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Abstract

In this paper we present a methodology
based on distributional semantic models
that can be flexibly adapted to the specific
challenges posed by historical texts and
that allow users to retrieve semantically rel-
evant text without the need to close-read
the documents. We focus on a case study
concerned with detecting smell-related sen-
tences in historical medical reports. We
demonstrate a process for moving from
generic domain label input to a more nu-
anced evaluation of the semantics of smell
in a set of sentences extracted from this
corpus, and then develop a machine learn-
ing technique for compounding scores on a
variety of modelling parameters into more
effective classifications.

1 Introduction

With the wealth of historical text collections be-
ing digitised as part of various Digital Humanities
projects, opportunities arise to develop new ap-
proaches to enhancing search of such collections
beyond the string or word level. Challenging case
studies are often offered by humanities scholars
interested in retrieving a set of documents relevant
to a particular topic or concept.

Experiments on natural language processing
(NLP) techniques, however, have often focused
on relatively pristine datasets, providing quantifi-
cations of linguistic phenomena in a format con-
ducive to large-scale supervised machine learning
methodologies. The consequent trend has been
a range of models and systems that achieve im-
pressive results on very particular applications, but
which are not obviously generalisable to the type of
heterogeneous, unannotated data encountered by,
for instance, scholars grappling with large-scale
corpora (Faruqui et al., 2016).

In this paper, we explore a methodology
grounded in the distributional semantic modelling
paradigm specifically designed to deal with data
that is potentially dense, messy, and unprocessed.
We offer three contributions that will provide a plat-
form for the productive application of NLP tech-
niques to humanities research:

1. A method for extracting useful, nuanced se-
mantic cues from a basic and generic indica-
tion of a conceptual domain;

2. A method for using information from distri-
butional semantic models to detect instances
where signification of semantic content may
be obscure or implicit;

3. An application of a machine learning tech-
nique for applying output from our methodol-
ogy to large-scale data based on annotations
of a fraction of the overall corpus.

In order to exemplify the application of our method-
ology, we will focus on a real-life case study in
which a researcher desires to extract sentences from
a large historical corpus of medical reports that per-
tain semantically to smell. An important feature
of this particular problem is that smell is often im-
plied rather than explicated in this corpus, as in the
following sentence, from the 1913 London County
Council Medical Officer of Health report (see sec-
tion 3 for a description of these reports):

Foul breath, not depending on carious
teeth or obviously septic tonsils, was
recorded in a fairly large number of cases,
56 or 31.0 per cent.

For this reason, we take smell terms as a good tar-
get for exploring how our methodology can handle
not only heterogeneous data, but also ambiguous
semantics. While this project serves as a useful
illustration of our approach, we maintain that it



should be generalisable to any number of concep-
tual domains.

The code for this research is avail-
able on the GitHub repository https:
//github.com/BarbaraMcG/Smelly-
London/releases/tag/KONVENS-
smelly-London (DOI: 10.5281/zen-
odo.1403213).

2 Background

The distributional semantic paradigm seeks to use
observations of word co-occurrences across large
scale textual corpora in order to build up mathe-
matically tractable lexical semantic representations
that facilitate the projection of words into typically
high-dimensional vector spaces in which geometric
properties correspond to semantic relationships: so,
for instance, words that are close to one another
in a distributional semantic space are typically ex-
pected to be related in meaning (Clark, 2015). The
underlying theoretical assumption of distributional
semantics is encapsulated in the distributional hy-
pothesis (Harris, 1957), which holds that words that
are observed to occur in similar contexts are likely
to be related in meaning. Distributional semantic
modelling is, crucially, equipped to generally find
paradigmatic relationships between words that are
in some sense and in certain contexts related in
meaning, rather than to flesh out the syntagmatic
relationships inherent in the way that words directly
co-occur with one another (Sahlgren, 2008).

