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This supplement contains figures and R code in support of the main text.
In addition, this supplement contains a second illustration of (the use of) the
spectral condition number plot.

1. Behavior largest and smallest eigenvalues

This section contain a visual impression (Figure S1) of the behavior of the
largest and smallest eigenvalues along the domain of the penalty parameter.
The setting is given in Example 1 of the main text.
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Fig. S1 Visualization of the behavior of the largest and smallest eigenvalues along the
domain of the penalty parameter. The green line represents the smallest eigenvalue while
the blue line represents the largest eigenvalue. The panels represent different choices for the
scalar ϕ: (a) ϕ < 1/d(Σ̂)1; (b) 1/d(Σ̂)1 < ϕ < 1; (c) ϕ = 1; (d) 1 < ϕ < d(Σ̂)1; and (e)

ϕ > d(Σ̂)1.

2. A second Illustration

2.1. Context and data

Prostate cancer refers to an adenocarcinoma in the prostate gland. It is the
most common solid tumor diagnosed in western men [19]. Its prognosis is
largely determined by metastasis with low survival rates for metastatic forms
in comparison to organ-confined forms [1].

Vascular endothelial growth factor (VEGF) is a signal protein that sup-
ports vascularization [7]. Vascular endothelial cells are cells that line the in-
terior of blood vessels. The formation of new blood vessels is pivotal to the
growth and metastasis of solid tumors. VEGF is actually at the helm of a
cascade of signaling pathways that form the VEGF-signaling pathway. In spe-
cific, the activation of VEGF leads to the activation of the mitogen-activated
protein kinase (MAPK) and phosphatidylinositol 3’-kinase (PI3K)-AKT sig-
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naling pathways [13]. The VEGF-signaling pathway thus largely consists of two
subpathways. These subpathways mediate “the proliferation and migration of
endothelial cells and” promote “their survival and vascular permeability” [13].
Hence, VEGF overexpression supports tumor growth and metastasis.

VEGF-signaling is likely active in metastatic prostate cancer. This con-
tention is supported by recent evidence that changes in the PI3K-pathway are
present in metastatic tumor samples [20]. Cancer may be viewed, from a path-
way perspective, as consisting of a loss of normal biochemical connections and
a gain of abnormal biochemical connections. Severe deregulation would then
imply the loss of normal subpathways and/or the gain of irregular subpath-
ways. Our goal here is to explore if the VEGF-signaling pathway in metastatic
prostate cancer can still be characterized as consisting of the MAPK and PI3K-
AKT subpathways. The exploration will make use of a pathway-based factor
analysis in which the retained latent factors are taken to represent biochemical
subpwathways [cf. 3]. This exercise hinges upon a well-conditioned covariance
matrix.

We attained data on prostate cancer from the Memorial Sloan-Kettering
Cancer Center [20] as queried through the Cancer Genomics Data Server [4, 8]
using the cgdsr R-package [9]. All metastatic samples were retrieved for which
messenger ribonucleic acid (mRNA) data is available, giving a total of n = 19
samples. The data stem from the Affymetrix Human Exon 1.0 ST array plat-
form and consist of log2 whole-transcript mRNA expression values. All Human
Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) cu-
rated features were retained that map to the VEGF-signaling pathway accord-
ing to the Kyoto Encyclopedia of Genes and Genomes (KEGG) [12], giving a
total of p = 75 gene features. Regularization of the desired covariance matrix
is needed as p > n. Regularization is performed (as in the illustration in the
main text) on the standardized scale.

2.2. Model

We work with standardized data. Hence, let zi ∈ Rp denote a centered and
scaled p-dimensional observation vector available for i = 1, . . . , n persons. The
factor model states that

zi = Γξi + εi,

where ξi ∈ Rm denotes an m-dimensional vector of latent variables typically
called ‘factors’, and where Γ ∈ Rp×m is a matrix whose entries γjk denote the
loading of the jth variable on the kth factor, j = 1, . . . , p, k = 1, . . . ,m. Finally,
the εi ∈ Rp denote error measurements. Hence, the model can be conceived of
as a multivariate regression with latent predictors. An important assumption in
this model is that m < p: the dimension of the latent vector is smaller than the
dimension of the observation vector. The following additional assumptions are
made: (i) The observation vectors are independent; (ii) rank(Γ) = m; (iii) ξi ∼
Nm(0, Im); (iv) εi ∼ Np(0,Ψ), with Ψ a (p× p)-dimensional diagonal matrix
with strictly positive diagonal entries ψj ; and (v) ξi and εi′ are independent for
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all i and i′. The preceding assumptions establish a distributional assumption
on the covariance structure of the observed data-vector: (vi) zi ∼ Np(0,Σ =
ΓΓT + Ψ).

Hence, to characterize the model, we need to estimate Γ and Ψ on the basis
of the sample correlation matrix. As p > n for the data at hand, the sample
correlation matrix is singular and standard maximum likelihood estimation
(MLE) is not available. Recent efforts deal with such situations by (Bayesian)
sparsity modeling of the factor model [e.g., 3], i.e., by imposing sparsity con-
straints in the loadings matrix. Our approach differs. We first ensure that we
have a well-conditioned correlation matrix by using a regularized (essentially
a Bayesian) estimator. Afterwards, standard MLE techniques are employed to
estimate Γ and Ψ on the basis of this regularized correlation matrix. Hence,
we perform MLE on the basis of Σ̂(λ∗) where λ∗ is (in some sense) deemed
optimal.

