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A single population of progenitor cells maintains many epithelial
tissues. Transgenic mouse cell tracking has frequently been used
to study the growth dynamics of competing clones in these
tissues. A mathematical model (the ‘single-progenitor model’)
has been argued to reproduce the observed progenitor dynamics
accurately. This requires three parameters to describe the growth
dynamics observed in transgenic mouse cell tracking—a division
rate, a stratification rate and the probability of dividing
symmetrically. Deriving these parameters is a time intensive and
complex process. We compare the alternative strategies for
analysing this source of experimental data, identifying an
approximate Bayesian computation-based approach as the best
in terms of efficiency and appropriate error estimation. We
support our findings by explicitly modelling biological variation
and consider the impact of different sampling regimes. All tested
solutions are made available to allow new datasets to be
analysed following our workflows. Based on our findings, we
make recommendations for future experimental design.
1. Introduction
The progenitor cell dynamics of squamous epithelial cells is a
major subject of study in biomedicine. Squamous epithelial
tissues cover the external surface of the body, the mouth and the
oesophagus. Importantly, most common human cancers develop
from these tissues. Understanding the rules of cell fate decision
is therefore fundamental to explain not only healthy tissue
growth and maintenance but also the mechanisms of wound
healing, mutagenesis and cancer. Epithelial tissues consist of
layers of keratinocytes, and in mice, skin and oesophageal
tissues are maintained by a single layer of cells at the base of
the tissue. Progenitor cells in this basal layer stochastically
differentiate, cease cell division, and then stratify into the upper
layers of the tissue, migrating to the surface before eventually
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Figure 1. The architecture and maintenance of murine stratified squamous epithelial tissues. (a) Proliferation is restricted to the
deepest basal layer. Upon differentiation, basal cells exit the cell cycle and migrate through suprabasal layers, until eventually, they
reach the surface where they are shed from the tissue. Cell production and loss should be perfectly balanced so that homeostasis and
healthy function is achieved. (b) According to the single-progenitor model, stratified epithelial tissues are maintained by a single,
equipotent population of progenitor cells which divide stochastically to generate either two proliferating daughters, two
differentiating daughters, or one daughter of each type.
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being shed (figure 1a). Human squamous tissues have a more complex organization but share several
features and are believed to be maintained in a similar manner.

The ‘single-progenitor’ (SP) model (figure 1b) has been shown over several studies to accurately describe
the observed progenitor cell dynamics in transgenic lineage tracing experiments [1–7]. Using three
parameters, the division rate, the stratification rate and the probability of symmetric division, this model
predicts average clone size, clone size distributions, tissue homeostasis and clone survival probabilities.
While simulation-based techniques have been used to fit experimental data, an analytical solution has
also been described [8] allowing for maximum-likelihood calculations. Model parameterization and
accurate representation of uncertainty, however, remains problematic, particularly in light of short-term
data from in vivo histone dilution assays and live imaging that show cell cycle distribution times do not
follow the exponential distributions assumed in the analytical model [6,9].

Here, we report the results of exploring alternative approaches applied to the analysis of both
published and synthetic datasets. We find that simulation-based maximum-likelihood methods require
extensive sampling to find a distribution of parameters making them intractable for many analyses.
We further find that the use of the published analytical solution allows the identification of a single
parameter with narrow confidence intervals. However, the analysis of synthetic datasets with realistic
cell cycle distribution times and biological variation between samples suggests that these intervals are
too narrow and do not accurately reflect uncertainties in the method and underlying data. We go on
to show that an approximate Bayesian computation (ABC)-based approach using a non-Markovian
simulator gives appropriate error bars at an acceptable computational cost. All code underlying this is
made available as a Python notebook, enabling the easy analysis of newly collected datasets. Finally,
we use synthetic data to explore the relationship between parameterization and the methods of data
collection, concluding that single timepoints with typical sampling from the literature (three mice)
show high variability that when analysed in isolation could be open to misinterpretation.
2. Results
2.1. Approaches based on approximate Bayesian computation more accurately estimate

