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Abstract 29 
 30 
When a patient is admitted to the intensive care unit (ICU) after a traumatic brain injury 31 
(TBI), an early prognosis is essential for baseline risk adjustment and shared decision 32 
making. TBI outcomes are commonly categorised by the Glasgow Outcome Scale – 33 
Extended (GOSE) into eight, ordered levels of functional recovery at 6 months after injury. 34 
Existing ICU prognostic models predict binary outcomes at a certain threshold of GOSE 35 
(e.g., prediction of survival [GOSE > 1]). We aimed to develop ordinal prediction models 36 
that concurrently predict probabilities of each GOSE score. From a prospective cohort (n 37 
= 1,550, 65 centres) in the ICU stratum of the Collaborative European NeuroTrauma 38 
Effectiveness Research in TBI (CENTER-TBI) patient dataset, we extracted all clinical 39 
information within 24 hours of ICU admission (1,151 predictors) and 6-month GOSE 40 
scores. We analysed the effect of two design elements on ordinal model performance: (1) 41 
the baseline predictor set, ranging from a concise set of ten validated predictors to a 42 
token-embedded representation of all possible predictors, and (2) the modelling strategy, 43 
from ordinal logistic regression to multinomial deep learning. With repeated k-fold cross-44 
validation, we found that expanding the baseline predictor set significantly improved 45 
ordinal prediction performance while increasing analytical complexity did not. Half of 46 
these gains could be achieved with the addition of eight high-impact predictors to the 47 
concise set. At best, ordinal models achieved 0.76 (95% CI: 0.74 – 0.77) ordinal 48 
discrimination ability (ordinal c-index) and 57% (95% CI: 54% – 60%) explanation of 49 
ordinal variation in 6-month GOSE (Somers’ Dxy). Model performance and the effect of 50 
expanding the predictor set decreased at higher GOSE thresholds, indicating the difficulty 51 
of predicting better functional outcomes shortly after ICU admission. Our results motivate 52 
the search for informative predictors that improve confidence in prognosis of higher 53 
GOSE and the development of ordinal dynamic prediction models. 54 
 55 

Introduction 56 
 57 
Globally, traumatic brain injury (TBI) is a major cause of death, disability, and economic 58 
burden [1]. The treatment of critically ill TBI patients is largely guided by an initial 59 
prognosis made within a day of admission to the intensive care unit (ICU) [2]. Early 60 
outcome prediction models set a baseline against which clinicians consider the effect of 61 
therapeutic strategies and compare patient trajectories. Therefore, well-calibrated and 62 
reliable prognostic models are an essential component of intensive care. 63 
 64 
Outcome after TBI is most often evaluated on the ordered, eight-point Glasgow Outcome 65 
Scale – Extended (GOSE) [3-6], which stratifies patients by their highest level of 66 
functional recovery according to participation in daily activities. Existing baseline 67 
prediction models used in the ICU dichotomise the GOSE into binary endpoints for TBI 68 
outcome. For example, the Acute Physiologic Assessment and Chronic Health Evaluation 69 
(APACHE) II [7] model predicts in-hospital survival (GOSE > 1) while the International 70 
Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) [8] models focus on 71 
predicting functional independence (GOSE > 4, or ‘favourable outcome’) and survival at 72 
6 months post-injury. 73 
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 74 
Dichotomised GOSE prediction employs a fixed threshold of favourability among the eight 75 
levels of recovery for all patients. However, there is no empirical justification for an ideal 76 
treatment-effect threshold of GOSE [9]. Moreover, dichotomisation removes each patient 77 
or caregiver’s ability to define a different level of recovery as ‘favourable’ during 78 
prognosis. By concealing the nuanced differences in outcome defined by the GOSE, 79 
dichotomisation also limits the prognostic information made available during a shared 80 
treatment decision making process. For example, when clinicians, patients, or next of kin 81 
must together decide whether to withdraw life-sustaining measures (WLSM) after severe 82 
TBI, knowing the probability of different levels of functional recovery in addition to the 83 
baseline probability of survival would enable better quality-of-life consideration and 84 
confidence in the decision (Fig 1B) [10]. These problems of dichotomisation cannot be 85 
addressed simply by independently training a combination of binary prediction models at 86 
several GOSE thresholds. If model predictions are not constrained across the thresholds 87 
(i.e., ensuring probabilities do not increase with higher thresholds) during training, then 88 
combining multiple threshold outputs may result in nonsensical values. For example, the 89 
purported probability of survival (GOSE > 1) might be lower than that of recovering 90 
functional independence (GOSE > 4). 91 
 92 
Fig 1. Comparison of ordinal outcome prediction to binary outcome prediction in terms of 93 
model architecture and clinical application. GOSE=Glasgow Outcome Scale – Extended at 6 94 
months post-injury. ReLU=rectified linear unit. Pr(●)=Probability operator, i.e., “probability of ●.” 95 
Pr(●|○)=Conditional probability operator, i.e., “probability of ●, given ○.” (A) Output layer 96 
architectures of binary and ordinal GOSE prediction models. Ordinal prediction models must not 97 
only have a more complicated output structure (in terms of learned weights and outcome encoding 98 
choices) but also constrain probabilities across the possible levels of functional outcome 99 
(indicated by ‘Constraint’ in the ordinal model representations). The constraint for multinomial 100 
outcome encoding is performed with a softmax activation function while the constraint for ordinal 101 
outcome encoding is performed with subtractions of output values (implemented with a negative 102 
ReLU transformation) from lower thresholds. In the provided legend formula for the softmax 103 
activation function, zi represents the outputted value of the ith node of the multinomial outcome 104 
encoding layer (i.e., the node representing the ith possible score of GOSE) preceding the softmax 105 
transformation. (B) A sample patient case to demonstrate the difference in prognostic information 106 
between ordinal and binary GOSE prediction models. Binary models predict outcomes at one 107 
GOSE threshold while ordinal models predict outcomes at every GOSE threshold concurrently 108 
and provide conditional predictions of higher GOSE threshold outcomes given lower GOSE 109 
threshold outcomes. Bespoke conditional probability diagrams can be constructed between any 110 
number of GOSE thresholds, as desired by model users, so long as lower thresholds (e.g., GOSE 111 
> 1) precede higher thresholds (e.g., GOSE > 3) in directionality. Conditional probabilities are 112 
calculated by dividing the model probability at the higher threshold by the model probability at the 113 
lower threshold (e.g., Pr($%&' > 3|$%&' > 1) = Pr($%&' > 3) /Pr	($%&' > 1)). 114 
 115 
A practical solution would be to train ordinal outcome prediction models, which 116 
concurrently return probabilities at each GOSE threshold by learning the interdependent 117 
relationships between the predictor set and the possible levels of functional recovery (Fig 118 
1A). Ordinal GOSE prediction models would allow users to interpret the probability of 119 
different levels of functional recovery. Additionally, they can provide insight into the 120 
conditional probability of obtaining greater levels of recovery given lower levels (see Fig 121 
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1B for a practical clinical application of this information). However, moving from binary to 122 
ordinal outcome prediction poses three key challenges. First, there is no guarantee that 123 
widely accepted TBI outcome predictor sets, validated either by binary or ordinal 124 
regression analysis, will be able to capture the nuanced differences between levels of 125 
functional recovery well enough for reliable prediction. Second, ordinal prediction models 126 
typically need to be more complicated than binary models to encode the possibility of 127 
more outcomes and the constrained relationship between them [11]. For GOSE 128 
prediction, ordinal models can either encode the outcomes as: (1) multinomial, in which 129 
nodes exist for each GOSE score and collectively undergo a softmax transformation (to 130 
constrain the sum of values to one) and probabilities are calculated by accumulating 131 
values up to each threshold, or (2) ordinal, in which nodes exist for each threshold 132 
between consecutive GOSE scores, constrained such that output values must not 133 
increase with higher thresholds, and probabilities for each threshold are calculated with 134 
a sigmoid transformation (Fig 1A). Third, assessment of prediction performance is not as 135 
intuitive with an ordinal outcome as with a binary outcome. Widely used dichotomous 136 
prediction performance metrics such as the c-index (i.e., the area under the receiver 137 
operating characteristic curve [AUC]) do not trivially extend to the ordinal case [12], so 138 
assessment of ordinal prediction models requires the consideration of multifactorial 139 
metrics and visualisations that may complicate interpretations of model performance [13]. 140 
 141 
As part of the Collaborative European NeuroTrauma Effectiveness Research in TBI 142 
(CENTER-TBI) project, we aim to address the challenges of ordinal outcome prediction. 143 
Our analyses cover a range of modelling strategies and predictors available within the 144 
first 24 hours of admission to the ICU. 145 
 146 

Materials and methods 147 
 148 

Study population and dataset 149 
 150 
The study population was extracted from the ICU stratum of the core CENTER-TBI 151 
dataset (v3.0) using Opal database software [14]. The project objectives and 152 
experimental design of CENTER-TBI have been described in detail by Maas et al. [15] 153 
and Steyerberg et al. [16] Study patients were prospectively recruited at one of 65 154 
participating ICUs across Europe with the following eligibility criteria: admission to the 155 
hospital within 24 hours of injury, indication for CT scanning, and informed consent 156 
according to local and national requirements. 157 
 158 
Per project protocol, each patient’s follow-up schedule included a GOSE assessment at 159 
6 months post-injury, or, more precisely, within a window of 5-8 months post-injury. GOSE 160 
assessments were conducted using structured interviews [6] and patient/carer 161 
questionnaires [17] by the clinical research team of CENTER-TBI. The eight, ordinal 162 
scores of GOSE, representing the highest levels of functional recovery, are decoded in 163 
the heading of Table 1. Since patient/carer questionnaires do not distinguish vegetative 164 
patients (GOSE = 2) into a separate category, GOSE scores 2 and 3 (lower severe 165 
disability) were combined to one category (GOSE ∈ {2,3}) in our dataset. Of the 2,138 166 
ICU patients in the CENTER-TBI dataset available for analysis, we excluded patients in 167 
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the following order: (1) age less than 16 years at ICU admission (n = 82), (2) follow-up 168 
GOSE was unavailable (n = 283), and (3) ICU stay was less than 24 hours (n = 223). Our 169 
resulting sample size was n = 1,550. For 1,351 patients (87.2%), either the patient died 170 
during ICU stay (n = 205) or results from a GOSE evaluation at 5 – 8 months post-injury 171 
were available in the dataset (n = 1,146). For the remaining 199 patients (12.8%), GOSE 172 
scores were imputed using a Markov multi-state model based on the observed GOSE 173 
scores recorded at different timepoints between 2 weeks to one-year post-injury [18]. A 174 
flow diagram for study inclusion and follow-up is provided in S1 Fig, and summary 175 
characteristics of the study population are detailed in Table 1.176 
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Table 1. Summary characteristics of the study population at ICU admission stratified by ordinal 6-month outcomes. 177 
Summary 
characteristics 

Overall Glasgow Outcome Scale – Extended (GOSE) at 6 months post-injury p-
value‡ (1) Death (2 or 3) 

Vegetative or 
lower severe 
disability 

(4) Upper 
severe 
disability 

(5) Lower 
moderate 
disability 

(6) Upper 
moderate 
disability 

(7) Lower 
good 
recovery 

(8) Upper 
good 
recovery 

n* 1550 318 (20.5%) 262 (16.9%) 120 (7.7%) 227 (14.6%) 200 (12.9%) 206 (13.3%) 217 (14.0%)   
Age [years] 51 (31–66) 66 (50–76) 55 (36–68) 48 (29–61) 44 (31–56) 41 (27–53) 48 (31–65) 41 (24–61) <0.0001 
Sex                 0.59 
  Female 409 (26.4%) 78 (24.5%) 71 (27.1%) 43 (35.8%) 64 (28.2%) 49 (24.5%) 59 (28.6%) 45 (20.7%) 

 

Race (n† = 1427)                 0.13 
  White 1386 (97.1%) 281 (97.2%) 239 (96.8%) 106 (95.5%) 195 (96.5%) 183 (97.3%) 184 (98.4%) 198 (97.5%) 

 

  Black 21 (1.5%) 2 (0.7%) 4 (1.6%) 3 (2.7%) 5 (2.5%) 3 (1.6%) 2 (1.1%) 2 (1.0%) 
 

  Asian 20 (1.4%) 6 (2.1%) 4 (1.6%) 2 (1.8%) 2 (1.0%) 2 (1.1%) 1 (0.5%) 3 (1.5%) 
 

Baseline GCS (n† = 1465) 8 (4–14) 5 (3–10) 6 (3–10) 8 (4–13) 8 (5–13) 9 (6–14) 13 (7–15) 13 (8–15) <0.0001 
  Mild [13–15] 390 (26.6%) 30 (10.3%) 38 (15.3%) 26 (23.4%) 42 (19.5%) 66 (34.9%) 91 (45.3%) 97 (46.4%) 

 

  Moderate [9–12] 331 (22.6%) 65 (22.3%) 41 (16.5%) 28 (25.2%) 65 (30.2%) 36 (19.0%) 40 (19.9%) 56 (26.8%) 
 

Severe [3–8] 744 (50.8%) 196 (67.4%) 170 (68.3%) 57 (51.4%) 108 (50.2%) 87 (46.0%) 70 (34.8%) 56 (26.8%)   

Data are median (IQR) for continuous characteristics and n (% of column group) for categorical characteristics, unless otherwise 178 
indicated. Units or numerical definitions of characteristics are provided in square brackets. Baseline GCS=Glasgow Coma Scale at 179 
ICU admission, from 3 to 15. Conventionally, TBI severity is categorically defined by baseline GCS scores as indicated in square 180 
brackets. 181 
*Percentages for sample size (n) represent proportion of study sample size in each GOSE group. 182 
†Limited sample size of non-missing values for characteristic. 183 
‡p-values are determined from proportional odds logistic regression (POLR) coefficient analysis trained on all summary characteristics 184 
concurrently [19]. For categorical variables with k > 2 categories (e.g., Race), p-values were calculated with a likelihood ratio test (with 185 
k-1 degrees of freedom) on POLR. 186 
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Repeated k-fold cross-validation 187 
 188 
We implemented the ‘scikit-learn’ module (v0.23.2) [20] in Python (v3.7.6) to create 100 189 
stratified partitions of our study population for repeated k-fold cross-validation (20 repeats, 190 
5 folds). Within each of the partitions, approximately 80% of the population would 191 
constitute the training set (n ≈ 1,240 patients) and 20% of the population would constitute 192 
the corresponding testing set (n ≈ 310 patients). For parametric (i.e., deep learning) 193 
models, we implemented a stratified shuffle split on each of the 100 training sets to set 194 
15% (n ≈ 46 patients) aside for validation and hyperparameter optimisation. 195 
 196 