2.3. Penalty parameter selection

The estimator of choice is again (3) of the main text where we replace Σ̂
with the sample correlation matrix R. The target matrix is chosen as T = Ip,
such that a regularized correlation matrix ensues. Again, the aLOOCV pro-
cedure was tried first in finding an optimal value for λa under the given
target and data settings. We searched for the optimal value λ∗a in the do-
main λa ∈ [1× 10−5, 20] with 10, 000 log-equidistant steps along this domain.
Again, the procedure pointed to 1× 10−5 as being the optimal value for the
penalty (in the chosen domain), which seems low given the p/n ratio of the
data. The condition number plot (covering the same penalty-domain consid-
ered by the aLOOCV procedure) indeed indicates that the precision estimate
at λa = 1× 10−5 is not well-conditioned in the sense of the Heuristic Def-
inition, exhibiting a condition number of approximately 9, 456 (Figure S2).
A reasonable minimal penalty-value (in accordance with the Heuristic Defini-

tion) can be found at approximately exp(−6.5), at which C2[Σ̂a(exp(−6.5))] ≈
785.01. This reasonable minimal value is subsequently used to constrain the
search-domain to the region of well-conditionedness. A root-finding (by the
Brent algorithm [2]) LOOCV procedure is then told to search for the optimal
value λ∗a in the domain λa ∈ [exp(−6.5), 20]. The optimal penalty-value is
found at .422. At this value, indicated by the red vertical line in Figure S2,
C2[Σ̂a(.422)] ≈ 62.39.

The Kaiser-Meyer-Olkin index [11] of .98 indicates that a reasonable pro-
portion of variance among the variables might be common variance and,
hence, that Σ̂a(.422) is suitable for a factor analysis. The regularized esti-

mate Σ̂a(.422) is used in further analysis.
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Fig. S2 The left-hand panels give the basic spectral condition number plot. The middle
and right-hand panels exemplify the interpretational aids to the basic plot: the approximate
loss in digits of accuracy (middle panel) and the approximation of the acceleration along
the curve in the basic plot (right-hand panel). The top panels give the basic condition
number plot and its interpretational aids for the domain λa ∈ [1× 10−5, 20]. The bottom
panels zoom in on the boxed areas. The boxed areas cover a domain of well-conditionedness
according to the heuristically chosen minimal penalty-value: λa ∈ [exp(−6.5), 20]. The red
vertical line indicates the value of the penalty that was chosen as optimal by the root-finding
LOOCV procedure (.422).

2.4. Further analysis

The dimension of the factor solution is unknown. Hence, the optimal factor
dimension needs to be determined in conjunction with the estimation of the
model. Now, let Σ̂m = Λ̂mΛ̂T

m + Ψ̂ denote the MLE solution under m fac-
tors. Then, we determine the optimal dimension (contingent upon the MLE
solutions) using the Bayesian Information Criterion (BIC; [18]), which, for the
problem at hand, amounts to:

n
{
p ln(2π) + ln |Σ̂m|+ tr

(
Σ̂−1m Σ̂a(.422)

)}
+ ln(n)η,

where η = p(m+ 1)−m(m− 1)/2 indicates the free parameters in the model.
Figure S3 gives the BIC scores for each dimension allowed by the existence
condition p(p+1)/2−η ≥ 0. The solution with the lowest BIC score is deemed
optimal, indicating that m = 2 is the preferred solution.
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Fig. S3 BIC scores for various dimensions of the latent vector. The left-hand panel gives
the trace of the BIC scores for all dimensions of the latent vector allowed by the bound
p(p + 1)/2 − η ≥ 0. The right-hand panel gives a table with BIC scores for m = 1, . . . , 5.
The m = 2 solution is to be preferred according to the BIC.

The specified FA model is inherently underidentified. Assume H ∈ Rm×m is
an arbitrary orthogonal matrix. Considering the implied covariance structure
of the observed data we may write:

ΓΓT + Ψ = (ΓH)(ΓH)T + Ψ.

This equality implies that, given Ψ, there is an infinite number of alternative
loading matrices that generate the same covariance structure as Γ. Thus, in
any solution, Γ can be made to satisfy m(m−1)/2 additional conditions, and,
hence, the structure of the existence condition given above. Naturally, any
estimation method then requires a minimum of m(m− 1)/2 restrictions on Γ
to attain uniqueness (up to possibly polarity reversals in the columns of Γ).
In MLE this is achieved by requiring that ΓTΨ−1Γ be diagonal along with
an order-condition on its diagonal elements. As this is a convenience solution
that has no direct interpretational meaning, usually a post-hoc rotation is
applied, whence estimation is settled, to enhance interpretation. Here, the
Varimax [10] rotation to an orthogonal simple structure was ultimately used
as oblique rotation (that allows for factor correlations) indicated a near-zero
correlation between the two retained latent factors (note that any orthogonal
representation has equivalent oblique representations).

The final factor solution is represented in Figure S4. This Dandelion plot
[15] visualizes the magnitudes of the elements of Λ̂ and Ψ̂ and their relation
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Fig. S4 Dandelion plot of the factor solution. Each central solid line represents a factor
and is connected to a star plot (also known as a Kiviat diagram). Each spoke in each of the
star plots then represents a variable. The length of the spokes corresponds to the maximum
magnitude of each loading (which is unity). The extension of the polygon along each spoke
then indicates the magnitude of a factor loading in the obtained solution, with the sign
of the corresponding loading represented by color coding: green for a negative loading and
blue for a positive loading. The representation suppresses absolute loadings lower than .3
for enhanced visualization. The angle between the solid lines corresponds to the amount of
variance explained by the first factor (approximately 28%). The dashed line represents the
cumulative percentage of variance explained by all retained factors (approximately 38% in
this case). The star plots at the far-right then represent the magnitudes of the communalities
κj =

∑
j γ

2
jk and the uniquenesses ψj = 1−κj . Variables are represented by index numbers.

