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Abstract: In this paper, we propose an improved QP solver for embedded implementations of
MPC controllers. We adopt a “reduced Hessian” approach for handling the equality constraints
that arise in the well-known “banded” formulation of MPC (in which the predicted states are not
eliminated). Our key observation is that a banded basis exists for the null space of the banded
equality-constraint matrix, and that this leads to a QP of the same size as the “condensed”
formulation of MPC problems, which is considerably smaller than the “banded” formulation.
We use the Alternating Direction Method of Multipliers (ADMM) - which is known to be
particularly suitable for embedded implementations - to solve this smaller QP problem. Our
C implementation results for a particular MPC example (a 9-state, 3-input quadrotor) show
that our proposed algorithm is about 4 times faster than an existing well-performing ADMM
variant (”indirect indicator” ADMM or “iiADMM”) and 3 times faster than the well-known QP
solver CVXGEN. The convergence rate and code size of the proposed ADMM variant is also
comparable with iiADMM.

Keywords: Banded null basis, ADMM, embedded MPC, structured matrices, sparse QP.

1. INTRODUCTION

Model Predictive Control (MPC) is an optimisation-based
control strategy which has been applied widely in industry
since its appearance in the 1980s. Recent developments
in optimisation method further contribute to the success
story of MPC. Available methods, just to mention a few,
include multi-parametric programming (see e.g. Bemporad
et al. (2002)), Interior Point Methods (see e.g Wright
(1997); Wang and Boyd (2010)), Active Set Method (see
e.g. Fletcher (1987); Ferreau et al. (2008)), gradient-
based methods (see e.g. Nesterov (1983); Richter et al.
(2009); Patrinos and Bemporad (2014); Giselsson and
Boyd (2015)) or the ‘alternating direction method of
multipliers’ (ADMM) (see e.g. Boyd et al. (2011)).

For a linear time-invariant (LTI) system with quadratic
cost function and linear constraints, one can formulate
MPC problem as condensed QP formulation which elimi-
nates the states from the decision variables (Maciejowski
(2002)). On the other hand, one can also employ a sparse
QP formulation which keeps both states and control as
decision variables, resulting a bigger size QP problem. The
sparse QP has both equality constraints and inequality
constraints and all matrices have special structures which
can be exploited to reduce the computational cost signif-
icantly (see e.g Wright (1997); Wang and Boyd (2010);
Domahidi et al. (2012)).

Null space method, sometimes referred to as reduced
Hessian approach (see e.g Benzi et al. (2005); Nocedal and

Wright (2006)), is not a new technique in optimisation.
The beginning idea is to describe the equality constraints
by using a null basis and a particular solution. The null
basis is not unique and there are several choices such as
orthogonal basis or triangular basis (see Benzi et al. (2005)
(section 6, p.32)). In spare QP formulation of MPC, the
equality constraint matrix has a banded structure. For a
banded matrix, there may exist a banded null basis for
its null space (see e.g Berry et al. (1985)). To the best of
our knowledge, banded null basis has not been exploited
in MPC-related optimisation algorithms.

In this paper, we construct a banded null basis based on an
algorithm from structural engineering community called
Turn-back LU (TBLU) procedure of Berry et al. (1985).
The banded null basis is used to obtain a smaller size QP
problem than the original sparse QP while maintaining
banded structures of matrices. This offers computational
advantages. We then employ an ADMM-based algorithm
exploiting banded matrices to solve this new QP problem.

We use the MPC example described in Ding et al. (2016)
to test our proposed algorithm. This MPC example has
polytopic constraints. To deal with this type of constraints
in the context of ADMM scheme, there are several existing
ADMM variants using slack variables (see e.g Ghadimi
et al. (2015); Dang et al. (2015); Manickathu (2016)).
Among these, the so-called indirect indicator ADMM
(iiADMM) is the best in term of convergence rate, see
Manickathu (2016). Hence, we will compare our new QP
solver with iiADMM. In addition, we also compare with a
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well-known interior-point QP solver package CVXGEN of
Mattingley and Boyd (2012). These algorithms are imple-
mented in C and run on ARM-Cortex A9 processor (CPU
667MHz) mounted on Zynq ZC702 board.