parameters and uncertainties than maximum-likelihood
In order to identify the most appropriate strategy for parameterizing progenitor cell clonal dynamics, we
explored the effectiveness of different inference techniques. Maximum-likelihood approaches have been
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widely used in previous publications [3,4,10]. In this approach to the analysis of transgenic lineage

tracing, the likelihood of different parameter combinations is estimated from the frequency at which
different clone sizes have been observed at different timepoints and a calculation of the probability of
a given clone size arising. This probability can be calculated using a published analytical solution of
the branching process describing the SP model [8]. This, however, assumes that cell cycle times are
exponentially distributed, which is not the case and can undermine this analysis [9]. In this situation,
bespoke simulation tools need to be run with extremely high sampling (over 100 000 simulations per
parameter combination) in order to calculate the clone size probability distributions accurately, at a
substantial computational cost. The estimates of likelihood calculated from the observed clone sizes
and probability distributions can then be used to calculate the most likely combination of parameters
and confidence limits.

An alternative approach, ABC, does not rely upon the calculation of the probability of clone sizes.
Instead, models with specific parameter sets are simulated and the outputs compared with
experimental observations. As this approach is simulation-based, it is insensitive to the use of non-
Markovian processes. Using a distance metric such as the inter-quantile distances between
distributions, or the Kolmogorov–Smirnov (KS) statistic, sets of parameters can be collected that have
similar properties to the experimental observations. Sequential Monte Carlo approximate Bayesian
computation is an ABC protocol that can efficiently identify parameters consistent with experimental
observations. Briefly, this approach takes an initial set of parameters, selected from a user chosen
prior, and perturbs and then simulates observational data from them. Individual parameters are
accepted or rejected based on a threshold applied to a summary statistic that compares simulated and
observed data. This process is iterated with a progressively reduced threshold. Through repeated
rounds of testing, perturbation and rejection populations of parameters can be identified that fit the
data increasingly well, and can be used to identify both uncertainty and best-fitting parameters
[11,12]. This approach is continued until the rejection rate starts to rise, at which point, it is believed
that overfitting starts to occur [11]. One advantage of SMC-ABC over maximum-likelihood estimation
(MLE) approaches is in the flexibility and efficiency of the approach, as it obviates the need for
analytical solutions or large-scale simulations.

The above three methods (MLE with analytical solution, MLE with simulation and ABC) were tested
on the analysis of both experimental [3] and synthetic datasets with exponentially distributed cell cycle
times. These simulated datasets were generated based on the clonal data provided in [3] and allowed us
to use an increased sampling (100 000 total simulated clones) compared to the typical sampling followed
in the experimental protocols (three animals per timepoint, 100 clones per animal). All approaches
broadly agreed on the estimated parameters for both experimental (figure 2a–c) and synthetic data
(figure 2d–f ). MLE using the analytical solution was able to infer the expected parameter values
efficiently (r = 0.064, ρ = 0.68), producing narrow confidence intervals (r = (0.05, 0.068) 95% CI,
ρ = (0.64, 0.72) 95% CI) and a smooth likelihood distribution when applied to the experimental dataset
(figure 2a). By contrast, MLE using model simulations suggested that a sample size larger than 100
000 clone simulations per parameter set would be required to produce an appropriate distribution,
increasing computational effort substantially. Simulations of 100 000 clones for 19 × 19 parameter
combinations estimated similar parameter values (r = 0.06, ρ = 0.64) but produced unrealistically
narrow confidence intervals of zero width. As the shape of the likelihood distribution was no longer
smooth, this suggested that sampling undermined the analysis (figure 2b). The increased
computational demand required for this analysis (28 h CPU time for 19 × 19 combinations compared
to 1.3 h using the analytical solution for the same grid) restricted the number of parameter
combinations that were searched.