While distributional semantic models are often
trained on large-scale corpora, the nature of the
tasks on which these models have been evaluated
has typically, in the tradition of NLP, involved
highly structured data. This has entailed, for in-
stance, lists of words rated for degrees of related-
ness (Finkelstein et al., 2002) or words and phrases
aligned across multiple languages (Klementiev et
al., 2012). Applications have included image la-
belling (Frome et al., 2013; Karpathy and Fei-Fei,
2017) and semantic parsing (Beltagy et al., 2014).

Some recent studies have explored the way that
distributional semantic approaches can reliably dis-
cover relatively coarse indications of semantic re-
lationships between words, but they are generally
not as good at making more specific distinctions
regarding, for instance, degrees of synonymy (Hill
et al., 2015), suggesting that a distributional seman-
tic model may struggle with capturing the seman-
tic nuance that is often of interest to a scholar ap-

proaching a large-scale historical corpus. In these
circumstances, it could be very time-consuming
or even impossible for the scholar to identify men-
tions of a given concept via non-explicit semantic
cues in the text, for example.

There has been meaningful work experiment-
ing with the way that distributional semantic tech-
niques can generate vector spaces in which geo-
metric properties such as direction can correspond
to something that begins to resemble a conceptual
space (Mikolov et al., 2013; Derrac and Schock-
aert, 2015), but the idea of applying these tech-
niques to the type of complex, ambiguous data
that is targeted by digital humanists remains rel-
atively unexplored. Complex mathematical tech-
niques have been developed for applying distribu-
tional representations to composition (Coecke et
al., 2011), but the application of these models to
tasks such as word sense disambiguation (Kartsak-
lis and Sadrzadeh, 2013) and metaphor detection
(Gutiérrez et al., 2016) has generally involved train-
ing on large sets of manually annotated data. Our
objective is to explore a methodology for using dis-
tributional semantic techniques to make semantic
classifications across messy corpora, learning to
generalise from relatively sparse annotations.

In the context of Digital Humanities, Hope and
Witmore (2010) have suggested an application for
word-counting techniques in the extrapolation of
principal components from a literary corpus, which
could correspond to, for instance, plot elements
used to geometrically classify the genres of Shake-
speare’s plays. Muzny et al. (2017) do not count
words; instead they build up distributional represen-
tations of parts-of-speech to develop an unsuper-
vised model for classifying dialogism in a sample
of text. We seek to contribute to the small but
growing literature on applying these types of sta-
tistical techniques to problems in making semantic
distinctions regarding heterogenous historical data.

3 Data

We focused on British historical medical texts as
a case study. The data consists of approximately
5,800 Medical Officer of Health (MOH) reports
for London covering the years from 1848 to 1972,
which were digitized by the Wellcome Trust in
2012. The MOH reports were published annually
by the Medical Officers of Health, who were em-
ployed by local authorities in the United Kingdom.
These reports contained an overview of the health



of the population at the time, and offer a unique per-
spective on the everyday lives of Londoners over
several generations. Stemming from reaction to
infectious disease in mid-19th century, they are im-
portant sources for 19th and 20th century history of
Public Health in that country.

The MOH reports have been digitally analyzed
for the first time in the context of the Smelly Lon-
don project.1 Building on the Smelly London
project, we decided to focus on the topic of smell
as a case study to apply our methodology for en-
hanced search in the MOH reports.

3.1 Data Cleaning
The data displays a high degree of inconsistency,
as is common in the case of historical texts (Pi-
otrowski, 2012), and therefore provides a good
test bed for our methodology. In particular, as the
MOH reports are the product of contributions from
a variety of authors over the course of more than a
century, the corpus is characterised by a range of
different styles, including text in the format of lists
and tables alongside more conventional sentential
content. This presents an interesting challenge for
both data cleaning and semantic modelling.

