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SUMMARY

DNA damage repair (DDR) pathways modulate
cancer risk, progression, and therapeutic response.
We systematically analyzed somatic alterations to
provide a comprehensive view of DDR deficiency
across 33 cancer types. Mutations with accompa-
nying loss of heterozygosity were observed in over
1/3 of DDR genes, including TP53 and BRCA1/2.
Other prevalent alterations included epigenetic
silencing of the direct repair genes EXO5, MGMT,
and ALKBH3 in �20% of samples. Homologous
recombination deficiency (HRD) was present at
varying frequency in many cancer types, most
notably ovarian cancer. However, in contrast to
This is an open access article under the CC BY-N
ovarian cancer, HRDwas associated with worse out-
comes in several other cancers. Protein structure-
based analyses allowed us to predict functional con-
sequences of rare, recurrent DDR mutations. A new
machine-learning-based classifier developed from
gene expression data allowed us to identify alter-
ations that phenocopy deleterious TP53 mutations.
These frequent DDR gene alterations in many human
cancers have functional consequences that may
determine cancer progression and guide therapy.

INTRODUCTION

DNA damage repair (DDR) genes play key roles in maintaining

human genomic stability. Loss of DDR function, conversely, is
Cell Reports 23, 239–254, April 3, 2018 ª 2018 The Author(s). 239
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Figure 1. Cancer Types Display Variable DNA Damage Repair Gene Somatic Alterations

(A) DDR gene alterations are frequent and non-uniformly distributed by type and frequency across cancer types. Clustered heatmap indicates the percentage (%)

of samples in a cancer type (rows, with cancer types listed right, number of samples between parentheses) altered for at least one core gene in a given DDR

pathway (columns, with core gene numbers indicated in parentheses for each pathway, bottom). Color intensity indicates the percentage altered, with the

percentage given as a number in each cell. RGB color indicates mutations (red), deep deletions (blue), or epigenetic silencing through methylation (green).

Gray scale indicates equal contribution from all three alteration types. A ‘‘u’’ symbol in cells indicates a statistically significant enrichment (FDR [false discovery

rate] < 10%, difference in alteration percentages > 2%) in alterations. A ‘‘co’’ or ‘‘me’’ symbol in cells indicates a statistically significant (FDR < 10%)

co-occurrence or mutual exclusivity of samples altered by mutation, deep deletion, or silencing. Only ‘‘co’’ relations were observed. The two rightmost columns,

Mut.load and SCNA load, indicate average mutation frequency (non-silent mutations/Mb) and copy-number burden (number of copy-number segments) by

cancer type.

(legend continued on next page)

240 Cell Reports 23, 239–254, April 3, 2018



an important determinant of cancer risk, progression, and

therapeutic response (Jeggo et al., 2016). DDR genes can

be grouped into functional pathways defined by genetic,

biochemical, and mechanistic criteria. Proteins in the same

pathway often work in concert to repair specific types of

DNA damage (Friedberg et al., 2004). Base excision repair

(BER), nucleotide excision repair (NER), and the direct damage

reversal/repair (DR) pathways repair DNA base damage, while

mismatch repair (MMR) corrects base mispairs and small

loops often found in repetitive sequence DNA. Homology-

dependent recombination (HR), non-homologous end joining

(NHEJ), the Fanconi anemia (FA) pathway, and translesion

DNA synthesis (TLS) act alone or together to repair DNA

strand breaks and complex events like interstrand crosslinks

(Friedberg et al., 2004; Kass et al., 2016). All of the major

DDR pathways, with the exception of the FA pathway, have

been identified in virtually all organisms. This reflects the uni-

versal need to counter the chemical instability of DNA and

repair additional damage (Aravind et al., 1999; Eisen and Ha-

nawalt, 1999; Friedberg et al., 2004).

The consequences of DDR deficiency are becoming better

understood through analyses of DDR gene alterations in cancer

(Alexandrov et al., 2013; Forbes et al., 2017; Garraway and

Lander, 2013; Martincorena and Campbell, 2015). For example,

frequent TP53 somatic mutations in many cancer types can

disrupt the DNA damage response, apoptosis, or senescence

pathways active in many early-stage cancers (Bartkova et al.,

2005; Fischer, 2017; Gorgoulis et al., 2005; Pfister and Prives,

2017). DDR deficiency may also lead to specific mutational ‘‘sig-

natures,’’ e.g., the short tandem repeat instability linked to the

inactivation or silencing of DNA MMR in colorectal, ovarian, or

endometrial cancer (Alexandrov et al., 2013; Helleday et al.,

2014; Kass et al., 2016)

The therapeutic implications of altered DDR function are

becoming better known. Many anti-cancer agents act by gener-

ating DNA damage that, if unrepaired, may lead to cell death or

senescence. DNA interstrand crosslinks (ICLs) and double

strand breaks may be particularly difficult to repair, requiring

coordination of the NER, BER, FA, and HR pathways (Duxin

and Walter, 2015; Michl et al., 2016; Pearl et al., 2015). The

loss of one or more DDR pathway, once recognized, can also

be therapeutically targeted through synthetic lethality (Brown

et al., 2017; Kaelin, 2005; Srivas et al., 2016). Examples include

loss of expression of the DR pathway proteinO6-methylguanine-

DNAmethyltransferase (MGMT), which sensitized cancer cells to

alkylating chemotherapy agents (Soll et al., 2017; Weller et al.,

2015); and BRCA mutant, HR-deficient breast and ovarian

cancers, which are sensitive to inhibition of PARP1, a central

protein in the BER pathway (Bryant et al., 2005; Farmer et al.,
(B) Mutations and deep deletions contribute disproportionately to alter HR genes

summary of the relative contribution of alteration types to HR pathway variation. Th

samples. M+D, mutation and deletion; D+S, deletion and silencing.

(C) Multiple genes contribute to enrichment of DDR pathway alterations. Heatmap

frequencies for genes with >2% alterations. Color intensity indicates percentag

representing gene and pathway associations are listed under each column.

(D) The top 50 most frequently mutated genes among 276 DDR genes. Genes a

rectangles), together with the fraction of concurrent mutations and LOH events (
2005; Lord and Ashworth, 2017). Epigenetic silencing may phe-

nocopy these DNA events.

The Cancer Genome Atlas (TCGA) DNA Damage Repair

Analysis Working Group (DDR-AWG) used newly standardized

Pan-Cancer Atlas (PanCanAtlas) data to systematically analyze

potential causes of loss of DDR function and the resulting conse-

quences across 33 different human cancer types. The loss of

specific DDR pathways in cancer, in contrast to other cellular

‘‘hallmarks’’ of cancer (Hanahan andWeinberg, 2011), often gen-

erates stable—and thus more readily interpretable—‘‘footprints’’

in cancer genomes, detected as an increased mutation burden,

altered mutational signatures, or copy-number alterations

including loss of heterozygosity (LOH). We provide below the

most comprehensive analysis to date of DDR pathway gene

alterations and their consequences in human cancer. Our results

provide a useful resource to guide both mechanistic and thera-

peutic analyses of the role of DDR in cancer.

RESULTS

We performed analyses with a curated list of 276 genes encom-

passing all major DNA repair pathways: 208 genes were anno-

tated to one or more specific DDR pathway, with an additional

68 genes annotated to key DDR-related pathways such as

nucleotide pool maintenance (e.g., RRM1/2, the regulatory and

catalytic subunits of ribonucleotide reductase); critical DNA

damage response kinases (e.g., ATM, ATR, CHEK1/2, and

WEE1); and genes recurrently mutated in cancer that modulate

DDR (e.g., TP53, IDH1, and PTEN). We defined a ‘‘core DDR’’

gene set of 71 DNA repair pathway-specific and 9 DNA damage

response genes that were used to facilitate parsimonious

pathway representations and analyses (Table S1; Figures S1A

and S1B).

