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Mutations in the endosome-associated protein CHMP2B cause frontotemporal dementia and lead to lysosomal storage pathology

in neurons. We here report that physiological levels of mutant CHMP2B causes reduced numbers and significantly impaired

trafficking of endolysosomes within neuronal dendrites, accompanied by increased dendritic branching. Mechanistically, this is

due to the stable incorporation of mutant CHMP2B onto neuronal endolysosomes, which we show renders them unable to traffic

within dendrites. This defect is due to the inability of mutant CHMP2B to recruit the ATPase VPS4, which is required for release

of CHMP2B from endosomal membranes. Strikingly, both impaired trafficking and the increased dendritic branching were rescued

by treatment with antisense oligonucleotides targeting the well validated frontotemporal dementia risk factor TMEM106B, which

encodes an endolysosomal protein. This indicates that reducing TMEM106B levels can restore endosomal health in frontotemporal

dementia. As TMEM106B is a risk factor for frontotemporal dementia caused by both C9orf72 and progranulin mutations, and

antisense oligonucleotides are showing promise as therapeutics for neurodegenerative diseases, our data suggests a potential new

strategy for treating the wide range of frontotemporal dementias associated with endolysosomal dysfunction.
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Introduction
A mutation in CHMP2B, a subunit of the endosomal sort-

ing complex required for transport-III (ESCRT-III), causes

an autosomal dominant form of frontotemporal dementia

(FTD) in a Danish cohort (Skibinski et al., 2005; Lindquist

et al., 2008). The multi-subunit complexes ESCRTs 0-III

are involved in membrane budding events essential for di-

verse cellular functions including the final stages of cell

division (Carlton and Martin-Serrano, 2007), egress of

viruses from cells (Morita and Sundquist, 2004), nuclear

envelope reformation after mitosis (Olmos et al., 2015;

Vietri et al., 2015), and importantly for this study, the

formation and fission of intra-luminal vesicles in late endo-

somes/multivesicular bodies (reviewed in Raiborg and

Stenmark, 2009; Schuh and Audhya, 2014). Proteins

within intra-luminal vesicles are then delivered to lysosomes

for degradation via endo-lysosomal fusion.

FTD is a common form of young-onset dementia

(Ratnavalli et al., 2002; Harvey et al., 2003) characterized

by atrophy of the frontal and temporal lobes. FTD presents

with personality, behaviour and language changes (Neary

et al., 1998; McKhann et al., 2001). The FTD causative mu-

tation in CHMP2B occurs in a splice acceptor site, which

results in the production of two C-terminally truncated vari-

ants of the protein. The final 36 amino acids are either

replaced by a single valine residue (termed CHMP2BIntron5),

or by 29 nonsense residues (CHMP2B�10) (Skibinski et al.,

2005), with CHMP2BIntron5 responsible for driving neurode-

generation (Lee et al., 2007; Ghazi-Noori et al., 2012;

Gascon et al., 2014). In addition to CHMP2B, several genetic

mutations are known to cause FTD. Mutations in the genes

that encode tau (MAPT), progranulin (GRN) and C9orf72

are the most common causes of FTD, while additional rare

mutations have been identified in valosin-containing protein

(VCP), TDP-43 (TARDBP), fused in sarcoma (FUS) (Rohrer

and Warren, 2011) and TANK- binding kinase 1 (TBK1)

(Gijselinck et al., 2015; Le Ber et al., 2015; Pottier et al.,

2015; van der Zee et al., 2017). Interestingly, FTD shares

both common genetic causes and pathologies with another

neurodegenerative condition, amyotrophic lateral sclerosis

(ALS) (Bennion and Pickering-Brown, 2014).

A key question in the aetiology of FTD is how genes with

such diverse functions result in the specific degeneration of

cortical neurons. Recent work has begun to suggest that

these FTD causative genes converge on dysfunction of the

endolysosomal system. Heterozygous mutations in GRN, a

lysosomal localized protein, cause FTD and lead to bio-

chemical changes characteristic of lysosomal storage dis-

eases (Gotzl et al., 2014); with rare homozygous GRN

mutations directly causing neuronal ceroid lipofuscinosis,

a lysosomal storage disorder (Smith et al., 2012). We

recently showed that CHMP2B mutation also leads to lyso-

somal storage pathology (Clayton et al., 2015). Further to

this, TMEM106B, a risk factor for FTD (Van Deerlin et al.,

2010; van der Zee and Van Broeckhoven, 2011), is located

at the endolysosome and directly affects endolysosomal

function, including dendritic endolysosomal trafficking

(Brady et al., 2013; Schwenk et al., 2014; Stagi et al.,

2014; Klein et al., 2017). We now report that mutation

in CHMP2B causes a decrease in neuronal endolysosomal

motility, which is accompanied by increased dendritic

branching. We show that the physical incorporation of

mutant CHMP2B into an endolysosomal vesicle renders

that organelle stationary. Strikingly, we found that both

the trafficking and dendritic branching defects could be re-

versed by knockdown of the FTD risk factor TMEM106B,

suggesting that reduction of TMEM106B levels may be a

broadly applicable therapeutic target for FTD.

Materials and methods

Mice

Mice were housed in a category 3 SPF facility in individually
ventilated cages under negative pressure in groups of three to
five animals with environmental condition targets of: tempera-
ture 20 � 2�C, relative humidity 55% � 10%, 12:12-h photo-
period. Mice were provided with water and pelleted diet ad
libitum. All cages are provided with environmental enrichment
in the form of nesting material, chew blocks and mouse
houses. Procedures were carried out under UK Home Office
Project Licence 7009014.

