
TREND TO EQUILIBRIUM FOR THE BECKER-DÖRING
EQUATIONS: AN ANALOGUE OF CERCIGNANI’S CONJECTURE

JOSÉ A. CAÑIZO, AMIT EINAV, AND BERTRAND LODS

Abstract. We investigate the rate of convergence to equilibrium for subcritical so-
lutions to the Becker-Döring equations with physically relevant coagulation and frag-
mentation coefficients and mild assumptions on the given initial data. Using a discrete
version of the log-Sobolev inequality with weights we show that in the case where the
coagulation coefficient grows linearly and the detailed balance coefficients are of typical
form, one can obtain a linear functional inequality for the dissipation of the relative
free energy. This results in showing Cercignani’s conjecture for the Becker-Döring
equations and consequently in an exponential rate of convergence to equilibrium. We
also show that for all other typical cases one can obtain an ‘almost’ Cercignani’s
conjecture that results in an algebraic rate of convergence to equilibrium.
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1. Introduction

1.1. The Becker-Döring Equations. The Becker-Döring equations are a fundamen-
tal set of equations which describe the kinetics of a first order phase transition. Amongst
the phenomena to which they are relevant one can find crystallisation [20], nucleation
of polymers [12], vapour condensation, aggregation of lipids [23] and phase separation
in alloys [34]. For more general reviews of nucleation theory see for instance [30, 25].

The Becker-Döring equations give the time evolution of the size distribution of clus-
ters of a certain substance. Denoting by {ci(t)}i∈N, the density of clusters of size i at
time t > 0 (i.e. the density of clusters that are composed of i particles), the equations
read

d

dt
ci(t) = Wi−1(t)−Wi(t), i ∈ N \ {1} ,(1.1a)

d

dt
c1(t) = −W1(t)−

∞∑
k=1

Wk(t),(1.1b)

where

(1.2) Wi(t) := ai c1(t)ci(t)− bi+1 ci+1(t) i ∈ N.

and ai, bi, assumed to be strictly positive, are the coagulation and fragmentation coeffi-
cients. They determine, respectively, the rate at which clusters of size i combine with
clusters of size 1 to create a cluster of size i + 1, and the rate at which clusters of size
i+ 1 splits into clusters of size i and 1. This corresponds to the basic assumption of the
underlying model: if we represent symbolically by {i} the chemical species of clusters
of size i, then the only (relevant) chemical reactions that take place are

{i}+ {1}
 {i+ 1}.

The quantity Wi(t) defined in (1.2) represents the net rate of the reaction {i}+ {1}

{i+ 1}, and under the above set of equations it is easy to see that the density, or mass,
of the solution, defined by

(1.3) % :=
∞∑
i=1

ici(0) =
∞∑
i=1

ici(t)

is formally conserved under time evolution. The original equations proposed by Becker
and Döring [5] were similar to (1.1), with the slight change that the density of one
particle c1, usually called the monomer density, was assumed to be constant. The
current version, motivated by the conservation of total density, was first discussed in
[7] and [28] and is widely used in classical nucleation theory.

Much like in other kinetic equations, the study of a state of equilibrium and the
convergence to it is a fundamental question in the study of the Becker-Döring equations.
Defining the detailed balance coefficients Qi recursively by

(1.4) Q1 = 1, Qi+1 =
ai
bi+1

Qi i ∈ N



TREND TO EQUILIBRIUM IN THE BECKER-DÖRING EQUATIONS 3

one can see that for a given z > 0 the sequence

(1.5) ci = Qiz
i

is formally an equilibrium of (1.1). However, depending on the coagulation and frag-
mentation coefficients ai and bi, many of these formal equilibria do not have a finite
mass. The largest zs > 0, possibly zs = +∞, for which

∞∑
i=1

iQiz
i < +∞ for all 0 6 z < zs

is called the critical monomer density, or sometimes the monomer saturation density.
The critical mass (or, again, saturation mass) is then defined by

(1.6) %s :=
∞∑
i=1

iQiz
i
s ∈ [0,+∞].

It is important to note that both zs and %s are uniquely determined by ai and bi and
that {Qiz

i}i∈N is a finite-mass equilibrium only for 0 6 z < zs, with the possibility for
the equality z = zs only when %s < +∞. Additionally, it is easy to see that for a given
finite mass % 6 %s there exists a unique z > 0 such that

% =
∞∑
i=1

iQiz
i,

giving us a candidate for the asymptotic equilibrium state of (1.1) under a given initial
data. These are in fact the only finite-mass equilibria (see [3]), and z defined above is
called the equilibrium monomer density for a given mass ρ.

A finite mass solution is called subcritical when its mass %, is strictly less than %s. It
is called critical if % = %s and supercritical if % > %s, assuming %s < +∞. In this paper
we will only concern ourselves with subcritical solutions. Thus, to avoid triviality we
always assume that zs > 0.

The critical density %s, if finite, marks a change in the behaviour of equilibrium states:
if % < %s then a unique equilibrium state with mass % exists, while if % > %s no such
equilibrium can occur and a phase transition phenomenon takes place — reflected in
the fact that the excess density % − %s is concentrated in larger and larger clusters as
time progresses.

1.2. Previous Results. Let us briefly review existing results on the mathematical
theory of the Becker-Döring equations, which has advanced much since the first rigorous
works on the topic [1, 3]. In [3] the authors showed (among other things) existence and
uniqueness of a global solution to (1.1) when

(1.7) ai 6 C1i, bi 6 C2i,
∞∑
i=1

i1+εci(0) < +∞,

for some constants C1, C2, ε > 0. As expected, under the above assumptions the unique
solution conserves mass (this is, (1.3) holds rigorously). This basic existence theory is
applicable to all solutions we consider in this work.

The asymptotic behaviour of solutions to (1.1) is one of the most interesting aspects
of the equation. Supercritical behaviour, while not dealt with in this work, has a
particularly interesting link to late-stage coarsening and has been studied extensively
in [27, 31, 15, 24], with several questions still open. Asymptotic approximations of such
solutions have been developed in [17, 18, 22].
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Regarding the subcritical regime, it was proved in [1, 3] that solutions with subcritical
mass % approach the unique equilibrium with this mass (determined by (1.3)). A
fundamental quantity in understanding this approach is the free energy, H(c), defined
for any nonnegative sequence c = {ci}i∈N by

(1.8) H(c) :=
∞∑
i=1

ci

(
log

ci
Qi

− 1

)
,

whenever the sum converges. It can be shown that H(c(t)) decreases along solutions c =
c(t) to the Becker-Döring equations; in fact, for a (strictly positive, suitably decaying
for large i) solution c(t) = {ci(t)}i∈N of (1.1) we have

(1.9)
d

dt
H(c(t)) = −D(c(t))

:= −
∞∑
i=1

aiQi

(
c1ci
Qi

− ci+1

Qi+1

)(
log

c1ci
Qi

− log
ci+1

Qi+1

)
6 0.

This free energy is motivated by physical considerations and constitutes a Lyapunov
functional for our equation. Since it does not have a definite sign we define a more
natural candidate to measure the distance of c(t) = {ci(t)}i∈N to the equilibrium.
Using the notation

(Qz)i = Qiz
i

and denoting by Q = Qz, we can define the relative free energy as

(1.10) H(c|Q) :=
∞∑
i=1

ci

(
log

ci
ziQi

− 1

)
+
∞∑
i=1

ziQi = H(c)− log z
∞∑
i=1

ici +
∞∑
i=1

ziQi.

The relative free energy has the same time derivative as the free energy, and thus the
same monotonicity property

d

dt
H(c(t)|Q) = −D(c(t)) ∀t > 0,

where the free energy dissipation D is defined in (1.9). The relative free energy also
satisfies

• H(c|Q) > 0, as can be seen by writing

(1.11) H(c|Q) =
∞∑
i=1

Qiϕ
(
ci
Qi

)
, with ϕ(r) := r log r − r + 1 > 0

• H(c|Q) = 0 if and only if ci = Qi = Qiz
i for any i ∈ N, which is readily seen

from (1.11).

This hints that H(c|Q) is the right ‘distance’ to investigate. Indeed, while strictly
speaking H(c|Q) is not a distance, it does control the `1 distance between c and Q by
the celebrated Csiszár-Kullback inequality1, which in our case translates to

(1.12) ‖c−Q‖`1(N) =
∞∑
i=1

|ci −Qi| 6
√

2%H(c|Q).

(See also [19, Corollary 2.2] for a version involving the `1 distance with weight i.)
The issue of estimating the rate of convergence to equilibrium of subcritical solutions
is the main concern of this paper. The first result in this direction was the work
[19] by Jabin and Niethammer, where they investigated the possibility of applying

1Sometimes called Pinsker or Kullback-Pinsker inequality.
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the so-called entropy method to the Becker-Döring equation. This consists roughly
in looking for functional inequalities between a suitable Lyapunov functional of the
equation (generally called the entropy; it corresponds to the relative free energy in our
case) and its dissipation, so that one obtains a differential inequality that estimates
the rate of convergence to equilibrium. In the case of the Becker-Döring equation, it
was proved in [19] that there exists a constant C > 0, depending only on the fixed
parameters of the problem and the initial data, such that

(1.13) D(c) > C
H(c|Q)

(logH(c|Q))2 ,

for all nonnegative sequences c with subcritical mass %, satisfying ε 6 c1 6 zs − ε for
some ε > 0 and

(1.14)
∞∑
i=1

eµici =: M exp < +∞.

The constant C depends on ε and M exp. This result applies under resonable conditions
on the coefficients ai and bi; in particular, it applies to the coefficients (1.23) and (1.25),
which we give as examples below. If we consider now a solution c = c(t) to (1.1), we may
apply the inequality (1.13) to c(t) as long as c(t) satisfies the appropriate conditions,
obtaining

d

dt
H(c(t)|Q) = −D(c(t)) 6 −C H(c(t)|Q)

(logH(c(t)|Q))2 .

Adding to this some additional considerations for the times t for which the inequality
(1.13) is not applicable to c(t), one can deduce that H(c(t)|Q) is (roughly) bounded
above by the solution of the above differential inequality, namely that

H(c(t)|Q) 6 H(c(0)|Q)e−Kt
1
3

for some K > 0. Using inequality (1.12), this gives an almost-exponential rate of
convergence to equilibrium for subcritical solutions in the `1(N) norm.

The question remained open of whether the convergence is in fact exponential or not.
Recently this has been answered positively in [11] by two of the authors of the present
paper, through a different approach involving a detailed study of the spectrum of the
linearisation of equation (1.1) around a subcritical equilibrium. This is an approach
with a strong analogy to results in the theory of the Boltzmann equation; we refer to
[11, 32, 33] for more details on this parallel. The idea of the argument is to use the
inequality (1.13) when one is far from equilibrium. Then, once we have reached a region
which is close enough to equilibrium, the linearised regime is dominant and one can use
the spectral study of the linearised operator in order to show that the convergence is
in fact exponential. The outcome of this strategy is the following: for many interesting
coefficients (including (1.23) and (1.25)), subcritical solutions c = c(t) to (1.1) with

∞∑
i=1

eµici(0) =: M exp < +∞ for some µ > 0

satisfy that
∞∑
i=1

eµ
′i |ci(t)−Qi| 6 Ce−λt for t > 0

for some 0 < µ′ < µ, C > 0 and λ > 0 which depend on the parameters of the problem
and on M exp. In fact, µ′ and C only depend on the initial data c(0) through its mass
and the value of M exp; λ depends only on the coefficients and the initial mass and can
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be estimated explicitly. The value of λ is bounded above by (and can be taken very
close to) the size of the spectral gap of the linearised operator. Recently Murray and
Pego [21] have used this spectral gap and developed the local estimates of the linearised
operator in order to obtain convergence to equilibrium at a polynomial rate with milder
conditions on the decay of the initial data. These results, like those in [11], are local in
nature and require the use of some global estimate such as (1.13) in order to provide
global rates of convergence to equilibrium.

1.3. Main Results. Our main goal in this work is to complete the picture of conver-
gence to equilibrium by investigating modified and improved versions of the inequality
(1.13). We show optimal inequalities and settle the question of whether full exponential
convergence can be obtained through a linear inequality of the form

D(c) > KH(c|Q),

for some constant K > 0. In analogy to the Boltzmann equation, we refer to the
question of whether such K exists along solutions to (1.1) as Cercignani’s conjecture
for the Becker-Döring equations. In fact, we show that under relatively mild conditions
on the initial data, typical coagulation and fragmentation coefficients (covering the
physically relevant situations, see Section 1.4) admit an “almost” Cercignani conjecture
for the energy dissipation, i.e. an inequality bounding belowD(c) by a power ofH(c|Q),
yielding an explicit rate of convergence to equilibrium. Surprisingly, we also find a
relevant case (ai ∼ i for all i) for which the conjecture is actually valid.