Prevalent DDR Alterations across Cancer Types
We first determined the prevalence of DDR alterations across

PanCanAtlas cancer types by integrating data on somatic trun-

cating and missense mutations (Figures S1C and S1D), deep

copy-number deletions defined by GISTIC (Mermel et al., 2011),

and epigenetic silencing events. Binary calls for each event class

for the 276 DDR genes across 9,125 PanCanAtlas samples

are available through Data and Software Availability. The fre-

quency of these somatic DDR gene alterations is shown in

Figures 1A–1C (core DDR genes) and Figures S1E–S1G (all 276

DDR genes). For a complete list of TCGA cancer type abbrevia-

tions, please see https://gdc.cancer.gov/resources-tcga-users/

tcga-code-tables/tcga-study-abbreviations. Cancer types with

a higher global mutation burden (e.g., in UCEC [uterine corpus

endometrial carcinoma], COAD [colon adenocarcinoma], and
across nearly all TCGA cancer types. Color and color intensity provide a visual

e vertical position of each cancer type symbol indicates the percentage altered

depicts for each core DDR pathway (columns) statistically enriched alteration

e altered, with the percentage given in each cell. Specific cancer examples

re listed in order of frequency of non-synonymous mutations (y axis left, blue

y axis right, red bars). See also Figure S1 and S2.
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READ [rectum adenocarcinoma] cancers) also had a higher

mutation frequency in DDR pathways. Similarly, cancer types

with a large number of somatic copy-number alterations (SCNAs;

e.g., OV [ovarian serous cystadenocarcinoma], SARC [sarcoma],

ESCA [esophageal carcinoma], and STAD [stomach adenocarci-

noma]) also had a larger number of SCNAs in DDR pathways.

Pathway enrichment analysis based on the core DDR gene

list revealed several DDR pathways that were statistically en-

riched for alterations within a specific cancer type, e.g., HR

pathway alterations in OV and BRCA (breast invasive carci-

noma) cancers (Figure 1A). Nearly three-quarters (20/28,

71%) of associations among DDR pathways and cancer types

were also observed using our more inclusive DDR gene set

(Figure S1E). Some DDR genes were affected predominantly

by one type of alteration, e.g., ALKBH3 and MGMT by epige-

netic silencing. Other genes were altered in two or more

ways, e.g., mutations in TP53, PTEN, PER1, and BRCA1/2

were frequently accompanied by LOH (Figure 1D). Gene-level

mutation frequencies varied widely by cancer type and sub-

type. For example, mutations in TP53, PTEN, ERCC5, and

IDH1 were highly enriched, while other genes such as SOX4,

SLX1A, and GTF2H2 were much less frequently mutated

(Figure S1J).

We next investigated the association of DDR gene alterations

with overall mutation burden. It is already well established that

cancers with somatic POLE and POLD1 mutations in their

exonuclease domains or with microsatellite instability (MSI)

exhibit a substantially higher mutation burden (Barbari and

Shcherbakova, 2017; Ionov et al., 1993; Shinbrot et al., 2014;

Thibodeau et al., 1993). Here, we observed only two DDR genes

(TP53 and POLE) that demonstrated a substantially different

association between alterations and overall mutation burden

when compared against a background of all other non-DDR

genes (Figure S1K).

One intriguing question is whether DDR genes would be

identified as cancer drivers using mutation frequency-based

prediction methods. To address this question, we analyzed

276 DDR genes in non-hypermutated cancer samples using

five driver prediction tools: 20/20+ (Tokheim et al., 2016), Mut-

Sig2CV (Lawrence et al., 2014), OncoDriveFML (Mularoni

et al., 2016), MuSiC2 (Dees et al., 2012), and CompositeDriver

(https://github.com/khuranalab/CompositeDriver). Our anal-

ysis used data and best practices from the PanCanAtlas

Drivers/Essentiality Working Group (Bailey et al., 2018) and

identified 48 DDR genes as potential drivers by at least one

driver identification algorithm. Among these, 8 putative DDR

driver genes were unique to a cancer type, and 18 were iden-

tified only as part of a PanCanAtlas analysis. The remaining 23

putative drivers were identified in analyses of one or more in-

dividual cancer type as well as in PanCanAtlas analyses (Table

S2). These identifications are intriguing, though tentative in

light of the challenge of identifying drivers against a back-

ground of biological heterogeneity. For example, TCEB1,

which forms a complex with VHL, was identified as a promi-

nent driver gene in KIRC (kidney renal clear cell carcinoma)

(Sato et al., 2013).

In order to assess potential genomic consequences of DDR

gene alterations, we performed a mutation signature correlation
242 Cell Reports 23, 239–254, April 3, 2018
analysis focusing on loss-of-function alterations in the 48 genes

we identified as putative cancer drivers (Table S2). This analysis

used 21 mutational signatures derived by the PanCancer

Signature group (Covington et al., 2014). Significant associa-

tions are displayed in Figure S2A. We confirmed that mutational

signature #19 (POLE signature, corresponding to COSMIC

[Catalog of Somatic Mutations in Cancer] signature #10) is

increased by over 4-fold in POLE-altered cancers (p =

1.0e�6) at the PanCanAtlas level, and in UCEC with greater

significance (fold change = 10.1 and p = 4.8e�7, Figure S2B).

We also confirmed the association of signature #15 (temozolo-

mide signature, corresponding to COSMIC signature #11) with

MGMT alterations (Figure S2C).

Frequent Epigenetic Silencing of DDR Genes and
Pathways
Epigenetic silencing was identified as an alternative prominent

mechanism leading to recurrent gene deficiency. Stringent call-

ing criteria (detailed in STAR Methods) led to the identification of

12 DDR genes exhibiting strong and consistent methylation-

driven transcriptional silencing (Figures 2A and 2B). The most

frequently silenced DDR genes were core DR (direct repair)

pathway genes MGMT (11% of all the samples) and ALKBH3

(8%), followed by the core MMR genes MLH3 (5%) and MLH1

(4%) (Figure 2C). Epigenetic silencing was less often observed

for genes in the HR and FA pathways, e.g., BRCA1, RAD51C,

NSMCE3, and FANCF. Methylation silencing was the dominant

alteration in MGMT (92.4% of all alterations) and was signifi-

cantly associated with signature #15 through mutation signature

analysis (Figure S2C).

The high frequency of EXO5 silencing (94.5% of all EXO5 al-

terations) was both unexpected and intriguing. Loss of func-

tion of this single strand-specific DNA exonuclease sensitizes

cells to DNA base adduct and crosslink damage and UV, but

not ionizing radiation, and leads to chromosomal instability

(Sparks et al., 2012). EXO5 silencing was frequent in GBM

(glioblastoma multiforme) (�46%) though not in LGG (brain

lower grade glioma) (�4.5%) (Figure 2D). When broken down

by cancer subtype, EXO5 silencing was exclusively observed

in IDH wild-type GBM and LGG (50% and �27%, respectively)

and in a small fraction of HNSC (head and neck squamous cell

carcinoma) human papillomavirus (HPV)-negative cancers

(�4%). Other cancer subtypes with a high frequency of

EXO5 silencing included STAD (HM-indel, i.e., MSI, �57%

and Epstein–Barr virus [EBV]-positive �57%), HM-indel, i.e.,

MSI, COAD (44%), CIN (chromosomal instability) ESCA

(�29%), and MSI UCEC (�28%) (Figure 2E). Of note, both

EBV-positive (Cancer Genome Atlas Research Network,

2014) and MSI (Cancer Genome Atlas Network, 2012; Kandoth

et al., 2013) cancer subtypes have been tightly linked to an

extensive CpG island methylator (CIMP) phenotype (Hinoue

et al., 2012; Toyota et al., 1999), whereas IDH wild-type,

CIN, and HPV-negative cancer subtypes were not CIMP asso-

ciated. Furthermore, EXO5 deficiency was significantly linked

to signature #1 (Figure S2E). The consistent observation of

EXO5 silencing in IDH wild-type brain cancers suggests

EXO5 may play a role in the pathogenesis of subsets of these

cancers.

https://github.com/khuranalab/CompositeDriver


Figure 2. Epigenetic Silencing of DDR Genes and Pathways in Cancer

(A) Gene/probe pairs showing evidence of silencing. Gene expression for gene/probe pairs (x axis) was Z score-transformed based on probe methylation level

then plotted as a mean Z score among samples within a methylated group. Negative false discovery rate (FDR)-corrected log10-transformed p values are plotted

on the y axis. Green dashed lines indicate the cutoffs for mean Z scores and FDRs. Genes meeting cutoffs for evidence of silencing have red labels, with specific

probes listed in parentheses (see STAR Methods for additional details).

(B) Gene expression and methylation are inversely correlated for silenced genes. Scatterplots show silenced gene/probe pairs for MGMT (two probes), EXO5,

RAD51C, MLH1, and FANCF. Gene expression level is plotted on the y axis and methylation on the x axis with red dots representing silenced samples.