Selection and preparation of concise predictor set 197 
 198 
In selecting a concise predictor set, our primary aim was to find a small group of well-199 
validated, widely measured clinical variables that are commonly used for TBI outcome 200 
prognosis in existing ICU practice. We selected the ten predictors from the extended 201 
IMPACT binary prediction model [8] for moderate-to-severe TBI – defined by a baseline 202 
Glasgow Coma Scale (GCS) [21,22] score between 3 and 12, inclusive – to represent our 203 
concise set. While 26.6% of our study population falls out of this GCS range (Table 1), 204 
we find that the IMPACT predictor set is the most rigorously validated [23-27] baseline 205 
set available for the overall critically ill TBI population. The ten predictors, characterised 206 
in Table 2, are all measured within 24 hours of ICU admission and include demographic 207 
characteristics, clinical severity scores, CT characteristics, and laboratory 208 
measurements. The predictors as well as empirical justification for their inclusion in the 209 
IMPACT model have been described in detail [28]. In this manuscript, each of the models 210 
trained on the IMPACT predictor set is denoted as a concise-predictor-based model 211 
(CPM).212 
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Table 2. Concise baseline predictors of the study population stratified by ordinal 6-month outcomes. 213 
Concise predictors Overall 

(n = 1550) 
Glasgow Outcome Scale – Extended (GOSE) at 6 months post-injury p-

value‡ 1 
(n = 318) 

2 or 3 
(n = 262)  

4 
(n = 120) 

5 
(n = 227) 

6 
(n = 200) 

7 
(n = 206) 

8 
(n = 217) 

Age [years] 51 (31–66) 66 (50–76) 55 (36–68) 48 (29–61) 44 (31–56) 41 (27–53) 48 (31–65) 41 (24–61) <0.0001 
GCSm (n† = 1509) 5 (1–6) 2 (1–5) 3 (1–5) 5 (1–6) 5 (1–6) 5 (2–6) 5 (3–6) 6 (5–6) <0.0001  

(1) No response 484 (32.1%) 152 (50.0%) 104 (40.6%) 35 (29.9%) 63 (28.5%) 46 (23.6%) 47 (23.0%) 37 (17.5%)   
(2) Abnormal extension 54 (3.6%) 17 (5.6%) 20 (7.8%) 4 (3.4%) 6 (2.7%) 3 (1.5%) 2 (1.0%) 2 (0.9%)   
(3) Abnormal flexion 63 (4.2%) 14 (4.6%) 12 (4.7%) 8 (6.8%) 11 (5.0%) 8 (4.1%) 4 (2.0%) 6 (2.8%)   
(4) Withdrawal from stimulus 114 (7.6%) 27 (8.9%) 23 (9.0%) 8 (6.8%) 20 (9.0%) 21 (10.8%) 8 (3.9%) 7 (3.3%)   
(5) Movement localised to 
stimulus 

305 (20.2%) 52 (17.1%) 47 (18.4%) 24 (20.5%) 50 (22.6%) 46 (23.6%) 44 (21.6%) 42 (19.8%)  
 

(6) Obeys commands 489 (32.4%) 42 (13.8%) 50 (19.5%) 38 (32.5%) 71 (32.1%) 71 (36.4%) 99 (48.5%) 118 (55.7%)  
Unreactive pupils (n† = 1465) 

       
<0.0001  

One 111 (7.6%) 31 (10.5%) 31 (12.3%) 7 (6.3%) 20 (9.3%) 5 (2.6%) 8 (4.1%) 9 (4.4%)  
Two 168 (11.5%) 84 (28.5%) 33 (13.0%) 8 (7.2%) 14 (6.5%) 8 (4.2%) 16 (8.2%) 5 (2.4%)  

Hypoxia 207 (13.4%) 60 (18.9%) 33 (12.6%) 14 (11.7%) 35 (15.4%) 33 (16.5%) 16 (7.8%) 16 (7.4%) 0.37 
Hypotension 210 (13.5%) 56 (17.6%) 51 (19.5%) 21 (17.5%) 32 (14.1%) 22 (11.0%) 15 (7.3%) 13 (6.0%) 0.0038 
Marshall CT (n† = 1255) VI (II–VI) III (II–VI) II (II–VI) II (II–VI) II (II–II) II (II–III) II (II–II) VI (II–VI) 0.043  

No visible pathology (I) 118 (9.4%) 8 (3.3%) 11 (5.3%) 5 (5.2%) 17 (8.7%) 25 (15.2%) 24 (13.6%) 28 (16.5%)   
Diffuse injury II 592 (47.2%) 56 (22.8%) 84 (40.6%) 54 (56.2%) 92 (47.2%) 100 (60.6%) 103 (58.5%) 103 (60.6%)   
Diffuse injury III 108 (8.6%) 42 (17.1%) 17 (8.2%) 10 (10.4%) 14 (7.2%) 9 (5.5%) 6 (3.4%) 10 (5.9%)   
Diffuse injury IV 16 (1.3%) 7 (2.8%) 1 (0.5%) 1 (1.0%) 4 (2.1%) 1 (0.6%) 1 (0.6%) 1 (0.6%)   
Mass lesion (V & VI) 421 (33.5%) 133 (54.0%) 94 (45.4%) 26 (27.1%) 68 (34.9%) 30 (18.2%) 42 (23.9%) 28 (16.5%)  

tSAH (n† = 1254) 957 (76.3%) 221 (90.2%) 176 (84.2%) 73 (76.0%) 150 (76.9%) 106 (63.9%) 125 (71.4%) 106 (63.1%) 0.16 
EDH (n† = 1257) 244 (19.4%) 31 (12.7%) 32 (15.3%) 21 (21.9%) 46 (23.6%) 32 (19.3%) 42 (23.9%) 40 (23.5%) 0.016 
Glucose [mmol/L] (n† = 1062) 7.7 (6.6–9.4) 8.8 (7.3–11) 8.0 (6.5–9.8) 7.6 (6.5–9.3) 7.8 (6.6–9.6) 7.7 (6.5–8.7) 7.3 (6.3–8.5) 7.1 (6.3–8.1) 0.013 
Hb [g/dL] (n† = 1140) 13 (12–14) 13 (11–14) 13 (11–14) 14 (12–14) 13 (12–14) 14 (12–15) 13 (12–15) 14 (13–15) 0.038 

Data are median (IQR) for continuous characteristics and n (% of column group) for categorical characteristics. Units of characteristics 214 
are provided in square brackets. GCSm=motor component score of the Glasgow Coma Scale. Marshall CT=Marshall computerised 215 
tomography classification. tSAH=traumatic subarachnoid haemorrhage. EDH=extradural haematoma. Hb=haemoglobin. 216 
†Limited sample size of non-missing values for characteristic. 217 
‡p-values are determined from proportional odds logistic regression (POLR) analysis trained on all concise predictors concurrently [19] 218 
and are combined across 100 missing value imputations via z-transformation [29]. For categorical variables with k > 2 categories (e.g., 219 
GCSm), p-values were calculated with a likelihood ratio test (with k-1 degrees of freedom) on POLR.220 
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Seven of the concise predictors had missing values for some of the patients in our study 221 
population (S2 Fig). In each repeated cross-validation partition, we trained an 222 
independent, stochastic predictive mean matching imputation function on the training set 223 
and imputed all missing values across both sets using the ‘mice’ package (v3.9.0) [30] in 224 
R (v4.0.0) [31]. The result was a multiply imputed (m = 100) dataset with a unique 225 
imputation per partition, allowing us to simultaneously account for the variability due to 226 
resampling and the variability due to missing value imputation during repeated cross-227 
validation. 228 
 229 
Prior to the training of CPMs, each of the multi-categorical variables (i.e., GCSm, Marshall 230 
CT, and unreactive pupils in Table 2) were one-hot encoded and each of the continuous 231 
variables (i.e., age, glucose, and haemoglobin) were standardised based on the mean 232 
and standard deviation of each of the training sets with the ‘scikit-learn’ module in Python. 233 
 234 

Selection of concise-predictor-based models (CPMs) 235 
 236 
We tested four CPM types, each denoted by a subscript: (1) multinomial logistic 237 
regression (CPMMNLR), (2) proportional odds (i.e., ordinal) logistic regression (CPMPOLR), 238 
(3) class-weighted feedforward neural network with a multinomial (i.e., softmax) output 239 
layer (CPMDeepMN), and (4) class-weighted feedforward neural network with an ordinal 240 
(i.e., constrained sigmoid at each threshold) output layer (CPMDeepOR). These models 241 
were selected because, in the setting of ordinal GOSE prediction, we wished to compare 242 
the performance of: (1) nonparametric logistic regression models (CPMMNLR and 243 
CPMPOLR) to nonlinear, parametric deep learning networks (CPMDeepMN and CPMDeepOR), 244 
and (2) multinomial outcome encoding (CPMMNLR and CPMDeepMN) to ordinal outcome 245 
encoding (CPMPOLR and CPMDeepOR). Each of these model types returns a predicted 246 
probability for each of the GOSE thresholds at 6 months post-injury from the concise set 247 
of predictors (Fig 1A). A detailed explanation of CPM architectures, hyperparameters for 248 
the parametric CPMs, loss functions, and optimisation algorithms is provided in S1 249 
Appendix. 250 
 251 
CPMBest denotes the optimal CPM for a given performance metric in the Results. 252 
CPMMNLR and CPMPOLR were implemented with the ‘statsmodels’ module (dev. v0.14.0) 253 
[32] in Python, and CPMDeepMN and CPMDeepOR were implemented with the ‘PyTorch’ 254 
(v1.10.0) [33] module in Python. 255 
 256 

Design of all-predictor-based models (APMs) 257 
 258 
In contrast to the CPMs, we designed and trained prediction models on all baseline (i.e., 259 
available to ICU clinicians at 24 hours post-admission) clinical information (excluding 260 
high-resolution data such as full brain images or physiological waveforms) in the 261 
CENTER-TBI database. Each of these models is designated as an all-predictor-based 262 
model (APM). 263 
 264 
For our study population, there are 1,151 predictors [34], each being in one of the 14 265 
categories listed in Table 3, with variable levels of missingness and frequency per patient. 266 
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This information also includes 81 predictors denoting treatments or interventions within 267 
the first 24 hours of ICU care (e.g., type and dose of medication administered) and 76 268 
predictors denoting the explicit impressions or rationales of ICU physicians (e.g., reason 269 
for surgical intervention and expected prognosis with or without surgery). 270 
 271 
Table 3. Predictor baseline tokens per patient in the CENTER-TBI dataset. 272 

Predictor category Types of tokens 
All Fixed at ICU 

admission 
Continuous 
variable 

Treatments 
and 
interventions 

Physician 
impression or 
rationale 

Emergency care and 
ICU admission 

112 (103–121) 112 (103–121) 13 (10–16) 0 (0–0) 7 (7–8) 

Brain imaging 94 (72–114) 74 (68–83) 5 (2–8) 0 (0–0) 9 (8–10) 
ICU monitoring and 
management 

63 (52–72) 3 (3–3) 10 (5–13) 40 (34–46) 13 (3–15) 

Injury characteristics 
and severity 

55 (49–62) 55 (49–62) 2 (2–2) 0 (0–0) 0 (0–0) 

End-of-day 
assessments 

50 (45–54) 0 (0–0) 19 (17–21) 0 (0–0) 0 (0–0) 

Laboratory 
measurements 

44 (32–55) 14 (0–20) 42 (31–52) 0 (0–0) 1 (1–1) 

Medical and 
behavioural history 

38 (32–51) 38 (32–51) 0 (0–1) 0 (0–0) 0 (0–0) 

Medications 30 (21–40) 0 (0–0) 0 (0–0) 22 (15–30) 8 (5–11) 
Bihourly assessments 17 (0–32) 0 (0–0) 15 (0–27) 1 (0–2) 0 (0–0) 
Demographics and 
socioeconomic status 

15 (14–16) 15 (14–16) 2 (1–2) 0 (0–0) 0 (0–0) 

Protein biomarkers 5 (5–5) 0 (0–0) 5 (5–5) 0 (0–0) 0 (0–0) 
Surgery 2 (1–6) 1 (1–2) 0 (0–0) 0 (0–1) 1 (0–3) 
Haemostatic markers* 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 
Transitions of care* 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 
All predictors 532 (486–580) 315 (288–341) 111 (90–132) 64 (50–75) 37 (29–44) 

Data represent median (IQR) number of non-missing, unique tokens per patient. Tokens were 273 
extracted from the clinical information available up to 24 hours after ICU admission for each study 274 
patient in the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-275 
TBI) project dataset. Each token may be of only one predictor category (leftmost column) and of 276 
any number of token types (four rightmost columns). ICU=intensive care unit. 277 
*Due to their relative infrequency in the CENTER-TBI dataset, these baseline predictor categories 278 
have a 3rd quartile of zero tokens per patient. 279 
 280 
To prepare this information into a suitable format for training APMs, we tokenised and 281 
embedded heterogenous patient data [35] in a process visualised in Fig 2. Predictor 282 
tokens were constructed in one of the following ways: (1) for categorical predictors, a 283 
token was constructed by concatenating the predictor name and value, e.g., 284 
‘GCSTotalScore_04,’ (2) for continuous predictors, a token was constructed by learning 285 
the distribution of that predictor from the training set and discretising into 20 quantile bins, 286 
e.g., ‘SystolicBloodPressure_BIN17,’ (3) for text-based entries, we removed all special 287 
characters, spaces, and capitalisation from the text and appended the unformatted text 288 
to the predictor name, e.g., ‘InjuryDescription_skullfracture,’ and (4) for missing values, a 289 
separate token was created to designate missingness, e.g., ‘PriorMedications_NA’ (Fig 290 
2A). The unique tokens from a patient’s first 24 hours of ICU stay made up his or her 291 



 