In contrast with both MLE approaches, the SMC-ABC approach produced a smooth distribution
(figure 2c) with substantially larger confidence intervals when used to analyse the experimental data
(r = 0.06 (0.04, 0.073) 95% CI, ρ = 0.71 (0.56, 0.77) 95% CI). While the peaks of the MLE analysis were
within these intervals, the distribution of acceptable parameters was offset relative to the MLE
likelihoods. Given that it is known that there is substantial biological variation (division times are
estimated to vary by around 10% [9]), this raises the question of whether MLE approaches were
underestimating the uncertainty that arises due to biological variation. Alternatively, the analysis of
synthetic data, which is based on a single parameter, and hence has no uncertainty from biological
variation (figure 2d–f ), may suggest that uncertainty is overestimated in ABC, where broad CI were
observed. Furthermore, a known issue of the analytical solution is the assumption of an exponential
distribution of progenitor cell cycle times. Both histone dilution and live imaging experiments on
epithelial tissues have shown that there is a refractory period in which no division can occur [6,9].
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Figure 2. Analytical solution and simulation-based methods inferring single-progenitor parameters from both lineage tracing and
synthetic datasets. The three different parameter estimation strategies applied to mouse oesophagus lineage tracing data from [3]
(a–c) and synthetic datasets generated by performing SP model simulations with parameters λ = 2.9/week, r = 0.06, ρ = 0.5 and
assuming exponentially distributed cell cycle time (d–f ). (a,d ) A maximum-likelihood approach based on the analytical approach
gives a narrow distribution of likelihoods for each parameter. (b,e) With 100 000 simulations per parameter set, inferred likelihoods
are noisy and fail to give smooth distributions in r or ρ. (c,f ) SMC-ABC running for 10 generations. Heatmap plots Kernel Density
Estimate of the final population of parameter sets. a,b,d,e: Heatmap shows the likelihood distribution, while likelihood estimates for
each parameter are shown alongside. (a–f ) Right: Basal clone size probability distributions of the input data (grey) and the inferred
parameters (orange) as obtained at an early and late timepoint.
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This can undermine the analysis leading to the identification of incorrect parameters [9]. The issue in
assuming an underlying exponentially distributed cell cycle time is also highlighted in the obtained
clone size distributions at early time points, where the difference to the clone size distributions of the
experimental data is higher compared to later time points (figure 2a–c; electronic supplementary
material, figures S1 and S2).

To test the influence of both cell cycle distribution times, and biological variation, both features were
included in models used to generate a new set of synthetic data. These new synthetic datasets were
generated with Gamma distributed cell cycle times (Gamma distribution parameters are taken from
[9]). Furthermore, r, ρ and λ parameter values were drawn from a normal distribution around λ = 2.9/
week ± 0.1 s.d., r = 0.09 ± 0.01 s.d., and ρ = 0.7 ± 0.05 in order to introduce noise and mimic the
variation observed in real datasets. For this analysis, we chose parameter values in broad agreement
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with the previously inferred values. Where the analysis allowed, we took account of the shape of the

gamma distribution. This can be inferred through an orthogonal experimental protocol and so was
not fit alongside other parameters [9].

Application of the analytical solution to the realistic synthetic datasets revealed that the estimated
likelihoods were both inaccurate and overly precise (figure 3a). The introduction of more non-
Markovian cell cycle times leads to misleading calculated parameters in the analytical MLE approach
(figure 3a). Moreover, the narrowness of the confidence intervals calculated with this method excludes
the true parameters. We suggest that this underestimation of uncertainty arises as a result of limited
sampling, and this same issue has been noted in other, unrelated systems [13,14].

In contrast with the analytical approach, simulation-based techniques have the flexibility to account
for more realistic cell cycle times. Simulation-based MLE accurately calculated the input parameters and
successfully reproduced the expected clone size distributions (figure 3b, electronic supplementary
material, figure S3). However, the confidence intervals do not reflect the biological variation in the
samples, substantially underestimating the uncertainty in r and ρ (figure 3b).

To address this, a SMC-ABC approach using a non-Markovian simulator was applied. We find that
this generates a broad, smooth distribution that reflects the input parameters and uncertainty (figure 3c;
electronic supplementary material, figure S3). Compared with results from MLE approaches, these
findings demonstrate that the SMC-ABC inference technique is the most appropriate method for
analysing lineage tracing datasets, while also being substantially more efficient.
:202231
2.2. The contribution of individual timepoints to the likelihood distribution is sensitive to both
the specific time and biological variation

Previous studies have used the results from individual timepoints to make arguments about the selection
and rejection of different models [5]. The underestimation of noise by MLE approaches raises the
question of how biological variation influences the distributions observed at each individual
timepoint. Related to this is the question of how each timepoint contributes to the wider likelihood.
Answering these questions would aid experimental interpretation, confirming whether individual
timepoints should be studied in isolation, but also offer a route to optimizing experimental design.