In order to process the corpus using distribu-
tional semantic methodologies, it is necessary to
clean the data and determine sentence boundaries.
We apply standard pre-processing measures such
as elimination of most punctuation. In a historical
corpus such as the one with which we are working,
variations and mistake in spelling, not to mention
errors in the digitisation process, are not uncom-
mon. That said, we suggest that distributional se-
mantic modelling should be robust to these features
of the corpus, smoothing over errors, pushing com-
mon variants of word forms close to one another
in the output spaces, and perhaps even leveraging
very typical errors to gain some semantic traction.
We have chosen not to apply lemmatisation here.

Furthermore, the original MOH reports contain
a high degree of tabular information, and this has
resulted in a good deal of non-sentential strings
being picked up in the digitally processed version
of the data made available by the Wellcome Collec-
tion. In order to address this, we apply a constraint
by which any sentence containing a ratio of more
than 0.33 non-alphabetical characters to alphabeti-
cal characters are thrown out. Figure 1 shows the

1The project website url is https://smelly-
london.github.io/Smelly-London/
visualisation/leaflet/
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Figure 1: Histogram of ratios of non-alphabetic to
total character count for sentences in the Medical
Officer of Health corpus.

distribution of these ratios across the corpus: the
majority of sentences are concentrated around the
0.2 point, indicating that most strings identified
as complete sentences contain mainly alphabetic
characters. At the same time, this culling technique
results in the elimination of a long tail of undesir-
able data, including a number of inordinately long
sentences that might perturb our word counts.

In addition to the above measures, we use
generic encodings to represent years, ranks, and
any other string of digits. This step is intended to
provide a semantic handle for words that tend to oc-
cur in proximity to a variety of different instances
of any of these numeric types. This data cleaning
process results in a pared down corpus consisting of
3,195,696 sentences containing 81,552,482 word
tokens representing 388,320 word types.

4 Methodology

In this section, we will outline the process by which
we create a computational framework for enhanc-
ing search in historical texts and apply it to the task
of identifying sentences that indicate smell. This
modelling procedure encompasses a range of un-
supervised techniques, working from the premise
that a combination of distributional semantic appli-
cations and sentence-level heuristics can give us a
handle on how we might meaningfully assign in-
terpretations to sentences extracted from the large-
scale corpus described above. Our methodology
involves three steps:

1. Building a distributional semantic model
based on an analysis of our corpus;



2. Finding candidate smell words in a distribu-
tional semantic space;

3. Using our candidate words to make guesses
about whether a sentence indicates smell.

Combined, these steps entail a set of parameters,
and these parameters will become the basis for the
supervised training of an effective multi-variable
model that learns to classify sentences in terms of
their either implicitly or explicitly connoting smell.

4.1 Distributional Semantic Models

As described in Section 2, the premise of the distri-
butional semantic approach is that words with sim-
ilar co-occurrence profiles should be semantically
and conceptually related. An essential parameter
of a distributional semantic model is the window
within which words will be considered to co-occur.
We use two different techniques for building distri-
butional semantic models, and both involve gener-
ating representations from observations across our
corpus of words that occur within two words on
either side of a vocabulary word, within five words
on either side of a vocabulary word, and anywhere
in the same sentence as a vocabulary word. We
construct our vocabulary from the 60,000 most fre-
quent word types in our corpus, which means that
each vocabulary word is observed at least 10 times.

The first of our two modelling techniques in-
volves using a neural network to generate word em-
beddings, which are abstract vector-space represen-
tations of vocabulary words iteratively generated
from observations made across a series of iterations
over our corpus. In particular we apply both of
the methods encompassed by the widely discussed
word2vec technique described by Mikolov et al.
(2013).2 The CBOW (contextual bag-of-words) pro-
cedure involves trying to predict a word based on
the other words found in proximity to it, while the
SKIP-GRAM procedure involves trying to predict
the sequence of words within a co-occurrence win-
dow around a target word. In both cases, models
make use of an arbitrary number of dimensions in
a developing vector-space as handles for gradually
pulling word-vectors into place.

The second technique we use is the dynamically
contextual methodology originally described by
(McGregor et al., 2015), and subsequently applied
to tasks such as metaphor detection (Agres et al.,

2For this we use the gensim library for Python.

