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Abstract

In this dissertation, we consider various combinatorial problems. The four chapters after the
Introduction concern games on graphs, while latter on, we make progress on some questions
in the settings of Rademacher sums and graph theory.

In Chapter 2, we study the (m,b) Maker-Breaker percolation game. This game, played
by two players on the square lattice, was introduced by Day and Falgas-Ravry. The outcome
of this game depends crucially on the parameters m and b. Day and Falgas-Ravry showed
that Breaker wins whenever b > 2m, but their approach then faces a barrier. We introduce a
new, more global approach to study this game and to improve their results: we show that
Breaker can in fact guarantee victory whenever b > (2 —1/14 4 0(1))m. We also show that
Breaker can win very fast in a different variant of this game as long as b > 2m.

In Chapters 3 and 4, we look at the Waiter-Client Kj-factor game, first studied by Clemens
et al. Here, it is known that Waiter wins, and the question is how long the game will last if
Waiter aims to win as fast as possible, Client tries to delay her as much as possible, and both
players play optimally.

In Chapter 3, we determine the duration of the game under the optimal play of both
players when k = 3, resolving the conjecture of Clemens et al. After that, we study the game
for large k in Chapter 4, and obtain the first known non-trivial lower bound for its duration in
this case.

In Chapter 5, we consider the so-called restricted online Ramsey numbers, which cor-
respond to a certain colouring game in the Builder-Painter setup. We provide a tight lower
bound for the restricted online Ramsey numbers of matchings as long as the number of the
allowed colours is small, resolving the conjecture of Briggs and Cox.

The setting in the next two chapters is the following. Set X = }"' | a;&;, where & are
Rademacher random variables, i.e. independent, identically distributed random variables
taking values +1 with probabilities 1/2 each, and {q;} are arbitary real numbers.

In Chapter 6, we make progress towards an old conjecture of Tomaszewski, which
concerns concentration of such random variables X. In Chapter 7, we study the reverse
problem and build up a framework that allows us to show anti-concentration results for

Rademacher sums, and in turn we significantly improve the known results in this setting.



In Chapter 8, we obtain the best possible bounds for the following problem, first studied
by Erdés, Pach, Pollak and Tuza: given a connected, triangle-free graph on n vertices and of
minimum degree at least 8, how large can the radius of such a graph be? We also study the
variant of this problem in which the triangle-free condition is replaced by a condition about
the girth of our graph.

In Chapter 9, we construct P,-induced-saturated graph for each n > 6, answering the
question of Axenovich and Csikos.

Finally, in Chapter 10, we obtain a result about the existence of the antipodal paths with

few colour changes in a two-colouring of the edges of the hypercube graph.
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Chapter 1

Introduction

1.1 Structure

This dissertation consists of ten chapters. In the first chapter, we introduce the problems that
we will consider, while each of the remaining nine chapters is about one of these problems.

The problems we study in Chapters 2, 3, 4 and 5 concern combinatorial games. Moreover,
all of these games are played on graphs. Chapters 6 and 7 look on two variants of a question
about sums of Rademacher random variables. In Chapter 6, we prove a certain concentration
result in this setting, while in Chapter 7, we prove a similar anti-concentration result. Finally,
in Chapters 8, 9 and 10, we obtain several results related to various parts of classical graph
theory.

Below, we describe the contents in more detail.

1.2 Games on graphs

The four chapters after the Introduction deal with various combinatorial games on graphs,
played by two players. We always try to investigate which player has a winning strategy, or,
if that is already known, how fast the winning player can guarantee victory. The games are
quite varied; in particular, our results concern well-known games like the Maker-Breaker,
Waiter-Client and Builder-Painter games.

The unifying theme of Chapters 2, 3 and 4 is that they all consider so-called positional
games. In a positional game we have a finite or infinite set A, called a board; a family of
subsets of A, called winning sets; and a rule determining which player wins the game. These

games attracted wide attention, starting with the papers of Hales and Jewett [43] and Erd6s
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and Selfridge [33]. Probably the most studied positional games are the Maker-Breaker games
we shall consider in Chapter 2.

The Maker-Breaker percolation game was introduced in two recent papers of Day and
Falgas-Ravry [21, 22]. In the (m,b) Maker-Breaker percolation game, where m,b > 1 are
fixed integers, two players called Maker and Breaker alternate in claiming the edges of Z>.
Maker starts and in each turn claims m yet unclaimed edges, while in each of his turns,
Breaker claims b yet unclaimed edges. If it ever happens that the connected component
containing the origin and consisting of the edges of Maker and of the yet unclaimed edges
becomes finite, Breaker wins; otherwise, Maker wins. One can use a pairing argument to
show that Maker wins the (m, 1)-game for any m > 1 and an argument involving perimeter to
show that Breaker wins the (1,5)-game for any b > 2 (for more details, we refer the reader
to Chapter 2), but what happens when m, b > 2 is lot more difficult to understand. Day and
Falgas-Ravry showed that if m > 2b, Maker can guarantee victory; and if b > 2m, Breaker
can guarantee victory. But the multiplicative constant 2 is tight for their arguments and in
fact there is a perimetric barrier not allowing local arguments to improve it.