(C) Silenced genes are variably distributed across cancer types. Left: oncoprint plot displays the overall frequency of deleterious mutations, deletions, and

epigenetic silencing events for each significantly silencedDDRgene (rows, with gene names listed to the right) across 8,739 PanCanAtlas samples. Cancer type is

shown in the color key to the right. Frequencies were calculated over the entire cohort, with only altered samples plotted. Right top scale indicates the number of

events by molecular type, with the distribution of alterations across cancer types.

(D) Heatmap depicting variable frequency of epigenetic silencing events across 33 cancer types and DDR pathways. Cancer types (rows, shown using the same

color code as in C) and 12 significantly silencedDDR genes (columns). Bar plots (right) summarize the frequency of silencing events by pathway: DR (ALKBH3 and

MGMT), HR (BRCA1,RAD51C, andNSMCE3), andMMR (MLH1,MLH3, andPMS2). Numbers (x axis) below each bar graph indicate the proportion of samples by

cancer type with at least one epigenetically silenced gene annotated to that pathway.

(E) EXO5 silencing shows cancer subtype variation. Scatterplots as in (B) display the same silenced samples, now color-coded according to cancer subtypes as

indicated by the dot color code bottom left. Grey dots represent samples that were expressed/not silenced. See also Figure S2 and S3.
Frequencies of epigenetic silencing also varied at the pathway

level, as defined by silencing of at least one gene in a pathway.

Frequent silencing of core DR, HR, and MMR pathway genes

was observed in gastrointestinal cancers (ESCA, COAD, STAD,

and READ), HNSC, and GBM (Figure 2D). We also observed

frequent DR pathway silencing in DLBCL (lymphoid neoplasm

diffuse large B cell lymphoma) and in UCEC (with MGMT +

ALKBH3 silencing in >60% or >40%, respectively). SKCM (skin

cutaneous melanoma), ACC (adrenocortical carcinoma), LGG,

and UCEC were characterized by a high frequency of MMR

pathway silencing, whereas OV, UCS (uterine carcinosarcoma),

CESC (cervical squamous cell carcinoma and endocervical

adenocarcinoma), and TGCT (testicular germ cell cancers) all

showed high-frequency DR and HR pathway silencing that was
reflected in altered gene expression data (Figures S3A and

S3B) and in limited reverse-phase protein array (RPPA) data on

23 DDR genes (Figures S3C–S3E).

Genomic Instability Linked to HR Deficiency and
Prognosis
We observed positive correlations among six different SCNA

scores that were used to characterize the extent of aneuploidy,

LOH, and homologous recombination deficiency in PanCancer

Atlas samples (Figure 3A). We also found moderate, statistically

significant positive correlations between mutation burden and

SCNA scores, contrary to a previously reported inverse

correlation between SCNA and mutation frequency in 12 cancer

types (Ciriello et al., 2013). A likely explanation for this
Cell Reports 23, 239–254, April 3, 2018 243
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D E

Figure 3. Somatic Copy-Number Alteration Scores in Relation to Clinical Outcomes and DDR Gene Alterations

(A) Matrix heatmap of mean Spearman correlation between SCNA scores and mutation load across 33 cancer types.

(B) Forest plot of association between homologous recombination deficiency (HRD) score and progression-free interval (PFI). Results are shown for 28 cancer

types with valid outcomes data. Cancer type symbols to the left are followed by sample number (N) included in the model and the number of PFI events. Hazard

ratios (HR) and HR 95% confidence intervals are shown to the right. The ‘‘P Value’’ represents the Cox proportional hazards model p value for differences in

survival between high versus low HRD score samples. *, a statistically significant association after applying a false discovery correction (threshold 10%).

(C) Representative Kaplan-Meier (KM) survival curves for PFI of four cancer types as a function of high versus low HRD Scoring. Cancer samples in GBM, ESCA,

PRAD, and ACC were defined as high HRD scoring if the HRD score was above the median within a cancer type. Log rank test p values are displayed in the top

right-hand corner of each plot.

(D) Volcano plot of significance and magnitude of DDR gene ridge regression coefficients. Our ridge regression model fitted the alteration status of 276 DDR

genes to HRD score across 8,464 cancer samples. Homologous recombination repair (HR) genes above a significance threshold of FDR < 0.2 are plotted and

labeled in red.

(E) HRD scores of two cancer types stratified by BRCA1 and RAD51B alteration status. The two cancer types with the largest number of BRCA1 or RAD51B

alterations are plotted to show HRD score distributions as a function of gene alteration status. Mann-Whitney U test p values are displayed above the bracket for

each cancer-type-specific comparison. See also Figures S4 and S7.
discrepancy is our use of a much larger andmore inclusive set of

samples across more cancer types and including all mutation

and SCNA data, as opposed to the restricted subset

of �500 selected functional events as in the previous study.
244 Cell Reports 23, 239–254, April 3, 2018
SCNA burden (determined from the frequency of SCNA seg-

ments) and mutation burden (measured as non-silent mutations

per Mb) were positively correlated across all PanCanAtlas

samples (⍴ = 0.36, p < 1e�16, Figure S4A), while hypermutated
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Figure 4. Rare, Recurrent DDR Gene Mutations Differentially Alter Protein Structural Stability

Key DDR genes (listed in C as column labels) were selected for protein modeling based on the frequency of rare and recurrent mutations and experimentally

determined structures that covered a majority of amino acid residues.

(A) POLEmutations are clustered in protein functional domains. Spheres represent mutations colored by mutation frequency (boxed key top right) overlaid on a

POLE structural model. 3D mutation hotspots are present in both the exonuclease (blue) and polymerase (green) domains.

(B) Most MGMT somatic mutations likely alter protein structure. The location of mutations shown on a structural model as spheres, colored by predicted

effect. Mutations with protein folding energy (DDGfold) R 3 kBT are predicted to be strongly destabilizing, whereas those altering stability by less than

jDDGfoldj < 1 kBT were considered not significant (NS).

(C) Many DDR gene somatic mutations are predicted to destabilize protein structure. Structure-based calculations of the effect of 1,380mutations onDDGfold are

plotted, with the number of unique mutations/proteins given in parentheses below each protein name.

(D) Altered protein stability is associated with greater burden of genomic alterations. Plot uses standardized Z scores (see STARMethods) across cancer types to

compare samples harboring strongly destabilizing versus non-destabilizing mutations. Association strength depended on the DDR gene, e.g., destabilizing

mutations in POLB were associated with lower SCNA and higher mutation burdens, while mutations in PARP1 were associated with a higher SCNA and lower

mutation burden.

(E) Altered stability in four proteins was associated with a large shift (Z > 0.5) in SCNA burden. Split violin plots show the different distributions of SCNA burden

among samples with a destabilizing versus non-destabilizing mutations in each gene.

(F) Altered stability in five proteins was associated with a large shift (Z > 2.0) in mutation burden. See also Figure S5.
samples and hypersegmented samples were largely mutually

exclusive.

Genomic scarring with large-scale genome instability has

been attributed to homologous recombination deficiency

(HRD) (Watkins et al., 2014). We calculated a HRD score, com-

bined from HRD-LOH (Abkevich et al., 2012), LST (large-scale

state transitions) (Popova et al., 2012), and NtAI (number of

telomeric allelic imbalances) scores (Birkbak et al., 2012), for

all PanCanAtlas samples using SCNA calls generated from

ABSOLUTE (Figure S4B). This analysis also substantially ex-

tends earlier analyses using 15 cancer types (Marquard et al.,

2015). HRD scores varied widely across cancer types, with the

highest scores in ovarian cancer (OV) and the lowest in KICH

(kidney chromophobe), KIRP (kidney renal papillary cell

carcinoma), LAML (acute myeloid leukemia), and THCA (thyroid

carcinoma). Many cancer types also had small subsets of sam-

ples with high HRD scores.

HRD scores were significantly associated with progression-

free interval (PFI) in eight cancer types (Figures 3B and 3C).

Higher HRD scores were often associated with shorter PFI (Fig-

ure 3C). Notable exceptions were higher HRD scores associated
with better clinical outcomes in GBM and OV (Figure 3C), and

with overall survival in OV (Figures S7B and S7C). This may

reflect the use of potent, DNA-damaging platinum-based com-

pounds as standard-of-care therapy for OV (Figure S7) (Mills

et al., 2016). The association of a higher HRD score with better

outcomes in GBM may be linked to IDH mutations. These have

been associated to higher HRD (data not shown; Sulkowski

et al., 2017) and better outcomes (Brat et al., 2015) than IDH

wild-type GBM cancers. We identified additional contributions

of DDR gene alterations to HRD scores by using a Bayesian

ridge regression to model HRD scoring as a function of DDR

gene alterations while controlling for cancer type as a covariate

(Table S3). This analysis, performed in 8,464 samples, excluded

potentially confounding POLE mutants and MSI-high cancers

(Figures 3B–3D).