2016) and semantic coercion classification (Mc-
Gregor et al., 2017). This approach builds up a
statistical representation of each word in our vocab-
ulary over a single traversal of our corpus, using a
mutual information weighting to measure the unex-
pectedness inherent in the observation of two words
co-occurring (with co-occurrence defined as above).
This results in a very high-dimensional (with, in
effect, one dimension for every word type in the cor-
pus, since any word can in principle co-occur with
any other word) and very sparse (since most words
never will actually co-occur with one another) co-
occurrence matrix. This matrix then serves as the
basis for context-specific projections into lower-
dimensional subspaces, which will be described
in the following section. These subspaces further-
more afford two different modes of exploration,
which will likewise be discussed below.

Baroni et al. (2014) have characterised these two
different approaches in terms of predicting and
counting respectively, determining that the predic-
tive embeddings ultimately result in more produc-
tive models.3 Levy and Goldberg (2014) have of-
fered an alternative viewpoint, making the case
that both techniques are effectively accomplishing
the same thing, with differences in performance
corresponding to the tuning of model parameters.

While the statistics that populate the matrix
we use for generating conceptual projections are
broadly in line with tradition count-based ap-
proaches (with measures in place to ensure non-
negative values and to avoid selecting obscure co-
occurrence features), the dynamic nature of the
projected subspaces ensures that the relationship
between word-vectors will vary considerably from
context to context, a unique feature of this approach.
One of our empirical objectives is to compare as
well as to combine these different approaches in
their application to our novel task of identifying
semantic indications of smell, and so each of the
modelling techniques will provide the basis for a
subset of our overall methodological parameters.

4.2 Extracting Candidate Smell Words

With a few different distributional semantic spaces
built, our next task is to use these spaces to generate
candidate smell words. Our objective is not simply
to discover words that are unambiguously associ-

3In practice, count-based matrices of co-occurrence statis-
tics are often factorised into less interpretable representations
(Deerwester et al., 1990), but this does not apply to our con-
textual application of distributional semantics.



ated with smell – we could simply use a thesaurus
to do this – but rather to find words that sometimes,
in certain contexts, indicate smell. For this reason,
we begin with sets of words that are canonically
associated with smell, based on their classification
in the WordNet lexical taxonomy (Fellbaum, 1998).
We work with sets of multiple seed words; an anal-
ysis of a single word could be productive, but might
also admit elements of ambiguity associated with
that word (smell can be used as a verb, for instance).
On the other hand, using too many words could re-
sult in the selection of overly generic co-occurrence
features in our contextual models.

We take as seeds two different WordNet synsets
(collections of semantic descriptors associated with
a particular denotation). From the synset olfac-
tory property.n.01, defined as “any property de-
tected by the olfactory system”, we extract the
lemmas smell, aroma, odour, and scent (we ig-
nore words that aren’t included in our distribu-
tional semantic model vocabulary). This set of
words is presumed to correspond to general signi-
fiers of smell. Alternately, starting from the synset
smell.n.01, defined as “the sensation that results
when olfactory receptors in the nose are stimulated
by particular chemicals in gaseous form”, we take
the four synsets that are direct hyponyms within the
WordNet taxonomy (malodour.n.01, acridity.n.01,
aroma.n.02, and scent.n.02) and then extract all
unique, in-vocabulary lemmas associated with
those synsets: malodor, malodour, stench, stink,
reek, fetor, mephitis, acridity, aroma, fragrance,
perfume, and scent. This second set of words is
taken to represent more specific instances of types
of smells (and it is interesting to note that most, but
not all, seem to have negative connotations).