In Chapter 2, which is joint work with Adva Mond and Victor Souza and was adapted
from parts of [29], we introduce a more global approach to study the game, which enables
us to break this barrier and show that Breaker wins the (m,(2 —1/14 4 o(1))m)-game.
Addressing further questions of Day and Falgas-Ravry, we also show that with twice the
power of Maker, Breaker can win very fast even if Maker is allowed to claim many edges
before the game starts.

Next, we consider the Waiter-Client games. In particular, for a fixed graph H, we look
at the unbiased H-factor Waiter-Client game on the edges of the complete graph, recently
studied by Clemens et al. [15]. Waiter and Client play the following game on the edges of K,
(where n is divisible by the number of vertices of H). In each round, Waiter picks two edges
that were not picked in any of the previous rounds. Client chooses one of these two edges to
be added to the Waiter’s graph and one to be added to the Client’s graph. Waiter wins if she
forces Client to create a H-factor in the Client’s graph at some point; otherwise, Client wins.

Regardless of what graph H we pick, for n large enough (dependent on H), Waiter can
win - this was previously observed in the literature, and it is also a consequence of one of the
results that we prove. Clemens et al. considered the question how many rounds the game will
last in the case when H is a complete graph K}, Waiter aims to win as fast as possible, Client
aims to delay her as much as possible, and both players play optimally. They conjectured
that in the case k = 3, i.e. when the winning sets are triangle-factors, the answer should be
%n + o(n), for which they obtained the corresponding upper bound. They also asked for

non-trivial upper and lower bounds for large k.
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In Chapter 3, which was adapted from [26], we verify the conjecture of Clemens et al.
about the triangle-factor game and show that its duration when both players play optimally is
indeed %n + o(n) rounds. So far all the tight results for fast winning strategies for Waiter-
Client games (and also for Maker-Breaker games) concern spanning structures which can
be obtained perfectly fast (i.e. the number of wasted rounds is one) or asymptotically fast
(i.e. the number of wasted rounds is of smaller order than the size of a smallest winning set).
Our result provides the first non-trivial example of a game which is not won perfectly or
asymptotically fast, but for which the asymptotic number of rounds under optimal play has
been determined.

In Chapter 4, which was adapted from [27], we consider the k-clique-factor game for
large k and obtain the first non-trivial lower bound. The strategy that Client uses is a simple
random one, and we define certain carefully chosen probability events to carry out our
analysis. The proof is rather technical, and hence for greater clarity, we first illustrate our
method by deriving a somewhat weaker bound through similar techniques for which the
proof is easier to motivate and understand.

Finally, we turn our attention to the following game between Builder and Painter. We
take some families of graphs ¥, ...,%; and an integer n such that n > R(%},...,%;). In each
turn, Builder picks an edge of initially uncoloured K, and Painter colours that edge with
some colour i € {1,...,7} of her choice. The game ends when a graph G; in colour i for some
G; € ¢4 and some i is created. The restricted online Ramsey number R(9,,...,%,;n) is the
minimum number of turns that Builder needs to guarantee the game to end.

In a recent paper, Briggs and Cox [11] studied the restricted online Ramsey numbers
of matchings and determined a general upper bound for them. They proved that for n =
3r — 1 = Ry(rK3) we have Ry(rK;n) < n— 1 and asked whether this was tight.

In Chapter 5, which was adapted from [25], we verify that the upper bound above is tight.
We also obtain analogous such result for the case of three colours and resolve the case of

four colours up to the precise value of the additive constant.

1.3 Rademacher sums

Chapters 6 and 7 are about the problems concerning Rademacher sums, which we now
introduce.

Consider the following simple setting. We pick a natural number n and take arbitrary real
numbers ay, ...,a,. After, we set X = Y' | a;&;, where & are Rademacher random variables,

i.e. independent, identically distributed random variables taking values +1 with probabilities
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1/2 each. There are several old conjectures about how concentrated or anti-concentrated
such a random variable X must be in terms of the standard deviation of X.

The conjecture that received most attention is one of Tomaszewski (see [42]) which
asserts that, regardless of our choice of n and ay, ...,a,, we always have probability at least
1/2 that X is within one standard deviation of its mean (which is clearly zero). A particular
difficulty of this conjecture is the broad variety of collections {a;} for which we have
}P’[|X| < \/Wo()} > 1/2, but ]P’[|X| < \/\T(X)] < 1/2. Many probabilistic inequalities
cannot differentiate between these two probabilities, and hence one must combine them with
more analytical tools as well.

