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Object 3D reconstruction has always been one of the main objectives of computer vision.
After many decades of research, most techniques are still unsuccessful at recovering high
resolution surfaces, especially for objects with limited surface texture. Moreover, most
shiny materials are particularly hard to reconstruct.

Photometric Stereo (PS), which operates by capturing multiple images under changing
illumination has traditionally been one of the most successful techniques at recovering a
large amount of surface details, by exploiting the relationship between shading and local
shape. However, using PS has been highly impractical because most approaches are only
applicable in a very controlled lab setting and limited to objects experiencing diffuse
reflection.

Nevertheless, recent advances in differential modelling have made complicated
Photometric Stereo models possible and variational optimisations for these kinds of
models show remarkable resilience to real world imperfections such as non-Gaussian
noise and other outliers. Thus, a highly accurate, photometric-based reconstruction
system is now possible.

The contribution of this thesis is threefold. First of all, the Photometric Stereo
model is extended in order to be able to deal with arbitrary ambient lighting. This is a
step towards acquisition in a non-fully controlled lab setting. Secondly, the need for a
priori knowledge of the light source brightness and attenuation characteristics is relaxed
as an alternating optimisation procedure is proposed which is able to estimate these
parameters. This extension allows for quick acquisition with inexpensive LEDs that
exhibit unpredictable illumination characteristics (flickering etc). Finally, a volumetric
parameterisation is proposed which allows one to tackle the multi-view Photometric
Stereo problem in a similar manner, in a simple unified differential model. This final
extension allows for complete object reconstruction merging information from multiple
images taken from multiple viewpoints and variable illumination.

The theoretical work in this thesis is experimentally evaluated in a number of
challenging real world experiments, with data captured by custom-made hardware. In
addition, the applicability of the generality of the proposed models is demonstrated by
presenting a differential model for the shape of polarisation problem, which leads to a
unified optimisation problem, fusing information from both methods. This allows for
the acquisition of geometrical information about objects such as semi-transparent glass,
hitherto hard to deal with.
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Chapter 1

Introduction

1.1 Objective

One of the main research aims of computer vision is 3D reconstruction, which is the process
of digitising the shape and appearance of real world objects through algorithms using various
sensors such as RGB cameras, active illumination systems, laser scanners etc. There are
numerous approaches for the attainment of 3D reconstruction which have been the focus
of study for decades. This dissertation will mostly centre on developing a 3D scanning
technology aiming at:

• Practical acquisition: it is desirable to have a quick and practical data acquisition
process without the need for expensive equipment (e.g laser scanners).

• Dense Reconstruction: it is also requisite that a surface representation as dense
as possible is obtained so as to be able to recover surface details of sub-millimetre
precision.

• General surfaces: it is furthermore imperative to be able to reconstruct surfaces of
heterogeneous materials (including shiny ones) without the need for the existence of
surface texture.

1.2 Motivation

Traditionally, 3D reconstruction has been used in a number of applications. Some examples
include digitisation of several real world objects, such as archaeological artefacts. These 3D
models can then be used in a variety of tasks such as virtual exhibitions or other entertainment
applications, including but not limited to computer graphics for movies and video games.
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Figure 1.1 Example applications of the developed photometric-based 3D reconstruction
system. (left) to (right) shows fingerprint scanning, inspection (aspirin pill) and heritage
digitisation (tea caddy from the Fitzwilliam museum in Cambridge).

More recently, there has been an increasing need for augmented reality (AR) applications
where a 3D model of a scene is used in conjunction with additional virtual objects superim-
posed. A closely related task is the navigation of autonomous robots, such as self-driving
cars, where the 3D scan of the surrounding environment is required in order to safely interact
with it.

In addition, with particular importance for this thesis are the tasks of inspection, for
industrial as well as biometric applications. One example is a contact-less fingerprint scanner,
utilising an accurate 3D reconstruction of a fingerprint simply from images, without the need
for a specific touch sensor. Some examples of these applications are shown in Figure 1.1.

Another application of this work is the examination of the fracture of bio-cemented
sandstone specimens. More specifically, artificial rocks generated through microbially induced
calcite precipitation are of great importance for the geotechnical engineering community
(e.g. in modelling the fracture of concrete, Kumar et al. [92]). These rocks are subjected to
compression tests until fracture, as shown in Figure 1.2.

The usefulness of the 3D reconstruction system developed lies in that it offers a method
for the quick examination of the surfaces through a very precise reconstruction so that the
propagation of the crack in the material can be studied. In addition, the fast acquisition
process (a few seconds for image capture and a few dozens of seconds for reconstruction)
allows for the examination of a large number of samples, allowing for better experimental
validation. For the work of Konstantinou et al. [90], 28 samples were scanned using the setup
shown in Figure 1.5, with the whole acquisition process taking around 30 minutes using the
GPU reconstruction algorithm discussed in Section 7.2.1.
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(a) Compression test experi-
mental setup.

(b) Surface reconstructions of the fragments.

Figure 1.2 Investigation of the fracture of bio-cemented rocks. (b) shows a close-up textured
and untextured of 3D reconstruction of the results of the fracture test performed with the
setup of (a). This is an actual application of the contribution of this thesis appearing in the
article (Konstantinou et al. [90]). For a reference of the scale of these samples, the diameter
of the samples is a few centimetres, and the grains of the samples have average sizes of 0.18
and 1.8 mm for the fine grained (b-top) and coarse grained (b-bottom) samples respectively.

1.3 Background

The 3D reconstruction problem has been studied for decades and there are numerous
approaches to it. A brief overview of different methods is presented below, and a comparison
is shown in Figure 1.3.

As of 1981, one of the most remarkable pioneering 3D reconstruction works has been that
of the eight point algorithm by Longuet-Higgins [107]. The eight point algorithm uses point
correspondences in two images from two different points of view and allows simultaneous
recovery of the camera motion between the two views as well as the corresponding 3D position
of these points. This is the basis of a class of later algorithms called Structure-From-Motion
(SFM). A similar setting, usually relevant to the robotics community is the Simultaneous
Localization And Mapping (SLAM) problem, where the aim is usually to gather enough
information about the surrounding 3D space so as to navigate an autonomous agent. Important
work on SLAM includes Leonard and Durrant-Whyte [99], Klein and Murray [89], Engel
et al. [44].

Given multiple images from different known camera positions, the 3D reconstruction
problem is usually referred to as Multi-View Stereo (MVS). The special case of two images
only is usually referred to as Binocular Stereo or just Stereo. In MVS, the objective is usually
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(a) MVS. (b) Laser. (c) PS.

Figure 1.3 Comparison of 3D reconstruction methods. (a) was obtained using the VisualSFM
pipeline ([193, 49, 84]) and it is of very poor quality due to the lack of surface texture. (b)
was obtained using the laser scanner of NextEngine [131]. This is a good reconstruction
although the surface is a bit noisy and of lower resolution than (c) which was generated using
the proposed algorithm from Chapter 5.

to obtain an as dense as possible representation of the scene. MVS algorithms have had great
success over the years (classic review papers Scharstein and Szeliski [160], Seitz et al. [162])
however their performance is usually dependent on the existence of point features such as
surface texture, which can be matched across different views. Thus they are particularly
suitable for reconstructing building-sized scenes with hundreds of images (e.g “Building
Rome in a Day” project by Agarwal et al. [4] featuring large scale SFM and MVS) as opposed
to a few images of a “small” (relative to the camera trajectory) object.

Another class of 3D reconstruction methods rely on structured illumination where a
known pattern is projected on the scene; the deformation of the pattern, as captured by the
camera, reveals the depth of the different objects of the scene. This is conceptually similar
to the feature matching procedure of stereo algorithms, with the structured illumination
providing most of the necessary features. The most characteristic example of such methods is
the Kinect Fusion work by Newcombe et al. [130]. More recent extensions, also applicable
for fusing data from generic active depth sensors (also time of flight) include Kerl et al.
[87], Endres et al. [43] and Whelan et al. [189].

Finally, for this thesis, the most relevant family of 3D reconstruction algorithms rely on
shading1 to infer 3D structure. The foundation of this field is Horn [67], where the idea of
Shape-From-Shading (SFS) was proposed and more relevantly Woodham [192], where the
Photometric Stereo (PS) method was introduced. PS assumes multiple images from the
same viewpoint along with varied illumination and calculates the surface orientation (normal)
at each pixel through solving an inverse rendering problem. Then the surface normal map is

1The meaning of shading here is ‘gradations of reflected light intensity’ and should not be confused with the
existence of shadows.
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numerically integrated in order to produce a 3D surface. An example of PS input data and
output is shown in Figure 1.4.

1.4 Photometric Stereo

(a) Input Images. (b) Normal map.

Figure 1.4 The Photometric Stereo method: (a) images from the same point of view but with
varied illumination (here 2/8 are shown) are used to compute a normal map (b) and finally a
3D reconstruction (1.3c).

The operating principle of the Photometric Stereo method can be understood from the
name itself. Photometric is a Greek word that means measuring the light. Indeed, it refers to
the fact that the exact amount of reflected light (in practice measured as a pixel value) contains
information about the surface. Although light reflection models can be very complicated
as analysed in Section 2.1, in general, a high pixel value means that the surface normal is
oriented to the incoming light direction whereas a low pixel value indicates that the surface
normal is perpendicular to the incoming light. The term Stereo refers to the fact that the
method critically depends on the change of illumination and so Stereo draws similarity with
standard stereo techniques, where the change in the image information comes through motion.
The need for more than one photometric image comes from the inherent ambiguity between
shading and surface albedo. Albedo is an intrinsic surface property determining the total
amount of light it reflects and is closely related to its perceived colour. In fact, there is a class
of single image shape-from-shading methods which began with Horn [67] although these
methods rely on a number of assumptions to overcome this ambiguity.

1.4.1 Motivation for Photometric Stereo

The Photometric Stereo technique is highly suitable for the acquisition of very detailed
reconstructions. This is because it is a direct method that extracts information from every
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Figure 1.5 The hardware used for capturing data for the photometric-based reconstruction
system developed. It consists of a simple circuit with inexpensive LEDs and a 3MPixel
camera (FL3-U3-20E4C). This allows images to be captured with varied illumination from
the same point of view and then use Photometric Stereo algorithms to obtain an object’s
3D reconstruction. The setup contains 52 LEDs arranged in 6 co-centric circles in a 9cm
radius disk. These circles have radii 3.5 to 8.5cm and they contain 6, 6, 6, 12, 12, 10 LEDs
respectively. The LEDs in each circle are arranged uniformly with the aim to maximise
the distance between nearby LEDs in successive circles. This arrangement of LEDs was
designed in order to be able to generate a large number of lighting conditions, however, in
practice, for most objects 6-9 images are enough for an accurate reconstruction.

image pixel without the need for prior extraction of key-points or other features. As a result, a
large amount of information is readily available and thus 3D reconstruction meshes that have
millions of vertices can be generated by using megapixel images. To add to this point, PS does
not rely on texture or other specific surface characteristics; any non-black surface that reflects
light is reconstructable, at least in theory. This makes PS applicable for a large variety of
objects that are otherwise really hard to reconstruct with stereo matching algorithms reliant on
texture and other distinct features. Moreover, it is noted that as the photometric information
is encoded in the surface normals, a high level of detail is automatically recovered.

With regard to the aspect of implementation, PS allows for very fast acquisition as it does
not involve any moving parts. Standard data acquisition involves 6-9 images and takes a
few seconds (see Figure 1.5). This is orders of magnitude quicker than laser-scanning (e.g
NextEngine [131]) which needs a few minutes to scan a sample, as it requires the laser to
slowly move across the object’s surface. In addition, despite the need for specific hardware,
its material cost is minimal as LEDs cost a few pounds each and are controlled using a simple
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Arduino controller. This is again contrasted with commercial laser scanners that cost at least
a few thousand pounds.

Finally, the lack of moving parts property of PS acquisition makes it suitable for
applications where moving is difficult such as endoscopy (Wu et al. [196]) or monitoring the
development of glaucoma (Lee and Brady [98]).

1.4.2 Literature limitations

Woodham’s classic PS method proved to be quite impractical as it relies on a set of restrictive
assumptions about the illumination (parallel uniform), orthographic viewing geometry and
diffuse surface reflection. All of these assumptions are invalidated when using the practical
capture setup of Figure 1.5. Over the years, the extensive research on the matter has managed
to overcome some of these limitations. This thesis goes a few steps further in Photometric
Stereo modelling, allowing for a more practical system to be made.

The aim of this thesis is to extend the Photometric Stereo technique in order to make it
more applicable and practical. It is imperative to be able to deal with objects close to the
camera, as seen in Figure 1.5, for the following two reasons. Firstly, the closer the camera
gets to the object, the more surface details are visible and hence can be reconstructed. In
addition, placing the target object close to the light sources allows them to outshine any
ambient lighting and hence make acquisition not require a dedicated dark room. In general,
the closer to the light sources the object is, the better signal-to-noise ratio can be obtained.
As a result, in order to perform nearby acquisition, perspective projection as well as point
light sources need to be modelled.

Finally, it is required that objects of reflectance as general as possible and not just diffuse
be dealt with. This includes applicability to heterogeneous scenes with multiple objects and
complicated geometry.

From a methodology approach, the aim is the mathematical manipulation of the equations
governing the image formation process (irradiance equation, see Section 2.1) in order to
get them into more computationally tractable forms. This is necessitated as light reflection
models can be very non-linear and thus make the inverse rendering problem unsolvable. In
addition, as illumination crucially depends on the surface normal, it is highly desirable to
express the Photometric Stereo problem in a differential form, with the differentiated variable
being the depth away from the image plane. This differential parameterisation allows for the
use of mathematical tools from the partial differential equation (PDE) literature as well as
powerful variational solvers, allowing for high levels of robustness in real world imperfections
such as camera thermal noise.
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Finally, it has to be noted that it is a crucial aim of the thesis to develop a general
mathematical framework that can reliably model as many situations as possible. This means
that it is desirable to use minimal prior knowledge about the target scenes. This limitation
also restricts the applicability of machine learning approaches (either deep or classical) as it
is definitely preferable to avoid using training data as this would bias the applicability towards
objects similar to the training set.

1.4.3 Challenges in Photometric Stereo modelling

Most of the challenges in computer vision, and more specifically in the 3D reconstruction
sub-field, arise from the fact that it mostly deals with inverse problems. The physics of how
light reflects off object’s surfaces, is then scattered by the atmosphere, refracted through
camera lenses (or human eyes), and finally projected onto a flat (or curved) image plane is
well understood and computer graphics are very successful at simulating these processes.
However, the inverse problem has proved to be much harder. Going from 2D images to
3D representations of the world is a non-trivial, and an ill-constrained problem, as the
dimensionality of the output (objects in 3D space with additional colour and reflectance
properties) is far greater than the dimensionality of the input (a set of 2D images). Therefore,
the modelling process is a trade-off between capturing enough real world features and at the
same time having solvable equations, with numerically tractable solutions.

1.5 Contributions

The contribution of the thesis is threefold. First of all, the Photometric Stereo model is
extended in order to be able to deal with arbitrary ambient lighting. This is a step towards
acquisition in a not fully controlled lab setting. Secondly, the need for a priori knowledge of the
light source brightness and attenuation characteristics is relaxed as an alternating optimisation
procedure is proposed which is able to estimate these parameters. This extension allows for
quick acquisition with cheap LEDs that exhibit unpredictable illumination characteristics
(flickering, etc). Finally, a volumetric parameterisation is proposed which allows one to tackle
the multi-view Photometric Stereo problem in a very similar manner, in a simple unified
differential model. This final extension allows for complete object reconstruction merging
information from multiple images taken from multiple viewpoints and variable illumination.
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The relevant articles are:

• [105] Logothetis, F., Mecca, R., Quéau, Y., and Cipolla, R. (2016). Near-field
photometric stereo in ambient light. In British Machine Vision Conference (BMVC)

• [103] Logothetis, F., Mecca, R., and Cipolla, R. (2017). Semi-calibrated near field
photometric stereo. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 3, page 8

• [104] Logothetis, F., Mecca, R., and Cipolla, R. (2018a). A differential volumetric
approach to multi-view photometric stereo. arXiv, 1811.01984

In the aforementioned works, I contributed to the theoretical framework and also made
almost all of the coding implementation. In addition, I have also contributed to the following
publications as part of my work on Photometric Stereo modelling:

• [118] Mecca, R., Quéau, Y., Logothetis, F., and Cipolla, R. (2016). A single lobe
photometric stereo approach for heterogeneous material. SIAM Journal on Imaging
Sciences, 9(4):1858–1888

• [116] Mecca, R., Logothetis, F., and Cipolla, R. (2017). A differential approach to
shape from polarization. In British Machine Vision Conference (BMVC)

• [106] Logothetis, F., Mecca, R., Sgallari, F., and Cipolla, R. (2018b). A differential
approach to shape from polarisation: a level-set characterisation. International Journal
of Computer Vision (IJCV), pages 1–14

For [118], I ran the experiments presented in Figures 3.2 and 3.4. For [116], I contributed at
the implementation part and finally in [106], I also contributed to the theoretical framework
extension compared to [116]. Finally, the theory developed in Chapter 5 along with the
experimental setup were used in order to provide scanning for the following Geotechnical
Engineering paper:

• [90] Konstantinou, C., Biscontin, G., and Logothetis, F. (2019). Tensile strength of
bio-cemented sands. Under Review for Journal of rock mechanics and rock engineering
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1.6 Outline

The rest of the thesis is structured as follows.
Chapter 2 gives a more in depth discussion of the classical Photometric Stereo problem

and the pioneering solutions to it. A detailed review of the classical literature about light
reflection modelling and numerical integration methods is also included.

Chapter 3 describes the modern theoretical framework which is the basis for the Photo-
metric Stereo modelling of the thesis. This includes PDE manipulation using the image ratio
method and modelling from the applied mathematics community, as well as a variational
optimisation framework.

Chapter 4 describes the extension of the Photometric Stereo method to handle arbitrary
ambient light. This additional unknown complicates the irradiance equation to the point that
the ratio method is made inapplicable. The solution is to use a binomial series expansion to
linearise the irradiance equation and then consider a ratio of differences in order to derive a
simplified formulation.

Chapter 5 introduces the semi-calibrated Photometric Stereo problem, where the light
source positions are known though the brightness is not. This is a very practical issue arising
from high speed acquisitions where LEDs tend to flicker. A solution to this is presented by
the means of an alternating optimisation framework.

Chapter 6 extends the PS framework into a multi-view setting. This allows for complete
3D reconstructions for scenes with discrete objects in contrast to the continuous depth maps
that have been generated for the rest of the thesis. Indeed, this extension requires a different
parameterisation based on the signed distance field, considered along with its relationship to
the surface normal in order to propose a novel differential parameterisation.

Chapter 7 concludes the thesis, also showing how PS modelling can be merged with the
shape-from-polarisation method. This is a very interesting application showing the general
applicability of the theoretical framework developed in this thesis.



Chapter 2

Background

This chapter provides the basic background for the thesis. Firstly, some light reflection
properties are presented along with how they have been exploited in the computer graphics
literature. Then, the classic Photometric Stereo and the shape from shading algorithms are
analysed as these are the foundations of the field. Finally, the chapter concludes with a
presentation of some recent advances in deep learning for Photometric Stereo problems.

2.1 Light reflection basics

This section presents some notions of light reflection in physics which are at the core of the
image formation process. For a more detailed explanation refer to Nicodemus [133], Szeliski
[173].

In general, the scattering of light off a surface depends on its Bidirectional Reflectance
Distribution Function (BRDF). The BRDF is defined as the ratio of the incoming radiance to
the reflected one. The radiometric quantity radiance measures the amount of light power
per projected area and per steradian, reflected, transmitted or received by a given surface; it
corresponds roughly to the amount of light power transmitted per ray. In general, a BRDF is
a function of four variables parameterising two unit length vectors L and V . The operator · is
used to define normalisation of a vector as:

X =
X

∥X ∥
(2.1)

Vectors V and L ∈ R3 denote the viewing and lighting vectors as defined in the caption
of Figure 2.1.
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Figure 2.1 Most relevant vectors for modelling light reflection and BRDFs. These are the
surface normal N , lighting vector L pointing towards the light source, the viewing vector V
pointing towards the camera, H the half-vector between V and L (H = V + L) and finally
R, the direction of mirror-like reflection (N = L + R).

In principle, the BRDF of a real surface satisfies the following constraints:

1. Non-negativity: For any direction, the amount of reflected light is non-negative.

2. Conservation of energy: The total amount of reflected light equals the incoming light.

3. Helmholtz reciprocity: The BRDF is symmetric between swapping incoming and
outgoing directions.

Although the BRDF is defined through a ratio of powers at the surface interphase, it
is very common to assume that light propagates unattenuated through the air, so that the
incoming radiance to the surface equals the radiance emitted by the light source and the
reflected radiance equals the radiance received by the image sensor. It must be noted that these
assumptions are severely violated in attenuating media (such as murky waters [179, 181, 126])
but this is beyond the scope of this thesis. Thus, assuming that the camera has a linear
response (so that the pixel values are proportional to the incoming radiance), the BRDF leads
to an image irradiance equation, where each pixel value is expressed with the BRDF for the
camera view vector V and the lighting vector L as:

i(u, v) ∝ BRDF
(
V (u, v), L(u, v)

)
(2.2)

where vectors V (u, v) and L(u, v) are now expressed in image-centred coordinates. The
proportionality in Equation 2.2 is used to signify that the exact image value depends on a
number of other constant parameters such as the camera’s analogue gain and the intrinsic
brightness of the light source.
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The straightforward way of measuring a real BRDF involves the positioning of a light
source and a detector at various directions from an object of simple geometry, usually a flat
sample of the material to be measured, Marschner et al. [113]. Alternatively, a half-silvered
mirror and a digital camera can capture many BRDF samples of a planar target at once, Ward
[186]. However, dealing with general BRDFs is very hard in practice, especially from a PS
point of view, where the inverse problem is required (Section 1.4.3). Thus, some analytical
models approximating BRDFs are preferred and this is explored in the following sections.

Before proceeding, it is noted that another common method of compressing the information
of the BRDF is to project it onto spherical harmonics, e.g. Westin et al. [188] and Ghosh
et al. [52]. These are the spherical analogues of sines and cosines, in that they form
a smooth orthonormal basis for functions on the sphere. Simple BRDFs have few non-
negligible spherical harmonic coefficients, thus truncating the series to a few terms is a good
approximation.

A generalisation of the BRDF is the Bispectral Bidirectional Reflectance and Reradiation
Distribution Function (BBRRDF), Hullin et al. [69] applicable for fluorescent materials,
where a portion of the incident light is absorbed and re-emitted at a higher wavelength.
Treibitz et al. [178] suggest and experimentally verify that fluorescence emission is well
approximated by an ideal Lambertian model (see Section 2.1.1) and so the classic PS method
(see Section 2.2) is mostly applicable. A similar approach is also followed by Sato et al.
[159].

2.1.1 Lambertian reflection

The simplest BRDF is the Lambertian dating back to the 18th century and published in
Lambert [96]. This function simply assumes that once light reflects off an object it spreads
uniformly in all viewing directions. In addition, the amount of reflected light is proportional
to the cosine between the surface normal and the lighting vector. This leads to the following
irradiance equation for the diffuse component of the reflected light id:

id(u, v) ∝ max
(
N (u, v) · L(u, v), 0

)
(2.3)

where the max operator is used to signify that those points where the surface normal is faces
away from the surface, receive no light. This case corresponds to an attached shadow and
will be further examined in Section 2.2.1. For now, as it is usually the case in the literature,
the max operation will be ignored although it always applies implicitly, as BRDFs are always
non-negative.
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Surprisingly, this very simple Lambertian model is quite accurate for a range of materials
experiencing diffuse reflections and it forms the basis of most of the PS literature (e.g
[192, 66, 138, 72, 144].

2.1.2 Analytic reflection models

(a) Lamberian [96] (b) Blinn–Phong [17] (c) Cook and Torrance [32]

Figure 2.2 Comparison of different light reflection models for rendering synthetic data.

The Lambertian BRDF model presented in Section 2.1.1 completely ignores any kind
of specular reflection and thus is limited, at least from a rendering perspective. Specular
reflection is a mirror-like reflection where a significant portion of the incoming light is
reflected around a specific direction only, usually around the R vector (see Figure 2.1)
depending on the material. On the other hand, look-up tables are usually too computationally
expensive to use in real-time rendering tasks. The middle ground is to approximate the BRDF
with some analytical model. Many attempts in direct analytical models have been proposed,
as shown in the surveys by Ngan et al. [132] and Kurt and Edwards [93].

One of the earliest models, still considered useful today, was presented in Phong [146].
It directly exploits the empirical observation that for various materials most of the specular
reflection is around R (see Figure 2.1) and proposes a power law fall off as V moves away
from R. Another popular alternative is the Blinn–Phong model [17] which sets the specular
lobe around the half vector H . Phong and Blinn–Phong model formulas are shown in
Equations 2.4 and 2.5 respectively:

ip ∝ (V · R)
cp (2.4)

ib ∝ (N · H)
cb (2.5)

where cp and cb are material constants determining how strong the reflection is; the higher the
value of the exponent, the stronger the specular reflection is, which corresponds to smaller,
brighter highlights. The limiting case of infinity exponents corresponds to a Dirac delta



2.2 Classical Photometric Stereo 15

function and this has been considered as reflectance model in [128] (more about the usage of
reflection models in PS in Section 3.4.1).

More physically-based BRDFs include the Torrance and Sparrow [176], the Cook and
Torrance [32], the Ward [186] and Lafortune et al. [94]. The Cook & Torrance (CT) model
[32] equation is presented here as it is used later:

ict ∝
f dg

π(N · L)(N · V )
where: (2.6)

f = f0 + (1 − f0)(1 − (V · H))
5 (2.7)

f0 = (
n1 − n2
n1 + n2

)2 (2.8)

d =
1

πr2(N · H)4
e
(
(N ·H)2−1
r2(N ·H)2

)
(2.9)

g = min
(
1,

2(N · H)(N · V )
(V · H)

,
2(N · H)(N · L)
(L · H)

)
. (2.10)

More specifically, the CT model is based on the idea that the surface contains microfacets
(originally introduced in [176]), acting like perfect mirrors. Then the f term (not to be
confused with the focal length) models light refraction (n1 and n2 are the indices or refraction
of the material and the medium which is usually the air; the formula above is a simplification
proposed by Schlick [161]), d models the microfacet distribution (i.e. the number of
microfacets aligned with the half vector H) and g models the mutual shadowing between
microfacets. An example rendering that compares purely diffuse to purely Blinn–Phong and
to purely Cook and Torrence is shown in Figure 2.2.

Finally, note that a popular graphics strategy (e.g. [95]) is to mix the BRDFs described
above with a Lambertian component, so for example iall = ρdid + ρctict , with ρd + ρct = 1

2.2 Classical Photometric Stereo

In this section, a more detailed explanation of the Photometric Stereo (PS) method introduced
by Woodham in [192] is given. PS assumes images from the same viewpoint as well as varied
but known illumination. This classic method relies on the following set of assumptions

1. Lambertian Reflection.

2. Orthographic projection.

3. Uniform Known Parallel illumination.
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4. No shadows or self-reflections.