HR pathway genes with significant positive HRD associa-

tions included BRCA1, BRCA2, RAD51B, and RAD51C.

BRCA1 alterations had the largest positive weight for predict-

ing higher HRD scores. Alterations in either BRCA1 or

RAD51B increased HRD score in most cancer types including

the top two cancer types with the greatest number of
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alterations in either gene (Figure 3E). TP53 alterations were

also associated with higher HRD scores, consistent with pre-

vious observations of a higher SCNA burden in TP53-mutated

cancers (Ciriello et al., 2013). Other alterations in several MMR

and NER genes had significant negative associations with

HRD score, e.g., MLH1, TCEB3, and MSH2, suggesting a po-

tential mutually exclusive relationship between HR and MMR

or NER deficiencies.

Gene fusions with the potential to disrupt DDR function

were identified using ChimerDB 3.0 (Lee et al., 2017) and

TCGA Fusion Gene Data Portal (Yoshihara et al., 2015) then

manually checked for read alignments to identify 188 high-

confidence fusion events that involved 108 DDR genes in

205 cancer samples (Figure S4C). The most frequently

affected DDR genes were SMARCA4, PTEN, RAD51B, and

SMARCA1 (Figure S4D). A majority of the fusions, including

18 in HR and 5 in MMR genes, had breakpoints in DDR func-

tional domains that were predicted to disrupt function with

readily predictable therapeutic consequences, e.g., for the

HR gene fusions involving RAD51B and BRCA1 (Figure S4E).

Fusions also often had multiple partners, as well as break-

points: e.g., RAD51B had three recurrent breakpoints with

five different fusion partner genes (CEP170, ENOX1, NPC2,

ZFYVE26, and PCNX) (Figure S4F).

Protein StructureModeling of Recurrent DDRMutations
We further examined potential functional consequences of

relatively rare, recurrent mutations in 22 DDR genes by protein

structural analyses and modeling. These included MGMT,

PARP1, TOP3A, BLM, ERCC2, HFM1, POLE, POLD1, and

POLQ, which collectively harbored 1,380 unique rare, recurrent

non-synonymousmutations.Manyof thesemutationswere found

at domain interfaces or along solvent-accessible surfaces, and a

substantial fraction (n = 370 or 26.8%) were predicted to be

strongly destabilizing (DDGfold R 3 kBT) (Figures 4A and 4B; Fig-

ure S5). An additional small number (n = 26 or 1.9%) were pre-

dicted tobestrongly stabilizing (DDGfold%�3kBT) and thusmight

affect function by restricting protein conformational changes

(Figure 4C).

POLE exonuclease domain mutations are positively associ-

ated with a higher mutation burden (p = 0.02) and negatively

associated with SCNA burden (p = 0.006). Structure-based

modeling predicted an additional subset of POLE mutations

that may destabilize POLE structure and reduce catalytic

efficiency. In similar fashion, most MGMT somatic mutations

are likely to affect MGMT activity by destabilizing protein struc-

ture. Molecular dynamics simulations of a subset of mutations

(n = 86) in six proteins (POLE, POLD1, POLQ, ERCC2, HFM1,

and BLM) revealed many additional mutations that were not

predicted to be destabilizing but did alter protein dynamics

(Figure S5). Thus, molecular modeling and protein dynamics in

concert may reveal mechanisms by which somatic mutations

alter DDR protein function.

In order to link other destabilizing DDR mutations to genomic

instability, we compared both mutation and SCNA burden

scores for genes with predicted strongly destabilizing versus

non-destabilizing mutations (Figure 4D). The majority of pre-

dicted destabilizing mutations showed a positive association
246 Cell Reports 23, 239–254, April 3, 2018
with either higher mutation and SCNA or mutation burden

scores. Many genes displayed an inverse relationship between

these two burden scores, with, e.g., destabilizing mutations in

POLB associated with higher mutation and lower SCNA burden,

whereas destabilizing PARP1 mutations were associated with

lower mutation and higher SCNA burden (Figures 4D–4F).

Thus, predicted destabilizing mutations may be directly influ-

encing downstream burden scores by altering or abolishing

DDR function.

Machine-Learning-Derived Expression Signature
Predicts TP53 Inactivation
The loss of TP53 function across many cancer types has signif-

icant functional consequences as measured by genomic insta-

bility in association with a higher SCNA burden and increased

HRD scores (Figures 1D and 3D). Cancer-associated TP53 mu-

tationsmay promote these consequences through simple loss of

function, aswell as by altering transcription or through dominant-

negative, gain-of-function mechanisms (Bouaoun et al., 2016;

Kastenhuber and Lowe, 2017; Olivier et al., 2010; Pfister and

Prives, 2017; Stracquadanio et al., 2016). A subset of these

consequences can also be phenocopied by other genomic alter-

ations. In order to better predict the consequences of TP53

inactivation and identify potential phenocopies of TP53 loss,

we constructed a TP53 classifier that predicts inactivation status

from RNA sequencing expression data, adjusted for cancer type

andmutation burden (details in STARMethods), then used this to

analyze cancer types with comparable numbers of TP53 alter-

ations. The resulting classifier was highly sensitive and specific

(Figure 5A), and when trained using PanCanAtlas data, it outper-

formed individual cancer models in 14 out of 19 cases (Figures

S6A and S6B).

Individual weights of the TP53 classifier identified 10 top

negative-weighted genes, of which 9 are confirmed TP53

target genes (Kastenhuber and Lowe, 2017) (Figure 5B). The

remaining gene, MPDU1, may have been identified by virtue

of being located �80 kb downstream of TP53 and thus

sensitive to TP53 copy loss. Of note, our classifier was able

to predict TP53 deficiency independent of cancer type with

a high AUROC (area under the receiver operating character-

istic curve; 0.94), and in samples initially removed from

training. These included cancer types with few TP53 events

(THCA and UVM [uveal melanoma] cancers), as well as

those dominated by TP53 events (OV and UCS cancers)

(Figures S6C–S6F). The classifier was also able to distinguish

TP53 mutant from wild-type BRCA and UCEC, with nearly all

basal-subtype BRCA cancers predicted to be TP53 deficient

(Figures S6G and S6H). An analogous approach has been

used to predict RAS pathway activation in PanCanAtlas can-

cers (Way et al., 2018).

The classifier enabled the identification of phenocopying

mutations both in TP53 and in other functionally related genes.

Consistent with previous pan-cancer analyses (Zack et al.,

2013), we observed that predicted TP53 loss-of-function

samples, including cancers with synonymous TP53 c.375G>T

mutation, had an increased SCNA burden when compared

with wild-type samples (Figure 5C). This synonymous mutation

may act by altering a splice donor to produce alternatively



Figure 5. Machine Learning to Predict TP53-Inactivating Mutations in Cancer

(A) Robust classifier performance by receiver operating characteristic (ROC) and area under the ROC curve (AUROC). Training data, cross validation assessment,

and held out test set (10%) for 19 cancer types were used.

(B) Model-derived gene weighting. Classifier weights indicate individual gene influence on classification accuracy. Negative weights indicate increased gene

expression in TP53 wild-type samples.

(C) SCNA burden is correlated with known/predicted TP53 status. Plots show SCNA/CNV burden as fraction altered for known or predicted TP53 status. The

SCNA profile for TP53 mutation c.375G>T in TP53 exon 4 appears similar to other TP53 loss events.

(D) SCNA in TP53-interacting genes MDM2 and CDKN2A phenocopies TP53 loss. Results shown are for PanCanAtlas TP53 wild-type samples.

(E) TP53 network gene alterations phenocopy TP53 deficiency. Mutations were manually curated and selected a priori. All mutation tests including only TP53

wild-type/non-hypermutated cancers are indicated by orange edges. Node color indicates event class (red, mutation; blue, copy-number loss; and purple,

copy-number amplification); edge values indicate Cohen’s d effect size. Thin blue edges indicate predicted interactions from the STRING database. NS is ‘‘not

significant’’ with p > 0.005. See also Figure S6.
spliced transcripts that compromise TP53 function (Collado-

Torres et al., 2017). Samples with c.375G>T or c.375G>A

mutations were also enriched for a 200 base pair truncation in

exon 4 when compared with wild-type TP53 samples (OR

[odds ratio] = 61.9, p < 2.2e�16). This mutation/truncation

pairing was previously observed in a pancreatic cancer cell line

and as a SNP (rs55863639) likely pathogenic for Li-Fraumeni

syndrome (Leroy et al., 2014).