The previously described mutant CHMP2BIntron5 expressing
mouse line Tg153 (Ghazi-Noori et al., 2012) was backcrossed
over 10 generations to C57Bl6J, and was maintained as a
homozygous line. GFP-LC3 mice (Mizushima et al., 2004)
were obtained from Riken BRC. Homozygous GFP-LC3
mice were crossed to homozygous mutant CHMP2BIntron5

mice to initially generate mice heterozygous for both trans-
genes. Mice heterozygous for both genes were then crossed
to produce animals homozygous for both GFP-LC3 and
CHMP2BIntron5, generating the double homozygous GFP-LC3
X CHMP2BIntron5 line. Homozygosity for both transgenes was
verified by genotyping. Double homozygotes occurred in ap-
proximately Mendelian ratios.

Immunoblotting

The olfactory bulb and cerebellum were removed from whole
brains of postnatal Day 0 or Day 1 mice. Homogenates were
prepared in Dulbecco’s phosphate-buffered saline (D-PBS) con-
taining cOmplete EDTA-free protease inhibitors (Roche) using
a TissueRuptor� (Qiagen) to make a 10% w/v solution.
Following a 2-min 200g spin to pellet debris, the supernatant
was resuspended in D-PBS. Benzonase� (Novagen) was added
to digest DNA and the homogenates were incubated at 4�C for
1 h. Laemmli sample buffer (2� ) was added and the samples
were heated at 100�C for 10 min prior to sodium dodecyl
sulphate polyacrylamide gel electrophoresis. Samples were
run on 10% Bis-Tris gels (Life Technologies) with MES
buffer, then transferred onto polyvinylidene fluoride, blocked
with 5% bovine serum albumin in PBS-T, and probed using
anti-CHMP2B (Ghazi-Noori et al., 2012). Loading controls
were performed using mouse anti-b-actin (A5441, Sigma).
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Detection was performed with horseradish peroxidase-conju-
gated secondary antibodies and SuperSignalTM West Pico
Chemiluminescent Substrate (Thermo Scientific). Quantification
was performed using ImageJ software. Band intensity was nor-
malized to the indicated loading control, and averages taken of
three mice per genotype.

Pre-embedding labelling of mouse
brains for electron microscopy

Mice aged to 6 months were perfusion fixed with 4% paraf-
ormaldehyde (PFA) and the brains removed and post-fixed
overnight in the same fixative. One hundred-micrometre
thick sections were cut using a vibratome. Areas of interest
were dissected and refixed with 2% PFA/2.5% glutaraldehyde
in 0.1 M cacodylate buffer. Thick sections were washed with
HEPES-buffered saline (HBS) pH 7.4 before being permeabi-
lized in HBS containing 0.05% TritonTM X-100 and 10%
bovine serum albumin (BSA). Tissue was incubated with pri-
mary anti-GFP antibody (ab6556, Abcam) overnight at 4�C in

HBS with 0.005% TritonTM X-100 and 1% BSA. Tissue was
then washed before being incubated with anti-rabbit nanogold
secondaries (Nanoprobes). The tissue was washed before being
refixed with 2% PFA/2.5% glutaraldehyde in 0.1 M cacodylate
buffer. Nanogold particles were then enhanced using
GoldEnhance (Nanoprobes). The tissue was then post-fixed
with 1% osmium tetroxide before being dehydrated with etha-
nol, and embedded in Araldite epoxy resin (Agar Scientific).
Ultrathin sections (70 nm) were cut using a diamond knife
mounted to a Reichert Ultracut S ultramicrotome (Leica) and
picked up onto coated electron microscopy grids. The sections
were stained with lead citrate and observed in a FEI Tecnai
Spirit transmission electron microscope at an operating voltage
of 80 kV. In conventional electron microscopy, neurons were
identified by their characteristic large nuclei with a clear nu-
cleolus and electron lucent cytoplasm.

Cortical culture and transfection

Primary cortical cultures were prepared from mice of either
sex (postnatal Days 0 or 1). Briefly, the cortices were dis-
sected, digested in trypsin (Sigma) and triturated with a fine
fire polished Pasteur pipette to achieve a single cell suspen-
sion. Cells were plated in a minimal volume of Dulbecco’s
modified Eagle’s medium supplemented with 10% foetal
bovine serum, 1% penicillin/streptomycin and 1%
GlutaMAXTM (all Invitrogen), at a density of 1000 cells/
mm2 on coverslips or live cell imaging dishes coated with
poly-d-lysine (Sigma). One to two hours after plating, main-
tenance medium of NeurobasalTM-A containing 2% B27,
0.25% penicillin/streptomycin and 0.25% GlutaMAXTM (all
Invitrogen) was added to the cells. Neurons were cultured at
37�C and 5% CO2. For transfection, cultures were incubated
with a mix of DNA and Lipofectamine� 2000 in serum-free
NeurobasalTM-A for 30 min. Cultures were washed twice
with serum-free NeurobasalTM-A, then returned to condi-
tioned maintenance medium. Cultures were either fixed for
immunostaining or used for live cell imaging 12–16 h after
transfection.

Immunofluorescence

Neurons were fixed in 4% PFA/PBS for 10 min, then permea-
bilized in 0.5% TritonTM X-100/PBS for 5 min. For blocking,
3% bovine serum albumin/PBS was used for 30 min. Primary
antibodies were diluted in PBS and incubated at room tempera-
ture for 1 h. Coverslips were washed in PBS three times for
5 min before the addition of Alexa Fluor� conjugated secondary
antibodies (Life Technologies) for 1 h. Coverslips were then
washed three times for 5 min in PBS, and mounted in
ProLongTM Gold Antifade Mountant with DAPI (Life
Technologies). All steps were carried out at room temperature.
Images were collected using a 40� oil lens with 1.4 NA on a
Zeiss LSM 710. Primary antibodies used were LAMP2 (Abl-93,
University of Iowa Hybridoma Bank), b-tubulin (5568, Cell
Signalling), HA (3F10, Sigma) and MAP2 (ab5392, Abcam).