Page 11 of 34 

individual predictor set, and the median number of unique tokens (excluding missing 292 
value tokens) per patient per predictor category are provided in Table 3. Notably, this 293 
process does not require any data cleaning, missing value imputation, outlier removal, or 294 
domain-specific knowledge for a large set of variables and imposes no constraints on the 295 
number or type of predictors per patients [35]. Additionally, by including missing value 296 
tokens, models can discover meaningful patterns of missingness if they exist [36]. 297 
 298 
Fig 2. Tokenisation and embedding procedure for the development of ordinal all-predictor-299 
based models (APMs). ICU=intensive care unit. ER=emergency room. Hx=history. 300 
SES=socioeconomic status. CSF=cerebrospinal fluid. GOSE=Glasgow Outcome Scale – 301 
Extended at 6 months post-injury. (A) Process of converting all clinical information, from the first 302 
24 hours of each patient, into an indexed dictionary of tokens during model training. The 303 
tokenisation process is illustrated with three example predictors and their associated values in 304 
step 2. The first entry in the trained token dictionary (‘0) <unrecognised>’) of step 3 is a 305 
placeholder token for any tokens encountered in the testing set that were not seen in the training 306 
set. (B) Visual representation of token embedding and significance-weighted averaging pipeline 307 
during APM prediction runs. After tokenising an individual patient’s clinical information, the vector 308 
of tokens is converted to a vector of the indices corresponding to each token in the trained token 309 
dictionary. The corresponding vectors and significance weights of the indices are extracted to 310 
weight-average the patient information into a single vector. The embedding layer and significance 311 
weights are learned through stochastic gradient descent during model training, and significance 312 
weights are constrained to be positive with an exponential function. While not explicitly shown, 313 
the weighted vectors are divided by the number of vectors during weight-averaging. The 314 
individual, weight-averaged vector then feeds into an ordinal prediction model to return 315 
probabilities at each GOSE threshold. The ordinal prediction model could either have multinomial 316 
output encoding (APMMN) or ordinal outcome encoding (APMOR), as represented in Fig 1A. 317 
 318 
Taking inspiration from artificially intelligent (AI) natural language processing [37,38], all 319 
the predictor tokens from the training set (excluding the validation set) are used to 320 
construct a token dictionary. APMs learn a lower dimensional vector as well as a positive 321 
significance weight for each entry in the dictionary during training. The vectors for each 322 
of the tokens of a single patient are significance-weight-averaged into a single vector 323 
which is then fed into a class-weighted feedforward neural network (Fig 2B). If the neural 324 
network has no hidden layers, then the APM is analogous to logistic regression, while if 325 
it does have hidden layers, the APM corresponds to deep learning. In this work, we train 326 
APMs with one of two kinds of output layers: multinomial, i.e., softmax, (APMMN), or 327 
ordinal, i.e., constrained sigmoid at each GOSE threshold, (APMOR). Both model types 328 
output a predicted probability for each of the GOSE thresholds at 6 months post-injury. A 329 
detailed explanation of APM architectures, hyperparameters, loss functions, and 330 
optimisation algorithms is provided in S2 Appendix. 331 
 332 
APMBest denotes the optimal APM for a given performance metric in the Results. APMMN 333 
and APMOR were implemented with the ‘PyTorch’ module in Python. 334 
 335 

Predictor importance in all-predictor-based models (APMs) 336 
 337 
The relative importance of predictor tokens in the trained APMs was measured with 338 
absolute Shapley additive explanation (SHAP) [39] values, which, in our case, can be 339 
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interpreted as the magnitude of the relative contribution of a token towards a model output 340 
for a single patient. For APMMN, this corresponds to the predictor contributions towards 341 
each node (after softmax transformation, Fig 1A) corresponding to the probability at a 342 
GOSE score. For APMOR, this corresponds to the predictor contributions towards each 343 
node (after sigmoid transformation, Fig 1A) corresponding to the probability at a GOSE 344 
threshold. Absolute SHAP values were measured for each patient in the testing set of 345 
every repeated cross-validation partition, and we averaged these values over the 346 
partitions to derive our individualised importance scores per token. These scores were 347 
averaged, once again, over the entire patient set to calculate the mean absolute SHAP 348 
values of each token. Finally, to derive importance scores for each predictor, we 349 
calculated the maximum of the mean absolute SHAP values of the possible tokens from 350 
the predictor. 351 
 352 

Selection and preparation of extended concise predictor set 353 
 354 
We selected a small set of the most important APM predictors by mean absolute SHAP 355 
values to add to the concise predictor set and observe the change in model performance. 356 
Since the concise predictor set does not include any information on intervention decisions 357 
or physician impressions from the first day, we did not consider these predictor types. 358 
Moreover, for every multi-categorical predictor selected, we examined the mean absolute 359 
SHAP values of each of the predictor’s possible tokens to determine which of the 360 
categories should be explicitly encoded (e.g., including 10 categories for employment 361 
status or just one indicator variable for retirement). The extended concise predictor set, 362 
including the 10 original concise predictors and the 8 added predictors, in our study 363 
population is listed and characterised in S1 Table. Each of the models trained on the 364 
concise set with these variables added is denoted as an extended concise-predictor-365 
based model (eCPM). 366 
 367 
The process of multiple imputation (m = 100), one-hot encoding, and standardisation of 368 
the extended concise predictor set was identical to that of the concise predictor set, as 369 
described earlier. 370 
 371 

Selection of extended concise-predictor-based models 372 

(eCPMs) 373 
 374 
The four eCPM model types we tested are identical to the four CPM model types, as 375 
described earlier and in S1 Appendix with, however, the extended concise predictor set: 376 
(1) multinomial logistic regression (eCPMMNLR), (2) proportional odds (i.e., ordinal) logistic 377 
regression (eCPMPOLR), (3) class-weighted feedforward neural network with a multinomial 378 
(i.e., softmax) output layer (eCPMDeepMN), and (4) class-weighted feedforward neural 379 
network with an ordinal (i.e., constrained sigmoid at each threshold) output layer 380 
(eCPMDeepOR). 381 
 382 
eCPMBest denotes the optimal eCPM for a given performance metric in the Results. 383 
 384 
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Assessment of model discrimination and calibration  385 
 386 
All model metrics, curves, and associated confidence intervals (CI) were calculated from 387 
testing set predictions using the repeated Bootstrap Bias Corrected Cross-Validation 388 
(BBC-CV) method [40] with 1,000 resamples of unique patients for bootstrapping. The 389 
collection of metrics from the bootstrapped testing set resamples for each model then 390 
formed our unbiased estimation distribution for statistical inference (i.e., CI). 391 
 392 
In this work, we assess model discrimination performance (i.e., how well do the models 393 
separate patients with different GOSE scores?) and probability calibration (i.e., how 394 
reliable are the predicted probabilities at each threshold?). The metrics and visualisations 395 
are explained in detail, with mathematical derivation and intuitive examples, in S3 396 
Appendix. In this section, we will only list the metrics, their interpretations, and their range 397 
of feasible values. Feasible values range from the value corresponding to no model 398 
information or random guessing (i.e., the no information value [NIV]) to the value 399 
corresponding to ideal model performance (i.e., the full information value [FIV]). 400 
  401 
Our primary metric of model discrimination performance is the ordinal c-index (ORC) [13]. 402 
ORC has two interpretations: (1) the probability that a model correctly separates two 403 
patients with two randomly chosen GOSE scores and (2) the average proportional 404 
closeness between a model’s functional outcome ranking of a set of patients (which 405 
includes one randomly chosen patient from each possible GOSE score) to their true 406 
functional outcome ranking. In addition, we calculate Somers’ Dxy [41,42], which is 407 
interpreted as the proportion of ordinal variation in GOSE that can be explained by the 408 
variation in model output. Our final metrics of model discrimination are dichotomous c-409 
indices (i.e., AUC) at each threshold of GOSE. Each is interpreted as the probability of a 410 
model correctly discriminating a patient with GOSE above the threshold from one with 411 
GOSE below. The range of feasible values for each discrimination metric are: NIVORC = 412 
0.5 to FIVORC = 1, NIVSomers’ Dxy = 0 to FIVSomers’ Dxy = 1, and NIVDichotomous c-index = 0.5 to 413 
FIVDichotomous c-index = 1. ORC is the only discrimination metric that is independent of the 414 
sample prevalence of each GOSE category [13]. 415 
 416 
To assess the calibration of predicted probabilities at each GOSE threshold, we use the 417 
logistic recalibration framework [43] to measure calibration slope [44]. A calibration slope 418 
less than one indicates overfitting (i.e., high predicted probabilities are overestimated 419 
while low predicted probabilities are underestimated) while a calibration slope greater 420 
than one indicates underfitting [45]. We also examine smoothed probability calibration 421 
curves [46] to detect miscalibrations that may be overlooked by the logistic recalibration 422 
framework [45]. The ideal calibration curve is a diagonal line with slope one and y-423 
intercept 0 while one indicative of random guessing would be a horizontal line with a y-424 
intercept at the proportion of the study population above the given threshold. We 425 
accompany each calibration curve with the integrated calibration index (ICI) [47], which is 426 
the mean absolute error between the smoothed and the ideal calibration curves, to aid 427 
comparison of curves across model types. FIVICI = 0, but NIVICI varies based on the 428 
outcome distribution at each threshold (S3 Appendix). 429 
 430 
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All metrics were calculated using the ‘scikit-learn’ and ‘SciPy’ (v1.6.2) [48] modules in 431 
Python and figures were plotted using the ‘ggplot2’ package (v3.3.2) [49] in R. 432 
 433 

Computational resources  434 
 435 
All computational and statistical components of this work were performed in parallel on 436 
the Cambridge Service for Data Driven Discovery (CSD3) high performance computer, 437 
operated by the University of Cambridge Research Computing Service 438 
(http://www.hpc.cam.ac.uk). The training of each APM was accelerated with graphical 439 
processing units and the ‘PyTorch Lightning’ (v1.5.0) [50] module. The training of all 440 
parametric models (CPMDeepMN, CPMDeepOR, APMMN, APMOR, eCPMDeepMN, and 441 
eCPMDeepOR) was made more efficient by dropping out consistently underperforming 442 
parametric configurations, on the validation sets, with the Bootstrap Bias Corrected with 443 
Dropping Cross-Validation (BBCD-CV) method [40] with 1,000 resamples of unique 444 
patients. The results of hyperparameter optimisation are detailed in S4 Appendix. 445 
 446 

Results 447 
 448 

CPM and APM discrimination performance 449 
 450 
The discrimination performance metrics for each CPM are listed in S2 Table. Deep 451 
learning models (CPMDeepMN and CPMDeepOR) made no significant improvement (based 452 
on 95% CI) over logistic regression models (CPMMNLR and CPMPOLR). The only significant 453 
difference in discrimination among the model types was observed in CPMDeepOR, which 454 
had a significantly lower ORC and Somers’ Dxy than the other models. The discrimination 455 
performance metrics for each APM are listed in S3 Table. APMMN had a significantly 456 
higher ORC, Somers’ Dxy, and dichotomous c-indices at lower GOSE thresholds (i.e., 457 
GOSE > 1 and GOSE > 3) than did APMOR. Moreover, in S4 Appendix, we see that the 458 
best-performing parametric configurations of APMMN did not contain additional hidden 459 
layers between the token embedding and output layers. Our results of performance within 460 
predictor sets consistently demonstrate that increasing analytical complexity, in terms of 461 
using deep learning (for CPMs) or adding hidden network layers (for APMs), did not 462 
improve discrimination of outcomes. In the case of deep learning models, multinomial 463 
outcome encoding significantly outperformed ordinal outcome encoding (Fig 1A). 464 
 465 
The discrimination performance metrics of the best-performing CPMs (CPMBest), 466 
compared with those of the best-performing APMs (APMBest), are listed in Table 4. In 467 
contrast to the case of analytical complexity, we observe that expanding the predictor set 468 
yielded a significant improvement in ORC, Somers’ Dxy, and each threshold-level 469 
dichotomous c-index except for those of the highest GOSE thresholds (i.e., GOSE > 6 470 
and GOSE > 7). On average, models trained on the concise predictor set (CPMs) 471 
correctly separated two randomly selected patients from two randomly selected GOSE 472 
categories 70% (95% CI: 68% – 71%) of the time, while models trained on all baseline 473 
predictors (APMs) in the CENTER-TBI dataset did so 76% (95% CI: 74% – 77%) of the 474 
time. These percentages also correspond to the average proportional closeness of 475 
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predicted rankings to true GOSE rankings of patient sets. CPMBest explained 44% (95% 476 
CI: 41% – 48%) of the ordinal variation in GOSE while APMBest explained 57% (95% CI: 477 
54% – 60%) in their respective model outputs. At increasing GOSE thresholds, the 478 
dichotomous c-indices of CPMBest and APMBest, as well as the gap between them, 479 
consistently decreased (Table 4). This signifies that predicting higher 6-month functional 480 
outcomes is more difficult than predicting lower 6-month functional outcomes. Moreover, 481 
the gains in discrimination earned from expanding the predictor set mostly come from 482 
improved performance at lower GOSE thresholds (i.e., predicting survival, return of 483 
consciousness, or recovery of functional independence). 484 
 485 
Table 4. Best ordinal model discrimination and calibration performance per predictor set. 486 

Metric Threshold Model 
CPMBest APMBest eCPMBest 

Ordinal c-index (ORC) 0.70 (0.68–0.71) 0.76 (0.74–0.77) 0.73 (0.71–0.74) 
Somers’ Dxy 0.44 (0.41–0.48) 0.57 (0.54–0.60) 0.50 (0.46–0.54) 
Threshold-level dichotomous c-index* 0.77 (0.75–0.78) 0.82 (0.80–0.83) 0.79 (0.78–0.80) 
  GOSE > 1 0.83 (0.81–0.85) 0.90 (0.88–0.92) 0.86 (0.84–0.87) 
  GOSE > 3 0.81 (0.79–0.83) 0.86 (0.84–0.88) 0.84 (0.83–0.86) 
  GOSE > 4 0.78 (0.76–0.80) 0.83 (0.80–0.85) 0.82 (0.80–0.83) 
  GOSE > 5 0.76 (0.74–0.77) 0.80 (0.78–0.83) 0.77 (0.75–0.79) 
  GOSE > 6 0.72 (0.70–0.74) 0.76 (0.73–0.79) 0.75 (0.73–0.77) 
  GOSE > 7 0.72 (0.69–0.74) 0.75 (0.72–0.79) 0.72 (0.70–0.75) 
Threshold-level calibration slope* 0.98 (0.81–1.12) 0.84 (0.76–0.91) 1.00 (0.78–1.14) 
  GOSE > 1 0.95 (0.78–1.10) 0.98 (0.86–1.10) 0.98 (0.78–1.14) 
  GOSE > 3 0.97 (0.80–1.12) 0.90 (0.80–1.02) 1.05 (0.81–1.20) 
  GOSE > 4 1.06 (0.86–1.23) 0.89 (0.79–1.00) 1.10 (0.85–1.27) 
  GOSE > 5 1.01 (0.78–1.21) 0.82 (0.72–0.94) 1.01 (0.76–1.22) 
  GOSE > 6 0.98 (0.73–1.20) 0.74 (0.62–0.87) 0.97 (0.70–1.20) 
  GOSE > 7 0.92 (0.69–1.18) 0.68 (0.54–0.83) 0.89 (0.61–1.18) 