To explore these questions, we revisited the experimental datasets and used synthetic datasets with
modelled biological variation and calculated the likelihood distributions. As we are primarily interested
in the shape of the distributions rather than the specific parameters proposed, we used the analytical
MLE approach, applied to synthetic data with an exponential division time distribution. In order to
explore how likelihood distributions vary with individual timepoints, we chose this approach as we
expect the shape to be estimated accurately. The parameter likelihood distributions calculated from
individual timepoints vary strongly with time and have extremely broad distributions, frequently
covering large parts of parameter space. As such they are insufficient to estimate parameters in
isolation (figure 4a). We further conclude that the precise estimation of likelihood from the whole
timeseries effectively arises from the overlap of these distinct, broad distributions—that is to say,
individual timepoints do not strongly point to a small distribution of parameters, but when
considered together, they only agree on a narrow set.

When compared with likelihood distributions calculated from experimental measurements, while we
find that while the distributions are generally highly similar, the small number of biological replicates at
each timepoint (two or three) leaves them prone to distortion by chance parameter combinations
(figure 4a, 180 days). This would suggest that individual timepoints should not be used to draw
strong conclusions as they are highly prone to chance variation.

One feature of note is that while the likelihood varies over time, later timepoints become increasingly
similar. This raises the question of whether all timepoints need to be collected, and whether some
timepoints could be omitted to increase sampling at other timepoints, potentially reducing the cost of
the experiment and making individual timepoints more reliable. To investigate this, parameter
likelihoods were calculated for synthetic datasets with increased sampling per timepoint (figure 4b).
We then performed subsequent likelihood estimations considering different timepoint combinations
(figure 4c–e), while maintaining the total number of synthetic ‘mice’ considered. We find that
including just early (figure 4c) or late (figure 4d ) timepoints were insufficient to estimate the correct
parameters of the synthetic datasets. Late timepoints illustrate some of the key properties of the
system, such as the linear growth of average clone sizes over time, which are key pieces of evidence
in favour of the SP model. Early timepoints in contrast have distinct likelihood distributions,
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Figure 3. ABC approaches efficiently and appropriately parameterize the single-progenitor model from lineage tracing data. (a) Synthetic
datasets where realistic cell cycle distribution times and biological variation are modelled show that likelihoods calculated from the
analytical engine are overly conservative and inaccurate. Heatmap plots likelihood distribution calculated using the analytical solution. (b)
MLE-based simulations considering non-Markovian cell cycle distribution times improve parameter estimation but still fail to give smooth
likelihood distributions. Heatmap plots likelihood distribution. (c) An ABC approach to inferring parameters gives a smooth distribution and
reasonable confidence intervals. Heatmap plots Kernel Density Estimate of the final population of parameter sets. A zoomed version of the
plot is shown at the bottom. (a–c) Input parameters and error estimates indicated by cross and error bars (2 x s.d.). Synthetic datasets
were generated using a mean r: 0.09 ± 0.01 s.d., ρ: 0.7 ± 0.05 s.d., λ: 2.9 ± 0.1 s.d. and assuming Gamma distributed cell cycle times.
