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Tumour gene expression signature in primary
melanoma predicts long-term outcomes
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Adjuvant systemic therapies are now routinely used following resection of stage III mela-

noma, however accurate prognostic information is needed to better stratify patients. We use

differential expression analyses of primary tumours from 204 RNA-sequenced melanomas

within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This

signature strongly associated with progression-free (HR= 1.63, p= 5.24 × 10−5) and overall

survival (HR= 1.61, p= 1.67 × 10−4), was validated in 175 regional lymph nodes metastasis

as well as two externally ascertained datasets. The machine learning classification models

trained using the signature genes performed significantly better in predicting metastases than

models trained with clinical covariates (pAUROC = 7.03 × 10−4), or published prognostic

signatures (pAUROC < 0.05). The signature score negatively correlated with measures of

immune cell infiltration (ρ=−0.75, p < 2.2 × 10−16), with a higher score representing

reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our

expression signature identifies melanoma patients at higher risk of metastases and warrants

further evaluation in adjuvant clinical trials.

https://doi.org/10.1038/s41467-021-21207-2 OPEN

1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK. 2 Cancer Research UK Cambridge
Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK. 3 University of Leeds School of Medicine, Leeds, United Kingdom.
4 Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. 5 CIBIO/
InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Rua Padre Armando Quintas, 4485-601 Vairão, Portugal.
6Oncology Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA. 7 Lund University Cancer Center, Lund University,
Lund, Sweden. 8 Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. 9Oxford NIHR Biomedical Research
Centre and Department of Oncology, University of Oxford, Oxford, UK. 10 Department of Pathology, Cambridge University Hospitals NHS Foundation Trust,
Cambridge, UK. 11Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia. 12 Faculty of Medicine and Health, The University
of Sydney, Sydney, NSW, Australia. 13 Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi
Arabia. 14QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. 15 Discipline of Surgery, Faculty of Medicine and Health, The University of
Sydney, Sydney, NSW, Australia. 16 Royal North Shore and Mater Hospitals, Sydney, Australia. 17 Tissue Pathology and Diagnostic Oncology, Royal Prince
Alfred Hospital and New South Wales Health Pathology, Sydney, NSW, Australia. 18 Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton,
Cambridgeshire, UK. 19These authors contributed equally: David J. Adams, Alvis Brazma, Roy Rabbie. ✉email: rr13@sanger.ac.uk

NATURE COMMUNICATIONS |         (2021) 12:1137 | https://doi.org/10.1038/s41467-021-21207-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21207-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21207-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21207-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21207-2&domain=pdf
http://orcid.org/0000-0003-0453-2058
http://orcid.org/0000-0003-0453-2058
http://orcid.org/0000-0003-0453-2058
http://orcid.org/0000-0003-0453-2058
http://orcid.org/0000-0003-0453-2058
http://orcid.org/0000-0001-5774-5036
http://orcid.org/0000-0001-5774-5036
http://orcid.org/0000-0001-5774-5036
http://orcid.org/0000-0001-5774-5036
http://orcid.org/0000-0001-5774-5036
http://orcid.org/0000-0002-3603-4208
http://orcid.org/0000-0002-3603-4208
http://orcid.org/0000-0002-3603-4208
http://orcid.org/0000-0002-3603-4208
http://orcid.org/0000-0002-3603-4208
http://orcid.org/0000-0003-4832-578X
http://orcid.org/0000-0003-4832-578X
http://orcid.org/0000-0003-4832-578X
http://orcid.org/0000-0003-4832-578X
http://orcid.org/0000-0003-4832-578X
http://orcid.org/0000-0003-1230-7117
http://orcid.org/0000-0003-1230-7117
http://orcid.org/0000-0003-1230-7117
http://orcid.org/0000-0003-1230-7117
http://orcid.org/0000-0003-1230-7117
http://orcid.org/0000-0003-0167-1685
http://orcid.org/0000-0003-0167-1685
http://orcid.org/0000-0003-0167-1685
http://orcid.org/0000-0003-0167-1685
http://orcid.org/0000-0003-0167-1685
http://orcid.org/0000-0002-8752-8785
http://orcid.org/0000-0002-8752-8785
http://orcid.org/0000-0002-8752-8785
http://orcid.org/0000-0002-8752-8785
http://orcid.org/0000-0002-8752-8785
http://orcid.org/0000-0002-8424-1252
http://orcid.org/0000-0002-8424-1252
http://orcid.org/0000-0002-8424-1252
http://orcid.org/0000-0002-8424-1252
http://orcid.org/0000-0002-8424-1252
http://orcid.org/0000-0002-2960-2967
http://orcid.org/0000-0002-2960-2967
http://orcid.org/0000-0002-2960-2967
http://orcid.org/0000-0002-2960-2967
http://orcid.org/0000-0002-2960-2967
http://orcid.org/0000-0001-5092-5544
http://orcid.org/0000-0001-5092-5544
http://orcid.org/0000-0001-5092-5544
http://orcid.org/0000-0001-5092-5544
http://orcid.org/0000-0001-5092-5544
http://orcid.org/0000-0003-0469-2705
http://orcid.org/0000-0003-0469-2705
http://orcid.org/0000-0003-0469-2705
http://orcid.org/0000-0003-0469-2705
http://orcid.org/0000-0003-0469-2705
http://orcid.org/0000-0002-2816-2496
http://orcid.org/0000-0002-2816-2496
http://orcid.org/0000-0002-2816-2496
http://orcid.org/0000-0002-2816-2496
http://orcid.org/0000-0002-2816-2496
http://orcid.org/0000-0002-8991-0013
http://orcid.org/0000-0002-8991-0013
http://orcid.org/0000-0002-8991-0013
http://orcid.org/0000-0002-8991-0013
http://orcid.org/0000-0002-8991-0013
http://orcid.org/0000-0001-9490-0306
http://orcid.org/0000-0001-9490-0306
http://orcid.org/0000-0001-9490-0306
http://orcid.org/0000-0001-9490-0306
http://orcid.org/0000-0001-9490-0306
http://orcid.org/0000-0001-5988-7409
http://orcid.org/0000-0001-5988-7409
http://orcid.org/0000-0001-5988-7409
http://orcid.org/0000-0001-5988-7409
http://orcid.org/0000-0001-5988-7409
http://orcid.org/0000-0002-9195-5659
http://orcid.org/0000-0002-9195-5659
http://orcid.org/0000-0002-9195-5659
http://orcid.org/0000-0002-9195-5659
http://orcid.org/0000-0002-9195-5659
mailto:rr13@sanger.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cutaneous melanoma (CM) accounts for 75% of skin
cancer-related deaths, and the incidence has been
increasing worldwide1. Most patients present with pri-