Live cell imaging

All recordings were made at 1 frame/s. Live cell imaging was
conducted in HEPES-buffered phenol free maintenance medium,
to reduce background fluorescence. For LysoTracker� imaging,
cortical cultures in live cell imaging dishes were incubated with
100 nm LysoTracker� Red DND-99 (Thermo Fisher) in condi-
tioned medium at 37�C for 20 min then washed twice with fresh
imaging medium before imaging. GFP-LAMP transfected cells
were transferred to imaging medium for live cell recordings.
Live cell recordings were made on a heated stage.
Kymographs were generated and analysed using the Multiple
Kymograph plugin for ImageJ. Dendrites were distinguished
from axons by their distinctive morphology.

For FRAP recordings (fluorescence recovery after photobleach-
ing), images were recorded for 10 s prior to bleaching to establish
baseline fluorescence. A single circular region of interest within
the cell was bleached with a laser pulse, and then recording
continued for 120 frames post-bleach. FRAP plots were generated
in ImageJ by quantifying the fluorescence intensity in the bleached
region of interest over time normalized to the starting fluorescent
intensity. Recordings were made on LSM 710, except Fig. 8C and
Supplementary Fig. 8, which were recorded on LSM 880.

Neurite outgrowth

Maximum intensity projections of zsGreen transfected cells
were generated by capturing z-stacks through the entire neur-
itic projection of primary cortical cultures fixed at 7 days
in vitro (DIV) 24 h after transfection. Neuritic arbours were
traced in NeuronJ, and Sholl analysis performed on neuronal
tracings in ImageJ using 10 mm stepped radii from the cell
soma. Images were captured on LSM 710, or LSM 880 for
Supplementary Fig. 8.

Tmem106b antisense
oligonucleotides

Antisense oligonucleotides (ASOs) against Tmem106b and
control ASOs were provided by Ionis Pharmaceuticals. ASOs
were synthesized as previously described (Swayze et al., 2007)
and were 20 bp in length, with five 20-O-methoxyethyl-modi-
fied nucleotides at each end of the oligonucleotide, 10 DNA
nucleotides in the centre. The backbone of the ASOs consists
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of a mixture of phosphorothioate (PS) and phosphodiester
(PO) linkages: 1-PS, 4-PO, 10-PS, 2-PO and 2-PS (50 to 30).
CNTL ASO 676630, 50-CCTATAGGACTATCCAGGAA-30;
ASO 687524, 50-GTTCTCCATGAATAATAGGC-30; ASO-
687552, 50-GCACTTTATTTACAATATTG-30.

Quantification of knockdown

Mixed primary cortical neuronal cultures were prepared from
embryonic Day 14 C57Bl/6 mice and plated in 6-well plates
coated with poly-D-lysine (1.5 million cells per well). Twenty-
four hours after plating the cells ASOs were added to the
media. Cells were collected 48 h after ASO treatment.

For quantification at the RNA level cells were homogenized
in 200ml RLT using the Qiagen RNeasy� Kit (Qiagen) con-
taining 1% 2-mercaptoethanol. Total RNA was purified fur-
ther using a mini-RNA purification kit (Qiagen). After
quantitation, the RNA samples were subjected to real time
RT-PCR analysis. The Life Technologies ABI StepOne
PlusTM Sequence Detection System (Applied Biosystems) was
used. Briefly, 30-ml RT-PCR reactions containing 10 ml of RNA
were run with the RNeasy� 96 kit reagents and the primer
probe sets listed in the materials section. All real time RT-PCR
reactions were run in triplicate. The expression level of
Tmem106b mRNA was normalized to that of Gapdh
mRNA, and this was further normalized to the level measured
in controls that were treated with control ASOs. Expression
data are reported as per cent of control.

For quantification of knockdown at the protein level, cells
were lysed in RIPA buffer (Thermo Fisher, 89900) supple-
mented with protease inhibitor (cOmpleteTM Lysis-M EDTA-
free Roche, 45-4719964001). NuPAGETM LDS Sample Buffer
(4� ) (Invitrogen, NP0007) and 1% 2-mercaptoethanol was
added to the whole cell lysate without spinning down. The
samples were left at room temperature for 30 min and run
on NuPAGETM MOP 12-well gels. Anti-Tmem106b (Bethyl
Laboratories, A303-439A) was used at 1:1000. Secondary
antibody was goat anti-rabbit HRP (Cell Signaling, 7074S).

Statistical analysis

Statistical analysis was performed with Graphpad Prism soft-
ware. Statistical tests used are indicated in the figure legends.

Data availability

The data that support the findings of this study are available
from the corresponding author, upon reasonable request.

Results

Reduction of lysosomes in the
soma of primary cortical neurons
expressing CHMP2BIntron5 at
physiological levels

To determine the early changes driving the neuronal lyso-

somal storage pathology we previously observed in adult

CHMP2BIntron5 mouse brain (Clayton et al. 2015), we

investigated the endolysosomal system in postnatal primary

cortical neurons derived from CHMP2BIntron5 mice. Mature/

late endosomes and lysosomes share characteristics, includ-

ing the same membrane markers and acidic pH, thus we use

the term endolysosome here to encompass both late endo-

somes and lysosomes. First, we confirmed that mutant

CHMP2B is expressed at physiological levels in our primary

culture system, as it is in adult brain in this model (Ghazi-

Noori et al. 2012). Indeed, quantification of CHMP2B ex-

pression in postnatal cortical homogenates shows that

mutant CHMP2B is expressed at a level equal to endogen-

ous mouse CHMP2B (Fig. 1A and B). Initially we investi-

gated the effect of mutant CHMP2B on the number of

lysosomes in fixed primary neuronal mouse cortical cultures.