5. Linear sensor (camera) response.

Under the aforementioned set of assumptions the classic PS irradiance equation for pixel
i(u, v) for light source j is:

i j(u, v) = ρ(u, v)(N (u, v) · L j) = L
⊺
j ρ(u, v)N (u, v). (2.11)

Now, the proportionality of Equation 2.3 is replaced with an equality with the following
two changes: firstly, the pixel-wise unknown ρ(u, v) is included. This is called albedo which
is a scalar associated with the reflectance of the surface at that particular point. Albedo is
closely related to the intrinsic color of the surface. Secondly, the normalisation of the lighting
vector L is removed to allow for the possibility of light sources with difference intrinsic
brightness (encoded on ∥L∥) 1.

Note that the orthographic projection assumption guarantees that points on the image
plane (u, v) directly map to 3D points as x(u, v) = u and y(u, v) = v thus it makes sense
to express the irradiance of a 3D point through quantities calculated at the image plane.
Assumption 4 guarantees that the pixel values only correspond to the reflected light (through
Lambertian reflection).

The objective of the classic PS problem is to recover ρ(u, v) and N (u, v). The baseline
solution involves the use of the auxiliary variable M(u, v) = ρ(u, v)N (u, v) and then stacks
different irradiance Equations 2.11 that come out of images taken under different illumination
L j for j = 1, . . . n. This leads to the following linear system:


L
⊺
1
...

L
⊺
n

 M(u, v) =

i1(x, y)
...

in(u, v)

 that is (2.12)

LsM(u, v) = Is(u, v). (2.13)

The system is solvable assuming that the rank of Ls is 3. This requires n ≥ 3 as well
as non-collinear light sources. The least squares solution is M(u, v) = (L⊺s Ls)

−1L⊺s Is(x, y)
which in turn is used to calculate ρ(u, v) = ∥M(x, y)∥ and N (u, v) = M(u,v)

∥M(u,v)∥ .

1[192] only considers normalised light vectors but the solution strategy is identical for L of any magnitude.
In fact, assuming normalised lighting vectors simplifies the uncalibrated PS problem discussed in section 5.2.1).
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2.2.1 Robustness to outliers

Since the work of [192], the field has progressed. There are two different categories of
progress. One is to extend the model in order to parameterise more physical phenomena. This
will be analysed in depth in Chapter 3. The second category of methods focuses on solving
PS under the setting where the classic assumptions are mostly true, aiming to maximise
robustness to outliers.

Outliers are data points which, in a statistical sense, are significantly different from the
model and hence require special treatment. The baseline method of solving Equation 2.13
in the least-squares sense is only justified in the presence of Gaussian noise only, which is
not a realistic assumption, and it is sensitive to outliers. It is usually assumed that outliers
are sparse: this means that a relatively small percentage of data points are outliers and that
the rest follow the model under some sort of noise assumption. Hence, it is common to
assume that specular reflections, which are significant for points where the surface normal
is aligned with R or H , (see Section 2.1) are sparse outliers. In addition, shadows caused

  

Figure 2.3 Illustrations of attached and cast shadows which are (along with specular highlights)
the main outliers in PS. Attached shadows (blue parts of the surface) occur when the surface
normal is directed away from the light source (i.e. N · L < 0) and thus the surface shadows
itself locally. On the contrary, cast shadows (red parts of the surface) occur when one part of
the surface occludes another part of it. This is a global illumination effect and it is much
harder to detect in practice.

by self-occlusions of the surface (see Figure 2.3) are also one of the most common sparse
outliers. Note that near lighting, perspective viewing geometry and ambient light cannot be
assumed as outliers as these effects dramatically alter the irradiance equation for every pixel
in every image. Hence, these effects cannot be managed with robust estimations and have to
be specifically modelled. This will be discussed in Sections 3.3 and 4.2.
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To specifically model these sparse corruptions, Wu et al. [199] proposed a re-written
version of Equation 2.13 as:

I = Ls M + E (2.14)

where I and M are the matrices consisting of stacking Is(u, v) and M(u, v) and E is the
corruption matrix. Equation 2.14 is “hopelessly under-constrained”2 unless we assume that
E is very sparse and most of its elements are 0. The natural way to express this is to try to
minimise its cardinality, i.e. ∥E ∥0. However, such a minimisation is NP hard and so this
has to be approximated in practice. A common approximation is to use the ℓ1 norm i.e.
∥E ∥0 ≈ ∥E ∥1 as used, for example, by Wu et al. [199] to solve the problem using low-rank
factorisation. Similarly, Ikehata et al. [72] follow sparse Bayesian regression for the same
constraint. Wang et al. [185] proposed dealing with the non-convex nature of the low-rank
matrix factorisation problem through a proximal strategy. Finally, [59, 70] eliminated outlier
points using RANSAC ([47]).

In addition, it is widely considered true that robustness is increased if the PS problem is
posed in a differential form (with the depth as unknown) and resolved through a variational
optimisation. This will be further examined in the next section.

Moreover, in order to further increase robustness, it is common to include a robust kernel
function f . Thus a minimisation of an error function min

x
e(x) is re-written as min

x
f (e(x)).

This transformation aims to minimise the effect of outliers (which have high values for e(x))
which would otherwise dominate the error function. A few common kernel functions include:

• ℓ2 norm: f (x) = 0.5x2

• ℓ1 norm: f (x) = |x |

• Huber: f (x) =

{
0.5x2, if |x | ≤ λ
λ(|x | − 0.5λ) if |x | > λ

, λ is a free parameter.

• LogCosh: f (x) = log(cosh(x)).

• Cauchy: f (x) = λ2 log
(
1 + x2

λ2

)
, λ is a free parameter.

These kernel functions have different advantages and disadvantages. In general, the
set of desirable properties include differentiability, convexity, simple analytic inverse and

2 The phrase “hopelessly under-constrained” will be used throughout the thesis to refer to a problem where
the number of unknowns vastly outnumbers the number of equations/constraints and thus a solution requires
additional considerations. This is in contrast to a “simple under-constrained” problem where a solution can be
found up to some “simple” ambiguity. For example, a linear system with n unknowns and n − 1 equations has 1
parameter ambiguity whereas a system with 2n unknowns and n equations is “hopelessly under-constrained”.
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lim
|x |→∞

ϑ f (x)
ϑx = 0 (so that the influence of outliers is minimised) and the above functions have

different trade-offs in these objectives. An illustration of these different kernel functions is
shown in Figure 2.4.
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Figure 2.4 Illustration of the 5 different kernel functions with formulas given above (λ = 1 is
used for the free parameter).

Robust variational optimisation for the normal integration problem include Quéau and
Durou [150], Durou et al. [41] and finally Quéau et al. [154] who compared several robust
loss functions for the direct depth estimation problem.

2.2.2 Integration of the normal field

Section 2.2 presented the classical PS method which is able to generate a map of the surface
normal orientation N (u, v) as well as the surface albedo ρ(u, v). These surface properties are
very useful for a number of tasks (e.g. in graphics). However, in general, it is more practical
to have a 3D reconstruction. There are several ways of parameterising a 3D object. The most
straightforward way for monocular techniques like PS is a depth map, i.e z(u, v). Thus the 3D
object becomes the set of 3D points [x(u, v), y(u, v), z(u, v)] with x(u, v) = u and y(u, v) = v

assuming orthographic camera viewing.
Obtaining a depth map out of a normal map is a numerical integration problem, as the

surface normal is fully specified from the depth partial derivatives (assuming that the depth
map z(u, v) is differentiable). For orthographic projection, the depth/normal relation is:

N (u, v) ∝
[∂z(u, v)
∂u

,
∂z(u, v)
∂v

,−1
]⊺
. (2.15)

Although not always true for real surfaces (occlusion boundaries cause depth discontinu-
ities, sharp edges correspond to non-differentiable parts of the surface) it is assumed that
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the normal field follows the integrability constraint, that is ∂z(u,v)
∂u∂v =

∂z(u,v)
∂v∂u (Horn and Brooks

[66]). Substituting that into Equation 2.15 and using N (u, v) = [N1, N2, N3]
⊺ leads to:

∂(N
2

N3 )

∂u
=
∂(N

1

N3 )

∂v
. (2.16)

In practice, Equation 2.16 is never exactly satisfied for calculated normal maps, even
for points far away from discontinuities; thus recovering z from N is non-trivial. A survey
of classic and modern methods as well as extensions is found in Bähr et al. [8]. Although
modern PS methods solve for z directly, skipping the numerical integration step, a quick
overview of some baseline numerical integration methods is presented here.

First of all, the normal integration problem can be thought of as a subcategory of problems
that can be expressed as solving the Eikonal Equation, namely:

∥∇t(u, v)∥ =
1

f (u, v)
(2.17)

where t(u, v) is the unknown scalar field in question and f (u, v) is known.
One of the fastest ways of solving Equation 2.17 is the fast-marching approach introduced

in Sethian [164]. This relies on the fact that information flows outwards like a propagating
waveform; thus the function t can be propagated from a single point to the whole domain in a
wave-like function. Normal integration for Photometric Stereo was first expressed in eikonal
equation form in Ho et al. [63]. They introduced the auxiliary variables p = ∂z

∂u = −
n1

n3 and
q = ∂z

∂v = −
n2

n3 thus, ∥∇z∥ =
√

p2 + q2 is of the form of Equation 2.17 and can be solved
quickly with fast-marching.

An alternative way of numerical intergeneration using the Fourier Transform was
introduced by Frankot and Chellappa [48]. Using the p, q definitions from above and
performing differentiation, the integration problem can be expressed in the Poisson equation
form as:

∇2z(u, v) =
∂p
∂u
+
∂q
∂v
. (2.18)

Then, performing Fourier transform FT: f (u, v) → FT( f (ωu, ωv)), in both sides of Equa-
tion 2.18 and using the property that FT

( ∂ f (u)
∂u

)
= jωuFT( f (u)), the problem is transformed

as:
(ω2

u + ω
2
v)FT(z(u, v)) = jωuFT(p(u, v)) + jωvFT(q(u, v)). (2.19)
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Dividing by (ω2
u +ω

2
v) (assuming it as non-zero) and taking the inverse Fourier transform

IFT in Equation 2.19 leads to the following analytic solution for z(u, v):

z(u, v) = IFT( jωuFT(p(u, v)) + jωvFT(q(u, v))
(ω2

u + ω
2
v)

). (2.20)

We note that the division by (ω2
u + ω

2
v) becomes invalid for the zeroth frequency,

corresponding to the mean value of z. This is because every mean value of z is consistent
with Equation 2.19 and this has to be determined with some other measurement. In addition,
Equation 2.20 provides some justification for the observation that the depth maps generated
by PS methods usually suffer from low frequency deformations while keeping high accuracy
at high frequencies. This is because of the jωu

ω2
u+ω

2
v

and jωv
ω2
u+ω

2
v

terms that scale errors in lower
frequencies more than in high frequencies. Even if some other integration strategy is used
(e.g. the fast marching approach described above or even the variational solver described
in Section 3.7.7), Equation 2.19 is still approximately true and hence the inaccuracy at low
frequencies is an inherent limitation of most differential approaches.

Finally, we note that Equation 2.19 can be modified using the Discrete Cosine Transform
(DCT) as proposed by Simchony et al. [168]. This avoids the implicit assumption of periodic
boundary condition that FT introduces.

Equation 2.20 (or the equivalent DCT formulation) can be computed very quickly with
the fast Fourier transform algorithm. However, its disadvantage is that it is only applicable to
rectangular domains; applying it to a real image with an arbitrary segmentation mask will
cause severe bias from zeros in out-of-domain regions.

2.3 Shape from shading

The idea of linking photometric cues to 3D shape is older than the Woodham’s classic
Photometric Stereo paper [192]. The original observation comes from the astronomy
community with the works of Van Diggelen [182], Rindfleisch [156], who suggested using
the shading in Lunar images in order to infer the local surface height. This approach was
later formalised and generalised in Horn’s PHD thesis [67] who also suggested the term
“shape-from-shading”(SFS) and thus he is generally regarded as the founder of the field.

The classical SFS problem has a very similar formulation and set of assumptions with
those of the classical PS problem (section 2.2). The most important difference is that the input
is a single intensity image and thus the albedo has to be considered constant (or equivalently
known). Otherwise, the problem is “hopelessly ill-constrained” and any possible surface can
be a potential solution given a corresponding albedo map. However, even under the constant
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albedo assumption, the SFS constraint is not enough to uniquely specify the surface normal,
as the irradiance equation for SFS is

i(u, v) = N (u, v) · L. (2.21)

In Equation 2.21, N (u, v) is uniquely specified only in a finite set of points (called singular)
where i(u, v) = 1 and thus N (u, v) = L and for the rest of the domain there is a one parameter
ambiguity. To overcome this ambiguity, Horn [67] suggested expressing the SFS problem in
a differential form. This involves the normal parametrisation described in Section 2.2.2 using
the partial depth derivatives p, q.

i =
pl1 + ql2 − l3√

p2 + q2 + 1
⇐⇒ i

√
|∇z |2 + 1 + [l1, l2] · ∇z − l3 = 0 (2.22)

where [l1, l2, l3]⊺ is the light source vector.
A very common subcategory of Equation 2.22 is to assume a frontal light source at infinity

[0, 0, 1], thus the SFS problem reduces to |∇z | =
√

1
i2 − 1 which is the Eikonal equation

form (Equation 2.17). [67]’s solution to the SFS problem included the characteristic strip
expansion method: this involves re-writing the non-linear PDE as a system of five linear first
order ODEs for the variables u(t) = x(t), v(t) = y(t) (orthographic projection), z(t), p(t) and
q(t), where t is the parameterisation of the characteristic lines. Thus the problem has a unique
solution assuming that all of these five variables have continuous derivatives which translates
to C2 continuity3 for the original surface. In addition, the value of all variables is needed
at the boundaries (Dirichlet boundary condition) which translates to also knowing the first
order partial derivatives (Neumann boundary condition) for the original surface. In addition,
Oliensis [137] proved that this solution is unique, whereas the theoretical number of solutions
for the general Equation 2.22 is unknown. However, if the above C2 continuity assumption is
violated, the surface exhibits convex/concave ambiguity as demonstrated in Figure 2.5.

There is extensive literature on SFS with the surveys by Zhang et al. [208], Durou et al.
[40] summarising most classical results. Here, three classical methods are presented. The first
method is by Kimmel and Bruckstein [88] and involves realising that SFS specifies the rate
of change of height perpendicular to the level-sets (i.e the gradient direction which is exactly
what the geometric meaning of the Eikonal equation is). Thus they pose the SFS problem
as a PDE on the parametrisation of level-set curves and this allows their refinement starting
from an initial estimate. Daniel and Durou [35] proposed a global error function using the
irradiance equation as well as the integrability constraint and subsequently minimised it with

3First and second order derivatives have to be continuous .
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Figure 2.5 Demonstration of the convex/concave ambiguity: on the left there is a purely
convex surface and on the right a family of convex/concave surfaces that will produce identical
shading under vertical uniform illumination. The physical reason for this ambiguity is the
fact that the SFS constraint specifies only the angle of the surface normal (marked θ here)
with the lighting vector and thus there is a family of valid solutions.

gradient descent. Finally, Ping-Sing and Shah [147] linearised the non-linear denominator
using a first order Taylor expansion and then subsequently linearised derivatives using finite
differences to obtain a linear system. They proceeded to solve that using the Jacobi method
since a direct solution was computationally impossible back then.

Finally, more recently, a number of works have fused shading information with other
3D reconstruction techniques, as the increased amount of information helps to overcome
the inherent ambiguities of SFS. Jin et al. in [77, 76] proposed a multi-view SFS method
which extended multi-view stereo and shape from shading, and involved a unified variational
optimisation that fuses data from multiple images in a single system. In addition, other
approaches have combined SFS with data from active depth sensors, including Wu et al. [198],
Maier et al. [111] which refine depth maps fused into a signed distance field parametrisation
(see Chapter 6) as well as Haefner et al. [54] which complements the SFS ambiguity with the
depth super-resolution ambiguity in order to derive a well-posed problem.

2.4 Deep learning for Photometric Stereo

As deep learning approaches have recently become very popular in the computer vision
community, dominating the vast majority of published papers and offering state-of-the-art
results in a lot of problems even including geometry, they are worth mentioning. Most of
the challenges in Photometric Stereo come from the difficulty of inverting non-linear and
complex BRDFs (see Section 1.4.3). Therefore, deep learning seems like an obvious way to
go as it is known to be able to approximate highly non-linear mappings. However, regressing
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very dense and accurate depth maps is not a trivial task, although some recent approaches
have had moderate success for example Eigen et al. [42], Garg et al. [50], Kendall et al. [86] .
Nonetheless, these approaches have mostly aimed at very specific tasks, such as road scenes,
due to availability of very detailed datasets for training and testing (e.g. KITTI [123]), and
extending them so as to be able to handle arbitrary objects, is far from trivial.

There are some Deep Learning approaches for PS that are able to predict normal maps
under the assumption of directional uniform lighting and no Lamberian reflection Santo
et al. [158]. Also Chen et al. [27] very recently extended the approach to the uncalibrated
scenario, where the directional lighting is unknown. These approaches rely on generating
high quality synthetic data for training since training on real data is practically impossible
due to the fact that most other 3D reconstruction methods give less accurate results than
Photometric Stereo, and thus are unsuitable for generating training data or reliable ground
truths (e.g see comparison with MVS and laser in Figure 1.3). However, extending these
approaches to the more interesting near field scenario has not yet been achieved. One of the
main difficulties is the fact that non-linear light attenuation from point light sources makes the
translational invariance property of convolutional neural networks irrelevant. To overcome
this limitation, the training data should probably include point light sources covering the
whole 3D volume, all of which requires a much more extensive data set which also comes
with more computational requirements.



Chapter 3

Theoretical framework

In this chapter, the basis of several modern Photometric Stereo approaches is presented. It
consists of a differential framework where the key notion is that the surface normal can be
expressed as a function of the depth gradient. This change of variables poses the PS problem
as a system of PDEs with the depth being the unknown. This formulation allows for direct
depth computation essentially bypassing the numerical integration of the normal field step
presented in Section 2.2.2. The chapter begins with a presentation of the differential approach
to the simple classic PS problem (see Section 2.2) with all the respective assumptions. The
necessary steps in order to overcome these limitations and deal with increasingly realistic
situations, are then discussed.

Finally, solutions to the PDEs arising through the PS problem are explained, including a
simple fast marching approach (Section 3.6), a least-squares variational solver (Section 3.7)
and finally an ADMM-based robust solver in Section 3.7.4.

3.1 Differential approaches to Photometric Stereo

The idea of expressing the shading problem in differential form is older than the PS problem
as this was the default way to deal with the shape-from-shading situation (see Section 2.3).
First of all, the differential normal parameterisation of Equation 2.15 is substituted into the
classic PS image irradiance Equation 2.11 and gives (by ignoring the dependence on u, v for
clarity as well as using the aliases ∂z

∂u = zu and ∂z
∂v = zv):

i j = ρ[zu, zv,−1]
⊺
· L j) = ρ

l
1
j zu + l

2
j zv − l

3
j√

z2
u + z2

v + 1
. (3.1)
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Equation 3.1 closely resembles the SFS differential Equation 2.22 with the additional unknown
albedo ρ.

Solving the system of equations 3.1 (one for each image j) is not straightforward because
of the non-linear dependence on the derivatives, as well as the dependence on the albedo
ρ. The only method that has attempted to solve it directly has been the very recent Radow
et al. [155] employing matrix differential calculus and the inertial proximal optimisation
strategy (Ochs et al. [135]) . Still, the method of [155] is only applicable under the classic PS
assumptions and does not trivially extend to more realistic situations. Instead, a number of
methods have been proposed to simplify this non-linear PDE system and many of them are
reliant on the idea of photometric ratios.

3.2 The image ratio method

The idea to consider image ratios first appeared in Davis and Soderblom [36], in order to
eliminate the dependence on albedo on planetary images. The method of the image ratios
was also used for binocular stereo matching (Wolff and Angelopoulou [191]), PS and stereo
fusion (Lee and Kuo [97]) and it was also used to show that for any two images there is
always an object and two lighting conditions consistent with these images (Jacobs et al. [75]).
Alldrin and Kriegman [5] and Chandraker et al. [25] used photometric ratios in order to get
invariants for surfaces with arbitrary reflectance. Finally, ratio-based photometric invariants
were used to increase robustness in shadows and other imperfections in Wu et al. [200] and
Mecca et al. [122].

Linearising the differential form of PS The importance of photometric ratios lies in their
ability to simplify the differential formulation of PS (Equation 3.1) as proposed in Mecca and
Durou [114] and Mecca and Falcone [115]. Indeed, they consider the ratio of Equations 3.1
for images i j and ik that eliminates the unknown albedo ρ as well as the square root at the
denominator giving:

i j

ik
=

l
1
j zu + l

2
j zv − l

3
j

l
1
k zu + l

2
k zv − l

3
k

. (3.2)

We note that the ratio operation is mathematically valid assuming i j, ik > 0 and ρ > 0
and N (u, v) · L j,k > 0. This is the case for all pixels inside the image domain for which the
irradiance equation is valid. This assumption breaks down at cast shadows and at points
with zero reflectance ρ = 0. Avoiding these points is a numerical issue that is discussed in
Section 3.5.1.
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For now, re-arranging Equation 3.2, gives the following linear partial differential equation:

zu(i j l
1
k − ik l

1
j ) + zv(i j l

2
k − ik l

2
j ) = (i j l

3
k − ik l

3
j ) (3.3)

⇓

b · ∇z = s (3.4)

with
b = [i j l

1
k − ik l

1
j, i j l

2
k − ik l2

j ]
⊺ , s = i j l

3
k − ik l

3
j (3.5)

being a vector and a scalar field only dependent on the image data. As it turns out (this is
implied from Theorem 3.6.1), b , 0 and thus if z is known at the boundary of the image
domain, its value can be propagated to the entire domain by following the characteristic
field (i.e the vector field b). In addition, the need for boundary conditions is eliminated by
assuming at least another image q; then another version of Equation 3.3 exists, for image pair
j, q.

More details about solving this linear PDE will be presented in Section 3.6. For now, it
will be discussed how the above presented approach can be extended to model more realistic
effects that violate classic PS assumptions.

3.3 Near field

This section describes how the differential approach for the classic PS problem presented
in Section 3.2 can be extended to model near field effects. Near field in this context means
to assume the following two violations to the classic PS assumptions (Section 2.2): firstly,
we assume that the scene is so close to the camera that the orthographic projection model
becomes invalid and perspective projection applies. Secondly, and more importantly, under a
near field scenario, the illumination cannot be assumed parallel and uniform; this is mostly
applicable in practical systems using LEDs as light sources which result in the point light
source assumption.

3.3.1 Camera model

Perspective viewing geometry for photometric 3D-reconstruction was introduced by Horn
[68], then used by Bruckstein [22], and later developed in a comparable manner by Tankus
and Kiryati [174], Prados and Faugeras [148] and Durou and his co-workers [20, 33]. An
influential work by Papadhimitri and Favaro [142] introduced a new parameterisation in
order to deal with the uncalibrated PS problem (see section 5.2.1). The reason why this
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parameterisation is very useful is because it extends the perspective viewing projection to
that of orthographic projection by simply making the focal length tend to infinity. More
specifically, the corresponding real world 3D point (x, y, z) of the image point u, v with depth
z, is given in Equation 3.6:

  

zf

x

(x,y,z)

u

(0,0,-f) (0,0,0)

Figure 3.1 Perspective projection parameterisation as introduced by Papadhimitri and Favaro
[142]. The key insight gained is placing the origin on the camera plane instead of the camera
center, which had been the case in MVS literature (Harltey and Zisserman [56]). Thus the
parametrisation is well defined for lim f→∞ and models the orthographic projection.

[u, v](x, y, z) = Π(x, y, z) =
[

f x
z + f

,
f y

z + f

]
(3.6)

or equivalently

x(u, v) =
u
(
z(u, v) + f

)
f

y(u, v) =
v
(
z(u, v) + f

)
f

. (3.7)

It has to be noted that this parameterisation is slightly different to the one found in Harltey
and Zisserman [56], which is widely used in MVS literature. The difference lies in that the
origin from the camera center is moved to its projection at the camera plane. This adds the
+ f factor at the numerator and ensures that lim f→∞ x(u, v) = u and lim f→∞ y(u, v) = v, and
thus corresponds to orthographic camera parameterisation.

According to this parameterisation, the direction of the outgoing normal to the surface is
given by:

N (u, v)∝
[
∇z(u, v),−

f +z(u, v)
f

−
(u, v)·∇z(u, v)

f

]⊺
(3.8)

where the derivatives of z are considered in the image plane coordinates, and are denoted in
the following ∇z(u, v) =

[
∂z
∂u (u, v),

∂z
∂v (u, v)

]
.
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Not surprisingly, this parameterisation collapses to the standard parameterisation of the
classic PS (Equation 2.15) for infinite focal length:

lim
f→∞

N (u, v) ∝ [∇z(u, v),−1]⊺ . (3.9)

The introduction of perspective projection makes several aspects of the PS modelling
harder to handle analytically: for example r1 =

N1

N3 =
− f zu

f+z+uzu+vzv
and r2 =

N2

N3 =
− f zv

f+z+uzu+vzv
so the normal integration (see Section 2.2.2) is not straightforward due to the non-linear
dependence on z. This specific nonlinearity can be avoided by using the substitution
g = log(z + f ) ([142, 120]) and so gx =

zu
z+ f =

−r1
f+ur1+vr2

and gv =
zv

z+ f =
−r2

f+ur1+vr2
are

independent of the unknown g and thus standard integration methods (e.g Frankot and
Chellappa [48]) can be used.

3.3.2 Nearby light sources

Starting from some initial works dealing with uniform and directional lighting assumptions,
light propagation models have been extended to consider more general lighting conditions.
This is very important as in practice it is rather hard to create uniform directional lighting in
a lab setting; LEDs that are more closely related to ideal point light sources are commonly
used and thus light attenuation needs to be modelled. This means that the further away a
point is from the light source, the less light it receives, usually in an inverse square law.

A noteworthy exception to the impracticality of uniform directional illumination is a
class of PS methods that perform outdoors PS, using the sun as a light source (which is far
away enough for the illumination to be parallel). Shen et al. [166] showed that, contrary to
common belief, the sun path in the sky actually deviates from simple planar motion and so the
corresponding linear system is full rank and thus solvable. Abrams et al. [1] maximised the
photometric parallax by collecting data over a period of a few weeks and Hold-Geoffroy et al.
[64] observed that the sun’s partial occlusion from clouds leads to a mean lighting which
constantly varies, thus eliminating the need for acquisitions over long time periods.

The idea of using point light sources for PS was introduced by Iwahori et al. [74] and later
adopted by Clark [30]. Iwahori et al. [74] expressed light attenuation in terms of unknown
depth and proceeded to solve the non-linear equation per pixel. More recently, Migita
et al. [124] proposed a non-linear optimisation framework closely resembling the “bundle
adjustments” optimisation procedure for structure-from-motion problems and Papadhimitri
and Favaro also extended their near field parameterisation (see Section 3.3.1) to deal with point
light sources in [143]. Xie et al. [201] suggested incremental steps from fully orthographic
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assumptions to a perspective near field context in order to provide accurate reconstruction
according to specific mesh deformations.