mary tumours and the majority will be cured by local surgery.
Outcomes for patients with metastatic melanoma have improved
radically over the past 10 years with the introduction of new
systemic therapies2, although median survival of patients has
remained at ~3 years. Importantly, of those patients who ulti-
mately die of melanoma a significant proportion originally pre-
sented with early-stage disease3, suggesting that there is a
subgroup of these patients who have aggressive tumours. Thus,
optimal management of early melanoma is key to improving
outcomes.

Patients with resected AJCC stage III melanoma are now eli-
gible for adjuvant immune checkpoint inhibitors, as well as
BRAF-targeted therapies, based on randomised trials confirming
a reduction in the risk of relapse and improved overall survival
(OS)4–7. Clinical trials are underway to evaluate similar therapies
in resected stage IIB/C patients8, whose outcomes reflect that of
untreated stage IIIA/B melanoma9. As such, the number of
patients eligible for the treatment with adjuvant therapies over the
coming years is expected to increase substantially. These modern
anti-cancer drugs are high cost and carry a risk of both life-
changing and life-threatening toxicities, so there is a growing
desire to more accurately predict those patients at high risk of
recurrence in whom intervention is expected to be beneficial so-
as-to avoid over-treating patients likely to have been cured of
their disease by surgery alone.

Gene expression signatures have the potential to improve the
prediction of the biological behaviour of melanoma by objectively
defining “high risk” on a molecular level10. Previous tran-
scriptomic analyses of CM identified patterns of gene expression
associated with survival independent of AJCC stage11. Building
on these data, Gerami et al. first reported a proprietary prognostic
gene expression profile (GEP) test utilising a 31-gene panel (28
discriminating and 3 control genes) for use in patients with CM
(Decision-Dx MelanomaTM)12. The test uses quantitative reverse
transcriptase polymerase chain reaction technology to measure
the expression of individual genes from formalin-fixed paraffin-
embedded (FFPE) primary melanomas to provide a binary clas-
sification of low (class 1) or high (class 2) risk for developing
metastases within 5 years of diagnosis (with A and B subclasses to
further stratify risk)13. The signature’s performance has since
been evaluated in a number of retrospective clinical studies
evaluating recurrence-free survival14,15. A further recent unsu-
pervised clustering analysis based on 677 primary melanoma
transcriptomes (generated using the Illumina DASL array plat-
form) embedded within a population-controlled cohort study
from the Leeds Melanoma Cohort (LMC) identified a six-class
150 gene prognostic signature (herein referred to as LMC_150)16.
The signature uniquely demonstrated prognostic relevance
(melanoma-specific survival; MSS) in patients with stage I pri-
mary melanoma and further predicted poor outcomes in patients
undergoing immunotherapy16. Heterogeneity in key aspects of
the aforementioned studies (including varying trial design, sam-
ple type, sequencing platforms and primary outcome measures)
may partially explain the small number of overlapping genes
(n= 4) between both sets of signatures. Furthermore, owing to a
lack of prospective data proving the clinical utility of such
prognostic molecular tools17, there are currently no established
prognostic biomarkers able to accurately identify truly high-risk
patients.

Using patient samples and long-term clinical outcome data
from one of the largest adjuvant melanoma trials18,19, we
undertook RNA sequencing of the primary tumour matched with
robust prospective clinical data to uncover a molecular signature

that could be used to predict patient outcomes. This was then
validated in two externally ascertained datasets.

Results
Prognostic signature generated using covariate-corrected dif-
ferential expression. The structure of the datasets and analyses
are depicted in Supplementary Fig. S1. Principal component
analysis (PCA) showed that primary CMs (n= 204) and mela-
noma spread to local lymph nodes (LNs; n= 175) clustered
separately, suggesting an impact of the microenvironment on
tumour gene expression (Supplementary Fig. S2; see “Methods”
section “Visualization of inherent distribution of samples”). We
therefore decided to treat these as separate datasets, focussing our
analyses on the primary melanoma samples followed by a vali-
dation of our results in the regional LN metastases from this
dataset. We conducted a differential expression analysis, identi-
fying differences in gene expression levels in primary tumours
between those patients with and without distant metastasis over a
minimum of 6 years follow up, while controlling for a key set of
variables that were independently associated with distant metas-
tases, including Stage (AJCC 7th edition20, herein referred to as
“stage”), Breslow thickness, ECOG; Eastern Cooperative Oncol-
ogy Group Performance Status and the experimental adjuvant
therapy (Supplementary Fig. S3a and Supplementary Table S1;
see “Methods” sections “Clinical covariate selection” and “Dif-
ferential expression analysis”). Our analyses revealed 197 sig-
nificantly differentially expressed genes (DEGs, FDR-adjusted p
value <0.1) associated with metastases (Supplementary Figs. S1
and S3b). These DEGs were further filtered to remove pseudo-
genes (n= 39) and those genes not identified within the LMC
DASL array (n= 37)16 to enable external validation of our sig-
nature (Supplementary Fig. S1). We were therefore left with 121
DEGs, which made up our core prognostic signature herein
referred to as “Cam_121” (Supplementary Data 1).