The table at the far-left gives the corresponding HUGO-curated gene names. See [15] for
more information on the Dandelion plot.

to the two retained factors. The latent factors are taken to represent bio-
chemical subpwathways. Table S1 characterizes the factors according to their
constituting genes that achieve the highest absolute loading. These genes are
furthermore associated with VEGF-signaling subpathways as indicated by the
WikiPathways database [14]. Factor 1 consists mostly of MAPK-related genes.
In addition, genes related to the glycerol phospholipid biosynthesis pathway
load on factor 1. The MAPK pathway has been associated with lipid home-
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Table S1 Top genes per factor according to absolute factor loadings. ‘HUGO’ refers to Hu-
man Genome Organization Gene Nomenclature Committee (HGNC) curated gene names.
‘Pathway’ refers to the VEGF-subpathway a certain gene belongs to according to the
WikiPathways database [14].

Factor HUGO Symbol Pathway

1 CDC42 MAPK-signaling
MAPK14 MAPK-signaling

PIK3R5 -
PLA2G2C Glycerol phospholipid biosynthesis

PLA2G3 Glycerol phospholipid biosynthesis
PLA2G4E Glycerol phospholipid biosynthesis

PPP3R1 MAPK-signaling
PRKCG MAPK-signaling
SPHK1 VEGF-signaling
SPHK2 -

2 AKT1 PI3K/AKT-signaling in cancer
AKT2 AKT-signaling / VEGF-signaling
AKT3 AKT-signaling / VEGF-signaling
BAD AKT-signaling / Prostate cancer

MAP2K2 MAPK-signaling / Prostate cancer
MAPKAPK2 MAPK-signaling / Prostate cancer

PIK3R2 AKT-signaling / VEGF-signaling
PLA2G6 Glycerol phospholipid biosynthesis

PXN VEGF-signaling / Prostate cancer
SHC2 VEGF-signaling

ostase in yeast [17] and “phospholipid composition and synthesis are similar
in yeast and mammalian cells” [5]. Genes with pathway association indicated
by ‘-’ in Table S1 (PIK3R5 and SPHK2) could not be associated to VEGF-
subpathways according to the WikiPathways database. PIK3R5 is, however,
related to the MAPK-signaling pathway according to the Ingenuity Target
Explorer [6]. Factor 2 consists mostly of genes related to the PI3K/AKT-
signaling and prostate cancer pathways. Moreover, this factor also includes
general VEGF-signaling pathway genes that are conducive in activating the
MAPK and PI3K/AKT cascade. These results suggest that the compositional
subpathway structure of the VEGF-signaling pathway in metastatic prostate
cancer can still be characterized as consisting of the MAPK and PI3K-AKT
cascades. Hence, VEGF-pathway degerulation in metastatic prostate cancer
is more likely characterized by intricate changes in its known subpathways
than by the loss of these (normal) subpathways or the gain of (abnormal)
subpathways.
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3. Benchmark

A benchmarking exercise was conducted to get an indication of the execution
time of the CNplot function. The sample size n is not a factor in the execution
time as the function operates on the covariance (or precision) matrix. Hence,
time complexity hinges on the dimension p and the number of steps S taken
along the (specified) domain of the penalty-parameter. Execution time was
thus evaluated for various combinations of p and S.

Timing evaluations were done for all ridge estimators mentioned in Sec-
tion 2.1 of the main text and all combinations of the elements in p ∈
{125, 250, 500, 1000} and S ∈ {125, 250, 500, 1000}. The basic condition num-
ber plot was produced 50 times (on simulated covariance matrices) for each
combination of estimator, p, and S. In addition, both a rotation equivariant
situation (using a scalar target) and a rotation non-equivariant situation (us-
ing a non-scalar target) were considered for estimators (1) and (3) of the main
text (note that estimator (2) is always rotation equivariant). All execution
times of the CNplot call in R were evaluated with the microbenchmark pack-
age [16]. All timings were carried out on a Intelr CoreTM i7-4702MQ 2.2 GHz
processor. The results, stated as median runtimes in seconds, are given in Ta-
bles S2 to S4. The code used in this benchmarking exercise can be found in
Listing 6 in Section 4 of this Supplement.

Tables S2 to S4 indicate that, in general, the condition number plot can be
produced quite swiftly. As stated in the main text: in rotation equivariant sit-
uations only a single run of the implicitly restarted Lanczos method (IRLM)
is required to obtain the complete solution path of the condition number.
Hence, the worst-case time complexity of the CNplot call in these situations
is approximately O(p3) (corresponding to the worst-case time complexity of
a spectral decomposition) as, after the required IRLM run, the solution path
can be obtained in linear time only. Increasing the number of steps S along
the penalty-domain thus comes at little additional computational cost. For
the rotation non-equivariant setting the worst-case time complexity is approx-
imately O(Sp3) as a spectral decomposition or IRLM run is required for all
s = 1, . . . , S. The runtime of the condition number plot function under Esti-
mator (3) of the main text is then somewhat longer than the corresponding
runtime under Estimator (1). This is because the spectral decomposition in the
former situation is also used for computing the (relatively expensive) matrix
square root. As S acts as a scaling factor in rotation non-equivariant settings
the computation time of the plot can be reduced by coarsening the search-grid
along the penalty-domain.