We will often require the following assumptions on the coagulation and fragmentation
coefficients. Some of these are similar to those in [19], and always include physically
relevant coefficients as those described in Section 1.4. We recall that we always assume
ai, bi > 0 for all i ∈ N, and that the detailed balance coefficients Qi were defined in
(1.4) — given ai one can determine bi through Qi, and vice versa.

Hypothesis 1. 0 < zs < +∞.

Hypothesis 2. For all i ∈ N, Qi = z1−i
s αi, where {αi}i∈N is a non-increasing positive

sequence with α1 = 1 and limi→∞
αi+1

αi
= 1.

Hypothesis 3. ai = O(iγ) for some 0 6 γ 6 1, i.e. there exist C1, C2 > 0 such that

C1i
γ 6 ai 6 C2i

γ for all i ∈ N.

Hypothesis 2 on the form of Qi is given as a compromise that allows us to give simple
quantitative estimates of the constants in our theorems while allowing for the most
commonly used types of coefficients. As one can see from the proofs, this assumption
may be relaxed at the price of obtaining more involved estimates for our constants,
particularly the logarithmic Sobolev constant in Proposition 3.4.

In most of our estimates a crucial role will be played by the lower free energy dissi-
pation, D(c), defined for a given non-negative sequence c by

(1.15) D(c) =
∞∑
i=1

aiQi

(√
c1ci
Qi

−
√

ci+1

Qi+1

)2

At this point one notices that the elementary inequality (x − y)(log x − log y) >
4
(√

x−√y
)2

when x, y > 0 implies that

D(c) > 4D(c)

for any non-negative sequence c. Thus, any lower bound that is obtained for D(c) will
transfer immediately to D(c).
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We now state our main result on general functional inequalities for the free energy
dissipation, from which later we conclude a quantitative rate of convergence to equilib-
rium. It can be divided into two parts: functional inequalities when c1 is not too small
and not too far from z, and inequalities in the case where c1 escapes the above region.

Theorem 1.1. Let {ai}i∈N , {Qi}i∈N satisfy Hypotheses 1-3 and let c = {ci}i∈N be an
arbitrary positive sequence with finite total density 0 < % < %s.

(i) (Estimate for ai ∼ i.) Assume that γ = 1 and that there exist δ > 0 such that

(1.16) δ < c1 < zs − δ.

Then there exists K > 0 depending only on δ, % and the coefficients {ai}i>1, {bi}i>2,
such that

(1.17) D(c) > KH(c|Q).

(ii) (Estimate for ai ∼ iγ with γ < 1.) Assume that 0 6 γ < 1 and that c1 satisfies
(1.16) for some δ > 0. If, in addition, there exists β > 1 with

(1.18) Mβ(c) =
∞∑
i=1

iβci < +∞

then there exists K > 0 depending only on δ, %, Mβ(c) and the coefficients {ai}i>1,
{bi}i>2, such that

(1.19) D(c) > KH(c|Q)
β−γ
β−1 .

(iii) (Estimate for c1 far from equilibrium.) Assume that γ = 1, or that 0 6
γ < 1 and (1.18) holds for some β > 1. Assume also that for some δ > 0

c1 6 δ

or that

c1 > zs − δ
(i.e., c1 is outside of the range given in (1.16)). Then if δ > 0 is small enough
(depending only on % and {Qi}i>1), there exists ε > 0 depending only on δ, % and
the coefficients {ai}i>1, {bi}i>2 if γ = 1 (and additionally on Mβ(c) if γ < 1) such
that

(1.20) D(c) > ε.

The constants K and ε can be estimated explicitly in all cases.

We emphasise that all constants in the above theorem depend only on %, the coeffi-
cients {ai}i∈N, {bi}i∈N, and the additional bounds δ or Mβ (notice that %s is determined
by the coefficients alone). The case (ii) of Theorem 1.1 is optimal in the following sense:

Theorem 1.2. Call X% the set of nonnegative sequences c = {ci}i∈N with mass % (i.e.,
such that

∑∞
i=1 ici = %). Then, there exist {ai}i∈N , {Qi}i∈N that satisfy Hypotheses 1-3

with γ < 1 such that

inf
X%

D(c)

H(c|Q)
= 0.

for any % < %s.
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In other words, this shows that a linear inequality as that of Theorem 1.1 (i) cannot
hold if ai ∼ iγ with γ < 1.

The idea behind the proof of Theorem 1.1 is to use a discrete logarithmic Sobolev
inequality with weights, motivated by works of Bobkov and Götze [6] and Barthe and
Roberto [4], to show part (i). As the conditions for the validity of the log-Sobolev
inequality are not satisfied under the conditions of part (ii), a simple interpolation is
used to show the desired result in that case. Part (iii) is proved by two estimates: The
case where c1 is too large follows an idea of Jabin and Niethammer, and is essentially
stated already in [19], while the case where c1 is too small seems to be a new result
which we provide.

From Theorem 1.1 one can conclude in a straightforward way the following theorem,
our main result on the rate of convergence to equilibrium:

Theorem 1.3. Let {ai}i∈N , {Qi}i∈N satisfy Hypotheses 1–3 with 0 6 γ 6 1, and let
c = c(t) = {ci(t)}i∈N be a solution to the Becker-Döring equations with mass % ∈ (0, %s).

(i) (Rate for ai ∼ i.) If γ = 1 then there exists a constant K > 0 depending only
on δ, % and the coefficients {ai}i>1, {bi}i>2, and a constant C > 0 depending only
on H(c(0)|Q), % and the coefficients {ai}i>1, {bi}i>2 such that

H(c(t)|Q) 6 Ce−Kt for t > 0.

(ii) (Rate for ai ∼ iγ, γ < 1.) If γ < 1 and Mβ(c(0)) < +∞ for some β > 2 − γ
then there exists a constant K > 0 depending only on Mβ, δ, % and the coefficients
{ai}i>1, {bi}i>2, and a constant C > 0 depending only on H(c(0)|Q), Mβ, δ, % and
the coefficients {ai}i>1, {bi}i>2 such that

H(c(t)|Q) 6
1(

C + 1−γ
β−1

Kt
)β−1

1−γ
for t > 0.

The constants K and C can be estimated explicitly.

In order to deduce Theorem 1.3 we use the inequalities in Theorem 1.1 when they
are applicable. Of course, the assumption that c1(t) is in the ‘good’ region given by
(1.16) becomes eventually true, since c1(t) is known to converge to z. More explicitly,
one can apply the Csiszár-Kullback inequality (1.12) to obtain that for any t > t0 we
have

z −H(c(t0)|Q) 6 c1(t) 6 z +H(c(t0)|Q), t > t0.

If H(c(t0)|Q) is small enough this implies (1.16). For times t such that c1(t) is outside
this ‘good’ region we use the inequality in Theorem 1.1 (iii); details are given in Section
4.

There are several improvements in these theorems with respect to the existing theory.
One of them is that they apply to more general initial conditions, removing the need
for a finite exponential moment present in [11, 19]. Another one is that they answer the
question of whether one can obtain a linear inequality such as (1.17) (i.e., whether the
equivalent of Cercignani’s conjecture holds), making clear the link to discrete logarith-
mic Sobolev inequalities. It does hold in the case ai ∼ i, which is physically relevant
for example in modelling polymer chains [18, 23]. As a result, the statement for ai ∼ i
is quite strong: it gives full exponential convergence, with explicit constants in terms of
the parameters, with no restriction on the initial data except that of subcritical mass.
Point (ii) in 1.3 also relaxes the requirements on the initial data, at the price of obtain-
ing a slower convergence than that of [11]; we do not know whether this rate is optimal
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for initial conditions with polynomially decaying tails (so that Mβ <∞ for some β > 1,
but Mβ′ = +∞ for some β′ > β). Recently, Murray and Pego [21] investigated this rate
of convergence, concluding an algebraic rate of decay as well. It would be interesting to
verify the optimality of this result by determining whether the corresponding linearised
operator admits a spectral gap in `1 spaces with polynomial weights (in `1 spaces with
exponential weights, the answer is positive and an estimate of the spectral gap can be
found in [11]). We believe that no such spectral gap exists for 0 6 γ < 1, i.e. that the
algebraic rate of convergence is optimal even for close to equilibrium initial data.

One may wonder if the method presented here can be used to reach an inequality
like Jabin and Niethammer’s (1.13) under the additional condition of an exponential
moment. The answer is indeed positive:

Theorem 1.4. Let {ai}i∈N , {Qi}i∈N satisfy Hypothesis 1–3 with 0 6 γ < 1.

(i) (Functional inequality.) Let c = {ci}i∈N be an arbitrary positive sequence with
mass % ∈ (0, %s) for which there exists µ > 0 such that

(1.21) M exp
µ (c) :=

∞∑
i=1

eµici < +∞.

Then there exist K1, K2, ε > 0 depending only on M exp
µ (c), δ, % and the coefficients

{ai}i>1, {bi}i>2 such that

(1.22) D(c) > min

(
K1H(c|Q)

|log (K2H(c|Q))|1−γ
, ε

)
.

Moreover, K1, K2 and ε can be given explicitly.
(ii) (Rate of convergence.) If c(t) = {ci(t)}i∈N is a solution to the Becker-Döring

equations with mass 0 < % < %s such that there exists µ > 0 with

M exp
µ (c(0)) :=

∞∑
i=1

eµici(0) < +∞,

then there exists a constant K > 0 depending only on M exp
µ (c(0)), δ, % and the

coefficients {ai}i>1, {bi}i>2, and a constant C > 0 depending only on H(c(0)|Q),
M exp

µ (c(0)), δ, % and the coefficients {ai}i>1, {bi}i>2 such that

H(c(t)|Q) 6 Ce−Kt
1

2−γ
.

Moreover, K and C can be given explicitly.

1.4. Typical Coefficients. The above results are valid for coagulation and fragmenta-
tion coefficients satisfying Hypothesis 1 – 3. To motivate our choice of assumptions, we
briefly recall here some physically motivated coagulation and fragmentation coefficients
found in the literature.

Common model coefficients appearing in the theory of density-conserving phase tran-
sitions (see [24, 26]) are given by

(1.23) ai = iγ, bi = ai

(
zs +

q

i1−µ

)
for all i > 1,

for some 0 < γ 6 1, zs > 0, q > 0 and 0 < µ < 1. These coefficients may be derived from
simple assumptions on the mechanism of the reactions taking place; we take particular
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values from [24]:

γ = 1/3, µ = 2/3 (diffusion-limited kinetics in 3-D),

γ = 0, µ = 1/2 (diffusion-limited kinetics in 2-D),

γ = 2/3, µ = 2/3 (interface-reaction-limited kinetics in 3-D),

γ = 1/2, µ = 1/2 (interface-reaction-limited kinetics in 2-D).

(1.24)

The case γ = 1 appears for example in modelling polymer chains, where the binding
energy increases by a constant each time a monomer is added.

A different kind of reasoning, based on a statistical mechanics argument involving
the binding energy of clusters, results in the coefficients results in the coefficients

(1.25) ai = iγ, bi = zs(i− 1)γ exp
(
σiµ − σ(i− 1)µ

)
, i ∈ N,

for appropriate constants γ, µ and where σ > 0 is related to the surface tension of the
aggregates. The values of µ and γ for various situations are still those in (1.24).

As already mentioned, the choice γ = 1 corresponds to the physically relevant exam-
ple in modelling polymer chains (for instance for proteins aggregating in a cubic phase
of lipid bilayers, [18, 23]).

The behaviour of (1.23) and (1.25) is similar: observe that for large i we have iµ −
(i− 1)µ ∼ µiµ−1, so the fragmentation coefficients become roughly

bi ∼ zs ai exp
(
σµiµ−1

)
∼ ai

(
zs +

zsσµ

i1−µ

)
,

which is like (1.23) with q = zsσµ. Moreover, for both classes of coefficients, we can
write (by definition of Qi)

(1.26) Qi =
a1a2 . . . ai−1

b2b3 . . . bi
= z1−i

s αi,

where {αi}i∈N is non-increasing and satisfies

lim
i→∞

αi+1

αi
= 1.

In other words, Hypotheses 1–3 hold true for both models.

1.5. Application to General Coagulation and Fragmentation Models. The
Becker-Döring equations are the simplest form of a coagulation and fragmentation pro-
cess, assuming that the only relevant reactions are governed by monomers. Other
models take into account the fact that clusters of size i and size j, for i, j ∈ N, may
interact. A discrete model—similar to the Becker-Döring equations (1.1)—can be for-
mulated, now with coagulation and fragmentation coefficients of the form ai,j, bi,j (see
Section 5.1). Together with an assumption of detailed balance, one can once again find
equilibria to the process and inquire about the rate of convergence to them. Our study
of the Becker-Döring equations allows us to give a quantitative answer (though not
optimal) for this question. We leave the detailed description of the model we have in
mind for Section 5.1. For such a model, using the same notion of free relative energy
we will show that

Theorem 1.5 (Asymptotic behaviour of the coagulation-fragmentation system). Let
{ai,j}i,j∈N , {bi,j}i,j∈N be the coagulation and fragmentation coefficients for equation (5.1),

and assume that the detailed balance condition (5.6) holds. Assume that

(1.27) ai,j = iγ + jγ,
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for some 0 6 γ < 1 and that {Qi}i∈N satisfies Hypothesis 2. Assume in addition that
Mk(c(0)) < +∞ for some k ∈ N, k > 1. Then

(1.28) H(c(t)|Q) 6
1

(C1 + C2 log t)
k−1
1−γ

t > 0,

where C1, C2 > 0 are constants depending only on H(c(0)|Q), zs, %, {αi}i∈N , k, γ and
Mk(c(0)).