Signature added incremental prognostic value when combined
with conventional clinical staging. In order to explore the
relationship between Cam_121 gene expression and prognosis,
we first performed univariate Cox regression using the weighted
Cam_121 expression score (see “Methods” section “Survival
analyses”) as a predictor. We found that the Cam_121 signature
significantly associated with both OS (hazard ratio (HR)= 1.64
(95% CI 1.30–2.07), p= 3.56 × 10−5) and progression-free sur-
vival (PFS; HR= 1.63 (95% CI 1.31–2.02), p= 8.92 × 10−6;
Fig. 1). In order to evaluate whether the signature score con-
tributed independent prognostic information while controlling
for conventional clinical covariates, multivariate Cox regression
analyses were performed (Fig. 1c). The signature score was sig-
nificantly associated with both OS (HR= 1.61 (95% CI
1.26–2.07), p= 0.000167) and PFS (HR= 1.63 (95% CI
1.29–2.07), p= 5.24 × 10−5) in multivariate Cox regression
models.

In order to avoid the risk of overfitting, we further tested the
performance of Cam_121 in an (entirely separate) set of samples
from regional LN metastasis embedded within this dataset (n=
143). We found that the weighted signature score was also
significantly associated with both OS (HR= 1.72 (95% CI
1.37–2.14), p= 1.53 × 10−6) and PFS (HR= 1.75 (95% CI
1.43–2.16), p= 1.10 × 10−7) in multivariate Cox regression
models (Fig. 2a–c). Thereby indicating that Cam_121 could also
be relevant as a prognostic tool after the resection of stage III
(regional LN positive) melanoma.

We further tested the signatures’ prognostic power in four
externally acquired independent validation datasets from; (i) the
LMC (n= 677)16; (ii) The Cancer Genome Atlas (TCGA-
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SKCM21; skin= 159 and LN= 216); (iii) the Lund Primary
Melanoma Cohort22 (n= 223) and (iv) the Australian Melanoma
Genome Project23. Validation within the LMC confirmed that
Cam_121 was associated with melanoma-specific survival in both
univariate (HR= 1.49 (95% CI 1.27–1.74), p= 5 × 10−7) and
multivariate Cox regression models (HR= 1.7 (95% CI), p=
0.001, Fig. 2d, e). Owing to a lack of power when considering true
primary melanomas within TCGA-SKCM dataset (n= 87),
samples from primary tumours were considered together with
regional cutaneous relapsed tumours (defined herein as “Skin
TCGA-SKCM” (n= 159)) and were tested separately from the

regional LN samples (n= 216). Cam_121 was associated with OS
in both univariate (skin: HR= 1.50, 95% CI= (1.15, 1.96), p=
0.00273; LN: HR= 1.28, 95% CI= (1.06, 1.56), p= 0.0109) and
multivariate survival analyses (skin: HR= 1.59, 95% CI= (1.17,
2.17), p= 0.00348; LN: HR= 1.28, 95% CI= (1.03, 1.59), p=
0.0256) in these two external datasets (Fig. 2f–i). A third external
validation was attempted using the Lund Primary Melanoma
Cohort22 (n= 223); however (owing to the use of less sensitive
sequencing technologies within the study), only 24 of the
Cam_121 genes were identified within this dataset (Supplemen-
tary Fig. S5b). Nonetheless, this 24-gene signature was

Fig. 1 The Cam_121 gene expression signature is strongly associated with survival in uni- and multivariate Cox regression analyses (AVAST-M
primary melanoma cohort; n= 194). Kaplan–Meier survival plots comparing the survival probabilities (y-axes) as a function of time in years (x-axes) of
groups with high and low “Cam_121” (quantile 0.33 split) for outcomes a overall survival (OS) and b progression-free survival (PFS). The p value of a two-
sided logrank test comparing the survival distributions of both groups are indicated. c Forest plot indicating the hazard ratio (HR) estimates relating to the
Cam_121 signature when predicting OS (green) and PFS (orange) by means of Cox proportional hazard models controlling for different (sets of) clinical
variables (y-axis). The HR estimates are indicated by the dots at the centre of the error bars; the horizontal error bars correspond to the 95% confidence
intervals of the HR. The two-sided Wald t test p values corresponding to the signature “Cam_121” parameter are indicated for each model and outcome.
ECOG Eastern Cooperative Oncology Group Performance Status. TIL count Tumour-infiltrating lymphocyte count.
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Fig. 2 Validation of the Cam_121 in further datasets. We explored the Cam_121 signature in the entirely separate lymph node (LN) samples from the
AVAST-M Cohort (a–c; n= 143), as well as in three independently acquired external datasets including the Leeds Melanoma Cohort (d, e; n= 677),
TCGA-SKCM LN (f, g; n= 212) and TCGA-SKCM Skin (h, i; n= 156). AVAST-M LN Cohort: Kaplan–Meier (K–M) survival plots comparing the survival
probabilities (y-axes) as a function of time in years (x-axes) of groups with high and low “Cam_121” (quantile 0.33 split) for outcomes a overall survival
(OS) and b progression-free survival (PFS). The p value of a logrank test comparing the survival distributions of both groups is indicated on each curve.
c Forest plot indicating the hazard ratio (HR) estimates (dots at the centre of the error bars) and corresponding 95% confidence intervals (horizontal error
bars) related to the Cam_121 signature when predicting OS (green) and PFS (orange) by means of Cox proportional hazard models when controlling for
different (sets of) clinical variables (y-axis). The two-sided Wald t test p values corresponding to the signature “Cam_121” parameter are indicated for each
model and outcome. ECOG Eastern Cooperative Oncology Group Performance Status. Leeds Melanoma Cohort: d K–M curve comparing the melanoma-
specific survival probabilities (y-axis) of groups with high and low “Cam_121” (quantile 0.33 split) through time in years (x-axis) and p value of a two-sided
logrank test comparing the survival distributions. e Forest plot showing the HR estimates (dots at the centre of the error bars) and 95% confidence
intervals (horizontal error bars) of the HR estimates corresponding to the continuous signature “Cam_121” parameter when predicting melanoma-specific
survival by means of different Cox proportional hazard models (y-axis). Multivariate correction was undertaken for sex, age, Breslow thickness, ulceration,
mitotic count, as well as BRAF and NRASmutation status and (in the final row), correction was also undertaken for the tumour-infiltrating lymphocyte (TIL)
score. TCGA-SKCM Cohort: f, h K–M curves comparing the overall survival probabilities of groups with high and low “Cam_121” (quantile 0.33 split) and p
value of a two-sided logrank test comparing the survival distributions in TCGA-SKCM LN and TCGA-SKCM Skin datasets, respectively. TCGA-SKCM
Cohort: g, i Forest plot showing the HR estimates (dots at the centre of the error bars) and 95% confidence intervals (horizontal error bars) corresponding
to the of related to the continuous signature “Cam_121” parameter when controlling for different (sets of) clinical variables (y-axes) in the TCGA-SKCM LN
and TCGA-SKCM Skin datasets, respectively. Multivariate correction was undertaken for sex, age, stage and Breslow thickness. The p values of two-sided
Wald t tests corresponding to the signature “Cam_121” parameter are indicated for each model and outcome (no multiplicity correction used).
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significantly correlated with PFS (HR= 1.67 (95% CI 1.06–2.62),
p= 0.03 univariate Cox regression analyses), but not with OS
(p= 0.32) (Supplementary Fig. S5a). A final validation was
attempted using the Australia Melanoma Genome Project
dataset23, in which only 55 samples from a mixture of tissue
sites (including primary tumours, regional LNs, distant metas-
tases, in-transit metastases and others) were available for analysis.
Cox regression parameter estimates showed the same trend as
observed above when comparing the “high”/”low” risk Cam_121
cohorts in this dataset (Supplementary Fig. S4a), however,
significance was not achieved. Our power calculations revealed
that the sample size was too small to statistically detect the effect
of interest with a high probability (Supplementary Fig. S4b; see
power analysis in “Methods” section “Power calculation for the
external validation datasets”).