To compare the runtimes for the CNplot call we also conducted timing
evaluations for the approximate leave-one-out cross-validation (aLOOCV) and
root-finding LOOCV procedures as used in the main text (implemented in
rags2ridges). Time complexity for the root-finding LOOCV procedure hinges
on the dimension p and the sample size n. In contrast, time complexity for for
the aLOOCV procedure is dependent on p, n, and S. Timings were done for
all combinations of the elements in p ∈ {125, 250}, n ∈ {100, 200} and (when
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Table S2 Benchmarking results for various values of p and S for estimator (3) of the main
text. The results represent median runtimes in seconds.

p = 125 p = 250 p = 500 p = 1000
Rotation equivariant setting

S = 125 .027 .039 .055 .345
S = 250 .028 .038 .055 .349
S = 500 .028 .039 .058 .344
S = 1000 .031 .044 .059 .345

Rotation non-equivariant setting
S = 125 .689 3.267 18.801 139.982
S = 250 1.315 6.661 39.022 278.454
S = 500 2.703 13.418 76.489 553.812
S = 1000 4.995 26.112 152.427 1,106.002

Table S3 Benchmarking results for various values of p and S for estimator (1) of the main
text. The results represent median runtimes in seconds.

p = 125 p = 250 p = 500 p = 1000
Rotation equivariant setting

S = 125 .028 .039 .161 .371
S = 250 .027 .038 .164 .371
S = 500 .029 .039 .169 .373
S = 1000 .031 .042 .168 .378

Rotation non-equivariant setting
S = 125 .339 1.448 9.701 65.988
S = 250 .590 2.849 18.128 129.262
S = 500 1.090 5.385 35.188 281.583
S = 1000 2.366 12.199 75.222 522.910

Table S4 Benchmarking results for various values of p and S for estimator (2) of the main
text. The results represent median runtimes in seconds.

p = 125 p = 250 p = 500 p = 1000
Rotation equivariant setting

S = 125 .027 .041 .101 .345
S = 250 .028 .042 .107 .343
S = 500 .028 .042 .106 .361
S = 1000 .030 .043 .140 .376

relevant) S ∈ {125, 250}. The LOOCV procedures were run 50 times (on sim-
ulated data of dimension n×p) for each combination of p, n and (possibly) S.
For the root-finding LOOCV procedure both a rotation equivariant situation
and a rotation non-equivariant situation were considered. Ridge estimator (3)
of the main text was used for all timing evaluations. The results, stated as me-
dian runtimes in seconds, are given in Tables S5 and S6. The code used in this
exercise can also be found in Listing 6 in Section 4 of this Supplement. Tables
S5 and S6 indicate that, even under these relatively light settings, the runtimes
for the aLOOCV and root-finding LOOCV procedures far exceed the runtime
of (corresponding) calls to CNplot. The runtime for the root-finding LOOCV
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Table S5 Benchmarking results for various values of p and n for the root-finding LOOCV
procedure. The ridge estimator considered is given in equation (3) of the main text. The
results represent median runtimes in seconds.

p = 125 p = 250
Rotation equivariant setting

n = 100 36.843 186.662
n = 200 83.932 438.080

Rotation non-equivariant setting
n = 100 37.151 186.780
n = 200 84.335 439.607

Table S6 Benchmarking results for various values of p, n, and S for the approximate
LOOCV procedure. The ridge estimator considered is given in equation (3) of the main
text. The results represent median runtimes in seconds.

p = 125 p = 250
n = 100, Rotation equivariant setting

S = 125 53.059 393.309
S = 250 100.733 802.741

n = 200, Rotation equivariant setting
S = 125 105.372 779.881
S = 250 212.129 1561.064

procedure is (given p) exacerbated for larger sample sizes. The runtime for
the aLOOCV procedure is (given p) exacerbated for larger samples sizes, finer
search-grids, and (not shown) situations of rotation non-equivariance.

The LOOCV is often preferred for its predictive accuracy. This comes at the
price of relatively heavy computational loads. One can choose k < n, giving a
general k-fold CV (kCV), for more efficient computation in the cross-validation
setting. We have performed an additional comparative exercise in this respect.
Again, the kCV procedure is combined with a root-finding method. The time
complexity for the root-finding kCV procedure hinges on the dimension p
and the choice of k. We choose k = 5, which is a small popular choice in
practice. Timings were assessed for all combinations of the elements in p ∈
{125, 250, 1000} and n ∈ {100, 200}. The root-finding kCV procedure was run
50 times (on simulated data of dimension n × p) for each combination of p
and n. Both a rotation equivariant situation and a rotation non-equivariant
situation were considered. Ridge estimator (3) of the main text was again used
for all timing evaluations. The results, stated as median runtimes in seconds,
are given in Table S7. The code used in this exercise is also found in Listing 6
in Section 4 of this Supplement.