Significantly increased classifier scores were also noted

for cancers with MDM2 copy-number amplification and

CDK2NA copy-number deletion in an analysis including only

non-hypermutated cancers without deleterious TP53 mutation

(Figure 5D). We had observed a copy-number dosage effect

for CDK2NA copy-number deletions, where loss of the
CDKN2A-encoded P14ARF protein can phenocopy TP53

alterations (Sherr, 2001). Among eight other tested genes,

MDM4 and PPM1D copy-number amplification and ATM and

CREBBP gene mutations were associated with increased

TP53 classifier scores, while ATR, CHEK1/2, or RP6SKA3 mu-

tations were not (Figure 5E). These results suggest the general

utility of this approach, even in circumstances where a diver-

sity of molecular events and potential downstream conse-

quences might occur.

DDR Alterations Are Associated with Clinical Outcomes
We computed multiple DDR footprint scores based on quanti-

tative estimates of DNA damage and investigated their

association with clinical outcomes. These aggregated 43
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DDR footprint scores such as mutation burden and copy-num-

ber burden and extended other published scores, e.g., repair

proficiency scoring (RPS) (see Data and Software Availability

for per-sample estimates). We tested DDR footprint score

associations with overall survival (OS) and progression-free in-

terval (PFI) across 28 cancer types by fitting Cox proportional

hazards models, using survival outcome data generated by Liu

et al. (2018).

SCNA-based scores were more strongly associated with

survival outcomes, compared with mutation- and expression-

based DDR footprint scores (Figure S7A). LOH burden (number

of genomic segments with LOH), combined HRD score, and

HRD component scores (HRD-LOH [Abkevich et al., 2012],

LST [Popova et al., 2012], and NtAI [Birkbak et al., 2012])

were significantly associated with OS and PFI for six to ten

cancer types (ACC, BRCA, ESCA, GBM, KIRP, MESO [meso-

thelioma], PRAD [prostate adenocarcinoma], OV, UCEC, and

UVM) (Figure S7B). In all but two cancer types (GBM and

OV; Figures 3B and 3C), higher HRD or LOH burden scores

were associated with poorer prognosis (Figure S7B). These

associations remained statistically significant in multivariate

Cox proportional hazard models after accounting for known

covariates such as patient age, cancer type, and stage

(Figure S7C).

Fewer mutation-based associations with clinical outcomes

were identified: e.g., a high mutation burden was associated

with better prognosis in UCEC and STAD cancers, but worse

prognosis in LGG and ACC cancers (Figure S7C). Of note,

expression-derived DDR footprint scores (e.g., expression

Cumulative Density Function trAnsform of Rank Distribution

or eCARD scores [Zimmermann et al., 2016]) derived for a sin-

gle cancer type (OV) had significant prognostic associations in

7 cancer types for OS and for 6 cancer types for PFI (Fig-

ure S7A) that were the opposite of associations observed in

OV and STAD (Figure S7B). Low repair proficiency scores

were associated with a worse OS as previously reported (Pi-

troda et al., 2014), though for PFI in only a subset of cancer

types (Figure S7B). These associations between DNA damage

consequences and survival across 28 human cancer types

confirm previously reported survival associations and provide

a rationale for extending these analyses to additional cancer

types.

DISCUSSION

We used TCGA PanCanAtlas data to systematically analyze

the prevalence, nature, and consequences of DDR gene and

pathway alterations across 9,125 samples representing 33

different cancer types. DDR gene alterations were ubiquitous:

approximately 1/3 of TCGA PanCanAtlas cancer types

showed significant enrichment of somatic mutations in DDR

genes, often accompanied by SCNA/LOH events. The func-

tional consequences of these alterations could often be

readily inferred. For example, the HR pathway was altered in

nearly 40% of cancers, e.g., in BRCA1/2-mutated ovarian

and triple-negative breast cancers, where HR is a key deter-

minant of platinum chemotherapy as well as PARP inhibitor

response.
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DNA methylation-dependent epigenetic silencing was also

surprisingly frequent—though more variable—than mutation or

deletion calls and encompassed one-third of TCGA cancer

types. Nearly three-quarters (20 of the 28, or 71%) of statistically

significant associations observed using our comprehensive

annotation of DDR pathways (Figure S1E) were driven by

silencing of genes in the MMR, HR, and DR pathways. Some

of the recurrently silenced genes we identified have been previ-

ously identified, e.g.,MGMT (Esteller et al., 1999),MLH1 (Cancer

Genome Atlas Research Network, 2014; Kuismanen et al., 2000;

Simpkins et al., 1999), MLH3 (Lhotska et al., 2015), BRCA1

(Esteller et al., 2000), and HLTF (SMARCA3) (Moinova et al.,

2002). Epigenetic silencing of DR pathway genes in gastrointes-

tinal, central nervous, and lymphoid cancers were all associated

with a high mutation burden.

We also identified new, epigenetically silenced genes

including DDB2 and EXO5. DDB2 is a NER pathway gene

necessary for UV damage repair, whereas EXO5 (DEM1) is a

little-studied single-stranded exonuclease that has been

linked to genetic instability and DNA damage hypersensitivity

especially to DNA crosslinking agents (Sparks et al., 2012).

These findings highlight the role of epigenetics in shaping

the DDR deficiency landscape in cancer and may provide use-

ful biomarkers for enhanced response to, e.g., alkylating agent

therapy. Three additional significant pathway enrichments

were also identified when we excluded epigenetic silencing:

the DR pathway in LGG cancers, the NER pathway in BLCA

(bladder urothelial carcinoma) cancers, and the BER pathway

in LIHC (liver hepatocellular carcinoma) cancers (Data and

Software Availability).

Analyses of loss-of-function alterations within DDR path-

ways identified co-occurring alterations (largely consisting of

mutations and epigenetic silencing) in the MMR pathway in

UCEC and STAD cancers, though no pathway by cancer-

type-specific, mutually exclusive combinations. We found little

evidence for somatic mutation co-occurrence between MMR

and NER pathways (Figure S1H), or MMR and HR pathways

(Figure S1I). MMR and NER can repair DNA base pair mis-

matches, bulky DNA base damage, and small DNA loops.

Thus, the loss of both MMR and NER might markedly sensitize

cancer cells to alkylating agent therapy and provide a starting

point to identify effective treatment combinations (Srivas et al.,

2016). Of note, 1/5 (22%) of DDR genes participate in more

than a single DDR pathway (Table S1; Figures S1A and

S1B). Thus, alteration of these ‘‘pathway-promiscuous’’ DDR

proteins may have a disproportionately large effect on

genomic instability.

The detailed understanding of DDR genes and pathways pro-

vides immediately plausible mechanisms by which many DDR

gene alterations might increase specific mutation types, as

well as overall mutational burden. Mutational signature ana-

lyses provide a second way to identify potential mutation sour-

ces and mechanisms (Alexandrov et al., 2013; Rogozin et al.,

2017). For example, we found a previously undefined signature

8 was strongly associated with BRCA deficiency, especially

BRCA1 (Figure S2D). EXO5 deficiency, identified here as an

often epigenetically silenced DDR gene, was associated with

signature 1 across multiple cancer types (Figure S2E) and has



been associated with poor clinical outcomes (Gingras et al.,

2016; Totoki et al., 2014). Co-occurrence plots of mutations

and SCNA/LOH for the top 50 mutated DDR genes in TCGA

samples (Figure 1D) and genome-wide DNA damage scores

that further encompass LOH and aneuploidy (Figure 3A) sug-

gest the potential for additional complex interactions among

DDR gene alterations.

We extended the insights gained from analyzing the type and

distribution of DDR gene alterations in cancer by using additional

approaches. For example, a combination of protein structural

modeling and molecular dynamics simulations were used to

predict the functional consequences of rare, recurrent non-

synonymous mutations in 22 DDR genes. We found that

POLD1 mutations, despite being less common than the

POLE or POLQ mutations that contribute to hereditary

colorectal cancer risk (Bellido et al., 2016) and the hypermutated

phenotype (Briggs and Tomlinson, 2013; Church et al., 2013),

were as strongly associated with genomic instability.

