydrogenases	in	cancer	stem	cells:	potential	as	therapeutic	

targets.	 Ann	 Transl	Med	 [Internet].	 2016	Dec	 [cited	 2018	 Sep	 2];4(24):518.	 Available	

from:	http://www.ncbi.nlm.nih.gov/pubmed/28149880	

429.		 Thiagarajan	PS,	Sinyuk	M,	Turaga	SM,	Mulkearns-Hubert	EE,	Hale	JS,	Rao	V,	et	al.	Cx26	

drives	self-renewal	in	triple-negative	breast	cancer	via	interaction	with	NANOG	and	focal	

adhesion	 kinase.	 Nat	 Commun	 [Internet].	 2018	 Dec	 8	 [cited	 2018	 Sep	 2];9(1):578.	

Available	from:	http://www.nature.com/articles/s41467-018-02938-1	

430.		 Liu	Y,	Choi	DS,	Sheng	J,	Ensor	JE,	Liang	DH,	Rodriguez-Aguayo	C,	et	al.	HN1L	Promotes	

Triple-Negative	 Breast	 Cancer	 Stem	 Cells	 through	 LEPR-STAT3	 Pathway.	 Stem	 Cell	

Reports	 [Internet].	 2018	 Jan	 9	 [cited	 2018	 Sep	 2];10(1):212–27.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/29249663	

431.		 Soady	KJ,	Kendrick	H,	Gao	Q,	Tutt	A,	Zvelebil	M,	Ordonez	LD,	et	al.	Mouse	mammary	stem	

cells	 express	prognostic	markers	 for	 triple-negative	 breast	 cancer.	 Breast	 Cancer	 Res.	

2015;17(1):1–23.		

432.		 Schwede	M,	Spentzos	D,	Bentink	S,	Hofmann	O,	Haibe-Kains	B,	Harrington	D,	et	al.	Stem	

Cell-Like	Gene	Expression	in	Ovarian	Cancer	Predicts	Type	II	Subtype	and	Prognosis.	PLoS	

One.	2013;8(3).		

433.		 Merlos-Suárez	 A,	 Barriga	 FM,	 Jung	 P,	 Iglesias	 M,	 Céspedes	 MV,	 Rossell	 D,	 et	 al.	 The	

intestinal	stem	cell	signature	identifies	colorectal	cancer	stem	cells	and	predicts	disease	

relapse.	Cell	Stem	Cell.	2011;8(5):511–24.		

434.		 Eppert	K,	Takenaka	K,	Lechman	ER,	Waldron	L,	Nilsson	B,	van	Galen	P,	et	al.	Stem	cell	gene	

expression	 programs	 influence	 clinical	 outcome	 in	 human	 leukemia.	 Nat	 Med.	 2011	

Sep;17(9):1086–93.		

435.		 Lawson	D	 a,	 Bhakta	NR,	 Kessenbrock	 K,	 Prummel	 KD,	 Yu	 Y,	 Takai	 K,	 et	 al.	 Single-cell	

analysis	reveals	a	stem-cell	program	in	human	metastatic	breast	cancer	cells.	2015;		

436.		 Huber-Keener	 KJ,	 Liu	 X,	 Wang	 Z,	 Wang	 Y,	 Freeman	W,	Wu	 S,	 et	 al.	 Differential	 Gene	

Expression	 in	 Tamoxifen-Resistant	 Breast	 Cancer	 Cells	 Revealed	 by	 a	 New	 Analytical	

Model	of	RNA-Seq	Data.	Culhane	AC,	editor.	PLoS	One	[Internet].	2012	Jul	23	[cited	2018	

Aug	22];7(7):e41333.	Available	from:	http://dx.plos.org/10.1371/journal.pone.0041333	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-392-	

437.		 Hurtado	 A,	 Holmes	 KA,	 Geistlinger	 TR,	 Hutcheson	 IR,	 Nicholson	 RI,	 Brown	 M,	 et	 al.	

Regulation	 of	 ERBB2	 by	 oestrogen	 receptor-PAX2	 determines	 response	 to	 tamoxifen.	