Immunostaining for LAMP2 revealed a significant reduction

in lysosome number in the soma of mutant CHMP2B pri-

mary neurons at DIV 14–16 (Fig. 1C and D), and also at

DIV 21 (Supplementary Fig. 1). No significant change was

seen in the size of LAMP2 positive structures

(Supplementary Fig. 1C and D).

Autophagosomes are not altered in
CHMP2BIntron5 primary neurons or
adult brain

Autophagosome accumulation has previously been reported

in several different mutant CHMP2B over-expression cell

models (Filimonenko et al., 2007; Lee et al., 2007; Lee

and Gao, 2009). Therefore, we investigated whether in add-

ition to a reduction in endolysosomes, an early defect in

autophagy is caused by physiological levels of mutant

CHMP2B in primary neurons. Under basal or starvation

conditions, no significant difference was seen in the

number or size of LC3- (Supplementary Fig. 2A–D) or

WIPI2-positive (Supplementary Fig. 3) autophagosomes in

CHMP2BIntron5 cultures compared to control cultures. To

investigate autophagosomes in vivo, we crossed our

CHMP2B mutant mice with GFP-LC3 mice. At 6 months

of age, immuno-electron microscopy for GFP was able to

successfully label double-membrane structures, indicative of

autophagosomes in mutant CHMP2B � GFP-LC3 mouse

brains (Supplementary Fig. 2E), confirming the staining

protocol was effective. However, we did not observe any

labelling of GFP-LC3 on the mutant CHMP2B-induced lyso-

somal storage deposits we previously reported (Clayton

et al., 2015) (Supplementary Fig. 2F). These data indicate

that endolysosomal, rather than autophagy, defects are the

earliest pathology we can detect in our mutant CHMP2B

mouse model.

Endolysosomal trafficking is impaired
in CHMP2BIntron5 primary cortical
neurons

Having verified that endolysosomal defects are the earliest

pathological event we detect in mutant CHMP2B neurons,
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we investigated the nature of this defect further. We used

live-imaging to investigate the trafficking dynamics of endo-

lysosomes. Initially, we analysed LysoTracker�, a dye that

specifically labels acidic organelles, in the dendrites of

mutant and control non-transgenic neurons (Fig. 2A).

Kymographs were generated to represent the movement

of LysoTracker�-labelled vesicles (Fig. 2B), and the propor-

tion of stationary versus moving vesicles quantified in

mutant CHMP2B and control neurons. Mutant CHMP2B

dendrites contained a significantly smaller population of

moving vesicles than control dendrites [30.9 � 2.7%

versus 59.3 � 7.9% (mean � standard error of the mean,

SEM)] (Fig. 2C). This was confirmed with a second endo-

lysosomal marker, GFP-LAMP1 (Fig. 2D–F). Mutant

CHMP2B dendrites contained a significantly smaller pro-

portion of moving LAMP1 positive vesicles than control

dendrites [15.8 � 3.5% versus 36.8 � 5.3%

(mean � SEM)] (Fig. 2F). Live cell imaging of both

LysoTracker� and GFP-LAMP1 revealed that mutant

CHMP2B neurons have defective trafficking of endolyso-

somes, with a significantly greater proportion of stationary

endolysosomes. The proportion of moving vesicles that

trafficked in retrograde or anterograde directions was not

significantly different to control (Supplementary Fig. 4),

indicating a general decrease in endolysosomal transport

that was not specific for direction of travel.

Mutant CHMP2BIntron5 is unable to
dissociate from stationary
endolysosomes

We hypothesized that mutant CHMP2B is unable to dis-

sociate from the endolysosomal membrane, thus exacerbat-

ing its detrimental effects and leading to the impairment in

trafficking that we observed. To test this possibility we used

the GFP-containing localization and affinity (LAP) tag to

label mutant CHMP2B. The LAP tag incorporates a long,

flexible linker sequence between GFP and the tagged pro-

tein and has been shown not to affect the function of sev-

eral CHMP proteins, including CHMP2B (Mierzwa et al.,

2017).

Cortical neurons transfected with mutant GFP-LAP

CHMP2B showed a punctate localization of the mutant

protein (Fig. 3A). This distribution of fluorescence is in

Figure 1 Physiological expression of mutant CHMP2B results in a decrease of endolysosomes at the soma of cortical neurons.

(A) Western blot of CHMP2B levels on brain homogenates from P0 or P1 postnatal mutant CHMP2B mice or non-transgenic controls. b-actin is

shown as a loading control. Bracket indicates non-specific bands. (B) Quantification of bands shown in A relative to loading controls. (C) LAMP2

staining in mutant CHMP2B and control b-tubulin stained cortical neurons. Scale bar = 10mm. (D) Quantification of LAMP2-positive structures in

DIV 14–16 cortical neurons. n = 3, with 6–10 neurons per n. Unpaired t-test, **P5 0.01.
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contrast to the neurons labelled with wild-type GFP-LAP

CHMP2B, which typically show a cytosolic distribution

(Fig. 3B). This distribution is similar to that described pre-

viously for wild-type and mutant CHMP2B (Belly et al.,

2010; Urwin et al., 2010), which indicates that the GFP-

LAP tag does not affect the distribution of CHMP2B.