The results show that the procedure does not depend on n or equivariance
in a manner that is relevant for the computational complexity. In addition, they
show that the root-finding 5CV procedure is fast compared to the preceding
root-finding and approximate LOOCV procedures. In rotation non-equivariant
situations the root-finding 5CV procedure may be faster than (corresponding)
calls to CNplot when the latter would take many steps along the penalty do-
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Table S7 Benchmarking results for various values of p and n for the root-finding kCV
procedure. The ridge estimator considered is given in equation (3) of the main text. The
results represent median runtimes in seconds.

p = 125 p = 250 p = 1000
Rotation equivariant setting

n = 100 1.55 8.34 403.20
n = 200 1.80 8.64 398.37

Rotation non-equivariant setting
n = 100 1.40 7.28 374.61
n = 200 1.77 8.57 470.47

main. It seems, however, that one could always coarsen the grid along the
penalty-domain to outperform root-finding 5CV in this situation. For rotation
equivariant situations (the most common situation) the root-finding 5CV pro-
cedure cannot match the speed of CNplot. For example, in a situation with
p = 1000 where we take 1000 steps along the penalty-domain the median run-
time of a call to CNplot is more than 1000-fold faster than the median runtime
of a corresponding root-finding 5CV procedure.

4. R Codes

The R libraries needed to run the code snippets below can be found in Listing
1:

Listing 1 Packages and dependencies

####################################################

##--------------------------------------------------

## Packages and dependencies

##--------------------------------------------------

####################################################

## R libraries

library(biomaRt)

library(cgdsr)

library(KEGG.db)

library(microbenchmark)

library(psych)

library(DandEFA)

library(gridExtra)

library(plyr)

library(rags2ridges)

The code in Listing 2 will produce Figure 1 of the main text:

Listing 2 Code for Figure 1

####################################################

##--------------------------------------------------

## First example of copy number Plot

##--------------------------------------------------
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####################################################

## Obtain covariance matrix on p > n data

p = 100

n = 25

set.seed (333)

X = matrix(rnorm(n*p), nrow = n, ncol = p)

Cx <- covML(X)

## Obtain basic spectral condition number plot

CNplot(Cx, lambdaMin = .001, lambdaMax = 10, step = 1000,

type = "ArchII")

## Condition number at exp(-3)

EVs <- eigen(ridgeP(Cx , lambda = exp(-3),

type = "ArchII"))$values

Cn <- EVs[1]/EVs[ncol(Cx)]; Cn

The code in Listing 3 will produce (the components of) Figure 2 of the
main text:

Listing 3 Code for Figure 2

####################################################

##--------------------------------------------------

## Example copy number Plot with interpretational aids

##--------------------------------------------------

####################################################

## Spectral condition number plot with interpretational aids

CNplot(Cx, lambdaMin = .00001 , lambdaMax = 1000, step = 2000,

Iaids = TRUE , type = "Alt",

target = default.target(Cx, type = "DEPV"))

## Zoom

CNplot(Cx, lambdaMin = .01, lambdaMax = 1000, step = 2000,

Iaids = TRUE , type = "Alt",

target = default.target(Cx, type = "DEPV"))

The code in Listing 4 was used for Section 4 of the main text:

Listing 4 Code for Illustration 1

####################################################

##--------------------------------------------------

## Illustration 1: Kidney cancer data

##--------------------------------------------------

####################################################

####################################################

## Probe MSKCC Cancer Genomics Data Server for data

####################################################

## Get list all human genes

ensembl = useMart("ENSEMBL_MART_ENSEMBL",

dataset = "hsapiens_gene_ensembl",

host="www.ensembl.org")
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geneList <- getBM(attributes = c("hgnc_symbol", "entrezgene"),

mart = ensembl)

geneList <- geneList[!is.na(geneList [,2]) ,]

## Obtain entrez IDs of genes that map to Hedgehog signaling

pathway

kegg2entrez <- as.list(KEGGPATHID2EXTID)

entrezIDs <- as.numeric(kegg2entrez[which(names(kegg2entrez) %in

% "hsa04340")][[1]])

entrez2name <- match(entrezIDs , geneList [,2])

geneList <- geneList[entrez2name[!is.na(entrez2name)],]

## Specify data set details

mskccDB <- CGDS("http://www.cbioportal.org/")

studies <- getCancerStudies(mskccDB)

cancerStudy <- "kirc_tcga_pub"

caseList <- getCaseLists(mskccDB , cancerStudy)

caseList <- getCaseLists(mskccDB , cancerStudy)[3,1]

mygeneticprofile = getGeneticProfiles(mskccDB ,cancerStudy)

mrnaProf <- "kirc_tcga_pub_rna_seq_v2_mrna_median_Zscores"

## Extract data

Y <- getProfileData(mskccDB , geneList [,1], mrnaProf , caseList)

Y <- as.matrix(Y)

## Filter no-data samples and genes and scale data

sRemove <- which(rowSums(is.na(Y)) > ncol(Y)/2); sRemove

gRemove <- which(colSums(is.na(Y)) > 0); gRemove

Y <- scale(Y, center = TRUE , scale = TRUE)

####################################################

## Regularize the precision matrix

####################################################

## Approximate LOOCV

## Chooses very small penalty

aLOOCVres <- optPenalty.aLOOCV(Y, 1e-05, 20, 10000,

type = "Alt", cor = TRUE ,

target = default.target(cor(Y),

type = "

DUPV"))

## Condition number plot

## aLOOCV penalty indeed too small

## Can give idea good heuristic value for penalty

CNplot(cor(Y), 1e-05, 20, 5000, type = "Alt",

target = default.target(cor(Y), type = "DUPV"))

## Perform LOOCV (with Brent) and restrict search space on basis

CnPlot

LOOCVres <- optPenalty.LOOCVauto(Y, exp(-6), 20,

type = "Alt", cor = TRUE ,

target = default.target(cor(Y),

type = "

DUPV"))