An intermediate situation between point light sources and fully uniform illumination is the
approach of Clark [31] using a flat LCD display which illuminates with different pre-defined
patterns. Another approach is that of Hung et al. [70] who used a mirror sphere configuration
to capture complex environment lighting without modelling it explicitly. Any alteration in
the environment, which is not restricted to the dominant light source, can be used to produce
photometric parallax. However, this method relies heavily on the assumption that all the light
sources are directional.

Finally, Liu et al. [101] recently parameterised the surface with a triangle mesh, expressing
everything in terms of the vertex positions using a circular ring of light sources to get to a
relatively simple optimisation. In addition, they calibrated the light source positions through
their reflection on a flat LCD display. Quéau et al. [149] provided an extensive survey of
methods to deal with LED light sources and also proposed an alternating optimisation for the
semi-calibrated PS problem (see Chapter 5 for an explanation and comparison).

Analytic modelling In order to have a near-lighting parameterisation suitable for the
algebraic manipulation of equations, the approach of Mecca et al. [121] is followed. This
involves modelling two effects: variable lighting direction and illumination intensity for all
pixels on the image domain. To consider these effects, an important quantity is the lighting
vector field L(u, v), which now depends on the surface depth and is defined in Equation 3.10,
in terms of the light source position S j :

L j(u, v) = S j − X(u, v). (3.10)

More specifically, for a point X(u, v) = [x, y, z]⊺(u, v) in 3D space, the radiant flux is
attenuated due to distance. This attenuation factor ad is then:

ad =
1

∥L(u, v)∥2
. (3.11)

This radial attenuation introduces another term into the image irradiance equation and adds
more non-linearities. Thus, resolving the problem requires an iterative procedure which is
discussed in Section 3.7.6).
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3.3.3 Angular anisotropy

It is very common for most LED light sources to exhibit angular anisotropy. This means
that one “principal direction” receives maximum illumination and other directions receive
less. More specifically, this attenuation factor is dependent on the principal direction of light
source j, P j and the angle between that and the lighting vector, so P j · L j(u, v). In general,
the anisotropy factor aang is a general function aang(P j · L j(u, v)) dependent on the type of
the source and usually calibrated by manufacturers, under the form of luminous intensity
diagrams. A good approximation for many commercial LEDs (Quéau et al. [149]) is the
imperfect Lambertian primary source model, which equals to:

aang(u, v) j = (P j · L j(u, v))µ (3.12)

where µ ≥ 0 is the anisotropy factor. Isotropic sources are obtained by setting µ = 0, while
stronger anisotropy effects are modelled by increasing the value of µ.

3.3.4 Overall attenuation

Finally, the intrinsic brightness of the light source is represented by a single scalar ϕ j . This
can be measured with a LUX meter or approximately computed (see Chapter 5).

Combining both attenuation factors from Equations 3.11 and 3.12, the following general
attenuation factor is:

a j(u, v) = ϕ jadaang = ϕ j
(P j · L j(u, v))µ

∥L j(u, v)∥2
. (3.13)

3.4 Photometric Stereo for specular surfaces

Most of the PS approaches have dealt with purely diffuse reflectance (Lambertian surfaces).
However no real material is purely diffuse1 and thus this limits the applicability of the PS
method. A very common strategy is to deal with specular highlights as sparse outliers and
follow a robust estimation method (see Section 2.2.1). However, a number of approaches
have attempted to leverage the information contained in the specular reflection instead of
simply ignore it.

1In fact, highly diffuse commercial paints are available at a high cost, for example the barium sulphate
(BaSO4) coating from http://www.pro-lite.co.uk/File/barium_sulphate_coating.php claiming 98%
diffuse reflectance costs hundreds of pounds per litre.

http://www.pro-lite.co.uk/File/barium_sulphate_coating.php
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3.4.1 Earlier works

One of the earliest approaches to PS for specular surfaces is Ikeuchi [73] who introduced
a smoothness prior on the surface along with the use of a lookup table, thereby limiting
the approach to some specific industrial applications. Nayar et al. [128] modelled specular
reflection with a Dirac delta function and used a spherical diffuser to get an extended light
source setup in order for the irradiance equation to have a simple form. Wolff [190] proposed
a reflectance model for combined diffuse and specular reflections from dielectric materials.
Since the modelling involved purely physical parameters in terms of the Fresnel coefficients
and the Dirac delta function, the results achieved can be considered mostly theoretical rather
than actually being applicable for shape reconstruction. Goldman et al. [53] described the
irradiance equation as a weighted sum of fundamental diffuse and specular materials (using
the Ward [186] model), and solved it iteratively using non-linear least squares. Georghiades
[51] proposed an iterative optimisation method over a very large set of variables, using the
Torrance and Sparrow reflectance model for the uncalibrated PS problem (see Section 5.2.1).
Chung and Jia [29] adopted a two-step optimisation to estimate the normals and all reflectance
parameters. In the first step, occluding boundaries (which had been detected through shadows)
were used to find points with a known surface normal. These recovered normals played a key
role in estimating the global reflectance parameters according to the Ward BRDF . In the
second step, with the reduced number of unknowns, a robust iterative optimisation process
was applied, estimating the surface normals and the diffuse albedo for all surface points.

A special mention goes to a few methods that deal with specular surfaces indirectly.
Johnson et al. [80, 81] developed an elastomer that is attached to the surface to change its
BRDF to Lambertian so standard PS is applicable. Hertzmann and Seitz [61] removed the
need for an explicit BRDF model by comparing object images with images of reference objects.
Thus the PS problem is posed as a matching problem and machinery from the binocular stereo
literature can be used. Barsky and Petrou [10] detected and removed specular highlights
by observing differences in the chromaticity. Alldrin and Kriegman [5], overcame standard
reflectance assumptions by exploiting the bilateral symmetry of real BRDFs (“Helmholtz
reciprocity”, see Section 2.1) in a specific lighting setup. Chandraker et al. [24] followed a
similar procedure to get photometric invariants from temporal derivatives for a surface with
an isotropic BRDF and light source movement on a circle. Hyeongwoo et al. [71] separated
diffuse and specular components of images using the “Dark channel” of the image (defined as
the minimum of all colour channels at the neighbourhood of a pixel). Finally, Yang and Ahuja
[202] introduced a PS method for estimating diffuse reflection and surface normals from
color images. Using a dichromatic reflection model, they considered surface chromaticity as
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a matching invariant for PS assuming that at least one of the color images corresponded to
diffuse reflection.

3.4.2 Unifying diffuse and specular reflection in a single term BRDF

Despite the extensive literature that deals with specular surfaces, most methods described
above are not suitable to embed in a differential parameterisation and be analytically handled.
As seen in section 2.1, there are multiple analytical light reflection models which can
approximate real BRDFs and be handled analytically. In addition, single term BRDFs are
highly desirable as this allows for the ratio method (Section 3.2) to be used. Thus, Mecca and
Quéau [117] introduced the following BRDF, aiming to unify Lambertian and Blinn-Phong
in a single term:

i =
(
N ·W (L,V )

) 1
c
. (3.14)

In Equation 3.14, W is the weighted half vector defined as:

W = L +min
{
1,
|1 − c |
ε

}
V . (3.15)

Here ε is a parameter describing the material of the surface, allowing the combination of
diffuse and specular reflectance by taking into account the continuous transition state between
the diffuse and specular component. Equation 3.14 can be used to deal with surfaces made
by heterogeneous materials depending on c and ε:

• by choosing c = 1, W = L and so we obtain purely Lambertian reflection;

• by setting 0 < c ≤ 1 − ε, W = H leading to purely specular Blinn-Phong reflectance,
where the size of the specular lobes depend on the value of c;

• the choice 1 − ε < c < 1 provides a transition state between the diffuse and specular
component;

• spatially-varying reflectances can be modelled by using the space dependency of c.

The most similar approach to that presented here is that of Tozza et al. [177] as they write
a PDE, mixing the PDEs generated using the ratio method with diffuse and Blinn-Phong
specular terms.

Despite being empirical, the reflectance model presented above unifies diffuse and specular
reflection in a single term, thus making the ratio method still applicable (as explained in
depth in Section 3.5). However, the subsequent question that naturally arises is the ability
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BP (ρs = ρd) BP (ρs = 4ρd) CT (ρs = ρd) CT (ρs = 4ρd)

MAE=10.6o MAE=19.9o MAE=14.5o MAE=23.2o

Figure 3.2 Evaluation of the proposed method (based on the irradiance Equation 3.14) on
synthetic data rendered with various reflection models. Top row: 1 sample image for each
dataset. The specular reflection model is Blinn–Phong (BP) for two datasets on the left and
Cook & Torrence (CT) for the datasets on the right (see Section 2.1.2 for reflection models).
Middle row: normal error maps compared to the ground truth (in degrees). Bottom row: 3D
reconstructions. It is noted that the proposed irradiance model performs adequately at data
rendered with more standard (in graphics literature) reflection models.

of this BRDF to model more complex reflections. In Mecca et al. [118] this was verified
experimentally as shown in Figure 3.2. These experiments consider synthetic images rendered
with a 2 term irradiance equation i = ρsis + ρdid , where ρs and ρd are specular and diffuse
albedos respectively (and ρs + ρd = 1) and is and id are specular and diffuse reflection
components. For is, two cases are considered: standard Blinn-Phong and Cook & Torrence
(for details see Section 2.1.2). As seen in Figure 3.2, the proposed BRDF performs adequately
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for data rendered with two term BRDFs, as well as for data created using the more realistic
Cook and Torrence BRDF.

3.5 The unified equation

Having discussed modelling strategies for near-field effects in Section 3.4 and non-Lambertian
reflection in Section 3.4, this section uses the image ratio method explained in Section 3.2 in
order to derive a PDE describing the PS problem. Therefore, the overall irradiance equation
for image j is:

i j(u, v) = ρ(u, v)a j(u, v, z(u, v))
(
N (u, v, z(u, v)) ·W j(u, v, z(u, v), c)

) 1
c(u,v) (3.16)

Raising both sides of Equation 3.14 to the power of c and then considering the ratio of
equations for images j and k gives:

i j(u, v)c(u,v)

ik(u, v)c(u,v)
=

a j(u, v, z(u, v))c(x,y)N (u, v, z(u, v)) ·W j(u, v, z(u, v), c)

ak(u, v, z(u, v))c(u,v)N (u, v, z(u, v)) ·W k(u, v, z(u, v), c)
. (3.17)

Expanding out Equation 3.17 and substituting the parameterisation of the normal from
Equation 3.8, after some algebra, gives the following equation:

b j k(u, v, z(u, v), c(u, v)) · ∇z(u, v) = s j k(u, v, z(u, v), c(u, v)). (3.18)

where (ignoring some dependencies for better readability):

b j k =
[ (

aki j
)c

(
W

1
k −

u
f

W
3
k

)
−

(
a jik

)c
(
W

1
j−

u
f

W
3
j

)
,(

aki j
)c

(
W

2
k −

v

f
W

3
k

)
−

(
a jik

)c
(
W

2
j−

v

f
W

3
j

)]⊺
(3.19)

and
s j k =

f + z
f

( (
aki j

)c W
3
k −

(
a jik

)c W
3
j

)
. (3.20)

Equation 3.18 will be referred to from now on as the unified equation. This is a quasi-linear,
first order PDE, meaning that it is linear in terms of the gradient of ∇z but it has a non-linear
dependence on z, mostly because of the light propagation and attenuation terms. We note
that this is a generalisation of Equation 3.3.
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Colored scenes and materials As remarked by Quéau et al. [152], color images are
automatically handled with the framework presented above: since each color channel provides
one unifying equation, they can be stacked in the same way as above. This is another
remarkable result since there is no need to assume that either the source or the material (e.g.
Brostow et al. [21]) is monochromatic or piece-wise monochromatic (e.g. Anderson et al.
[6]). This assumption is usually introduced because it is impossible to separate the colored
light intensity from the colored albedo. Since this formulation is independent of the albedo,
only the directions and intensities of the lights have to be explicitly considered.

3.5.1 Missing data

If for some pixels and in some images the image data are clearly unreliable, for example
because of the pixel value being saturated or completely black (due to the quantisation of
image data, usually in 10 bits, any irradiance value smaller than 1/1024 of the maximum
will lead to a 0 pixel value), the following equations can be ignored in order to minimise
the potential number of outliers. In addition, if for some point all the data are missing (for
example because of zero albedo which means that no light is reflected), we can assume that

the surface is flat, i.e.

[
1 0
0 1

]
∇z =

[
0
0

]
. This post-processing step of the calculated b j k , s j k

fields will perform “hole-filling” in this zone and ensure numerical stability. Note that this
procedure is conceptually similar to a regularisation step proposed by Hernández et al. [60]
in order to overcome regions with shadows (that act as missing data).

3.5.2 Image ratio criticism

After having introduced the image ratio method and having described how it can be used to
simplify the PS formulation to lead to an albedo independent quasi-linear PDE, it is worth
noting its main drawbacks. That is that the algebraic error in the equations has no physical
meaning, as it does not directly map to an error in the image irradiance equation.

For someone familiar with the SFM literature, this may seem like a very big problem.
Indeed in [56], minimising the image re-projection error for solving the SFM problem is
referred to as “The Gold Standard algorithm” and the literature almost universally solves
“bundle-adjustment” type problems, where camera positions and points are optimised through
non-linear minimisation of the re-projection error (for recent results see Hong [65]).

However, the situation is different in PS, as image irradiance equations do not really
model the real image formation process in the same level as projection of SFM points.
To make matters worse, virtually every piece of literature including this thesis assumes a
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simplified lighting model (see Section 2.1.2), and thus the importance of the re-projection
error is minimised. In addition, virtually every realistic scene would have some outlier
points (shadows, depth discontinuities), which degrade the importance of the re-projection
error even more. In sort, even a ground truth surface reconstruction will not have a zero
re-projection error.

Another theoretical disadvantage of the ratio method is that it could potentially lead to
numerical instabilities. Indeed, as ratios are numerically unstable for very small numbers,
pixels where the image value is small should be avoided as described in Section 3.5.1. This
is somewhat alleviated by the fact that pixel value ratios are never actually computed, instead
the b is calculated by expanding out the relevant equations, and thus is proportional to image
intensity i. Therefore in a very low albedo region with i j ≈ ik ≈ 0, the fundamental equation
reduces to 0 = 0 which is meaningless but unlikely to bias the solution in other, better
constrained, data points.

Finally, it is noted that the ratio method drastically alters the noise distribution. For
example, even if the noise in the original images is assumed to follows a Gaussian distribution
(which is never really true), their ratio follows a Cauchy distribution (Pham-Gia et al. [145]),
which is much harder to do exact inference for. This in practice means that least-square based
estimators are expected to be suboptimal, stressing out the need for more robust loss functions
(see Section 3.7.4).

3.6 Solving the unified equation

In this section an approach for solving the PS problem expressed by the quasi-linear PDE
3.18 is presented. First of all, two important theorems (see Appendix A.1 for the proofs),
are presented which establish the fact that the problem is well-posed and the solution can be
obtained through a fast-marching scheme.

Theorem 3.6.1 Let b j k(u, v, z(u, v)) be the vector field of (3.19) for image pair ( j, k). Then:

∥b j k(u, v, z(u, v))∥ > 0. (3.21)

Theorem 3.6.1 guarantees that the differential formulation is meaningful at all points in
the domain. In addition, it is also true that two different pairs of images in a general tree light
source setting lead to linearly independent b fields:

Theorem 3.6.2 For light sources j,k and q, such as rank([W j,Wk,Wq]) = 3, the vector
fields b j k(u, v, z(u, v)) and b jq(u, v, z(u, v)) are linearly independent.
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In Theorem 3.6.2, the rank constraint condition is easily satisfied in practice for all surface
points in front of the capture setup of Figure 1.5. An example of a corner case is a point with
Lambertian reflectance (hence c = 1 and thus W = L) that is on the same plane as the light
sources; however this is completely impractical as a point like that would be out of the field
of view of the camera.

The importance of Theorem 3.6.2 is that it establishes a fast-marching propagation scheme
which is the natural/naive way of numerically solving the system of PDEs.

  

[u,v] [u+1,v]

[u,v-1]

[u,v+1]

[u-1,v]

bjk

bjq

Figure 3.3 Intuitive representation of the naive fast marching way of solving the unified
equation. For different pairs of images, the respective b vectors are linearly independent and
thus span the 2D space (marked red and blue here). Thus the z value can be propagated from
a single point to its neighbours and applying this procedure recursively fills the whole image
domain.

We first start with the simple case of classic PS assumptions thus the unified Equation
3.23 collapses to Equation 3.3, i.e. the vector field b and scalar field s are independent of z
and can be calculated from image data (using the known lighting vectors). To proceed with a
solution on a pixel grid, the gradient operator is discretised as:

∇z(u, v) =

[
∂z(u,v)
∂u
∂z(u,v)
∂v

]
=

[
z(u + 1, v) − z(u, v)
z(u, v + 1) − z(u, v)

]
(3.22)

where the first order forward differences are used and the distance between neighbouring pixels
is 1. Note that for points in the boundary which are missing forward neighbours, backward
differences are required but the linear form is essentially the same. Thus, substituting into
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Equation 3.18 leads to:

b1
j k(u, v)

(
z(u + 1, v) − z(u, v)

)
+ b2

j k(u, v)
(
z(u, v + 1) − z(u, v)

)
= s j k(u, v) (3.23)

⇓

b1
j k z(u + 1, v) + b2

j k z(u, v + 1) = s j k + z(u, v)
(
b1

j k + b2
j k

)
(3.24)

where in Equation 3.24 the dependency of b1
j k , b2

j k and s j k on (u, v) is ignored for readability.
It is important to stress that this first order approximation is dependent on continuity for b
and s. A slightly more accurate approximation can be obtained by linearly interpolating b, s
for the differences. In other words, in Equation 3.24 set:

b1
j k =

b1
j k(u + 1, v) + b1

j k(u, v)

2
(3.25)

b2
j k =

b2
j k(u, v + 1) + b2

j k(u, v)

2
(3.26)

s j k =
s j k(u + 1, v) + s j k(u, v + 1) + s j k(u, v)

3
. (3.27)

The fast marching update formula arises if we consider another pair of images (which can
be j,q in the theoretical minimum case of 3 images) and then stack them into a system:[

b1
j k b2

j k

b1
jqb2

jq

] [
z(u + 1, v)
z(u, v + 1)

]
=


s j k + z(u, v)

(
b1

j k + b2
j k

)
s jq + z(u, v)

(
b1

jq + b2
jq

) . (3.28)

As Theorem 3.6.2 guarantees, the system matrix is invertible and thus z(u + 1, v) ,
z(u, v + 1) can be determined from z(u, v). Thus using a similar procedure with backwards
finite differences, z can be propagated from a single point (u0, v0) to the entirety of a connected
domain, as illustrated in Figure 3.3. This leaves a single parameter ambiguity for the solution
(the value z(u0, v0)) which is essentially an “integration constant”. In case p > 2 images,
one could stack all

(p
2
)

image pairs of equations and perform a least squares solution in
Equation 3.28. As this would be computationally expensive, Mecca et al. [119] use the
following heuristic: they select images with the highest grayscale value at pixel.

Near field Assuming nearby light sources, the unified PDE is quasi-linear and so b non-
linearly depends on z making the interpolation of Equations 3.25 to 3.27 impossible to
compute. Thus, the solution has to use the update formula from Equations 3.24; therefore the
scheme is absolutely critically dependent on continuity in z. Thus, the propagation is expected
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to perform very poorly around occlusion boundaries and this is verified experimentally in
Figure 3.4.

Specular reflection We note that the procedure explained above is applicable for any value
of specularity parameter c, which can also vary in the image domain i.e. c(u, v). However,
this propagation scheme provides no trivial way of estimating this parameter. This limitation
is resolved by the usage of a variational optimisation presented in the next section.

3.7 Variational optimisation framework

The main limitation of the fast-marching approach described above is that the flow of
information from one point to the rest of the domain is sensitive to noise. In addition, a severe
outlier such as a shadow, can cause systematic error propagation. The way to overcome this
issue is to use a variational optimisation which optimises z for all pixels simultaneously.
This idea dates back to Horn and Brooks [66]. There is a great deal of theoretical work on
the calculus of variation with the most relevant results in Mecca et al. [118]. However, it
is important to mention that to tackle this differential formulation, at the end of the day the
problem has to be discretised and solved on a pixel grid. Thus a discretise first and then solve
strategy is used. Indeed as noted in several works (e.g. Smith and Fang [169] and Bähr et al.
[8]), clever discretisation of the derivative operations can lead to a global linear equation.
The neighbouring information between different pixels is encoded as a sparse neighbouring
matrix. The solution of this variation problem is analogous to propagating information from
all points to all directions at the same time. Hence the solution is much more robust to noise
and outliers as shown in Figure 3.4. This experiment considers the half CT, half diffuse
dataset (Column 3 in Figure 3.2) and then adds Gaussian noise or synthetic outliers. The
outliers are small black rectangles placed in different positions in different images in order
to avoid complete lack of information. Six experiments are considered with three levels of
noise and three different sizes for outliers. As expected, the proposed variational approach
outperforms the fast-marching scheme of Mecca et al. [119], as well as the robust local
method of Ikehata et al. [72]. In addition, the error propagation for [119] is very apparent in
the depth discontinuity at the bottom of the face, as well as around the synthetic outliers.

3.7.1 Discretisation

This section describes the discretisation strategy that can approximate derivatives on any
connected domain (not required to be rectangular) using first order forward or backward
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Figure 3.4 Comparison of the proposed variational solver (introduced in Mecca et al. [118])
with the fast-marching approach of Mecca et al. [119] as well as the robust local method of
Ikehata et al. [72]. The experiments include synthetic images rendered with the Cook &
Torrance model (third column of Figure 3.2) with the addition of Gaussian noise or outliers.
Each column corresponds to a different experiment with the first row showing a typical image
sample per experiment. Rows 2-4 show the evaluation of these methods on these experiments
as a normal error map compared with the ground truth (in degrees, error bar at top left). It is
observed that the proposed variational optimisation is outperforming all other approaches in
all experiments. In addition, the error of the proposed method is barely increasing with the
level of noise or outliers and this fact demonstrates its robustness.

differences. More precisely, if Z is the vector of all the depth values in the image domain,
then:

∂Z

∂u
= GuZ ,

∂Z

∂v
= GvZ (3.29)
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where Gu and Gv are sparse matrices with −1 and 1 on the non-zero entries. This is similar
to the discretisation in Equation 3.22 but is now applied to the whole image domain at the
same time and expressed in matrix-vector form. The sparsity pattern of Gu and Gv is better
explained by looking at Figure 3.5

1 2
3 4 5

6 7 8

(a) Simple domain.

Gu =



−1 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 −1 1


Gv =



−1 0 0 1 0 0 0 0
0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 −1 0 1 0
0 0 0 −1 0 1 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0


(b) Gradient Matrices

Figure 3.5 Discretisation of a simple domain (a) and the respective gradient matrices (b).

Figure 3.5 shows a simple domain and the respective gradient matrices. Points on the
boundary may have zero for one of the derivatives. To better express the sparsity pattern of
these gradient matrices, the following notation is used: a sparse matrix As is written as triples
of row, column, value, i.e As = sparse(R,C,V ). Defining Ic = [1, . . . , p]⊺ the index vector for
rows, Iup and2 Ium and Ivp and Ivm the index for plus and minus terms for u and v derivatives

respectively, then Gu = sparse
( [

Ic

Ic

]
,

[
Iup

Ium

]
,

[
1p

−1p

] )
and Gv = sparse

( [
Ic

Ic

]
,

[
Ivp

Ivm

]
,

[
1p

−1P

] )
where 1p is a vector of size p containing just ones.

Thus, the unified equation b(u, v, z)·∇z(u, v) = s(u, v, z) ↔ bu(u, v, z)zu(u, v)+bv(u, v, z)zv(u, v) =
s(u, v, z) is written in discrete matrix form as:

(BuGu + BvGv)Z = S , where Bu = diag(Bu) and Bv = diag(Bv) (3.30)

where Bu and Bv are the vectors containing the first and second components of the vector
field b(u, v) = [bu, bv]

⊺ for all pixels (u, v) in the image domain. Simply to avoid confusion
with the notation, it is emphasised that subscripts u,v denote partial derivatives for the scalar
quantity z and components for vector quantities (vectors are marked in bold, no vector
derivatives are defined anywhere in the thesis).

Finally, the n versions of Equation 3.30 are stacked making the combined system:

( 
Bu1
...

Bun

 Gu +


Bv1
...

Bvn

 Gv

)
Z =


S1
...

Sn

 (3.31)

i.e. AsZ = Bs (3.32)

2For the simple example of Figure 3.5, Iup = [2, 2, 4, 5, 5, 7, 8, 8]⊺
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For a number of pixels p inside the image domain and n equations, Equation 3.31 is pn × n
with around 4pn non-zero elements in the very sparse system matrix.

3.7.2 Least squares solution

The simplest way of solving the over-constrained linear Equation 3.32 is to minimise the
ℓ2 error, i.e. min

Z
∥AsZ − Bs∥ℓ2 .This is found by computing the normal equations which

requires multiplying both sides by the transpose of the system matrix A⊺s . This is easily
calculated by noting that all B∗ matrices are diagonal and therefore equal to their transpose
and thus commute under multiplication, hence:(( n∑

j=1
B2

u j

)
G⊺u Gu +

( n∑
j=1

Bu j Bv j

)
(G⊺u Gv + G⊺v Gu) +

( n∑
j=1

B2
v j

)
G⊺v Gv

)
Z =

G⊺u
n∑

j=1
Bu jS j + G⊺v

n∑
j=1

Bv jS j .

(3.33)

Despite the seemingly complicated analytical form of Equation 3.33, because of the
diagonal matrices inside the summations, only the quantities

∑
b2

u(u, v),
∑

bu(u, v)bv(u, v),∑
b2
v (u, v),

∑
s(u, v)bu(u, v) and

∑
s(u, v)bv(u, v) need to be calculated per pixel (with the

summations occurring for all equations 1 to n) and then assigned to the indices determined
by the sparsity pattern of gradient matrices.

More specifically, G⊺u = sparse
( [

Iup

Ium

]
,

[
Ic

Ic

]
,

[
1p

−1p

] )
and thus:

G⊺u Gu = sparse

( 
Iup

Iup

Ium

Ium


,


Iup

Ium

Iup

Iup


,


1p

−1p

−1p

1p


)

(3.34)

and the rest of the combinations are done in the same way. Hence the sparsity pattern of the
system matrix in Equation 3.33 is very predictable and so the system can be rapidly calculated
with no need for matrix multiplications. This is very important in situations where there is a
very large number of equations n and even computing the full set of fields b and s would
consume too much memory. Instead, what needs to be done, is sequentially compute b and s
and only accumulate in memory the above mentioned sums. This property of the ℓ2 solution
to drastically reduce the memory requirements will prove crucial in the multi-view solver
extension (Section 6.5), as well as in the GPU implementation application (Section 7.2.1).
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One remark about this simple ℓ2 solution is the definition of b and s in Equations 3.19
and 3.20 (the quantities of the unified PDE) implicitly leads to a weighted least squares
solution. The magnitude of b is higher for pairs of images and pixels with high photometric
parallax (difference in N ·W in two images) as well as high pixel values, although the exact
dependence is complicated. Therefore, equations which are probably more numerically stable
get a higher weighting, thus this is technically a weighted least squares problem.