In Chapter 6, which is joint work with Peter van Hintum and Marius Tiba and was
adapted from [31], we make some progress towards this conjecture, proving it for a slightly
weaker constant 0.46. This improves the previous best known such bound of this type
with constant 0.4276, proven independently by Boppana and by Hendrinks and van Zuijlen
(later combined into one publication [9]). Our techniques, which differ from the ones used
previously, enable us to bound the desired probability below by the solutions of certain linear
programming problems. This new approach turns out very useful, as it enables us to use
several of the methods handy for these sorts of problems, such as the second moment method
or the mirroring arguments for random walks, at the same time and in their full power.

In Chapter 7, which is joint work with Ohad Klein and was adapted from [28], we stay
in this setting but now look on how anti-concentrated X must be. There are fewer tools to
use than in the concentration direction, and hence in this question the previous attempts
at proving strong results were not very successful. Also, similarly to before, we face the
difficulty of various collections {g;} for which P [|X | >/ Var(X )] is much greater than

P [|X | > \/W(X)} We build up a framework that enables us not only to prove much
stronger results than previously known in this setting, but also would be useful when tackling
similar such problems in the future. In particular, in order to help us, we estimate a certain
more general function. Our tools are varied, ranging from the combinatorial ones such as
relating our problem to the chains in the hypercube graph, to the probabilistic ones such as

Prawitz’s smoothing inequality.

1.4 Classical graph theory

In the last three chapters, we consider problems from various parts of classical graph theory.
Erdds, Pach, Pollack and Tuza [36] studied the following problem in the extremal graph
theory. Fix integers n and 6 > 2. Given a connected, triangle-free graph on n vertices and of

minimum degree at least 8, what is the largest possible value of r, the radius of our graph?
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Erdds, Pach, Pollack and Tuza resolved the question, up to the value of the additive constant.
Nonetheless, the exact answer is of interest, especially as there exists a simple family of
graphs that is a natural candidate to be the extremal example.

In Chapter 8, which is joint work with Peter van Hintum, Amy Shaw and Marius Tiba
and was adapted from [30], we determine the precise optimal value for all n, 8. In particular,
this shows that the family mentioned above indeed is the extremal example. To prove our
result, we have to engage in certain case analysis - most cases are quite easy to resolve with
the methods we develop, but there are several more difficult cases where more elaborate
arguments are necessary. We also consider more general version of the problem, where the
triangle-free condition is replaced with the condition about the girth g of the graph. For
several values of g, we derive essentially best possible results.

For a fixed graph H, we say that a graph G is H-induced saturated if G contains no
induced copy of H, but either adding any non-edge to G or erasing any edge from G creates
such a copy.

Denote a path graph on n vertices by P,. Martin and Smith [57] showed that there exists
no Ps-induced-saturated graph. Following this result, the question for which n > 5 there exist
P,-induced-saturated graphs was posed by Axenovich and Csikés [1] and received significant
attention. Réty [66] constructed such a graph for n = 6, later Cho, Choi and Park [13] done
so for n = 3k for any k > 2, and Bonamy, Groenland, Johnston, Morrison and Scott [8] found
such a graph for n = 5 by a computer search.

In Chapter 9, which was adapted from [24], we complete the classification by providing a
construction of P,-induced-saturated graphs for each n > 6. Unlike the previous constructions
which were more involved and motivated by algebra, our construction is very simple, and we
spend most of the chapter proving that it indeed works.

Finally, consider the following question in Ramsey theory, originating to Norine [60]
and later asked in the present form by Leader and Long [54]. Colour the edges of the
hypercube graph O, in two colours. Do there always exist two antipodal vertices joined by a
monochromatic geodesic path with at most one colour change? Very little progress has been
made on this question - it is not even known if there exists such a geodesic with o(n) colour
changes.

In Chapter 10, which was adapted from [23], we make a first small step towards such
a result by improving the trivial bound of (1/2 —o(1))n colour changes to (3/8 +o(1))n
colour changes. Our method uses a certain trade-off which we hope could be useful even for
the arguments aiming for the o(n) bound.






Chapter 2
Maker-Breaker percolation game

This chapter is joint work with Adva Mond and Victor Souza. The results of this chapter

form a part of a currently submitted paper [29].

2.1 Introduction

2.1.1 Background

Positional games are two-player combinatorial games characterized by the following setting.
We have a finite or infinite set A, called a board; a family of subsets of A, called winning sets;
and a rule determining which player wins the game. These games attracted wide attention,
starting with the papers of Hales and Jewett [43] and Erd6s and Selfridge [33]. We refer the
reader interested in positional games to the books of Beck [3], and of Hefetz, Krivelevich,
Stojakovi¢ and Szabé [44].