LOOCVres$optLambda
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## Condition number plot with optimal LOOCV -determined penalty

indicated

## ’Optimal ’ approx. LOOCV -determined penalty is also indicated

CNplot(cor(Y), 1e-05, 20, 5000, type = "Alt",

target = default.target(cor(Y), type = "DUPV"),

vertical = TRUE , value = LOOCVres$optLambda)

abline(v = log(aLOOCVres$optLambda), col = "green", lty = 2, lwd =

2)

####################################################

## Assessment condition numbers

####################################################

## Condition number at optimal value indicated by aLOOCV

EVs <- eigen(ridgeP(cor(Y), lambda = 1e-05, type = "Alt",

target = default.target(cor(Y),

type = "DUPV")))$

values

Cn <- EVs[1]/EVs[ncol(Y)]; Cn

## Condition number at heuristic value

EVs <- eigen(ridgeP(cor(Y), lambda = exp(-6), type = "Alt",

target = default.target(cor(Y),

type = "DUPV")))$

values

Cn <- EVs[1]/EVs[ncol(Y)]; Cn

## Condition number at optimal value indicated by LOOCV

EVs <- eigen(ridgeP(cor(Y), lambda = LOOCVres$optLambda , type = "

Alt",

target = default.target(cor(Y),

type = "DUPV")))$

values

Cn <- EVs[1]/EVs[ncol(Y)]; Cn

####################################################

## Downstream graphical modeling

####################################################

Pp0 <- sparsify(LOOCVres$optPrec , "localFDR", FDRcut = .8)

edgeHeat(Pp0$sparseParCor)

Ugraph(Pp0$sparseParCor , type = "fancy",

lay = "layout_with_fr",

Vcolor = "white", VBcolor = "black",

Vcex = .5, cut = .Machine$double.xmin ,

prune = T)

The code in Listing 5 was used for the second illustration contained in
Section 2 of this supplement:

Listing 5 Code for Illustration 2

####################################################

##--------------------------------------------------

## Illustration 2: Prostate cancer data
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##--------------------------------------------------

####################################################

####################################################

## Probe MSKCC Cancer Genomics Data Server for data

####################################################

## Get list all human genes

ensembl = useMart("ENSEMBL_MART_ENSEMBL",

dataset = "hsapiens_gene_ensembl",

host="www.ensembl.org")

geneList <- getBM(attributes = c("hgnc_symbol", "entrezgene"),

mart = ensembl)

geneList <- geneList[!is.na(geneList [,2]) ,]

## Obtain entrez IDs of genes that map to VEGF signaling pathway

kegg2entrez <- as.list(KEGGPATHID2EXTID)

entrezIDs <- as.numeric(kegg2entrez[which(names(kegg2entrez) %in

% "hsa04370")][[1]])

entrez2name <- match(entrezIDs , geneList [,2])

geneList <- geneList[entrez2name[!is.na(entrez2name)],]

## Specify data set details

mskccDB <- CGDS("http://www.cbioportal.org/")

studies <- getCancerStudies(mskccDB)

cancerStudy <- "prad_mskcc"

caseList <- getCaseLists(mskccDB , cancerStudy)

caseList <- getCaseLists(mskccDB , cancerStudy)[15,1]

mygeneticprofile = getGeneticProfiles(mskccDB ,cancerStudy)

mrnaProf <- "prad_mskcc_mrna_median_Zscores"

## Extract data

Y2 <- getProfileData(mskccDB , geneList [,1], mrnaProf , caseList)

Y2 <- as.matrix(Y2)

## Filter no-data samples and genes and scale data

sRemove <- which(rowSums(is.na(Y2)) > ncol(Y2)/2); sRemove

gRemove <- which(colSums(is.na(Y2)) > 0); gRemove

Y2 <- scale(Y2, center = TRUE , scale = TRUE)

####################################################

## Regularize the precision matrix

####################################################

## Approximate LOOCV

## Chooses very small penalty

aLOOCVres <- optPenalty.aLOOCV(Y2, 1e-05, 20, 10000,

type = "Alt", cor = TRUE ,

target = default.target(cor(Y2),

type = "

DUPV"))

aLOOCVres$optLambda

## Condition number plot

## aLOOCV penalty indeed too small

## Can give idea good heuristic value for penalty

CNplot(cor(Y2), 1e-05, 20, 5000, type = "Alt",
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target = default.target(cor(Y2), type = "DUPV"))

## Perform LOOCV (with Brent) and restrict search space on basis

CnPlot

LOOCVres <- optPenalty.LOOCVauto(Y2, exp( -6.5), 20,

type = "Alt", cor = TRUE ,

target = default.target(cor(Y2),

type = "

DUPV"))

LOOCVres$optLambda

## Condition number plot with optimal LOOCV -determined penalty

indicated

CNplot(cor(Y2), 1e-05, 20, 5000, type = "Alt",

target = default.target(cor(Y2), type = "DUPV"),

vertical = TRUE , Iaids = TRUE , value = LOOCVres$optLambda)

CNplot(cor(Y2), exp(-6.5), 20, 5000, type = "Alt",

target = default.target(cor(Y2), type = "DUPV"),

vertical = TRUE , Iaids = TRUE , value = LOOCVres$optLambda)