Implementation results show that our proposed algorithm
is about 4 times faster than iiADMM and 3 times faster
than CVXGEN for this particular MPC example. The code
size is small and comparable with iiADMM. In term of
convergence rate, our proposed ADMM algorithm is also
comparable with iiADMM.

The applicability of our proposed algorithm depends on
whether or not TBLU can construct a banded null basis.
Practical experiments carried out on structural analysis
problems in Berry et al. (1985) showed that TBLU always
returns a banded null basis. In the context of MPC, we
carry out a test over 18 academic and industrial MPC
examples which are available in Ferreau and Peyrl (2015),
see also Kouzoupis et al. (2015). Test results confirm that
a banded null basis is always found by TBLU in all these
MPC examples.

2. BACKGROUND

2.1 Spase formulation in MPC

Consider a LTI system represented by the discrete-time
state space model

xk+1 =Axk +Buk

where x ∈ Rnx is state vector of dimension nx, and
u ∈ Rnu is control vector of dimension nu.

The control of this system is determined by MPC with
cost function and constraints as follows

minimize
u

N−1∑
k=0

(
xTkQxxk + uTkRuk

)
+ xTNQNxN (1)

s.t. Gxxk ≤ gx, Guuk ≤ gu (k = 0, 1, ..., N − 1), (2)

GNxN ≤ gN
where x0 is given; N is the horizon; Qx, QN ∈ Rnx×nx are
positive semi-definite matrices; R ∈ Rnu×nu is positive
definite matrix; Gx ∈ Rnix×nx , GN ∈ Rnit×nx , Gu ∈
Rniu×nu , gx ∈ Rnix , gN ∈ Rnit , gu ∈ Rniu are appropriate
matrices and vectors describing the constraints of the
system (nix, nit, niu are number of state constraints,
terminal constraints and input constraints).

By using sparse formulation which keeps both the states
and control as decision variables

z = (u0;x1;u1;x2; ...;uN−1;xN )

problem (1) can be written as following

minimize
z

1

2
zTHz (3)

s.t. F z = f (4)

Gz ≤ g (5)

where H ∈ Rnd×nd is positive semi-definite (nd = N(nx +
nu) is the number of decision variables). F ∈ Rneq×nd , G ∈
Rnineq×nd , q ∈ Rnd , f ∈ Rneq , g ∈ Rnineq (where neq =

Nnx, nineq = (N−1)(nix+niu)+nit+niu are total number
of equality and inequality constraints respectively); the
F,G, f, g,H have the following descriptions

F =


−B I 0 0 0 0 · · · 0

0 −A −B I 0 0 · · · 0

0 0 0 −A −B I · · · 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 −A −B I

 , (6)

G =

IN−1 ⊗
[
Gu 0

0 Gx

]
0 0

0 Gu 0

0 0 GN

, g =

1N−1 ⊗ [gu; gx]

gu
gN

,

H =

IN−1 ⊗
[
R 0

0 Qx

]
0

0

[
R 0

0 QN

]
, f =


Ax0

0
...

0

.

2.2 ADMM algorithm

ADMM has received interest for embedded MPC applica-
tions due to its simplicity. A review of ADMM algorithm
can be found in Boyd et al. (2011) and references therein.
Basically, ADMM algorithm solves the following optimisa-
tion problem

minimize
u,v

ζ(u) + φ(v)

s.t. Ψu+ Υv = c

Using augmented Lagrangian defined as

Lρ (u, v, λ) = ζ(u)+φ(v)+λT (Ψu+Υv−c)+ρ

2
‖Ψu+Υv−c‖22

the ADMM method consists of three main steps:

uk+1 = arg min
u

Lρ (u, vk, τk)

vk+1 = arg min
v

Lρ (uk+1, v, τk)

τk+1 = τk + (Ψuk+1 + Υvk+1 − c)
where τ = 1

ρλ is a scaled dual variable, and ρ > 0 is

named as step-size. Stopping criteria are based on primal
residual rk = ||Ψuk + Υvk − c|| and dual residual dk =
||ρΨTΥ(vk+1 − vk)||, see Boyd et al. (2011).