The so-called Maker-Breaker games are well studied positional games. To define the
simplest version of a Maker-Breaker game, we need a finite or infinite set A, our board, and
a family .7 of subsets of A, the collection of winning sets. The game is played in rounds.
In each round, Maker and Breaker respectively claim an as yet unclaimed element of A,
where Maker is the first player. Breaker wins the game if he claims at least one element
in each F € .% by any finite point of the game. Otherwise, Maker wins. On a finite board,
this is equivalent to Maker claiming all elements of some F € .% by the end of the game,
though the same is not true for infinite boards. This version of the game is also called the
unbiased Maker-Breaker game. In the biased Maker-Breaker game, introduced by Chviétal
and Erdos [14], the players may claim more elements. To be precise, given natural numbers
m and b, in each round of the (m,b) Maker-Breaker game, Maker claims m elements of the

board whereas Breaker claims b. For more information about Maker-Breaker games, we
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once again refer the reader to the books of Beck [3], and of Hefetz, Krivelevich, Stojakovié
and Szabd [44].

In this chapter, we address the following Maker-Breaker game played on an infinite board,
introduced by Day and Falgas-Ravry [21, 22]. Let A be an infinite connected graph and let
vo € V(A) be a vertex. In the scope of this chapter, we only have A being Z2. The (m,b)
Maker-Breaker percolation game on (A,vy) is the game with board E (A) where the winning
sets are all infinite connected subgraphs of A containing vg. That is, Maker’s goal is to ensure
that vg is always contained in an infinite subgraph of A spanned by the edges that she claimed
and the unclaimed edges. Note that Breaker wins the game by claiming at least one element
in each winning set. In this game this means that Breaker’s goal is to claim any set of edges
separating vo from infinity. Notably, the (1,1)-game on A can be seen as a generalisation
of the well-known Shannon switching game to an infinite board, see Lehmann [55] for a
description and a solution of this game.

Throughout this chapter, we refer to the (m,b) Maker-Breaker percolation game on
(A,vo) as (m,b)-game on (A,vp). If A is a transitive graph, we omit the vertex v in our
notation, as it does not change the analysis of the game.

Next, we summarise the main results of the paper [22] of Day and Falgas-Ravry.

Theorem 2.1.1 (Day and Falgas-Ravry [22]). Let m,b € N. Then
(i) Maker has a winning strategy for the (1,1)-game on Z?;
(ii) if m > 2b, then Maker has a winning strategy for the (m,b)-game on 7?;
(iii) if b > 2m, then Breaker has a winning strategy for the (m,b)-game on 7.

Note that, clearly, neither player is harmed by having more moves on their turn, so if for
instance, Breaker wins the (m,b)-game on a board, he also wins the (m,b’)-game on that
same board with ' > b. This property is called bias monotonicity.

Having proved Theorem 2.1.1, Day and Falgas-Ravry raised many interesting questions.
Most strikingly, they asked if there is some critical ratio p* such that, there exists a positive
function @ (m) = o(m) such that Breaker wins the (m, p*m+ ¢(m))-game and Maker wins
the (m, p*m— ¢@(m))-game. Theorem 2.1.1 shows that if such ratio exists, then 1/2 < p* < 2.
These bounds are associated with the fact that a set of k connected edges in Z> has edge-
boundary of size at most 2k + 4, see Lemma 2.2.1. By the perimetric barrier we refer to the
limitation of either player being roughly twice as powerful as the the other player. Although
the main problem Day and Falgas-Ravry suggest is to break the perimetric barrier, they
set out as an open problem to show whether Breaker or Maker can win the (m,2m — 1) or

(2b — 1,b) games, respectively.
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2.1.2 Our results

As our first result, we break the perimetric barrier on Breaker’s side, making progress towards

answering Question 5.5 from the paper [22] of Day and Falgas-Ravry about the critical ratio.

Theorem 2.1.2. Consider the (m,b) Maker-Breaker percolation game on 72, where m > 29
and b > 2m—s for some 0 < s < ’"1;422. Then Breaker has a winning strategy, which moreover

ensures that he wins within the first 3 rounds of the game.

In particular, this shows that if p* exists, then 1 /2 < p* < 27/14 &~ 1.93, and thus, breaks
the perimetric barrier as discussed previously. We do not believe this bound to be tight, and
moreover, we did not attempt to optimise for this constant, as we also believe that the current
method will not yield the optimal bound.

Theorem 2.1.2 improves the ratio on Breaker’s side for m > 36, and it also shows that
for m > 29, Breaker wins the (m,2m)-game rather fast. Nonetheless, it is also of interest to
determine how powerful Breaker is in the (m,2m)-game for smaller values of m. In the proof
of Theorem 2.1.1, Day and Falgas-Ravry show that Breaker can win the (m,2m)-game on
72 within m16m+0(1) rounds, and ask [22, Question 5.7] how far this is from best possible.
Concerning this question, we prove a slightly stronger result, showing that Breaker can win
fast even when allowing Maker an initial boost in the form of an option to claim some edges
before the game starts.

We consider the following variant of the game. For integers m,b > 1 and ¢ > 0 define
the c-boosted (m,b) Maker-Breaker percolation game on Z? to be the same as the (m,b)
percolation game, with the addition that only in her very first turn, Maker claims ¢ extra
edges (so overall in her first round she claims m 4+ ¢ edges). Concerning this game, Day and
Falgas-Ravry asked [22, Question 5.6] whether Breaker having a winning strategy for the
(m,b)-game on (A, vg) implies that he also has a winning strategy for the c-boosted version
of the same game.