The published signature from Gerami et al.12 (Decision-Dx
MelanomaTM; n= 27 genes) was not associated with OS in
multivariate models in the AVAST-M primary melanoma dataset.
The signature from Thakur et al.16 (LMC_150; n= 150 genes)
was associated with both OS and PFS, though the wide confidence
intervals may in part be reflective of a higher proportion of stage
III patients in the AVAST-M dataset (Supplementary Fig. S6).

Cam_121 predicts metastasis better than both clinical covari-
ates and published prognostic signatures. We further sought to
determine whether the Cam_121 gene expression signature out-
performs key clinical covariates in predicting whether a primary
melanoma would ultimately metastasise to distant body sites or not.
For this, we developed separate machine learning (ML) classifica-
tion models using the Cam_121 gene expression values as features,
as well as using clinical covariates as features, with the aim of
maximising the area under the sensitivity vs (1-specificity) curve
(herein referred to as “AUROC” (area under the receiver operating
characteristic curve)) as both the metrics are important in this case
(see “Methods” section “Machine learning analysis”; Supplementary
Fig. S15). Note that these clinical covariates were selected inde-
pendently based on their level of association with distant metastases
(Supplementary Table S1a). We found that models trained with the
Cam_121 gene expression signature as features significantly out-
performed the models trained with the clinical covariates as features
(pAUROC= 2.27 × 10−3, psensitivity= 1.79 × 10−3, pspecificity= 0.46;
Supplementary Table S2a), and this remained consistent across all
ML classifiers (Fig. 3a, Supplementary Figs. S7 and S8, and Sup-
plementary Table S2a). The classifier giving the highest AUROC
with the prognostic signature gave better results across all three
performance metrics than the classifier giving the highest AUROC
with the clinical covariates alone: AUROC (0.67 ± 0.12 with the
clinical covariates alone vs 0.83 ± 0.09 with the Cam_121 alone),
sensitivity (0.58 ± 0.16 vs 0.75 ± 0.13) and specificity (0.71 ± 0.16 vs
0.73 ± 0.14; Fig. 3a and Supplementary Fig. S8).

In order to reduce the risk of bias that might result from
feature selection (of both Cam_121 and clinical covariates) and
training/testing from the same dataset, we went on to validate our
findings in an entirely independent dataset represented by the
regional LN samples from within the AVAST-M dataset (n=
143). In this model, the classifiers giving the highest AUROC for
each set of features on the training data (AVAST-M primary
melanoma data) were selected for further validation within
regional LN samples. We found that the classification model
developed using the Cam_121 gene expression signature as
features (AUROC= 0.67) significantly outperformed the classi-
fication model developed using the clinical covariates alone
(AUROC= 0.54; DeLong’s test p value= 0.02, z= 2.05; Fig. 3b
and Supplementary Table S2b). In particular, adding the
signature to the clinical covariates (Cam_121+ clinical

covariates) correctly predicted an additional three overlapping
cases that were missed out by the model trained on the signature
alone (49 overlapping cases in Fig. 3c vs 46 overlapping cases in
Fig. 3d).

In order to test the performance of the published prognostic
signatures from Gerami et al.12 (Decision-Dx MelanomaTM; n=
27 genes) and Thakur et al.16 (LMC_150; n= 150 genes) in
predicting metastases in an unbiased way, we repeated the
training and testing of classification models in the entirely
independent AVAST-M LN dataset (n= 143) from which no
feature selection has been undertaken. We found that
Cam_121 significantly outperformed the baseline clinical covari-
ates (Cam_121 vs clinical covariates: pAUROC= 7.03 × 10−4,
zAUROC= 4.44), as well as these two published signatures at the
5% significance level (Cam_121 vs LMC_150: pAUROC= 0.02,
zAUROC= 2.30; Cam_121 vs Decision-Dx Melanoma: pAUROC=
0.012, zAUROC= 2.45; Fig. 3e and Supplementary Table S2c, d).