Nature	 [Internet].	 2008	 Dec	 4	 [cited	 2018	 Aug	 22];456(7222):663–6.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19005469	

438.		 Bhatt	 S,	 Joshi	 S,	 Wu	 G,	 Katzenellenbogen	 BS.	 OCT-4:	 a	 novel	 estrogen	 receptor-α	

collaborator	 that	 promotes	 tamoxifen	 resistance	 in	 breast	 cancer	 cells.	 Nat	 Publ	 Gr	

[Internet].	2016	[cited	2018	Aug	30];35:5722–34.	Available	from:	www.nature.com/onc	

439.		 Cho	Y,	Kang	HG,	Kim	S-J,	Lee	S,	Jee	S,	Ahn	SG,	et	al.	Post-translational	modification	of	OCT4	

in	breast	cancer	tumorigenesis.	Cell	Death	Differ	[Internet].	2018	Mar	6	[cited	2018	Sep	

23];1.	Available	from:	http://www.nature.com/articles/s41418-018-0079-6	

440.		 Shaw	 AT,	 Kim	 D-W,	 Nakagawa	 K,	 Seto	 T,	 Crinó	 L,	 Ahn	 M-J,	 et	 al.	 Crizotinib	 versus	

chemotherapy	in	advanced	ALK-positive	lung	cancer.	N	Engl	J	Med.	2013;368:2385–94.		

441.		 Michor	 F,	 Weaver	 VM.	 Understanding	 tissue	 context	 influences	 on	 intratumour	

heterogeneity.	Nat	Cell	Biol.	2014	Apr;16(4):301–2.		

442.		 Straussman	R,	Morikawa	T,	Shee	K,	Barzily-Rokni	M,	Qian	ZR,	Du	J,	et	al.	Tumour	micro-

environment	elicits	 innate	resistance	 to	RAF	 inhibitors	 through	HGF	secretion.	Nature.	

2012	Jul;487(7408):500–4.		

443.		 Argent	R,	Kumari	R,	Clarke	P,	Onion	D,	Lobo	D,	Grabowska	A,	et	al.	Restoration	of	paracrine	

signalling	within	the	tumour	microenvironment	increases	tumour	growth	and	activation	

of	c-Met.	In:	!0th	NCRI	Cancer	Conference:	Poster	Session	C.	Nottingham:	NCRI;	2014.	p.	

LB186.		

444.		 Schmidt	M,	Böhm	D,	Von	Törne	C,	Steiner	E,	Puhl	A,	Pilch	H,	et	al.	The	humoral	immune	

system	 has	 a	 key	 prognostic	 impact	 in	 node-negative	 breast	 cancer.	 Cancer	 Res.	

2008;68(13):5405–13.		

445.		 Messersmith	WA,	Rajeshkumar	N	V,	Tan	AC,	Wang	XF,	Diesl	V,	Choe	SE,	et	al.	Efficacy	and	

pharmacodynamic	effects	of	bosutinib	(SKI-606),	a	Src/Abl	inhibitor,	in	freshly	generated	

human	pancreas	cancer	xenografts.	Mol	Cancer	Ther	[Internet].	2009	Jun	1	[cited	2018	

Sep	4];8(6):1484–93.	Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/19509264	

446.		 Marangoni	E,	Vincent-Salomon	A,	Auger	N,	Degeorges	A,	Assayag	F,	de	Cremoux	P,	et	al.	A	

new	model	of	patient	tumor-derived	breast	cancer	xenografts	for	preclinical	assays.	Clin	

Cancer	Res.	2007	Jul;13(13):3989–98.		

447.		 Gao	H,	Korn	JM,	Ferretti	S,	Monahan	JE,	Wang	Y,	Singh	M,	et	al.	High-throughput	screening	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-393-	

using	patient-derived	tumor	xenografts	to	predict	clinical	trial	drug	response.	Nat	Med.	