1.6. Organisation of the Paper. The structure of the paper is as follows: In Section
2 we will present our main technical tool, a discrete version of the log-Sobolev inequality
with weights. Section 3 contains the proof of Theorem 1.1 and uses Section 2 to show the
first part of the theorem. We also show in this section that this method is optimal and
that Cercignani’s conjecture cannot hold when γ < 1, proving Theorem 1.2 and explore
the additional inequality that appears under the assumption of a finite exponential
moment. Section 4 deals with the consequences of our functional inequalities for the
solutions to the Becker-Döring equation and contains the proof of Theorem 1.3 and
part (ii) of Theorem 1.4. In Section 5 we provide the proof of Theorem 1.5 and remark
on the difficulties of obtaining stronger results in this general setting. Lastly, we give
an appendix where proofs to some technical lemmas can be found.

2. A Discrete Weighted Logarithmic Sobolev Inequality

One of the key ingredients in proving Cercignani’s conjecture for the Becker-Döring
equations in the terms of Theorem 1.1 is a discrete log-Sobolev inequality with weights.
The theory presented here follows closely the work of Bobkov and Götze in [6], and that
of Barthe and Roberto in [4], and can be seen as a discrete version of the aforementioned
papers. It is worth noting that a discrete version is explicitly mentioned in [4, Section
4], with a remark that the arguments in [4] can be adapted to prove it. Indeed, our
proof is essentially an adaptation of the one in [6], and we give it in this section for the
sake of completeness (and since we have not been able to find an explicit proof in the
discrete case). Some further technical details are postponed to Appendix A.

2.1. The Main Log-Sobolev Inequality. We start with some basic definitions:

Definition 2.1. We say that µ ∈ P (N) if µ = {µi}i∈N is a non-negative sequence such
that

∞∑
i=1

µi = 1.

For any non-negative sequence g = {gi}i∈N with
∑∞

i=1 µigi < +∞, we define its entropy
with respect to µ as

(2.1) Entµ(g) =
∞∑
i=1

µigi log
gi∑∞

i=1 µigi
.

Definition 2.2. Given µ ∈ P (N) and positive sequence ν = {νi}i∈N (not necessarily
normalised) we say that ν admits a log-Sobolev inequality with respect to µ with
constant 0 < CLS < +∞ if for any sequence f = {fi}i∈N

(2.2) Entµ
(
f 2
)
6 CLS

∞∑
i=1

νi (fi+1 − fi)2 ,

where f 2 = {f 2
i }i∈N.
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In what follows we will always assume that µ ∈ P (N). Denoting by

Ψ(x) = |x| log (1 + |x|)

the main theorem, and its simplified corollary, that we will prove in this Section are:

Theorem 2.3. The following two conditions are equivalent:

(i) ν admits a log-Sobolev inequality with respect to µ with constant CLS.
(ii) For any m ∈ N such that

max

(
m−1∑
i=1

µi,

∞∑
i=m+1

µi

)
<

2

3

we have that

(2.3) B1 = sup
k>m

∑k
i=1

1
νi

Ψ−1

(
1∑∞

i=k+1 µi

) < +∞.

Moreover, if (ii) is valid then one can choose

(2.4) CLS = 40(B2 + 4B1), where B2 =

∑m−1
i=1

1
νi

Ψ−1
(

1∑m−1
i=1 µi

) .
A somehow more tractable consequence is the following.

Corollary 2.4. The following two conditions are equivalent:

(i) ν admits a log-Sobolev inequality with respect to µ with constant CLS.
(ii) For any m ∈ N such that

max

(
m−1∑
i=1

µi,
∞∑

i=m+1

µi

)
<

2

3

we have that

(2.5) D1 = sup
k>m

(
−

∞∑
i=k+1

µi log

(
∞∑

i=k+1

µi

))(
k∑
i=1

1

νi

)
<∞.

Moreover, if (ii) is valid then one can choose

(2.6) CLS = 120(D2 + 4D1),

where D2 =
(
−
∑m−1

i=1 µi log
(∑m−1

i=1 µi
)) (∑m−1

i=1
1
νi

)
.

Remark 2.5. One can clearly see that if

sup
k>1

(
−

∞∑
i=k+1

µi log

(
∞∑

i=k+1

µi

))(
k∑
i=1

1

νi

)
<∞

then one has a log-Sobolev inequality of ν with respect to µ. However, the introduction
of the ‘approximate median’ m allows us to have an explicit estimation on the log-
Sobolev constant CLS.

The rest of the Section is dedicated to the proof of the above results and will be
divided in various steps - each one corresponding to a subsection.
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2.2. A Reformulation as a Poincaré Inequality in Orlicz Spaces. As in the work
of Bobkov and Götze in [6], a key argument in the proof of Theorem 2.3 and Corollary
2.4 is to recast the log-Sobolev inequality as a Poincaré inequality in the Orlicz space
associated to Ψ. We start with the definition:

Definition 2.6. Given µ ∈ P (N) and a Young Function, Σ : [0,+∞) → [0,+∞), i.e.
a convex function such that

Σ(x)

x
−→
x→+∞

+∞, Σ(x)

x
−→
x→0

0,

we define the Orlicz space L
(µ)
Σ as the space of all sequences f such that there exists

k > 0 with
∞∑
i=1

µiΣ

(
|fi|
k

)
<∞.

In that case we define

‖f‖
L

(µ)
Σ

= inf
k>0

{
∞∑
i=1

µiΣ

(
|fi|
k

)
6 1

}
.

In what follows we will drop the superscript µ from the Orlicz space of Ψ and its
norm. Additionally we denote by Φ(x) = Ψ(x2) and notice that:∥∥f 2

∥∥
LΨ

= inf
k>0

{
∞∑
i=1

µiΨ

(
f 2

k

)
6 1

}

=

(
inf√
k>0

{
∞∑
i=1

µiΦ

(
|f |√
k

)
6 1

})2

= ‖f‖2
LΦ
.

(2.7)

We have then the following version of Rothaus’s Lemma:

Lemma 2.7. Given µ ∈ P (N) and a sequence f = {fi}i∈N we set

(2.8) L(f) = sup
α∈R

Entµ
(
(f + α)2

)
where f + α = {fi + α}i∈N. Then,

(2.9) Entµ(f 2) 6 L(f) 6 Entµ(f 2) + 2
∞∑
i=1

µif
2
i .

Remark 2.8. This Lemma is an adaptation of the appropriate Lemma in [29]. We leave
the proof of it to Appendix A.

We have then the following equivalent formulation of the log-Sobolev inequality:

Proposition 2.9. The following conditions are equivalent:

(i) ν admits a log-Sobolev inequality with respect to µ with constant CLS.
(ii) For any sequence f

(2.10) L(f) 6 CLS

∞∑
i=1

νi (fi+1 − fi)2 .

(iii) For any sequence f

(2.11) ‖f − 〈f〉‖2
LΦ
6 λ

∞∑
i=1

νi (fi+1 − fi)2 .
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where 〈f〉 =
∑∞

i=1 µifi.

Moreover, if (i) or (ii) are valid one can choose λ = 3
2
CLS. If (iii) is valid one can

choose CLS = 5λ.

The proof of the proposition relies on the following lemma:

Lemma 2.10. For any sequence f one has that

(2.12)
2

3
‖f − 〈f〉‖2

LΦ
6 L(f) 6 5 ‖f − 〈f〉‖2

LΦ

Proof. We start by noticing that we may assume that 〈f〉 = 0 as well as ‖f − 〈f〉‖LΦ
=

1. This is true as L is invariant under translations and

Entµ(αf) = αEntµ(f).

Using Lemma 2.7, we find that

L(f) 6 Entµ(f 2) + 2
∞∑
i=1

µif
2
i =

∞∑
i=1

µif
2
i log

(
f 2
i

)
+ 2

∞∑
i=1

µif
2
i

−

(
∞∑
i=1

µif
2
i

)
log

(
∞∑
i=1

µif
2
i

)

6
∞∑
i=1

µiΦ(fi) + h

(
∞∑
i=1

µif
2
i

)
,

where h(x) = 2x− x log x for x > 0. As h is an increasing function on [0, e] and

‖f‖L1
µ
6 ‖f‖L2

µ
6

√
3

2
‖f‖LΦ

,

(see Lemma A.2 in Appendix A) we have that

‖f‖2
L2
µ
6 2.

Thus, as
∞∑
i=1

µiΦ(fi) =
∞∑
i=1

µiΦ

(
fi
‖f‖LΦ

)
6 1,

we find that
L(f) 6 1 + h(2) 6 5,

proving the right hand side inequality of (2.12). To show the left hand side inequality
we assume that L(f) = 2. By the definition of L and the fact that

‖f − 〈f〉‖2
L2
µ

=
1

2
lim
|a|→∞

Entµ
(
(f + a)2

)
(see Lemma A.3 in Appendix A) we know that

‖f‖2
L2
µ
6

1

2
L(f) = 1.

This implies that
∞∑
i=1

µiΦ(fi) 6 1 +
∞∑
i=1

µif
2
i log f 2

i = 1 + Entµ(f 2) + ‖f‖2
L2
µ

log
(
‖f‖2

L2
µ

)
6 1 + L(f) = 3,

where we have used the fact that x log (1 + x) 6 1 + x log x when x > 0.
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Since for any a > 1, Φ
(

x√
a

)
= x2

a2 log
(

1 + x2

a2

)
6 1

a2 Φ(x), the above implies that

∞∑
i=1

µiΦ

(
fi√

3

)
6 1

and as such, by the definition of ‖·‖LΦ
, we conclude that

‖f‖2
LΦ
6 3 =

3

2
L(f),

and the proof is complete. �

Proof of Proposition 2.9. The equivalence of (ii) and (iii) is immediate following Lemma
2.10, which also proves the desired connection between CLS and λ. To show that (i)
implies (ii) we notice that as the right hand side of (2.2) is invariant under translation.
Taking the supremum over all possible translations results in (ii). The fact that (ii)
implies (i) is immediate as Entµ(f 2) 6 L(f). �

2.3. Discrete Hardy Inequalities. The above observation that the log-Sobolev in-
equality with weights is actually a form of a Poincaré inequality brings to mind another
inequality with weights that is closely connected to the Poincaré inequality - Hardy
inequality. In its discrete form, we have that

Lemma 2.11. Let µ and ν two sequences of positive numbers and let m ∈ N. Then,
the following two conditions are equivalent:

(i) There exists a finite constant A1,m > 0 such that

∞∑
i=m

µi

(
i∑

j=m

fj

)2

6 A1,m

∞∑
i=m

νif
2
i ,

for any sequence f .
(ii) The following holds:

B1,m = sup
k>m

(
∞∑
i=k

µi

)(
k∑

i=m

1

νi

)
<∞.

Moreover, if any of the conditions holds than B1,m 6 A1,m 6 4B1,m.

The proof for the case m = 1 can be found in [11], and the general case follows by
the same method of proof.

Corollary 2.12. Let

B(1)
m = sup

k>m

(
∞∑

i=k+1

µi

)(
k∑

i=m

1

νi

)
.

Then for any sequence f such that fm = 0 we have that

(2.13)
∞∑
i=m

µif
2
i 6 A(1)

m

∞∑
i=m

νi (fi+1 − fi)2 ,

if and only if B
(1)
m <∞. In that case B

(1)
m 6 A

(1)
m 6 4B

(1)
m . Additionally,

B1,m 6 B(1)
m 6 B1,m+1.

Proof. This follows immediately from Lemma 2.11 applied to the sequence gi = fi+1−fi
and a simple translation argument. �
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Besides the above, we will also need to have a Hardy-type inequality for sums up to
a fixed integer m.

Lemma 2.13. Let µ and ν two sequences of positive numbers and let m ∈ N. Then,
for any sequence f such that fm = 0 we have that if there exists A > 0 such that

(2.14)
m−1∑
i=1

µif
2
i 6 A

m−1∑
i=1

νi (fi+1 − fi)2 ,

then b2,m 6 A where

b2,m = sup
k6m−1

k∑
i=1

µi

(
m−1∑
j=k

1

νj

)
.

Moreover, one can always choose

A = B2,m =
m−1∑
i=1

µi

(
m−1∑
j=i

1

νj

)
.