In view of [22, Questions 5.6, 5.7], we prove the following result.

Theorem 2.1.3. Let m > 1 and ¢ > 0 be integers, and let b > 2m. Then Breaker wins the

c-boosted (m,b) Maker-Breaker percolation game on 72, and moreover, he can ensure to
win within the first (2c +4)(2c +5) ([%2] +2) rounds.

This theorem tells us that Breaker can not only win the (1, 2m)-game on Z? quite fast, and
can not only win the c-boosted game for any c, he can also win quite fast the c-boosted game.
Moreover, the number of rounds Breaker needs is uniformly bounded in m and polynomial
in ¢. Thus, for the (m,2m)-game, we answer the stronger combined version of Questions 5.6
and 5.7 of [22].
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Applying Theorem 2.1.3 with ¢ = 0, we get the following extension of Theorem 2.1.2 for

the (m,2m)-game without an initial boost.

Corollary 2.1.4. Let m > 1 and b > 2m be integers. Then Breaker can guarantee to win the
(m,b) percolation game on 72 within the first 80 rounds of the game. Moreover, if m > 29

then Breaker wins within 3 rounds.

Note that this cannot be extended for a win in 3 rounds for every m, as in fact, form =1,
Maker can survive for 5 rounds. In the range 1 < m < 28, the bound of 80 we obtain is not
optimal, as the proof of Theorem 2.1.3 specialised to ¢ = 0 could be greatly simplified. For
m > 29, Maker can indeed survive for 3 rounds, as it becomes clear in the proof of Theorem
2.1.2.

2.1.3 Tools and strategy

Throughout this chapter we use two important tools. The first relates our game to an auxiliary
game, where Maker has to keep her graph connected, or at least connected in some generalised
sense. However, if we want to claim that it is enough to prove that Breaker wins against a
restricted Maker, we have a certain price to pay. In particular, we consider only strategies of
Breaker in which he claims edges from the edge-boundary of Maker’s connected component,
or a slightly generalised version of that. More importantly, we enable Maker to ‘save’ some
edges for later, to make the auxiliary game resemble the original one. Despite these changes,
this setting ends up being much easier to analyse, as one of the hard things to tackle when
considering strategies for Breaker is handling different connected components in Maker’s
graph. Furthermore, it turns out that with these adjustments, analysing the auxiliary game is
indeed sufficient to prove our results for the original game.

Our second tool is considering variations on Lemma 2.2.1 (Lemma 2.3 in [21]). This
simple result tells us that the edge-boundary of any connected finite subgraph of Z? is at
most ‘a bit’ larger than twice the number of edges of this subgraph. Hence, for instance,
when playing the (m,2m)-game, it is enough to force Maker to play several ‘bad moves’, not
enlarging the edge-boundary of her graph by too much, so that Breaker can surround her
connected component completely.

When we use a more general notion of connectivity, we need a slightly more general
version of Lemma 2.2.1. This variant allows us to analyse the game in a global sense. This,

in particular, is how we manage to break the perimetric barrier.
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2.1.4 Organization

Firstly, we present our notation and the definitions we work with in Section 2.2. After that,
we prove Theorem 2.1.2 in Section 2.3 and Theorem 2.1.3 in Section 2.4. Finally, we present

several open problems and further directions in Section 2.5.

2.2 Preliminaries

For a graph G, we denote by V(G) its vertex set, and by E(G) its edge set. Furthermore, we
set ¢(G) := |E(G)|. For a subset of vertices U C V(G) we denote by G[U] the subgraph of G
induced by U.

The edge boundary d H of a finite subgraph H of a possibly infinite graph G is

0H = {{x,y} €E(G)\E(H): {x,y}NV(H)#0}.

We usually abbreviate ‘edge boundary’ to ‘boundary’, as we do not consider any other type
of boundary in this chapter.

We use the standard terminology where by the square lattice Z?, we mean the infinite
graph with the following vertex and edge sets:

V(Z?) = {(x,y): x,yeZ},
E(Z%) = {{(xy), &y} CZ%: |x=X|+|y—y| =1}.

2.2.1 Useful lemmas

Throughout this chapter, we use several times the following reverse isoperimetric inequality
observed by Day and Falgas-Ravry [21].

Lemma 2.2.1 (Day and Falgas-Ravry [21]). Let C be a finite connected subgraph of 72, then
|0 C| < 2e(C) +4.

Proof. We follow the argument of Day and Falgas-Ravry [21]. The proof goes by induction
on the number of the edges. If ¢(C) = 1, then we have |d C| = 6, and the result holds.