####################################################

## Assessment condition numbers

####################################################

## Condition number at optimal value indicated by aLOOCV

EVs <- eigen(ridgeP(cor(Y2), lambda = aLOOCVres$optLambda ,

type = "Alt",

target = default.target(cor(Y2),

type = "DUPV")))$

values

Cn <- EVs[1]/EVs[ncol(Y2)]; Cn

## Condition number at heuristic value

EVs <- eigen(ridgeP(cor(Y2), lambda = exp( -6.5), type = "Alt",

target = default.target(cor(Y2),

type = "DUPV")))$

values

Cn <- EVs[1]/EVs[ncol(Y2)]; Cn

## Condition number at optimal value indicated by LOOCV

EVs <- eigen(ridgeP(cor(Y2), lambda = LOOCVres$optLambda ,

type = "Alt",

target = default.target(cor(Y2),

type = "DUPV")))$

values

Cn <- EVs[1]/EVs[ncol(Y2)]; Cn

####################################################

## Downstream factor analytic modeling

####################################################

##--------------------------------------

## Obtain regularized correlation matrix

## Assess factorability

##--------------------------------------

R = cov2cor(solve(LOOCVres$optPrec))
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KMO(R)

##--------------------------------------

## Determine dimension latent vector

##--------------------------------------

## Function

BICfacM <- function(S, n, m){

######################################

## S > (regularized) covariance or

## correlation matrix

## n > sample size

## m > desired number of factors

######################################

## Preliminaries

p <- ncol(S)

fit <- factanal(factors = m, covmat = S, rotation = "none")

loadings <- fit$loadings [1:p,]

Uniqueness <- diag(fit$uniquenesses)

Sfit <- loadings %*% t(loadings) + Uniqueness

## Calculate BIC

fit <- n * (p*log(2*pi) + log(det(Sfit)) +

sum(diag(solve(Sfit) %*% S)))

penalty <- p*(m+1) - (m*(m-1))/2

BIC <- fit + penalty

## Return

return(BIC)

}

## Ledermann bound

p <- ncol(R)

mmax <- floor ((2*p+1 - sqrt(8*p+1))/2)

## Determine optimal dimension

BIC <- numeric ()

for(m in 1:( mmax - 1)){

BIC[m] <- BICfacM(R, n = 19, m = m)

}; BIC

## Plot

dims <- seq(1, (mmax - 1), 1)

plot(dims , BIC , axes = FALSE , type = "l",

col = "red", xlab = "dimension of latent vector",

ylab = "BIC score")

axis(2, ylim = c(min(BIC),max(BIC)), col = "black", lwd = 1)

axis(1, xlim = c(0,(mmax - 1)), col = "black", lwd = 1, tick =

TRUE)

##--------------------------------------

## Fit under optimal dimension

##--------------------------------------

fit <- factanal(factors = 2, covmat = R, rotation = "promax")

print(fit , digits = 2, cutoff = .3, sort = FALSE)

fit <- factanal(factors = 2, covmat = R, rotation = "varimax")

print(fit , digits = 2, cutoff = .3, sort = TRUE)
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##--------------------------------------

## Visualizing solution

##--------------------------------------

## Dandelion plot

Loading <- character ()

for (i in 1:nrow(fit$loadings)){

if (abs(fit$loadings[i,1]) >= .3 & abs(fit$loadings[i,1]) > abs(

fit$loadings[i,2])){

Loading[i] <- "1"

}

if (abs(fit$loadings[i,2]) >= .3 & abs(fit$loadings[i,2]) > abs(

fit$loadings[i,1])){

Loading[i] <- "2"

}

if (abs(fit$loadings[i,1]) == abs(fit$loadings[i,2])){

Loading[i] <- "both"

}

if (abs(fit$loadings[i,1]) < .3 & abs(fit$loadings[i,2]) < .3){

Loading[i] <- "none"

}

}

Names <- rownames(fit$loadings)

rownames(fit$loadings) <- c(1: ncol(R))

Ident <- as.data.frame(cbind(c(1: ncol(R)), Names , Loading))

colnames(Ident) <- c("ID","HUGO","Loading on")

pdf("Identifiers.pdf", height = 23)

grid.table(Ident)

dev.off()

dandpal <- rev(rainbow (100, start = 0.4, end = 0.6))

dandelion(fit$loadings , bound = .3, mcex = c(1,1), palet = dandpal

)

The code in Listing 6 was used in the benchmark exercise contained in
Section 3 of this supplement:

Listing 6 Code used in benchmarking

####################################################

##--------------------------------------------------

## Benchmark Cn-plot and other methods

##--------------------------------------------------

####################################################

S <- c(125 ,250 ,500 ,1000)

p <- c(125 ,250 ,500 ,1000)

####################################################

## Alternative ridge estimator (equation 3)

####################################################

## Rotation equivariant setting

seed <- 1234

for (i in 1: length(S)){
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for (j in 1: length(p)){

## Generate data

su = S[i]

pu = p[j]

nu = 200

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

Sy <- cor(Y)

## Benchmark

tm <- microbenchmark(CNplot(Sy, .00001 , 20,

step = su , type = "Alt",

target = Target ,

verbose = FALSE),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Condition number plot"))

save(tm , file = paste("Alt.BM.RE.S",su,"p",pu ,".Rdata", sep =

""))

## Plot

boxplot(tm, log = FALSE)

}

}

## Rotation non -equivariant setting

seed <- 5678

for (i in 1: length(S)){

for (j in 1: length(p)){

## Generate data

su = S[i]

pu = p[j]

nu = 200

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

Target [1,1] <- 2

Sy <- cor(Y)

## Benchmark

tm <- microbenchmark(CNplot(Sy, .00001 , 20,

step = su , type = "Alt",

target = Target ,

verbose = FALSE),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Condition number plot"))

save(tm , file = paste("Alt.BM.RNE.S",su,"p",pu,".Rdata", sep =

""))