To assess the motility of mutant and wild-type CHMP2B,

we performed fluorescence recovery after photobleaching

(FRAP) on discrete structures in the dendrites of trans-

fected neurons (Fig. 3C). Strikingly, mutant CHMP2B

structures show no recovery of fluorescence after photo-

bleaching (Fig. 3C, top). This is in sharp contrast to the

recovery after bleaching of wild-type CHMP2B (Fig. 3C,

bottom), which shows a rapid recovery of fluorescent

signal (time to 50% recovery of wild-type fluorescence =

25 s) (Fig. 3D). These data indicate that while wild-type

Figure 2 Mutant CHMP2B decreases endolysosomal trafficking. (A) Representative images of LysoTracker� labelled control and

mutant CHMP2B cultures. Scale bar = 10mm. (B) Example kymographs from 50mm sections of dendrite labelled with LysoTracker� and imaged

for 120 s. Vertical scale bar = 20 s, horizontal scale bar = 10mm. (C) Quantification of moving and stationary LysoTracker� structures from

kymographs. n = 3, with three to five neurons per n, DIV 12–20 cortical cultures. (D) Representative images of GFP-LAMP transfected control

and mutant CHMP2B cortical cultures. Scale bar = 10 mm. (E) Kymographs from sections of dendrite labelled with GFP-LAMP and live cell imaged

for 120 s. Vertical scale bar = 20 s, horizontal scale bar = 10mm. (F) Quantification of moving and stationary GFP-LAMP structures from

kymographs. n = 3 for mutant CHMP2B, n = 4 for non-transgenic with four to seven neurons per n, DIV 10–14 cortical cultures. Unpaired t-test,

*P5 0.05.
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CHMP2B is freely dissociating within the environment of

the dendrite, mutant CHMP2B is statically localized to

stationary structures with no turnover of the mutant

ESCRT subunit.

Incorporation of CHMP2BIntron5 onto
endolysosomes renders them unable
to traffic

To determine whether this stable incorporation of mutant

CHMP2B onto endosomes renders them unable to traffic,

we measured the movement of mutant and wild-type GFP-

LAP CHMP2B vesicles in real time. CHMP2BIntron5 labelled

structures are stationary over time (Fig. 3E, arrows).

However, small CHMP2BWildtype structures were occasion-

ally observed to appear and traffic for a short distance

(Fig 3E, arrowheads). Automated tracking of these events

detected numerous displacement events of CHMP2BWildtype

labelled puncta per neuron, with only one trafficking event

observed in the CHMP2BIntron5 labelled neurons (Fig 3F and

G). These data directly show that mutant CHMP2B positive

endolysosomes are unable to traffic.

Figure 3 Mutant CHMP2B structures are stationary and show no fluorescence recovery after photobleaching. GFP-LAP tagged

mutant (A) or wild-type (B) CHMP2B in DIV 10 primary cortical cultures. (C) Insets from A and B. The structures highlighted by boxes were

bleached at the indicated time point, and the recovery of fluorescence followed over time. Representative time points are shown (1, 11, 20 and

50 s). (D) Quantification of the average fluorescence recovery over time for mutant CHMP2B (circles) or wild-type CHMP2B (triangles)

normalized to the starting fluorescence. (E) Representative time points of immobile GFP-LAP CHMP2BIntron5 structures (arrows) and moving

GFP-LAP CHMP2BWildtype structures (arrowheads). (F) Quantification of the number of traces per transfected cell generated using Trackmate in

ImageJ. (G) Quantification of the average displacement of traces automatically generated in ImageJ. n = 10 DIV 10 neurons from two independent

experiments. Unpaired t-test, ***P5 0.001, ****P5 0.0001. Scale bars = 5 mm.
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CHMP2BIntron5 vesicles do not recruit
the ESCRT dissociation factor VPS4A

Next, we investigated why mutant CHMP2B is statically

localized to stationary endolysosomes. The key step in

dissociation of ESCRT components from the endolysoso-

mal membrane after intra-luminal vesicle formation is the

recruitment of the ATPase VPS4 by CHMP2A and/or

CHMP2B (Stuchell-Brereton et al., 2007; Lata et al.,

2008; Wollert et al., 2009). Therefore, we investigated

Figure 4 Mutant CHMP2B does not recruit VPS4. (A) Representative examples of neurons co-transfected with haemagglutinin (HA) tagged

CHMP2B and GFP-VPS4. Asterisk indicates an example of localization of mutant HA-CHMP2B, which is negative for VPS4. (B) Representative examples

of neurons co-transfected with GFP-VPS4EQ and HA-tagged wild-type (top) or mutant CHMP2B (bottom). Arrowhead (top) indicates area of co-

localization of wild-type CHMP2B with VPS4EQ. Arrows (bottom) show differential localization of mutant CHMP2B and VPS4EQ. DIV 8 cortical cultures.

(C) Manders coefficient of co-localization generated using JaCoP in ImageJ. Unpaired t-test, *P5 0.05. Scale bars = 10mm.

Figure 5 Peripheral neurite branching is increased in mutant CHMP2B neurons. (A) Representative maximum intensity projections

of DIV 7 non-transgenic control and mutant CHMP2B neurons as labelled. (B) Sholl analysis of neurite branching for control and mutant CHMP2B

neurons. (C) Average number of branches per Sholl intersection for 10–120, and 130–250mm from the cell soma. Control data are shown in grey,

mutant CHMP2B in black. Unpaired t-test, *P5 0.05. n = 7 for both, with four to six neurons per n. Scale bar = 10mm.
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whether recruitment of VPS4 is compromised by the pres-

ence of mutant CHMP2B, which lacks the microtubule-

interacting and transport (MIT) interacting motif (MIM)

necessary for recruitment of VPS4 (Stuchell-Brereton et al.

2007). We co-transfected primary cortical neurons with

mutant CHMP2B and GFP-VPS4 variants and as expected,

mutant CHMP2B structures do not recruit VPS4 (Fig. 4A).

To verify this finding further, we used the ATPase deficient

variant of VPS4, VPS4EQ. This mutant is unable to dis-

sociate from the formed intra-luminal vesicle, which leads

to the formation of enlarged endosomes (Bishop and

Woodman, 2000). Wild-type CHMP2B co-localized with

these GFP-VPS4EQ positive structures (Fig. 4B, short

arrow, top), while significantly less mutant CHMP2B co-

localized with GFP-VPS4EQ (Fig. 4B, long arrows,

bottom). These data show that mutant CHMP2B is

unable to recruit VPS4, which explains its inability to dis-

sociate from endolysosomes within neurons.