It must be noted that, while these words are ar-
guably, because of their relationship to the Word-
Net knowledge base, canonically about smell, they
are not necessarily prime indicators of smell in
our corpus. In fact, in the subset of 56,033 words
across 1,954 sentences annotated by a human for
indications of smell described in Section 5, only
one of these canonical smell words (scent) is ever
observed. This sparsity motivates our semantic
modelling procedures as an attempt to move from
a representation of smell that is in some sense ob-
jective to techniques for extracting specific and
contextual instances of smell. The application of
the two sets of terms to our distributional semantic
models rests upon the distributional hypothesis it-

self, which suggests that words that tend to occur in
similar contexts to our input words, and so are close
to them in a distributional semantic space, might
also at least sometimes be similar in meaning. A
key question that we will explore here is whether
we can capture something of the context-specific
way in which smell is sometimes implied.

In the case of the word2vec models, we take
each set of input words and find the centroid of
the word-vectors corresponding to each of those
words, exploring spaces of 20 and 200 dimensions.
We then explore the space around this centroid,
returning the closest words to the centroid up to a
point, with the number of words selected becoming
another model parameter: we consider the top 20,
50, 100, and 200 words in our experiments.

With our context-sensitive distributional seman-
tic models, we use the two sets of input words as the
basis for projecting subspaces that we hypothesise
will correspond to the concept of smell. We apply
two different techniques for selecting dimensions
from our large, sparse base matrix, in each case
using an analysis of the word-vectors associated
with the input words to find co-occurrence terms
that are expected to be collectively in some sense
salient to the input and therefore to the concept that
those input words likewise collectively represent:

JOINT Choose the dimensions that have non-zero
values for all input words and then have the
top mean co-occurrence weights across all
words;

INDY Concatenate a subset of dimensions that
have the highest value for each input word
independently.

We can choose how many top dimensions we re-
turn using each of these techniques. In line with
the dimensionalities of the word2vec spaces, we
explore subspaces with 20 and 200 dimensions in
the experiments reported below. Unlike with the
word2vec spaces, each dimension in a contextual
projection corresponds to a co-occurrence features,
and so to a term that is expected to be in some
sense related with the concept indicated by the seed
words used as input.

A significant property of these contextualised
subspaces is that they have geometric features that
spaces of word embeddings generally do not have.
Of particular note for the present investigation is
the idea of distance from the origin (word embed-
dings are taken as normalised). Co-occurrence



weights of 0 indicate that the corresponding word
pairs are never observed to co-occur with one an-
other, and so word-vectors found at the origin of a
subspace are taken to have no conceptual intersec-
tion with the input words used to generate the co-
occurrence dimensions delineating that subspace.

Conversely, in a contextualised subspace com-
posed of conceptually salient dimensions (ie, di-
mensions corresponding to co-occurrence terms
associated with smell words), we expect word-
vectors that have high values across many dimen-
sions and that are correspondingly far from the
origin to be likewise closely associated with the
concept we are modelling. With this in mind, we
use two different techniques to explore our contex-
tualised subspaces: as with the general word2vec
semantic spaces, we search for words which are
close to the centroid of our input words in the sub-
space (corresponding to the dist. parameters in
Table 1), and then we also search for words with
the largest norm (corresponding to the norm pa-
rameters). Again in line with the neural network
spaces, we find the top 20, 50, 100, and 200 words
associated with each of these search techniques.

Here are two examples of the top 10 words out-
put using two different combinations of the param-
eters described thus far:

Specific input, SKIP-GRAM model, 2x2 window,
20 dimensions: suffocating, sporules, thread,
stance, fibres, core, fibrinous, sacking, cuts,
bruising

Generic input, INDY-norm model, 5x5 window,
200 dimensions: taste, faint, flavour, odours,
disagreeable, colour, sour, unpleasant, pun-
gent, musty

There are peculiarities associated with each set of
parameters to be noted. For instance, the specific
input, along with the smaller co-occurrence win-
dow, discovers some seemingly off-topic but also
perhaps topically coherent words such as thread,
fibre, and sacking. The generic input, applied to
a contextually dynamic model, on the other hand
discovers some words related to smell in a more
general way, but also moves into some other sense
domains by way of taste and colour. The hypothe-
sis we seek to test is that, either independently or
collectively, the various lists of words associated
with iterations of our modelling parameters will
prove useful in detecting sentences where smell
may be entailed either implicitly or explicitly.

parameter features count
inputs general, specific 2
models SKIP-GRAM, CBOW, JOINT

(dist.), INDY (dist), JOINT

(norm), INDY (norm)

6

window 2, 5, full-sentence 3
dimension 20, 200 2
words output 20, 50, 100, 200 4
classification 1-word, 2-words, 0.05-ratio,

0.1-ratio, dependency
5

total 1,440

Table 1: The parameter space of our methodology.