3.7.3 Regularisation

The fast-marching approach for solving the unified PDE presented in Section 3.6 is critically
dependent on knowledge of z on a single point. This is especially true for the case of
directional lighting and orthographic camera projection, as the PDE only depends on ∇z
and not z, so there is an implicit one parameter ambiguity. This ambiguity manifests as
a rank deficient linear system in Equation 3.33, as the system matrix is expected to be
positive-semi-definite with a maximum rank of p − 1. The naive approach would be to
specify the depth at a single point (to retain the similarity with the fast marching scheme of
section 3.6) by adding the respective diagonal entry. However, in practice it is possible to
have even lower rank, for example in the case of a non-connected domain, which requires, in
theory, at least one known point per connected region of the domain.

The state-of-the-art strategy for overcoming this limitation is to use a Tikhonov regulari-
sation term introduced in Tikhonov and Arsenin [175]. This corresponds to augmenting an
additional term λ∥Z − Z0∥

2
ℓ2

to the ill-constrained problem AsZ = Bs in Equation 3.32. The
quantity Z0 is a prior for the depth and can be set to a constant (i.e. the mean depth) if no
better estimate is available (for example from MVS3).

Therefore, the overall weighted least squares solution is:

(A⊺s As + λIp×p)Z = A⊺s S + λZ0 (3.35)

where Ip × p is the identity matrix. λ controls the weight of the prior and should be relatively
small (e.g 10−5 − 10−9) to avoid biasing the solution in case of a flat prior.

Finally, it is important to point out that this regularisation scheme also excludes the
degenerate solution z(u, v) = ∞, ∀(u, v). Indeed, infinity z leads to a(u, v) = 0 and thus
Equation 3.18 reads as 0 · ∇z = 0 which is exactly satisfied as ∇z = 0. Not surprisingly, the
regularised Equation 3.35 does not suffer from this problem.

3In section 6.6, an automatic strategy for overcoming this one parameter scale ambiguity will be discussed.
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3.7.4 Robust loss function

In order to enhance robustness to non-Gaussian noise (see Section 3.5.2) and outliers such
as shadows or non-differentiable elements of the surface, it is required that a more robust
loss function instead of the simple ℓ2 is considered. It is common in literature to assume that
these outliers are sparse phenomena (see Section 2.2.1) and rely on ℓ1 optimisation [72, 150].
Contrary to the work by Ikehata et al. [72], a global ℓ1 optimization is considered, over the
whole image domain Ω and all image ratios ( j, k). Thus, we solve the discrete PS problem
of Equation 3.32 in the ℓ1 sense, by considering the following optimization problem (again
including the Tikhonov regularisation term):

min
z
| |AsZ − Bs | |ℓ1 + λ∥Z − Z0∥

2
ℓ2
. (3.36)

Solving Equation 3.36 is non-trivial. One way to do this is by using the Alternating
Direction Method of Multipliers (ADMM) (Boyd and Vandenberghe [19]). This re-writes
Equation 3.36 (using the auxiliary variable G) as:

min
Z,G
∥G∥ℓ1 + λ∥Z − Z0∥

2
ℓ2

s.t. G = AsZ − Bs

. (3.37)

Introducing the scaled dual variable4 U , problem 3.37 can be solved using the alternating
direction scheme (t is the iteration number):

Gt+1 = argmin
G
∥G∥ℓ1 + α∥G −

(
AsZ

t − Bs − U
t ) ∥2ℓ2 (3.38)

Z t+1 = argmin
Z

λ

α
∥Z − Z0∥ℓ2 + ∥AsZ −

(
Gt+1 + Bs + U

t
)
∥2ℓ2 (3.39)

U t+1 = U t + Gt+1 − ∥AsZ
t+1 − Bs∥ℓ1 (3.40)

starting from (Z0, G0,U0) = (Z0, AsZ0 − Bs, 0). This scheme can be proven to converge
from almost any descent parameter α, whose choice only affects the convergence rate.
Equation 3.39 is just a least squares Z estimation (using λα as a regularisation weight) and
can be solved as described in section 3.7.2.

Equation 3.38 actually has a closed form solution described in the following Lemma5.

Lemma 3.7.1 If X∗ = min
X
(∥X ∥ℓ1 + k ∥X − A∥2

ℓ2
), then x∗i =

{
0, if |ai | ≤

1
2k

ai −
sign(ai)

2k , if |ai | >
1
2k

4Which essentially is a generalisation of the Lagrange multiplier.
5This is usually called shrinkage or soft threshold [163, 13].
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The proof of Lemma 3.7.1 starts with the realisation that the vector components xi can be
optimised independently. This involves minimising the real function f (xi) = |xi | + k(xi − ai)

2.
Then, the absolute value can be eliminated by noting that xi and ai must have the same sign,
and then finally a simple quadratic function is minimised.

(a) ℓ2 (b) ℓ1

(c) ℓ2 MAE= 2.2o (d) ℓ1 MAE= 1.5o

Figure 3.6 Quantitative comparison of the ℓ2 vs ℓ1 solution for a simple synthetic data
experiment (Lambertian reflection/6 images). The top row shows the obtained surfaces using
these two solver variations respectively. These surfaces then were numerically differentiated
(Equation 3.8) in order to generate normal maps; the difference of the generated normal
maps to the ground truth (error in degrees) is shown in the bottom row. Although not very
apparent on the 3D reconstructions in (a),(b) (the ℓ2 is marginally more flattened), the ℓ1
solver achieves a better quantitative result due to the presence of depth discontinuities which
are outliers to the differential model.

A quantitative comparison of the ℓ1 versus ℓ2 optimisation schemes is shown in Figure 3.6
which shows a simple synthetic PS dataset on the “Armadillo” model from The Stanford
3D Scanning Repository6. This synthetic model has depth discontinuities mostly around
the face which violate the normal/depth relation and are outliers for the differential model.
Although not very apparent in the 3D reconstruction (Figure 3.6a-3.6b), the normal maps in

6http://graphics.stanford.edu/data/3Dscanrep

http://graphics.stanford.edu/data/3Dscanrep
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Figure 3.6c-3.6d reveal a lower error for the ℓ1 optimisation thus justifying the usage of this
solver.

Computational Complexity of ADMM As the main aim of this thesis is practicality, it is
worth commenting on the computational complexity of ADMM in contrast to simple least
squares solution. Assuming that there are N equations (typically 32 from all the pairs of 8
images) and p pixels in the domain (typically 105 − 106), then the system matrix of LST is
sparse p × p with around 9p entries (see Equation 3.34) for G⊺u Gu giving 4p entries and then
G⊺v Gv another 4p and then p from the regulariser. It is noted that the matrix to be inverted
is constant for all iterations (A⊺s As +

λ
α Ip×p) and thus Cholesky factorisation can be used

and the result can be cached. Hence, only the first iteration is computationally expensive
with subsequent Z updates being orders of magnitude computationally less expensive.
Nonetheless, if the number of images is large, the residual update step in Equation 3.40 will
be computationally expensive due to the matrix vector multiplication.

More Robust Loss Function As seen in Section 2.2.1, there are a number of more robust
ways of dealing with the PS problem than the simple ℓ1, with different loss functions having
different properties. However, the convergence of the ADMM scheme is only guaranteed
if the loss function (G in Equation 3.37) is convex (Boyd and Vandenberghe [19]), thus a
Cauchy loss function

(
f (x) = λ2 log(1 + x2

λ2 )

)
can not be applied. In addition, the ℓ1 loss has

the simple shrinkage update step in Equation 3.38 which needs to be replaced with a more
complicated minimisation in the case of another loss function.

3.7.5 Approximating the shininess parameter

Since the unifying irradiance equation allows a simultaneous parameterization of diffuse
and specular reflectance, the approximation of the shininess coefficient c is an important
achievement for the material understanding of the depicted scene. Simultaneously directly
estimating the linked z and c variables is very challenging, thus an alternating procedure is
presented instead. Assuming known z, N can be trivially calculated using finite differences
(Equation 3.29) and W using Equation 3.15, assuming for now that we are in the specular
zone. This final assumption is used to overcome indirect dependence of W to c. Thus c can
be estimated as follows:
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Starting again from the ratio of irradiance equations for images j and k (Equation 3.17)
these are re-arranged to get: (

i jak

ika j

)cjk
=

W j · N

W k · N
⇒ (3.41)

c j k =
log

(
W j ·N

W k ·N

)
log

(
ijak
ikaj

) (3.42)

where the subscript c j k implies that this is the estimate of c from the pair of images j,k.
We note that there are n versions of Equation 3.42, one for each pair of images. To get

an overall estimate, we seek to minimise min
c
(∥[c1 − c, . . . , cn − c]∥)ℓ1 , thus we consider the

median over the whole set of pairs, i.e:

c(u, v) = median
j,k

(
c j k(u, v)

)
. (3.43)

It is noted that Equation 3.43 allows for estimating one c value per pixel and thus it is
possible to deal with scenes containing objects of various reflectance without performing any
segmentation. However, if a scene is known to contain a single object of uniform reflectance,
c can be set to the mean of c to get a more accurate estimate.

Not fully specular point The above c update formula is only valid assuming the specific
pixel is in the fully specular zone, so W is independent of c. In order to get the overall
optimum c, one has to consider the other two cases and finally select c minimising the total
error:

min
c

(∑
j,k

∥

(
i jak

ika j

)c

−
W j · N

W k · N
∥ℓ1

)
, c ∈ {(3.43), cT, 1}. (3.44)

In Equation 3.44, cT is the c in the transition zone. As W depends on c in the transition
zone, the estimation of cT requires iterating between update cT and W until convergence or
divergence of cT out of the transition zone.

3.7.6 Near field and specular reflection

As shown in the previous section, the shininess parameter cannot be directly calculated and
requires an alternating optimisation scheme. This iterative algorithm becomes an even greater
necessity in the case of a perspective camera and/or point light sources and/or non Lambertian
reflection, as the fields b = b(z) and s = s(z) depend explicitly on the unknown z. This
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Algorithm 1: Calibrated Near-Field Photometric Stereo
Input: Images, calibrated light sources, rough mean distance z0
Output: Depth map z(u, v), shininess parameter map c(u, v)
Initialisation:
z(u, v) = z0, c(u, v) = 1;
while | zt+1 − zt |> 10−4× | zt | do

calculate fields W t
k(u, v, z

t), at
k(u, v, z

t) ∀k (Eq 3.13,3.15) ;
calculate fields bt

j k(u, v, z
t), st

j k(u, v, z
t) ∀( j, k) (Eq 3.19);

eliminate black/saturated pixels and fill holes § 3.5.1 ;
solve for zt+1

(
bt

j k(u, v, z
t), st

j k(u, v, z
t)

)
(Eq 3.37) ;

calculate N t+1(u, v, zt+1) (Eq 3.29) ;
calculate fields W t+1

k (u, v, z
t+1), at+1

k (u, v, z
t+1) ∀k (Eq 3.13,3.15) ;

calculate ct+1
(
zt+1, at+1,Wt+1

)
§ 3.7.5 ;

end

means that the unified PDE 3.18 is quasi-linear (i.e. linear only in terms of the derivative)
and thus the discretisation into a simple linear problem is not possible.

To handle this issue, an iterative procedure is followed. This involves calculating a, L and
thus b, s using the previous estimate of z and then following the procedure of Section 3.7.4
to update z. Note that the overall optimisation is non-convex and that there is no theoretical
guarantee of convergence towards a local minimum. However, the rest of the thesis provides
experimental evidence that in practice, this procedure quickly converges towards a reasonable
solution. The alternating procedure is summarised in Algorithm 1, with the superscript t
denoting the iteration number.

3.7.7 Numerically integrating normal maps

The chapter is concluded by presenting a very useful property of the variational solver
introduced above. The variational solver can be used to robustly integrate normal maps,
which will prove to be essential in Chapters 4 and 5 for comparing the proposed methods,
which output depth maps directly, to other state-of-the-art approaches which generate normal
maps.
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Starting from the classic PS normal parameterisation:[
N1, N2, N3]⊺ ∝ [

∂z(u, v)
∂u

,
∂z(u, v)
∂v

,−1
]⊺
, (3.45)[

−
N1

N3 ,−
N2

N3 ,−1
]⊺
=

[
∂z(u, v)
∂u

,
∂z(u, v)
∂v

,−1
]⊺
, (3.46)[

1 0
0 1

]
∇z = −

[
N1

N3
N2

N3

]
. (3.47)

Equation 3.47 is of the same form as the PS fundamental Equation 3.18 and thus
can be solved robustly on any image domain with the variation optimisation presented in
Sections 3.7.2 to 3.7.4. This is better than the classic normal integration methods described
in Section 2.2.2 (Frankot and Chellappa [48], Simchony et al. [168]). Note that if perspective
projection is to be used, the above parameterisation breaks down as the normal parametrisation
depends on the unknown depth. One has to use the substitution g = log(z + f ), as described
in Section 3.3.1, or alternatively, use an iterative scheme like Algorithm 1.



Chapter 4

Photometric Stereo in Ambient Light

Figure 4.1 The problem of Photometric Stereo in Ambient Light: (left) ambient light image
(i.e. no PS light sources on) which significantly reduces the photometric parallax for images
taken with different illumination (middle, right are 2 examples out of a sequence of 24
images).

Most of the literature of PS assumes that the total amount of light captured by the camera is
due to the reflection through the object, modelled through the image irradiance equation (see
Section 2.2). Generally, this is a very reasonable assumption, especially when the acquisition
takes place in a controlled lab setting. However, as the attention shifts into the wild, the need
for dealing with non-negligible ambient light emerges. The concept of ambient light basically
covers all the unexplained secondary reflections between the surface and the environment,
which may either be due to stray lights, or inter-reflections or even back scattering, and are
thus difficult or impossible to model in closed-form. Such deviations induce a systematic
additive bias of the linear model which can be modelled as (Equation 4.1) where e(u, v)
represents the unexplained bias that could be dependent on the light source L itself as:

i(u, v) = iBRDF(L,N,V) + e(u, v). (4.1)
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In this chapter, a PS method which deals with ambient light is introduced. This method
keeps all the realistic modelling assumptions introduced in Chapter 3; these include perspective
projection, nearby point light sources and specular reflection.

4.1 Motivation

(a) Ikehata et al. [72] (b) Mecca et al. [118] (c) Proposed

Figure 4.2 Illustration of the flattening effect that ambient light causes on state-of-the art
methods applied on the dataset of Figure 4.1.Ikehata et al. [72] employed a very robust sparse
Bayesian regression technique that is completely unable to cope with the systematic bias
caused by the ambient lighting. (b) illustrates the baseline framework method presented in
Chapter 3 and again its result is severely deformed by the ambient light bias. On the contrary,
(c) shows that the novel formulation proposed in this chapter is able to cope with this issue.

The motivation for choosing to tackle ambient light was prompted by two recent
applications of PS: real time 3D reconstruction by Hernández et al. [58], and PS in open
environments (outdoor PS Hung et al. [70], Abrams et al. [1], as well as PS in a scattering
medium such as murky water Murez et al. [126]). The usual approach taken to deal with
ambient light consists of capturing an image without any artificial lights first, and then
substracting it from all the images. However, it is not possible to apply such preprocessing
in real time PS, where the shape information is extracted from a single RGB image of a
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commercial camera sensor, Hernández et al. [58], Brostow et al. [21]. In addition, it is
impossible to have a priori knowledge of the ambient light if it only appears when the artificial
lights are on, as is the case with back scattering in murky water, Treibitz and Schechner
[179], Tsiotsios et al. [181]. To deal with these issues, a framework for PS in ambient light
which does not require any preprocessing step is introduced.

The assumed model for ambient light consists of a non-uniform scalar field, which is
independent from L. Although it cannot be physically justified that mutual reflections, or
backscatter lightings, are independent of the lighting, this approximation is numerically
tractable, and was already used successfully in [205, 181, 126]. In the literature, such an
ambient term was accounted for using two different strategies: offline calibration or online
estimation. The first strategy simply involves capturing an image in the “dark” (i.e. with no
active lights turned on). This “ambient image” can then be subtracted from the PS images to
create “ambient-free” images.

The other strategy comprises estimating e(u, v) along with the surface characteristics.
The classic pixelwise PS estimation is simple to extend: the new recovery problem is another
linear system of diffuse irradiance equations accounting e(u, v) as unknown, whose solution
is uniquely defined as long as the number of images is at least 4, and the rank of the system is
4. More specifically, this re-writes Equation 2.13 as:

[Ls, 1]

[
M(u, v)
e(u, v)

]
= Is(u, v). (4.2)

In Equation 4.2, the fourth component of the unknown vector is the ambient light, and its
first three components represent the surface normals scaled by the albedo. This is essentially
the same strategy as the approach of Yuille et al. [205], although they extended this procedure
to the uncalibrated PS problem (see Section 5.2.1). However, this approach relies on the
restrictive assumptions of directional lighting as well as a Lambertian surface reflection, and it
performs poorly if these assumptions are violated (see comparison with [205] in Section 4.3).

Another relatively simple way of accounting for the ambient light bias is to use a spherical
harmonics model for the lighting as proposed by Basri and Jacobs [11]. Such a model was
used by Basri et al. [12] to tackle the problem of unknown and non-directional lighting for a
Lambertian object. Using spherical harmonics decomposition, it was shown that the surface
normals lie on a low-dimensional space spanned by the principal components of the image. In
particular, a four harmonics model may describe the combination of directional lighting and
“ambient” lighting rather well. Such a model was recently used by Or-el et al. [139] in order
to apply SFS under “natural” illumination. Yet, such spherical harmonics models prevent
one from using closed form expressions for non-directional lightings, e.g. the pointwise
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source model accounting for radial propagation of light and inverse of squared distance light
attenuation.

4.2 Dynamic ambient light removal

To start, recall the irradiance Equation 3.16 introduced in Chapter 3 that models perspective
viewing geometry, radial propagation, light attenuation and both diffuse and specular reflection
and add an additional pixelwise unknown e(x, y), the ambient light. Thus the overall irradiance
equation for the j th light source is:

i j(u, v) = ρ(u, v)a j(u, v, z(u, v))(N (u, v) ·W j(u, v, z(u, v)))
1

c(u,v) + e(u, v). (4.3)

The terms ρ(u, v), a j(u, v, z(u, v)), Wj(u, v, z(u, v)) and c(u, v) follow the same definitions
introduced in Section 3.5. The irradiance Equation 4.3 now consists of two terms, and thus
the ratio method presented in Section 3.2 cannot be used in order to cancel out the albedo
and the non-linear denominator of the normal. In addition, note that if c = 1, i.e. the object
is purely Lambertian, it is possible to consider differences of images i.e. i j − ik for images
j, k and then follow the ratio procedure, thus simultaneously cancelling both the ambient
light term as well as the albedo and non-linear denominator of the normal. However, in the
most general setting, c ≤ 1, and thus the difference of the two exponentials is hard to handle
analytically. This requires special algebraic manipulations as explained below.

With the aim being the consideration of readable equations, the notation is simplified,
and as far as possible, writing the dependencies of the functions is avoided from now on.

First of all, the irradiance equation is re-arranged as follows:

(i j − e)c = (ρa j)
cN ·W j . (4.4)

Considering the binomial expansion of the left hand side:

(i j − e)c = ic
j − ceic−1

j +
c(c − 1)

2
e2ic−2

j + . . . (4.5)
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Truncating this expansion to the first order, and substituting to Equation 4.4, the following
holds:

ic
j − ceic−1

j ≈ (ρa j)
cN ·W j (4.6)

⇓

i j − ce ≈ ρcγ j
N

|N |
·W j (4.7)

where the alias γ j =
ac
j

ic−1
j

is used.
It is noted that in Equation 4.7, in the pure diffuse case (i.e. c = 1), there is no need for

binomial expansion and truncation and thus Equation 4.7 is actually an exact equality. This
makes the model more accurate in the framework upon which most of the research about
PS focuses. In addition, as i j > e, the binomial expansion is always convergent and thus
the truncation operation is mathematically valid. The accuracy of the truncation is further
examined in Section 4.2.3.

Now, Equation 4.7 is applied to two pairs of irradiance equations, namely the j th, k th and
the qth, r th. Considering the ratio of their differences and this operation lets the ambient light
cancel out together with the albedo and the normalisation of the normal as:

i j − ce − ik + ce
iq − ce − ir + ce

≈

ρc

|N |

[
γ jN ·W j − γkN ·W k

]
ρc

|N |

[
γqN ·W q − γrN ·W r

] (4.8)

that is
i j k

iqr
=

i j − ik

iq − ir
≈
γ jN ·W j − γkN ·W k

γqN ·W q − γrN ·W r
(4.9)

where the aliases i j k = i j − ik and iqr = iq − ir are used.
By substituting the differential parameterization of the normal from Equation 3.8,

Equation 4.9 yields the following quasi-linear PDE:

bu(u, v, z(u, v))
∂z
∂u
+ bv(u, v, z(u, v))

∂z
∂v
= s(u, v, z(u, v)) (4.10)
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with:

bu = iqr

[
γ j

(
W

1
j −

u
f
W

3
j

)
− γk

(
W

1
k −

u
f
W

3
k

)]
− i j k

[
γq

(
W

1
q −

u
f
W

3
q

)
− γr

(
W

1
r −

u
f
W

3
r

)]
,

(4.11)

bv = iqr

[
γ j

(
W

2
j −

v

f
W

3
j

)
− γk

(
W

2
k −

v

f
W

3
k

)]
− i j k

[
γq

(
W

2
q −

v

f
W

3
q

)
− γr

(
W

2
r −

v

f
W

3
r

)]
,

(4.12)

s =
f + z

f

[
iqr

(
γ jW

3
j − γkW

3
k

)
− i j k

(
γqW

3
q − γrW

3
r

)]
. (4.13)

It is noted that Equation 4.10 has exactly the same form as the fundamental PS Equation 3.18
and thus can be solved using the variational optimisation framework described in Section 3.7.

Specularity parameter estimation In order to update the specularity parameter c, the
ratio of differences of the irradiance Equation 4.3 for images j, k to q, r, is considered in
order to get:

i j − ik

iq − ir
=

a j(N ·W j)
1
c − ak(N ·W k)

1
c

aq(N ·W q)
1
c − ar(N ·W r)

1
c

. (4.14)

Expanding out Equation (4.14), gives:

(i j−ik)aq(N ·W j)
1
c−(i j−ik)ar(N ·W k)

1
c−(ir−iq)a j(N ·W q)

1
c+(ir−iq)ak(N ·W r)

1
c = 0 (4.15)

which is of the form
∑4

n=1 dnmx
n = 0, with dn,mn known scalars and x = 1

c . Equation 4.15
cannot be solved analytically; it can, however, be solved numerically with the Newton-Raphson
method.

4.2.1 Parameterisation limitations

After having established a new differential formulation for the PS problem in ambient light,
this section presents some cases where the ratio of differences parameterisation of Equations
4.11 to 4.13 breaks down or becomes numerically unstable. In general, for a well-posed
problem, ∥b∥ > 0, and the higher this magnitude is, the better the numerical stability. In
addition, b from different quadruples of images have to be linearly independent (these
properties are true for the standard parameterisation presented in Chapter 3 as guaranteed by
Theorems 3.6.1 and 3.6.2).
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It is important to note that moving the assumptions away from the classic PS yields a more
non-linear problem as b becomes more chaotic and hence less likely to be ill-constrained.
This is not surprising, as it is a well known fact that the near-field non-linearities remove
ambiguities. The most characteristic example for that is Papadhimitri and Favaro [142],
where it was proven that the near-field un-calibrated PS does not suffer from the Bass-Relief
ambiguity. In addition, even collinear light sources can lead to a well-posed problem assuming
the γ factor (see Equation 4.7) has enough change between views.

Nonetheless, assuming the classic PS assumptions are true, i.e. f = ∞, c = 1, a = 1 and
L constant for all pixels (i.e. directional lighting), then Equations 4.11 to 4.13 reduce to:

b =

[
iqr(L

1
j − L

1
k) − i j k(L

1
q − L

1
r )

iqr(L
2
j − L

2
k) − i j k(L

2
q − L

2
r )

]
and s = iqr(L

3
j − L

3
k) − i j k(L

3
q − L

3
r ). (4.16)

Equation 4.16 reveals another corner case: if all the light sources L
3
i = L

3
j = L

3
q = L

3
r

then s = 0 and thus Equation 4.16 only describes the level set of the surface. In fact, a
similar property has been used by Alldrin and Kriegman [5] and Zhou et al. [209] in order to
start from a sparse point cloud and propagate along the depth iso-contours to create a dense
surface, in a multi-view setting (see Chapter 6). This limitation is actually relevant, as the
experiment setup introduced in Figure 1.5 contains all the light sources on plane parallel
to the image plane. Thus, to get around this problem, the LEDs are placed in circles with
significantly different radii. This means that the distance between the light sources and the
scene is significantly different for LEDs from different circles and thus the light attenuation a
(and thus subsequently γ, are different) so the simplification leading to Equation 4.16 does
not hold. Finally, a semi-obvious fact is noted, that, as the model is generated using a ratio of
differences, it becomes invalid in the case of equality of images j = k or q = r .

4.2.2 Second order expansion

In this section, it is shown how more than four images can be used to cancel up to the second
order remainder of the binomial expansion and increase the accuracy of the truncation.

Start by taking into account the expansion till the second order:

ic
j − c e ic−1

j +
c(c − 1)

2
e2 ic−2

j ≈ (ρa j)
cN ·W j (4.17)
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and combining the previous equation for images j th and k th as (4.17)j
ic−1
j

−
(4.17)j

ic−1
k

to give:

ic
j − c e ic−1
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−
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(4.18)

that simplifies to:

i j +
c(c − 1)

2
e2

i j
− ik −

c(c − 1)
2

e2

ik
≈ ρcγ jN ·W j − ρ

cγkN ·W k (4.19)

that leads to:

i j − ik +
c(c − 1)

2
e2

(
1
i j
−

1
ik

)
≈ ρc

(
γ jN ·W j − γkN ·W k

)
(4.20)

where again the alias γ j =
ac
j

ic−1
j

and the equivalent for the other indexes, is used. In addition,

the additional auxiliary variables i j k = i j − ik and H j k = γ jW j − γkW k are defined. Then
multiply both sides of Equation 4.20 by the factor ij ik

ij−ik
to get:

i j ik −
c(c − 1)

2
e2 ≈ ρc i j ik

i j k
N · H j k . (4.21)

Finally, the following ratio of differences considering the images mth, j th, k th and pth,
qth, r th is performed as (4.21)mj−(4.21)mk

(4.21)pq−(4.21)pr to get:(
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2 e2
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that is
im i j − im ik

ip iq − ip ir
≈
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imj
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im ik
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(4.23)

which simplifies by cancelling the im/ip term to:

i j k

iqr
=

i j − ik
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≈
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(4.24)
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imj imk i j k

ipq ipr iqr
≈

i j imkN · Hmj − ik imjN · Hmk

iq iprN · Hpq − ir ipqN · Hpr
(4.25)

Again, expanding Equation 4.25 and substituting the differential parameterisation of the
normal from Equation 3.8 gives the standard quasilinear PDE form.

4.2.3 Binomial series truncation error

The algebraic manipulation described in Section 4.2 assumes that the first or second order
truncation of the binomial series of Equation 4.5 is a fairly good approximation of the actual
series. In this section, a more in depth investigation of the truncation error is performed.