Molecular dynamics simulations further identified a subset of

DDR genemutations with the potential to alter protein conforma-

tional changes independent of effects on protein stability

(Figure S5), raising the provocative question of whether

destabilizing mutations alone contribute to genomic instability

in cancer.

A second extension of PanCanAtlas genomic data was to use

machine learning to predict TP53 inactivation status from gene

expression data. This approach identified both TP53 mutant

and TP53 mutant phenocopies, as well as potential TP53

tissue-specific roles in, e.g., ESCA and CESC cancers. This

approach was developed using TP53 but is general and thus

could be applied to other DDR genes. These and additional

approaches may have their greatest value in annotating rare

mutations where there may be few or no clinical or experi-

mental data from which to predict mutation functional

consequences.

In light of the central role played by DDR pathways in ensuring

cell survival after DNA damage, we reasoned that DDR

deficiency scores might be broadly predictive of both therapeu-

tic response and clinical outcomes. When tested against

PanCanAtlas survival data encompassing 28 cancer types

(Liu et al., 2018), we identified associations among most DDR

footprint scores and clinical outcomes after controlling for co-

variates such as age, cancer grade, and stage (Figure S7).

These associations were consistent in linking a high mutation

burden or genomic instability with worse clinical outcomes

across almost all cancer types. We also identified HRD-high

cancers including subsets of ovarian, uterine, lung squamous,

esophageal, sarcoma, bladder, lung adenocarcinoma, head

and neck, and gastric carcinomas. Virtually all of these subsets

of cancers may have enhanced responsiveness to platinum-

based compounds that are given as standard-of-care thera-

pies. This extends the recognition of a bimodal distribution of

HRD scores in breast and ovarian cancers and the enrichment

of BRCA1/2 mutant or methylated cancers among HRD-high

cancers that are more likely to respond to platinum-containing

therapy (Telli et al., 2016). These results indicate the potential

of HRD scoring to predict both platinum response and PARP in-

hibitor sensitivity.
The high frequency of DDR gene and pathway alterations in

TCGA PanCanAtlas cancer samples identifies opportunities to

improve cancer therapy. For example, HR defects are common

in many cancer types and may compromise successful DNA

replication and genome stability (Macheret and Halazonetis,

2015; Zeman and Cimprich, 2014). Thus, combination therapies

that induce or potentiate replication stress or impair replication

fork protection may be particularly effective in killing HR-defi-

cient cancers (Ray Chaudhuri et al., 2016; Rondinelli et al.,

2017; Taglialatela et al., 2017).

Themanydifferent cancer types that showepigenetic silencing

of DR pathway genes such asMGMT andALKBH3may be espe-

cially vulnerable to types of DNA damage normally repaired by

these proteins (Soll et al., 2017;Wang et al., 2015). DDR pathway

deficiencies are also mechanistically linked to mutation burden

andmutational diversity. Thus, DDRpathway deficiencies in can-

cer may potentiate immune-based therapies by driving neoanti-

gen production to enhance immune recognition and targeting

(Balachandran et al., 2017; Germano et al., 2017; Le et al.,

2017) and thusmay identify subsets of patients with a higher like-

lihood of responding to immune-based therapies.

Our analysis of DDR pathways across the 9,125 cancers of

33 types included in PanCanAtlas data identified associations

among genomic data types; confirmed and extended several

previously reported findings; and provided insight into the

mechanistic origins and consequences of DDR deficiency in can-

cer. These results collectively reinforce the importance of DDR

gene function in shaping cancer risk, progression, and

therapeutic response.
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Further information and requests for additional analysis details should be directed to and will be fulfilled by the Lead Contact: Chen

Wang (wang.chen@mayo.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used TCGA PanCanAtlas cancer samples defined by the whitelist commonly agreed upon by TCGA Analysis Working Groups

(AWGs) (Data and Software Availability) for all analyses. These 9,125 samples encompassed 33 different histopathologic cancer

types representing most major classes of human adult cancer. Some analyses were performed for 32 cancer types, with a 33rd

type, AML (LAML) excluded in selected analyses as indicated. While a complete analysis of this cohort’s overall demographics

are beyond the scope of this paper, relevant demographic factors such as biologic gender, patient age and disease characteristics

were accounted for and are noted when reporting the results of specific analyses.
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METHOD DETAILS

DNA Damage Repair Pathway Curation
DNA damage repair (DDR) gene list including 276 genes was assembled from relevant gene lists including MSigDB v5.0 (see Key

Resources Table) an online catalog of DDR genes from recently published resources (Pearl et al., 2015; Key Resources Table),

and knowledge-based curation of information on specific DNA repair pathways or subpathways (see, e.g., (Bell and Kowalczykowski,

2016; Kowalczykowski, 2015) on HR and HR-associated subpathways). Three-quarters (n = 211, 76%) of these 276 genes encom-

passed nine major DDR pathways: base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), the Fanconi

anemia (FA) pathway, homology-dependent recombination (HR), non-homologous DNA end joining (NHEJ), direct damage reversal/

repair (DR), translesion DNA synthesis (TLS), and nucleotide pool maintenance (NP)(Brown et al., 2017; Friedberg et al., 2004; Jeggo

et al., 2016; Pearl et al., 2015; Tubbs and Nussenzweig, 2017). The remaining 65 genes have been linked to more than one DDR

pathway, or coordinate cellular and molecular responses to DNA damage, and thus may represent an important focus for DDR

pathway-associated therapeutic development (Brown et al., 2017; Pearl et al., 2015). The complete gene list is contained in Table S1.

Alteration summary for DDR pathways across cancer types
In order to provide a comprehensive overview of alterations in DDR genes, we combined three data sources of binary alteration

calls in terms of loss-of-function events: 1). Deleterious mutations from exome sequencing; 2). Deep deletions from GISTIC calls;

and 3). Epigenetic silencing through methylation versus expression analysis. Aggregation of the three data types and integration

with whitelisted samples resulted in binary calls across 9,125 samples (see Data and Software Availability).

Overall alteration scores were computed bymerging three binary calls, i.e., a sample was called altered for a gene if it wasmutated,

deleted and/or epigenetically-silenced. A sample was called altered for a DDR pathway if at least one gene in the pathway was

altered. A permutation test was performed to analyze whether the alteration percentages in the DDR pathways were enriched or

depleted (higher or lower than expected) using a null model, for which the genes were randomly assigned to each of the pathways.

A gene-pathway graph is used to denote gene to pathway membership relationship. A total of 1,000,000 permuted gene-to-pathway

graphs were generated using Birewire (Gobbi et al., 2014) Permuted alteration percentages were then compared to the actual per-

centages using the standard permutation test (Knijnenburg et al., 2009, 2011). Additionally, we analyzed whether alterations of

different types tended to be mutually exclusive or co-occurring. For each combination of a cancer type and DDR pathway, we

have three binary vectors that indicate for the samples of that cancer type whether at least one gene in a DDR pathway wasmutated,

deleted or silenced. These vectors were randomly permuted 100,000 times, after which the original alteration percentage is

compared with the permuted percentages.

Filtering and functional annotation of somatic mutations in DDR genes
A total of 313,497 somatic mutations in 276 curated DDR genes were selected from the MC3 MAF (v0.2.8) and underwent the

following stepwise filtering process (Figure S1C). In brief, ‘‘PASS’’ filter mutations were selected and supplemented manually with

mutations called in whole-genome amplified (wga) samples and by gap-filler assays that were not marked with the ‘‘PASS’’ filter

tag. Mutations with low mutant allelic fractions and mutations had a low variant coverage were then removed. Thereafter, common

variants reported in ExAc, the Phase-3 1000 Genomes Project or in the ESP6500 databases were removed. The intronic mutations,

the mutations in 30 or 50 UTR regions or UTR flanking regions, silent mutations, and small, in-frame insertions and deletions were also

removed. Mutations were removed if samples were duplicate-sequenced, marked as PanCanAtlas ‘‘Do not use’’ samples, or not

included in theMC3 exomebam free best pairing samples. Approximately 89%of rawmutation calls were filtered out by this process,

leaving a final list of 279,002 mutations that were used for further analysis.