There are several ADMM algorithms for MPC problem.
The differences in these variants are mainly in the way how
the MPC problem is formulated as standard ADMM setup.
A list of ADMM variants can be found in Manickathu
(2016). We compare our proposed algorithm with indirect
indicator ADMM (iiADMM) as this variant performs best
in term of convergence rate among ADMM variants using
the slack variable approach, see Manickathu (2016) for the
performance comparison of these variants. The iiADMM
is summarised in the appendix for easy reference.

3. BANDED NULL BASIS AND ADMM FOR MPC

3.1 Null space and the reduced Hessian QP

Null space method in optimisation is usually referred to
as reduced Hessian approach, see e.g. Benzi et al. (2005)
and Nocedal and Wright (2006). Basically, the solution
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of equality constraints of QP problem (3), Fz = f , can
be parametrised by z = z0 + Y y where z0 is a particular
solution, i.e., Fz0 = f , and Y is a null basis of F , i.e.,
FY = 0. Then the QP problem (3) can be solved via
solving the following equivalent problem

minimize
y

1

2
yT H̃y + (zT0 H0)y (7)

s.t. G̃y ≤ g −Gz0 , g̃ (8)

where H̃ = Y THY, G̃ = GY , H0 = HY .

The number of decision variables of QP problem (7) is
Nnu, i.e., y ∈ RNnu (see Lemma 1 below) whereas it
is N(nx + nu) in the original QP (3). The number of
decision variables of this new QP problem is the same as
the condensed QP. If nu << nx, the reduction in number
of decision variables can be quite substantial.

Lemma 1: F is full row rank, i.e rank(F ) = Nnx,
where F is the equality constraint matrix (see (6)) with
dimension (Nnx) × (N(nx + nu)). It follows that the
dimension of its null space is N(nx + nu) −Nnx = Nnu.
(Proof is shown in the appendix).

We adopt an usually used assumption in the reduced
Hessian approach:

Assumption 1: The reduced Hessian H̃ = Y THY is
positive definite.

3.2 Construct a banded null basis

The structure of matrices H,G in original QP problem
are block diagonal, and the equality constraint matrix F
is banded. Since some matrices in the QP problems ((3)
and (7)) and the null basis are not square matrices, we
does not mean banded with respect to the main diagonal
but with respect to a line from upper left corner to the
lower right corner of the matrix. The structure of matrices
H̃, G̃ and H0 in the new QP problem (7) depends on
the structure of Y . If Y is a banded matrix, the matrices
H̃, G̃ and H0 will have a banded pattern. In order to
construct a banded null basis Y for the null space of F ,
we use Turn-back LU (TBLU) (see Algorithm 1) of Berry
et al. (1985).

Algorithm 1: Turn-back LU (Berry et al. (1985)).
Given F ∈ Rm×n (m < n), we want to construct a banded
null basis Y ∈ Rn×r (r = n−m), i.e FY = 0m×r. Denote
Fi, i = 1, 2, ..., n is the i− th column. Given S is a subset
of {1, 2, ..., n}, FS is a set of columns of F whose indexes
are in S, Yi(S) are elements in i − th column of Y whose
indexes are in S. The main steps in TBLU are as follows

1. Find column indexes c1, c2, ..., cr so that the set of
columns {F1, F2, ..., Fck} \ {Fc1 , .., Fck−1

} are linearly de-
pendent (k = 1, 2, ..., r is iteratively increased to find a
corresponding ck, {Fc1 , .., Fck−1

} = ∅ if k = 1)
2. Turn-back step:
2.1. k = 1, T = ∅
2.2. Set column Fck as active column

2.3. Find tk = max{j|j < ck&FSk
, {Fck , Fck−1, ..., Fj}\

{FT }are linearly dependent} (Sk = {ck, ck − 1, ..., j} is a
set of indexes). Find linear dependent coefficients vector
bk for FSk

. Assign Yk(Sk) = bk

2.4. k = k + 1, T = T ∪ {tk}. If k ≤ r, return to 2.2, else
quit and return Y .