Data represent mean (95% confidence interval) for the best-performing model, per predictor set, 487 
based on a given metric. For threshold-level metrics, a single best-performing model, per predictor 488 
set, was determined by the overall unweighted average across the thresholds. Interpretations for 489 
each metric are provided in Materials and methods. Mean and confidence interval values were 490 
derived using bias-corrected bootstrapping (1,000 resamples) and represent the variation across 491 
repeated k-fold cross-validation folds (20 repeats of 5 folds) and, for the concise-predictor-based 492 
model (CPM) and the extended concise-predictor-based model (eCPM), 100 missing value 493 
imputations. CPMBest=CPM with best value for given metric (S2 Table). APMBest=all-predictor-494 
based model (APM) with best value for given metric (S3 Table). eCPMBest=eCPM with best value 495 
for given metric (S4 Table). GOSE=Glasgow Outcome Scale – Extended at 6 months post-injury. 496 
*Values in these rows correspond to the unweighted average across all GOSE thresholds. 497 
 498 

CPM and APM calibration performance 499 
 500 
The calibration slopes and calibration curves for each CPM are displayed in S2 Table 501 
and S3 Fig, respectively. Both logistic regression CPMs (CPMMNLR and CPMPOLR) are 502 
significantly overfitted at the three highest GOSE thresholds (i.e., GOSE > 5, GOSE > 6, 503 
and GOSE > 7). The graphical calibration of CPMDeepOR was significantly worse than that 504 
of the other CPMs (S3 Fig). The calibration slopes and calibration curves for each APM 505 
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are displayed in S3 Table and S4 Fig, respectively. APMOR is poorly calibrated at each 506 
threshold of GOSE. APMMN is significantly overfitted at the three highest GOSE 507 
thresholds (i.e., GOSE > 5, GOSE > 6, and GOSE > 7). 508 
 509 
The calibration slopes and calibration curves for the best-calibrated CPMs (CPMBest), 510 
compared against those for the best-calibrated APMs (APMBest), are displayed in Table 511 
4 and Fig 3, respectively. Unlike CPMBest, APMBest could not avoid significant overfitting 512 
at the three highest GOSE thresholds (i.e., GOSE > 5, GOSE > 6, and GOSE > 7). At 513 
these thresholds, we observe that the calibration curve of APMBest significantly veered off 514 
the diagonal line of ideal calibration for higher predicted probabilities. However, due to 515 
the relative infrequency of these predictions (comparative histograms in Fig 3), the ICI of 516 
APMBest is not significantly higher than that of CPMBest. Our results suggest that APMBest 517 
requires more patients with higher functional outcomes, in both the training and validation 518 
sets, to mitigate overfitting [45]. 519 
 520 
Fig 3. Ordinal calibration curves of best-performing concise-predictor-based model 521 
(CPMBest) and best-performing all-predictor-based model (APMBest). GOSE=Glasgow 522 
Outcome Scale – Extended at 6 months post-injury. In each panel, a comparative histogram (200 523 
uniform bins), centred at a horizontal line in the bottom quarter, displays the distribution of 524 
predicted probabilities for CPMBest (above the line) and APMBest (below the line) at the given GOSE 525 
threshold. CPMBest and APMBest correspond to the CPM (S2 Table) and APM (S3 Table), 526 
respectively, with the lowest unweighted average of integrated calibration indices (ICI) across the 527 
thresholds. Shaded areas are 95% confidence intervals derived using bias-corrected 528 
bootstrapping (1,000 resamples) to represent the variation across repeated k-fold cross-validation 529 
folds (20 repeats of 5 folds) and, for CPMBest, 100 missing value imputations. The values in each 530 
panel correspond to the mean ICI (95% confidence interval) at the given threshold. The diagonal 531 
dashed line represents the line of perfect calibration (ICI = 0). 532 
 533 

Predictor importance 534 
 535 
Given that APMMN significantly outperforms APMOR in discrimination and calibration, we 536 
focus the assessment of predictor importance to APMMN. A bar plot of the mean absolute 537 
SHAP values associated with the 15 most important predictors in APMMN is provided in 538 
Fig 4. We find that the subjective early prognoses of ICU physicians had the greatest 539 
contribution towards APMMN predictions, particularly for the prediction of death (GOSE = 540 
1) within 6 months. Initially, this result (along with the high contribution of other physician 541 
impressions) seems to suggest that integration of a physician’s interpretations of a 542 
patient’s baseline status may add important prognostic information. These impressions 543 
likely summarise information from a variable number of other predictors along with the 544 
physician’s own experience-based judgement, resulting in high prediction contributions. 545 
However, inclusion of these variables may result in problematic self-fulfilling prophecies 546 
[51]. For instance, a physician’s poor prognosis directly influences WLSM, which was 547 
instituted in 144 (70.2%) of the 205 patients who died in the ICU [52]. Including a variable 548 
for physician prognosis may then negatively bias the outcome prediction and unduly 549 
promote WLSM. Therefore, we do not consider physician impression predictors for our 550 
extended concise predictor set. We also observe that ‘age at admission’ was the only 551 
concise predictor among the 15 most important ones. The importance ranks (out of 1,151) 552 



 

Page 17 of 34 

of the concise predictors (Table 2) are: age = 5th, glucose = 23rd, Marshall CT = 25th, 553 
pupillary reactivity = 29th, GCSm = 42nd, haemoglobin = 50th, hypoxia = 284th, tSAH = 554 
301st, EDH = 414th, and hypotension = 420th. The eight remaining predictors of the top 15 555 
(Fig 4) were added to the concise predictor set to form our extended concise predictor 556 
set. Within the tokens for “employment status before injury,” we found that the single 557 
token indicating retirement is much more important than the others. Thus, instead of 558 
encoding all 10 options for employment status, we included a single indicator variable for 559 
retirement in our extended concise predictor set. The eight added predictors included 2 560 
demographic variables (retirement status and highest level of formal education), 4 protein 561 
biomarker concentrations (neurofilament light chain [NFL], glial fibrillary acidic protein 562 
[GFAP], total tau protein [T-tau], and S100 calcium-binding protein B [S100B]), and 2 563 
clinical assessment variables (worst abbreviated injury score [AIS] among head, neck, 564 
brain, and cervical spine injuries and incidence of post-traumatic amnesia at ICU 565 
admission). The extended concise predictor set, including the ten original concise 566 
predictors and the eight added predictors, is statistically characterised in S1 Table. 567 
 568 
Fig 4. Mean absolute Shapley additive explanation (SHAP) values of most important 569 
predictors for multinomial-encoding all-predictor-based model (APMMN). ICU=intensive care 570 
unit. ER=emergency room. CT=computerised tomography. GOS=Glasgow Outcome Scale (not 571 
extended). UO=unfavourable outcome, defined by functional dependence (i.e., GOSE ≤ 4). 572 
AIS=Abbreviated Injury Scale. GOSE=Glasgow Outcome Scale – Extended at 6 months post-573 
injury. CPM=predictors that are included in the original concise predictor set. eCPM=predictors 574 
that are added to the original concise predictor set to form the extended concise predictor set. 575 
The mean absolute SHAP value is interpreted as the average magnitude of the relative additive 576 
contribution of a predictor’s most important token towards the predicted probability at each GOSE 577 
score for a single patient. Predictor types are denoted by the coloured boundary around predictor 578 
names. Physician impression predictors denote predictors that encode the explicit impressions or 579 
rationales of ICU physicians and are not considered for the extended concise predictor set. 580 
 581 
A bar plot of the mean absolute SHAP values of APMMN for each of the five folds of the 582 
first repeat is provided in S5 Fig. Most of the eight added predictors, along with age at 583 
admission, are consistently represented among the most important predictors across the 584 
five folds. 585 
 586 

eCPM discrimination and calibration 587 
 588 
The discrimination and calibration metrics for the best-performing extended-predictor-589 
based model (eCPMBest) are listed in Table 4. Inclusion of the eight selected predictors 590 
accounted for about half of the gains in discrimination performance achieved by APMBest 591 
over CPMBest according to ORC, Somers’ Dxy, and the dichotomous c-indices. Based on 592 
the difference in Somers’ Dxy, the eight added predictors allowed models to explain an 593 
additional 6% of the ordinal variation in GOSE at 6 months post-injury. Unlike APMBest, 594 
eCPMBest is not significantly overfitted at any threshold. The calibration curves of eCPMs 595 
(S6 Fig) are largely similar to those of the corresponding CPMs (S3 Fig), except at the 596 
highest threshold (i.e., GOSE > 7). Similar to those of APMMN, the calibration curves of 597 
eCPMs veer off the line of ideal calibration at higher predicted probabilities of GOSE > 7. 598 
The eCPM results support the finding that discrimination performance can be improved 599 
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with the expansion of the predictor set. Furthermore, by limiting the number of added 600 
predictors and the analytical complexity of the model, eCPM avoided the significant 601 
miscalibration of APM at higher thresholds. 602 
 603 
The discrimination and calibration metrics for each eCPM are listed in S4 Table. 604 
 605 

Discussion 606 
 607 
To our knowledge, this is the most comprehensive evaluation of early ordinal outcome 608 
prognosis for critically ill TBI patients. Our analysis cross-compares a range of ordinal 609 
prediction modelling strategies with a large range of available baseline predictors to 610 
determine the relative contribution of each towards model performance. Employing an AI 611 
tokenisation and embedding technique, we develop highly flexible ordinal prediction 612 
models that can learn from the entire, heterogeneous set of 1,151 predictors, available 613 
within the first 24 hours of ICU stay, in the CENTER-TBI dataset. This information includes 614 
not only all baseline clinical data currently deemed significant for ICU care of TBI but also 615 
advanced sub-study results (e.g., protein biomarkers, central haemostatic markers, 616 
genetic markers, and advanced MRI results) that represent the experimental frontier of 617 
clinical TBI assessment [1,15,16]. Therefore, our work reveals the interpretable limits of 618 
baseline ordinal, 6-month GOSE prediction in the ICU at this time. 619 
 620 
Our key finding is that augmenting the baseline predictor set was much more relevant for 621 
improving ordinal model prediction performance than was increasing analytical 622 
complexity with deep learning. Within a given predictor set, artificial neural networks did 623 
not perform better than logistic regression models (S2 Table, S4 Table), nor did models 624 
with additional hidden layers for the APMs (S4 Appendix). This result is consistent with 625 
findings in the binary prediction case [53]. On the other hand, augmenting the predictor 626 
set, from CPM to APM, substantially improved ordinal discrimination (ORC: +8.6%, Table 627 
4) and prediction at lower GOSE thresholds (e.g., GOSE > 1 c-index: +8.4%, Table 4). 628 
Just adding eight predictors to the concise predictor set accounted for about half of the 629 
gains in discrimination. However, the addition of predictors negatively affected model 630 
calibration, particularly at higher GOSE thresholds (Fig 3, Table 4). This result underlines 631 
the need for careful consideration of probability calibration during model development 632 
(e.g., recalibrate with isotonic regression to mitigate overfitting). 633 
 634 
At the same time, our results also indicate that ordinal early outcome prognosis for 635 
critically ill TBI patients is limited in capability. The best-performing model, which learns 636 
from all baseline information in the CENTER-TBI dataset, can only correctly discriminate 637 
two randomly chosen patients with two randomly chosen GOSE scores 76% (95% CI: 638 
74% – 77%) of the time. Equivalently, if the best performing model was tasked with 639 
ranking seven randomly chosen patients – each with a different true GOSE – by predicted 640 
GOSE, an average 5.10 (95% CI: 4.74–5.46) of the 21 possible pairwise orderings will be 641 
incorrect. Currently, ordinal model outputs explain, at best, 57% (95% CI: 54% – 60%) of 642 
the ordinal variation in 6-month GOSE. Ordinal prediction models struggle to reliably 643 
predict full recovery (GOSE > 7 c-index: 75% [95% CI: 72% – 79%], Table 4), and gains 644 
from expanding the predictor set diminish with higher GOSE thresholds. 645 
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 646 
It is important to acknowledge that the predictor importance results of this article should 647 
not be interpreted for predictor discovery or validation. SHAP values are visualised (Fig 648 
4) solely to globally interpret APMMN predictions and to form the extended concise 649 
predictor set. Risk factor validation, which falls out of the scope of this work, would require 650 
investigating the robustness and clinical plausibility of the relationship between predictor 651 
values and their corresponding SHAP values [54]. Moreover, causal analysis with apt 652 
consideration of confounding factors or dataset biases would be necessary before 653 
commenting on the potential effects or mechanisms of individual predictors. 654 
 655 
We recognise several limitations in our study. While the concise predictor set was 656 
originally designed for prognosis after moderate-to-severe TBI [8] (i.e., baseline GCS 3 – 657 
12), 26.6% of our study population had experienced mild (i.e., baseline GCS 13 – 15) TBI 658 
(Table 1). Predictor sets have been designed for mild TBI patients (e.g., UPFRONT study 659 
predictors [55]). However, in line with the aims of the CENTER-TBI project [15], we focus 660 
the TBI population not by initial characterisation with GCS but by stratum of care (i.e., 661 
admission to the ICU). Therefore, we selected the single concise predictor set that was 662 
best validated for the majority of critically ill TBI patients. Our outcome categories (GOSE 663 
at 6 months post-injury) were statistically imputed for 13% of our dataset using available 664 
GOSE between 2 weeks and one-year post-injury. Although this method was strongly 665 
validated on the same (CENTER-TBI) dataset [18], we do recognise that our outcome 666 
labels may not be precisely correct. The focus of this work is on the prediction of functional 667 
outcomes through GOSE; nonetheless, it is worth considering other outcomes, such as 668 
quality-of-life and psychological health, that are important for clinical decision making [56]. 669 
Finally, before the AI models developed in this work and in subsequent iterations could 670 
be integrated into ICU practice, limitations of generalisability must be addressed [57]. Our 671 
models were developed on a multicentre, adult population, prospectively recruited 672 
between 2014 and 2017 [25], across Europe, and may encode recruitment, collection, 673 
and clinical biases native to our patient set. AI models must continuously be updated, 674 
iteratively retrained on incoming information, to help fight the effect these biases may 675 
have on returned prognoses for a given patient. 676 
 677 
In the setting of TBI prognosis, we encourage the use of AI not to add analytical 678 
complexity (i.e., make models “deeper”) but to expand the predictor set (i.e., make models 679 
“wider”). Studies have uncovered promising prognostic value in neuro-inflammatory 680 
markers [58,59] and high-resolution TBI monitoring and imaging modalities (e.g., 681 
intracranial and cerebral perfusion pressure [60-62], accelerometery [63], and MRI [64-682 
66]), and we recommend integrating these features into ordinal prognostic models, 683 
especially to improve prediction of higher functional outcomes. We also believe that there 684 
is a feasible performance limit to reliable ordinal outcome prognosis if only statically 685 
considering the clinical information from the first 24 hours of ICU stay. It would seem far-686 
fetched to expect all relevant information pertaining to an outcome at 6 months to be 687 
encapsulated in the first 24 hours of ICU treatment. Heterogeneous pathophysiological 688 
processes unfold over time in patients after TBI [67,68], and dynamic prediction models, 689 
which return model outputs longitudinally with changing clinical information, are better 690 
equipped to consider these temporal effects on prognosis. Dynamic prognosis models 691 
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have been developed for TBI patients [69] and the greater ICU population (not exclusive 692 
to TBI) [35,70,71], but none of them predict functional outcomes on an ordinal scale. We 693 
suggest that the next iteration of this work should be to develop ordinal dynamic prediction 694 
models on all clinical information available during the complete ICU stay. 695 
 696 
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scripts are available online, conditional to approved study proposal, with no end date. 1050 
Interested investigators must provide a methodologically sound study proposal to the 1051 
management committee. Proposals can be submitted online at https://www.center-1052 
tbi.eu/data. Signed confirmation of a data access agreement is required, and all access 1053 
must comply with regulatory restrictions imposed on the original study. 1054 
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S1 Appendix: Explanation of selected ordinal 
prediction models for CPM and eCPM 
 