More precisely, the error metric is the absolute difference between the infinite series and
its first or second order truncation. In addition, the error is more meaningful if expressed
as a ratio (expressed as a percentage) with respect to the series value. Thus, ignoring the
subscript j, we define the following errors:

Err1 =
(i − e)c −

(
ic − c e ic−1

)
(i − e)c

(4.26)

Err2 =
(i − e)c −

(
ic − c e ic−1 + c(c−1)

2 e2 ic−2
)

(i − e)c
(4.27)

which are re-arranged so that it is clear that they are functions of c and e/i only:

Err1 =
(1 − e/i)c −

(
1 − c e/i

)
(1 − e/i)c

(4.28)

Err2 =
(1 − e/i)c −

(
1 − c e/i + c(c−1)

2 (e/i)2
)

(1 − e/i)c
. (4.29)

The magnitude of the truncation errors is illustrated in Figure 4.3. It is clear that unless
e/i is unreasonably large (which would mean that the signal-to-noise ratio is too small), the
two truncation errors are only a few percentage points. As a numerical example, for c = 0.5
and e/i = 0.25 (corresponding to signal-to-noise ratio of 3 : 1), we have that Err1 = 1.04%
and Err2 = 0.13%. Finally, Figure 4.3c shows the difference between the first and second
order (i.e. the second order term) and motivates for using the first order formula only. There
is marginal theoretical benefit for using the second order term for a significant increase of the
computational complexity and the associated numerical errors. It is important to stress that



60 Photometric Stereo in Ambient Light

0
1

10

1st Order Truncation Error

20

0.8

E
rr

or
 %

0.8

30

0.6

c

40

0.6

e/i

50

0.4 0.4
0.20.2

0

(a) Order 1 error.

0
1

10

20

0.8

E
rr

or
 %

0.8

30

0.6

2nd Order Truncation Error

c

40

0.6

e/i

50

0.4 0.4
0.20.2

0

(b) Order 2 error.

0
1

10

20

0.8

E
rr

or
 %

0.8

30

0.6

1st vs 2nd Order Truncation Error

c

40

0.6

e/i

50

0.4 0.4
0.20.2

0

(c) Order 1 error − order 2 error.

Figure 4.3 Illustration of percentage error induced due to the truncation of the binomial series.
(a) is the first order error defined in 4.28, (b) is the second order error defined in 4.29 and (c)
is their absolute difference |Err1 − Err2 |. It is noted that as most image data are at most 10
bits of precision, any error smaller than 0.1% is computationally zero.

as most image data are at most 10 bits of precision, any error smaller than 0.1% is negligible.
Hence the absolute difference between Err1 and Err2 is more meaningful than their ratio.

4.3 Experiments
The proposed algorithm is evaluated on both synthetic and real data. Two different capture
setups were used for capturing real data. The first setup consisted of a previous version of the
plane of LEDs (Figure 1.5); this version had a FL3-U3-20E4C camera placed in the center of
a 5cm base containing 24 LEDs (SHARP-MINIZENIGATA). The LEDs were arranged in 2
concentric rings of radii 3cm and 5cm respectively with 8LEDs in the inner circle and 16
in the outer. It must be emphasised that the numerical stability of the proposed approach
critically depends on not having all LEDs in a circle around the camera as discussed in
Section 4.2.1. This setup was used to capture the marble Buddha statue (Figure 4.1) and a
shiny plastic head (Figure 4.4a) datasets and the image resolution was set to 800 × 600.

The second setup, consisting of a series of 8 LEDs and a Canon EOS 7D camera, was
used to acquire images of a plaster Arlequin mask (Figure 4.4b) and of a plaster print of
teeth (Figure 4.4c). For both setups, the camera intrinsics were calibrated using the camera
calibration toolbox for Matlab [18], the position of the LEDs was calibrated using a mirror
sphere, and their intensities were calibrated using a diffuse sphere. The anisotropy parameter
was set to µ = 1, which was consistent with the manufacturer’s specification.

To create challenging conditions, the relevant amount of ambient light was varied between
the different datasets, with the Buddha being illuminated more than the Mask and the Teeth.
Finally, the shiny head was placed next to an open window which makes the ambient light
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(a) Shiny head (b) Mask (c) Teeth

Figure 4.4 Real data with significant ambient Light. These are a shiny plastic head (a), a
plaster Arlequin mask (b) and a plaster print of Teeth (c). Two samples from each object
and the respective ambient light in the last row. The ambient light shown here is only for
demonstration purposes and is not used in any of the computations.

uncontrolled (the reflection of the window is clearly visible and it creates some artifacts in
the reconstructions in the second row of Figure 4.5).

Implementation The algorithm was implemented in Matlab and was tested on an i7
processor at 2.4GHz, with 16GB RAM. For most experiments the Order 1 version of the
proposed method was used (Equation 4.10). A comparison of Order 1 versus Order 2
is also performed later in Table 4.1. In addition, as selecting all possible quadruples of
images is computationally intractable (

(24
4
)
= 10626)), for the first dataset only differences of

diametrically opposite images were considered. This maximizes photometric parallax and
reduces the number of quadruples to 32 (8 pairs from the outer ring getting divided by 4 pairs
from the inner ring). The CPU time on these datasets was a few minutes and the memory
usage around 5GB. Finally, the result of the Order 2 method on the Buddha dataset can be
found in Figure 7.1.
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(a) [205] (b) [72] (c) [118] (d) Proposed

Figure 4.5 Qualitative evaluation of PS methods on the datasets of Figures 4.1 and 4.4. [118]
is the baseline theoretical framework described in Chapter 3 that does not model the ambient
light and thus the reconstruction is severely flattened. This is also similar to the result of [72]
which employs a robust estimation strategy that cannot deal with the systematic bias of the
ambient light. Finally, [205] specifically models the ambient light but cannot deal with near
field effects and specular reflections and thus the result is deformed as well.
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Comparisons The proposed method is compared against Yuille et al. [205], Ikehata et al.
[72] and Mecca et al. [118]. From these three methods, only Yuille et al. [205] models the
ambient light explicitly; Ikehata et al. [72] is one of the most robust methods for solving
the classic PS problem. Finally, a comparison with Mecca et al. [118] (which is the basis
of the framework presented in Chapter 3) is provided as a baseline test, demonstrating the
importance of explicitly handling the ambient light term. For Ikehata et al. [72], their original
code was used whereas for Yuille et al. [205] a simple least squares solution of Equation 4.2
was implemented. In addition, the variational solver (see Section 3.7.7) was used in order to
numerically integrate the normal maps produced by [205, 72] and thus be able to compare
3D surfaces.

Experimental results The real data experiments on the datasets of Figure 4.1 and Figure
4.4 are shown in Figure 4.5. The proposed algorithm (Order 1) outperforms all competing
methods especially [72, 118] which do not model the ambient light explicitly. This confirms
the importance of that particular work. In addition, [205] also suffers from some deformations
due to the fact that it does not model near field effects and specular reflections which are
essential in a number of realistic situations.

Although challenging, these real data experiments only provide qualitative evaluation due
to not having access to reliable ground truth data. Therefore, the method is also evaluated on
a large number of synthetic data experiments as explained in the next section.

4.3.1 Synthetic data

Figure 4.6 Baseline synthetic data: 2 out of the 24 images of our simplified synthetic dataset
rendered with orthographic geometry, directional lighting and Lambertian reflection. This
dataset offers a fair comparison with [205, 72]. The third image shows the albedo and the
fourth one the ambient light.

In order to quantitatively evaluate the method in a number of different situations synthetic
data experiments are considered. The model used as a synthetic object was “Bimba” from
the AIM@Shape Repository. All datasets (expect Figure 4.10) used 24 images of resolution
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800x600x24bits1 in a configuration closely resembling that of the first real data setup. In
addition, the Order 1 version of the method is used considering the same pairs of images as
for real data.

Evaluation metric Quantitative evaluation is performed by comparing the generated normal
maps with the ground truth (Figure 4.8). The evaluation metric is MAE, the mean angular
error. Most significantly, it is important to note that comparison is far more meaningful on
the normal maps than on the depth maps or 3D meshes which is the standard for other 3D
reconstruction methods (e.g. Scharstein and Szeliski [160] and Seitz et al. [162]). This is
because the photometric information is encoded in normals and any numerical integration
process, either classical (Section 2.2.2) or variational (Section 3.7) will inevitably have biases,
especially around depth discontinuities (more about that in Section 6.3.1). Therefore, for
the proposed method as well as [118] normals need to be calculated using finite differences
of the depth map (Equation 3.29 and 3.8). In addition, even though Yuille et al. [205] and
Ikehata et al. [72] provide depth maps, these are not-integrable and do not correspond to valid
surfaces. Therefore, in order to have a fair comparison, numerical integration is performed
again (Section 3.7.7) and then numerical differentiation.

(a) [205] (b) [72] (c) [117] (d) Proposed (e) GT

Figure 4.7 Qualitative comparison of several PS methods on the dataset of Figure 4.6. (e)
shows the ground truth. Note that (b) and (c) exhibit a substantial flattening due to the ambient
light.

The first synthetic data experiment contained data generated with a simplified image for-
mation model (Figure 4.6) including orthographic viewing geometry, directional illumination
and Lambertian reflection. This was done in order to have a fair comparison with Yuille et al.
[205] and Ikehata et al. [72]. The ambient light was set to grow linearly, from bottom-left to

1Note that most real cameras provide 10bit data, hence these synthetic data are of much higher precision.
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top-right, to up to 45% of the maximum intensity value. The “Lena” image was used for
the albedo. Figure 4.7 shows the reconstructions obtained, offering qualitative comparison;
Figure 4.8 shows the normal maps which provide a quantitative evaluation.

(a) [205],MAE= 11o (b) [72],MAE= 16.7o (c) [118],MAE= 17.2o (d) Ours, MAE= 8.5o

Figure 4.8 Quantitative evaluation of several PS methods on the dataset of Figure 4.6. Top
row shows the resulting normal maps and bottom row shows the map of the error in normals
(in degrees) compared to the ground truth. It is noted that most errors are observed around
the occlusion boundaries as expected.

The proposed approach clearly outperforms [72, 118] as these methods suffer from the
additive bias of the ambient light which has a flattening effect on the reconstruction. There is
furthermore a slightly smaller mean normal error than [205] (8.5o vs 11o) and this is probably
because of the use of the robust variational solver.

The next experiment involves increasing the amount of ambient light (by scaling the image
in Figure 4.6), as well as introducing specular reflection, by reducing the specularity parameter
c (see Equation 4.3), while keeping the same setup for lighting and orthographic viewing.
This is a stress test for the binomial series approximation which displays an increasing
inaccuracy with the amount of ambient light(see Section 4.2.3). The comparison is shown in
Figure 4.9. As expected, [72, 118] which do not explicitly handle the ambient light, have a
steeply increasing MAE as a function of the average level of ambient light. [205] handles the
ambient light explicitly and exactly and thus the error barely increases as ambient increases.
In contrast, the proposed method has indeed an increase of error as a function of ambient
light, although this is insignificant except for the last data point where the ambient light is
around 70% of the total image signal. As expected, in the case of specular reflections, the
proposed method clearly outperforms all other competing approaches.
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Figure 4.9 Comparison of several PS methods under different ambient light and shininess
parameter. The baseline dataset is that of Figure 4.6 but with increasing ambient and specular
reflection (c = 1 is Lambertian). At high ambient levels, a considerable portion of the pixels
get saturated, and this effect dominates the error.

Finally the proposed method is evaluated in the near field scenario (nearby lighting and
perspective geometry) with a moderate amount of specular reflection (c = 0.5) and with
the addition of salt and pepper noise2. A few sample images are shown in Figure 4.10 for
illustration purposes. Four different levels of noise are considered as well as two different
levels of ambient light and the complete results are presented in Table 4.1. Note that evaluation
of the proposed method using the Order 2 series approximation is also included. For this
experiment it was decided to use a dataset of 9 images only, which allows for consideration
of all quadruples of images for the Order 1 method (

(9
4
)
= 126)) and all 6-tuples of images for

the Order 2 method (
(9
6
)
=

(9
3
)
= 84)). The 9 images included 2 circles with 3 sources in the

inner and 6 in the outer and the total memory consumption was around 5GB.
As expected, the proposed method (both Order 1 & 2) clearly outperforms all other

competing approaches on all experiments. Of greater interest, is a comparison of the Order 1
versus Order 2 versions of the proposed method. As expected the Order 2 approximation
obtains a smaller error than Order 1 does in the higher ambient case, but at the same time
is more sensitive to noise. This is because of more complicated computation which is
more prone to the accumulation of numerical approximations with the difference of images
operation amplifying the effect of noise. For the exact same reason both methods proposed

2This sets a percentage of pixels to completely black or white and thus models complete outliers to the
model.
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(a) A=15%,N=0% (b) A=15%,N=3%

(c) A=20%,N=0% (d) A=20%,N=3%

Figure 4.10 Sample images for the synthetic datasets which demonstrate nearby lighting,
specular reflection (c = 0.5 ) and salt and pepper noise. The ambient light percentage is with
respect to the total image intensity and the noise percentage signifies the expected number of
affected pixels.

(Order 1&2) have a higher sensitivity to noise than the other three competitors ([205, 72, 118]).
Finally, the difference between Order 1 and 2 is better understood by examining the 3D
reconstruction obtained at the top row of Figure 4.11. Order 2 is better at preserving the
depth discontinuity at the bottom of the mouth achieving better quality for low frequencies
(overall bending) but at the same suffers from a lot of high frequency artefacts that appear
like scratches.
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Table 4.1 Quantitative evaluation based on the initial estimate quality. Errors are in mm.
Noise added to vertex positions and the magnitude is relative to the average triangle size.

Method-MAE in degrees
Ambient Noise [205] [72] [118] Proposed O1 Proposed O2

15%

0% 19.9 23.8 24.8 9.1 6.0
1% 20.1 23.7 24.9 11.2 11.4
2% 20.3 23.6 24.9 13.4 14.7
3% 20.5 23.5 24.9 15.7 16.6

20%

0% 19.9 24.9 28.0 11.1 7.1
1% 20.1 24.9 28.0 13.3 11.1
2% 20.4 24.9 28.0 15.7 12.5
3% 20.6 24.8 28.0 18.1 14.6

4.4 Discussion

This chapter tackled the problem of PS under ambient light as well as the extensive set of
additional realistic assumptions (perspective view geometry, non-linear light propagation,
specular reflection) that are common ground for the rest of the thesis. A new approach
based on ratios of image differences was presented. This approach is able to remove any
additive bias on images. The problem is then expressed as a quasi-linear PDE and is solved
through the robust variational optimizer performing ℓ1 minimization that was introduced in
Section 3.7. Experiments on synthetic and real data verify that the proposed approach provides
good reconstructions under significant ambient light, specular highlights and perspective
deformation.

As a challenge for future work, what can be foreseen is the applicability of this technique
involving binomial expansion, from the simple BRDF presented in Section 3.4 to other more
physical and complicated BRDFs (see Section 2.1.2). The value of this method is mostly
theoretical, showing the ratio of differences method, as well as demonstrating linearising
BRDFs through the binomial series expansion method. In practice, it is usually acceptable to
capture one image of the ambient light at the beginning of the acquisition and then to simply
remove it from the rest of the images.

4.4.1 Limitations

A practical limitation of the work presented so far is that it requires a fully calibrated PS
setup, meaning that the light source positions, as well as illumination properties, need to be
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(a) [205]
MAE= 20.1o

(b) [72]
MAE= 23.7o

(c) [118]
MAE= 24.9o

(d) Proposed O1
MAE= 11.2o

(e) Proposed O2
MAE= 11.4o

Figure 4.11 In depth illustration of the 15% ambient light, 1% noise case (row 2 of Table 4.1).
The top row shows the reconstructions obtained from all the competing methods and the
bottom row shows normal error maps (in degrees). It is noted that the proposed formulation
is more sensitive to noise than the other competing approaches, as it is dependent on image
differences (which are known to amplify the high frequency components of noise). This is
especially true for the Order 2 (O2) formulation which is based on differences of differences,
and thus suffers from noise sensitivity the most. Nonetheless, despite the high frequency
artefacts, both proposed methods outperform all competitors and generate an overall lower
MAE.

known a priori. This assumption will be relaxed in the next chapter where the semi-calibrated
PS problem will be introduced and a solution will be proposed.

In addition, the more complicated ambient light PDE parameterisation (Equation 4.10) in
contrast to Equation 3.18 means that the problem is more sensitive to numerical inaccuracies.
Moreover, as seen in Section 4.2.1 this formulation degenerates under a number of different
configurations, in addition to the standard degenerate configurations for PS problems
(collinear light sources etc.) Thus, the use of the robust variational solver is essential, as is
the preprocessing of data to remove unreliable data points (see Section 3.5.1). An additional
remark about unreliable data detection is noted: the standard heuristic of removing dark
pixels as an attempt to avoid shadows does not work in the presence of ambient light. Indeed,
it is possible to have parts of the surface in the cast shadow region of a light source still



70 Photometric Stereo in Ambient Light

reflecting ambient light. This final issue can be resolved by explicitly detecting surface
occlusion by ray-tracing using a previous estimate of the geometry. Indeed, the strategy will
be followed in the following chapters in order to minimise the effect of shadows.

Finally, a computational limitation of the proposed method is the fact that the number
of n-tuples that need to be considered grows very quickly as a function of the number of
images n. This limitation is further discussed in Section 7.2.1 and overcome with a GPU
implementation that can very quickly iterate through the required set of image n-tuples.



Chapter 5

Semi-calibrated Photometric Stereo

Up until this point, it has been assumed that the PS setup has been completely calibrated.
This chapter extends the PS framework presented in Chapter 3 by relaxing this calibration
assumption.

5.1 Motivation

Figure 5.1 The semi-calibrated Photometric Stereo problem: it is very common that different
light sources have noticeably different brightness which can be unpredictable, especially for
cheap LEDs that tend to flicker. This is demonstrated on these 3 (out of 9) images of a scene
consisting of heterogeneous materials.

Photometric Stereo approaches are usually divided into two main categories. The first
category solves calibrated PS by requiring an a priori knowledge of the light source’s geometry,
position and brightness. The second category solves the uncalibrated PS problem where
the information about the illumination of the scene is unknown. Recently, Cho et al. [28]
introduced the idea of semi-calibrated PS, where the brightness but not the positions of
the light sources, was considered unknown. Indeed, accurate knowledge of the brightness,
requires careful measurements with either specialized equipment (LUX meters) or reference
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objects with known geometry and reflectance. Moreover, the brightness commonly tends
to vary from acquisition to acquisition, and this variation is mainly due to three important
causes. First of all, the lighting status of a light source: most LEDs used as light sources
have a non-negligible ramp-up time when turned on, corresponding to constantly increasing
brightness; this is followed by a gradual decrease of brightness because of the heating-up
that affects their electrical properties. This is especially relevant for high speed acquisitions
performed with high power emitters. Under these circumstances, electrical instabilities
causing LED flickering are not uncommon (OSRAM [141]). Secondly, the light sources
inevitably deteriorate with time. This imposes the need to perform a calibration of the light
sources every time images have to be acquired over a relatively long lapse of time. Finally,
it may be desirable to shoot images with auto-exposure settings in order to minimize the
number of underexposed and saturated pixels. If this is the case, the effective brightness (i.e.
brightness time exposure) of the respective light source cannot be known a priori.

In this chapter, the problem of semi-calibrated near field PS is tackled; this assumes that
the geometry of the light sources is reasonably point-wise and their positions are assumed
as known. All the realistic modelling assumptions of Chapter 3 are retained including
perspective viewing geometry and both diffuse and specular reflectance.

Contribution The robust step-wise variational numerical solver presented in Section 3.7.4
is augmented to alternate between estimating lighting factors, shape and the specularity
coefficients. This also allows for the relaxation of the assumption that point light sources
spread light uniformly in all directions by computing the spatially varying maps of the light
intensities.

The reliability of the proposed method for providing highly accurate 3D reconstructions
and approximating lighting parameters is demonstrated quantitatively over a large set of
synthetic and real data. Regarding real world experiments, the proposed method is compared
against other standard methods for estimating the brightness of light sources (i.e. using a
light-meter or reference objects).

5.2 Background

Light calibration, intended as an estimation of light positions/directions and intensities, often
requires specific equipment [37, 38] or a dedicated procedure [196] that may differ depending
on the scenario. For example, PS for outdoor scenes generally uses intrinsic light calibration
according to geo-position information [171, 2, 83, 1] or triangulating with reflective spheres
[127]. Alternatively, in a dark environment, light calibration can be performed considering
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reference objects where the shape and reflectance are known. Goldman et al. [53] used
spheres of the same materials of the object under observation, dealing with spatially varying
BRDFs.

5.2.1 Uncalibrated Photometric Stereo

Before dealing with the semi-calibrated problem, the classical uncalibrated problem is worth
a mention. As explained in Section 2.2, the classical PS Is(u, v) = LsM(u, v) with (n ≥ 3) cal-
ibrated light sources has a unique linear least squares solution M(u, v) = (L⊺s Ls)

−1L⊺s Is(u, v),
where M(u, v) = [M1,M2,M3]⊺(u, v) is the standard auxiliary variable indicating the albedo-
scaled normals. However, if the light source directions are unknown, and the objective is to
jointly estimate them along with the surface geometry, an ambiguity arises as

Is(u, v) = LsM(u, v) ⇐⇒ Is(u, v) = (LsT)(T−1M(u, v)) (5.1)

for any invertible 3x3 matrix T . As shown by Belhumeur et al. [14], this 9 parameter
ambiguity can be reduced by employing the integrability constraint (see Section 2.2.2).
Indeed, starting from

∂(M
2

M3 )

∂u
=
∂(M

1

M3 )

∂v
(5.2)

and after some algebra, it was proved that the only compatible transformation is the Generalized
Bas-Relief (GBR) which has the form

T =


1 0 0
0 1 0
µ ν λ

 (5.3)

where µ, ν and λ are the three parameters of the ambiguity. Finally, it was shown that if the
albedo is known or constant (or equivalently, the light sources have the same magnitude) then
the ambiguity reduces to binary convex/concave: µ = 0, ν = 0 and λ ± 1

The inherent ambiguity in uncalibrated PS disappears when assuming perspective instead
of orthographic viewing as shown by Papadhimitri and Favaro [142]. That is because under
perspective projection (see parameterisation in Section 3.3.1) the normal depends on the
depth non-linearly and this non-linearity combined with the integrability constraint breaks
the linear GBR ambiguity. In addition, their work is extended to uncalibrated PS with point
light sources in Papadhimitri and Favaro [143].

Other uncalibrated approaches include Quéau et al. [151] which requires Dichlet boundary
condition for the depth, Shi et al. [167] who disambiguate the (GBR) ambiguity through
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analyzing color/intensity profiles in the RGB and irradiance-time domains, Favaro and
Papadhimitri [46] who exploit points of maximum diffuse reflection and finally Georghiades
[51] who overcomes the ambiguity up to binary convex/concave through the use of the
non-linear Torrance and Sparrow reflectance model [176].

5.3 Semi-calibrated classical Photometric Stereo

First of all, a quick review of the method of Cho et al. [28] is presented as this is the foundation
for this chapter. This involves extending the Classic PS method of Woodham [192] (see
Section 2.2) by including an additional unknown per image, ϕ j that denotes the light source
brightness. Therefore, the irradiance Equation 2.11 is extended to:

i j(u, v) = ϕ j ρ(u, v)(N (u, v) · L j) = ϕ jL
⊺
j M(u, v) (5.4)

The number of different light sources is n and the number of pixels is p. Stacking all
equations from all pixels and all light sources into a combined linear system gives:

I =


ϕ1 0 . . .

0 ϕ2 . . .
...

. . . 0 ϕn



L
⊺
1

L
⊺
2
...

L
⊺
n



M1

1 M1
2 . . .M

1
p

M2
1 M2

2 . . .M
2
p

M3
1 M3

2 . . .M
3
p

 = ΦLM ⇔ Φ−1I − LM = 0 (5.5)

where in Equation 5.5 I is a n × P matrix stacking all data from all images (noting that the
matrix Φ is diagonal and hence invertible). Then, Equation 5.5 can be solved using the
following vectorisations:

LM = L
[
M1 M2 . . .Mp

]
→


L 0 . . . 0
0 L . . . 0

...

0 0 . . . L




m1

m2
...

mn×p


= (Jp ⊗ L)vec(M) (5.6)

and

Φ
−1I =


1/ϕ1 0 . . .

0 1/ϕ2 . . . 0
...

0 0 . . . 1/ϕk


[
I1 I2 . . . IP

]
→


diag(I1)
diag(I2)
...

diag(IP)



1/ϕ1

1/ϕ2
...

1/ϕk


= Idψ (5.7)
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where in Equation 5.6 Jp is an identity matrix of size p, and ⊗ and vec are Kronecker product
and vectorisation operators respectively. In Equation 5.7, diag is the diagonalisation operator.
Combining Equations 5.6 and 5.7 gives:

Idψ − (JP ⊗ L)vec(M) = 0→
[
Idψ −(JP ⊗ L)

]
︸                 ︷︷                 ︸

E

[
ψ

vec(M)

]
= 0 (5.8)

with E being a np× (3p+ n) sparse matrix. The homogeneous Equation 5.8 has a non-trivial,
up to scale solution, if the rank of the matrix E is 3p+ n− 1 and thus E has a one dimensional
null space. In general, under noise and other imperfections, the least squares solution is found
by computing the SVD of E and selecting the basis vector corresponding to the smallest
singular value (which will not be exactly 0).

This is a remarkable result showing that the semi-calibrated PS problem is well-posed and
does not suffer from ambiguities like that of the Generalised Bass Relief (see Section 5.2.1),
even when keeping the classic PS setup. However, directly solving Equation 5.8 is completely
impractical, as E is too big for one to be able to compute its SVD. To overcome this limitation,
Cho et al. [28] proposed an alternating optimisation scheme, where M and Φ are linearly
estimated using each others previous estimates.

5.4 Semi-calibrated near-field Photometric Stereo

After examining the baseline method of Cho et al. [28], this section shows how it can be
extended to meet the realistic modelling assumptions required, to work in the near field.
The key idea is to extend their alternating optimisation scheme in order to calculate all the
required quantities including albedo, light source brightness and depth. Thus, the overall
irradiance equation for the j th light source is:

i j(u, v) = ϕ j ρ(u, v)a j(u, v, z(u, v))
(
N (u, v, z(u, v)) ·W j(u, v, z(u, v), c)

) 1
c(u,v) . (5.9)

Equation 5.9 is almost identical to Equation 3.16. For now, it is assumed that the light
attenuation follows the point-wise anisotropic model of a(u, v) j = (P j · L j(u, v))µ with P j

the principal direction of the light source and µ the attenuation coefficient. It is noted that
assuming ϕ j is known, then the problem reduces to the standard near field photometric stereo
which can be solved using the variational optimisation scheme described in Algorithm 1 in
Section 3.7.6.
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The rest of the chapter explains how to calculate the rest of the relevant quantities as well
as how to perform an alternating optimisation scheme that combines everything together.

5.4.1 Albedo and light source brightness

The problems of computing the albedo, the light source brightness and the light attenuation
maps are formulated such that they can be directly computed depending on the geometry of
the scene z and the reflectance coefficient c(u, v) of the irradiance Equation 5.9.

First of all, normals can be computed by numerically differentiating the depth. The
weighted lighting vector Wj(u, v, z(u, v)) is also trivially computed using the current estimate
of the depth and the light source positions.