Cam_121 gene signature score performed significantly better
than genes selected at random in predicting overall and
progression-free survival. In light of reports suggesting that
randomly selected genes may perform equally well in predicting
prognosis as published signatures24, we further tested the per-
formance of Cam_121 against a signature of 121 randomly
selected genes (from a pool of 19,434 protein-coding genes in our
dataset and repeated 1000 times; see “Methods” section “Testing
signature performance against randomly selected genes”).
Cam_121 significantly outperformed random signatures across all
measures of clinical efficacy including: OS (p= 0.001) and PFS
(p= 0.001) in multivariate Cox regression models (Supplemen-
tary Fig. S9).

Stage II patients with a “high-risk” signature demonstrated a
33% risk of death at 5 years, a threshold for which adjuvant
therapy could be considered. We envisage that one of the central
clinical applications of a prognostic GEP might be to identify
those patients with stage II melanoma who may be at higher risk
of relapse or death and for whom adjuvant systemic therapies
may be considered. In order to compare our data with the
registration adjuvant melanoma trials4–7, we measured the
absolute risk of death at 5 years (calculated as the proportion of
patients who died due to melanoma within 5 years from diag-
nosis; see “Methods” section “Determination of the weighted
expression score cut-off to define “high” and “low” absolute risk
of death at 5 years”).

Analyses within the LMC cohort (where there was a higher
preponderance of early-stage patients) revealed that stage II
patients had a 27% (76/279) baseline absolute risk of death at 5
years. This risk rose to 33% (64/192) in those stage II patients
with a high-risk-weighted Cam_121 expression score profile
and dropped to 14% (12/87) in those stage II patients with a low-
risk profile (Table 1). The stratification of high/low-risk cohorts
in this context was based on a 0.33 quantile cut off of the
weighted Cam_121 expression score and subsequent references to
high/low Cam_121 risk groups refer to these weighted expression
groups.

Per-gene analyses. In order to determine the relative influence of
each gene and each baseline clinical covariate within the ML
model, we analysed their feature importance scores and found
that no single feature dominated the performance of the model
(Supplementary Fig. S10), suggesting that it is the combination of
all the features that yielded improved performance over the
baseline clinical covariates (Fig. 3a, and Supplementary Figs. S7
and S8). In keeping with this, none of the Cam_121 genes proved
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significant in the per-gene multivariate survival analyses after
correcting for multiple testing (p value <0.05), further confirming
that it is the combination of all the Cam_121 signature genes that
provide the improved performance in predicting OS and PFS
(Supplementary Figs. S11 and S12).

We undertook further multivariate Cox regression analyses for
all protein-coding genes in this dataset (n= 19,427) and found no
single gene was significantly associated with either PFS or
OS after correcting for multiple testing (p value < 0.05) (Supple-
mentary Data 2 and Supplementary Data 3).

Fig. 3 The Cam_121 gene expression signature is predictive of metastases across multiple machine learning classification models and in an internal
validation dataset (n= 143). a Plot showing the mean ± standard deviation of area under the ROC curve (AUROC) predicted by different classification models
when trained using tenfold cross validation (CV; repeats= 1000) on the AVAST-M primary melanoma dataset (n= 194). The features used for training each
classification model are indicated on the top grey panel. Within each panel, seven different machine learning classifiers were trained to predict metastases.
Statistical comparison using one-sided two-sample Welch t tests are indicated (see also Supplementary Table S2a). b Area under the ROC curve plots, showing,
for the best performing classification model selected in each panel of a, its performance on an entirely separate AVAST-M lymph node validation dataset (n=
143). The one-sided DeLong’s test p value is reported for each comparison (see also Supplementary Table S2b). c, d Venn diagrams comparing the number of
correctly predicted relapse outcomes (yes/no) of 143 patients from the models described in b. c Venn diagram showing the number of correctly predicted
relapse outcomes specific to or common between “Cam_121+ clinical covariates” (blue) vs “Clinical covariates” (pink). d Venn diagram showing the number of
correctly predicted relapse outcomes specific to or common between “Cam_121”(blue) and “clinical covariates” alone (pink). Out of a total of 143 patients, 30
were wrongly predicted by both the models in c and 36 were wrongly predicted by both the models in d. e Plot showing the performance of different
classification models in predicting metastases in terms of AUROC (mean ± standard deviation) when trained on the AVAST-M lymph node dataset (n= 143).
Within each panel, 14 different machine learning classifiers were trained to predict metastases: seven using tenfold CV (repeats= 1000) and seven using
bootstrap resampling method (repeats= 1000). The two horizontal lines indicated within each panel denote the median AUROC of these seven classifiers,
respectively. Statistical comparison using one-sided two-sample Welch t tests are indicated (bootstrap in green and tenfold CV in orange), see also
Supplementary Tables S2c-d. Decision-Dx Melanoma: Decision-Dx MelanomaTM, LMC_150: Leeds Melanoma Cohort 150 gene signature. See “Methods”
section “Machine learning analysis“ for details about the classification algorithms. Source data are provided as a Source data file.
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A high weighted Cam_121 score reflected a lymphocyte
depleted tumour with worse clinical outcomes. In order to
identify the biological processes reflected by the signature, we ran
pre-ranked gene set enrichment analyses on genes ordered by
their shrunken log-fold change from the covariate-corrected dif-
ferential expression analysis (see “Methods” section “Gene set
enrichment analyses”). In doing this, we found that the top five
significantly (FDR-corrected p value <0.05) downregulated hall-
mark gene sets resulting from this analysis included interferon
(IFN) gamma response, IFN alpha response, allograft rejection,
inflammatory response and IL6-JAK-STAT3 signalling (Supple-
mentary Fig. S13). Interestingly, when we ran gene set enrich-
ment on DEGs derived from the (entirely separate) LN samples
(n= 143; Supplementary Fig. S14), we observed significant (FDR-
corrected p value <0.01) downregulation of the exact same
immune-related processes (Supplementary Fig. S14c). Therefore,
indicating that the differential expression analyses (with a pre-
dominance of downregulated genes in both the primary mela-
noma and regional LN datasets) also reflect a significant
downregulation of key immune-mediated processes in the sam-
ples from patients that developed metastases (Supplementary
Figs. S3b, S13a and S14c).