2015	Nov;21(11):1318–25.		

448.		 Kudernatsch	 RF,	 Letsch	 A,	 Stachelscheid	 H,	 Volk	 HD,	 Scheibenbogen	 C.	 Doublets	

pretending	to	be	CD34+	T	cells	despite	doublet	exclusion.	Cytom	Part	A	[Internet].	2013	

[cited	 2018	 Sep	 13];83	 A(2):173–6.	 Available	 from:	

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cyto.a.22247	

449.		 Kennedy	A,	Cribbs	AP.	Production	and	Concentration	of	Lentivirus	 for	Transduction	of	

Primary	Human	T	Cells.	In	Humana	Press,	New	York,	NY;	2016	[cited	2018	Sep	13].	p.	85–

93.	Available	from:	http://link.springer.com/10.1007/978-1-4939-3753-0_7	

450.		 Zack	 JA,	 Kim	 SG,	 Vatakis	 DN.	 HIV	 restriction	 in	 quiescent	 CD4+	 T	 cells.	 Retrovirology	

[Internet].	 2013	 Apr	 4	 [cited	 2018	 Sep	 13];10(1):37.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23557201	

451.		 Buczacki	SJA,	Zecchini	HI,	Nicholson	AM,	Russell	R,	Vermeulen	L,	Kemp	R,	et	al.	Intestinal	

label-retaining	 cells	are	 secretory	precursors	 expressing	Lgr5.	Nature	 [Internet].	 2013	

Mar	 27	 [cited	 2018	 Aug	 24];495(7439):65–9.	 Available	 from:	

http://www.nature.com/articles/nature11965	

452.		 Vogelstein	B,	Papadopoulos	N,	Velculescu	VE,	Zhou	S,	Diaz	LA,	Kinzler	KW.	Cancer	Genome	

Landscapes.	 Science	 [Internet].	 2013	 Mar	 29;339(6127):1546–58.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749880/	

453.		 Neyman	 J.	 Proceedings	 of	 the	 Berkeley	 Symposium	 on	 Mathematical	 Statistics	 and	

Probability.	[Internet].	University	of	California	Press;	1967	[cited	2018	Sep	12].	Available	

from:	https://projecteuclid.org/euclid.bsmsp/1200512992	

454.		 Jain	AK.	Data	clustering:	50	years	beyond	K-means.	Pattern	Recognit	Lett	[Internet].	2010	

Jun	 1	 [cited	 2018	 Sep	 13];31(8):651–66.	 Available	 from:	

https://www.sciencedirect.com/science/article/pii/S0167865509002323	

455.		 Bianchini	 G,	 Balko	 JM,	Mayer	 IA,	 Sanders	ME,	 Gianni	 L.	 Triple-negative	 breast	 cancer:	

challenges	and	opportunities	 of	 a	heterogeneous	disease.	Nat	Publ	Gr	 [Internet].	2016	

[cited	2018	Sep	12];13.	Available	from:	www.nature.com/nrclinonc	

456.		 Shah	SP,	Roth	A,	Goya	R,	Oloumi	A,	Ha	G,	Zhao	Y,	et	al.	The	clonal	and	mutational	evolution	

spectrum	of	primary	triple-negative	breast	cancers.	Nature	[Internet].	2012	Jun	4	[cited	

2018	 Sep	 12];486(7403):395–9.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/22495314	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-394-	

457.		 DuPage	M,	Dooley	AL,	Jacks	T.	Conditional	mouse	lung	cancer	models	using	adenoviral	or	

lentiviral	delivery	of	Cre	recombinase.	Nat	Protoc	[Internet].	2009	Jun	25;4(7):1064–72.	

Available	from:	http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757265/	

458.		 Vara	 JA,	 Portela	 A,	 Ortín	 J,	 Jiménez	 A.	 Expression	 in	mammalian	 cells	 of	 a	 gene	 from	

Streptomyces	alboniger	 conferring	puromycin	 resistance.	Nucleic	Acids	Res	 [Internet].	