Multinomial logistic regression (MNLR) 
 
CPMMNLR and eCPMMNLR were implemented using the ‘MNLogit’ class from the 
‘statsmodels’ module (dev. v0.14.0) [1] in Python (v3.7.6). The GOSE score of 1 (death) 
was designated as the reference label, and, for each other GOSE score, a separate 
logistic model was trained to regress the logit of the ratio of the probability of that score 
to the reference score from a linear combination of the predictors. The logit outputs of 
each model feed into a softmax function, after which cumulative sums would determine 
the probability at each threshold. Model weights for MNLR were optimised using the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [2] to maximize conditional 
likelihood. 
 
Proportional odds (i.e., ordinal) logistic regression (POLR) 
 
CPMPOLR and eCPMPOLR were implemented using the ‘OrderedModel’ class from the 
‘statsmodels’ module in Python. The model maps GOSE scores to a latent, logit space 
where consecutive GOSE scores are separated by thresholds. Thus, the model trains 
only one set of linear predictor weights, but a separate intercept for each threshold. Model 
weights for POLR were optimised using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
algorithm [2] to maximize conditional likelihood. 
 
Class-weighted feedforward neural network with a 
multinomial output layer (DeepMN) 
 
CPMDeepMN and eCPMDeepMN were implemented using the ‘PyTorch’ (v1.10.0) [3] module 
in Python. The network architecture of DeepMN included a hyperparametric number of 
dense hidden layers (either 1, 2, 3, 4, 5, or 6), each containing a hyperparametric number 
of nodes (either 128, 256, or 512) with a rectified linear unit (ReLU) activation function 
and a hyperparametric percentage (either 0% or 20%) dropout during training. The output 
layer of DeepMN was a softmax layer of 7 nodes, from which probabilities at each GOSE 
are calculated with cumulative sums (Fig 1A). DeepMN was optimised using the Adam 
algorithm (γ [learning rate] = 0.001, β1 = 0.9, β2 = 0.999) [4] with categorical cross-entropy 
loss. In the loss function, classes were weighted inversely proportional to the frequency 
of each GOSE score in the training set to counter class imbalance. 
 
Class-weighted feedforward neural network with an ordinal 
output layer (DeepOR) 
 
CPMDeepOR and eCPMDeepOR were implemented using the ‘PyTorch’ (v1.10.0) [3] module 
in Python. The network architecture of DeepMN included a hyperparametric number of 
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dense hidden layers (either 1, 2, 3, 4, 5, or 6), each containing a hyperparametric number 
of nodes (either 128, 256, or 512) with a rectified linear unit (ReLU) activation function 
and a hyperparametric percentage (either 0% or 20%) dropout during training. The output 
layer of DeepOR was a sigmoid layer of 6 nodes, where each node represented the 
binomial probability of the outcome being greater than a certain threshold, and each node 
is constrained to be less than or equal to lower-threshold nodes with a negative ReLU 
transformation (Fig 1A). DeepOR was optimised using the Adam algorithm (γ [learning 
rate] = 0.001, β1 = 0.9, β2 = 0.999) with binary cross-entropy loss. In the loss function, 
classes were weighted inversely proportional to the frequency of each GOSE score in the 
training set to counter class imbalance. 
 

CPM or 
eCPM 

Description Hyperparameters Total number of 
configurations Hidden layers Neurons per layer* Dropout 

MNLR Multinomial logistic 
regression 

   
1 

POLR Proportional odds (i.e., 
ordinal) logistic regression 

   
1 

DeepMN Class-weighted 
feedforward neural 
network with a multinomial 
(i.e., softmax) output layer 

1, 2, 3, 4, 5, or 6 128, 256, or 512 0% or 20% 2184 

DeepOR Class-weighted 
feedforward neural 
network with an ordinal 
(i.e., sigmoid at each 
threshold) output layer 

1, 2, 3, 4, 5, or 6 128, 256, or 512 0% or 20% 2184 

*Different hidden layers may have distinct numbers of neurons. 
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S2 Appendix: Explanation of APM for ordinal GOSE 
prediction 
 
APMMN and APMOR were implemented using the ‘PyTorch’ (v1.10.0) [1] module in Python. 
Regarding hyperparameters, the embedding and weight-averaging layer (Fig 2B) is 
considered to the be the first hidden layer. Thus, the number of neurons for the first hidden 
layer can also be considered as the embedding dimension (i.e., the length of each of the 
embedding vectors trained on the token dictionary). The individual vector returned by the 
embedding and weight-averaging layer (Fig 2B) then undergoes a hyperparametric 
number of dense hidden layers (either 0, 1, 2, 3, 4, or 5), each containing a 
hyperparametric number of nodes (either 128, 256, or 512) with a rectified linear unit 
(ReLU) activation function and a hyperparametric percentage (either 0% or 20%) dropout 
during training. The output layer of APMMN was a softmax layer of 7 nodes, from which 
probabilities at each GOSE are calculated with cumulative sums (Fig 1A). APMMN was 
optimised using the Adam algorithm (γ [learning rate] = 0.001, β1 = 0.9, β2 = 0.999) [2] 
with categorical cross-entropy loss. In the loss function, classes were weighted inversely 
proportional to the frequency of each GOSE score in the training set to counter class 
imbalance. The output layer of APMOR was a sigmoid layer of 6 nodes, where each node 
represented the binomial probability of the outcome being greater than a certain 
threshold, and each node is constrained to be less than or equal to lower-threshold nodes 
with a negative ReLU transformation (Fig 1A). APMOR was optimised using the Adam 
algorithm (γ [learning rate] = 0.001, β1 = 0.9, β2 = 0.999) with binary cross-entropy loss. 
In the loss function, classes were weighted inversely proportional to the frequency of each 
GOSE score in the training set to counter class imbalance. 
 

APM Description Hyperparameters Total number 
of 
configurations 

Hidden 
layers* 

Neurons per layer† Dropout 

APMMN Class-weighted embedding and 
weight-averaging layer followed 
by a feedforward neural network 
with a multinomial (i.e., softmax) 
output layer 

1, 2, 3, 4, 
5, or 6 

128, 256, or 512 0% or 20% 2184 

APMOR Class-weighted embedding and 
weight-averaging layer followed 
by a feedforward neural network 
with an ordinal (i.e., sigmoid at 
each threshold) output layer 

1, 2, 3, 4, 
5, or 6 

128, 256, or 512 0% or 20% 2184 

*The first hidden layer corresponds to the embedding and weight-averaging layer. 
†Different hidden layers may have distinct numbers of neurons. 
 
References 
 
1. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An 

Imperative Style, High-Performance Deep Learning Library. In: Wallach H, 
Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, editors. Advances in 
Neural Information Processing Systems 32 (NeurIPS 2019). Vancouver: NeurIPS; 
2019. 



The leap to ordinal: functional prognosis after traumatic brain injury using artificial intelligence 

S2 Appendix  Page 2 of 2 

2. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980v9 
[Preprint]. 2017 [cited 2021 December 26]. Available from: 
https://arxiv.org/abs/1412.6980 



The leap to ordinal: functional prognosis after traumatic brain injury using artificial intelligence 
 

S3 Appendix   Page 1 of 9 

S3 Appendix: Detailed explanation of ordinal model 
performance and calibration metrics 
 
In this appendix, we will describe each of our selected testing set discrimination, 
classification, and calibration metrics in mathematical and interpretive detail. Much of this 
information has already been published by Van Calster et al [1] and Austin et al [2], but 
we summarise and adapt it here for the ease of the reader. For each of the metrics, we 
derive the no information value (NIV), which corresponds to the metric value a model 
would theoretically achieve in the absence of predictive information, and the ideal, full 
information value (FIV). 
 
Discrimination performance metrics 
 
First, as a reference, let us define the dichotomous c-index, also known as the area under 
the receiver operating characteristic curve (AUC). Let us first assume a dichotomous 
prediction problem, in which there are 𝑁! patients with outcome 1 and 𝑁" patients with 
outcome 2. For a patient of outcome 1, let us denote the predicted probability of outcome 
1 as 𝑝!,$!, where 𝑛! ∈ ⟦1, 𝑁!⟧. Likewise, for a patient of outcome 2, let us denote the 
predicted probability of outcome 1 as 𝑝!,$", where 𝑛" ∈ ⟦1, 𝑁"⟧. The dichotomous c-index 
is then defined as: 
 

𝑐 = 	
1

𝑁!𝑁"
, , 𝐼%!,$!&%!,$"

'"

$"(!

'!

$!(!

 

 
where 𝐼%!,$!&%!,$"  is an indicator variable defined by: 
 

𝐼%!,$!&%!,$" = .
1	if	𝑝!,$! > 𝑝!,$";
0.5	if	𝑝!,$! = 𝑝!,$";
0	otherwise.

 

 
Thus, the dichotomous c-index can be interpreted as the probability that a model correctly 
separates 2 patients of different outcome. The dichotomous c-index is the most widely 
used discrimination metric for binary outcome prediction; however, there is no trivial 
extension for ordinal outcome prediction [3]. In this appendix, we explore the extensions 
used for our study. 
 
Ordinal c-index (ORC) 
 
The ordinal c-index (ORC), developed by Van Calster et al [1], is the primary metric of 
model discrimination performance in our study. Consider a set of 7 randomly chosen 
patients, each of one of the GOSE scores in our study, such that each patient is 
represented by 𝑛) where 𝑜 ∈ {1,2	or	3, 4,5,6,7,8}. Now suppose an ordinal GOSE 
prediction model, such as one of those presented in Fig 1A, receives this set of patients 
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and is tasked with ranking the patients in order of predicted functional outcome. Let 
Pr($%)(𝐺𝑂𝑆𝐸 > 𝑡)	represent the predicted probability, returned by our model, at threshold 
𝑡 ∈ {1,3,4,5,6,7} for patient 𝑛) ∈ {𝑛!, 𝑛"	-.	/, 𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4} in our set. One way the model 
could achieve this ranking is to start with the lowest threshold (𝐺𝑂𝑆𝐸 > 1), select the 
patient with the lowest probability at this threshold (i.e., argmin

$%
Pr($%)(𝐺𝑂𝑆𝐸 > 1)), set that 

patient aside as the lowest ranked patient, move on to the subsequent threshold (𝐺𝑂𝑆𝐸 >
3), repeat this process for the remaining patients, and repeat at subsequent thresholds 
until a single patient remains for the highest rank. The ideal predicted ranking would be 
𝑛! <	𝑛"	-.	/ < 𝑛0 < 𝑛1 < 𝑛2 < 𝑛3 < 𝑛4. The primary rationale behind ORC is to calculate 
the average proportional “closeness” between the model-predicted ranking and this ideal 
ranking. To achieve a mathematical definition for closeness, the developers of ORC 
considered a scenario: suppose the model-predicted ranking of the given set is: 𝑛! <
	𝑛0 < 𝑛1 < 𝑛"	-.	/ < 𝑛2 < 𝑛4 < 𝑛3. From this predicted ranking, we would require at least 
3 pairwise switching steps to achieve the target rank. For example: 
 

• Step 1: switch 𝑛0 and 𝑛"	-.	/. Result: 𝑛! < 𝑛"	-.	/ < 𝑛1 <	𝑛0 < 𝑛2 < 𝑛4 < 𝑛3 
• Step 2: switch 𝑛1 and 𝑛0. Result: 𝑛! < 𝑛"	-.	/ <	𝑛0 < 𝑛1 < 𝑛2 < 𝑛4 < 𝑛3 
• Step 3: switch 𝑛4 and 𝑛3. Result: 𝑛! < 𝑛"	-.	/ <	𝑛0 < 𝑛1 < 𝑛2 < 𝑛3 < 𝑛4 

 
Let us define S as the number of necessary pairwise switching steps (i.e., the number of 
incorrect pairwise orderings) to reach the ideal ranking. Trivially, the ideal S (𝑆567	) is 0. 
In the worst possible scenario, in which the predicted ranking is a complete reversal of 
the ideal ranking (i.e., 𝑛4 <	𝑛3 < 𝑛2 < 𝑛1 < 𝑛0 < 𝑛"	-.	/ < 𝑛!), one would require the 
maximum number of unique pairwise switching steps possible to achieve the ideal 
ranking. Since we have 7 possible outcome categories, this is equivalent to 𝑆89: = S3"T =
21. In the case of a tie, we add 0.5 to S. The definition of the proportion of closeness, 
denoted as 𝐶, between the model-predicted ranking and the ideal ranking for a given set 
is thus: 
 

𝐶 = 1 −
𝑆

𝑆89:	
= 1 −	

𝑆
21 

 
In the example provided above, where 𝑆 = 3, the proportional closeness between the 
predicted ranking and the ideal ranking is 𝐶 = 1 − /

"!
≈ 0.86. Thus, to define ORC as the 

average proportional closeness in ranking over all possible sets, 
 

𝑶𝑹𝑪 =	
1

𝑁!𝑁"	-.	/𝑁0𝑁1𝑁2𝑁3𝑁4
, , , , , , , 𝐶$!,$"	'(	),$*,$+,$,,$-,$.