Proof. We start by noticing that for any 1 6 i 6 m− 1 we have that

f 2
i =

[
m−1∑
j=i

(fj+1 − fj)

]2

6

(
m−1∑
j=i

1

νj

)(
m−1∑
j=i

νj (fj+1 − fj)2

)

6

(
m−1∑
j=i

1

νj

)(
m−1∑
j=1

νj (fj+1 − fj)2

)
.

Thus

m−1∑
i=1

µif
2
i 6

[
m−1∑
i=1

µi

(
m−1∑
j=i

1

νj

)](
m−1∑
j=1

νj (fj+1 − fj)2

)
= B2,m

m−1∑
j=1

νj (fj+1 − fj)2 ,

completing the second statement. Next, for any j 6 m− 1 we denote by

σj =
m−1∑
i=j

1

νi
.

Fix k 6 m− 1 and define f (k) to be such that f
(k)
i = σk when i 6 k and f

(k)
i = σi when

i > k. We have that

m−1∑
i=1

νi

(
f

(k)
i+1 − f

(k)
i

)2

=
m−1∑
i=k

νi

(
f

(k)
i+1 − f

(k)
i

)2

=
m−1∑
i=k

1

νi
= σk.

On the other hand

m−1∑
i=1

µi

(
f

(k)
i

)2

>
k∑
i=1

µi

(
f

(k)
i

)2

= σ2
k

(
k∑
i=1

µi

)
.

As (2.14) is valid we see that A >
(∑m−1

i=k
1
νi

)(∑k
i=1 µi

)
for all k. This completes the

proof. �



TREND TO EQUILIBRIUM IN THE BECKER-DÖRING EQUATIONS 17

2.4. Proof of the Main Inequality. The last ingredient we need in order to prove
Theorem 2.3 is the following lemma:

Lemma 2.14. The following conditions are equivalent:

(i) ν admits a log-Sobolev inequality with respect to µ with constant CLS.
(ii) There exists η > 0 such that, for any sequence f = {fi} such that fm = 0 with

m ∈ N satisfying

max

(
m−1∑
i=1

µi,

∞∑
i=m+1

µi

)
<

2

3

we have that ∥∥∥(f (0)
)2
∥∥∥
LΨ

+
∥∥∥(f (1)

)2
∥∥∥
LΨ

6 η
∞∑
i=1

νi (fi+1 − fi)2 ,

where f (0) = f1i<m and f (1) = f1i>m.

Moreover, if condition (ii) is valid one can choose CLS = 40η.

Proof. Using Proposition 2.9 we notice that it is enough for us to show the equivalence
of conditions (ii) of our theorem and that of Proposition 2.9.

Assume, to begin with, that (ii) of Proposition 2.9 is valid. As was shown in the
aforementioned theorem, this implies that

(2.15) ‖f − 〈f〉‖2
LΦ
6

3CLS

2

∞∑
i=1

νi (fi+1 − fi)2 .

Due to the conditions on f and the definition of f (0) and f (1) one has that

∥∥〈f (0)〉
∥∥
LΦ
6
∣∣〈f (0)〉

∣∣ 6 ∥∥f (0)
∥∥
L2
µ

√√√√m−1∑
i=1

µi

∥∥〈f (1)〉
∥∥
LΦ
6
∣∣〈f (1)〉

∣∣ 6 ∥∥f (1)
∥∥
L2
µ

√√√√ ∞∑
i=m+1

µi

(see Lemma A.4 in Appendix A). Thus

∥∥f (0)
∥∥
LΦ
6
∥∥f (0) − 〈f (0)〉

∥∥
LΦ

+
∥∥〈f (0)〉

∥∥
LΦ
6
∥∥f (0) − 〈f (0)〉

∥∥
LΦ

+

√√√√3

2

m−1∑
i=1

µi
∥∥f (0)

∥∥
LΦ
,

implying that ∥∥f (0)
∥∥
LΦ
6

1

1−
√

3
2

∑m−1
i=1 µi

∥∥f (0) − 〈f (0)〉
∥∥
LΦ
,

and similarly ∥∥f (1)
∥∥
LΦ
6

1

1−
√

3
2

∑∞
i=m+1 µi

∥∥f (1) − 〈f (1)〉
∥∥
LΦ
.
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We can conclude, by applying (2.15) to f (0) and f (1), that

∥∥f (0)
∥∥2

LΦ
6

3CLS

2

(
1−

√
3
2

∑m−1
i=1 µi

)2

m−1∑
i=1

νi (fi+1 − fi)2

and
∥∥f (1)

∥∥2

LΦ
6

3CLS

2
(

1−
√

3
2

∑∞
i=m+1 µi

)2

∞∑
i=m

νi (fi+1 − fi)2 .

The result now follows from (2.7).
To show the converse, we use the translation invariance of (ii) from Proposition 2.9

to assume that fm = 0. As such we have that f = f (0) + f (1). Moreover,

‖f − 〈f〉‖2
LΦ
6
(∥∥f (0) − 〈f (0)〉

∥∥
LΦ

+
∥∥f (1) − 〈f (1)〉

∥∥
LΦ

)2

6

1 +

√
3

2

√√√√m−1∑
i=1

µi

∥∥f (0)
∥∥
LΦ

+

1 +

√
3

2

√√√√ ∞∑
i=m+1

µi

∥∥f (1)
∥∥
LΦ

2

6 2

1 +

√
3

2

√√√√m−1∑
i=1

µi

2 ∥∥f (0)
∥∥2

LΦ
+ 2

1 +

√
3

2

√√√√ ∞∑
i=m+1

µi

2 ∥∥f (1)
∥∥2

LΦ

6 2ηmax


1 +

√
3

2

√√√√m−1∑
i=1

µi

2

,

1 +

√
3

2

√√√√ ∞∑
i=m+1

µi

2
 ∞∑

i=1

νi (fi+1 − fi)2

where we again used (2.7). This shows the desired result due to Proposition 2.9. �

Proof of Theorem 2.3. Our main tool will be the above Lemma 2.14. It is known that∥∥f 2
∥∥
LΨ

= sup

{
∞∑
i=1

µif
2
i gi ;

∞∑
i=1

µiΞ(gi) 6 1

}
,

where Ξ is the Young complement of Ψ. Using Corollary 2.12 we know that if fm = 0
then

∞∑
i=m

µif
2
i gi 6 CLS

∞∑
i=m

νi (fi+1 − fi)2

if and only if

B = sup
k>m

(
∞∑

i=k+1

giµi

)(
k∑
i=1

1

νi

)
<∞.

Taking supremum over all appropriate g = {gi}, we find that

(2.16)
∥∥f 211i>m

∥∥
LΨ
6 CLS

∞∑
i=m

νi (fi+1 − fi)2

if and only if

B = sup
k>m

∥∥11[k+1,∞)

∥∥
LΨ

k∑
i=1

1

νi
<∞.
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As ∥∥11[k+1,∞)

∥∥
LΨ

= inf
α>0

{
∞∑

i=k+1

µiΨ

(
1

α

)
6 1

}
= inf

α>0

{
Ψ

(
1

α

)
6

1∑∞
i=k+1 µi

}
=

1

Ψ−1
(

1∑∞
i=k+1 µi

)
we find that (2.16) is equivalent to B1 <∞, showing that (i) implies (ii).
Conversely, using Lemma 2.13 we find that if fm = 0 then

m−1∑
i=1

µif
2
i gi 6

[
m−1∑
i=1

µigi

(
m−1∑
j=i

1

νj

)]
m−1∑
i=1

νi (fi+1 − fi)2

6

[(
m−1∑
i=1

µigi

)(
m−1∑
j=1

1

νj

)]
m−1∑
i=1

νi (fi+1 − fi)2

and again, by taking supremum over the appropriate g, we find that

(2.17)
∥∥f 211i<m

∥∥
LΨ
6 B2

m−1∑
i=1

νi (fi+1 − fi)2 .

Thus, if f = {fi} is a sequence such that fm = 0, and if in addition B1 < ∞ we have
that ∥∥∥(f (0)

)2
∥∥∥
LΨ

+
∥∥∥(f (1)

)2
∥∥∥
LΨ

6 B2

m−1∑
i=1

νi (fi+1 − fi)2 + 4B1

∞∑
i=m

νi (fi+1 − fi)2

6 (B2 + 4B1)
∞∑
i=1

νi (fi+1 − fi)2 ,

where we have used Corollary 2.12. We conclude, using Lemma 2.14, that if B1 < ∞
then ν admits a log-Sobolev inequality with respect to µ with constant CLS that can
be chosen to be CLS = 40(B1 + 4B2). �

We are only left with the proof of Corollary 2.4. The proof relies on the following
technical lemma, whose proof is left to Appendix A:

Lemma 2.15. For any t > 3
2

one has that

1

3

t

log t
6 Ψ−1(t) 6 2

t

log t
.

Proof of Corollary 2.4. Due to the choice of m and Lemma 2.15 we know that Ψ−1(t)
and t

log t
are equivalent for our choice of

t =
1∑∞

i=m+1 µi
.

This shows the desired equivalence using Theorem 2.3. As for the last estimation, it
follows immediately from the fact that

Bi 6 3Di,

for i = 1, 2. �
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Now that we have achieved a necessary and sufficient condition to the validity of a
discrete log-Sobolev inequality with weight, we will proceed to see how it can be used
to prove Theorem 1.1.

3. Energy Dissipation Inequalities

3.1. The Log-Sobolev Inequality and the Becker-Döring Equations. Motivated
by our previous section, the first step in trying to show the validity of Cercignani’s
conjecture would be to relate the energy dissipation, D(c), and a term that resembles
the right hand side of (2.2). Recall that, for any non-negative sequence c = {ci} we
defined

D(c) =
∞∑
i=1

aiQi Θ

(
c1ci
Qi

,
ci+1

Qi+1

)
with Θ(x, y) := (x− y)(log x− log y), and

D(c) =
∞∑
i=1

aiQi

(√
c1ci
Qi

−
√

ci+1

Qi+1

)2

.

We have the following properties:

Lemma 3.1. For any non-negative sequence c, the following holds

(i) We have that

(3.1) 4D(c) 6 D(c)

(ii) For any z > 0 we can rewrite D(c) as

(3.2) D(c) =
∞∑
i=1

aiQiz
i+1Θ

(
c1ci
Qizi+1

,
ci+1

Qi+1zi+1

)
(recalling Θ(x, y) := (x− y)(log x− log y)), and

(3.3) D(c) =
∞∑
i=1

aiQiz
i+1

(√
c1ci
Qizi+1

−
√

ci+1

Qi+1zi+1

)2

Proof. (i) is an immediate consequence of the inequality

Θ(x, y) = (x− y) (log x− log y) > 4
(√

x−√y
)2

and (ii) is immediate from the homogeneity of the expressions involved. �

Property (ii) of the above lemma gives an indication of how we may be able to find a
connection between D(c) and the relative entropy between c and some equilibrium, by
appropriately choosing z. Similar to the work of Jabin and Niethammer [19], another
equilibrium state that will play an important role in what is to follow is

Q̃ = Qc1 = {Qic
i
1}i>1.

Indeed, it is the only possible equilibrium under which the right hand side of (3.3)
attains a form that is suitable for the log-Sobolev theory developed in the previous
section. From (3.3) we find, after cancelling c1, that

(3.4) D(c) =
∞∑
i=1

aiQ̃iQ̃1

(√
ci

Q̃i
−
√

ci+1

Q̃i+1

)2

This enables us to finally link D(c) to H(c|Q):



TREND TO EQUILIBRIUM IN THE BECKER-DÖRING EQUATIONS 21

Proposition 3.2. For given coagulation and detailed balance coefficients, {ai}i∈N , {Qi}i∈N,
and a given positive sequence c with finite mass % and such that

∞∑
i=1

Q̃i < +∞,
∞∑
i=1

aiQ̃i < +∞

(recall Qi := Qic
i
1 for i > 1), we define the following measures

(3.5) µi =
Q̃i∑∞
i=1 Q̃i

, νi :=
aiQ̃i∑∞
j=1 ajQ̃j

, i ∈ N.

Then, if ν admits a log-Sobolev inequality with respect to µ with constant CLS we have
that

(3.6) D(c) >
c3

1

(∑∞
i=1 aiQ̃i

)
CLS

(∑∞
i=1 Q̃i

)(
c2

1 + 2 (
∑∞

i=1 ci)
(∑∞

i=1 Q̃i
))H(c|Q)

Proof. Denote by fi =
√

ci
Q̃i

. Since ν admits a log-Sobolev inequality with respect to

µ with constant CLS we have that

(3.7) D(c) =

(
∞∑
i=1

aiQ̃iQ̃1

)
∞∑
i=1

νi (fi+1 − fi)2 >
c1

(∑∞
i=1 aiQ̃i

)
CLS

Entµ
(
f 2
)
.