Mutant CHMP2BIntron5 causes
increased dendritic branching

To determine whether there was a functional consequence

of altered endolysosomal trafficking in mutant CHMP2B

dendrites, we investigated dendritic branching. Sholl ana-

lysis revealed that physiological levels of mutant CHMP2B

Figure 6 Knockdown of Tmem106b with ASOs rescues neuritic branching and endolysosomal trafficking defects. (A)

Quantification of Tmem106b mRNA levels in mutant CHMP2B cortical cultures following treatment with the indicated ASOs normalized to

GAPDH, n = 2. (B) Blot and quantification of TMEM106B protein levels from primary cultures treated with the indicated ASOs. (C)

Representative maximum intensity projections of mutant CHMP2B neurons at DIV 7 treated with 5mM of the indicated ASOs for 7 days. Scale bar

= 10 mm. (D) Sholl analysis of ASO treated neurons normalized to control ASO treated neurons. ASO 687524 data are shown in blue, ASO

687552 in red. Two-way ANOVA with Dunnett’s multiple comparisons. *P5 0.05. Blue asterisks indicate statistical significance between control

ASO and ASO 687524. Red asterisks indicate significance between control ASO and ASO 687552. n = 6 for each condition, with 4–10 neurons

per n.
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causes an increase in distal dendritic branching in primary

neurons (Fig. 5). Remarkably, these data show that mutant

CHMP2B has the opposite effect in dendrites to those

caused by reduced levels of the FTD risk factor

TMEM106B, which has been found to increase the trans-

port of dendritic lysosomes and to also decrease dendritic

branching (Schwenk et al., 2014; Stagi et al., 2014).

Tmem106b knockdown restores
endolysosomal trafficking and
branching defects in mutant
CHMP2BIntron5 neurons

Therefore, we reasoned that knockdown of Tmem106b

might be sufficient to rescue the dendritic branching and

lysosomal trafficking defects in mutant CHMP2B neurons.

Quantification of a fluorescently labelled non-targeting con-

trol ASO showed that 3 days after ASO treatment, 90% of

neurons contain fluorescent ASOs, and 80% at 7 days post-

treatment (Supplementary Fig. 5), indicating efficient entry

and retention of ASOs in primary cortical cultures. Two

distinct murine ASOs were used to knockdown

Tmem106b in mutant CHMP2B neurons by ~50% at the

RNA level and up to 40% at the protein level after 2 days

(Fig. 6A and B), and knockdown was maintained at 7 days

(65–70% knockdown at the RNA level, Supplementary

Fig. 6). Knockdown of Tmem106b with either ASO rescued

the increase in dendritic branching seen in mutant

CHMP2B neurons (Fig. 6C and D). Strikingly, knockdown

of Tmem106b also rescued the LysoTracker� trafficking

defect (Fig. 7A and B), with two independent ASOs causing

a significant increase in the proportion of moving

LysoTracker� labelled structures in mutant CHMP2B neu-

rons (Fig. 7C). This effect was specifically due to increased

trafficking as the number of LysoTracker� structures within

dendrites was not affected (Fig. 7D). Interestingly,

Tmem106b ASO treatment of control neurons had more

Figure 7 Knockdown of Tmem106b with ASOs rescues endolysosomal trafficking defects. (A) Representative images of mutant

CHMP2B neurons treated with 5 mM of the indicated ASOs for 7 days loaded with LysoTracker�. Scale bar = 10mm. (B) Representative

kymographs from LysoTracker� live cell recordings of neurons labelled with the indicated ASOs. Vertical scale bar = 20 s, horizontal scale bar =

10 mm. (C) Quantification of kymographs of LysoTracker� movement in DIV 14 mutant CHMP2B cortical cultures following treatment with the

indicated ASOs. n = 4 with five to seven neurons per n. (D) Quantification of the number of LysoTracker� labelled structures in the sections of

neurite chosen for kymograph analysis. n = 4 with five to seven neurons per n. One-way ANOVA with Newman-Keuls multiple comparison test,

**P5 0.01.
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modest effects, with a trend towards increased trafficking

of LysoTracker� structures but no effect on dendrite

branching (Supplementary Fig. 7).

To investigate whether Tmem106b knockdown specific-

ally rescues the mutant CHMP2B labelled structures, we

quantified GFP-LAP CHMP2BIntron5 localization following

Tmem106b ASO treatment. No difference was seen in the

size or number of GFP-LAP CHMP2BIntron5 puncta follow-

ing knockdown of Tmem106b (Fig. 8B and C), nor in the

number of motile GFP-LAP CHMP2BIntron5 structures

(Fig. 8D), indicating that the rescue of LysoTracker� traf-

ficking and dendritic branching occurs via a general

increase in trafficking. This is supported by the observa-

tions that the localization of TMEM106B is not altered

in mutant CHMP2B neurons (Supplementary Fig. 8), and

that Tmem106b ASO treatment does not enhance the abil-

ity of mutant CHMP2B to recruit VPS4 (Supplementary

Fig. 9). These data indicate that reduction of

TMEM106B may be a potential therapeutic for the treat-

ment of early lysosomal trafficking defects more broadly

than mutant CHMP2B-FTD.

Discussion
Our data show for the first time that the FTD-causing C-

terminal truncation of CHMP2B results in dendritic endo-

lysosomal trafficking defects. Strikingly, we found that this

trafficking defect could be rescued by the knockdown of the

FTD risk factor Tmem106b. We also found that the ex-

pression of endogenous levels of mutant CHMP2B results

in a reduction in LAMP2 structures at the neuronal soma.

Enlarged endosomes have previously been detected in pa-

tient fibroblasts and cortex (Urwin et al. 2010), and our

data in primary cortical cultures now indicates endolysoso-

mal alterations occur as an early event within neurons in

CHMP2B-FTD.