Rearranging the irradiance Equation 5.9 gives the following relation for the albedo:

ρ(u, v) =
i j(u, v)

ϕ ja j(u, v, z)d j(u, v, z)
(5.10)

where d j(u, v, z) = (N (u, v) ·W j(u, v, z))
1

c(u,v) .
We note that for each pixel (u, v), there are n equations (5.10). All of them can be stacked

into a matrix giving the following (over-constrained) linear system:


ϕ1a1(u, v, z)d1(u, v, z)

...

ϕnan(u, v, z)dn(u, v, z)

 ρ(u, v) =

i1(u, v)
...

in(u, v)

 . (5.11)

For the light source brightness, the equation (5.10) can be equivalently re-arranged as:

ϕ j = ρ(u, v)
i j(u, v)

a j(u, v, z)d j(x, y, z)
. (5.12)

It is noted that for each light source n there are p equations (5.12), one per each pixel
ordered as (u1, u1), . . . , (up, vp). Stacking these into a linear system, gives:


ρ(u1, v1)a j(u1, v1, z1)d j(u1, v1, z1)

...

ρ(up, vp)a j(up, vp, zp)d j(up, vp, zp)

 ϕ j =


i j(u1, v1)
...

i j(up, vp)

 . (5.13)
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(a) Sample Image (b) Shadow map (c) Point a (d) Calculated a

Figure 5.2 (d) shows a sample calculated attenuation map a(u, v) of one of the images
(shown in (a)) from the sequence of Figure 5.1. (b) shows the calculated shadow map
(see Section 5.5.1) which in turn makes the calculation of attenuations for the shaded pixel
irrelevant, and thus these are left white in (d). (c) shows the attenuation map obtained using
the standard point light source assumption, and is included here as a comparison to (d).

5.4.2 Attenuation map

Most near field PS methods [74, 30, 201] assume point light sources with uniform radial
spread (see Section 3.3.2) which leads to an inverse square attenuation term. It is also
common to assume an angular anisotropy factor which has to be calculated from the LED
data-sheet. However, in practice this assumption might not be very realistic, for a number of
reasons, for example, because the light source has a finite size and is not a perfect point. In
addition, it may be hard to get an estimate of the anisotropy parameter. Finally, there is some
interest in the literature to perform PS in attenuating media which are even harder to model
analytically (e.g. in murky water Murez et al. [126]) . Ideally, the light attenuation at each
pixel for each image should be calculated by considering a j(u, v) as a pixel-wise unknown.
However, this will render the PS problem “hopelessly under-constrained” (see Section 2.2.1)
with many more unknowns than equations. To overcome this limitation, the assumption that
the light attenuation a j(u, v) is locally constant is employed. Note that this is a much weaker
assumption than assuming that the lighting is locally directional. Indeed, Lk(u, v) is expected
to have a non-negligible variation even between nearby pixels.

Thus, what is sought here, is to solve for a j(u, v) by assuming that it has a constant value
over a small patch of k pixels surrounding each pixel (u, v). For every patch, each pixel in
each image provides one equations, thus the total number of equations is n× k. The unknowns
to be calculated are: k albedos ρ(u, v), k depths z(u, v), k shininess coefficients c(u, v) and n
attenuation a j(u, v).

Thus, in order for the number of equations to exceed the number of unknowns, it is
required that:

n × k > 3k + n ⇐⇒ k >
n

n − 3
. (5.14)
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The inequality (5.14) is easily satisfied for k = 9 (i.e. a 3x3 pixel patch) and 5 ≲ n ≲ 50
(typical number of images used in PS problems). Under this assumption establishing that the
search for ak(u, v) is not under-constrained, Equation 5.9 is re-arranged as:

a j(u, v) =
i j(u, v)

ρ(u, v)ϕ j d j(u, v)
. (5.15)

Reusing the strategy followed in Section 5.4.1, it is noted that for each light source j and
each patch, there are k equations (5.15), one per each pixel ordered as

(
(u1, v1), . . . , (uk, vk)

)
.

Stacking these into a linear system gives:


ρ(u1, v1)ϕ j d j(u1, v1)

...

ρ(uk, vk)ϕk d j(uk, vk)

 a j(u, v) =


i j(u1, v1)
...

i(uk, vk)

 . (5.16)

5.4.3 Scale ambiguity

There is one issue that arises from the above-mentioned discussion, and that is, a global two
parameter ambiguity between the scale of ϕ j , the scale of a j(u, v) and the scale of ρ(u, v).
Indeed, one can replace ϕ j by µ ϕ j , a j(u, v) by ν a j(u, v) and ρ(u, v) by ρ(u,v)µν , for any scalars
µ, ν, and the irradiance Equation 5.9 remains unchanged.

To overcome these ambiguities, the following conventions are used: ∥Φ∥ = 1, with
Φ = [ϕ1, . . . , ϕn]

⊺ and also mean[ρ(u, v)] = 1. Although this may seem counter-intuitive
with respect to the usual definition of ρ(u, v) to always be between 0 and 1, the irradiance
equation is consistent with ρ(u, v) of any scale.

5.5 Computational approach

In Section 5.4, it was shown how the calculation of the various unknowns for the semi-
calibrated near field PS problem can be cast as a series of linear (over-constrained) problems
expressed in Equations 5.11, 5.13 and 5.16. Subsequently, inspired by Cho et al. [28] (see
Section 5.3), an alternating optimisation strategy is employed to solve the overall problem.
First of all, it is noted that assuming light source brightness Φ and attenuation a(u, v) as
known, the depth z(u, v) and specularity parameter cz(u, v) calculation steps reduce into the
standard calibrated near field PS and can be solved using the variational optimisation strategy
of Section 3.7.

It is noted that the Φ, ρ(u, v) and a(u, v) update steps come down to solving a series
of linear systems of the form AsX = Bs. As these are over-constrained, there is not only
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one solution, and to maximise robustness, the next step is to find the ℓ1 solution, namely
min
X
∥AsX − Bs∥ℓ1 . This could be achieved using the ADMM scheme of Section 3.7.4 (which

is used for the computation of the depth). However this could be computationally expensive
since the albedo calculation, needs to run once per pixel. A simpler solution (from Candès
et al. [23]) based on re-weighted least squares (wLSQ) is shown in Algorithm 2:

Algorithm 2: Iteratively re-weighted least squares ℓ1 solver
Input: Matrix As, vector Bs
Output: vector X such as min

X
∥AsX − Bs∥ℓ1

while ∥Asx
t − Bs∥ℓ1 < tol do

calculate residual: R = AsX
t − Bs ;

set wi =
1

ϵ+∥Ri ∥ℓ1
;

set W = diag(W ) ;
solve wLSQ: X t+1 = (A⊺s W As)

−1 A⊺s WBs;
end

In Algorithm 2 the constant ϵ ensures numerical stability, and [23] recommend setting it
at a magnitude slightly smaller than the expected magnitude of the vector components, so it
is set to 1/size(X).

5.5.1 Pixel based selection strategy

As the aim is to solve for a large number of unknowns, it is imperative to minimise the effect
of outliers. This is somewhat solved with the use of the ℓ1 error above. In addition, a dynamic
selection of reliable pixels is employed so as to eliminate numerically unstable data. The
following set of heuristics are used (it is assumed that image values are normalised with 0
corresponding to black, 1 corresponding to white):

• Very low image values (i j < 0.05) as these break the ratio method.

• Saturated image values (i j > 99).

• Attached shadows or very little illumination (N · L j < 0.1).

• Cast shadows using ray-tracing (see below).

Shadow map estimation For the near field scenario, when light sources are close to the
object, shadows appear frequently. There are several works dealing with shadows, aiming to
extract geometrical information [172] or to avoid biased shading information [60] especially
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when only a few light sources are considered. For example, Chandraker et al [26] proposed a
graph-cut method to estimate the visible pixels. Barsky and Petrou [10] took into account
both highlights and shadows using only four light sources. However, different approaches
for 3D shape recovery such as multi-view stereo techniques, including [184, 206], have
employed direct visibility computation steps. This has the potential of higher reliability than
the heuristics presented above.

Since an iterative, global geometry refinement algorithm is followed, it is reasonable
to calculate cast shadows directly, through ray-tracing using the previous estimate of the
geometry. Although this procedure is very expensive in terms of computational time, it
ensures that the surface is globally consistent with the light sources making the computation
of the lighting factors more reliable.

A more computationally efficient way of performing this ray-tracing operation, through
the use of an octree data structure, will be discussed in Section 6.5.2.

5.5.2 Alternating optimisation

Up to this point, the discussion has centred on how different sets of variables can be used to
calculate the rest. Of course, when first approaching the problem, very little information about
the geometry and the photometric properties of the scene is known and all the unknowns have
to be jointly estimated. In addition, as each step depends on the results of the previous steps,
the order of these steps is crucial so as the overall procedure to converge to an acceptable
solution at a reasonable rate.

First of all, theΦ update step is performed according to (5.13). A single scalar per image
is calculated using the whole image data, thus this step is very robust to outliers and errors.
The dependence of the system (5.13) on z is overcome by initialising z0 = zmean, the mean
distance between the camera and the object. The albedo is initialized to ρ0(u, v) ≡ 1, the
attenuation using the point source model a0

j (u, v) =
1

∥L j (u,v,z0)∥
2 and ϕ j =

1√
n
, ∀ j. Finally, c

is initialised as c(u, v) = 1, which corresponds to diffuse reflectance.
The next step updates the z values using the variational solver (Section 3.7) which is very

robust to noise and other forms of sparse corruptions but cannot deal with the systematic error
coming from using inaccurateΦ. Indeed, this is exactly the core purpose of the whole chapter;
inaccurate estimates forΦ can lead to substantial deformation of the recovered shape. This is
demonstrated experimentally in Section 5.6 in the comparison with the baseline calibrated
near-field PS (Chapter 3). Furthermore, the main equation for this step Equation 3.18, is
albedo independent hence it is reasonable to precede this computation to the computation of
the albedo.
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Algorithm 3: Semi-calibrated PS
Input:Images, light source positions, rough mean distance z0
Output:Depth map z(u, v), light source brightnesses Φ, aldebo ρ(u, v), attenuation
maps a j(u, v) and shininess parameter c(u, v)

Initialisation:
z0(u, v) = z0, c0(u, v) = 1, ρ0(u, v) = 1, ϕ j =

1√
n
∀ j ;

calculate fields L0
j (u, v, z

0) ∀ j;
set a0

j (u, v, z) =
1

∥L0
j (u,v,z

0)∥2
∀ j;

while | zt+1 − zt |> 10−4× | zt | do
if t > 1 compute shadow maps. endif ;
calculate fields W t

j (u, v, z
t) ∀ j;

calculate N t(zt) (finite differences);
compute Φt+1 solving (5.13);
for every pair j and k, calculate fields b j k(zt, at

j, a
t
k,Φ

t+1,Wt
j,W

t
k),

s j k(zt, at
k, a

t
k,Φ

t+1,Wt
j,W

t
k) ;

calculate zt+1 (§ 3.7) ;
calculate N t+1(zt+1) (finite differences);
calculate fields W t+1

j (u, v, z
t+1) ∀ j;

ρt+1(u, v) solving Equation 5.11;
at+1

j (u, v, z
t+1) solving Equation 5.16 ∀ j;

calculate ct+1 (§ 3.7.5) ;
end

The next step is the attenuation map calculation. This is a local operation and much more
sensitive to inaccuracies. For each pixel, 3 × 3 = 9 = k sized patches containing all of their
neighbours, are chosen to estimate the attenuation. As the patches are overlapping, continuity
is implicitly enforced.

Finally, the c(u, v) update is performed at the end. This is the most numerically unstable
step as it involves a ratio of differences of logarithms thus it is essential to have as good an
estimate of the rest of the parameters as possible.

The whole alternating optimisation procedure is summarized in Algorithm 3.

5.5.3 A non-ratio alternating optimisation approach

Concurrently with our work in [103], Quéau et al. [153] presented another semi-calibrated,
variational approach, which is also included in their extensive study of near-field methods
in [149]. They have a similar aim of modelling nearby, point light sources (using the same
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parameterisation as the one presented in Section 3.3.4), as well as perspective projection, but
differ in that they assume Lambertian reflection. Their main difference with the proposed
approach is that they avoid considering image ratios and instead eliminate the non-linearity
at the normalisation of the normal by handling it as an auxiliary variable. In addition,
the division by z of the perspective projection is removed, using the standard g = log(z)
transformation (see Section 3.3.1). Thus they obtain a quasi-linear PDE which is solved in an
alternating optimisation procedure, also incorporating a robust estimator.

Thus, in the next section, comparison with this method is also included.

5.6 Experiments

The proposed algorithm is evaluated on synthetic and real data which cover a range of different
situations. Firstly, in order to make the proposed approach comparable to the state-of-the-art
semi-calibrated PS Cho et al. [28] (by using a simple implementation of their alternating
minimisation method), Algorithm 3 was adapted to the easier, fully orthographic and diffuse
scenario. This was easily achieved by fixating c = 1, a j = 1 and f = ∞ (106 in practice).
Secondly, in order to test the reliability of the proposed approach, synthetic data generated with
the Cook and Torrance reflection model (see section 2.1.2) were considered. Furthermore,
comparison with the baseline calibrated near-field Photometric Stereo (Chapter 3) is provided.
The comparison with this work provides clues regarding shape deformation which occurs
when reasonable, but incorrect brightness is used. Finally, some comparison with the later
semi-calibrated method Quéau et al. [149] is also provided.

The proposed algorithm was implemented in MATLAB and run on a server machine
with an AMD Opteron CPU. The computation time for the 2 MPixel x 9 images datasets,
was about one hour, with peak memory usage of around 30GB. Around 90% of the total
computation time was spent on the shadow and attenuation maps calculation steps.

5.6.1 Synthetic data

Three synthetic data sets, with eight images each, were generated, using the “Armadillo”
model (see Figure 3.6) with the “Lena” image was used for the albedo (see Figure 5.3). The
first dataset was made under the classic PS assumptions i.e. directional lighting, orthographic
projection and diffuse reflection, in order to provide a fair comparison against Cho et al.
[28]. The second dataset was a near-field, diffuse reflection scenario where the object had a
size of 2cm and was placed 4cm away from a virtual pinhole which had a focal length of
12mm. The light sources were symmetrically distributed at two circles of radius 3cm and



5.6 Experiments 83

(a) (b) (c) (d) Ground truth

Figure 5.3 Synthetic data samples and ground truth mesh (d). (a), (b) and (c) correspond to
the three experiments performed namely classic PS, near-field with Lambertian reflection
and near-field with Cook & Torrance reflection respectively.

5cm respectively, around the camera. To apply Cho et al. [28] to the near-field scenario, the
L j at the center of the object was used as the lighting direction. As a result, the errors grew
towards the boundaries of the image (Figure 5.5). Finally, the third dataset had the same
arrangement as the near field scenario but the object was rendered by using the Cook and
Torrance reflection model. This created specular highlights inconsistent with the assumed
irradiance Equation 5.9, thus the robustness of the proposed method was tested with more
physically derived synthetic data. To stress all compared algorithms to their limits, the
brightness of the light sources Φ was made to vary significantly. In fact, the brightest light
source was 5 times brighter than the dimmest (see Figure 5.4).

The quantitative evaluation of the algorithms was achieved through the Mean Angular
Error (see Section 4.3.1) between the normals obtained and the ground truth, shown in the
bottom line of Figure 5.5. The evaluation of the predicted light source intensities is shown in
Figure 5.4. It was achieved by finding the angle betweenΦ and the ground truthΦgt . AsΦ is
always a unit vector (section 5.4.3), EΦ = arccos(Φ ·Φgt). This angle is reported in degrees
although, as these are 9 dimensional vectors (for datasets with 9 images), the reported values
have limited physical meaning. The proposed approach significantly outperforms the other
approaches being challenged in both near field cases and gets a slightly higher error than [28]
in the classic PS scenario. This final result is expected, as [28] is designed to solve the PS
problem when the classic PS assumptions are exactly true.
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(b) Near/Diffuse.
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(c) Near/Cook & Torrance.

Figure 5.4 Quantitative evaluation of the light source brightness estimation. The comparison
is against [28] which was at the time the only other semi-calibrated approach. The evaluation
metric is the angle between estimated Φ and the ground truth. The proposed approach is
marginally worse at the classic PS scenario (a) but outperforms it in the cases of near field
lighting and specular reflectance.

5.6.2 Real data

The proposed algorithm was evaluated in several real datasets shown in Figure 5.6 as well
as the dataset shown in Figure 5.1. To make the tests as challenging as possible, multiple
objects with various reflections were combined, including a plastic baseball player figurine,
a marble statue, a 3D printed plastic version of the Armadillo and a shell. The algorithm
was initialised to a flat plane at a distance approximated by a ruler measurement. For scenes
which are roughly 10-20cm away from the camera, the 1mm limit of precision of the ruler,
translates to around 0.5-1% uncertainty. To simulate significant variation in light source
brightness, in order to stretch the algorithm to its full potential, images in Figure 5.1 were
shot with varying exposure.

Quantitative Evaluation In order to quantitatively evaluate the semi-calibrated PS method,
estimates of the varied brightness of the light sources (contained in the unit vector Φ) are
compared with the ground truth in the same way as for the synthetic experiments presented
in Section 5.6.1. The ground truth light source brightness is calculated using two different
approaches. The first approach involved using a LUX meter, by placing its sensor in the
middle of the field of view at a known distance. Thus, Φ can be calculated by multiplying
the LUX value with the distance attenuation factor (see Section 3.3.4) which is calculated
precisely1 since the LUX meter sensor is in a know position. In addition, very slow acquisition
sequences were performed where each LED was given around 100ms to reach the end of its

1assuming the angular anisotropy factor is accurate.
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Figure 5.6 Two sample images for each of the three additional real datasets (along with the
one presented in Figure 5.1). The top line contains the darkest image of each dataset while
the bottom line has the brightest image of each dataset.

Figure 5.7 Close-up views of the textured reconstructions of the datasets of Figures 5.1 and
5.6, obtained with the use of the proposed method.

rump-up time before acquiring images. A delay of a few seconds was introduced between
capturing from different LEDs, to avoid overheating.

The second approach for the calculation of the ground truth Φ was image based: For each
LED, a picture of a planar surface, perfectly aligned to the image plane and painted with a
water based barium sulfate coating formulated to yield paint with high diffuse reflection, was
taken Then, the Φ estimation was done by ignoring the z and c update steps of the proposed
algorithm (known geometry & reflectance on the reference object). This essentially meant
alternating between solving Equations 5.11 and 5.13 which led to a very quick convergence.
The second method was intended to be a sanity check, and the fact that it lead to an almost
identical estimate for Φ (see Figure 5.8a) confirms the reliability of that estimate.
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(b) Mother-child-Armadillo dataset.

Figure 5.8 Quantitative evaluation on light source brightness estimation. The ground truth Φ
is provided by multiplying the LUX meter luminance estimate with the known exposure value
(as the dataset of (b) is shot with variable exposure in order to increase the challenge of the
dataset). In addition, a reference object (white-Lambertian plane) is used as a sanity check
and provides a very similarΦ estimate as the LUX meter. The comparison is performed with
the other two semi-calibrated methods Cho et al. [28], Quéau et al. [149] (for an explanation
of [149], see Section 5.5.3) and the proposed approach outperforms both of them.

Regarding the result of Φ estimation as shown in Figure 5.8 note that the proposed
approach outperforms both competing semi-calibrated methods ([28, 149]), especially on
the highly specular “Mother-child-Armadillo” dataset (Figure 5.8b). This is expected as the
proposed method specifically handles specular reflections in contrast to [28] which does not
handle them at all and [149] which indirectly deals with them with a robust estimator.

Qualitative Evaluation A qualitative comparison between the proposed method and the
competing methods is shown in Figures 5.9, 5.10 and 5.11 . As expected, the baseline
calibrated near field method ([118]) is entirely outclassed and this demonstrates the importance
of the semi-calibrated problem. In addition, the reconstructions of [28] experience some
deformations due to near field effects and specular reflections. Finally, in terms of a qualitative
assessment, the results of the proposed method and those of [149] are very similar, especially in
the almost Lambertian Buddha dataset (5.9), and indeed, this shows the value of incorporating
a robust estimator. Nonetheless, the quantitative metric of light source brightness reveals
a slight advantage of the proposed method over the other methods, especially as far as the
specular datasets are concerned.
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(a) [28] (b) [118] (c) [149] (d) Proposed

Figure 5.9 Qualitative comparison with [28, 118, 149] based on the real datasets of Figure 5.6.
[118] is the baseline calibrated method. The comparison demonstrates the importance of the
known light source brightness and thus [118] is easily outclassed. The semi-calibrated near
field method of [149] results in almost identical quality results as the proposed method.

Finally, zoomed, textured reconstructions of the proposed method are shown in Figure 5.7.
Note that the albedo is calculated as raw luminance value and then demosaicing is used in
order to retrieve the RGB colours.

5.7 Discussion

In this chapter the semi-calibrated near-field PS problem was presented. The variational
approach of the calibrated near field PS problem (explained in Chapter 3) was extended and
incorporated into an alternating optimisation framework. The intrinsic brightness of the
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(a) Cho et al. [28] (b) Mecca et al. [118]

(c) Quéau et al. [149] (d) Proposed

Figure 5.10 Qualitative comparison with [28, 118, 149] on the hand dataset of Figure 5.6.
This experiment also confirms the results of Figure 5.9, where [28, 118] are completely
outclassed. In addition, the result of [149] also has a small global bending, possibly because
it does not handle specular reflection and does not optimise light attenuation.

light sources, as well light attenuation factors, were also optimised, while still retaining the
perspective viewing geometry, nearby light-sources and specular reflection modelling.

The proposed approach was evaluated across a number of synthetic and real world datasets
containing heterogeneous materials, and obtained state-of-the-art results and even compared
favourably with the later method of Quéau et al. [149]. In addition, the ability of the proposed
method to estimate intrinsic light source brightness was quantitatively evaluated through
LUX meter measurements and all competing methods were outclassed.

Limitations The main limitation of this approach is its inability to deal with surfaces
with a vastly different reflectance from the Blinn-Phong specular model or the Lambertian
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(a) Cho et al. [28] (b) Mecca et al. [118]

(c) Quéau et al. [149] (d) Proposed

Figure 5.11 Qualitative comparison with [28, 118, 149] using the real dataset of Figure 5.1.
This is by far the most challenging dataset as it features discrete objects with varied material
properties (marble and plastic), with a depth discontinuity in their boundary, and also shadows
and self occlusions. In addition, the dataset was shot with varied exposure so as to push the
Φ variation/estimation to the limit. As a result [118] fails quite significantly as its result is
very deformed. [28] is also performing quite poorly: it avoids significant global deformations
as it produces a reasonable estimate of Φ (see Figure 5.8b) but still has a number of artefacts
e.g. on the child’s heads. Finally, [149] is also surpassed (although by a small margin) and
this demonstrates the significance of specifically handling specular reflection.

(diffuse) model. In addition, the method has a very high computation cost, mainly because
of the shadow map ray-tracing as well as the light attenuation optimisation. Ray-tracing
shadows is very expensive due to the depth map parameterisation of the surface, as for each
pixel a whole line of pixels needs to be traced to determine visibility. Moreover, this depth
map parameterisation also induces bias and unwanted deformations in scenes with multiple
discrete objects, which is a generalised problem for most 2D PS methods. This problem
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will be dealt with in the next Chapter where the multi-view PS problem is addressed and
the proposed solution can reconstruct multiple discrete objects. In addition, the proposed
volumetric approach is naturally organised in an octree data structure which significantly
speeds up ray-tracing visibility computations.

Future Extensions A straightforward extension of this work would be to replace the
point-wise attenuation map estimation with a fully variational optimisation. This could be
achieved by stacking the attenuation Equation 5.15 along with the smoothness constraints
a(u, v) = a(u + 1, v) and a(u, v) = a(u, v + 1) into a big linear system, which when solved,
would generate a more accurate estimate. In the context of semi-calibrated near field PS, an
important future task would be to consider non-negligible ambient light (see Chapter 4). This
makes the problem much harder to solve since the photometric parallax is reduced by the
presence of an additional offset. In addition, image differences do not immediately eliminate
the ambient light as this is proportional to the image exposure, which can be assumed
unknown in the case examined in this chapter. Finally, the applicability of the proposed light
attenuation method estimation in the case of a significantly attenuating medium, such as
water, is foreseen.





Chapter 6

Multi-view Photometric Stereo

Figure 6.1 The Multi-View Photometric Stereo Problem: the objective in this chapter is to
reconstruct scenes of multiple objects from heterogeneous materials. The images here show
three views of a multi-object scene made up of a swede next to a porcelain cup which contains
a small tree branch. Readily available SFM software can easily track the camera motion
around the scene and create a sparse reconstruction (see Figure 6.2), but creating a dense
reconstruction is not trivial.

6.1 Introduction

Up until this point in this thesis, it has been demonstrated how Photometric Stereo has been
used to retrieve highly detailed surfaces from a single view. However, obtaining a full 3D
object reconstruction, by merging data from different points of view is non-trivial (this will
be further explained in Section 6.3.1).



94 Multi-view Photometric Stereo

Multi-view stereo, has been the go-to method for obtaining large scale reconstructions.
MVS is complementary to PS, as it is mostly reliable for reconstructing specific point features
which can be matched in different views and then triangulated (e.g. the eight point algorithm
[107]). On the other hand, PS is mostly reliable for continuous and differentiable surfaces and
does not perform well around sharp corners and edges. In addition, as seen in Section 2.2.2,
PS is more accurate when reconstructing high spatial frequencies rather than low ones.

Multi-View Photometric Stereo (MVPS) approaches have been developed to overcome
constraints coming from both sides, in order to deal with: specular highlights Jin et al.
[79], Ackermann et al. [3], dynamic scenes Vlasic et al. [183], visibility and occlusions
Delaunoy and Prados [39] and mapping of the Photometric Stereo views onto the coarse
volume Sabzevari et al. [157], Park et al. [144].

Figure 6.2 Out of the box structure from motion software (VisualSFM [193]) can provide an
accurate camera trajectory and a sparse reconstruction around the scene of interest (Figure 6.1)
by using a raw video stream as input. The objective of this chapter is to use this information
along with images with varied illumination so as to be able to generate an as-dense-as possible
reconstruction of the scene.

It is generally accepted that SFM algorithms are reliable for tracking camera motion in a
scene and for providing a sparse point cloud reconstruction with most of the research in MVS
and MVPS aiming at increasing the accuracy of the reconstruction by generating denser and
denser surfaces.

Since implicit parameterisation of volumes has been developed using level-set approaches
Malladi et al. [112], Osher and Fedkiw [140], recent advances in parameterising volumes
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with signed distance functions (SDFs) [210, 134] have made the multi-view approach
prone to be merged with differential formulation of irradiance equation providing shading
information [111]. On the other hand, recent PS approaches have moved towards more
realistic assumptions, giving consideration to point light sources [120, 149] that make the
acquisition process easier by using LEDs in a calibrated setting.

Following the paradigm of other MVPS methods, it is assumed that images from multiple
viewpoints and varied illumination (obtained by the capture setup of Figure 1.5) are a given.
In addition, it is assumed that the camera trajectory (which also fully calibrates the light
source positions as the LEDs are rigidly attached to the camera) is known, and that a low
quality reconstruction of the scene also exists.