To estimate the probability of missense mutations being damaging, we further annotated these missense mutations using six

commonly used functional prediction algorithms (Figure S1D): PolyPhen-2 (Adzhubei et al., 2013), SIFT (Kumar et al., 2009), Mutation

Taster (Schwarz et al., 2014), Mutation Assessor (Reva et al., 2011), LR and LRT (Chun and Fay, 2009). The missense mutations that

were called as ‘‘deleterious’’ or ‘‘damaging’’ by four or more algorithms were defined as ‘‘deleterious’’ mutations. TP53 hotspot

mutation substitutions such as R175H and R273H that didn’t meet this threshold were manually rescued.

DDR gene epigenetic silencing events
Illumina Infinium DNA methylation bead arrays, including both HumanMethylation27 (HM27) and Human Methylation450 (HM450),

were used to assay 9,106 cancer samples (i.e., 8,586 primary solid cancers, 361 metastatic cancers and 159 blood malignancies)

across 33 different cancer types, together with 1,066 adjacent normal samples. We excluded 19 normal prostate samples for

potential label switching as identified by theWorking Group and confirmed by pathology re-review. An external HM450 brain dataset

containing 58 sorted neuronal and glial cells (Guintivano et al., 2013) from post-mortem frontal cortex of normal individuals was

introduced as a normal control as GBM had only two adjacent normal samples, as were 60 sorted blood samples from 6 healthy

individuals examined by HM450 (Reinius et al., 2012)). Data from HM27 and HM450 were then combined and normalized using a

probe-by-probe proportional re-scaling method to yield a common set of 22,601 probes with comparative methylation levels. Briefly,
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we modeled the difference between HM27 and HM450 by two different technical replicates (TCGA-07-0227/TCGA-AV-A03D,

measured 44/198 times and 12/169 times on HM27 and HM450, respectively), and applied a proportional rescaling method to re-

move platform effects.

Probes located within potential promoter regions (upstream and downstream 1500bp flanking regions of Transcription Start Sites

(TSSs) of all annotated transcripts by UCSC) of the 276 DDR genes were examined for evidence of epigenetic silencing. We started

with such probes that are consistently unmethylated (median beta value < 0.2) in each of the normal tissue types as well as sorted

blood cells. Within each cancer type, for each probe/gene pair, the gene expression was first Z-score transformed using the mean

and standard deviation calculated with the unmethylated cancer samples (i.e., sample with a beta value of (0, 0.1)). Samples across

all cancer types were then pooled together. We chose the probes that exhibited epigenetic silencing using the following criteria: 1) at

least 5 samples were observed with a beta value of 0.3 or above (defined as themethylated group); 2) mean Z score of themethylated

group was lower than �1.65; 3) FDR-corrected p value according to one-side t test on Z scores was lower than 1e�2 between

unmethylated and methylated group; and 4) the maximum beta value of the methylated group was higher than 0.75. Probes meeting

these standards were retained to summarize epigenetic silencing events at the gene level. For genes with only one retained probe, a

beta value cutoff of 0.3 was applied to call their silencing status, while geneswithmultiple probes left, the cutoff was relaxed to 0.2 but

requiring that greater than half of the probes consistently silenced for that gene.

For DDR geneRAD51C, there were no common probes located in the promoter region. However, probe cg14837411 on HM27 and

probe cg27221688 on HM450 were only 100bp apart and both correlated with gene expression. We manually added these back

based on a beta value cutoff of 0.2 or above and combining both probes to call RAD51C epigenetic silencing.

Determination of deep deletions of DDR genes and SCNA-based DDR scores
Binary deep deletion calls were made using output from a PanCan GISTIC2.0 run on the samples (Mermel et al., 2011). GISTIC calls

of�2 (indicating a loss of more than half of baseline ploidy) were called as deep deletions. Deep deletion calls were transformed into

binary matrix format and made available in the (see Data and Software Availability).

The two SCNA burden scores (number of segments and fraction of genome altered) were computed using relative copy number

segment data (see Data and Software Availability). For the first score, we counted the number of segments present in the copy

number profile for each TCGA sample, and for the second score, we took the percentage of base pairs present in the copy number

profile for each sample that belonged to segments with either greater than 0.1 or less than �0.1 log2 fold-change from baseline

ploidy. All SCNA burden scores are available in Data and Software Availability.

The aneuploidy score reports the total number of arm-level amplifications and deletions in each cancer and was computed using

ABSOLUTE (Carter et al., 2012) and an arm-level clustering algorithm, as described in Taylor et al. (2018). The two LOH scores (total

number of segments with LOH events and fraction of genome containing LOH events) were computed directly using output from

ABSOLUTE (Carter et al., 2012). All aneuploidy and LOH scores are available online (see Data and Software Availability).

Computation of homologous recombination deficiency (HRD) scores
We calculated HRD scores following previous published 3 components of HRD/genome scarring scores: HRD-LOH (Abkevich et al.,

2012), LST (Popova et al., 2012), NtAI (Birkbak et al., 2012) and the implementation of a sum of the three (Marquard et al., 2015).

Segment LOH and SCNA were generated by TCGA Network Aneuploidy AWG using ABSOLUTE (Carter et al., 2012)

Ridge Regression Analysis
Bayesian ridge regression was performed on 276 DDR genes using alteration status and encoding tumor type as 33 additional binary

variables. HRD scores were modeled for 8464 tumor samples (MSI-high and POLE mutant samples were excluded from this anal-

ysis). Maximally uninformative gamma-distributed priors with shape and rate parameters equal to 0.1 were used for the precision of

coefficients weighting and regularization factor. Coefficient significanceswere computed by first dividing the coefficient values by the

square roots of the diagonal elements of the variance-covariance matrix of the weights to obtain coefficient t-statistics, and then by

performing two-tailed t tests with 8326 degrees of freedom on these values. The regression was performed in Python-3.6.3 using the

linear_model module in scikit-learn-0.19.1.

Survival Analysis
We evaluated clinical outcomes associations using newly developed, well-validated clinical data for each cancer type by the

PanCanAtlas Survival Working Group’s paper and following their recommendations (Liu et al., 2018). Their analysis was based on

clinical outcomes data from primary sources that were analyzed with extensive quality control and validation.

We considered two primary clinical outcomes: overall survival (OS), defined as ‘‘the period from date of diagnosis until death from

any cause’’; and progression free interval (PFI), defined as ‘‘the period from date of diagnosis until the occurrence of an event in which

the patient with or without the tumor does not get worse.’’ Within each cancer type, we dichotomized the cohort according to the

median score of each DNA damage footprint score to create two groups (high versus low) for survival comparisons. For a given

cancer type, we fit univariate and multivariate Cox proportional hazard models using the DDR footprint score group as a predictor.
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For multivariate models, we considered age, tumor grade, and tumor American Joint Committee on Cancer pathology stage as co-

variates. We divided cancer grade into two categories of ‘‘low-grade’’ for grades 1-2, and ‘‘high-grade’’ for 3-4. Cancer stages were

grouped as ‘‘early’’ for stages I and II, and ‘‘late’’ for stages III and IV. Additional covariates such as subtype, gender and race were

considered but not used because of sparsity or convincing evidence for inclusion. For each set of DDR footprint Cox models, we

applied the Benjamini-Hochberg correction to control the false discovery rate for DNA damage footprint scores.

Curation and Examination of DDR Fusion Events
We downloaded 30,001 fusion gene (FG) transcript candidates from the ChimerSeq module of ChimerDB 3.0 (December 2016) (Lee

et al., 2017). By overlapping these putative fusion genes with 276 DDR genes, we identified 889 fusions involving 224 DDR genes.

Among these, 464 FGs including 173 DDR genes were derived from TCGA cancer samples. To reduce false positives, we used

read count information together with FusionScan, TopHat-Fusion, and PRADA. Following their filtering criteria, we used fusion

transcripts having R 2 seed/junction reads for FusionScan and PRADA analyses, and those with R 100 spanning pairs for

TopHat-Fusion analyses that identified 289 FGs. We were able to augment these with 343 additional FGs involving 141 DDR genes

by downloading putative FGs from TCGA Fusion Data Portal using our 276 DDR genes as a query (September 2016) (Yoshihara et al.,

2015). Combining these two FG datasets we identified 488 FGs involving 174 DDR genes in 477 cancer samples.