We next used the Angelova dataset25 to deconvolute the
expression of immune cell subtypes within each sample
(see “Methods” section “Immune cell correlation analysis”). We
found a negative correlation between the weighted signature score
and multiple immune cell types (with the highest correlation
found with activated B cells (ρDistant-Metastases=No=−0.8, exact
two-sided pDistant-Metastases=No < 2.2 × 10−16; Fig. 4a), T cells
(ρDistant-Metastases=No=−0.73, pDistant-Metastases=No < 2.2 × 10−16;
Fig. 4c), as well the overall immune cell expression score
(ρDistant-Metastases=No=−0.75, pDistant-Metastases=No < 2.2 × 10−16;
Fig. 4e). We also found that samples with a high weighted
Cam_121 expression score were more likely to develop metastases
than samples with a low weighted Cam_121 expression score
(Fig. 4b, d, f and Supplementary Table S3). Although nine of the
Cam_121 signature genes were common with the Angelova
immune marker genes (TUBB, AIM2, CASQ1, NTRK1, FASLG,
CCR3, P2RY14, PRF1 and CCR5), we were able to demonstrate
that samples segregated based on overall immune cell score, with
low immune cell expression clustering with high weighted
Cam_121 gene expression scores (Fig. 4g), using PCA.

We further explored the relationship between the weighted
Cam_121 gene expression score and histopathologically assessed
tumour-infiltrating lymphocyte (TIL) scores (applying indepen-
dent scoring criteria with both the Clark26 and Melanoma
Institute Australia (MIA) scores27, see “Methods” section
“Tumour infiltrating lymphocyte analysis”). This further

confirmed a significant negative correlation between the
Cam_121 signature and TIL scores, such that a higher signature
score equated to a relatively immune-deprived tumour with
consequent worse clinical outcomes (Fig. 5). It is nonetheless
important to point out that the Cam_121 signature retained its
prognostic influence even following correction for pathologically
assessed TIL scores, and this remained consistent both within the
AVAST-M and the external validation dataset from the LMC
(Figs. 1c and 2e, respectively).

Discussion. The ability to identify primary melanoma patients at
risk for disease recurrence is an important unmet need and effective
prognostic biomarkers that could serve to guide adjuvant therapy
are lacking. The 31-GEP assay (Decision-Dx MelanomaTM, Castle
Biosciences) has been developed in an attempt to address this
clinical dilemma, however, the majority of published studies eval-
uating its performance have been retrospective or prospective
cohort studies without a comparator group28, and its use has not
been advocated in established clinical guidelines17. We sought to
identify whether the expression of genes in a primary melanoma
tumour could predict for distant metastasis and survival, analysing
data acquired from one of the largest phase III prospective adjuvant
melanoma clinical trials associated with long-term patient outcome
data19. We used covariate-corrected differential expression analyses
to identify 121 genes significantly associated with distant metas-
tases, which made up our signature, and found that this added
prognostic value in both the prediction of metastasis and survival.
The prognostic relevance was further confirmed in two independent
external validation cohorts. Immune cell deconvolution analyses
revealed that the weighted Cam_121 expression score negatively
correlated with multiple measures of lymphocyte infiltration, with a
high weighted signature score reflecting a relatively cold tumour
immune microenvironment with worse long-term prognosis. These
findings were cross-validated using pathologically assessed TIL
scores, as well as gene set enrichment analyses, the latter showing
that differential expression analyses in both primary melanoma
(n= 194) and LN (n= 143) datasets reflected downregulation of
the same key immune-mediated processes in association with
metastases. That this conclusion was reached using unbiased dif-
ferential expression, reaffirms the central importance of the
immune system in this context.

The melanoma microenvironment consists of multiple
immune and stromal cells, which play a critical role in regulating
both the initiation and development of disease. Several studies
have demonstrated the association of lymphocyte infiltration with
longer survival29–31, as well as an inverse relationship between
TIL grade and the presence of LN metastases27,32, implying that
evaluating the tumour microenvironment landscape may hold
promise for prognostic biomarkers. However, only a limited
number of studies have investigated the immune landscape in
primary melanomas. A transcriptomic analysis of primary
melanomas identified six distinct subgroups based on their
expression of immune-related, keratin and beta-catenin pathway
genes33. In this study, patients with low immune but high beta-
catenin score (CIC4) had the poorest OS33. A recent study
utilising high-throughput sequencing of T-cell receptor beta-
chain in T2–T4 primary melanomas (n= 199) indicated that the
T-cell fraction accurately predicted PFS and was independent of
other key clinico-pathologic covariates34. Although in our study it
was difficult to discern specific immune cell subtypes using bulk
RNA sequencing, given that the weighted Cam_121 score was
strongly negatively correlated with B cells, T cells and all immune
cells (ρDistant-Metastases=No=−0.8, −0.73 and −0.75, respectively,
with exact two-sided pDistant-Metastases=No < 2.2 × 10−16) and that
IFN pathways dominated gene set enrichment, we regard this as

Table 1 Clinical utility of GEP test 5-year melanoma-specific
survival (Leeds Melanoma Cohort Data).