'.

$.(!

'-

$-(!

',

$,(!

'+

$+(!

'*

$*(!

'"	'(	)

$"	'(	)(!

'!

$!(!

 

 
where 𝑁)	∀	𝑜 ∈ {1,2	or	3, 4,5,6,7,8} denotes the number of patients of GOSE score 𝑜, and 
𝐶$!$"	'(	)$*$+$,$-$. denotes the proportional closeness of the model ranking to the ideal 
ranking for patient set {𝑛!, 𝑛"	-.	/, 𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4}. Furthermore, if we simplify this formula: 
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𝑂𝑅𝐶 = 	
1

𝑁!𝑁"	-.	/𝑁0𝑁1𝑁2𝑁3𝑁4
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'"	'(	)
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=	
1

𝑁!𝑁"	-.	/𝑁0𝑁1𝑁2𝑁3𝑁4
, , , , , , , ]1 −

𝑆$!,$"	'(	),$*,$+,$,,$-,$.
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'+
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=	
1

𝑁!𝑁"	-.	/𝑁0𝑁1𝑁2𝑁3𝑁4
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which is equivalent to the unweighted average of all pairwise c-indices. Therefore, 
another interpretation of ORC is the probability of a model correctly separating 2 randomly 
selected patients of 2 randomly selected GOSE scores. Moreover, since the NIV of the 
c-index is 0.5 for random guessing and the FIV is 1, we know that ORC shares the same 
feasible range of values: NIVORC = 0.5 and FIVORC = 1. Finally, if there were only 2 possible 
ordinal outcome categories, we observe that ORC collapses into the dichotomous c-
index. 
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The ORC is independent of the prevalence of each GOSE score in the dataset, as each 
possible set of patients is equally weighted regardless of frequency.  
 
Somers’ Dxy 
 
The generalised c-index, described by Harrell et al [4,5], is defined as the proportion of 
possible pairs of patients of different functional outcomes in the entire study population 
which the model correctly discriminates. A pair of patients of different outcomes is defined 
as a comparable pair and a pair of patients of different outcomes that is correctly 
discriminated is defined as a concordant pair. Let 𝑁>)8% denote the total number of 
comparable pairs in the study set and let 𝑁>)$> denote the total number of concordant 
pairs in the study set. Thus, the generalised c-index is defined as: 
 

Generalised	𝑐 − index = 	
𝑁>)$>

𝑁>)8% 
 
Upon simplification, 
 

=	
𝑁>)$>

∑ ∑ 𝑁<𝑁;4
;(<=!

3
<(!

 

 

=	
∑ ∑ 𝑁<;>)$>4
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3
<(!
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=	
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3
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∑ ∑ 𝑁<𝑁;4
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3
<(!

 

 
we find that the generalised c-index is equivalent to a prevalence-weighted average of 
pairwise c-indices. Therefore, the generalised c-index shares the same feasible range of 
values as the dichotomous c-index: NIVGeneralised c-index = 0.5 and FIVGeneralised c-index = 1. 
However, in contrast to ORC, generalised c-index is dependent on the prevalence of 
GOSE scores in the patient set. 
 
Somers’ Dxy [6,7] is defined as the proportion of the difference between the number of 
concordant pairs and the number of discordant pairs to the total number of comparable 
pairs: 
 

𝐒𝐨𝐦𝐞𝐫𝐬’	𝑫𝒙𝒚 =
𝑁>)$> − 𝑁A<B>)CA

𝑁>)8%  
 
Upon simplification, 
 

=
𝑁>)$> − (𝑁>)8% − 𝑁>)$>)

𝑁>)8%  
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=
2𝑁>)$> − 𝑁>)8%

𝑁>)8%  
 

= 2
𝑁>)$>

𝑁>)8% − 1 
 
= 2(Generalised	𝑐 − index) − 1 
 
we observe the relationship between Somers’ Dxy and the generalised c-index. Therefore, 
the feasible range of Somers’ Dxy is: NIVSomers’ Dxy = 2(0.5) – 1 = 0 and FIVSomers’ Dxy = 
2(1) – 1 = 1. Moreover, Somers’ Dxy is also dependent on the prevalence of GOSE scores 
in the patient set. Somers’ Dxy can also be interpreted as the proportion of ordinal variation 
in the outcome that can be explained by the variation in model output. 
 
Threshold-level dichotomous c-index 
 
The threshold-level dichotomous c-indices represent the probability of the model correctly 
discriminating 2 randomly selected patients, one on each side of the threshold of 
functional recovery. The average of the threshold-level c-indices across the 6 possible 
GOSE thresholds represents the probability of the model correctly discriminating 2 
patients, one on each side of a randomly selected GOSE threshold. The average 
threshold-level dichotomous c-index is also a prevalence-weighted form of the pairwise 
c-index, though weighting is not perfectly aligned with prevalence as with the generalised 
c-index [1]. The feasible range of dichotomous c-indices are: NIVDichotomous c-index = 0.5 to 
FIVDichotomous c-index = 1. 
 
Probability calibration metrics 
 
Threshold-level calibration slope 
 
Let 𝑌 ∈ {0,1} designate the true outcome at a threshold of GOSE and let 𝑝%CDA ∈ [0,1] 
designate the predicted probability value returned by a model at this threshold. The 
logistic recalibration framework [8] fits the following model from the testing set predictions: 
logit(𝑌) = 𝛽E +	𝛽!logit(𝑝%CDA). 𝛽! represents the calibration slope [9]. When 𝛽E = 0 and 
𝛽! = 1, the model is calibrated. When 𝛽! < 1, the model is overfitted and returns too 
extreme values: higher 𝑝%CDA are overestimated while lower 𝑝%CDA are underestimated. 
When 𝛽! > 1, the model is underfitted and the converse is true. We do not focus on 𝛽E in 
our study because, in the setting of cross-validation, 𝛽E is not relevant [10]. 
 
Threshold-level Integrated calibration index (ICI) 
 
On the threshold-level probabilities and threshold-level outcomes of the testing set 
predictions, we fit a locally weighted scatterplot smoothing (LOWESS) function [11] to 
return the observed probability at each predicted probability value [12]. The range of 
corresponding observed probability for each predicted probability is visualised in a 



The leap to ordinal: functional prognosis after traumatic brain injury using artificial intelligence 
 

S3 Appendix   Page 6 of 9 

smoothed probability calibration plot (Fig 3B). Let 𝑝%CDA ∈ [0,1] denote a predicted 
probability value and 𝑝)FB(𝑝%CDA) ∈ [0,1] denote the corresponding observed probability 
value. Then, the calibration error function, denoted as 𝐸>9G<FC9H<)$, is defined as: 
𝑬𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏(𝒑𝒑𝒓𝒆𝒅) = 	 u𝑝)FB(𝑝%CDA) −	𝑝%CDAu. 
 
The integrated calibration index (ICI) corresponds to the mean calibration error [2]. Since 
the ideal calibration error is 0, the FIVICI is trivially 0. However, the calculation of the NIV 
varies based on the outcome distribution at each threshold. 
 
Consider the case of random guessing during prediction at a given threshold. This implies 
that the model returns predicted probabilities uniformly from 0 to 1, regardless of any 
patient information (S3A.1 Fig). Therefore, the corresponding observed probability at 
each predicted probability value equals 𝜋9F)UD, the proportion of patients above the given 
threshold (S3A.1 Fig). In other words, there is no association between predicted and 
observed probabilities, and the model is completely uncalibrated. 

 
S3A.1 Fig. Example of a probability calibration curve for a random-guessing prediction 
model at a given threshold of GOSE. The histogram (200 uniform bins), centred at the 
horizontal line in the bottom quarter, displays the uniform distribution of predicted probabilities for 
a random guessing model. This plot assumes that the proportion of patients above the threshold 
(𝜋!"#$%) is 0.8. 
 
From the probability calibration curve (S3A.1 Fig), we derive a graphical representation 
of the probability density function of 𝐸>9G<FC9H<)$ in S3A.2 Fig. This corresponds to an 
asymmetrical (if 𝜋9F)UD ≠ 0.5) distribution with density 2 up to 𝐸>9G<FC9H<)$ =
min	{𝜋9F)UD , 1 − 𝜋9F)UD} and then density 1 from 𝐸>9G<FC9H<)$ = min{𝜋9F)UD , 1 − 𝜋9F)UD} to 
𝐸>9G<FC9H<)$ = max{𝜋9F)UD , 1 − 𝜋9F)UD} (S3A.2 Fig). 
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S3A.2 Fig. Example of probability density of calibration error for a random-guessing 
prediction model at a given threshold of GOSE. This plot assumes that the proportion of 
patients above the threshold (𝜋!"#$%) is 0.8. 
 
ICI is equivalent to the integral of the calibration error function over all returned probability 
prediction values: 
 

𝑰𝑪𝑰 =
1

maxy𝑝%CDAz − min{𝑝%CDA}
{ 𝑓V1234S𝑝%CDAT	𝐸>9G<FC9H<)$S𝑝%CDAT	𝑑𝑝%CDA
5WXY%1234Z

567{%1234}
 

 
where 𝑓V1234S𝑝%CDAT represents the probability density function over 𝑝%CDAvalues. For the 
random-guessing model, we determined that 𝑝)FB is constant, i.e., 𝑝)FBS𝑝%CDAT =
𝜋9F)UD 	∀	𝑝%CDA ∈ [0,1] at each threshold. Moreover, 𝑝%CDA is distributed uniformly from 0 to 
1. Therefore: 
 

𝑵𝑰𝑽𝑰𝑪𝑰 = { 𝐸>9G<FC9H<)$S𝑝%CDAT	𝑑𝑝%CDA
!

E
 

 

= { u𝜋9F)UD −	𝑝%CDAu	𝑑𝑝%CDA
!

E
 

 

= { S𝜋9F)UD −	𝑝%CDAT	𝑑𝑝%CDA
_56%73

E
+{ S𝑝%CDA −	𝜋9F)UDT	𝑑𝑝%CDA

!

_56%73
 

 

=
1
2𝜋9F)UD

" +
1
2
(1 − 𝜋9F)UD)" 
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= 𝜋9F)UD" − 𝜋9F)UD +
1
2 

 
A graphical representation of cumulative distribution up to the NIVICI for our example is 
provided in S3A.3 Fig. 
 

 
S3A.3 Fig. Example of cumulative probability density up to ICI for a random-guessing 
prediction model at a given threshold of GOSE. This plot assumes that the proportion of 
patients above the threshold (𝜋!"#$%) is 0.8. The ICI equals 0.34 in calibration error. 
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S4 Appendix: Hyperparameter optimisation results 
 
Training for each of the parametric models (CPMDeepMN, CPMDeepOR, APMMN, APMOR, 
eCPMDeepMN, and eCPMDeepOR) was made more efficient by dropping out consistently 
underperforming parametric configurations, on the validation sets, with the Bootstrap Bias 
Corrected with Dropping Cross-Validation (BBCD-CV) method [1]. During configuration 
dropout, the optimal configuration for each model was determined over all existing 
validation set predictions up to that point, and 1,000 resamples of unique patients were 
drawn to form bootstrapping resamples for the testing of suboptimal configurations versus 
the optimal configuration in terms of ordinal c-index (ORC) [2]. If a given suboptimal 
configuration was unable to match or outperform the optimal configuration in at least 5% 
of the resamples, it was dropped out from training in future repeated k-fold cross-
validation partitions.  
 
Each of the models began repeated k-fold cross-validation training with 2,184 parametric 
configurations (as detailed in S1 Appendix and S2 Appendix). Under the repeated k-
fold cross validation scheme of our study, models were trained in the order of repeats 
(from 1 to 20), and, within each repeat, in the order of folds (from 1 to 5). After training all 
viable configurations up to a certain partition, BBCD-CV was performed. The decision of 
which partitions was dependent on the number of remaining viable configurations and the 
availability of relevant cores (e.g., APM training required GPUs) on the high-performance 
computer (HPC), and thus varied by model. Since models of the same predictor set were 
trained together (i.e., CPMDeepMN and CPMDeepOR), BBCD-CV was performed for each of 
the models of a certain predictor set at after the same partition and a different optimal 
configuration was determined for each model. 
 
In this appendix, we demonstrate the results of BBCD-CV hyperparameter optimisation 
by model type. First, we list the partitions after which BBCD-CV was performed, 
demonstrate the number of configurations dropped at these points, and characterise the 
variable hyperparameter distribution of the remaining viable configurations.  
 
Concise-predictor-based models (CPMs) 
 
BBCD-CV was performed thrice for CPMDeepMN and CPMDeepOR, after the end of: (1) 
repeat 1, (2) repeat 3, and (3) repeat 15. The number of remaining viable configurations 
after these dropouts is visualised, on a binary logarithmic scale, in S4A.1 Fig. The 
distribution of hyperparameters in the viable configurations, after each dropout, are listed 
in S4A.1 Table and S4A.2 Table for CPMDeepMN and CPMDeepOR, respectively. 
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S4A.1 Fig. Number of trained viable configurations for each CPM during repeated k-fold 
cross-validation. 
 
S4A.1 Table. Variable hyperparameter distributions after each dropout for CPMDeepMN. 