Next, we notice that

(3.8)

(
∞∑
i=1

Q̃i

)
Entµ(f 2) =

∞∑
i=1

ci log
ci

Q̃i
−

(
∞∑
i=1

ci

)(
log

∞∑
i=1

ci − log
∞∑
i=1

Q̃i

)

= H(c|Q̃) +
∞∑
i=1

ci −
∞∑
i=1

Q̃i −

(
∞∑
i=1

ci

)(
log

∞∑
i=1

ci − log
∞∑
i=1

Q̃i

)

= H(c|Q̃)−

(
∞∑
i=1

Q̃i

)
Λ

( ∑∞
i=1 ci∑∞
i=1 Q̃i

)
,

where Λ(x) = x log x−x+1. We now use the fact that Q minimises the relative entropy
to the set of equilibria to bound the first term,

(3.9) H(c|Q̃) > H(c|Q)

(see Lemma B.1 in Appendix B). The only remaining bound is to show that the term
with the negative sign at the end of (3.8) is in fact bounded by Entµ(f 2). For this we
will use the following Csiszár-Kullback inequality:

(3.10) Entµ(f 2) >
1

2〈f 2〉

(
∞∑
i=1

|f 2
i − 〈f 2〉|µi

)2

,

where

〈f 2〉 :=
∞∑
i=1

f 2
i µi.
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With (3.10) we find that in our particular setting

Entµ(f 2) >

∑∞
i=1 Q̃i

2
∑∞

i=1 ci

 ∞∑
i=1

∣∣∣∣∣∣∣
ci∑∞
i=1 Q̃i

− Q̃i (
∑∞

i=1 ci)(∑∞
i=1 Q̃i

)2

∣∣∣∣∣∣∣


2

=

∑∞
i=1 ci

2
∑∞

i=1 Q̃ i

(
∞∑
i=1

∣∣∣∣∣ ci∑∞
i=1 ci

− Q̃i∑∞
i=1 Q̃i

∣∣∣∣∣
)2

and keeping only the first term in the last sum we get

Entµ(f 2) >

∑∞
i=1 ci

2
∑∞

i=1 Q̃ i

∣∣∣∣∣ c1∑∞
i=1 ci

− Q̃1∑∞
i=1 Q̃i

∣∣∣∣∣
2

=
c2

1

2
∑∞

i=1 ci
∑∞

i=1 Q̃i

(
1−

∑∞
i=1 ci∑∞
i=1 Q̃i

)2

Continuing from (3.8) and using (3.9), the above inequality and the fact that

Λ(x) 6 (x− 1)2

show that(
∞∑
i=1

Q̃i

)
Entµ

(
f 2
)
> H(c|Q)−

(
∞∑
i=1

Q̃i

)( ∑∞
i=1 ci∑∞
i=1 Q̃i

− 1

)2

> H(c|Q)− 2

c2
1

(
∞∑
i=1

Q̃i

)2( ∞∑
i=1

ci

)
Entµ

(
f 2
)
.

Thus,

H(c|Q) 6

(
∞∑
i=1

Q̃i

)(
1 +

2

c2
1

(
∞∑
i=1

Q̃i

)(
∞∑
i=1

ci

))
Entµ

(
f 2
)
.

Combining the above with (3.7) completes the proof. �

3.2. Main Inequality for c1 ’Close’ to Equilibrium. On the basis of Proposition
3.2, one obtains the following

Proposition 3.3. Assume the conditions of Proposition 3.2 and the additional condi-
tion that c1 < z∗ for some 0 < z∗ < zs. Calling

%∗ :=
∞∑
i=1

iQiz
i
∗ <∞

we have that

(3.11) D(c) >
a1z

2
∗c

2
1

CLS (z∗ + %∗) (z2
∗ + 2%(z∗ + %∗))

H(c|Q).

In particular, if 0 < δ < c1 < zs − δ for some δ > 0,

D(c) > λH(c|Q)

for some constant λ > 0 which depends only on δ, ρ, a1 and {Qi}i>1.

Proof. This follows immediately from (3.6) and the estimates

∞∑
i=1

Q̃i =
∞∑
i=1

Qic
i
1 6 c1

(
1 +

1

z∗

∞∑
i=2

Qiz
i
∗

)
< c1

(
1 +

%∗
z∗

)
,
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∞∑
i=1

ci 6
∞∑
i=1

ici = %,

together with
∑∞

i=1 aiQ̃i > a1c1. �

Proposition 3.3 shows us that as long as c1 is bounded away from 0 and zs, Cer-
cignani’s conjecture will follow immediately from a log-Sobolev inequality for ν with
respect to µ (which were defined in Proposition 3.2). Our next result shows that this
is indeed true for subcritical masses, under reasonable conditions on the coefficients:

Proposition 3.4. Let {ai}i∈N , {Qi}i∈N satisfy Hypothesis 1-3 with γ = 1 and let c =
{ci}i∈N be an arbitrary positive sequence with finite total density % < %s < +∞. Assume
that there exists δ > 0 such that

c1 6 zs − δ.
Then, the measure ν admits a log-Sobolev inequality with respect to the measure µ with
constant

(3.12) CLS =
60z3

s

δ3
C

(
zs − δ
zs

)(
4 + 2e sup

k

∣∣∣∣log

(
α

1
k+1

k+1

)∣∣∣∣+ e log
zs
δ

)
where µ and ν were defined in Proposition 3.2 and

C(η) = 1 + sup
k>3

(
k

(
1 + log

(
k

2

))
η
k
2

)
+

2η

1− η
for η < 1.

Proof. We just need to estimate the constant given in Corollary 2.4. As mentioned in
the introduction, we can assume without loss of generality that ai = i. We denote by

η =
c1

zs
6
zs − δ
zs

=: η1 < 1.

As
Q̃i = αiz

1−i
s ci1 6 zsαiη

i

we find that due to the monotonicity of {αi}i∈N

zsαk+1η
k+1 = Q̃k+1 6

∞∑
i=k+1

Q̃i 6 zsη
k+1

∞∑
i=1

αi+kη
i−1 6

zsαk+1η
k+1

1− η
.

As such

αk+1(1− η)ηk 6
∞∑

i=k+1

µi 6 αk+1
ηk

1− η
,

implying that

(3.13) −
∞∑

i=k+1

µi log

(
∞∑

i=k+1

µi

)
6
αk+1η

k

1− η

(
k log

(
1

η

)
− log (αk+1(1− η))

)
.

Next, we notice that as
∞∑
i=1

iyi =
y

(1− y)2
,

one has that

zsη 6
∞∑
i=1

iαizsη
i =

∞∑
i=1

aiQ̃i 6 zs
η

(1− η)2
,
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from which we find that

iαi(1− η)2ηi−1 6 νi 6 iαiη
i−1.

We notice that for k > 3 the monotonicity of {αi}i∈N implies that

kαkη
k

k∑
i=1

1

iαi

(
1

η

)i
= 1 +

k−1∑
i=1

kαk
iαi

ηk−i

6 1 +
k−1∑
i=1

k

i
ηk−i = 1 +

[ k2 ]∑
i=1

k

i
ηk−i +

k−1∑
i=[ k2 ]+1

k

i
ηk−i 6 1 + kη

k
2
1

[ k2 ]∑
i=1

1

i
+

k[
k
2

]
+ 1

∞∑
j=1

ηj1

6 1 + k

(
1 + log

(
k

2

))
η
k
2
1 +

2η1

1− η1

.

Using the definition of C(η) and the fact that C(η) > 1 + η we find that for all k ∈ N

kαkη
k

k∑
i=1

1

iαi

(
1

η

)i
6 C(η1).

and as such

(3.14)
k∑
i=1

1

νi
6 C(η1)

η

(1− η)2

1

kαk

(
1

η

)k
Combining the above with (3.13) yields the bound(

−
∞∑

i=k+1

µi log

(
∞∑

i=k+1

µi

))(
k∑
i=1

1

νi

)

6 C(η1)
αk+1

αk

η

(1− η)3

(
log

(
1

η

)
− 1

k
log (αk+1(1− η))

)
.

Thus, with the notation of Corollary 2.4

D1 6
C(η1)

(1− η1)3

(
sup

06x61
(−η log (η)) + η1 sup

k

k + 1

k

∣∣∣∣log

(
α

1
k+1

k+1

)∣∣∣∣+ η1 log

(
1

1− η1

))
6

C(η1)

(1− η1)3

(
1

e
+ 2η1 sup

k

∣∣∣∣log

(
α

1
k+1

k+1

)∣∣∣∣+ η1 log

(
1

1− η1

))
,

As m, defined in Corollary 2.4, is always finite we conclude using the same Corollary
that ν admits a log-Sobolev inequality with respect to µ. However, in order to estimate
the constant CLS we still need to estimate the constant D2 in the case where m > 1
(otherwise, D2 = 0).

Since
∞∑
i=m

µi 6
αm

1− η
ηm−1

the requirement that
∑m−1

i=1 µi <
2
3

implies that

1

αm−1ηm−1
6

αm
αm−1

3

(1− η)
6

3

(1− η)
.

Using the above along with the fact that m > 1 and inequality (3.14) shows that

m−1∑
i=1

1

νi
6 3C(η1)

η1

(1− η1)3

1

m− 1
6 3C(η1)

η1

(1− η1)3
.
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We can conclude that

(3.15)

(
−

∞∑
i=m−1

µi log

(
∞∑

i=m−1

µi

))(
m−1∑
i=1

1

νi

)
6 3 sup

06x61
(−x log x)C(η1)

η1

(1− η1)3

from which we conclude that

D2 6
3

e
C(η1)

η1

(1− η1)3

which completes the proof, as the result follows directly from Corollary 2.4. �

We finally have all the tools to prove part (i) of Theorem 1.1:

Proof of part (i) of Theorem 1.1. The result follows immediately from Corollary 3.3,
Proposition 3.4 and condition (1.16). �

The last part of this section will be devoted to the proof of part (ii) of Theorem 1.1.
For that we will need the following lemma:

Lemma 3.5. For any β > 0, any non-negative sequence c and positive sequence {Qi}i>1

it holds that

(3.16)
∞∑
i=1

iβQi

(√
c1ci
Qi

−
√

ci+1

Qi+1

)2

6 2

(
c1 + sup

j

Qj

Qj+1

) ∞∑
i=1

iβci.

Proof. The proof is a direct consequence of the inequality (a+ b)2 6 2(a2 + b2):

∞∑
i=1

iβQi

(√
c1ci
Qi

−
√

ci+1

Qi+1

)2

6 2c1

∞∑
i=1

iβci + 2
∞∑
i=1

iβ
Qi

Qi+1

ci+i

6 2

(
c1 + sup

j

Qj

Qj+1

) ∞∑
i=1

iβci. �

Proof of part (ii) of Theorem 1.1. We denote by Dγ(c) the lower free energy dissipation
of c associated to the coagulation coefficient ai = iγ. According to part (i) of Theorem
1.1, there exists K > 0 that depends only on δ, zs, % and {αi}i∈N such that

D1(c) > KH(c|Q).

Using interpolation between γ and β we find that

(3.17) D1(c) 6 D
β−1
β−γ
γ (c)D

1−γ
β−γ
β (c) 6 2

1−γ
β−γD

β−1
β−γ
γ (c)

(
zs +

1

zs
sup
j

αj
αj+1

) 1−γ
β−γ

M
1−γ
β−γ
β

where we have used Lemma 3.5, the upper bound on c1 and Hypothesis 2. Therefore

(3.18) D(c) > Dγ(c) >

 zsK
β−γ
1−γ

2
(
z2
s + supj

αj
αj+1

)
Mβ


1−γ
β−1

H(c|Q)
β−γ
β−1

and the proof is now complete. �

This concludes the part of the proof of Theorem 1.1 that relied on the log-Sobolev
inequality. In the next subsection we will address the question of what happens when
c1 escapes the ‘good region’ delimited by (1.16).
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3.3. Energy Dissipation Estimate when c1 is ‘Far’ From Equilibrium. The goal
of this subsection is to show that when c1 is far from equilibrium, in the aforementioned
sense, then while we may lose our desired inequality between D(c) and H(c|Q), the
energy dissipation becomes uniformly large - forcing the free energy to decrease (and
as a consequence, the distance between c1 and z decreases as well).

The next proposition, dealing with the case when c1 is ‘too large’, is an adaptation
of a theorem from [19].

Proposition 3.6. Let {ai}i∈N , {Qi}i∈N be the coagulation and detailed balance coeffi-
cients for the Becker-Döring equations. Assume that infi ai > 0 and

lim
i→∞

Qi+1

Qi

=
1

zs
.

Let c = {ci} be a non-negative sequence with finite total density % < %s. Then, if

c1 > z + δ

for any δ > 0, we have that

D(c) > ε1,

for a fixed constant ε1 that depends only on {Qi}i∈N , z, zs and δ.

Proof. Without loss of generality we may assume that z+ δ < zs. Denoting by ui = ci
Qi

we notice that

D(c) =
∞∑
i=1

aiQi (
√
c1 ui −

√
ui+1)

2
.

Let λ < 1 be such that λc1 = z + δ
2

and let i0 ∈ N be the first index such that

ui+1 < λc1ui.