Now fix some k > 1 and assume that the result is true for any connected subgraph of Z>
with k — 1 edges. Consider C, a connected subgraph of Z? with ¢(C) = k. There must exist
an edge e € E(C) such that C' = C\ {e} is connected - indeed, if C contains some cycle, any
edge of this cycle will have this property, and otherwise C is a tree and then any leaf will have
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_______________

Fig. 2.1 Three connected components, their bounding boxes (dashed), and the bounding box
of their box-component (solid).

this property. By induction, we have |d C'| < 2(k — 1) +4. Note that adding e to C’ erases
one edge from the edge boundary of C’ and it adds at most three new ones, since at most one
endpoint of e is not in C'. Hence, |d C| < |d C'| +2 < 2k +4, completing the proof. O

We present two more versions of this lemma, for which we need some definitions.

Definition 2.2.2. We say that a finite subgraph B C 77 is a box, if it is induced by a set of

vertices of the form

for some a,b,c,d € 7.

Definition 2.2.3. Let S C 77 be a finite set of edges and let Vs be the set vertices in the graph
it spans. The bounding box of S, denoted bb(S), is the minimal box in 7 containing S. To
spell it out, let

my(S) :==min{x: (x,y) € Vs}, M(S) == max{x: (x,y) € Vs}.

Also, let my(S),My(S) be defined analogously for the y-axis. Then bb(S) is the box induced
by the following set of vertices:

{(x,y) + me(S) < x < M(S), my(S) <y < My(S)}.

For a finite subgraph G of Z?, we write bb(G) for bb(E(G)).

Lemma 2.2.4. Let D be a finite connected subgraph of 72, then

9bb(D)| < |9 D]
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Proof. Let d D consist of h horizontal and v vertical edges, so that [0 D| = h+v. Let
my = my(D), My = M(D), my = my(D), and M, = M,(D) be as in Definition 2.2.3. Note
that for any m, < xo < M, there are at least two vertical boundary edges in d D of the form
{(x0,y), (x0,y+ 1)}. Analogously, for any m, < yo < M, there are at least two horizontal
boundary edges in d D of the form {(x,yo), (x+ 1,y0)}. In particular we have i > 2(M, —
my+1) and v > (M, — my + 1). Recall that the box bb(D) has sides of lengths M, —m, and
M, —my, so
|0bb(D)| = 2(My — my+ My, —my) +4,

and the result follows. ]

We define a generalisation of connected component that incorporates the notion of

bounding box in Definition 2.2.3. For doing so we go through several definitions.

Definition 2.2.5. Let D{,D, C 72 be boxes. We say that D, D, box-intersect if
V(D1)NV (D) # 0.

Note that the relation in Definition 2.2.5 is clearly symmetric.

Definition 2.2.6. Let D C 7 be a finite subgraph. Let C,...C; be the connected components
of D, and let # = {bb(C}),...,bb(C;)} be the collection of their bounding boxes. As long as
possible, repeat the following process. If there exist R;,R; € % which box-intersect, remove
them from % and replace them by the bounding box of their union, that is, by bb(R; UR;).
The final Z obtained in the end of this process is called a collection of box-components of D.

If the final % contains precisely one box-component, then we say that D is box-connected.

Hence, for each subgraph D C Z? we can consider its collection of box-components. This
allows us to state a slightly generalised version of Lemma 2.2.1.

Lemma 2.2.7. Let D be a finite box-connected subgraph of 72, then
|0bb(D)| < 2¢(D) + 4.

Proof. If D is connected, then the result follows immediately from combining Lemma 2.2.4
and Lemma 2.2.1.

Otherwise, it is enough to prove the statement for the case where is D a union of
two graphs, Cy,C,, for which the statement holds for both, and where bb(C}),bb(C;) box-
intersect. Indeed, we then apply this repeatedly for each step in the process defined in



14 Maker-Breaker percolation game

Definition 2.2.6, which ends in a single box-component for D. Denote R; := bb(C;) for

i =1,2, so by assumption we have
|0 R;| < 2e(C;) +4. 2.1
As R1, R, box-intersect, we have that
V(R)NV(Ry) # 0.,
If either R; C R, or R» C R; then we either have
|0bb(D)| = [dR| < 2e(Cy)+4 < 2e(D)+4,

or a similar relation holds with R; replaced by R;.

Otherwise, we can easily argue that the set (d(R;) Ud(Rz)) \ d(R; UR;) forms a dual
rectangle with strictly positive integer side lengths, and hence that it contains at least four
elements. In particular,

[0(R1URy)| < [0Ri[+ |0 Ro| — 4.

Consequently,

|dbb(D)| = |dbb(C; UC)|

= [dbb(R] URy)|

< |(R1URy)| (By Lemma 2.2.4)
< |OR||+|0Ry|—4

< 2e(Cr) +2e(Cr) +4 (By (2.1))
=2e(D) +4. O

Remark 2.2.8. Note that the edge boundary d B of any box B C 72, when regarded as a set

of dual edges, forms a rectangle.