Right: Basal clone size probability distributions of the input synthetic data (grey) and the inferred parameters (orange) as obtained at an
early and late timepoint.
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Figure 4. Estimated likelihood distributions across individual timepoints are highly sensitive to biological variation. (a) Parameter
likelihood distributions across individual timepoints calculated by the analytical engine on mouse oesophagus lineage tracing data
from [3] (top) and synthetic datasets with biological variation (bottom). Likelihoods from individual timepoints are insufficient to
estimate parameters on their own. (b–e) Inferred parameter likelihoods estimated by the analytical engine on synthetic data with
biological variation and increased sampling (five mice per timepoint) considering all timepoints: 3, 10, 21, 42, 84, 180 and 365 days
(b), the three earliest timepoints: 3, 10 and 21 days (c), the three latest timepoints: 84, 180 and 365 days (d ), a combination of
early, middle and late timepoints: 3, 42 and 365 days (e). (a–e) Synthetic datasets were generated using a mean r: 0.08 ± 0.02 s.d.,
ρ: 0.7 ± 0.1 s.d., λ: 2.85 ± 0.15 s.d. and assuming exponentially distributed cell cycle times. Input parameters with their standard
deviations are indicated by a cross.
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supporting parameter inference. Considering the above points, we investigated a combination of one
early, middle and late timepoint which we found to be sufficient to estimate the expected likelihood
distributions successfully (figure 4e).
3. Discussion
Epithelial tissue maintenance is particularly important to understand homeostasis and processes
such as ageing, preneoplasia and cancer formation. The advent of genetic lineage tracing has provided
useful insights into epithelial progenitor cell fate decision processes. Such studies are increasingly
popular and this underlines the need for appropriate tools to analyse such datasets. Progenitor cell
dynamics in multiple epithelial tissues has been argued over several years to be described by the SP
model [1–4,6], a mathematical model described with only three parameters, the division rate (λ), a
stratification rate (Γ) and a probability of symmetric division (r). Despite this simplicity, we showed
here how the choice of statistical approach can undermine the analysis, and how simulated datasets
can be used to validate the approach taken. A key finding was that maximum-likelihood calculations
based on either an analytical approach [8] or simulation was overly precise, and produced unrealistic
estimations of uncertainty that had the potential to obscure true parameters. In extremis, when tested
on synthetic datasets that explicitly accounted for realistic cell cycle distributions and inter-
mice biological variation, the proposed parameter values derived from the analytical solution
were both inaccurate and the true values were outside confidence intervals. Simulation-based
maximum-likelihood approaches were less inaccurate than the analytical solution, but had similar
issues with uncertainty, and their utility was limited by their computational cost. In addition to the
supercomputing power required for this analysis, the requirement to perform large numbers of
simulations additionally limited the granularity of the analysis, effectively reducing the number of
parameters that were tested. We found that despite being substantially less intensive, the SMC-ABC
approach was able to account for realistic cell cycle times and identify the input parameters accurately
with realistic error estimates.
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The accurate estimation of uncertainties in model parameters is important in a wide range of fields. In