This index exists, else, for any i ∈ N we have

(3.19) ui+1 > λc1ui > (λc1)i c1

and thus

% =
∞∑
i=1

ici > c1 + c1

∞∑
i=2

iQi (λc1)i−1 >
∞∑
i=1

iQi

(
z +

δ

2

)i
,

which is a contradiction.
Due to the positivity of each term in the sum consisting of the lower free energy

dissipation, we conclude that

(3.20) D(c) > ai0Qi0

(
1−
√
λ
)2

c1ui0 > ai0Qi0λ
i0−1ci0+1

1

(
1−
√
λ
)2

where we have used the fact that up to i0 − 1 we have inequality (3.19).
As we know that there exists C > 0, depending only on {Qi}i∈N , z, zs and δ such

that
∞∑

i=i0+1

ic1 (λc1)i−1Qi 6 CQi0 (λc1)i0 c1

(see Lemma B.2 in Appendix B), we conclude that, using (3.19) again,

CQi0 (λc1)i0 c1 > %̃−
i0∑
i=1

iQi (λc1)i−1 c1 > %̃−
i0∑
i=1

ici > %̃− %,
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where %̃ =
∑∞

i=1 iQi (λc1)i−1 c1. We can estimate the difference %− %̃ as

%̃− % >
∞∑
i=1

iQi

((
z +

δ

2

)i
− zi

)
>

(
∞∑
i=1

i2Qiz
i−1

)
δ

2
.

In conclusion, there exists a universal constant C1 > 0, depending only on {Qi}i∈N , z, zs
and δ, and not on i0, c1 or λ, such that

Qi0 (λc1)i0 c1 > C1.

Recalling (3.20) and using the fact that λ =
z + δ

2

c1

<
z + δ

2

z + δ
we find that:

D(c) > C1 ai0
(1−

√
λ)2

λ
> C1 inf

i>1
ai

(√
z + δ −

√
z + δ

2

)2

z + δ
2

,

completing the proof. �

Next, we present a new lower bound estimate for the energy dissipation in the case
where c1 is ‘too small’.

Lemma 3.7. Let {ai}i∈N , {Qi}i∈N be the coagulation and detailed balance coefficients
for the Becker-Döring equations. Assume that

Q = sup
i

Qi

Qi+1

< +∞ Q = inf
i

Qi

Qi+1

< +∞

a = sup
i

ai
ai+1

< +∞ a = inf
i

ai
ai+1

< +∞,

and let c be a non-negative sequence such that

c1 < δ

for some δ > 0. Then,

D(c) > Qa

(
∞∑
i=1

aici − a1δ

)
− 2
√
δ

√
Qa

(
∞∑
i=1

aici

)
.

Proof. Expanding the square, one has

D(c) = c1

∞∑
i=1

aici +
∞∑
i=1

ai
Qi

Qi+1

ci+1 − 2
√
c1

∞∑
i=1

ai

√
Qi

Qi+1

√
cici+1

so that

D(c) > Qa

(
∞∑
i=2

aici

)
− 2
√
c1

√
Qa

√√√√ ∞∑
i=2

aici

√√√√ ∞∑
i=1

aici

> Qa

(
∞∑
i=1

aici − a1δ

)
− 2
√
δ

√
Qa

(
∞∑
i=1

aici

)
,

which is the desired result. �
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Proposition 3.8. Let {ai}i∈N , {Qi}i∈N be the coagulation and detailed balance coeffi-
cients for the Becker-Döring equations. Assume that

Q = sup
i

Qi

Qi+1

< +∞ Q = inf
i

Qi

Qi+1

< +∞.

Let c be a non-negative sequence with finite total density %. Then:

(i) If ai = i then there exists a δ1 > 0, depending only on Q,Q and % such that if
c1 < δ1 then

D(c) >
Q%

4
.

(ii) If ai = iγ for γ < 1 and there exists β > 1 such that Mβ < +∞, then there exists
δ1 > 0, depending only on Q,Q, % and Mβ such that if c1 < δ1 then

D(c) >
Q%

β−γ
β−1

4M
1−γ
β−1

β

.

Proof. Both (i) and (ii) will follow immediately from Lemma 3.7 and a suitable choice
of δ1 . Indeed, for (i) we notice that

Qa

(
∞∑
i=1

aici − a1δ

)
− 2
√
δ

√
Qa

(
∞∑
i=1

aici

)
=
Q

2
(%− δ)− 2

√
δ

√
Q%,

where we have used the notations of Lemma 3.7. As the above is less than
Q%

2
and

converges to it as δ goes to zero, we can find δ1 that satisfies the desired result.
For (ii) we notice that the following interpolation estimate

% =
∞∑
i=1

ici 6

(
∞∑
i=1

iγci

) β−1
β−γ

(Mβ)
1−γ
β−γ

along with the fact that
∑∞

i=1 i
γci 6 % implies that

Qa

(
∞∑
i=1

aici − a1δ

)
− 2
√
δ

√
Qa

(
∞∑
i=1

aici

)
>
Q

2

 %
β−γ
β−1

M
1−γ
β−1

β

− δ

− 2
√
δ

√
Q%,

from which the result follows. �

We are finally ready to complete the proof of Theorem 1.1:

Proof of part (iii) of Theorem 1.1. This follows immediately from Propositions 3.6 and
3.8. �

Now that we have our general functional inequality at hand one may wonder how
sharp is this method of using the log-Sobolev inequality? Perhaps we were too coarse
in our estimation, and Cercignani’s conjecture is valid in the case ai = iγ with γ < 1
under the restrictions of Theorem 1.1. The answer, surprisingly, is that the result is
optimal, as we shall see in the next subsection.
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3.4. Optimality of the Results. This subsection is devoted to showing that unlike
the case ai = i, the case ai = iγ when γ < 1 does not satisfy Cercignani’s Conjecture,
even if c1 is bounded appropriately. This is stated in Theorem 1.2.

Proof of Theorem 1.2. We start by choosing ai = iγ, γ < 1, and Qi = e−λ(i−1) (i > 1)
for some λ > 0. We will show the desired result by constructing a family of non-negative
sequences,

{
c(ε)
}
ε>0

with a fixed mass % such that

lim
ε→0

D
(
c(ε)
)

H (c(ε)|Q)
= 0.

Let ξ > 0 be such that
%

2
=
∞∑
i=1

ieλe−ξi =
eλ−ξ

(1− e−ξ)2 .

Consider the sequence c(ε) =
{
c

(ε)
i

}
given by

c
(ε)
i = eλe−ξi + Aεe

−εi, i ∈ N
where 0 < ε is small and Aε is chosen such that the mass of the sequence c(ε) is %, i.e.
Aε = %

2
eε (1− e−ε)2

. Next, as Qi
Qi+1

= eλ for any i > 1, we see that

Qi

Qi+1

c
(ε)
i+1−c

(ε)
1 c

(ε)
i = e2λe−ξ(i+1)+Aεe

λe−ε(i+1)−e2λe−ξ(i+1)−Aεeλ
(
e−ξi−ε + e−εi−ξ

)
−A2

εe
−ε(i+1)

= Aεe
λe−ε(i+1)

(
1− e−(ξ−ε) − e−(ξ−ε)i − Aεe−λ

)
> 0

for ε small enough depending only on λ, ξ and % but not on i. Additionally, one can
easily verify that

Qic
(ε)
i+1

Qi+1c
(ε)
1 c

(ε)
i

6 eλ
(

1 +
1

Aε

)
.

As such, setting Bz,γ =
∑∞

i=1 i
γe−zi for any z > 0, we find that

(3.21)

D
(
c(ε)
)

=
∞∑
i=1

iγ
(

Qi

Qi+1

c
(ε)
i+1 − c

(ε)
i

)
log

(
Qic

(ε)
i+1

Qi+1c
(ε)
1 c

(ε)
i

)

6 Aεe
λBε,γ log

(
eλ
(

1 +
1

Aε

))((
1− Aεe−λ

)
e−ε − e−ξ

)
−AεeλBξ,γ log

(
eλ−ε

(
1 +

1

Aε

))
.

As Aε ≈ %
2
ε2 when ε approaches zero, and Bε,γ is of order ε−(1+γ) (see Lemma B.3 in

Appendix B) we conclude that

lim
ε→0

D
(
c(ε)
)

= 0.

Lastly, we turn our attention to the relative free energy. We start by denoting by ξ > 0
the unique parameter for which

% = eλ
∞∑
i=1

ie−ξi.

Clearly, ξ < ξ and the associated equilibrium with mass % is Qi = eλe−ξi. Since, for
any fixed i > 1, it holds

lim
ε→0

c
(ε)
i = c

(0)
i = eλe−ξi
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using Fatou’s lemma we can conclude that

lim inf
ε→0

H
(
c(ε)|Q

)
> H

(
c(0)|Q

)
> 0

as c(0) 6= Q. �

Remark 3.9. We notice the following:

• In the example we provided zs = eλ < +∞ but %s = +∞. This, however, is not
a great obstacle as all our proofs rely on some positive distance from zs and %s,
and can be reformulated accordingly.
• The constructed sequence c(ε) satisfies

sup
ε

∞∑
i=1

iβ c
(ε)
i = +∞

for any β > 1. Thus, the conclusion of part (ii) of Theorem 1.1 does not apply

to it. Actually, one can easily check that limε→0
D(c(ε))

(H(c(ε)|Q))
s = 0 for any s > 0.

3.5. Inequalities with Exponential Moments. Up to now, we have avoided using
exponential moments in any of our functional inequalities. In this section we will show
that when 0 6 γ < 1, under the additional assumption of a bounded exponential
moment, one can obtain an improved functional inequality between D(c) and H(c|Q),
extending the result given by Jabin and Niethammer in [19]. The key idea in this
section is to avoid using the interpolation inequality (3.17) and replace it with one that
involves an exponential weight.

Proposition 3.10. Let f be a non-negative sequence and let 0 6 γ < 1. Assume that
there exists µ ∈ (0, 4 log 2) such that

∞∑
i=1

eµifi = M exp
µ (f) < +∞.

Then,

(3.22) Mγ(f) >
M1(f)

2
(

2
µ

log
(

4Mexp
µ (f)

µeM1(f)

))1−γ

where Mα(f) denotes the α−moment of f and M exp
µ (f) is the exponential moment

defined in (1.14).

Proof. For simplicity, we will use the notation of M1 and M exp
µ instead of M1(f) and

M exp
µ (f). We start with the simple inequality

M1 =
∞∑
i=1

ifi =
N∑
i=1

i1−γiγfi +
∞∑

i=N+1

ie−
µi
2 e−

µi
2 eµifi

6 N1−γMγ +
2e−

µ(N+1)
2

µe
M exp

µ , ∀N ∈ N

(3.23)

where we used the fact that supx>0 xe
−λx = 1

λe
for any λ > 0. Our goal will be to choose

a particular N to plug in the inequality above to conclude the desired result. Again,
using the supremum of g(x) = xe−λx, we conclude that

M1 6
1

µ e
M exp

µ .
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As µ < 4 log 2 we find that

M1 <
4M exp

µ

µe1+µ
2

.

from which we conclude that N =
[

2
µ

log
(

4Mexp
µ

µeM1

)]
> 1. Plugging this N into (3.23) we

see that e−
µ(N+1)

2 6 µeM1

4Mexp
µ
, and as such

Mγ > Nγ−1M1

2

and the result follows. �

With this proposition at hand, we are prepared to show part (i) of Theorem 1.4.

Proof of part (i) of Theorem 1.4. Without loss of generality we may assume that µ ∈
(0, 4 log 2). Introduce the sequence f = {fi} where

fi = Qi

(√
c1ci
Qi

−
√

ci+1

Qi+1

)2

, i > 1.

Following the same proof as presented in Lemma 3.5 we find that

M exp
µ (f) 6 2

(
c1 + zs sup

j

αj
αj+1

)
M exp

µ (c).

Thus, using the simple fact that Mα(f) = Dα(c), for any α > 0, together with Propo-
sition 3.10 and parts (i) and (iii) of Theorem 1.1 yield the desired functional inequal-
ity. �

4. Rate of Convergence to Equilibrium

In this section we will use all the information we gathered so far to prove Theorems
1.3 and part (ii) of Theorem 1.4, giving an explicit rate of convergence to equilibrium
for the Becker-Döring equations.

The convergence result in Theorem 1.3 is a consequence of Theorem 1.1. To use the
functional inequality established there, we need first to invoke uniform (and explicit)
upper bounds on moments Mβ(c(t)) (see (1.18)). This is provided by the following (see
[10]):

Proposition 4.1. Let {ai}i∈N , {Qi}i∈N satisfy Hypotheses 1–3 with 0 6 γ 6 1, and let
c(t) = {ci(t)}i∈N be a solution to the Becker-Döring equations with mass % ∈ (0, %s).
Let β > 2− γ be such that

Mβ(c(0)) =
∞∑
i=1

iβci(0) <∞.

There exists a constant C > 0 depending only on β, Mβ(0), the initial relative free
energy H(c(0)|Q), the coefficients {ai}i>1, {bi}i>1 and the mass % such that

Mβ(c(t)) =
∞∑
i=1

iβci(t) 6 C for all t > 0.