2.3 Breaking the perimetric ratio

In this section, we prove Theorem 2.1.2. First, let us recall that by bias monotonicity, it is
enough to prove Theorem 2.1.2 for b = 2m — s, as having more power cannot harm Breaker.
As a first step, we describe an auxiliary game for which we show that a win of Breaker in

this game implies a win of him in the original game. After that, we provide Breaker with an
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explicit strategy. The rest of this section is devoted to showing that Breaker, by following
the suggested strategy, wins the auxiliary game within three rounds. We prove this by a
geometric analysis, relying crucially on the introduced notion of box-connectivity and our
tools from Section 2.2.

If Breaker plays only on the boundary, it is natural to arrive at the perimetric barrier of
the ratio 2, because of Lemma 2.2.1. More precisely, when Breaker only claims edges from
the boundary of Maker’s graph, he cannot react to her future moves in advance. That is, in
each turn, Maker is able to create as many new unclaimed boundary edges as possible, to
which Breaker must respond. To get around this, it is helpful for Breaker to consider the
global structure of Maker’s graph. Indeed, in general terms, one could interpret our strategy
as Breaker forcing Maker to claim edges in an already played region of the board. This extra
power from previous turns will lead to the improvement on the ratio.

More particularly, in each round, Breaker will almost completely enclose Maker’s graph
from that round in a big rectangular box. After several rounds, the situation will inevitably
occur when a new rectangle that Breaker wants to use shares a side with a rectangle already
placed. At that point, Breaker does not need to use any edges to create this side of the
rectangle, which is where the extra power that he needs comes from. Figures 2.2, 2.3 and 2.4
illustrate this.

When analysing the game from the point of view of Breaker, we wish to consider the
graph of Maker as being always box-connected. Hence, we define the auxiliary game where
we consider the box-component of Maker’s graph containing the origin as her graph in each
round. Consequently, we allow more flexibility in the number of edges that she can claim
in each turn. Also, when defining Breaker’s strategy later, we must insist that he can only
play in a certain way for a result about an auxiliary game to translate into the result about the

original game.

Definition 2.3.1 ((m,b) Maker-Breaker box-limited percolation game on 72). Two players,
Maker and Breaker alternate claiming yet unclaimed edges of a board 72, starting in round

1 with Maker going first.

* In round i, Maker chooses a non-negative integer m; such that for every i,
i
Y mj <im, (2.2)
j=1

and then claims m; unclaimed edges from E (Zz). Moreover, Maker must play in a way
that in the end of each of her turns, her edges must be in the box-component of v (see
Definition 2.2.6).
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* In each round, Breaker claims at most b unclaimed edges.

* Breaker wins if the connected component of vy in the graph formed by Maker’s edges
and all unclaimed edges becomes finite. If Maker can ensure that this never happens,

then she wins.
A key result for us is the following proposition relating the two games.

Proposition 2.3.2. Let m,b > 1 be integers. Assume that Breaker can ensure his win in the
(m,b) box-limited percolation game on 77 within the first k rounds by claiming only edges
from the boundary of the bounding box of Maker’s graph, or from inside the box itself. Then

he can also ensure his win in the (m,b) percolation game on Z* within the first k rounds.

Proof. We show that if Maker has a strategy to ensure that Breaker will not win within the
first k& rounds of the (m,b) percolation game, then she can also ensure that Breaker will not
win within the first £ rounds of the box-limited percolation game, assuming that Breaker
claims only edges from the boundary of the bounding box of her graph, or from inside it.

Assume that Maker has such a strategy for the (unlimited) percolation game. Then she can
win the box-limited game by playing as follows. Denote by M the box-component spanned
by the edges claimed by Maker. Maker follows her winning strategy for the percolation
game, and whenever this includes playing some edge e that after the end of her turn would
be in a box-component which is not M, she only marks this edge as an imaginary edge and
does not play it in that round. However, she claims an imaginary edge e right after the first
time she plays some edge that puts e in M.

Firstly, Maker can afford saving imaginary edges to claim later in the game, as the terms
m; only have to satisfy 2321 m; < im for any i > 1. Furthermore, Breaker cannot claim an
imaginary edge before Maker claims it, as we assume that Breaker wins by claiming only
edges in (d M) UE(M). The result follows. O

Now consider the (m,2m — s) Maker-Breaker box-limited percolation game on Z?, where
m>36and 1 <s < 22,

We provide Breaker with the strategy below. While the description of the strategy may
seem complicated at first, it is in fact very simple. For illustrations of the geometric content

of this strategy, see Figures 2.2, 2.3 and 2.4.

Strategy 2.3.3 (Breaker’s strategy for the (m,b) box-limited percolation game on Z?). For
any i > 1, let M; be the set of edges claimed by Maker in her i-th turn. Breaker plays
according to the following steps. If at any point of the game Breaker cannot follow any

particular step, he forfeits the game.
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First round
Set By := bb(Ml)

(1) If |0 B1| < 2m —s, claim all edges in 0 Bj.