## Plot
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boxplot(tm, log = FALSE)

}

}

####################################################

## Archetypal Type I ridge estimator (equation 1)

####################################################

## Rotation equivariant setting

seed <- 9101112

for (i in 1: length(S)){

for (j in 1: length(p)){

## Generate data

su = S[i]

pu = p[j]

nu = 200

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

Sy <- cor(Y)

## Benchmark

tm <- microbenchmark(CNplot(Sy, .00001 , 1,

step = su , type = "ArchI",

target = Target ,

verbose = FALSE),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Condition number plot"))

save(tm , file = paste("ArchI.BM.RE.S",su ,"p",pu,".Rdata",

sep = ""))

## Plot

boxplot(tm, log = FALSE)

}

}

## Rotation non -equivariant setting

seed <- 13141516

for (i in 1: length(S)){

for (j in 1: length(p)){

## Generate data

su = S[i]

pu = p[j]

nu = 200

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

Target [1,1] <- 2

Sy <- cor(Y)

## Benchmark

tm <- microbenchmark(CNplot(Sy, .00001 , 1,
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step = su , type = "ArchI",

target = Target ,

verbose = FALSE),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Condition number plot"))

save(tm , file = paste("ArchI.BM.RNE.S",su ,"p",pu,".Rdata",

sep = ""))

## Plot

boxplot(tm, log = FALSE)

}

}

####################################################

## Archetypal Type II ridge estimator (equation 2)

####################################################

seed <- 17181920

for (i in 1: length(S)){

for (j in 1: length(p)){

## Generate data

su = S[i]

pu = p[j]

nu = 200

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Sy <- cor(Y)

## Benchmark

tm <- microbenchmark(CNplot(Sy, .00001 , 20,

step = su , type = "ArchII",

verbose = FALSE),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Condition number plot"))

save(tm , file = paste("ArchII.BM.RE.S",su ,"p",pu,".Rdata",

sep = ""))

## Plot

boxplot(tm, log = FALSE)

}

}

####################################################

## Root -finding LOOCV and approximate LOOCV

####################################################

n <- c(100 ,200)

p <- c(125 ,250)
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S <- c(125 ,250)

## Root -finding LOOCV , equivariant

seed <- 90210

for (i in 1: length(n)){

for (j in 1: length(p)){

## Generate data

pu = p[j]

nu = n[i]

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

## Benchmark

tm <- microbenchmark(optPenalty.LOOCVauto(Y, .00001 , 20,

type = "Alt",

target = Target),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Root -finding LOOCV"))

save(tm , file = paste("rfLOOCV.BM.RE.n",nu,"p",pu ,".Rdata",

sep = ""))

## Plot

boxplot(tm, log = FALSE)

}

}

## Root -finding LOOCV , non -equivariant

seed <- 902102

for (i in 1: length(n)){

for (j in 1: length(p)){

## Generate data

pu = p[j]

nu = n[i]

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

Target [1,1] <- 2

## Benchmark

tm <- microbenchmark(optPenalty.LOOCVauto(Y, .00001 , 20,

type = "Alt",

target = Target),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Root -finding LOOCV"))

save(tm , file = paste("rfLOOCV.BM.RNE.n",nu,"p",pu ,".Rdata",

sep = ""))

## Plot

boxplot(tm, log = FALSE)
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}

}

## Approximate LOOCV , equivariant

seed <- 902103

for (i in 1: length(n)){

for (j in 1: length(p)){

for(k in 1: length(S)){

## Generate data

pu = p[j]

nu = n[i]

su = S[k]

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

## Benchmark

tm <- microbenchmark(optPenalty.aLOOCV(Y, .00001 , 20, step =

su,

type = "Alt",

target = Target ,

verbose = FALSE),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Approximate LOOCV"))

save(tm , file = paste("aLOOCV.BM.RE.n",nu ,"p",pu,"S",su ,

".Rdata", sep = ""))

## Plot

boxplot(tm, log = FALSE)

}

}

}

####################################################

## Root -finding k-CV

####################################################

n <- c(100 ,200)

p <- c(125 ,250 ,1000)

## Root -finding k-CV, equivariant

## k = 5

seed <- 902104

for (i in 1: length(n)){

for (j in 1: length(p)){

## Generate data

pu = p[j]

nu = n[i]

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

## Benchmark
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tm <- microbenchmark(optPenalty.kCVauto(Y, .00001 , 20,

type = "Alt",

target = Target ,

fold = 5),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Root -finding k-CV"))

save(tm , file = paste("rfKCV.BM.RE.n",nu ,"p",pu,".Rdata", sep

= ""))

## Plot

boxplot(tm, log = FALSE)

}

}

## Root -finding k-CV, non -equivariant

## k = 5

seed <- 902105

for (i in 1: length(n)){

for (j in 1: length(p)){

## Generate data

pu = p[j]

nu = n[i]

set.seed(seed)

Y = matrix(rnorm(nu*pu), nrow = nu , ncol = pu)

Target <- default.target(cor(Y), type = "DUPV")

Target [1,1] <- 2

## Benchmark

tm <- microbenchmark(optPenalty.kCVauto(Y, .00001 , 20,

type = "Alt",

target = Target ,

fold = 5),

times = 50L)

## Save

tm$expr <- mapvalues(tm$expr ,

from = c(levels(tm$expr)[1]),

to = c("Root -finding k-CV"))

save(tm , file = paste("rfKCV.BM.RNE.n",nu ,"p",pu,".Rdata", sep

= ""))

## Plot

boxplot(tm, log = FALSE)

}

}
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