We next checked the read alignments for each DDR fusion gene. RNA-seq data of 477 samples were downloaded using

gdc-client. BAM files were processed to obtain unmapped reads only using Bowtie2. We created fusion transcript composed of

100 bp sequences before and after break points using nibFrag, one of the BLAT Suite of programs. After creating a 200 bp length

index of each fusion transcript, we aligned the unmapped reads to this fusion sequence index, then manually checked the read

alignments. If a FG had at least one 20nt-20nt seed spanning read at the break point with a stair-shaped mapping of all reads we

considered this a high likelihood gene fusion. This analysis identified 192 high likelihood FGs involving 108 DDR genes in 209 cancer

samples.

Generating Protein Structural Models at Atomic Resolution
We began our structure-based analysis from UniProt canonical isoform sequences, and searched the PDB (Berman et al., 2000) for

existing experimental structures. Experimental structures exist for human POLQ domains including the DEAD-box, Helicase, Sec63,

and polymerase. The first three domains were solved in a single crystal structure, 5A9J (Newman et al., 2015). The polymerase

domain is available in 4X0P (Zahn et al., 2015). We will abbreviate these POLQ structures as DHS and Pol, respectively, that together

encompass 65% of the POLQ protein. No experimental structure exists for full-length human POLE. Thus we utilized the high-

resolution experimental structure from yeast (4M8O (Hogg et al., 2014); 57% sequence identity) to generate our initial model (Roy

et al., 2010) of the first 1155 amino acids of POLE that encompasses the polymerase and exonuclease domains.

Experimental structures for full-length human POLD1 and HMF1 are also lacking. Thus we utilized homology modeling using as

templates 3IAY (Swan et al., 2009) (52% identical), and 4KIT (Mozaffari-Jovin et al., 2013) (31% identical), respectively. The structure

of human BLM was taken from 4CGZ (Newman et al., 2015) and TOP3A from 4CGY (Bocquet et al., 2014). ERCC2 has been solved

(5IVW [He et al., 2016]), but at 94% sequence identity. Thus homologymodeling was used to update the experimental structure to the

target wild-type sequence.

The remaining proteins for whichwe appliedmolecular modeling (Figure 4) are available in the PDB at > 95%sequence identity. We

used homology modeling to revert protein to wild-type sequences and to fill in missing loops. FoldX (Schymkowitz et al., 2005; Van

Durme et al., 2011) was used to perform in silicomutagenesis and side chain rotamer optimization, and to calculate DDGfold for each

variant. Results are summarized and visualized in Figure 4 and Figure S5.

Molecular Dynamics Simulations
In order to provide a detailed assessment for the most recurrent variants in selected DDR proteins (n = 86; observed in at least 2

samples for POLQ or 3 samples for others), we utilized Generalized Born implicit solvent molecular dynamics (MD) simulations, which

were carried out using NAMD (Phillips et al., 2005) and the CHARMM27 with CMAP (Mackerell et al., 2004) force field. We utilized an

interaction cutoff of 12Å with strength tapering (switching) beginning at 10Å, a simulation time step of 1fs, and conformations

recorded every 2ps. Each initial conformation was used to generate 2 replicates that were each independently energy minimized

for 10,000 steps, followed by heating to 300K over 0.5ns via a Langevin thermostat and a further 6ns of simulation generated at

2fs/step with the final 5ns analyzed. Implicit solvation accelerates system kinetics due to lack of explicit motion by the solvent

required for solute motion. For POLE we studied in greater depth the recurrent V411A/D/I/L/M and P286R substitutions. For

each, 30ns of simulation trajectory was generated after minimization and heating, for each variant in triplicate, and the final 20ns

analyzed. Across the 6 variants plus the WT, 640ns of MD trajectory was generated. All proteins were modeled without substrate

(as apo structures). In total, 1118ns ofMD trajectory was generated and used to better understand the differences in effect of different

protein variants on dynamics.

All MD trajectories were first aligned to the initial wild-type conformation of each protein using Ca atoms. Root Mean Squared

Deviation (RMSD) was calculated using Ca atoms. Principal Component (PC) analysis was performed in Cartesian space. Analysis
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was carried out using custom scripts, leveraging VMD (Humphrey et al., 1996) and the Bio3D R package(Grant et al., 2006). Protein

structure visualization was performed in PyMol (The PyMOL Molecular Graphics System. Version 1.5.0.3. Schrödinger, LLC)

and VMD.

We used wild-type simulations as a benchmark for determining if variants altered the intrinsic dynamics of each protein (DPC). We

first identified the region of PC space sampled by the densest 90% of each protein WT simulation (Figure S5). If the median PC

coordinate for a variant was outside of this region, we considered the variant to have altered the activation of the corresponding

PC motion. Differences in folding energy were classified as moderately (DDGfold R 1 kBT z0.6 kcal/mol) or strongly (DDGfold R

3 kBT z1.8 kcal/mol) destabilizing.

In-silico expression-based predictor of TP53 inactivation
We trained a classifier to use RNA-seq expression data to predict TP53 functional status. In brief, we trained a logistic regression

classifier with an elastic net penalty using the Scikit-learn implementation of stochastic gradient descent (Pedregosa et al., 2010).

The labels (y) for the supervised task included samples with MC3 annotated deleterious TP53 mutations (samples with silent

mutations were considered TP53wild-type) and samples with TP53 deep copy number loss as predicted by the GISTIC2.0 algorithm

(Mermel et al., 2011). We included cancer-types in the model that had greater than 15 samples in each class, and between 5% and

95%of samples in both classes. Other samples were removed (see Figure S6A). The features (X) consisted of the 8,000most variably

expressed genes by median absolute deviation (MAD). We dropped expression of TP53 itself from the features to prevent the model

from relying on target gene data. MAD genes were z-scored and concatenated with binarized dummy variables for all cancer types

andmutation burdens (total log10mutation count) to adjust for potential confounding factors. To reduce the effect ofmutation burden

confounding, we also removed outlier samples with the most extreme hypermutation phenotypes (> 5 standard deviations above the

mean log10 mutation count). The goal of the classification scheme was to determine the weights (w) that minimize the following

objective function:

Pðyi = 1 jXiÞ= fðXiwÞ= 1

1+ e�wXi
Lðw jXÞ= �
Xn

i = 1

yi log fðXiwÞ+ ð1� yiÞlogð1� fðXiwÞÞ
w= argmin Lðw jXÞ+ l
X

kw k l

Where i indexes samples, p indexes genes, l and l are regularization and elastic net mixing hyperparameters, respectively. We

selected optimal hyperparameters by balanced 5-fold cross validation with the goal of inducing a sparse solution. We also used a

balanced 10% held out set to test the performance of the classifier on data that was not used for training or hyperparameter

optimization. We fit the final model on the remaining 90% of the data and report performance using receiver operating characteristic

(ROC) curves and area under the ROC curve (AUROC) metrics.

We manually selected an a priori set of genes known to interact with TP53 for our phenocopying experiment (L.A. Donehower, un-

published data). We tested MDM2, MDM4, and PPM1D amplifications, CDKN2A deletions, and ATM, ATR, CHEK1, CHEK2,

CREBBP, and RPS6KA3 mutations. For the copy number tests, we included both deep and shallow alterations in the altered set

compared to cancers with wild-type profiles only. We removed tumors with deleterious TP53 mutations or deep copy number

loss (n = 4,037). From the remaining 5,629 tumors, we removed 219 hypermutated cancers leaving an analytic set of 5,410 cancer

samples.We performed independent t tests and calculated Cohen’s D effect sizes comparing the assigned TP53 classifier scores for

wild-type against altered cancers. We considered variants significant if they were less than a Bonferroni adjusted p value (p > 0.005).

We visualized the results in a network diagram presented in Figure 5E. The underlying interaction network was downloaded from

the STRING database (version 10.5) (Szklarczyk et al., 2017). The thickness of edges in the STRING network display interaction

confidence and were generated by experimental data. Note that there are no direct interaction edges between RPS6KA3 and

TP53 and PPM1D and TP53.

We provide materials under an open source license to reproduce and expand upon this analysis at https://github.com/greenelab/

pancancer. Additional details, including benchmarking analyses, are provided in Way et al. (2018).

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/

legacy-archive/search/f) and the PancanAtlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas).

The PancanAtlas publication page includes a dedicated data resource related to this manuscript. This resource contains alteration
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calls for the 276 DDR genes as well as the 43 DDR footprint scores across all TCGA samples. The mutation data can be found here

https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also be explored through the Broad Institute Fire-

Browse portal (http://gdac.broadinstitute.org) and the Memorial Sloan Kettering Cancer Center cBioPortal (http://www.cbioportal.

org). Details for software availability are in the Key Resource Table.
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