1986	 Jun	 11	 [cited	 2018	 Sep	 14];14(11):4617–24.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/3714487	

459.		 Kita-Matsuo	H,	Barcova	M,	Prigozhina	N,	Salomonis	N,	Wei	K,	 Jacot	 JG,	et	al.	Lentiviral	

Vectors	and	Protocols	for	Creation	of	Stable	hESC	Lines	for	Fluorescent	Tracking	and	Drug	

Resistance	Selection	of	Cardiomyocytes.	Blagosklonny	M	V.,	editor.	PLoS	One	[Internet].	

2009	 Apr	 8	 [cited	 2018	 Sep	 14];4(4):e5046.	 Available	 from:	

http://dx.plos.org/10.1371/journal.pone.0005046	

460.		 Levitin	HM,	Yuan	J,	Sims	PA.	Single-Cell	Transcriptomic	Analysis	of	Tumor	Heterogeneity.	

Trends	in	cancer	[Internet].	2018	Apr	1	[cited	2018	Sep	26];4(4):264–8.	Available	from:	

http://www.ncbi.nlm.nih.gov/pubmed/29606308	

461.		 Gundem	G,	Van	Loo	P,	Kremeyer	B,	Alexandrov	LB,	Tubio	JMC,	Papaemmanuil	E,	et	al.	The	

evolutionary	history	of	lethal	metastatic	prostate	cancer.	Nature	[Internet].	2015	Apr	1	

[cited	 2018	 Sep	 26];520(7547):353–7.	 Available	 from:	

http://www.nature.com/articles/nature14347	

462.		 Alderton	 GK.	 Spreading	 the	 seed.	 Nat	 Rev	 |	 CANCER	 [Internet].	 2015	 [cited	2018	 Sep	

26];15.	Available	from:	http://dx.doi.org/10.1038/	

463.		 Fitzmaurice	 C,	 Allen	 C,	 Barber	 RM,	 Barregard	 L,	 Bhutta	 ZA,	 Brenner	 H,	 et	 al.	 Global,	

Regional,	and	National	Cancer	Incidence,	Mortality,	Years	of	Life	Lost,	Years	Lived	With	

Disability,	and	Disability-Adjusted	Life-years	for	32	Cancer	Groups,	1990	to	2015.	JAMA	

Oncol	 [Internet].	 2017	 Apr	 1	 [cited	 2018	 Sep	 23];3(4):524.	 Available	 from:	

http://oncology.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2016.5688	

464.		 Wang	H,	Naghavi	M,	Allen	C,	Barber	RM,	Bhutta	ZA,	Carter	A,	et	al.	Global,	regional,	and	

national	life	expectancy,	all-cause	mortality,	and	cause-specific	mortality	for	249	causes	

of	death,	1980–2015:	a	systematic	analysis	for	the	Global	Burden	of	Disease	Study	2015.	

Lancet	[Internet].	2016	Oct	8	[cited	2018	Sep	23];388(10053):1459–544.	Available	from:	

http://www.ncbi.nlm.nih.gov/pubmed/27733281	

465.		 King	 A,	 Broggio	 J.	 Statistical	 bulletin:	 Cancer	 registration	 statistics,	 England:	 2016	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-395-	

[Internet].	 Office	 for	 National	 Statistics.	 2018	 [cited	 2018	 Sep	 24].	 Available	 from:	

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditi

onsanddiseases/bulletins/cancerregistrationstatisticsengland/final2016	

466.		 Pepper	JW,	Scott	Findlay	C,	Kassen	R,	Spencer	SL,	Maley	CC.	SYNTHESIS:	Cancer	research	

meets	 evolutionary	 biology.	 Evol	 Appl	 [Internet].	 2009	 Jan	 27	 [cited	 2018	 Sep	