Hyperparameter Value Starting 
configurations 
(n = 2184) 

Remaining configurations after 
Repeat 1 (n = 521) Repeat 3 (n = 102) Repeat 15 (n = 52) 

Training dropout per layer 
   

  
  0 1092 (50.0%) 221 (42.4%) 19 (18.6%) 8 (15.4%) 
  0.2 1092 (50.0%) 300 (57.6%) 83 (81.4%) 44 (84.6%) 
Number of layers         
  1 6 (0.3%) 0 (0%) 0 (0%) 0 (0%) 
  2 18 (0.8%) 3 (0.6%) 2 (2.0%) 1 (1.9%) 
  3 54 (2.5%) 10 (1.9%) 4 (3.9%) 4 (7.7%) 
  4 162 (7.4%) 32 (6.1%) 12 (11.8%) 8 (15.4%) 
  5 486 (22.3%) 143 (27.4%) 57 (55.9%) 38 (73.1%) 
  6 1458 (66.8%) 333 (63.9%) 27 (26.5%) 1 (1.9%) 
Median number of neurons per layer 

  
  

  128 284 (13.0%) 90 (17.3%) 32 (31.4%) 18 (34.6%) 
  192 320 (14.7%) 67 (12.9%) 8 (7.8%) 3 (5.8%) 
  256 920 (42.1%) 230 (44.1%) 44 (43.1%) 25 (48.1%) 
  320 56 (2.6%) 9 (1.7%) 2 (2.0%) 0 (0%) 
  384 320 (14.7%) 58 (11.1%) 5 (4.9%) 2 (3.8%) 
  512 284 (13.0%) 67 (12.9%) 11 (10.8%) 4 (7.7%) 

 
S4A.2 Table. Variable hyperparameter distributions after each dropout for CPMDeepOR. 

Hyperparameter Value Starting 
configurations  
(n = 2184) 

Remaining configurations after 
Repeat 1 (n = 146) Repeat 3 (n = 55) Repeat 15 (n = 22) 
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Training dropout per layer 
   

  
  0 1092 (50.0%) 42 (28.8%) 13 (23.6%) 5 (22.7%) 
  0.2 1092 (50.0%) 104 (71.2%) 42 (76.4%) 17 (77.3%) 
Number of layers         
  1 6 (0.3%) 0 (0%) 0 (0%) 0 (0%) 
  2 18 (0.8%) 0 (0%) 0 (0%) 0 (0%) 
  3 54 (2.5%) 2 (1.4%) 1 (1.8%) 1 (4.5%) 
  4 162 (7.4%) 0 (0%) 0 (0%) 0 (0%) 
  5 486 (22.3%) 56 (38.4%) 23 (41.8%) 12 (54.5%) 
  6 1458 (66.8%) 88 (60.3%) 31 (56.4%) 9 (40.9%) 
Median number of neurons per layer 

  
  

  128 284 (13.0%) 23 (15.8%) 7 (12.7%) 2 (9.1%) 
  192 320 (14.7%) 16 (11.0%) 5 (9.1%) 2 (9.1%) 
  256 920 (42.1%) 73 (50.0%) 28 (50.9%) 14 (63.6%) 
  320 56 (2.6%) 1 (0.7%) 0 (0%) 0 (0%) 
  384 320 (14.7%) 17 (11.6%) 6 (10.9%) 1 (4.5%) 
  512 284 (13.0%) 16 (11.0%) 9 (16.4%) 3 (13.6%) 

 
All-predictor-based models (APMs) 
 
BBCD-CV was performed twice for APMMN and APMOR, after the end of: (1) the first fold 
of repeat 1, and (2) repeat 10. The number of remaining viable configurations after these 
dropouts is visualised, on a binary logarithmic scale, in S4A.2 Fig. The distribution of 
hyperparameters in the viable configurations, after each dropout, are listed in S4A.3 
Table and S4A.4 Table for APMMN and APMOR, respectively. 
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S4A.2 Fig. Number of trained viable configurations for each APM during repeated k-fold 
cross-validation. 
 
S4A.3 Table. Variable hyperparameter distributions after each dropout for APMMN. 

Hyperparameter Value Starting 
configurations 
(n = 2184) 

Remaining configurations after 
Repeat 1, Fold 1 (n = 41) Repeat 10 (n = 2) 

Training dropout per layer 
  

  
  0 1092 (50.0%) 18 (43.9%) 1 (50.0%) 
  0.2 1092 (50.0%) 23 (56.1%) 1 (50.0%) 
Number of layers       
  1 6 (0.3%) 3 (7.3%) 2 (100.0%) 
  2 18 (0.8%) 2 (4.9%) 0 (0%) 
  3 54 (2.5%) 1 (2.4%) 0 (0%) 
  4 162 (7.4%) 5 (12.2%) 0 (0%) 
  5 486 (22.3%) 5 (12.2%) 0 (0%) 
  6 1458 (66.8%) 25 (61.0%) 0 (0%) 
Median number of neurons per layer 

 
  

  128 284 (13.0%) 3 (7.3%) 0 (0%) 
  192 320 (14.7%) 5 (12.2%) 0 (0%) 
  256 920 (42.1%) 19 (46.3%) 1 (50.0%) 
  320 56 (2.6%) 0 (0%) 0 (0%) 
  384 320 (14.7%) 8 (19.5%) 0 (0%) 
  512 284 (13.0%) 6 (14.6%) 1 (50.0%) 

 
S4A.4 Table. Variable hyperparameter distributions after each dropout for APMOR. 

Hyperparameter Value Starting 
configurations 
(n = 2184) 

Remaining configurations after 
Repeat 1, Fold 1 (n = 161) Repeat 10 (n = 8) 

Training dropout per layer 
  

  
  0 1092 (50.0%) 22 (13.7%) 0 (0%) 
  0.2 1092 (50.0%) 139 (86.3%) 8 (100.0%) 
Number of layers       
  1 6 (0.3%) 1 (0.6%) 0 (0%) 
  2 18 (0.8%) 1 (0.6%) 0 (0%) 
  3 54 (2.5%) 5 (3.1%) 0 (0%) 
  4 162 (7.4%) 13 (8.1%) 1 (12.5%) 
  5 486 (22.3%) 36 (22.4%) 2 (25.0%) 
  6 1458 (66.8%) 105 (65.2%) 5 (62.5%) 
Median number of neurons per layer 

 
  

  128 284 (13.0%) 31 (19.3%) 2 (25.0%) 
  192 320 (14.7%) 29 (18.0%) 4 (50.0%) 
  256 920 (42.1%) 73 (45.3%) 1 (12.5%) 
  320 56 (2.6%) 6 (3.7%) 0 (0%) 
  384 320 (14.7%) 11 (6.8%) 0 (0%) 
  512 284 (13.0%) 11 (6.8%) 1 (12.5%) 

 
Extended concise-predictor-based models (eCPMs) 
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BBCD-CV was performed twice for eCPMDeepMN and eCPMDeepOR, after the end of: (1) 
repeat 1, and (2) repeat 16. The number of remaining viable configurations after these 
dropouts is visualised, on a binary logarithmic scale, in S4A.3 Fig. The distribution of 
hyperparameters in the viable configurations, after each dropout, are listed in S4A.5 
Table and S4A.6 Table for eCPMDeepMN and eCPMDeepOR, respectively. 
 

 
S4A.3 Fig. Number of trained viable configurations for each eCPM during repeated k-fold 
cross-validation. 

 
S4A.5 Table. Variable hyperparameter distributions after each dropout for eCPMDeepMN. 

Hyperparameter Value Starting 
configurations 
(n = 2184) 

Remaining configurations after 
Repeat 1 (n = 121) Repeat 16 (n = 10) 

Training dropout per layer 
  

  
  0 1092 (50.0%) 51 (42.1%) 4 (40.0%) 
  0.2 1092 (50.0%) 70 (57.9%) 6 (60.0%) 
Number of layers       
  1 6 (0.3%) 3 (2.5%) 2 (20.0%) 
  2 18 (0.8%) 8 (6.6%) 3 (30.0%) 
  3 54 (2.5%) 15 (12.4%) 3 (30.0%) 
  4 162 (7.4%) 45 (37.2%) 2 (20.0%) 
  5 486 (22.3%) 48 (39.7%) 0 (0%) 
  6 1458 (66.8%) 2 (1.7%) 0 (0%) 
Median number of neurons per layer 

 
  

  128 284 (13.0%) 21 (17.4%) 3 (30.0%) 
  192 320 (14.7%) 14 (11.6%) 2 (20.0%) 
  256 920 (42.1%) 55 (45.5%) 4 (40.0%) 
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  320 56 (2.6%) 5 (4.1%) 0 (0%) 
  384 320 (14.7%) 11 (9.1%) 0 (0%) 
  512 284 (13.0%) 15 (12.4%) 1 (10.0%) 

 
S4A.6 Table. Variable hyperparameter distributions after each dropout for eCPMDeepOR. 

Hyperparameter Value Starting 
configurations 
(n = 2184) 

Remaining configurations after 
Repeat 1 (n = 9) Repeat 16 (n = 1) 

Training dropout per layer 
  

  
  0 1092 (50.0%) 1 (11.1%) 0 (0%) 
  0.2 1092 (50.0%) 8 (88.9%) 1 (100.0%) 
Number of layers       
  1 6 (0.3%) 1 (11.1%) 1 (100.0%) 
  2 18 (0.8%) 4 (44.4%) 0 (0%) 
  3 54 (2.5%) 2 (22.2%) 0 (0%) 
  4 162 (7.4%) 1 (11.1%) 0 (0%) 
  5 486 (22.3%) 0 (0%) 0 (0%) 
  6 1458 (66.8%) 1 (11.1%) 0 (0%) 
Median number of neurons per layer 

 
  

  128 284 (13.0%) 3 (33.3%) 0 (0%) 
  192 320 (14.7%) 2 (22.2%) 0 (0%) 
  256 920 (42.1%) 3 (33.3%) 1 (100.0%) 
  320 56 (2.6%) 1 (11.1%) 0 (0%) 
  384 320 (14.7%) 0 (0%) 0 (0%) 
  512 284 (13.0%) 0 (0%) 0 (0%) 
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S1 Table. Extended concise baseline predictors of the study population stratified by ordinal 6-month outcomes 
 

Extended concise predictors Overall Glasgow Outcome Scale–Extended (GOSE) at 6 months post-injury p-valueb 
(n = 1550) 1 2 or 3 4 5 6 7 8 

(n = 318) (n = 262) (n = 120) (n = 227) (n = 200) (n = 206) (n = 217) 
Age [years] 51 (31–66) 66 (50–76) 55 (36–68) 48 (29–61) 44 (31–56) 41 (27–53) 48 (31–65) 41 (24–61) <0.0001 
GCSm (na = 1509) 5 (1–6) 2 (1–5) 3 (1–5) 5 (1–6) 5 (1–6) 5 (2–6) 5 (3–6) 6 (5–6) <0.0001 
  (1) No response 484 (32.1%) 152 (50.0%) 104 (40.6%) 35 (29.9%) 63 (28.5%) 46 (23.6%) 47 (23.0%) 37 (17.5%) 

 

  (2) Abnormal extension 54 (3.6%) 17 (5.6%) 20 (7.8%) 4 (3.4%) 6 (2.7%) 3 (1.5%) 2 (1.0%) 2 (0.9%) 
 

  (3) Abnormal flexion 63 (4.2%) 14 (4.6%) 12 (4.7%) 8 (6.8%) 11 (5.0%) 8 (4.1%) 4 (2.0%) 6 (2.8%) 
 

  (4) Withdrawal from stimulus 114 (7.6%) 27 (8.9%) 23 (9.0%) 8 (6.8%) 20 (9.0%) 21 (10.8%) 8 (3.9%) 7 (3.3%) 
 

  (5) Movement localised to 
stimulus 

305 (20.2%) 52 (17.1%) 47 (18.4%) 24 (20.5%) 50 (22.6%) 46 (23.6%) 44 (21.6%) 42 (19.8%) 
 

  (6) Obeys commands 489 (32.4%) 42 (13.8%) 50 (19.5%) 38 (32.5%) 71 (32.1%) 71 (36.4%) 99 (48.5%) 118 (55.7%) 
 

Unreactive pupils (na = 1465)               <0.0001 
  One 111 (7.6%) 31 (10.5%) 31 (12.3%) 7 (6.3%) 20 (9.3%) 5 (2.6%) 8 (4.1%) 9 (4.4%) 

 

Two 168 (11.5%) 84 (28.5%) 33 (13.0%) 8 (7.2%) 14 (6.5%) 8 (4.2%) 16 (8.2%) 5 (2.4%) 
 

Hypoxia 207 (13.4%) 60 (18.9%) 33 (12.6%) 14 (11.7%) 35 (15.4%) 33 (16.5%) 16 (7.8%) 16 (7.4%) 0.6272 
Hypotension 210 (13.5%) 56 (17.6%) 51 (19.5%) 21 (17.5%) 32 (14.1%) 22 (11.0%) 15 (7.3%) 13 (6.0%) 0.0038 
Marshall CT (na = 1255) VI (II–VI) III (II–VI) II (II–VI) II (II–VI) II (II–II) II (II–III) II (II–II) VI (II–VI) 0.0386 
  No visible pathology (I) 118 (9.4%) 8 (3.3%) 11 (5.3%) 5 (5.2%) 17 (8.7%) 25 (15.2%) 24 (13.6%) 28 (16.5%) 

 

  Diffuse injury II 592 (47.2%) 56 (22.8%) 84 (40.6%) 54 (56.2%) 92 (47.2%) 100 (60.6%) 103 (58.5%) 103 (60.6%) 
 

  Diffuse injury III 108 (8.6%) 42 (17.1%) 17 (8.2%) 10 (10.4%) 14 (7.2%) 9 (5.5%) 6 (3.4%) 10 (5.9%) 
 

  Diffuse injury IV 16 (1.3%) 7 (2.8%) 1 (0.5%) 1 (1.0%) 4 (2.1%) 1 (0.6%) 1 (0.6%) 1 (0.6%) 
 

  Mass lesion (V & VI) 421 (33.5%) 133 (54.0%) 94 (45.4%) 26 (27.1%) 68 (34.9%) 30 (18.2%) 42 (23.9%) 28 (16.5%) 
 

tSAH (na = 1254) 957 (76.3%) 221 (90.2%) 176 (84.2%) 73 (76.0%) 150 (76.9%) 106 (63.9%) 125 (71.4%) 106 (63.1%) 0.4429 
EDH (na = 1257) 244 (19.4%) 31 (12.7%) 32 (15.3%) 21 (21.9%) 46 (23.6%) 32 (19.3%) 42 (23.9%) 40 (23.5%) 0.0035 
Glucose [mmol/L] 
(na = 1062) 

7.7 (6.6–9.4) 8.8 (7.3–11) 8.0 (6.5–9.8) 7.6 (6.5–9.3) 7.8 (6.6–9.6) 7.7 (6.5–8.7) 7.3 (6.3–8.5) 7.1 (6.3–8.1) 0.0123 