4.3 Identifying Sentences
The process outlined above of building and then
exploring distributional semantic spaces generates
lists of words which may be associated with con-
notations of smell. Given a list of candidate smell
words, we propose five different techniques for
making a positive classification of a sentence:

1. The sentence contains at least one smell word;

2. The sentence contains at least two smell
words;

3. The ratio of smell words to total words in a
sentence is at least 0.05;

4. The smell-to-total word ratio in a sentence is
at least 0.1;

5. There is at least one pair of smell words in-
volved in a dependency relationship, such that
one word is a child of the other word in the
parse tree of a sentence.

The first four techniques involve straightforward
word counting across a sentence. The fifth tech-
nique, which entails applying a parser to a sentence
being analysed,4 is intended to introduce an ele-
ment of compositionality to our methodology.

5 Results and Evaluation

The various techniques for model building, space
searching, and sentence classification described
throughout the previous section combine to de-
fine the parameter space of our methodology, sum-
marised in Table 1. To review, the first four parame-
ters pertain to model building, while the fifth param-
eter (word output) refers to the number of words

4For this purpose we employ Python’s spacy 2.0.11
parser: https://spacy.io/



returned from any given distributional semantic
space, and the classification parameter refers to the
ways in which these lists of candidate smell words
are applied to actual sentences.

We evaluated our smell detection system against
a gold standard based on human annotation. The
medical historian in the team manually annotated
1,954 sentences extracted in random order from
four likewise randomly selected MOH reports
(Bermondsey 1924, Chelsea 1920, Deptford 1902,
and Port of London 1890). The task consisted in
assigning a binary label corresponding to whether
or not the sentence entailed smell.

5.1 Single Feature Extraction

We compared the gold standard rating for each of
the 1,954 annotated sentences against each of the
1,440 combinations of modelling parameters. For
each combination we calculated precision and re-
call as the ratio between the number of correctly
tagged sentences and the number of tagged sen-
tences, and the ratio between the number of cor-
rectly tagged sentences and the number of sen-
tences in the gold standard, respectively.

The distribution of precision and recall scores
across all parameter combinations is very skewed,
with most combinations consequently having low
F1 scores (see Figure 2 for a visualisation). 52
combinations had a precision score of 1, but very
low recall (< 0.020); 21 combinations had a recall
score of at least 0.900 (with a maximum of 0.973)
but a very low precision (< 0.080). The combina-
tion with the highest F1 score (0.235) had precision
of 0.194 and recall is 0.297. This combination uses
lemmas associated with the WordNet synset generi-
cally describing smell as input (general input in Ta-
ble 1), uses a dynamically contextual technique to
select dimensions that are independently salient to
each input word while returning the words that are
closest to the centroid of input words (INDY-dist),
considers the entire sentence as a co-occurring bag-
of-words (full-sentence window), projects into a
200-dimensional space, outputs 200 words, and
judges a sentence as being about smell if two out-
put words are in it (2-words classification).

This top performing parameter combination is
to a certain extent exemplary. In fact, of the top 50
feature combinations in terms of F1 score (out of
a total of 656 combinations with non-zero F1 val-
ues), 46 involve the INDY technique for selecting
conceptually contextualised subspaces. It would
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Figure 2: Precision and recall for each of the pa-
rameter combinations with at least one positive
identification of a sentence that is about smell.

seem, then, that the information contained in di-
mensions independently associated with each of a
set of smell-related input words does a good job
of specifying a subspace where the semantics of
smell take on a predictable geometry.