the field of progenitor cell homeostasis specifically, there are active debates around the fundamental
processes that underpin maintenance of different tissues, and overconfidence in apparent parameters
could mislead researchers. Additionally, while there are multiple techniques that exist to explore
progenitor cell dynamics in the tissue, their analysis frequently leads to different parameter estimates.
In this context, an accurate treatment of uncertainty could aid the comparison between the outcomes
of different experimental methods and historical results. This is important in the light of discrepancies
in parameter estimation between lineage tracing and live imaging approaches [4]. Furthermore, while
the accurate estimation of uncertainties leads us to wider confidence intervals, it still allows us to
reject a random cell fate as proposed by [15].

The tool presented here and distributed with this manuscript, allows for accurate and efficient
analysis of newly collected datasets following our protocol. It should be noted that while this tool
enables the analysis of epithelial tissues, it can also be applied in other systems where cohesive clones
are observed. Our method could also be applied to tissues that are maintained by alternative stem
cell/progenitor cell dynamics, after modifications to the code to reflect the alternative model.

A major motivation for refining experimental design is to maximize the information generated while
reducing costs and in particular reducing the need for animal use. Our findings suggest that increasing
sampling at individual timepoints while reducing the total number of timepoints would increase the
reliability of individual timepoints without impacting parameter estimation. While this has
implications on experimental design in transgenic systems, it also illustrates how simulation and
modelling can aid experimental design beyond statistical tests. Here, simulating clone growth enables
us to efficiently explore how parameters may be measured and the implications of well-known
confounders like inter-mouse variation on what can be safely interpreted from a dataset. The adoption
of similar approaches can be both used before the experiment is run, to establish a protocol, but also
afterwards to confirm whether unexpected features of the data can be trusted.
4. Methods
4.1. The single-progenitor model
The SP model states that the tissue is maintained by a single, equipotent progenitor population of basal
cells that are able to give rise to either progenitor cells or differentiating daughters stochastically. The
progenitor cell compartment in the basal layer is modelled as containing a mixture of progenitor cells,
which go on to divide, and differentiated cells, which go on to stratify into upper layers of the tissue.
Cell fate is determined on cell division; a progenitor cell divides to either produce one differentiated
and one progenitor cell (asymmetric division), or either a pair of differentiated cells or a pair of
progenitor cells (symmetric division) (figure 1b). This model of tissue renewal can be described as a
continuous-time Markovian process, as shown by [1,3] equation (4.1):

A�!l
AA r
AB 1� 2r
BB r

8<
:

B�!G C
C�!m ;,

ð4:1Þ

where A represents the basal layer progenitor cells, B the basal cells committed to differentiate and C the
suprabasal layer cells. Progenitor cells divide regularly with an overall division rate λ and give rise to
either two progenitor daughters (AA), two differentiating daughters (BB) or one daughter of each type
(AB) with fixed probabilities. Given the fact that AA symmetric division leads to clone expansion and
BB symmetric division tends towards clone extinction, the two symmetric division rates should be
equal in order for a steady state in terms of the number of cells to be maintained across the
progenitor clone population. The probabilities of symmetric and asymmetric divisions are r and 1− 2r,
respectively, with 0 < r≤ 0.5. Differentiating daughters in the basal layer stratify to the suprabasal layer
at rate Γ and suprabasal cells, C, are shed at rate μ. The fraction of cells in the basal layer that goes on
to divide is ρ. As homeostasis dictates that the total basal layer cell population stay constant over
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time, the stratification rate can be calculated from other parameters, as shown by [1,3]:

G ¼ r

1� r
l:

Therefore, parameterizing the model requires specific values to be found for r, λ and ρ.

4.2. Generating clone size distributions following the single-progenitor model
As the SP model obeys a continuous-time Markov process, the time evolution of proliferating (A) and
differentiating (B) cell populations can be formulated in terms of the stochastic Master equation:

dPnA ,nB

dt
¼ r(nA � 1)PnA�1,nB þ (1� 2r)nAPnA ,nB�1 þ r(nA þ 1)PnAþ1,nB�2

þ G(nB þ 1)PnA,nBþ1 � (nA þ GnB)PnA ,nB , ð4:2Þ
where PnA, nB denotes the probability of finding clones containing nA proliferating cells and nB
differentiated cells. Antal and Krapivsky sought to provide an exact formula for the Master equation,
calculating clone size probabilities, PnA, nB(t), and clone survival probabilities. The exact solution was
obtained as shown in equation (4.3) (the full derivation is given in [8]).

F ¼ 1� u þ u(1þ v) � g(1þ 2w) þ g (1þ 2w)M1þw,0(g) � 2CW1þw,0(g)
02231
2r 2r Mw,0(g) þ CWw,0(g)

g ¼ uv
g
, v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4r

p
, w ¼ g(1� 2r) � 2r

2gv
, u ¼ (1� y)e�yt ð4:3Þ
C is a constant determined as shown in equation (4.4):

C ¼�uMw,0(ĝ) þ (1þ 2w)M1þw,0(ĝ) ,

uWw,0(ĝ) þ 2W1þw,0(ĝ)

where u ¼1 þ 2w � ĝþ 2r(x� y) þ y � 1
g

, ĝ ¼ (1� y)v
g

:

(4.4)
The analytical formula relies upon the use of confluent hypergeometric functions (Whittaker
functions denoted by the terms W and M ). To use the analytical solution in our analysis, we
implemented the analytical formula in Python. Specifically, for every r, ρ combination (0 < r < 0.5 and
0 < ρ < 1) and for every time point equation (4.3) was called to compute the probability for a given
basal clone size n. Clone size probabilities were searched for a set of 49 × 49 r and ρ parameter
combinations. As λ was measured independently from H2BGFP dilution assays and provided to us,
we used a fixed λ value when computing clone size probabilities for both experimental and synthetic
datasets.