24];2(1):62–70.	 Available	 from:	 http://doi.wiley.com/10.1111/j.1752-

4571.2008.00063.x	

467.		 Merlo	 LMF,	 Pepper	 JW,	 Reid	 BJ,	 Maley	 CC.	 Cancer	 as	 an	 evolutionary	 and	 ecological	

process.	 Nat	 Rev	 Cancer	 [Internet].	 2006	 Dec	 16	 [cited	 2018	 Sep	 24];6(12):924–35.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/17109012	

468.		 Aktipis	CA,	Nesse	RM.	Evolutionary	foundations	for	cancer	biology.	Evol	Appl	[Internet].	

2013	 Jan	 1	 [cited	 2018	 Sep	 24];6(1):144–59.	 Available	 from:	

http://doi.wiley.com/10.1111/eva.12034	

469.		 Stratton	MR,	Campbell	PJ,	Futreal	PA.	The	cancer	genome.	Nature	[Internet].	2009	Apr	9	

[cited	 2018	 Sep	 24];458(7239):719–24.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/19360079	

470.		 Yates	LR,	Campbell	PJ.	Evolution	of	the	cancer	genome.	Nat	Rev	Genet	[Internet].	2012	

Nov	 [cited	 2018	 Sep	 24];13(11):795–806.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/23044827	

471.		 Curtis	C,	Shah	SP,	Chin	S-F,	Turashvili	G,	Rueda	OM,	Dunning	MJ,	et	al.	The	genomic	and	

transcriptomic	 architecture	 of	 2,000	 breast	 tumours	 reveals	 novel	 subgroups.	 Nature	

[Internet].	 2012	 Jun	 18	 [cited	 2018	 Sep	 23];486(7403):346–52.	 Available	 from:	

http://www.nature.com/articles/nature10983	

472.		 Perez	EA.	Breast	Cancer	Management:	Opportunities	and	Barriers	to	an	 Individualized	

Approach.	Oncologist	[Internet].	2011	Jan	1	[cited	2018	Sep	24];16(Supplement	1):20–2.	

Available	from:	http://www.ncbi.nlm.nih.gov/pubmed/21278437	

473.		 Cai	S,	Geng	S,	Jin	F,	Liu	J,	Qu	C,	Chen	B.	POU5F1/Oct-4	expression	in	breast	cancer	tissue	is	

significantly	associated	with	non-sentinel	lymph	node	metastasis.	2010	[cited	2018	Aug	

30];	Available	from:	http://nomograms.mskcc.org/Breast/Breast	

474.		 Cruz	C,	Castroviejo-Bermejo	M,	Gutiérrez-Enríquez	S,	Llop-Guevara	A,	Ibrahim	YH,	Gris-

Oliver	A,	et	al.	RAD51	foci	as	a	functional	biomarker	of	homologous	recombination	repair	

and	 PARP	 inhibitor	 resistance	 in	 germline	 BRCA-mutated	 breast	 cancer.	 Ann	 Oncol	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-396-	

[Internet].	 2018	 May	 1	 [cited	 2018	 Sep	 24];29(5):1203–10.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/29635390	

475.		 Raina	R,	Battle	A,	Lee	H,	Packer	B,	Ng	AY.	Self-taught	learning.	In:	Proceedings	of	the	24th	

international	conference	on	Machine	learning	-	ICML	’07	[Internet].	New	York,	New	York,	

USA:	 ACM	 Press;	 2007	 [cited	 2018	 Sep	 27].	 p.	 759–66.	 Available	 from:	

http://portal.acm.org/citation.cfm?doid=1273496.1273592	

476.			 Haricharan	 S,	 Lei	 J,	 Ellis	 M.	 Mammary	 Ductal	 Environment	 Is	 Necessary	 for	 Faithful	

Maintenance	of	Estrogen	Signaling	in	ER+	Breast	Cancer.	Cancer	Cell	[Internet].	2016	Mar	

14	 [cited	 2019	 Jan	 28];29(3):249–50.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/26977876	

477.		 Sflomos	G,	Dormoy	V,	Metsalu	T,	Jeitziner	R,	Battista	L,	Scabia	V,	et	al.	A	Preclinical	Model	

for	 ER&#x3b1;-Positive	 Breast	 Cancer	 Points	 to	 the	 Epithelial	 Microenvironment	 as	

Determinant	 of	 Luminal	 Phenotype	 and	 Hormone	 Response.	 Cancer	 Cell.	 2016	

Mar;29(3):407–22.		