Some of the parameter combinations returned a
very high number of positive classifications. The
most permissive modelling set-up identified 1,870
out of 1,954 sentences as being about smell, and
there were 27 parameter combinations that pre-
dicted at least 75% of sentences were about smell.
These highly permissive versions of our methodol-
ogy are most notably drawn entirely from dynami-
cally contextual distributional semantic modelling
techniques utilising the distance metric. The sug-
gestion here is that this technique tends to discover
highly generic words likely to be found in many
different sentences—but less likely to signal the se-
mantics of smell in particular. The more specialised
set of input words extracted from WordNet also fea-
ture strongly (in 19 out of the 27), and this again
highlights an aspect of distributional semantic mod-
elling: as more words are used to define either a
region or a subspace, the specified geometry tends
to pertain to increasingly generic terms.

These results must be considered in the context
of the performance of a minority class baseline: if
we were to guess that every sentence in our dataset
were about smell, we would achieve an F1 score of
0.141, and only 140 out of the 656 feature combina-
tions that return non-zero F1 scores would do better
than this. In other words, using these mechanisms
for statistical analysis of models consisting of a



single combination of parameters, there will be a
tendency to identify those models with high recall
and at least some precision—which is to say, those
models that tend towards identifying everything
as being about smell. This approach of returning
almost every input sentence would presumably be
of little value to a scholar faced with the task of
reviewing a massive collection of text.

5.2 Multiple Feature Evaluation

Clearly, a single set of smell-related words is not
sufficient to reliably indicate sentences that are
about smell. With this in mind, we next consider
the possibility of learning a way to analyse results
from a multitude of model parameter combinations
that might give us a better chance of classifying
the semantics of a sentence. The objective of this
experiment is to apply a machine learning approach
to our data in hopes of discovering more complex
patterns across sets of lists of words which, on
their own, come up short of being comprehensively
indicative of the semantics we hope to extract.

We begin by seeding a logistic regression with
the sentence-by-sentence classifications for the top
scoring combination of parameters in terms of pre-
cision, recall, or F1 score. Moving down the list
of ranked scores for a given metric, we add to our
regression the next best performing set of classifi-
cations with the constraint that the coefficient of
determination associated with adding this next set
to the established set is no greater than 0.5. For-
mally, given an established matrix X of k parameter
combination classifications over n sentences, we
admit a column of classifications x associated with
candidate combination xk+1 for inclusion based on
the following constraint, where β is the vector of k
coefficients learned in a least mean squares linear
regression treating xk+1 as the dependent variable:

yi =
k

∑
j=1

β j ×Xi, j (1)

1− ∑
n
i=1(yi − xi)

2

Var(yi)
< 0.5 (2)

This is equivalent to setting a variance inflation
factor of 2, and is intended to inhibit our regression
from acquiring features with rampant collinearity
(O’Brien, 2007). In practice, because our indepen-
dent variables are in fact just lists of ones and zeros,
for a given sentence we are effectively just taking
the sum of coefficients that correspond to positive

seed prec. rec. F1
precision 0.800 0.324 0.460
recall 0.758 0.340 0.469
F1 score 0.770 0.362 0.492
minority class 0.076 1.000 0.141

Table 2: Results for multi-feature logistic regres-
sions on sets of parameters seeded with top single-
feature results for each statistical metric, con-
strained by a variance inflation factor.

classifications for that sentence and then taking ei-
ther the square of that sum or the square of one
minus that sum, depending on whether a new pa-
rameter combination would guess that sentence has
to do with smell or not, then dividing the sum of all
these sums across all sentences by the variance of
the sums of coefficients for positive classification
parameter combinations for each sentence.