Hb [g/dL] (na = 1140) 13 (12–14) 13 (11–14) 13 (11–14) 14 (12–14) 13 (12–14) 14 (12–15) 13 (12–15) 14 (13–15) 0.3044 
Retired (na = 1312) 353 (26.9%) 136 (61.3%) 74 (33.6%) 23 (22.1%) 12 (5.9%) 13 (7.3%) 52 (28.1%) 43 (21.8%) 0.0644 
Highest formal education (na = 1110)               0.4897 
  None 15 (1.4%) 3 (2.4%) 4 (2.1%) 2 (2.0%) 2 (1.1%) 2 (1.2%) 0 (0%) 2 (1.1%) 

 

  In degree program 26 (2.3%) 0 (0%) 5 (2.6%) 0 (0%) 4 (2.1%) 7 (4.1%) 4 (2.5%) 6 (3.4%) 
 

  Primary school 155 (14.0%) 31 (24.6%) 44 (23.3%) 14 (13.9%) 17 (8.9%) 16 (9.5%) 14 (8.8%) 19 (10.9%) 
 



  Secondary school 458 (41.3%) 50 (39.7%) 63 (33.3%) 46 (45.5%) 80 (42.1%) 59 (34.9%) 75 (46.9%) 85 (48.6%) 
 

  Technical certificate 235 (21.2%) 16 (12.7%) 38 (20.1%) 21 (20.8%) 57 (30.0%) 43 (25.4%) 32 (20.0%) 28 (16.0%) 
 

  University degree 221 (19.9%) 26 (20.6%) 35 (18.5%) 18 (17.8%) 30 (15.8%) 42 (24.9%) 35 (21.9%) 35 (20.0%) 
 

GFAP [ng/mL] (na = 1247) 17 (6–46) 48 (15–96) 32 (11–61) 17 (6–43) 13 (5–30) 13 (5–30) 10 (3–23) 9 (3–22) 0.0005 
T-tau [pg/mL] (na = 1248) 8 (4–19) 17 (7–38) 12 (6–23) 9 (5–19) 7 (3–14) 7 (3–13) 5 (3–12) 6 (3–11) 0.2568 
S100B [ng/mL] (na = 1267) 0.3 (.2–.6) 0.6 (.3–1.3) 0.4 (.2–.6) 0.3 (.2–.6) 0.3 (.2–.4) 0.2 (.2–.4) 0.2 (.1–.5) 0.2 (.1–.3) 0.1929 
NFL [pg/mL] (na = 1247) 55 (28–127) 121 (51–268) 85 (46–150) 61 (32–150) 48 (28–87) 41 (21–87) 30 (17–60) 35 (19–74) 0.3054 
PTA (na = 1530) 187 (12.2%) 5 (1.6%) 15 (5.8%) 10 (8.5%) 43 (19.3%) 33 (16.8%) 50 (24.4%) 31 (14.4%) 0.0010 
Worst head/neck, brain, or cervical spine AIS (na = 
1523) 

       
0.0001  

  (1) Minor 50 (3.2%) 6 (1.9%) 3 (1.1%) 5 (4.2%) 5 (2.2%) 4 (2.0%) 16 (7.8%) 11 (5.1%) 
 

  (2) Moderate 31 (2.0%) 3 (0.9%) 3 (1.1%) 0 (0%) 5 (2.2%) 4 (2.0%) 8 (3.9%) 8 (3.7%) 
 

  (3) Serious 112 (7.2%) 6 (1.9%) 6 (2.3%) 7 (5.8%) 21 (9.3%) 19 (9.5%) 25 (12.1%) 28 (12.9%) 
 

  (4) Severe 484 (31.2%) 63 (19.8%) 54 (20.6%) 37 (30.8%) 71 (31.3%) 78 (39.0%) 87 (42.2%) 94 (43.3%) 
 

  (5) Critical 846 (54.6%) 216 (67.9%) 195 (74.4%) 70 (58.3%) 125 (55.1%) 94 (47.0%) 70 (34.0%) 76 (35.0%) 
 

  (6) Not survivable 27 (1.7%) 24 (7.5%) 1 (0.4%) 1 (0.8%) 0 (0%) 1 (0.5%) 0 (0%) 0 (0%) 
 

Data are median (IQR) for continuous characteristics and n (% of column group) for categorical characteristics. Units of characteristics are provided in square brackets. GCSm=motor component score 
of the Glasgow Coma Scale. Marshall CT=Marshall computerised tomography classification. tSAH=traumatic subarachnoid haemorrhage. EDH=extradural haematoma. Glu=glucose. 
Hb=haemoglobin. GFAP=glial fibrillary acidic protein. T-tau=total tau protein. S100B=S100 calcium-binding protein B. NFL=neurofilament light chain. PTA=incidence of post-traumatic amnesia. 
AIS=abbreviated injury scale. 
aLimited sample size of non-missing values for characteristic. 
bp-values are determined from proportional odds logistic regression analysis trained on all concise predictors concurrently [19] and are combined across 100 missing value imputations via z-
transformation [29]. For categorical variables with k > 2 categories (e.g., GCSm), p-values were calculated with a likelihood ratio test (with k-1 degrees of freedom) on POLR.



S2 Table. Ordinal concise-predictor-based model (CPM) discrimination and 
calibration performance 
 

Metric Threshold Model 
CPMMNLR CPMPOLR CPMDeepMN CPMDeepOR 

Ordinal c-index (ORC) 0.69 (0.67–0.70) 0.69 (0.68–0.70) 0.70 (0.68–0.71) 0.59 (0.58–0.61) 
Somers’ Dxy 0.43 (0.41–0.45) 0.43 (0.41–0.46) 0.44 (0.41–0.48) 0.23 (0.20–0.26) 

Threshold-level dichotomous c-indexa 0.77 (0.75–0.78) 0.77 (0.75–0.78) 0.76 (0.74–0.78) 0.76 (0.73–0.78) 
 

GOSE > 1 0.83 (0.81–0.85) 0.83 (0.81–0.84) 0.83 (0.80–0.86) 0.82 (0.79–0.85) 
 

GOSE > 3 0.81 (0.79–0.83) 0.81 (0.79–0.82) 0.80 (0.78–0.83) 0.80 (0.77–0.82) 
 

GOSE > 4 0.78 (0.76–0.80) 0.78 (0.76–0.79) 0.77 (0.74–0.80) 0.77 (0.74–0.79) 
 

GOSE > 5 0.76 (0.74–0.77) 0.76 (0.74–0.77) 0.75 (0.72–0.78) 0.74 (0.71–0.77) 
 

GOSE > 6 0.72 (0.70–0.74) 0.71 (0.69–0.73) 0.71 (0.68–0.74) 0.71 (0.67–0.74) 
 

GOSE > 7 0.72 (0.69–0.74) 0.73 (0.70–0.75) 0.71 (0.67–0.75) 0.71 (0.67–0.75) 

Threshold-level calibration slopea 0.85 (0.78–0.91) 0.94 (0.88–1.01) 0.98 (0.81–1.12) 0.90 (0.79–1.02) 
 

GOSE > 1 0.92 (0.84–1.00) 1.13 (1.04–1.23) 0.95 (0.78–1.10) 1.01 (0.85–1.18) 
 

GOSE > 3 0.92 (0.85–1.00) 1.14 (1.05–1.23) 0.97 (0.80–1.12) 0.95 (0.83–1.09) 
 

GOSE > 4 0.91 (0.84–1.00) 0.99 (0.91–1.08) 1.06 (0.86–1.23) 0.93 (0.80–1.06) 
 

GOSE > 5 0.88 (0.80–0.97) 0.90 (0.82–0.99) 1.01 (0.78–1.21) 0.90 (0.76–1.06) 
 

GOSE > 6 0.81 (0.71–0.91) 0.71 (0.63–0.80) 0.98 (0.73–1.20) 0.86 (0.67–1.06) 
 

GOSE > 7 0.64 (0.50–0.80) 0.77 (0.67–0.88) 0.92 (0.69–1.18) 0.78 (0.57–1.02) 
Data represent mean (95% confidence interval) for the CPM based on a given metric. Interpretations for each metric are provided in 
Materials and methods. Mean and confidence interval values were derived using bias-corrected bootstrapping (1,000 resamples) 
and represent the variation across repeated k-fold cross-validation folds (20 repeats of 5 folds) and 100 missing value imputations. 
GOSE=Glasgow Outcome Scale – Extended at 6 months post-injury. The CPM types (CPMMNLR, CPMPOLR, CPMDeepMN, and CPMDeepOR) 
are decoded in the Materials and methods and described in S1 Appendix. 
aValues in these rows correspond to the unweighted average across all GOSE thresholds. 

  



S3 Table. Ordinal all-predictor-based model (APM) discrimination and calibration 
performance 
 

Metric Threshold Model 
APMMN APMOR 

Ordinal c-index (ORC) 0.76 (0.74–0.77) 0.66 (0.65–0.68) 
Somers’ Dxy 0.57 (0.54–0.60) 0.37 (0.33–0.40) 

Threshold-level dichotomous c-indexa 0.82 (0.80–0.83) 0.78 (0.76–0.80) 
  GOSE > 1 0.90 (0.88–0.92) 0.83 (0.81–0.85) 
  GOSE > 3 0.86 (0.84–0.88) 0.82 (0.80–0.84) 
  GOSE > 4 0.83 (0.80–0.85) 0.80 (0.78–0.82) 
  GOSE > 5 0.80 (0.78–0.83) 0.78 (0.75–0.80) 
  GOSE > 6 0.76 (0.73–0.79) 0.74 (0.71–0.77) 
  GOSE > 7 0.75 (0.72–0.79) 0.71 (0.68–0.75) 

Threshold-level calibration slopea 0.84 (0.76–0.91) 0.13 (0.12–0.15) 
  GOSE > 1 0.98 (0.86–1.10) 0.35 (0.31–0.38) 
  GOSE > 3 0.90 (0.80–1.02) 0.18 (0.16–0.21) 
  GOSE > 4 0.89 (0.79–1.00) 0.10 (0.09–0.12) 
  GOSE > 5 0.82 (0.72–0.94) 0.07 (0.06–0.09) 
  GOSE > 6 0.74 (0.62–0.87) 0.06 (0.05–0.07) 
  GOSE > 7 0.68 (0.54–0.83) 0.05 (0.04–0.06) 

Data represent mean (95% confidence interval) for the APM based on a given metric. Interpretations for each metric are provided in 
Materials and methods. Mean and confidence interval values were derived using bias-corrected bootstrapping (1,000 resamples) 
and represent the variation across repeated k-fold cross-validation folds (20 repeats of 5 folds). GOSE=Glasgow Outcome Scale – 
Extended at 6 months post-injury. The APM types (APMMN and APMOR) are decoded in the Materials and methods and described in 
S2 Appendix. 
aValues in these rows correspond to the unweighted average across all GOSE thresholds. 

  



S4 Table. Ordinal extended concise-predictor-based model (eCPM) discrimination 
and calibration performance 
 

Metric Threshold Model 
eCPMMNLR eCPMPOLR eCPMDeepMN eCPMDeepOR 

Ordinal c-index (ORC) 0.72 (0.71–0.73) 0.71 (0.70–0.72) 0.73 (0.71–0.74) 0.67 (0.65–0.68) 
Somers’ Dxy 0.50 (0.48–0.52) 0.47 (0.45–0.49) 0.50 (0.46–0.54) 0.38 (0.35–0.41) 

Threshold-level dichotomous c-
indexa 

0.79 (0.78–0.80) 0.79 (0.78–0.80) 0.79 (0.77–0.81) 0.77 (0.76–0.79) 

  GOSE > 1 0.86 (0.84–0.87) 0.85 (0.84–0.87) 0.86 (0.83–0.88) 0.85 (0.82–0.87) 
  GOSE > 3 0.84 (0.83–0.86) 0.84 (0.83–0.85) 0.84 (0.82–0.86) 0.83 (0.81–0.85) 
  GOSE > 4 0.82 (0.80–0.83) 0.81 (0.80–0.83) 0.81 (0.79–0.83) 0.80 (0.77–0.82) 
  GOSE > 5 0.77 (0.75–0.79) 0.77 (0.76–0.79) 0.77 (0.74–0.80) 0.76 (0.73–0.78) 
  GOSE > 6 0.75 (0.73–0.77) 0.73 (0.71–0.75) 0.74 (0.70–0.77) 0.72 (0.69–0.75) 
  GOSE > 7 0.72 (0.70–0.75) 0.73 (0.70–0.75) 0.72 (0.68–0.76) 0.70 (0.66–0.74) 

Threshold-level calibration 
slopea 

0.75 (0.70–0.81) 0.89 (0.83–0.95) 1.00 (0.78–1.14) 0.59 (0.51–0.67) 

  GOSE > 1 0.81 (0.75–0.89) 0.97 (0.87–1.10) 0.98 (0.78–1.14) 1.04 (0.90–1.20) 
  GOSE > 3 0.83 (0.77–0.90) 1.12 (1.04–1.23) 1.05 (0.81–1.20) 0.79 (0.68–0.90) 
  GOSE > 4 0.81 (0.75–0.89) 1.02 (0.94–1.11) 1.10 (0.85–1.27) 0.60 (0.52–0.69) 
  GOSE > 5 0.75 (0.67–0.82) 0.86 (0.78–0.94) 1.01 (0.76–1.22) 0.47 (0.38–0.56) 
  GOSE > 6 0.72 (0.63–0.81) 0.69 (0.62–0.77) 0.97 (0.70–1.20) 0.36 (0.27–0.46) 
  GOSE > 7 0.58 (0.48–0.69) 0.68 (0.59–0.77) 0.89 (0.61–1.18) 0.28 (0.16–0.40) 

Data represent mean (95% confidence interval) for the eCPM based on a given metric. Interpretations for each metric are provided in 
Materials and methods. Mean and confidence interval values were derived using bias-corrected bootstrapping (1,000 resamples) 
and represent the variation across repeated k-fold cross-validation folds (20 repeats of 5 folds) and 100 missing value imputations. 
GOSE=Glasgow Outcome Scale – Extended at 6 months post-injury. The eCPM types (eCPMMNLR, eCPMPOLR, eCPMDeepMN, and 
eCPMDeepOR) are decoded in the Materials and methods and described in S1 Appendix. 
aValues in these rows correspond to the unweighted average across all GOSE thresholds. 
 