The reduction in LAMP2 structures could be due to sev-

eral possibilities including (i) specifically reduced retrograde

transport; (ii) reduced delivery of LAMP2 to lysosomes; (iii)

reduced lysosome biogenesis; or (iv) reduced lysosome mat-

uration. Our data indicate that the reduction is unlikely to

be linked to the reduced trafficking we observe, as both

retrograde and anterograde are equally affected by

mutant CHMP2B, indicating a further distinct role of

mutant CHMP2B at the lysosome.

FRAP analysis showed that mutant CHMP2B is stably

localized to stationary endolysosomal structures. As ex-

pected, mutant CHMP2B containing endolysosomes were

no longer able to recruit VPS4, which is consistent with a

C-terminal CHMP2B missense mutation also reducing

VPS4A binding (Han et al., 2012). We propose a model

whereby the incorporation of mutant CHMP2B into the

forming intra-luminal vesicle arrests intra-luminal vesicle

formation, prevents recruitment of VPS4, and renders the

maturing endolysosome unable to travel any further along

the neurite.

We found that at early stages in disease, at time points

when endolysososmal disequilibrium is well established, no

defects in the autophagosomal system were detected.

Previous studies have reported autophagosomal defects fol-

lowing overexpression of mutant CHMP2B in both cell

Figure 8 The size, number and motility of GFP-LAP CHMP2BIntron5 puncta is not altered in TMEM106B ASO-treated neu-

rons. (A) Representative images of neurons transfected with GFP-LAP CHMP2BIntron5 and treated with 5 mM of the indicated ASOs. Scale bar =

10 mm. (B) Quantification of the size of GFP puncta, and quantification of the number of GFP puncta per 50 mm section of proximal dendrite in

fixed neurons. n = 3 with 3–10 DIV 10 neurons per n. (C) Quantification of the number of motile structures in live-imaged GFP-LAP

CHMP2BIntron5 transfected cells treated with the indicated ASOs. n = 3 with five DIV 10–11 neurons per n.

3438 | BRAIN 2018: 141; 3428–3442 E. L. Clayton et al.

https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy284#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy284#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy284#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy284#supplementary-data


lines (Filimonenko et al., 2007) and in primary cortical

cultures (Lee et al., 2007; Lee and Gao, 2009).

Conversely, in a separate study neither enlarged endosomes

nor autophagosome accumulation was observed when

CHMP2BIntron5 or CHMP2B�10 were expressed in primary

hippocampal neurons (Belly et al., 2010). We did not detect

any changes in autophagosomes in either mutant CHMP2B

primary cultures, or in mutant CHMP2B mice up to

6 months of age. This indicates that autophagic defects

occur downstream of the initial endolysosomal defects,

but could still contribute to disease pathogenesis. For in-

stance, functional multivesicular bodies are known to be

necessary for the autophagy of protein aggregates asso-

ciated with neurodegenerative conditions (Filimonenko

et al. 2007).

Engorged stationary multivesicular bodies may be unable

to fuse with either lysosomes or autophagosomes such that

both pathways are ultimately affected. This could be caused

by steric hindrance of fusion caused by one of two mech-

anisms. The shallow curvature of a bloated multivesicular

body may interfere with tethering of late endosomes to

lysosomes/autophagosomes. Alternatively, abnormal mem-

brane dilution of SNARE complexes may affect fusion.

Indeed, cholesterol accumulation in lysosomal storage dis-

orders is known to impair SNARE function by sequestering

SNAREs in aberrant spatial organizations, thus reducing

the ability of endosomes to fuse with lysosomes (Fraldi

et al., 2010). In line with this possibility, we have previ-

ously reported that mutant CHMP2B can cause impaired

fusion of endosomes and lysosomes in non-neuronal cells

(Metcalf and Isaacs, 2010; Urwin et al., 2010).

In addition to dendritic endolysosomal trafficking defects,

we also report increased dendritic branching, specifically in

distal dendrites, in mutant CHMP2B primary cortical neu-

rons. This is in contrast to two previous studies, in which

mutant CHMP2B over-expression led to reduced dendritic

branching (Lee et al., 2007; Belly et al., 2010). The differ-

ence is likely due to the physiological expression of mutant

CHMP2B in our system and highlights the importance of

using physiological levels of proteins when investigating the

endosomal system. Interestingly, loss of function of

ESCRTs has been shown to increase dendritic branching

in Drosophila larval sensory neurons (Sweeney et al.,

2006), potentially due to decreased dendritic pruning

(Zhang et al., 2014; Loncle et al., 2015). Therefore the

increased dendritic branching we observe is consistent

with a role for ESCRTs in this process. It also indicates

that in addition to the gain of function we have shown is

necessary for causing neurodegenerative phenotypes

(Ghazi-Noori et al., 2012), mutant CHMP2B may also in-

hibit ESCRT function in some contexts.

Numerous lines of evidence now point to endolysosomal

defects as a common event in FTD. For instance, while

heterozygous mutations in GRN causes FTD, rare homo-

zygous mutations in GRN have been found to cause neur-

onal ceroid lipofuscinosis (NCL), a lysosomal storage

disorder (Smith et al., 2012). Indeed, Grn knockout mice

and GRN patients have features of both FTD and NCL,

including increased levels of cathepsin D, LAMP1, saposin

D and SCMAS (Gotzl et al., 2014), and increased lipofus-

cinosis (Ward et al., 2017). The ultimate downstream con-

sequence of early endolysosomal trafficking defects in

CHMP2B-FTD are the occurrence of large autofluorescent

aggregates in both patients and mouse brain that are rem-

iniscent of lysosomal storage pathology (Clayton et al.,

2015). Several studies have also shown that loss of function

of C9orf72 can affect endosomal trafficking (O’Rourke

et al., 2016; Farg et al., 2017; Shi et al., 2018), which

could contribute to causing FTD and ALS in concert with

gain-of-function mechanisms (Balendra and Isaacs, 2018).