In MPC with LTI systems, F is a fixed matrix. Hence,
Y can be computed offline. To the best of our knowledge,
there is no theoretical result to confirm whether or not
TBLU returns a banded null basis for a general banded
matrix, but it has been reported that TBLU is the most
effective algorithm for computing a banded null basis (see
Berry et al. (1985) and the references therein). As proved
in Berry et al. (1985), Y is full column rank.

In our particular MPC example (quadrotor camera field-
of-view problem in Ding et al. (2016)), using TBLU we
successfully obtain a banded null basis and its pattern is
show in Fig. 1. The pattern of other matrices in QP (7)
are shown in Fig. 2.

3.3 Compute a particular solution z0 of Fz = f

Recall that z = (u0;x1; u1 x2 ... uN−1;xN ), and the
constraints Fz = f, f = [Ax0; 0; ...; 0] (x0 is given), is
the compact form of following constraints

x1 = Ax0 +Bu0
x2 = Ax1 +Bu1
...

xN = AxN−1 +BuN−1
Then a particular solution of Fz = f is any z =
(u0;x1; u1 x2 ... uN−1;xN ) whose elements satisfy the
above constraints. One such particular set is: u0 = u1 =
... = uN−1 = 0 and x1 = Ax0, x2 = Ax1, ..., xN = AxN−1.

3.4 Algorithm 2: B-ADMM

We then employ ADMM-based QP solver using slack
variable technique Ghadimi et al. (2015) to solve problem

(7). Slack variables ν≥ 0 are introduced in (8) giving G̃y+
ν = g̃. We then have the proposed algorithm, named as
B-ADMM (Banded Null Basis ADMM), as following

Algorithm 2: B-ADMM
I. Offline tasks such as computing Y, H̃, G̃,H0

II. Online tasks

1.1. Compute a particular solution z0 (see 3.3)

1.2. qT = zT0 H0, g̃ = g −Gz0
Do

2. yk+1 = −(H̃ + ρG̃T G̃)−1[q + ρG̃T (νk + θk − g̃)] (9)

3. νk+1 = max{0,−G̃yk+1 + g̃ − θk} (10)

4. θk+1 = θk + G̃yk+1 + νk+1 − g̃ (11)

While: Convergence criteria are not met.

5. Obtain: ystop. Return solution z = z0 + Y ystop

The step-size ρ is chosen heuristically 1 based on Ghadimi
et al. (2015):

1 Optimal step-size selection method in Ghadimi et al. (2015) is not
applicable for our particular MPC example since G̃ in (8) does not
satisfy the full row rank condition which is one of conditions for (12)
to be an optimal step-size.
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Fig. 1. Sparsity pattern of F and its null space basis Y in
our example in Section 4.
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Fig. 2. Banded pattern of matrices in QP (7).

ρ∗ =

(√
λmin,>0(G̃H̃−1G̃T )λmax,>0(G̃H̃−1G̃T )

)−1
(12)

3.5 Computational efficiency for B-ADMM

Once we have obtained the banded null basis and matrices
in (7), we can exploit the structure of matrices to carry
out (9)-(11) efficiently. Exploitation of (10)-(11) is quite
straight forward since the computations consist mainly of
matrix-vector multiplications.

To carry out (9), one way is to compute (H̃ + ρG̃T G̃)−1

offline, then (9) consists of mainly matrix-vector multi-
plication operations. However, matrix inversion operation
destroys banded pattern resulting in a computational com-
plexity of O(N2n2u) for (9). But this approach is highly
parallelable.