(2) Otherwise, let g1 := |0 Bi| —2m+s. Claim 2m — s edges from d By, leaving g,
unclaimed boundary-edges in the middle (up to being possibly shifted by one
edge, for parity reasons) of one of the longer sides of the box By. Denote by G
this set of g1 unclaimed edges.

Second round

(1) If My NGy = 0, then claim all edges in G if possible, or forfeit if not possible.

(2) Otherwise, My NGy # 0. Let V| be the set of vertices in 7?2 \ By which are
contained in edges of G|. Let P, := E (Z2 [Vl]) be the set of edges in the path
induced by the vertices Vy. Let Cy == E(B1)Ud B} and By :=bb((M, UP;)\ C)).

(2.1) If |(d B2) \ C1| < 2m —s, claim all edges in (d By) \ C.

(2.2) Otherwise, let g» = |(d B2) \ C1| —2m+s. As G is a set of boundary-edges in
the middle of one of the longer sides of By, it splits the boundary edges adjacent
to this side into two sets of consecutive boundary-edges. Denote these two
sets by Ly and Ry, such that |[Ry N (dBy)| < |L1N(dBy)|. Let e be an edge
in (dBy) \ C1 of minimal distance to G). Let G, be g, consecutive edges in
(d By) \ Cy, starting from e (see Figure 2.3 for an illustration). Claim all 2m — s
edges in (d By) \ C| excluding those edges in G».

Third round

(i) If there is a set of at most 2m — s unclaimed edges such that claiming them

ensures a win in this round, claim all edges in this set.

(ii) Otherwise, forfeit.

We now show that Strategy 2.3.3 is enough to break the perimetric barrier for the box-
limited game. Note that when using Strategy 2.3.3, Breaker only claims edges from the
bounding box of Maker’s graph or from its boundary. Hence, combining Proposition 2.3.2

with the following proposition gives us Theorem 2.1.2.

Proposition 2.3.4. Let m > 36 and s < m;—fz. Then by following Strategy 2.3.3, Breaker

wins the (m,2m — s) box-limited percolation game on 7? in at most three rounds.
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Proof. We analyse the game by following Strategy 2.3.3 step by step, showing that Breaker
can indeed follow it without forfeiting at any point, and thus to win the game by the end of
the third round. In fact, we show that by the end of the third round, Breaker claims all edges
in the boundary of the bounding box of Maker’s graph, or a subgraph of it containing the
origin.

Note that if during the game, Breaker grants Maker extra edges and wins when playing
as if she claimed them, then he also wins the games without granting her those edges. We
will use this assumption as it simplifies the analysis of the game.

Recall that for each j > 1, we denote by M; the set of edges that Maker claimed in her
j-th turn. Let m := |M||, so we have 23‘:1 m; < im forany i > 1.

Refer to Figures 2.2, 2.3 and 2.4 for a representation of Rounds 1, 2 and 3 respectively.
We use in several points of this analysis that the game is invariant under translations, rotations
by 7 /4 angles and horizontal and vertical reflections.

First Round

Maker plays all her m; edges M| in a box-component containing the origin. Set By :=bb(M}),
and let a; and b; be the number of vertices in the sides of By, with a; > by. Assume, without
loss of generality, that the top and bottom sides of B; are at least as large as the left and right
ones, that is, they consists of a; vertices. Note that as |d B;| = 2a; + 2b;, we get

ar > 1|9 Bl (2.3)

Step (1) If |d By| < 2m — s, then by claiming all edges in d B}, Breaker surrounds Maker’s

graph and wins the game.

Step (2) Assume otherwise, so we have

|0Bi| > 2m—s+1. (2.4)
Moreover, by Lemma 2.2.7 we get
|0 B1| < 2mj +4, (2.5)
so in particular,
mi=m—gs—3. (2.6)

Denote
g1:=19dBi| —2m+s. 2.7
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Breaker chooses g boundary-edges in the middle (up to being possibly shifted by one edge,
for parity reasons) of the bottom side of d By, and denotes them by G|. We refer to this set
of edges as the ‘gate’ for the first round, see Figure 2.2. Then Breaker claims all edges in
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Fig. 2.2 End of Round 1, where Maker is in light blue and Breaker in dark red. The set G of
g1 edges in the gate, in orange, is unclaimed.

This is possible because the bottom side of d By contains at least g; edges, as we observe

below.
g1 <s+4—-2(m—m;) <s+4 (By (2.7), (2.5), and m; < m) (2.8)
1 1
<7 (@m—s+1)<710B)] (Ass <22, m >29 and (2.4))
<ar. (By (2.3)) 2.9)

Assume further, without loss of generality, that the box is fully contained in the top half-plane
and that the origin (0,0) is as close as possible to the centre of the bottom side of the box Bj.
In particular, it is also in the centre of the gate G.

Second Round

First note that by (2.9), we have |G| =g; <a; <m+1<2m—s.

Step (1) If My NG = 0, then by claiming all at most 2m — s edges in G, Breaker surrounds

B1 completely and thu