478.		 Ghosh	A,	Sarkar	S,	Banerjee	S,	Behbod	F,	Tawfik	O,	Mcgregor	D,	et	al.	MIND	model	 for	

triple-negative	 breast	 cancer	 in	 syngeneic	 mice	 for	 quick	 and	 sequential	 progression	

analysis	 of	 lung	 metastasis.	 [cited	 2019	 Jan	 28];	 Available	 from:	

https://doi.org/10.1371/journal.pone.0198143	

479.		 Mohibi	S,	Mirza	S,	Band	H,	Band	V.	Mouse	models	of	estrogen	receptor-positive	breast	

cancer.	 J	 Carcinog	 [Internet].	 2011	 [cited	 2019	 Jan	 28];10:35.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/22279420	

480.		 Medina	 D,	 Butel	 JS,	 Socher	 SH,	 Miller	 FL.	 Mammary	 tumorigenesis	 in	 7,12-

dimethybenzanthracene-treated	C57BL	x	DBA/2f	F1	mice.	Cancer	Res	 [Internet].	1980	

Feb	 1	 [cited	 2019	 Jan	 28];40(2):368–73.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/6243251	

481.		 MEDINA	D,	KITTRELL	FS,	SHEPARD	A,	STEPHENS	LC,	JIANG	C,	LU	J,	et	al.	Biological	and	

genetic	properties	of	the	p53	null	preneoplastic	mammary	epithelium.	FASEB	J	[Internet].	

2002	 Jun	 10	 [cited	 2019	 Jan	 28];16(8):881–3.	 Available	 from:	

http://www.fasebj.org/doi/10.1096/fj.01-0885fje	

482.		 Chan	 SR,	 Vermi	W,	 Luo	 J,	 Lucini	 L,	 Rickert	 C,	 Fowler	 AM,	 et	 al.	 STAT1-deficient	mice	

spontaneously	 develop	 estrogen	 receptor	 α-positive	 luminal	 mammary	 carcinomas.	

Breast	Cancer	Res	[Internet].	2012	Feb	20	[cited	2019	Jan	28];14(1):R16.	Available	from:	



Clonal	Origins	of	Breast	Cancer	Drug	Resistance		 Appendix																														

	 	 	

	
-397-	

http://www.ncbi.nlm.nih.gov/pubmed/22264274	

483.		 Hinohara	K,	Wu	H-J,	Vigneau	S,	McDonald	TO,	 Igarashi	KJ,	 Yamamoto	KN,	 et	 al.	KDM5	

Histone	 Demethylase	 Activity	 Links	 Cellular	 Transcriptomic	 Heterogeneity	 to	

Therapeutic	 Resistance.	 Cancer	 Cell	 [Internet].	 2018	 Dec	 10	 [cited	 2019	 Jan	

28];34(6):939–953.e9.	 Available	 from:	

http://www.ncbi.nlm.nih.gov/pubmed/30472020		

484.	 Echeverria	 GV,	 Seth	 S,	 Ge	 Z,	 Carugo	 A,	 Bristow	 C,	 Mundi	 P,	 et	 al.	 Abstract	 212:	 High-

resolution	 barcoding	 in	 patient-derived	 xenografts	 of	 triple-negative	 breast	 cancer	

reveals	 reversible	 chemoresistance	 conferred	 by	 non-mutational	 mechanisms.	 Cancer	

Res	 [Internet].	 2018	 Jul	 1	 [cited	 2019	 Jan	 28];78(13	 Supplement):212–212.	 Available	

from:	http://cancerres.aacrjournals.org/lookup/doi/10.1158/1538-7445.AM2018-212	

	

	

	

	

	