Interestingly, knockdown of TDP-43 was recently shown to

reduce the number and motility of dendritic recycling endo-

somes (Schwenk et al., 2016). Finally, TMEM106B, the

most well recognized risk factor for FTD (Van Deerlin

et al., 2010; Finch et al., 2011; van der Zee and Van

Broeckhoven, 2011; Gallagher et al., 2014; van

Blitterswijk et al., 2014), is localized to late endosomes

and lysosomes (Chen-Plotkin et al., 2012; Lang et al.,

2012; Brady et al., 2013). Altered risk associates with a

coding variant in TMEM106B, with the risk allele

degraded more slowly than the protective allele, leading

to higher protein levels of TMEM106B (Nicholson et al.,

2013). A recent study identified a distinct risk variant as

the likely causal variant and showed it led to increased

TMEM106B RNA levels, via alteration of chromatin struc-

ture (Gallagher et al., 2017). The common feature of both

studies is that increased TMEM106B levels increase risk for

FTD. Increasing TMEM106B levels by over-expression in-

hibits lysosomal transport (Stagi et al. 2014), which is con-

sistent with our findings that an FTD-causing mutation in

CHMP2B also decreases lysosomal transport.

As knockdown of Tmem106b conversely increases lyso-

somal dendritic traffic (Schwenk et al., 2014), we used this

approach to try to rescue the mutant CHMP2B-induced

trafficking defect. Strikingly, ASO-mediated knockdown

of Tmem106b rescued the trafficking defects we report in

our mutant CHMP2B neurons. Importantly, this led to a

functional rescue of the associated mutant CHMP2B-

induced dendritic branching defect. TMEM106B shows a

partial overlap with CHMP2B-positive structures (Jun

et al., 2015) suggesting the two may be present on the

same endolysosomes. However, we did not observe any

functional rescue of mutant CHMP2B-positive immobilized

structures upon knockdown of Tmem106b. Instead we hy-

pothesize that Tmem106b knockdown may serve to upre-

gulate lysosomal trafficking by mobilizing extra

endolysosomal vesicles from a pool that are ordinarily sta-

tionary. Interestingly, we did not observe dramatic changes

in lysosomal trafficking or dendritic branching when the

Tmem106b ASOs were applied to control neurons. This

is in contrast to previous reports, which show much stron-

ger effects in control neurons using shRNAs directed

against Tmem106b. One explanation may be the greater

level of knockdown in those studies. This suggests that a
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lower level of knockdown may be sufficient to reduce traf-

ficking and branching defects when neurons are under

stress or already impaired, such as expression of mutant

CHMP2B, but that greater knockdown is required for ef-

fects under basal conditions. This may also indicate that

there is an optimal level of knockdown to improve com-

promised neurons without affecting healthy neurons.

Previously, alterations in dendritic trafficking dynamics

have been found to influence dendritic arborization in sev-

eral studies. Numerous Drosophila mutant models have

shown a link between altered dendritic branching and (i)

motor proteins; (ii) endocytic pathways; and (iii) local

translation (for a comprehensive review see Jan and Jan,

2010). Altered dendritic trafficking may influence local sig-

nalling, which affects neuronal arborization. Indeed, ex-

pression of constitutively active Rab11 increases the

localization of TrkB to dendrites, thereby increasing local

TrkB signalling and regulating arborization (Lazo et al.,

2013). Thus Tmem106b knockdown may mobilize a pool

of endolysosomal structures sufficient to restore appropri-

ate dendritic signalling pathways in mutant CHMP2B

neurons.

This indicates a more general effect on trafficking that

could be broadly beneficial for restoring endolysosomal

trafficking impairment. Consistent with this possibility,

TMEM106B interacts with MAP6 to deliver a stop signal

to endolysosomal vesicles (Schwenk et al., 2014).

Knockdown of Tmem106b in our mutant CHMP2B neu-

rons may remove this endolysosomal stop signal, and result

in greater motility of the remaining endolysosomal pool,

thereby compensating for the trafficking defects we observe

in our mutant CHMP2B neurons. Interestingly, it was re-

cently reported that knockout of Tmem106b in mice can

rescue lysosomal defects caused by loss of Grn (Klein et al.,

2017), due to Tmem106b knockout and Grn knockout

having opposing effects on lysosomal function, although

very limited benefit was observed in a second study

(Arrant et al., 2018). Remarkably, we also observe that

Tmem106b knockdown has opposing effects to another

FTD gene, mutant CHMP2B, in both endolysosomal traf-

ficking and dendritic branching.

We used ASO treatment to knockdown Tmem106b in

our mutant CHMP2B neuronal cultures. ASOs represent

a promising therapeutic to treat neurodegenerative diseases,

as they are highly specific and well tolerated (Evers et al.,

2015). ASO treatment for spinal muscular atrophy was re-

cently approved following successful clinical trials (Finkel

et al., 2016) and ASOs are also in clinical trial for SOD1

ALS (Miller et al., 2013). ASOs have also been used to

successfully alleviate symptoms in various model systems

of ALS, including C9orf72 patient-induced pluripotent

stem cell (iPSC) neurons, and TDP-43 and C9orf72

mouse models (Donnelly et al., 2013; Sareen et al., 2013;

Jiang et al., 2016; Becker et al., 2017; Scoles et al., 2017),

indicating their therapeutic potential.

With an increasing body of evidence now linking FTD

causative mutations to dysfunction of the endosomal and

lysosomal system, it is becoming apparent that there is a

susceptibility of cortical neurons to endolysosomal defects.

Exactly why cortical neurons are so susceptible to endoly-

sosomal defects is unclear. However, this common disease

mechanism raises the exciting possibility of treatment tar-

geting intracellular trafficking as a potentially widely ap-

plicable therapy for FTD.
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