As an alternative to the analytical solution, the time evolution of clonal populations following the SP
paradigm was also simulated using the Gillespie stochastic simulation algorithm [16]. Specifically, for a
fixed λ value and for 19 × 19 r, ρ parameter combinations (0 < r < 0.5 and 0 < ρ < 1), multiple Gillespie
simulation repetitions were performed (N = 100 000) to estimate the probability of observing a given
basal clone size n at a given time point t. Initially, SP model simulations were performed assuming
exponentially distributed cell cycle times. Non-Markovian simulations of the SP model were
performed assuming a Gamma-shaped cell cycle time distribution [9].

Synthetic datasets were initially generated by performing multiple Gillespie SP model simulations
under a specific λ, r, ρ parameter set. Synthetic datasets with biological variation and realistic cell
cycle times were generated by performing simulations that took into account the number of mice
typically used in a lineage tracing experiment (two to three per timepoint). Specifically, we performed
multiple Non-Markovian SP model simulations (N = 10 000), considering seven different timepoints.
This process was repeated 21 times, therefore simulating 21 animals so that three mice were
considered per each time point. The simulation set corresponding to an individual mouse was
assigned slightly different λ, r, ρ values drawn from a normal distribution to include inter-mice
variability (λ = 2.9 ± 0.1, r = 0.09 ± 0.01, ρ = 0.7 ± 0.05).

4.3. Single-progenitor parameter inference
To fit the SP model simulations against clonal datasets and identify appropriate parameter values, the
following inference techniques were tested. Fitting was performed on parameters r and ρ.
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4.3.1. Maximum-likelihood estimation

To calculate the likelihoods for the SP model parameters, a grid search was performed on a range of
valid parameter values (0 < r < 0.5 and 0 < ρ < 1) and the theoretical estimates of basal clone size
distributions—obtained either analytically or by performing stochastic Gillespie simulations—were
contrasted with the ones observed experimentally by assessing the log-likelihood of every parameter
combination θ. The most probable parameter combination was then selected as the parameter set with
the maximum log-likelihood,

l(u; x) ¼
X
t

X
n
ðxn(t) � log pn(t, u)Þ, ð4:5Þ

where xn(t) corresponds to the frequency of measured clone sizes with n basal cells at time t and pn(t, θ) is
the probability of observing clones of size n at time t for a given parameter set values θ.

4.3.2. Sequential Monte Carlo approximate Bayesian computation

To infer the parameters for the SP model an SMC-ABC approach was followed [11,17]. Simulations of the
SP model were performed starting from initial r and ρ values (0 < r < 0.5 and 0 < ρ < 1) drawn from a
uniform distribution, used as prior. For every simulation round (population), a distance metric was
computed for every value pair based on the sum of the KS’s test distance summary statistic.

While iterating over successive populations (N = 10), the new parameter sets to be tested were derived
from a resampled and perturbed weighted set of points previously drawn. Perturbation allows a more
efficient exploration of the parameter space. Parameter values with calculated distance above a certain
threshold (tolerance) were rejected, thus aiming to obtain the posterior distribution after several
rounds. Tolerance is decreased after each round. The population size (number of particles to be
accepted at each round) was set to 500.

The runtimes of the different analysis workflows were the following: the total CPU time for the
analytical solution with MLE considering a 49 × 49 grid of parameter values was 10.2 h. The total
CPU time for the MLE-based simulations considering 100 000 clone simulations per 19 × 19
combinations of parameters was 28 h. The total CPU time for the SMC-ABC considering 10
populations, a population size of 500 and simulating 1000 clones per parameter combination was
38.33 h. All analyses ran on a single core of an Intel(R) Xeon(R) processor (E5-2698 v3 @ 2.30 GHz).

All code was implemented in python 3.6, in Jupyter notebooks, using numpy. SMC-ABC was used
through the pyABC library. Code is available in electronic supplementary material.

Data accessibility. Models are included in this submission as a compressed zip, attached as electronic supplementary
material.
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