An alternative is to exploit the bandedness of H̃1 = H̃ +
ρG̃T G̃ and solve the following system of linear equation

H̃1yk+1 = bk (13)

where bk = q + ρG̃T (νk + θk − g̃). An efficient method
for solving system of linear equations having a banded
matrix is Cholesky factorisation. Let L be the Cholesky
factorisation of H̃1, i.e., H̃1 = LTL. We have L is an upper
banded matrix (see Fig. 2) with bandwidth bL (depends

on null basis Y ). For LTI system, H̃1 is constant and L can
be computed offline. Then, solving (13) is done via solving
following

LT ytemp = bk, Lyk+1 = ytemp
which are forward and backward substitutions. The com-
putational complexity of this approach is O(Nb2L). Our
experience suggests that solving (9) by offline computing
the Cholesky factorization is more effective than offline

Fig. 3. Camera field-of-view quadrotor problem Ding et al.
(2016)

Table 1. Aver. runtime (ms)/ aver. iteration
for camera-field-of-view problem. D-ADMM:
using a dense null basis, B-ADMM: using a
banded null basis. ##: CVXGEN is unable to

generate C-code for big problem.

iiADMM D-ADMM B-ADMM CVXGEN

N=5 7.4 /25 5.7 /30 2.5 /30 7.95 /5

N=10 25.4 /41 26.9 /35 7.0 /35 22.9 /5

N=15 48.5 /51 64.8 /37 11.1 /37 35.6 /5

N=20 69.4 /53 112.9 /38 17.9 /38 ##

N=25 89.1 /54 192.4 /40 22.4 /40 ##

computing the inverse of matrix H̃1, especially when N is
large.

In this paper, we only report the timing of B-ADMM that
uses Cholesky factorisation in (9).

4. IMPLEMENTATION RESULTS AND DISCUSSION

4.1 MPC problem: camera-field-of-view quadrotor

The example is from Ding et al. (2016). In this example, a
quadrotor flies within a space named camera field-of-view.
This results in polytopic constraints in MPC problem. The
system models are occurrences

A = diag{Ae, Ae, Ae}, B = diag{Be, Be, Be} (14)

where

Ae =

1 0 0

0 dT 1

0 0 (dT )2/2

 , Be =

 1

0

(dT )2/2

 , dT = 0.01

We have nx = 9, nu = 3, and the polytopic constraints are
Gxx ≤ fx and Guu ≤ gu where Gx ∈ R6×9, Gu ∈ R6×3,
i.e nix = 6, niu = 6, is obtained from the cited paper.
The MPC parameters are Qx = Inx

, R = 0.5Inu
, N =

5, 10, 15, 20, 25.

We use MATLAB Coder R2015b to generate C-code from
m-file versions of iiADMM and B-ADMM. C-code of
CVXGEN is generated and downloaded from its website.
Then Xilinx Software Development Kit (SDK) 14.6 is used
for implementation on the ARM-Cortex A9 processor.

4.2 Results

A banded null basis Y has been successfully constructed
for this MPC problem. Its pattern is shown in Fig. 1.
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Table 2. Code size (kB)

iiADMM D-ADMM B-ADMM CVXGEN

N=5 91 105 82 1552

N=10 100 216 102 3488

N=15 108 400 122 5314

N=20 117 659 143 ##

N=25 126 991 163 ##

In Table 1 and Table 2 we show the performance in term of
online computational time, number of iterations and code
size, running on the ARM-Cortex A9 processor (667 MHz,
single core, bare metal, double precision). The runtime is
averaged over 100 random initial states.

From Table 1, it can be seen that our proposed algorithm
B-ADMM is about 4 times faster than iiADMM and about
3 times faster than CVXGEN in this particular MPC
problem. In terms of number of iterations, our algorithms
is comparable with iiADMM 2 .

Null basis is not unique. Suppose we could not obtain
a banded null basis, we would have used a non-banded
(dense) null basis (MATLAB command Y = null(F ))
which results in dense matrices in the reduced size QP
problem (7). In this case. we have a dense null basis
ADMM algorithm (D-ADMM). We see that runtime of
D-ADMM are quite big. Its runtime is up to 9 times more
than B-ADMM and up to 2 times more than iiADMM.
It means that the reduced Hessian approach, although it
reduces number of decision variables, is not quite effective
if we do not have a banded null basis. In addition, we
observe that the two null-space-based ADMM algorithms
D-ADMM and B-ADMM have the same number of itera-
tions 3 .