AJCC stage GEP_class Death Total Proportion

1 All 17 194 0.09
1 High 11 118 0.09
1 Low 6 76 0.08
2 All 76 279 0.27
2 High 64 192 0.33
2 Low 12 87 0.14
3 All 44 76 0.58
3 High 35 58 0.60
3 Low 9 18 0.50

Number and proportion of deaths per combination of AJCC stage and Cam_121 risk level
estimates (based on 0.33 quantile cut off on weighted Cam_121 gene expression score
expression of all 121 genes). Source data are provided as a Source data file.
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further evidence that a successful immune-mediated cytotoxic
anti-tumour response exists in primary melanoma. Critically, we
found that the signature retained its prognostic power even after
correcting for TIL score, and it is our opinion that quantifying the
expression of these key immune-mediated genes could potentially
provide a more standardised and reproducible measure of
immune activity. Furthermore, the prognostic relevance in both
primary melanoma and LN datasets attests to the signatures’

robustness. The challenge over the coming years will be to
identify and validate a clinically relevant measure of lymphocytic
abundance of relevance to primary CM, that can be easily
implemented in real-life clinical practice. These studies will also
need to consider aspects of cost-effectiveness, which have not
been explored in this analysis.

Interrogating the LMC, we found that the GEP-designated
high/low risk could be used to separate patients with ≥33% risk of

Fig. 4 Weighted Cam_121 score negatively correlates with immune cell expression scores, indicating that a lower weighted signature expression score
is associated with a richer immune microenvironment and better prognosis. Scatterplots and density plots showing the relationship between the
standardised weighted Cam_121 score (x-axes) and a, b, the median activated B-cell gene expression (y-axes), c, d the median T-cell gene expression (y-
axes) and e, f the total immune score (median gene expression of all cell types derived from Angelova et al.25, (y axes). Observations and lines of best fit
are colour-coded according to their metastatic status, with red indicating relapse and blue indicating no relapse. The shaded region in the scatter plots of
a, c and e corresponds to the 95% confidence interval of the line of best fit. The two-sided p values from the Pearson correlation coefficients are indicated
for scatter plots. g Scatterplot of the scores of the observations on the two-first dimensions of a PCA analysis on the overall immune cell expression data.
Observations are colour-coded according to their weighted Cam_121 expression score (“high”/”low” classification based on a quantile 0.33 split, indicated
in red/yellow, respectively). Different symbols are used for observations with “high” (circles) and “low” (triangles) immune cell expression levels based on
a median split. Source data are provided as a Source data file.
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death at 5 years; a risk threshold for which we believe adjuvant
systemic therapies could be considered. Conversely, it is
envisaged that “low-risk” GEP profiles could also be used to
“downstage” stage III patients for whom treatment might be
unnecessary. There is substantial evidence supporting the
importance of pre-treatment immune cell infiltration in eliciting
anti-tumour responses with immunotherapy35, however, it
remains to be seen whether Cam_121 expression can predict
therapeutic responses in this setting. Future well-designed
prospective clinical trials will ultimately be required to examine
whether Cam_121 can be used to better tailor adjuvant therapy
for early-stage melanoma patients.

The present study has a number of advantages over previous
analyses. First, the large sample size linked to a well-conducted
prospective clinical trial enabled an objective assessment of the
risk of distant metastases, in addition to the key survival measures
of interest. Furthermore, the long duration of follow up
(minimum of 6 years) in a cohort of patients predating modern
approved adjuvant systemic therapies provided a unique insight
into the “natural history” of primary CM. Finally, to our
knowledge, this is the first large-scale biomarker analysis in
primary melanoma to make use of data from comprehensive

RNA sequencing. That such unbiased genome-wide assessment
uncovered the dominance of immune-mediated genes reaffirms
the central role of the host immune system’s ability to respond to
the tumour, resulting in immune editing or in some immune
control.

It is important to point out that high-quality evidence guiding
the best practice use of gene expression predictors, particularly in
the context of early-stage CM are lacking. Future trials evaluating
adjuvant therapies should examine both primary and locoregional
melanoma samples using full RNA-sequencing technologies, to
better characterise a molecular subtype/signature that could
ultimately be used in conjunction with existing CM staging
parameters and tailor future interventions more specifically to the
individual. We believe that measures of lymphocytic infiltration
should also be assessed. Ultimately such studies will need to show
that randomising early-stage melanoma patients based on a high-
risk Cam_121 GEP to an intervention (or a change in
surveillance) leads to improved outcomes36.

Our results indicate that the Cam_121 signature score
complements conventional melanoma staging by contributing
prognostically relevant information and could potentially be used
to select early-stage melanoma patients at higher risk of relapse or
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Fig. 5 Cam_121 negatively correlates with tumour-infiltrating lymphocyte counts. Violin plots showing the weighted (standardised) Cam_121 scores (y-
axis) by levels of the TIL scores (x-axes) in the a AVAST-M primary melanoma dataset (n= 137) using Clark et al.26 TIL scores, b Leeds Melanoma Cohort
dataset (n= 499) using Clark et al. TIL scores and c AVAST-M primary melanoma dataset (n= 139) using MIA27 TIL scores. The overall p values per plot
are calculated using Fisher’s ANOVA, and pairwise comparison p values were defined using two-sided Student’s t test. The grey dotted line represents the
33% quantile cut off for the gene expression signature in each dataset. Source data are provided within the Source data file.
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death. Further carefully designed prospective clinical trials will
help guide how molecular features can be incorporated with
traditional clinico-pathologic features to best estimate individual
risk and guide the optimal clinical use of molecular biomarkers.

Methods
AVAST-M melanoma cohort. This study made use of individual patient-level and
transcriptomic data from the phase III adjuvant AVAST-M study, investigating the
role of the angiogenesis inhibitor bevacizumab vs placebo in high-risk primary
CM18,19. One thousand three hundred forty-three stage American Joint Committee
on Cancer stage IIB (T3bN0M0 and T4aN0M0), IIC (T4bN0M0) and III
(TxN1–3M0) cutaneous melanoma (seventh edition AJCC20) were recruited to the
study over the period July 18, 2007–March 29, 2012, as previously described. The
study (including the collection of DNA and RNA) was ethically approved in
accordance with the Declaration of Helsinki (REC reference number 07/Q1606/15,
16th March 2007). Participants provided written informed consent to sampling of
their tumour blocks during study recruitment (and prior to the investigational
systemic therapy).