Contribution This work proposes the following:

• A differential parameterisation of the volume, based on the signed distance function that
allows irradiance equation ratios to deal with near-field Photometric Stereo modelling
(Section 3.3).

• A variational optimisation that fuses information from multiple viewpoints into a single
system. This is an evolution of the 2D Photometric Stereo variational optimisation of
Section 3.7.

• An octree implementation capable of retrieving highly accurate volumetric reconstruc-
tions in scenes with multiple discrete objects.

6.2 Related works

There are multiple examples in the literature for merging multi-view coarse reconstructions
with techniques based on shading information so as to provide high frequency details of the
surface [125, 187, 195, 129, 15] rather than topological evolution of the surface Jin et al. [79].
However, regarding the refinement, several methods take inspiration from SFS (Section 2.3)
to extract 3D geometry from a single image (MVSfS) and also consider shape refinement
coming from single shading cues Wu et al. [197, 198], Barron and Malik [9] and Jin et al.
[77, 76]. With the aim to improve the quality of the details and make the reconstruction
more robust to outliers, multiple shading images from a single view point are considered. A
number of MVPS approaches have been presented [59, 144, 209].

Merging shading information with multi-view images becomes a more complicated
problem when considering specular surfaces. Drastic changes in both the shading under
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different lighting and the viewing point, modify the appearance of the 3D geometry so
that specific approaches have been developed to deal with irradiance equations with a not
negligible specular component. Jin et al. [79] exploited a rank constraint on the radiance
tensor field of the surface in space, with the aim of fitting the Ward [186] reflectance model.
Other approaches reconstructed an unknown object by using a radiance basis inferred from
reference objects instead (Treuille et al. [180] and Ackermann et al. [3]). Zhou et al. [209]
developed a camera and a hand-held moving light system in order to first capture sparse
3D points and then refine the depth along iso-depth contours Alldrin and Kriegman [5]. A
similar handheld system has been developed by Higo et al. [62] where multi-view images
were acquired under varying illumination by a handled camera with a single movable LED
point light source for reconstructing a static scene.

In order to make the MVPS solvable, additional assumptions have been considered.
More specifically, with the aim to compute the camera positions so as to accurately map
the Photometric Stereo views, thereby constraining the relative motion of the camera and
the object. Hernández et al. [59] captured multi-view images for a moving object under
varying illuminations by combining shading and silhouettes assuming circular motion for
the computation of the visual hull. Zhang et al. [207] generalised optical flow, Photometric
Stereo, multi-view-stereo and structure from motion techniques assuming rigid motion of the
object under orthographic viewing geometry and directional lighting. Furthermore, shadows,
occlusions or inter-reflections were not considered.

When PS (as well as SfS) has to be integrated with multi-view techniques, the problem
of finding the correspondence of pixels with shading information on the 3D surface is
crucial. Geometric distortions produced by changes in pose have to be combined with varying
illumination. One way to do so is by region tracking considering brightness variations using
optical flow [57], parametric models of geometry and illumination [55], or outlier rejection
Jin et al. [78]. Okatani and Deguchi [136] proposed a photometric method for estimating
the second derivatives of the surface shape of an object when only inaccurate knowledge of
the surface reflectance and illumination is given by assuming a probabilistic framework and
solved by belief propagation.

Other approaches instead align the shading images with a coarse 3D mesh in order to
map the PS data onto the coarse 3D shape [100, 82]. Delaunoy and Prados [39] used a
gradient flow approach whereas Sabzevari et al. [157] firstly computed a 3D mesh with
structure from motion with a low percentage of missing points and then the mesh was
reprojected onto a plane using a mapping scheme [102]. Recently, Park et al. [144] proposed
a refinement method by computing an optical displacement map in the same 2D planar
domain of the PS images. To do so, they transformed the coarse 3D mesh into parametrised
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2D space using a distortion parameterisation technique [165]. The main limitation of these
mesh parameterisation techniques is their inability to optimise the object’s topology; this is
dealt with in Yoshiyasu and Yamazaki [204] where an alternation between mesh and SDF
parameterisation is proposed in order to be able to adjust the topology.

In this chapter, a differential approach for MVPS that avoids any mapping procedure is
presented. Being inspired by the signed distance function parameterisation and refinement
used by Maier et al. [111] for the MVSfS problem, a volumetric parameterisation which
handles the differential irradiance equation ratios presented in Chapter 3, is derived. This
parameterisation is implemented on an octree (Luebke et al. [110]) which allows to perform
fast ray-tracing to estimate shadows and occlusions.

6.3 Signed distance function

Figure 6.3 Illustration of the Signed Distance Function for the 2D shape shown left (boundary
of the “Armadillo”). This can be graphically depicted as an image (left), where high grey level
values correspond to high distance outside of the shape and low grey level values correspond
to high distance inside the shape. Alternatively, the SDF d can be depicted as a surface plot
(right), i.e. [x, y, d(x, y)]. This graphically illustrates that the SDF is continuous everywhere
and differentiable “almost everywhere”, which is very important for its integration in a
differential approach. Of course, the SDF of a 3D shape (i.e. surface) is considered in practice
but a 4D plot cannot be easily illustrated.

In order to provide a suitable mathematical characterisation of a collection of solid objects,
the implicit surface parameterisation in terms of the Signed Distance Function1 SDF is
considered. The SDF is a function d : R3 → R that maps every point to its distance to the
closest surface (Osher and Fedkiw [140]). By convention, points within the object’s bounds
are assigned negative SDF values, while points outside its bounds are assigned positive

1Also called Signed Distance Field.
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values. There is an 1 to 1 mapping between the surface and the SDF, and thus the SDF can
be used as an implicit surface parameterisation. In fact, the corresponding surface can be
extracted from the zero-crossings of the SDF via the marching cubes algorithm [108]. The
SDF d has a number of useful mathematical properties. It is continuous everywhere and
differentiable “almost everywhere” (see Figure 6.3 for an illustration), except for points which
are equidistant from nearby surfaces. Thus, d is suitable for use in a differential approach as
the non-differential points could easily be handled as sparse outliers, in a very similar manner
to that in which with depth discontinuities in the standard 2D PS framework are handled (see
Section 3.7.4). In addition, d satisfies the eikonal equation (see Section 2.2.2):

| |∇d(X)∥ = 1 ∀X ∈ R3. (6.1)

Moreover, for points X in a vicinity of the surface (i.e. ∥d(X)∥ ≈ 0), the gradient of d is
identical with the respective surface normal N:

N (X) = ∇d(X). (6.2)

The property defined in Equation 6.2 is the key to linking the SDF into a PS param-
eterisation and expressing an irradiance equation in terms of d. This is described in
Section 6.4.

  

∇d(X)

V
Figure 6.4 The distance of a point infinitesimally close to the surface along a vector V is

d(X)
∇d(X)·V .

Finally, the following obvious and useful result is noted: for a point X infinitesimally
close to the surface, its distance to the surface along a view vector V is d(X)

∇d(X)·V as shown in
Figure 6.4.

6.3.1 Naive Photometric Stereo reconstructions merging

Before proceeding to the differential approach for MVPS, the naive solution to the problem is
addressed; this solution is the merging of depth maps obtained by using PS from different
views. In fact, the SDF has been the traditional way of merging multiple depth maps,
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Figure 6.5 Naive PS reconstructions merging. Relatively nice looking reconstructions can
be very incompatible and lead to a very bad merging, when using a simple implementation
of Curless and Levoy [34]. As shown in Figure 6.6, small normal errors propagate to large
depth errors making the different pieces merge incompatibly and lead to severe artefacts in
the boundary region.

introduced in Curless and Levoy [34]. Various SDF-based fusion algorithms are still very
popular such as Kinect fusion [130] as well as more recent methods such as Maier et al. [111].
However, the problem with PS reconstructions is that small, sparse errors in normals (which
essentially provide all the information) lead to systematic deformations in the depth maps as
shown in Figure 6.6.

In addition, the use of a robust merging algorithm is probably not going to solve the
incompatibility problems shown above. For example Ylimäki et al. [203] employed median
filtering and used estimates of the uncertainty of depth to calculate a covariance matrix for
the calculation of the Mahalanobis distance of the 3D clouds being merged. The systematic
depth errors in the PS depth maps, mainly arising from smoothing out depth discontinuities,
are not sparse (see Section 2.2.1) and thus these approaches are expected to underperform.

Finally, one main reason for the success of Kinect fusion-like algorithms is the ability of
structured light sensors to provide a large amount of depth data, typically at least 30 frames per
second. In fact, Curless and Levoy [34] showed that their merging of depth maps converges
to the true SDF assuming a large number of views. However, obtaining a large number of PS
reconstructions is impractical, mainly for the following two reasons. Firstly, PS acquisition
requires multiple images per view and thus it is likely to require some non-negligible capture
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Figure 6.6 Demonstration of how small, sparse normal map errors lead to severe depth map
errors. Note that 4mm (light green) is 20% of the diameter of the 20mm object.

time. A notable exception is Brostow et al. [21], where RGB channels are exploited in order
to capture three images at the same time and perform real time reconstruction. However, this
approach is critically dependent on the assumption of equal albedo on all three channels.
In addition, the approaches presented in Chapters 3 to 5 require more than three images
per view (especially if specularity coefficients and light source brightness are calculated)
and thus a multi-spectral camera would be required. Finally, the variational optimisation
discussed in Section 3.7 is computationally expensive and not running in real time. The
approach presented here overcomes all of these limitations. A unified PDE is formed on the
SDF and a variational optimisation, merging information from all views at the same time,
is presented. The approach does not require too many views, the requirement being just a
sufficient coverage of the object’s surface.

6.4 Differential multi-view Photometric Stereo

Similarly to [198, 210, 111] that used the SDF for single image shading refinement, the SDF
is considered for the irradiance equation to derive a differential multi-view Photometric Stereo
formulation. It is assumed to have nps images (i.e. light sources) for each known camera
configuration Cq (that is nps(Cq j), j = 1, . . . nviews). The matrix Cq is used to contain the
camera configuration as Cq = [Rq,Tq], where Rq and Tq are rotation matrix and translation
vector, linking image plane point (u, v)q to world 3D point X as:

(u, v)q = Π(RqX +Tq) (6.3)

where Π denotes perspective projection as defined in Equation 3.6.
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Following the same paradigm as the rest of this thesis, to exploit the monocular aspect of
the PS problem, image ratios for the Lambertian shading model (Section 2.1.1) are considered,
assuming calibrated nearby LED light sources. Thus, the respective irradiance equation is:

i j(u, v) = i j(X) = ρ(X)a j(X)N (X) · L j(X) (6.4)

where (u, v) ∈ R2 is the image-plane projection of the 3D point X as defined in Equation 6.3.
It is very important to emphasise that this irradiance equation is considered for points

X on the 3D space in contrast to the rest of the thesis which considers irradiance equations
for 2D image plane points. Thus i j(X) is the reflected radiance which can be calculated
by projecting that point X onto the image plane and thus i j(u, v) = i j(X). In practice this
projection will require a linear interpolation as discussed later in Figure 6.8 and it is only
valid if the 3D point X is not occluded.

In addition, the volumetric irradiance equation 6.4 is only valid for points in the vicinity
of the surface, as ρ(X) and N (X) are only meaningfully defined for surface points. As pretty
much the entirety of PS literature assumes continuity, it is assumed that properties that are
exactly true for surface points, will be approximately true for points close to the surface.

In contrast, the light attenuation a j(X) and the lighting vector L j(X) can be defined for
every 3D point X using the definitions presented in Section 3.3, regardless of the existence of
a surface or the value of the SDF around that point. Again assuming no occlusions, a j and
L j are trivially computed with the respective formulas (assuming calibrated setup).

6.4.1 Modelling with image ratios

To simplify the non-linear normalisation of the normal as well as the albedo, the ratio method
(Section 3.2) is followed. Indeed, dividing equations for images j and k as in Equation 6.4
(ignoring dependence of all variables in X for clarity), gives:

i j

ik
=

a jN · L j

akN · Lk
⇒ N · (i jakLk − ika jL j) = 0. (6.5)

It is noted that images j and k do not necessarily need to be from the same point of view
Cq but this minimises the inaccuracy caused by not being exactly on the surface boundary (it
has been assumed that points where the irradiance equation is considered are near the surface
but of course if the surface was known precisely, the reconstruction problem would have
already been solved). Essentially this projection matches image points i j(u j, v j), ik(uk, vk)

which are guaranteed to be projections of the same 3D point X only for images from the same
point of view.
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By substituting the parameterisation of the normal from Equation 6.2, the following
albedo independent, homogeneous linear PDE is obtained:

B j k(X) · ∇d(X) = 0 where B j k = ika jL j − i jakLk . (6.6)

The geometrical meaning of Equation 6.6 is the extension of the 3D volumetric recon-
struction of the PDE approach presented in Mecca et al. [121]. In fact, the PS model still
consists of a homogeneous linear PDE where the tangentiality of B j k on the surface is by
definition the zeroth level set of the SDF.

There are two important differences to [121]. First of all, B j k(X) does not directly depend
on d, due to the fact that the relevant quantities are expressed on a global coordinate system
independent of the existence of a surface. Thus the equation is linear (instead of quasi-linear)
and B is easily calculated from image data. Of course, there is the indirect dependence on the
fact that Equations 6.4 to 6.6 are only true in the vicinity of the surface. In fact, the correct
way of thinking about the 3D irradiance equations is If there is a surface near a point there,
its orientation satisfies that equation. The other difference of Equation 6.6 to the unified
equation of 2D PS (3.18) is that it is homogeneous and thus ill-posed. Directly solving for d
is impossible, even if d is known on a number of points. The solution to this problem is to
incorporate a Tikhonov regulariser (see below).

An interesting observation is that Equation 6.6 is conceptually similar to the iso-depth
curves in the work of Zhou et al. [209]. Nonetheless, the SDF formulation is a more “natural
object-centered” depth and this allows for a unified optimisation as described in the next
section. In order to simplify the notation, the pair j k is renamed as p.

6.4.2 Multi-view Photometric Stereo as a weighted least square prob-
lem

In order to consider PS images coming from different views into a single mathematical
framework, the following weighted version of Equation 6.6

wq(Cq, X)Bq(X) · ∇d(X) = 0 (6.7)

is stacked in a single system to get:


[w1(C1, X)B1(X)]

⊺

[w2(C2, X)B2(X)]
⊺

...

 ∇d(X) = 0 (6.8)
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p

q
Figure 6.7 Considering photometric ratios from the same point of view reveals the surface
orientation (or equivalently the SDF levelset) in the projection of that point to the surface
along the viewing ray. In the figure, one pair from image p reveals the SDF levelset
orientation at the red point, and another from image q at the green one. Then the actual
SDF levelset (black arrow) should be a weighted sum of these orientations, with weights
inversely proportional to the distance to the surface between these viewing rays which equals

d(X)
∇d(X)·V (X)p

and d(X)
∇D(X)·V (X)q

respectively (see Figure 6.4). Hence, it is reasonable to set
weights to ∇d · Vp = N · Vp and N · Vq respectively. Of course all of this discussion assumes
continuity and that the point in question (black) is close to the actual surface.

wq(Cq, X) = max(N (X) · Vq(X), 0) and Vq(X) denotes the viewing vector on the volume for
the camera position Cq. This weight term wq is essentially a measure of visibility aimed
at increasing the significance for equations corresponding to views that have a direction
viewing angle at a particular point in space. For an additional explanation of the geometrical
meaning of this weighted sum, see Figure 6.7. In addition, in case of a self-occlusion, the
corresponding weight is set to 0. The addition of this weight term does not change the form
of the equation which is still a homogeneous linear PDE.

The resulting system then counts
∑Nviews

q=1
(Nps(Cq)

2
)

equations as (6.8), and with the aim to
solve it as a least square problem, the normal equations are considered

B(X)∇d(X) = 0 (6.9)

with:

B = [w1(C1, X)B1(X),w2(C2, X)B2(X), . . .]


[w1(C1, X)B1(X)]

⊺

[w2(C2, X)B2(X)]
⊺

...


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being a positive, semi-definite, 3 × 3 matrix.

Rank correction The geometrical constraint coming from (6.6) ensures that all the vector
fields Bq(X) ∈ R

3 span the same bi-dimensional space ∀X of the volume as they define the
level-set of the SDF. This means that under ideal circumstances, the rank of B in Equation 6.9
should be exactly 2. However, due to numerical approximations this is never exactly true;
this constraint can been enforced by using the eigenvalue decomposition of B hence:

B = QΛQ⊺ = Q


Λ1 0 0
0 Λ2 0
0 0 Λ3

 Q⊺ with Λ1 ≥ Λ2 ≥ Λ3 and setting Λ3 = 0. (6.10)

Another reason why B cannot be full rank is the Eikonal Equation 6.1. In fact, if B∇d = 0
and B is full rank then ∇d = 0 which contradicts ∥∇d∥ = 1. In practice this would mean
that d does not closely resemble an implicit surface parameteristation and that extracting a
surface with the marching cubes algorithm would produce unpredictable results. Thus this
rank correction step increases numerical stability.

6.5 Variational resolution

In this section, the variational solver introduced in Section 3.7 is adjusted in order to be able
to deal with the novel 3D-SDF parameterisation introduced in the previous section. First of
all, as already discussed, Equation 6.9 is rank deficient, and thus a closed form computation
of the volume is not possible. This is not surprising as the PS constraint encodes orientation
and should not convey any information about the rate of growth of the SDF; this information
is encoded in the Eikonal Equation 6.1. Indeed, integrating Equation 6.1 with Equation 6.9
would lead to a much more constrained problem which would however be much harder
to solve as Equation 6.1 is non-linear. Finally it is noted that there is a single parameter
ambiguity due to the fact that the equation depends on ∇d and not d directly (which is very
similar to the problem presented in Section 3.7.3). The actual reason for this ambiguity
is the convention of representing the surface as the zeroth level-set of the SDF; the whole
differential parameterisation described above would be consistent with any level set value.

All of these ambiguity reasons are resolved by adopting a Tikhonov regulariser of the
form d(X) = d0(X) where d0(X) is some initial estimate of the SDF; this is calculated as the
distance transform of an initial surface estimate. This estimate can be obtained with MVS or
any other 3D reconstruction method and as later demonstrated in the experimental Section 6.7,
it is not required to be very accurate. In fact, as it has been assumed that camera positions
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and orientations are known, it is not unreasonable to expect to have an initial estimate of the
geometry as well, as a result of the output of standard SFM pipelines (e.g. VisualSFM [193]).
Thus the regularised version of the problem becomes:

min
d
(∥B(X) · ∇d(X)∥ℓ2 + λ∥d(X) − d0∥ℓ2). (6.11)

The use of ℓ2 could in theory be replaced with ℓ1 as described in Section 3.7.4, however
a choice was made not to do that for the following reasons. Firstly, enforcing the rank 2
constraint is much easier after considering the ℓ2 solution (Equation 6.10), as the resulting
matrix is 3x3; otherwise, performing SVD on a Nviews

(Nps

2
)
× 3 matrix per point on the

domain (see next section about the discretisation) would be required. This would therefore be
orders of magnitude more computationally expensive. In addition, the use of the ℓ2 vastly
reduces the memory requirements as discussed in Section 3.7.2.

6.5.1 Discretisation

In this section, how the PDE of Equation 6.11 can be discretised and solved over a finite set
of 3D points is described. This set Ω ⊂ R3 of 3D points X = (x, y, z) need to be close to
the surface, as this is required if the normal parameterisation of Equation 6.2 is to be valid.
In addition, it is convenient to think of these points as voxels with a finite size s, as this is
crucial for projecting to images and hence determining i(x, y, z) as illustrated in Figure 6.8.

  

(x1,y1,z1)

(x2,y2,z2)s

s

C f

Figure 6.8 Discretising the volume into a set of voxels with finite size s is imperative for
determining correspondence to pixels in order to perform linear interpolation and thus
determine i(x, y, z). This is shown by colouring successive pixels on the image plane with
different colours, in order to emphasise the possibility of 1 to many mapping between voxels
and pixels. Note that C is the camera center and f the focal length of the camera.

After having established a connected set of voxels, the next step involves expressing the
partial derivatives using finite differences. This is done in a very similar fashion as in the 2D
case discussed in Section 3.7.1. Denoting as D the vector stacking all d(X) for all X ∈ Ω,
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one obtains:
∂D

∂x
= GxD ,

∂D

∂y
= GyD ,

∂D

∂z
= GzD (6.12)

where Gx , Gy and Gz are sparse matrices with−1 and 1 on the non-zero entries. Equation 6.12
is a direct 3D generalisation of Equation 3.29. Thus, Equation 6.11 is discretised in the form:

AsD = Bs (6.13)

where As is symmetric positive definite and thus the system can be solved with Cholesky
factorisation or conjugate gradients in the case of a very large domain.

6.5.2 Octree implementation

To manage the required set of voxels ∈ Ω described above, an octree structure is used. Ω
is defined at the leafs of the tree, and voxel neighbours, which are essential for computing
finite differences, are found by bottom up traversal of the tree. The use of the octree structure
greatly reduces the memory requirements for the representation of the SDF of the surface,
and most importantly, greatly accelerates visibility computations, shown in Figure 6.9 and
explained below.

  

(a) Depth map

  

(b) Octree

Figure 6.9 Illustration of how the proposed octree SDF parameterisation accelerates ray-
tracing used for visibility estimations. In (b), shades of green denote voxels with positive d
and shades of blue denote those with negative d. An occlusion is detected when the tracing
of the red ray moves from a green to a blue voxel and thus it means that it has intersected the
surface. As the size of the voxels is variable, fewer of them need to be examined in contrast
to (a), where the ray is traced on a fixed size depth map.



6.5 Variational resolution 107

Visibility Estimation In order to deal with scenes with a complex geometry and potentially,
with multiple objects, occlusions need to be addressed. This is performed by ray-tracing lines
from each voxel to each light source and camera, by using the current estimate of geometry
to check for cast shadows and occlusions. Whenever an occlusion/shadow is detected, the
relevant weight in Equation 6.7 is set to 0.

Ray-tracing complexity Octrees have been known to the graphics community for a long
time (e.g. Luebke et al. [110]) as they offer better theoretical algorithmic complexity for
various tasks such as visibility calculations and collision detection compared to depth maps
and triangle meshes. More specifically, for the visibility computation task, assuming a voxel
grid of dimension n × n × n, then the number of voxels around the surface, which are going
to be the leaf nodes of the tree where all the calculations are performed, are expected to
be O(n2). Then, for each voxel, visibility calculations only require examining O(log n) (as
illustrated in Figure 6.9b) as opposed to O(n) operations on a depth map parameterisation.
The complexity is even worse for a triangle mesh parameterisation (e.g. Park et al. [144])
where there is no notion of spatial ordering (i.e. any 2 triangles could be nearby in space)
and thus all O(n2) pairs of ray-traingle intersections need to be examined. In practice, the
logarithmic complexity means that for the datasets examined in Sections 6.7, the ray-tracing
operation only required a few seconds, on a several million voxels grid.

6.5.3 Incremental surface reconstruction

Up until this point it has been discussed how the PDE 6.11 can be discretised into a linear
system (Equation 6.13) which is solved on the domain of the leafs of an octree. This section
further elaborates on the whole iterative procedure.

First of all, it must be emphasised that there is a need for an iterative procedure and a
high quality geometry estimate cannot be computed in a single step. This is so because of
the following: firstly, the PDE for d (Equation 6.11) implicitly depends on d as this is used
for computing visibility with the ray-tracing procedure explained above. Most importantly,
the validity of the whole differential approach crucially depends on N (X) = ∇d(X) which is
only true for points X close to the surface, which of course is unknown.

Therefore the following iterative procedure is performed: firstly an octree is initialised
to densely pack around the surface. The tree is set to a low depth so that the voxels are
“relatively big” and thus their centres are relatively close to the surface (i.e. the absolute value
of d is comparable to the voxel size s), see Figure 6.10a. Then, Equation 6.11 is solved on
the leafs of the tree and thus d values are updated (see Figure 6.10b). Finally, leafs where the
absolute value of SDF is smaller than 2 voxel sizes are subdivided and thus the procedure
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(a) 1.38mm (b) 1.38mm (c) 0.69mm (d) 0.35mm (e) 0.17mm

Figure 6.10 Incremental refinement of the geometry from the initial estimate (left) to the final
estimate(right). At each step, the voxel size is halved, thus going from 1.38mm to 0.69mm
to 0.35mm to 0.17mm. Note that it is not necessary to perform marching cubes after each
iteration; here it is only done for illustration purposes.

repeats and approximates the geometry even more. The terminating condition is when the
voxels are small enough so that their projection on the image planes is smaller than the pixel
size (see Figure 6.8) and thus the maximum obtainable resolution has been reached. When
this happens, the reconstructed surface is computed with the Marching cubes variant of [85].
The whole procedure is illustrated in Figure 6.10 and summarised in Algorithm 4. For the
example of Figure 6.10, the octree was initialised with depth 7 and after 3 subdivision steps,
reached depth 10, reducing the voxel size by a factor of 8 and increasing the voxel count from
around 96K to around 4.2M. The resulting final surface consists of 1.06M vertices and 2.1M
triangles.

6.6 World scale estimation

In order to parameterise light propagation and attenuation in the near field, the calibrated
PS model of Equation 6.6 requires an initial estimate (i.e. d0 in Equation 6.11) with an
approximately correct size. In addition, camera motion in the scene is required to be known
in absolute numbers. Note that the camera motion fully determines the light source positions
as well as they are rigidly attached to the camera. However, any monocular SFM algorithm
suffers from scale ambiguity, meaning that camera translations as well as initial surface
estimates are correct up to an unknown scale factor i.e. X = X0ξ with ξ the unknown scale
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Algorithm 4: Multi-View Photometric Stereo
Input: Images, calibrated light sources & camera trajectory, initial geometry as {X0}
Output: Triangle mesh output
Initialisation:
world scale estimation § 6.6;
Poisson reconstruction[84] & Distance transform to get d0(X);
Octree initialisation, leaf size s;
while Voxel projections > 1 pixel (Fig 6.8) do

set Ω at tree leaves;
raytrace visibility (Fig 6.9) ;
calculate i j(X) ∀ j & ∀X ∈ Ω (Fig 6.8) ;
calculate fields a j(X), L j(X) ∀ j & ∀X ∈ Ω (Eq 3.13);
calculate field B j k(X) ∀( j, k) & ∀X ∈ Ω (Eq 6.6);
compute B(X) and set rank

(
B(X)

)
= 2 ∀X ∈ Ω (Eq 6.10);

compute system (Eq 6.13) and solve with conjugate gradients to get d(X) ∀X ∈ Ω ;
set Ωnew : |d(X)| < 2s;
subdivide voxels ∈ Ωnew, hence s← 0.5s

end
Marching cubes [85] ;

and X0 the initial estimate. This is not really surprising. As already discussed in Section 3.7,
the calibrated near field PS model (as well as the semi-calibrated model of Chapter 5), also
requires an initialisation of the correct scale, usually done as a plane at the mean depth of the
scene. Having an initialisation of a wrong scale not only severely degrades the reconstruction
quality, but also increases the image re-projection error (the error obtained if the computed
geometry is substituted into the irradiance equation) as noticed by Quéau et al. [149]. This
effect is easily verified experimentally as shown in Figure 6.11.