Fig. 4 shows the timing per ADMM iteration. It shows that
the time per iteration (TPI) of B-ADMM (green diamond-
line) is the least, and grows linearly with horizon N . If
a dense null basis is used, the growth rate is N2 (red
square dot line). For iiADMM (blue circle-dash line), we
implement it in the most efficient way for a fair comparison
(see Appendix A for its implementation details), and its
TPI is more than B-ADMM’s TPI and also grows linearly
w.r.t horizon.

Comparing code size shown in Table 2, iiADMM is
the best. Code size of B-ADMM is slightly bigger than
iiADMM. Code size of these two algorithms grow slowly
w.r.t horizon, whereas code size of D-ADMM grows quite
fast, mainly because dense matrices in D-ADMM require
more memory than banded matrices in B-ADMM. CVX-
GEN uses second order QP solver and usually generates a
big code size comparing with first order methods such as
ADMM.

4.3 Random MPC problem test

We generate 500 random MPC problems with polytopic
constraints by generating 500 random sets of matrices
A,B,Q,R,Gx, Gu, GN = Gx with the same dimensions

2 Stopping criteria for ADMM: max{primal residual, dual residual ≤
10−4}. Time for optimality check (about 15% and 25% of total time
in iiADMM and B-ADMM) is not counted . Number of iterations of
CVXGEN is fixed at 5.
3 The heuristic step-size is also the same.
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B-ADMM (banded null basis)

D-ADMM (dense null basis)

Fig. 4. Time per ADMM iteration versus prediction hori-
zon

Fig. 5. Histogram of number of iterations for 500 random
MPC problems benchmarking (nx = 9, nu = 3, nix =
6, niu = 6, N = 10).

as the camera field-of-view quadrotor problem. To ensure
that the generated QPs are feasible, we first generate
a random initial state and a particular solution z0 for
(4), then substitute z0 to the inequality (5) and choose
gx, gN , gu such that this inequality is feasible.

Tests are carried out on a PC to obtain the convergence
property (in terms of the number of iterations) of each
algorithm. Fig. 5 shows the histogram of number of itera-
tions. It suggests that B-ADMM is slightly better than
iiADMM, in term of number of iterations. We believe
that the reduction in the number of decision variables
may have a positive impact on reducing the number of
iterations needed of our proposed ADMM algorithm (null
space method reduces the number of decision variables,
and using the banded null basis reduces the runtime per
iteration for the null space method).

4.4 Numerical instability of B-ADMM

Theoretically, we have H̃ = Y THY � 0 (Assumption 1)

and this implies H̃1 � 0 (H̃1 = H̃ + ρG̃T G̃ = Y T (H +
ρGTG)Y ). However, in our random test experiment, we

encountered one case with H̃1 becomes only (numerically)
positive semi-definite matrix which makes B-ADMM fail
at the first step (9) (either matrix inversion or Choleskly
factorisation operations fail). This is due to numerical
errors that arise in the constructing the banded null basis
Y . For example, in the quadrotor example, theoretically we
should obtain FY = 0 but in fact we obtained ||FY ||F =
1.3.10−16 (||.||F : Frobenius matrix norm). If Y is not ideal,

then H̃1 possibly becomes (numerically) positive semi-
definite matrix. For iiADMM, all random QPs generated
are solved.
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4.5 Banded null basis in MPC problems

The applicability of our proposed algorithm depends on
the existence of a banded null basis. As aforementioned,
there has been no theoretical result to confirm whether
TBLU will always return a banded null basis for a banded
matrix. In the 500 random MPC problems, TBLU always
return a banded null basis. However, real world MPC
problems usually have dynamics that are not completely
random. We then carry out a test over 18 academic and
industrial examples which are available in Ferreau and
Peyrl (2015) to see if TBLU can give a banded null basis.
Test results show that TBLU can always construct a
banded null basis in these MPC problems (see Fig. 9).