Using such an estimate, the proof is easily derived from Theorem 1.1 and part (i) of
Theorem 1.4, yet we provide a proof here for the sake of completeness and to show that
we can find all the constants explicitly.
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Proof of Theorem 1.3. Combining Theorem 1.1 and Proposition 4.1 we conclude the
following differential inequality:

(4.1)
d

dt
H(c(t)|Q) 6

{
−min (KH(c(t)|Q), ε) γ = 1.

−min
(
KH(c(t)|Q)

β−γ
β−1 , ε

)
0 6 γ < 1,

for appropriate K and ε. We claim that there exists t0 > 0 such that for all t > t0

(4.2) H(c(t)|Q) 6

{
ε
K

γ = 1(
ε
K

) β−1
β−γ 0 6 γ < 1.

Indeed, if H(c(t))|Q) is larger than the appropriate constants in [0, t] then

d

ds
H(c(s)|Q) 6 −ε ∀s ∈ (0, t),

implying that

H(c(t)|Q) 6 H(c(0)|Q)− εt.
We define

t0 =


min

(
0,

H(c(0)|Q)− ε
K

ε

)
γ = 1

min

(
0,

H(c(0)|Q)−( ε
K )

β−1
β−γ

ε

)
0 6 γ < 1.

and find that H(c(t0)|Q) satisfies the appropriate inequality in (4.2). As H(c(t)|Q) is
decreasing, we conclude that (4.2) is valid for any t > t0.

With this in hand, along with (4.1), we have that for all t > t0:

H(c(t)|Q) 6


H(c(t0)|Q)e−K(t−t0) γ = 1

1(
H(c(t0)|Q)

γ−1
β−1 + 1−γ

β−1
K(t−t0)

)β−1
1−γ

0 6 γ < 1.

As

H(c(t0)|Q) =

{
min

(
H(c(0)|Q), ε

K

)
γ = 1

min
(
H(c(0)|Q),

(
ε
K

) β−1
β−γ
)

0 6 γ < 1,

and t0 is given explicitly we conclude that

C (H(c(0)|Q)) =



H(c(0)|Q) γ = 1, t0 = 0

ε
K
eK

H(c(0)|Q)− ε
K

ε γ = 1, t0 > 0

H(c(0)|Q) 0 6 γ < 1, t0 = 0(
ε
K

) γ−1
β−γ − 1−γ

β−1
K

H(c(0)|Q)−( ε
K )

β−1
β−γ

ε
0 6 γ < 1, t0 > 0,

completing the proof. �

Proof of part (ii) of Theorem 1.4. This follows form part (i) of Theorem 1.4 by the
same methods used in the above proof and the fact that

sup
t>0

M exp
µ′ (c(t)) < +∞

for some 0 < µ′ < µ (a known result from [19]). �
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5. Consequences for General Coagulation and Fragmentation Models

In this final Section we illustrate how the functional inequalities investigated in Sec-
tion 3 provide new insights on the behaviour of solutions to general discrete coagulation-
fragmentation models.

5.1. General Discrete Coagulation-Fragmentation Equation. The Becker-Döring
equations (1.1) are derived under the assumption that the only relevant reactions tak-
ing place are those between monomers and clusters of any size. One can obtain a more
general model by taking into account reactions between clusters of any size. Keeping
the notation of the introduction, this means that we consider reactions of the type

{i}+ {j}
 {i+ j}
for any positive integer sizes i and j. We assume their coagulation rate (i.e., the reaction
from left to right) is determined by a coefficient we call ai,j, and their fragmentation
rate (the reaction from right to left) by a coefficient called bi,j. These coefficients are
always assumed to be nonnegative (as before) and symmetric in i, j (that is, ai,j = aj,i
and bi,j = bj,i for all i, j). The corresponding to eq. (1.1) is then

(5.1)
d

dt
ci(t) =

1

2

i−1∑
j=1

Wj,i−j(t)−
∞∑
j=1

Wi,j(t), i ∈ N.

where

(5.2) Wi,j(t) := ai,j ci(t)cj(t)− bi,j ci+j(t) i ∈ N.

The system (1.1) is then a particular case of (5.1) obtained by choosing ai,j, bi,j as

ai,j = bi,j = 0 when min{i, j} > 2,(5.3)

a1,1 := 2a1, ai,1 = a1,i = ai for i > 2,(5.4)

b1,1 := 2b2, bi,1 = b1,i = bi+1 for i > 2.(5.5)

The mathematical theory of this full system is much less complete than that of (1.1).
Well-posedness of mass-conserving solutions has been studied in [2], and there are a
number of works on asymptotic behaviour, for instance [8, 9, 13, 14], but it is still not
fully understood. To start with, it is unclear whether equilibria of (5.1) are unique or
not (when they exist). A common physical condition imposed on the coefficients ai,j,
bi,j which avoids this problem is that of detailed balance: we say it holds when there
exists a sequence {Qi}i>1 of strictly positive numbers such that

(5.6) ai,jQiQj = bi,jQi+j for any i, j,

where we always further assume without loss of generality that Q1 = 1. This is the
analogue of (1.4), but in this case it needs to be imposed as a condition since numbers Qi

satisfying (5.6) cannot always be found (unlike in the Becker-Döring case). If we assume
(5.6) then equilibria (5.1) exist and have the same form (1.5) as in the Becker-Döring
case, and a similar phase transition in the long-time behaviour has been rigorously
proved in some cases (see [8, 9, 13, 14] for more details). However, even with detailed
balance the long-time behaviour is in general not understood except in particular cases.
If clusters larger than a given size N do not react among themselves (that is, if ai,j =
bi,j = 0 whenever min{i, j} > N) the system is known as the generalised Becker-Döring
system, and has been studied in [8, 16]. For coefficients ai,j given by

(5.7) ai,j = iγjη + iηjγ for any i, j,
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with η 6 0 6 γ and γ + η 6 1, the asymptotic behaviour was identified in [9] and a
constructive (though probably far from optimal) rate of convergence to equilibrium was
given. Very little is known about the asymptotic behaviour for coefficients of the type
(5.7) with γ, η > 0 and γ + η 6 1. In this case the size of ai,i is larger than that of ai,1
and the system (5.1) may behave quite differently from (1.1).

A natural question is whether any of the functional inequalities investigated in this
paper can shed new light on the behaviour of solutions to (5.1). Assuming the detailed
balance condition (5.6), along a solution c(t) = {ci(t)}i>1 to (5.1) we have

(5.8)
d

dt
H(c(t)) = −DCF(c(t))

:= −1

2

∞∑
i,j=1

ai,jQiQj

(
cicj
QiQj

− ci+j
Qi+j

)(
log

cicj
QiQj

− log
ci+j
Qi+j

)

6 −
∞∑
i=1

aiQi

(
cic1

Qi

− ci+1

Qi+1

)(
log

cic1

Qi

− log
ci+1

Qi+1

)
= D(c(t)) 6 0

(see [9] for a rigorous proof) where ai are defined by (5.4) for any i > 1. Hence the
free energy is also a Lyapunov functional for (5.1), and it dissipates at a faster rate
than for the Becker-Döring equations (since more types of reactions are allowed). As
such, it is reasonable to think that the inequalities from Section 3 can be useful also in
this case. This turns out to be true, and some improvements can be made on existing
results. However, it also turns out that our results are not able to extend the range of
possible coefficients for which convergence to a particular subcritical equilibrium can
be proved; we cannot give any new results for coefficients such as (5.7) with γ, η > 0
and γ + η 6 1.

5.2. Proof of Theorem 1.5. We now give the proof of our main result concerning
the above model (5.1). One of the main obstacles in applying directly our results to
equation (5.1) is that, unlike for the Becker-Döring equations, the moments of solutions
to the general coagulation and fragmentation system are not known to be bounded
(i.e. Proposition 4.1 is not available for (5.1)). One can for example say the following
about integer moments (this result can easily be extended to non-integer powers by
interpolation, and was known from the early works in the topic [13, 14]). From this
point onward we will assume that

(5.9) ai,j = iγjη + iηjγ for i, j ∈ N,

with η 6 γ and 0 6 λ := γ + η 6 1.

Lemma 5.1. Let k ∈ N and let c = c(t) = {ci(t)}i∈N be a solution with mass % to the
coagulation and fragmentation system (5.1) with coefficients satisfying (5.9). Then

(5.10) Mk(c(t)) 6


(
Mk(c(0)) + 1−λ

k−1

(
2k − 2

)
%

1−γ
k−1 t

) k−1
1−λ

if 0 < λ < 1

Mk(c(0)) exp
(
2
(
2k − 2

)
%t
)

if λ = 1

where Mp(c(t)) :=
∑∞

i=1 i
pci(t) for any p > 0, t > 0.

Proof. We give a formal proof for completeness; a rigorous one can be obtained by
standard approximation methods, and can be found in [2]. To simplify the notation
and since c(t) is fixed, we denote Mj(t) = Mj(c(t)) for any j > 1, t > 0. One can check
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the following weak formula for the integral of the right hand side of (5.1) against a test
sequence {φ(i)}i:

∞∑
i=1

φ(i)

(
1

2

i−1∑
j=1

Wi−j,j −
∞∑
j=1

Wi,j

)
=

1

2

∞∑
i,j

(φ(i+ j)− φ(i)− φ(j))Wi,j.

Applying this to φ(i) := ik, neglecting the negative contribution of the fragmentation
terms and using the binomial formula one obtains

d

dt
Mk(t) 6

k−1∑
l=1

(
k

l

)
Ml+γ(t)Mk−l+η(t) ∀t > 0.

Next, we use the interpolation

Mδ(t) 6M
k−δ
k−1

1 (t)M
δ−1
k−1

k (t)

where 1 < δ < k, to find that

Ml+γ(t)Mk−l+η(t) 6M1(t)
k−λ
k−1Mk(t)

k+λ−2
k−1 .

Thus,
d

dt
Mk(t) 6

(
2k − 2

)
%
k−λ
k−1M

k+λ−2
k−1

k (t) ∀t > 0

and the result follows from this differential inequality. �

With the above at hand, we are now able to prove our main result about the rate
of convergence to equilibrium in the general setting of coagulation and fragmentation
equations:

Proof of Theorem 1.5. Assume for the moment that ai,j is of the form (5.7), in order
to see why the proof only works for coefficients of the form (1.27).

Fix δ > 0 such that 0 < δ < z < zs − δ. We use the observation (5.8) that
DCF(c(t)) > D(c(t)) at all times t > 0 (defining {ai}i∈N by (5.4)). Using Theorem 1.1
(actually, its more detailed forms in equation (3.18) and Proposition 3.8) we obtain the
following:

d

dt
H(c(t)|Q) = −DCF(c(t)) 6 −D(c(t))

6

{
−CMk(c(t))

γ−1
k−1H(c(t)|Q)

k−γ
k−1 if δ < c1(t) < zs − δ

−CMk(c(t))
γ−1
k−1 if c1(t) < δ or c1(t) > zs − δ.

6 −C0Mk(c(t))
γ−1
k−1H(c(t)|Q)

k−γ
k−1

for some constant C0 > 0 that depends also on H(c(0)|Q). Using Lemma 5.1 this
implies

d

dt
H(c(t)|Q) 6 − C0(

Mk(c(0)) + 1−λ
k−1

(2k − 2)%
k−λ
k−1 t

) 1−γ
1−λ

H(c(t)|Q)
k−γ
k−1 t > 0.

This implies decay of H(c(t)) only when λ = γ, that is, when η = 0 (since λ = γ + η).
Solving the differential inequality yields the result. �

Remark 5.2. The same decay rate was obtained in [9] by means of the particular case
of inequality (1.19) for β = 2 − γ. Here we obtain slightly different decay rates by
assuming higher moments of the initial data c(0) are finite, but the method does not
seem to give a better decay than a power of log t in any case.
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Remark 5.3. It seems to the authors that the inequality we use in the proof of Theorem
1.5 is not optimal, and could be improved to deal with the case

ai,j = iγjη + iηjγ,

with a resulting convergence rate that would depend on λ = γ + η.

Appendix A. Additional Computations for the Theory of the Discrete
Log-Sobolev Inequality With Weights

We have collected here technical Lemmas from Subsection 2 that we felt would have
encumbered it.

Lemma A.1. For any sequence f , we have

Entµ(f 2) 6 L(f) 6 Entµ(f 2) + 2
∞∑
i=1

µif
2
i .

Proof. From the definition of L the inequality

Entµ(f 2) 6 L(f)

it trivial. We thus consider the right hand side inequality. For a given sequence f and
any α ∈ R we define

Gα(t) =
∞∑
i=1

µi (tfi + α)2 log

(
(tfi + α)2∑∞

i=1 µi (tfi + α)2

)

= 2
∞∑
i=1

µi (tfi + α)2 log |tfi + α| −

(
∞∑
i=1

µi (tfi + α)2

)
log

(
∞∑
i=1

µi (tfi + α)2

)
,

and notice that

G0(t) = t2 Entµ(f 2).