The dependence of the final re-projection error on the world scale has some value for
the automatic estimation of the mean distance for the standard 2D PS problem, although the
practical performance is to be experimentally verified, as the example in Figure 6.11 shows
only a very small error variation. However, in the context of MVPS this observation is very
valuable for calculating the scale of the problem. Indeed, as different scales cause different
non-linear deformations on the geometry, it is not unreasonable to assert that only the correct
scale will make a reconstruction consistent with the initial MV estimate X0, and that this
consistency could be quantitative measured through the re-projection error.

More precisely, given a set of oriented 3D points X0 with normals N (X0) and a scalar ξ,
the scaled points become X = X0ξ. Then, L(X) = X − P j = X0ξ − P j becomes a function
of ξ and also a using Equation 3.13. Then, ρ can be computed using least squares on
i = ρa(ξ)N · L(ξ), so ρ is implicitly a function of ξ. On the contrary, N is not dependent on
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(a) 9cm: Err 0.01336 (b) 18cm: Err 0.0129 (c) 36cm: Err 0.0139

Figure 6.11 Demonstration of how the initial mean distance estimate affects the final
reconstruction of standard near-field PS (Chapter 5) on the hand dataset of Figure 5.6. As
can be seen, a too small mean distance flattens the reconstruction; too large a distance makes
it non-linearly stretch. This in turn affects the final image re-projection error which can be
used as a metric in order to automatically estimate the correct mean distance. In addition,
as the deformation is non-linear, only the correct scale would be consistent with estimates
obtained using other methods, e.g MVS.

ξ. Thus, the overall function to be minimised is:

E(ξ) =
∑
X0, j

∥i(X0ξ) j − ρ(X0, ξ)a(ξ) jN · L j(ξ)∥ (6.14)

where the sum is performed over all points X0 and all images j (in all views). E(ξ) is highly
non-linear and non-convex but can be minimised using non-linear simplex2 by starting from
a reasonable estimate obtained with a ruler measurement. This is shown in Figure 6.12.
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Figure 6.12 Minimisation of Equation 6.14 for estimating the world scale for synthetic data
(left) and real data (right). Note that as ξ is not very meaningful, the scaling on the horizontal
axis is the mean distance from the first view to the object. The synthetic experiment is
performed on the ground truth mesh of the Armadillo and the obtained minimum (green point)
equals, within machine precision, the ground truth (shown in red). The more interesting
experiment is the real one performed using the mesh of Figure 6.2, where indeed the error
function has a clear minimum.

2Using Matlab’s fminsearch with default parameters.
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6.7 Experiments

The proposed algorithm was implemented in Matlab (using λ = 0.05 for the regulariser
weight). The reconstruction time using non-optimised Matlab code, was 15-20 minutes
on a i7-4960X CPU with a peak memory consumption of 20-25GB. SDF was computed,
(depending on dataset), in around 4-6 M voxels of an approximate size of 0.2mm.

Figure 6.13 Synthetic data samples featuring near lighting, perspective deformation and
self-occlusions.

The proposed algorithm is evaluated on synthetic and real data. Comparison is against
Park et al. [144] using the code from their website. It is worth to mentioning that in
contrast to the proposed method, their state-of-the-art approach for MVPS is based on a fully
un-calibrated PS model.

6.7.1 Synthetic test cases

Synthetic experiments were performed using the “Armadillo” model. This object has non-
trivial geometry that generates several self-occlusions as well as cast shadows. The virtual
object was scaled to have approximate radius 20mm and the virtual camera with a focal
length of 6mm, was placed in several positions on a sphere of radius 45mm around the
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(a) Ground truth (b) Visual Hull (c) Initial estimates: 500,1500,10K triangles with 0% noise.

Figure 6.14 Synthetic data experiment- initial geometry estimates used for initialising the
MVPS optimisation. The initial estimates of variable quality in (c) were generated by
subsampling the ground truth (a), using the edge collapse decimation function of Meshlab.

object. Thereafter, 12 views with 8 images each of resolution 1200x800x24bits per pixel (see
Figure 6.13) were rendered.

For the initial geometry estimate the following two different strategies were employed:
The first one, used a sub-sampled version of the ground truth mesh with some added noise.
This was done in order to minimise the influence of systematic errors in the initial estimate
on the final result and to evaluate the MVPS algorithm alone. The original 150k triangle
mesh was subsampled using the quadric edge collapse decimation function of Meshlab. Five
different meshes were created with the number of triangles ranging from 250 to 30K. Some
of these meshes are shown in Figure 6.14. In addition, for each of these meshes Gaussian
noise was added to the vertex coordinates with a standard deviation of 0%, 5%, 10% of the
average triangle size. This in turn creates a total of 15 different experiments.

The second strategy adopted for generating an initial estimate of the geometry was to
use the object’s visual hull. This was calculated with naive voxel carving on a 128x128x128
voxel grid. Note that, as the previous set of synthetic experiments show, (see Table 6.1), there
is no need for an initial estimate of very high resolution, hence the low resolution grid for
computing the visual hull.

The evaluation metric is the RMS Hausdorff distance to the ground truth (computed
with Meshlab). This is computed by calculating the distance of each vertex of the mesh in
question, with the closest triangle of the reference mesh. The complete results for all the
experiments are shown in Table 6.1. Figures 6.15, 6.16 and 6.17 also show a few sample
renderings of the results.

The proposed approach outperforms [144] in all experiments, although in the high-
triangles initial estimates and, low-noise cases the error is imperceptibly small and the
difference between the proposed approach and [144] is probably statistically insignificant.



6.7 Experiments 113

(a) [144] RMS Err 0.105mm (b) Proposed RMS Err 0.090mm

(c) [144] RMS Err 0.445mm (d) Proposed RMS Err 0.386mm

Figure 6.15 Evaluation using the 1500-triangles mesh initial estimate ((a) and (b)) and the
visual hull initial estimate ((c) and (d) ). The colour coding shows error (Hausdorff distance
computed with Meshlab) with respect to the ground truth in mm.

6.7.2 Real data

The real datasets include a marble Buddha statue, a plaster bust of Queen Elizabeth (see
Figure 6.1), and a combined scene with a swede next to a porcelain cup containing a small
tree branch (see Figure 6.1). The images were acquired while moving the objects on a
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(a) Ground truth (b) Initial estimate (c) [144] (d) Proposed

Figure 6.16 Close-up rendering of: the ground truth (a), the 1500 triangles initial estimate
with 0% noise case (b) (column 3 of Table 6.1), as well as the reconstructions obtained with
[144], (c) and the proposed method (d).

Table 6.1 A quantitative evaluation based on the quality of the initial estimate . Errors are in
mm. Noise added to the vertex positions, and the magnitude is relative to the average triangle
size.

Experiment Triangle Number Visual Hull
Method Noise 250 500 1500 10K 30K 69K

[144]
0% 0.245 0.141 0.105 0.029 0.025 0.445
5% 0.290 0.172 0.119 0.036 0.029 -
10% 0.393 0.250 0.153 0.046 0.031 -

Proposed
0% 0.203 0.114 0.090 0.026 0.023 0.386
5% 0.234 0.137 0.104 0.033 0.024 -
10% 0.321 0.193 0.131 0.043 0.028 -

turntable, essentially generating a few circular trajectories around them (see Figure 6.2).
However, neither the SFM-MVS pipeline, nor the MVPS algorithms used the circular motion
information at all.

The multi-view data have been processed using VisualSFM [193, 194] and PMVS [49]
for getting camera rotation and translation between the PS views as well as a low quality
reconstruction to use as initial estimate. In addition, a few more images were captured in
between the PS sequences (with neutral illumination) in order to make SFM more robust
with respect to a too small overlap between images. Moreover, some noisy regions and
background points far away from the scenes of interest were manually removed. Finally,
Poisson reconstruction [84] was performed with a low level setting so as the initial estimate
contains continues surfaces (and not point clouds) and thus be able to generate an initial
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(a) 500 triangles estimate (b) [144]: Err 0.250mm (c) Proposed: Err 0.193mm

(d) 10K triangles estimate (e) [144]: Err 0.046mm (f) Proposed: Err 0.043mm

Figure 6.17 Additional renderings from Table 6.1. 10% noise is included in the initial
estimates shown in the first column. The colour coding shows error with respect to the ground
truth in mm.

SDF estimate (using the distance transform function of Matlab). As Table 6.1 suggests, the
proposed method does not need a very accurate initial estimate.

The proposed approach outperforms [144] in all three datasets (Figures 6.19 and 6.20)
and is able to recover more detailed surfaces. One of the main reasons for the inability
of [144] to recover very detailed reconstructions is because it is truly limited by the very
low quality of the initial estimates: they parameterise the initial surface into a 2D domain
and then perform a single refinement step. In fact, triangulation artefacts can be seen at
their reconstruction of the forehead of the Queen (Figure 6.19 top right). The reason for
their performing a single step reconstruction is the fact that their 2D parameterisation and
visibility estimation get very computationally expensive as a function of the resolution of the
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Figure 6.18 Real data: 2/96 photometric stereo images (12 views with 8 lights in each view
were used) and initial geometry estimate obtained with MVS. This initial estimates are only
8k and 11k triangles for the Queen and Buddha datasets respectively.

mesh. In contrast, the proposed volumetric approach naturally handles multiscale estimation
by arranging the voxels into an octree structure and so it is easy to repeatedly refine the
volume estimate until the voxels have a 1-1 correspondence with image pixels. Finally, we
note that the datasets presented in [144] have much higher quality initial estimates (their
“AccordionMan” starts from 140k triangles versus the 8k triangles initial estimate for the
“Queen” dataset).

6.8 Discussion

A volumetric parameterisation based on the signed distance function for the MVPS problem
was presented. Very high precision is achieved by using an octree implementation for
processing and ray-tracing the volume on a tree. While considering Photometric Stereo images,
the proposed fully differential formulation is albedo independent as it uses the irradiance
equation ratio approach for the near-field Photometric Stereo presented in Section 3.3.4.

The main limitation of the proposed approach is the inability to cope with missing big
portions of scene (this also true for most competing approaches e.g. [144, 209, 198]). For
example, if the initial reconstruction is missing the hands of the Armadillo, they will not be
recovered. This can potentially lead to to degradation of quality for the rest of the body as
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(a) [144] (b) Proposed

(c) [144] (d) Proposed

Figure 6.19 Qualitative evaluation on real data set of Figure 6.18. The proposed approach
outperforms [144] and generates more detailed reconstructions.

well, as the missing parts will lead to sub-optimal estimates of visibility. The theoretical
justification for this is that the core assumption N (X) = ∇d(X) is only exactly true for points
on the true surface, i.e. d(X) = 0. Assuming continuity, it is assumed that N (X) ≈ ∇d(X)
if d(X) ≈ 0 so the differential approach is performed under the assumption that the set of
voxels is relatively close to the true surface.

The main drawback of the proposed method compared to mesh parameterisation techniques
(e.g. Park et al. [144]) is the elevated memory requirements. Even though the octree
implementation minimises the number of voxels required, it is inevitable to need a few voxels
per each potential surface point3 . In addition, the use of the variational optimisation is also
memory expensive as the matrix encoding the neighbouring information about voxels needs
to be stored in memory as well.

3 As the surface is the zero crossings of the SDF, at least one pair of opposite signed values are required per
surface point.
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Figure 6.20 Qualitative evaluation using the multi-object scene of Figure 6.1 . Line 1 [144],
line 2 proposed. The proposed approach is superior to [144] in simultaneously recovering the
rough surface of the swede as well as the smooth surface of the cup.

6.8.1 Future Work

There are several directions in which the work presented in this chapter can be extended:

More advanced PS modelling The proposed MVPS parameterisation is quite minimal
compared to the rest of the thesis in terms of the PS modelling features. Indeed, any kind of
specular reflection is ignored, the ambient light is considered negligible and the light sources
are assumed fully calibrated. Nonetheless, extending the proposed model to include all these
features from Chapters 4 and 5 is pretty straightforward and most of the difficulty lies in its
implementation, as the computational requirements will be highly elevated.

Independence from SFM As the proposed method is crucially reliant on SFM algorithms
for calibrating camera positions and some MVS stereo for an initial geometry estimate, it
is susceptible to failure when SFM fails, because of, for example, too few point features or
too big a camera movement between views, which make standard matching based on for
example SIFT (Lowe [109]) to fail. The naive way to eliminate the dependence on SFM
would be to perform 2D PS from different vantage points and then attempt to recover camera
motion using iterative closest point (ICP) [16]. However, as discussed in Section 6.3.1,
PS reconstructions from different viewpoints are usually inconsistent, and thus ICP is not
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expected to be very reliable. A more promising future direction would be to try to perform
matching using frequency domain features or a feature like the Laplace-Beltrami operator
(divergence of the gradient). This is directly computable from the PS image data in each view
(without the need for numerical integration /variational solver) and could possibly be used to
track camera motion.

Another potential way of eliminating the dependence on MVS would be to use the rank
constraint Equation 6.10 in order to obtain a geometry estimate. Indeed, this constraint
encodes the compatibility of the SDF level-set for different views, with a low condition
number of B (Λ1/Λ3) signifying a point far away from the surface. Thus, this could be used
as a volume cost function and incorporated into volumetric graph-cut optimisation like the
one of Vogiatzis et al. [184].





Chapter 7

Applications and future work

7.1 Findings

The findings presented in this dissertation have contributed towards the attainment of a more
refined, practical and viable 3D technology. The resultant outcomes of this work can therefore
be summarised as follows:

Ambient light independence Chapter 4 demonstrated how the Photometric Stereo model
can be extended in order to deal with arbitrary ambient lighting while retaining all the
realistic modelling assumptions of the state-of-the-art approaches namely perspective viewing
geometry, nearby point light sources and specular reflection. This parameterisation allows
acquisition in an open environment and eliminates the need of a dark room for acquisition.

Semi-calibrated formulation The need for a priori knowledge of the light source brightness
and attenuation characteristics was relaxed, as illustrated in Chapter 5. It was shown that
these parameters can be estimated through an alternating optimisation procedure along with
the geometry and the specularity coefficients. This extension allows for quick acquisition
with inexpensive LEDs that exhibit unpredictable illumination characteristics like flickering.

Multi-view parameterisation A novel volumetric differential parameterisation based on
the signed distance field was proposed in Chapter 6. This formulation allows one to tackle
the multi-view Photometric Stereo problem in a simple unified differential model where
information from multiple viewpoints and illumination is fused in a single optimisation.
Hence, scenes with multiple discrete objects can be reconstructed.
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7.2 Applications

The theoretical framework developed in this thesis is applicable in generalized theoretical and
practical settings. One such practical and another such theoretical application is presented
below.

7.2.1 GPU implementation

A practical application for the framework of this thesis is the implementation of a PS scanning
system that allows for very fast acquisition and reconstruction. As a number of computations
can be performed independently for each pixel, the reconstruction algorithms presented can
be implemented on a GPU, assigning different computation threads to different pixels. These
parallelisable operations include calculation of a and W fields for the lighting model, b and s
fields for the PDE as well as the computation of the specularity parameter c.

(a) 8 images, 3.7s (b) 12 images, 3.8s (c) 24 images, 9.3s (d) 8 images, 155s

Figure 7.1 Comparison of the simplified GPU implementation with the full model for the
ambient light problem and the Buddha dataset of Figure 4.1. (a) to (c) GPU reconstructions
considering all pairs and (d) is the CPU Order 2 method considering all 6-tuples of images.

The implemented version is mostly based on the semi-calibrated framework as outlined in
Chapter 5. In addition, the ambient light model presented in Chapter 4 is also implemented.
Finally, the system also includes a mean depth/scale estimation capability based on the final
reconstruction reprojection error as discussed in Section 6.6. The most important changes
between the GPU version and the rest of the thesis was the usage of the ℓ2 version of the
variational solver (Section 3.7.2) instead of the ℓ1. The reasoning for this simplification is the
highly reduced memory requirements as explained in Section 3.7.2. In addition, the shadow
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map and attenuation map steps of Chapter 5 are also avoided as these are very computationally
expensive with not much increase in the reconstruction quality.

One major advantage of the GPU implementation compared to its CPU counterparts is
the ease with which datasets with large number of images is dealt with. In fact, one major
disadvantage of the ratio method is that the computational complexity of computing the PS
model (PDE coefficients) is scaling as O(n2) for a number of images n. This is because
pairs of images need to be considered. The computational complexity is even worse for
the ratio of differences method presented in Chapter 4, which has O(n4) complexity for the
Order 1 method and O(n6) for that of Order 2. This problem is alleviated through GPU
implementation. Even though the complexity is the same, the GPU allows iterating through
all n-tuples of images very quickly even when this number of images is large, as this is a
completely parallelisable operation. This is experimentally verified in Figure 7.1.

As it can be seen in Figure 7.1, even though the Order 2 full model better preserves the
depth of the head and gets a better overall reconstruction, the computation time is significantly
higher. In fact, the more interesting comparison is between Figure 7.1a and Figure 7.1c:
increasing the number of images from 8 to 24 increases the number of quadruples from 70 to
10626 but the total computation time only increases from 3.7 to 9.3 seconds. That is because
the b and s field calculation is fully parallelisable taking around 0.04ms per quadruple per
iteration1. The more computationally expensive part (dominating the 3.7s seconds of the 8
images case) is the system solution and this is independent of the number of images for ℓ2
solver. In addition, it is noted that performing an ℓ1 computation on the 24 images dataset
with all possible quadruples would be computationally intractable as it would be required to
store all 10626 residuals per pixels in memory.

Finally, the ability of this implementation to handle datasets with a large number of
images, makes it very suitable for the task of scanning specular objects, a specific example
being that of circuit inspection. As discussed in Section 2.1, the distinctive characteristic
of specular objects is a good portion of the reflected light comes in a single direction. As
a result, a lot of light sources are required in order to make sure that each pixel has a well
constraint set of equations since most image data is completely black. Figure 7.2 shows the
results on a circuit dataset. These reconstructions were generated with a 30 images dataset
using the GPU implementation of the semi-calibrated model; the ℓ1 version of the variational
solver would run out of memory trying to store all residuals for the approximately 900K
pixels in the image domain in all

(30
2
)
= 435 pairs; in contrast the GPU version of the ℓ2 solver

produces the reconstructions of Figure 7.2 in 19.4 seconds.

1These timings are reported for an NVIDIA GTX 780 on the Buddha dataset with image resolution 800x600
and around 180K pixels in the reconstruction domain.
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(a) 3/30 sample images.

(b) Circuit textured. (c) Circuit geometry.

Figure 7.2 3D reconstruction results on the Printed Circuit Board (PCB) inspection task. This
is a fairly challenging task due to the specular reflection of the metallic parts. As a result, 30
images were used and the optimisation needed to be initialised with c = 0.2 for the specularity
parameter (see Section 3.4.2) instead of the usual c = 1 (Lambertian). The reconstruction
recovers a large amount of details in both geometry and albedo and does not suffer from any
significant low frequency deformation. The only visible artefact is the smoothing at depth
discontinuities at the point of contact of the integrated circuits, which is expected due to the
use of the ℓ2 solver.

7.2.2 Shape from polarisation

A theoretical application of the proposed formulations of the thesis is in the Shape from
Polarisation (SFP) problem. This was done in collaboration with Roberto Mecca in the work
Mecca et al. [116]. SFP was introduced in Koshikawa [91] and has a very large literature,
with important results being those of Atkinson and Hancock [7] and Smith et al. [170]. Only
a brief explanation is presented here.

SFP involves taking multiple images from the same point of view with constant illumination
but with a polarisation filter in front of the camera. The polarisation filter is rotated and this
rotation causes a sinusoidal variation in the image intensity. Crucially, this variation is a
function of the surface normal as well as material properties.

Mecca et al. [116] and the extension at Logothetis et al. [106] present a differential
formulation for the SFP problem which has the form

bpol · ∇z = 0, (7.1)
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where bpol is independent of illumination and can easily be computed from the polarisation
data. Equation 7.1 trivially reveals the level-set of the surface. This is true for diffuse
and specular objects and even works for semi-transparent objects like glass. This was
experimentally verified as seen in Figure 7.3.

Figure 7.3 On the top: two sample images of objects obtained using a polarisation filter. On
the bottom: the respective level-sets of these objects obtained using the method of Logothetis
et al. [106].

The most important property of Equation 7.1 in the context of this thesis is that it has the
same form of the unifying PS Equation 3.18 bps · ∇z = s and hence allows stacking these 2
equations to subsequently obtain a unified variational problem of the form (including the
standard Tikhonov regulariser term):

min
z







[
bps

bpol

]
· ∇z −

[
sps

0

]





ℓ2

+ λ ∥z − z0∥ℓ2 . (7.2)
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As a technical note, ℓ2 was chosen in Equation 7.2 as the aim of [116] was to present a
minimal solution; thus ℓ1, which aims at dealing with sparse outliers is not really applicable in
the minimal solution case. In fact, the merging of polarisation data allows to get a well-posed
problem with using a single pair of calibrated photometric stereo images. Equation 7.2 is
then discritised and solve with the method described in Section 3.7. Some real data results
are shown in Figure 7.4.

(a) Photometric stereo pairs of images used.

(b) Minimum data reconstructions.

Figure 7.4 Shape from Polarisation data and reconstructions. The polarisation images are not
shown as for most pixels the degree of polarisation is only a small percentage of the total
value making this difference imperceivable. The reconstructions shown at (b) are using a
minimum of possible data and thus are of inferior quality to those that one would get using
multiple PS images.

7.3 Limitations and future work

Important limitations that are true for all the work presented in this thesis are the following:

Strict reliability on the assumed reflectance model Although the combination of Blinn-
Phong and Lambertian BRDF introduced in Section 3.4.2 has been shown to be able to deal
with heterogeneous objects, even with metallic like the circuit in Figure 7.2, it is not reliable
in all possible reflectance cases, because the Blinn-Phong model is not physically based.
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Dependence on continuity and differentiability A very important assumption throughout
the thesis has been that surfaces can be parameterised as differentiable depth maps or
differentiable signed distance fields (in Chapter 6). Of course, in reality this is not always true
with notable exceptions being sharp edges and depth discontinuities at occlusion boundaries.
The strategy throughout the thesis has been to treat these imperfections as sparse outliers and
try to maximise their robustness. In addition, all of the data presented (even the multi-object
scene in Figure 6.1) have been preprocessed with a background subtraction step2. Hence,
applying the developed method to the task of reconstructing all visible objects in a scene is
not trivially possible.

Non-provable convergent optimisations All of the PS models presented correspond to
non-convex optimisation problem. Therefore, none of the algorithms presented are guaranteed
to converge to the global optimum, and even when they converge, there is no guarantee that
the rate of convergence will be reasonable. However, the extensive experimental evaluation
has shown that this issue is not applicable in practice and these algorithms would converge
to reasonable reconstructions with no need for special initialisation or priors. A notable
exception is the circuit dataset in Figure 7.2; as this is very specular, the optimisation needed
to know that a priori. In addition, the multi-view framework in Chapter 6 needs to be
initialised from an MVS estimate which is relatively close to the real surface and would not
converge from a very generic initialisation like a sphere/cube.

The need for some control of lighting Finally, it has to be emphasised that any PS method
requires controlled variation in illumination, with at least 2 images per point of view for a
well constrained problem (avoiding all the SFS ambiguities discussed in Section 2.3). This in
turn makes PS inapplicable for use with consumer cameras and mobile phones.

7.3.1 Future work

There are several ways in which the overall directions of the work can be further extended.
These include:

Additional 3D reconstruction cues An interesting theoretical but also practically useful
future research direction is the inclusion of additional cues. For example, a very promising
method is the Shape From Defocus (Favaro et al. [45]) which can extract 3D geometrical
features by changing the focus distance of the lens. In general, the inclusion of extra cues can

2using the semi-manual graph-cut, OpenCV implementation https://docs.opencv.org/3.1.0/d8/d83/
tutorial_py_grabcut.html

https://docs.opencv.org/3.1.0/d8/d83/tutorial_py_grabcut.html
https://docs.opencv.org/3.1.0/d8/d83/tutorial_py_grabcut.html
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widen the field of applicability to many more general surfaces, effectively dealing with the
first limitation discussed above.

Multi-view Polarisation To add to the previous point, it is noted that the polarisation
Equation 7.1 could be incorporated into the multi-view framework of Chapter 6. This is
a natural extension to using just two lights fusion presented in Mecca et al. [116] could
ultimately lead to full 3D reconstruction of even semi-transparent objects like a glass bowl of
Figure 7.3 (as level-sets from two different viewpoints can be used to find a surface).

Reflectance Capture Almost all of the work in the thesis has focused on recovering the 3D
structure of objects. However, various applications such as heritage preservation, 3D graphics
and virtual reality require accurate capture of the reflectance properties of the objects, in
order to achieve faithful re-renderings of these items. Some preliminary work has been the
simultaneous recovery of albedo and specularity coefficients in Chapter 5, however, a fully
realistic rendering of these objects would require further work.

7.4 Final remarks

The Photometric Stereo method has always been open to interesting theoretical research due
to the complicated light reflection models developed, as well as the differential relationship
between surfaces and normals, which allows posing the problem in a PDE form. Having
specifically aimed at making a practical reconstruction system, this dissertation has advanced
the theoretical modelling of Photometric Stereo. By combining manipulations of PDEs and
variational methods with detailed engineering choices like oct-trees and GPU implementation,
along with the use of a custom made hardware setup, the 3D reconstructions attained verify
that a small step in the right direction has been taken.
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Appendix A

Proofs

A.1 Unified equation

This section includes the proofs about the properties of the unified equation introduced in
Section 3.5 and are included there for completeness.

Theorem 3.6.1 Proof We prove it by contradiction by assuming that there exists a point
(ũ, ṽ, z̃(ũ, ṽ)) such that
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By considering the image irradiance Equation 3.16, we get ic
j = (ρa j)

c(N · W j) and
ic
k = (ρak)

c(N ·W k) thus substituting in (A.1) and (A.2), we get the following equations
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which can be simplified as follows
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If we solve the system made by the equations (A.5) and (A.6) with respect to z̃u and z̃v (using
the normal parameterisation from Equation 3.8), we get the following solution
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and once we compute the image values substituting z̃u and z̃v into the irradiance Equation
3.16, we get i j = 0 and ik = 0 which can never be true for points in the image domain with
ρ > 0 and not in a shadow region and would invalidate the ratio method anyway.

Theorem 3.6.2 Proof Again, we prove by contradiction by assuming that there exists a
point (ũ, ṽ, z̃(ũ, ṽ)) violating the linear independence. Then:

b j k(ũ, ṽ, z̃) · b jq(ũ, ṽ, z̃) = ±|b j k(ũ, ṽ, z̃)| |b jq(ũ, ṽ, z̃)|. (A.9)

To improve readability we omit the dependence on (ũ, ṽ, z̃). Now, by squaring both sides we
have: (
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Using the terms from Equation 3.19, replacing the respective irradiance equation in Equa-
tion 3.17 for i j , ik and iq, eliminating the not null quantities like the albedo and the light
attenuations, this can be rewritten as follows:
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After noticing that all the terms in the previous equation are divided by the same not
null quantities as |N | and |Wi |, we can consider the not-normalized vectors (i.e., we can
remove the bar on top of each factor). Then, substituting the normal parameterisation from
Equation 3.8, we get
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Equation A.11 is the scalar triple product of vectorsWj ,Wk andWq. Having a 0 scalar triple
product implies that the vectors are not linearly independent and thus 3 > rank([W j,Wk,Wq])

which is a contradiction.
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