5. CONCLUSION

We exploit banded structure of equality constraint matrix
in the sparse QP formulation of MPC by its banded null
basis. We use this banded null basis to reduce the size
of sparse QP while maintaining structured matrices, and
use ADMM to solve the new QP. The proposed ADMM
algorithm, exploiting structured matrices, is about 4 times
faster than the current best ADMM variant and 3 times
faster than QP solver CVXGEN in a particular MPC
problem. Implementation results also show that the pro-
posed ADMM-based algorithm can obtain a convergence
rate (number of iterations) comparable with iiADMM.
Runtime per iteration of B-ADMM grows linearly w.r.t
to horizon. Banded null basis test carried on the 18 MPC
problems in literature shows that TBLU always returns a
banded null basis in these MPC problems.
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APENDIX A: INDIRECT INDICATOR ADMM FOR
MPC

The name indirect indicator is given in Manickathu (2016).
The setup is as following

minimize
z,s

1

2
zTHz + hT z + IFz=f + Is≥0 (15)

s.t. Gz + s = g (16)

For this setup, the first step of ADMM requires solving
following KKT equation[
H + ρGTG FT

F 0

] [
zk+1

θk+1

]
=

[
−(h+ ρGT (τk + sk − g))

f

]
(17)

where θk+1 is Lagrangian multiplier associated with an
equality-constrained minimisation in the first step of
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ADMM. The ADMM iterates is then as following

Algorithm 3: iiADMM

zk+1 = solve (17) (18)

sk+1 = max{0,−Gzk+1 − τk + g} (19)

τk+1 = τk +Gzk+1 + sk+1 − g (20)

The step-size is heuristic selected, based on Ghadimi et al.
(2015), as

ρ∗A2 =

(√
λmin,>0(GH−1GT )λmax,>0(GH−1GT )

)−1
There are several choices to solve (17). The runtime of
iiADMM depends on how we solve this equation. For a
fair comparison with our new algorithm, we present here
a method for solving (17) that gives iiADMM the least
runtime in our experiment. We use a similar method as
in Wang and Boyd (2010) to solve (17) by carrying out
following steps

vtemp = h+ ρGT (sk + τk − g) (21)

FH̄−12 FT θk+1 = −FH̃−1vtemp − f (22)

zk+1 = −H̄−12 (FT θk+1 + vtemp) (23)

where H̄2 = H + ρGTG is a block-diagonal matrix, and
H̄−12 has following form

H̄−12 =


IN ⊗

[
R̃ 0

0 Q̃

]
0

0

[
R̃ 0

0 Q̃N

]


where R̃ = (R + ρGTuGu)−1, Q̃ = (Q+ ρGTxGx)−1, Q̃N =

(QN+ρGTNGN )−1. And we also have F̃ = FH̄−12 FT in (22)
has the banded structure. Then, we solve (22) by a similar
way to solving (9) using Cholesky factorization. For (21)
and (23), all of involved matrices have special structures
and then the computational complexity is O(N(nx+nu)2).
Overall, the complexity for solving (17) is O(N(nx +
nu)2) if structured matrices are exploited. For the second
and third step in iiADMM, the matrices have structured
pattern and the exploitation is straight forward. The
computation cost of these steps also are O(N(nx + nu)2).

APPENDIX B: PROOF OF LEMMA 1

Recall that F =


−B I 0 0 0 0 · · · 0

0 −A −B I 0 0 · · · 0

0 0 0 −A −B I · · · 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 −A −B I

 of

dimension (Nnx)× (N(nx + nu)).

We have each “row” (a block of rows) of F contains
identity matrix. Using elementary column operations, we
can transform F to the row echelon form. Then, the
full row rank of F is directly confirmed. We then have
rank(F ) = Nnx. By rank theorem, we have the dimension
of its null space is N(nx + nu)−Nnx = Nnu.

APPENDIX C: ADDITIONAL RANDOM TESTS

Fig. 6. Test #2: Same dimension as quadrotor, N = 5

Fig. 7. Test #3: same dimension as quadrotor, N = 15

Fig. 8. Test #4: systems with nu << nx: nx = 16, nu =
4, nix = 16, niu = 8, N = 20
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Fig. 9. Banded null basis in 18 MPC problems (N = 5)
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