Next, we define g(t) = G0(t) + 2t2
∑∞

i=1 µif
2
i and notice that the inequality we want to

prove is equivalent to

Gα(1) 6 g(1).

for any α ∈ R. Clearly Gα(t) 6 g(t) when t = 0. Differentiating G we find that

G′α(t) = 4
∞∑
i=1

µifi |tfi + α| log (tfi + α) + 2
∞∑
i=1

µifi (tfi + α)

− 2

(
∞∑
i=1

µifi (tfi + α)

)
log

(
∞∑
i=1

µi (tfi + α)2

)
− 2

∞∑
i=1

µifi (tfi + α)

= 4
∞∑
i=1

µifi (tfi + α) log |tfi + α| − 2

(
∞∑
i=1

µifi (tfi + α)

)
log

(
∞∑
i=1

µi (tfi + α)2

)
which satisfies G′α(0) = 0 for any f and α, implying that G′α(0) = g′(0) = 0. As G is
defined for any t ∈ [0, 1] we see that it is enough to show that when defined,

G′′α(t) 6 g′′(t)
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for any α. Indeed,

G′′α(t) = 4
∞∑
i=1

µif
2
i log |tfi + α|+ 4

∞∑
i=1

µif
2
i − 2

∞∑
i=1

µif
2
i log

(
∞∑
i=1

µi (tfi + α)2

)

− 4
(
∑∞

i=1 µifi (tfi + α))
2∑∞

i=1 µi (tfi + α)2

= 2
∞∑
i=1

µif
2
i log

(
(tfi + α)2∑∞

i=1 µi (tfi + α)2

)
+ 4

∞∑
i=1

µif
2
i − 4

(
∑∞

i=1 µifi (tfi + α))
2∑∞

i=1 µi (tfi + α)2

As

Entµ(f 2) = sup

{
∞∑
i=1

µif
2
i log hi ;

∞∑
i=1

µihi = 1

}
we see that by choosing hi = (tfi+α)2∑∞

i=1 µi(tfi+α)2

G′′α(t) 6 2 Entµ(f 2) + 4
∞∑
i=1

µif
2
i = g′′(t),

completing the proof. �

Lemma A.2. For all f ∈ LΦ we have that

(A.1) ‖f‖L1
µ
6 ‖f‖L2

µ
6

√
3

2
‖f‖LΦ

.

Proof. The inequality

‖f‖L1
µ
6 ‖f‖L2

µ

is immediate as µ is a probability measure. To show the last inequality we may assume
that ‖f‖LΦ

= 1. Due to Fatou’s Lemma we know that if kn −→
n→∞

k > 0 then

∞∑
i=1

µiΦ

(
|fi|
k

)
6 lim inf

n→∞

∞∑
i=1

µiΦ

(
|fi|
kn

)
,

implying that if ‖f‖LΦ
> 0 then

∞∑
i=1

µiΦ

(
|fi|
‖f‖LΦ

)
6 1.

In our case, since Ψ(x) is convex we find that

1 >
∞∑
i=1

µiΦ(fi) =
∞∑
i=1

µiΨ(f 2
i ) > Ψ

(
∞∑
i=1

µif
2
i

)
= Ψ

(
‖f‖2

L2
µ

)
.

As Ψ is increasing and Ψ(1.5) > 1 we conclude that

‖f‖2
L2
µ
<

3

2
,

yielding the desired result. �

Lemma A.3. Let f ∈ LΦ. Then

(A.2) ‖f − 〈f〉‖2
L2
µ

=
1

2
lim
|a|→∞

Entµ
(
(f + a)2

)
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Proof. We start by noticing that

Entµ
(
(f + a)2

)
=
∞∑
i=1

µi
(
f 2
i + 2afi + a2

)
log

( (
1 + fi

a

)2∑∞
i=1 µi

(
1 + fi

a

)2

)
,

and continue by assuming that fi is uniformly bounded, from which the result will
follow with an application of an appropriate convergence theorem. There exists a0 such
that if |a| > |a0| we have that

∣∣fi
a

∣∣ < 1
2

uniformly in i. As on
[
−1

2
, 1

2

]
we have that there

exists C > 0 such that ∣∣∣∣log(1 + x)− x+
x2

2

∣∣∣∣ 6 Cx3.

we conclude that

log

(
1 + 2

fi
a

+
f 2
i

a2

)
=

(
2
fi
a

+
f 2
i

a2

)
− 2

f 2
i

a2
+
E1,i

a3
= 2

fi
a
− f 2

i

a2
+
E1,i

a3

and

log

(
1 + 2

〈f〉
a

+
‖f‖2

L2
µ

a2

)
= 2
〈f〉
a

+
‖f‖2

L2
µ

a2
− 2
〈f〉2

a2
+
E2,i

a3
,

where E1,i, E2,i are uniformly bounded in i. This implies that

Entµ
(
(f + a)2

)
=
∞∑
i=1

µi
(
f 2
i + 2afi + a2

)(
2
fi
a
− 2
〈f〉
a
− f 2

i

a2
−
‖f‖2

L2
µ

a2
+ 2
〈f〉2

a2

)

+
1

a

∞∑
i=1

µi

(
1 + 2

fi
a

+
f 2
i

a2

)
(E1,i − E2,i) .

The last term clearly goes to zero as |a| goes to infinity, so we are only left to deal with
the first expression.

∞∑
i=1

µi
(
f 2
i + 2afi + a2

)(
2
fi
a
− 2
〈f〉
a
− f 2

i

a2
−
‖f‖2

L2
µ

a2
+ 2
〈f〉2

a2

)
= 4 ‖f‖2

L2
µ
− 4〈f〉2

+ 2a〈f〉 − 2a〈f〉 − ‖f‖2
L2
µ
− ‖f‖2

L2
µ

+ 2〈f〉2 +
E3

a

= 2
(
‖f‖2

L2
µ
− 〈f〉2

)
+
E3

a
.

This completes the proof as ‖f − 〈f〉‖2
L2
µ

= ‖f‖2
L2
µ
− 〈f〉2. �

Lemma A.4. Let f be a sequence such that fm = 0 for some m ∈ N. Denote by
f (0) = f11i<m and f (1) = f11i>m. Then

(A.3)

∥∥〈f (0)〉
∥∥
LΦ
6
∣∣〈f (0)〉

∣∣ 6 ∥∥f (0)
∥∥
L2
µ

√√√√m−1∑
i=1

µi

∥∥〈f (1)〉
∥∥
LΦ
6
∣∣〈f (1)〉

∣∣ 6 ∥∥f (1)
∥∥
L2
µ

√√√√ ∞∑
i=m+1

µi
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Proof. We start by noticing that for any constant sequence f = α one have

‖α‖LΦ
= inf

k>0

{
∞∑
i=1

µiΦ

(
|α|
k

)
6 1

}
= inf

k>0

{
Φ

(
|α|
k

)
6 1

}
=
|α|

Φ−1(1)
6 |α| ,

as long as Φ(1) < 1 which is valid in our case. Next we notice that

∣∣〈f (0)〉
∣∣ 6 m−1∑

i=1

µi |fi| 6

√√√√m−1∑
i=1

µif 2
i

√√√√m−1∑
i=1

µi =
∥∥f (0)

∥∥
L2
µ

√√√√m−1∑
i=1

µi.

This yields the first inequality and similar arguments yield the second inequality. �

Remark A.5. As was shown in the proof of Lemma A.4 one can actually improve the
bounds in (A.3) by a factor of Ψ−1(1).

Lemma A.6. For any t > 3
2

one has that

(A.4)
1

3

t

log t
6 Ψ−1(t) 6 2

t

log t
.

Proof. We start by noticing that

Ψ

(
1

3

t

log t

)
=

1

3

t

log t
log

(
1 +

1

3

t

log t

)
6

1

3

t

log t
log

(
1 +

t

log
(

27
8

))

6
1

3

t

log t
log (1 + t) .

Thus, one notices that if

1 + t 6 t3

when t > 3
2
, we have that Ψ

(
1
3

t
log t

)
6 t, yielding the left hand side of (A.4). This is

indeed the case as g(t) = t3 − t− 1 is increasing on
[

1√
3
,∞
)

and g
(

3
2

)
> 0.

For the converse we notice that

Ψ

(
2

t

log t

)
= 2

t

log t
log

(
1 + 2

t

log t

)
> t

if and only if

1 + 2
t

log t
>
√
t.

Considering the function g(x) = x
log x

for x > 1 we see that it obtains a minimum at

x = e. Thus, for any x > 1 g(x) > e > 1. We conclude that for t > 3
2

2
t

log t
=
√
tg(
√
t) >

√
t,

showing the desired result. �
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Appendix B. Additional Useful Computations

Lemma B.1. For a given coagulation and detailed balance coefficients, {ai}i∈N , {Qi}i∈N,
and a given positive sequence c with finite mass %, we have that for any z > 0

H(c|Q) 6 H(c|Qz),

where Q = Qz.

Proof. We have that

H(c|Qz) =
∞∑
i=1

ci

(
log

(
c1

Qizi

)
− 1

)
+
∞∑
i=1

Qiz
i

implying that

H(c|Qz1)−H(c|Qz2) =
∞∑
i=1

ici log

(
z2

z1

)
+
∞∑
i=1

Qi

(
zi1 − zi2

)
.

In particular, if z2 = z we have that for any z > 0

H(c|Qz) = H(c|Q) + % log

(
z

z

)
+
∞∑
i=1

Qi

(
zi − zi

)

= H(c|Q) +
∞∑
i=1

iQiz
i log

(
z

z

)
+
∞∑
i=1

Qiz
i

(
1−

(
z

z

i
))

= H(c|Q) +
∞∑
i=1

Qiz
i

((
z

z

)i
log

((
z

z

)i)
−
(
z

z

)i
+ 1

)

= H(c|Q) +
∞∑
i=1

Qiz
iΛ

(
(Qz)i
Qi

)
,

where Λ(x) = x log x− x+ 1 > 0 when x > 0. This completes the proof. �

Lemma B.2. Let {Qi}i∈N be a non-negative sequence such that limi→∞
Qi+1

Qi
= 1

r
for

some r > 0. Assume that 0 < x < r1 < r. Then

∞∑
i=i0+1

iQix
i−1 6 CQi0x

i0 ,

where C is a constant depending only on {Qi}i∈N and r1.

Proof. Define βi = Qi+1

Qi
. We have that limi→∞ βi = 1

r
, and as such we fan find l ∈ N

such that for all i > l

Λ1 = sup
i>l

βi <
1

r1

.

Denote Λ2 = supi6l βi. As for any i > i0

Qi =

(
i−1∏
j=i0

βj

)
Qi0
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we see that
∞∑

i=i0+1

iQix
i−1 = Qi0x

i0

∞∑
i=i0+1

i

(
i−1∏
j=i0

βj

)
xi−i0−1

6 Qi0x
i0

(
Λ2

l−i0∑
j=0

i (Λ2r1)j + Λ1

∞∑
j=l+1−i0

i (Λ1r1)j
)

6 Qi0x
i0

(
Λ2

l∑
j=0

j (Λ2r1)j + Λ1

∞∑
j=0

j (Λ1r1)j
)
,

completing the proof as l,Λ1 and Λ2 depend solely on {Qi}i∈N �

Lemma B.3. Let ε > 0 and γ > 0. Denote by

Bε,γ =
∞∑
i=1

iγe−εi.

Then ε1+γBε,γ is of order 1 when ε goes to zero.

Proof. We start by noticing that the function gε,γ(x) = xγe−εx is increasing in
[
0, γ

ε

]
and decreasing in

[
γ
ε
,∞
)
. As such

Bε,γ >
∞∑

i=[ γε ]+1

iγe−εi >
∫ ∞

[ γε ]+1

xγe−εx dx

= ε−(1+γ)

∫ ∞
ε([ γε ]+1)

yγe−y dy > ε−(1+γ)

∫ ∞
ε

yγe−y dy,

showing the lower bound. For the upper bound we notice that

Bε,γ 6 sup
x>0

g ε
e
,γ(x)

∞∑
i=1

e−
ε
2
i =

(
2γ

ε

)γ
e−γ

e−
ε
2

1− e− ε2

which completes the proof since supε>0

ε e−
ε
2

1− e− ε2
< +∞. �
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[8] J. A. Cañizo. Asymptotic behavior of the generalized Becker-Döring equations for general ini-
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José A. Cañizo, Departamento de Matemática Aplicada, Universidad de Granada,
Av. Fuentenueva S/N, 18071 Granada, Spain

E-mail address: canizo@ugr.es

Amit Einav, Department of Pure Mathematics and Mathematical Statistics, Univer-
sity of Cambrigde, United Kingdom

E-mail address: A.Einav@dpmms.cam.ac.uk

Bertrand Lods, Department of Economics and Statistics & Collegio Carlo Alberto,
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