This technique results in the generation of a
set of 155 non-collinear parameter combinations
seeded with the best precision results, a 162 combi-
nation set for recall results, and 159 combinations
for F1 scores. Each of these sets of parameter com-
binations can be conceived of as a binary matrix,
with one column for each combination of parame-
ters that was included based on the variance infla-
tion factor constraint and one row for each sentence
in our datasets. Each of these matrices then be-
comes the input for a logistic regression model, in
which the columns of scores assigned to sentences
by parameter combinations are independent vari-
ables and the regression attempts to learn to predict
the human assigned scores for each sentence.5

Results are reported in Table 2, along with a mi-
nority class baseline. The top performing F1 Score
of 0.492, which, not surprisingly, is achieved by
the matrix of parameters seeded with the top single-
combination features for F1 Scores, is significantly
stronger than the 0.235 achieved by the best single-
combination feature itself (p < .02, based on a
permutation test), not to mention the minority class
baseline. It is notable that all three of the seeding
strategies result in considerably higher precision
than recall, indicating that our regression is in all
cases learning to error on the side of caution, so to
speak, making relatively few classifications with a
relatively high degree of accuracy.

These logistic regressions can be further anal-

5We build our logistic regression using the sklearnmod-
ule for Python.



ysed by considering the specific coefficients as-
signed to each parameter combination feature of
each input matrix. What is most notable about
the top most positive features for the regression
seeded with top F1 scores is the diversity of pa-
rameters represented: across the top ten features,
there is an even split of general and specific Word-
Net input; combinations involving both static and
dynamic distributional semantic models, and both
the norm and distance techniques amongst the dy-
namic models; multiple instances of each of the
three co-occurrence window values; all four values
for total number of candidate words; and four of the
five sentence classification techniques. Amongst
the ten parameter combinations assigned the most
negative coefficients, the one thing that stands out
is a propensity for 20 dimensional distributional se-
mantic spaces over 200 dimensional spaces (9 out
of the 10), suggesting that these lower dimensional
spaces are more likely to come up with irrelevant
candidate smell words that end up becoming coun-
terindications of the semantics of smell when they
are observed in a sentence.

6 Conclusion

We have presented a general methodology to en-
hance search in historical texts by using distribu-
tional semantic models that help find instances of
words related to a specific concept. In particular,
we developed a method for extracting semantic
cues from a basic and generic indication of the
conceptual domain of smell (section 4.2) and a
method for detecting implicit instances of the smell
concept (section 4.3). We substantially enhanced
our methodology’s output by applying a machine
learning technique designed to discover patterns be-
tween different sets of words generated by varying
our modelling parameters. We applied this method-
ology to the detection of smell-related sentences in
a corpus of historical medical records. In the future
we plan to test the methodology on other historical
texts and other concepts. For the time being, the
case study presented here should offer a clear pic-
ture of how this approach can be generalised to any
number of topics.

There are a few variations on our methodology
that might be worth considering. For instance,
while distributional semantic modelling is geared
towards discovering paradigmatic relationships, we
might consider accepting the salient co-occurrence
terms that delineate our contextualised projections

as candidate words in themselves. More ambi-
tiously, we might consider applying recent work
on semantic embeddings targeting language at the
level of phrases or sentences into our modelling
procedure (Le and Mikolov, 2014) (though there
might be issues with corpus size here, and a trans-
fer learning approach might be inappropriate for
a historical corpus). Finally, an analysis of the
way that sets of words associated with different
modelling parameters overlap and diverge could
provide further evidence for future enhancements.

In terms of expanding our methodology, we
might imagine a situation where a researcher is
interested in making sure all instances where a
particular concept is mentioned are identified, or,
conversely, where there is a desire for a high degree
of certainty that all identified instances are accurate.
Questions like these, which should be examined in
collaboration with scholars dealing with large-scale
corpora, will motivate further investigation of the
way that modelling parameters might be used to
weight either precision or recall of the output.

We have also refrained here from considering
interesting questions regarding phenomena such
as diachronic semantic change. This is a complex
topic, but, rather than see the way that word mean-
ing might shift across the scope of a historic corpus
as a problem, we imagine that the general method-
ology we have outlined here might, with further
development, provide a mechanism for charting
semantic evolution.
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