All study participants underwent a sentinel LN node biopsy, and if positive
proceeded to a completion LN clearance as per the study protocol. Demographic
(including gender, age, centre, as well as pathologic data (site of primary, Breslow
depth, ulceration, LN involvement and BRAF/NRAS mutation by pyrosequencing))
was collected at the time of randomisation. Data were also collected on the timing,
presence/absence and site/s of distant metastases (according to the findings from
CT scanning). Data on overall and progression-free survival were collected with a
minimum of 6 years follow up.

RNA-sequencing data was available on 204 primary melanoma samples of
which 10 samples were removed from the downstream analyses owing to lack of
data on all the clinical covariates, and 175 regional LN samples of which 32 samples
removed from the downstream analyses owing to a lack of data on all clinical
covariates (Supplementary Fig. S1).

Leeds Melanoma Cohort. A primary melanoma transcriptomic dataset from the
LMC study (LMC DASL array) was used as independent replication. This repre-
sents a population-controlled cohort study, as previously described16. This study
recorded data on MSS in 677 patients, calculated from the time of diagnosis to the
time of last follow up or time of death from melanoma, whichever occurred first.
The regression coefficient (beta) for each gene (reflecting differential expression in
AVAST-M dataset) was used to generate a weighted signature score in the new
dataset. Hence for further analysis, a per-sample weighted gene expression score for
our Cam_121 gene signature was calculated by multiplying the expression value of
each gene by its corresponding beta coefficient (Eq. 1) followed by z-score nor-
malisation (zero mean–unit variance).

Weighted signature score ¼
Xn

i¼1

βi ´ genei ð1Þ

where i ranges from 1 to number of genes in the signature and β corresponds to the
beta coefficient of the respective gene obtained from DESeq2 analysis on AVAST-
M melanoma cohort.

Lund Melanoma Cohort. Gene expression data on 223 primary tumours was
generated using the Illumina DASL platform, as previously described22. Data on
relapse-free survival as well as OS were collected. The DASL platform analysed
7752 genes and only 24 of the Cam_121 genes were present. Validation was
undertaken using weighted signature scores as outlined above (Eq. 1).

The Cancer Genome Atlas-SKCM Cohort. The clinical and gene expression data
from TCGA-SKCM21, was downloaded from the cBioPortal37. The TCGA-SKCM
dataset included only CMs, in particular any melanomas within these datasets from
acral, mucosal and other rarer sites were excluded. Samples were filtered to a single
sample per patient giving a total of 375 samples from 375 patients (including 87
primaries, 72 cutaneous relapses and 216 regional LNs).

Australia Melanoma Genome Project Cohort. All fresh frozen and FFPE samples
were obtained in a method that was compliant with the relevant ethical regulations
for work with human participants. The fresh-frozen tissue from the biospecimen
bank of MIA23. All tissues and bloods form part of prospective collections of fresh-
frozen samples accrued with written informed patient consent. The study was
approved by the Sydney Local Health District RPAH zone ethics committee
(Protocol No. X15-0454—previously X11-0289 and HREC/11/RPAH/444; Protocol
No X17-0312—previously X11-0023 and HREC/11/RPAH/32; and Protocol No
X15-0311—previously X10-0300 and HREC/10/RPAH/530). All samples were
independently reviewed by expert melanoma pathologists to confirm the origin of
each tumour from cutaneous skin.

Total RNA was extracted from fresh-frozen tissue using a mirVana miRNA
Isolation Kit (Applied Biosystems, AM1560). RNA quality and presence of a small
RNA fraction were measured using the Agilent 2100 RNA 6000 Nano and small

RNA kits. RNA sequencing was performed using 1 μg of total RNA, which was
converted into messenger RNA libraries using an Illumina mRNA TruSeq kit. RNA
sequencing was performed using 2 × 75 bp paired-end reads on an Illumina
Hiseq2000. Small RNA sequencing was performed using 1 μg of total RNA, which
was converted into a small RNA libraries, size selection range 145–160 bp (RNA of
18–33 nucleotides) using Illumina’s TruSeq Small RNA Library Preparation Kit
and sequenced on an Illumina Hiseq2000 using 50 bp single-read sequencing with
1% control spiked in. RNA sequence reads were aligned to transcripts
corresponding to ensemble 70 annotations using RSEM, raw sequences are
available under study accession EGAS00001001552. Data from 55 samples from a
mixture of tissue sites (including primary tumours, regional LNs, distant
metastases, in-transit metastases and others) were available for this analysis.

mRNA extraction. Histopathological assessments of hematoxylin and eosin (H&E)
stained slides were used to facilitate tumour sampling. Samples were consistently
extracted from the least inflamed, least stromal regions of the invasive front of the
tumour. RNA was extracted using the Roche High Pure FFPE RNA Micro Kit (cat#
04823125001; Genentech Biosciences) according to the manufacturer’s recom-
mendations. RNA quantity and quality were assessed using Agilent’s 2100
bioanalyzer.

Expression data generation. Extracted RNA was sequenced on the Illumina
exome-capture sequencing platform, using 50 base-pair paired-end sequencing.
Quality control (QC) was performed using fastq_utils (https://github.com/
nunofonseca/fastq_utils; v0.14.7) and FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/; v0.11.7). The reads that passed QC were aligned
to the reference genome (GRCh38) using TopHat2 (ref. 38). Aligned reads were
quantified using HTSeq39. Only those genes with more than five reads, as reported
by HTSeq, in at least one sample were selected for further analysis. The sequencing
data was of good quality with a median of ~50 million read-pairs/sample. A total of
446 tumour transcriptomes were profiled which included samples from: primary
tumour (n= 204); LN (n= 175); local/distant relapse (n= 58) and uncategorised
samples (n= 9). However, due to the clinical value of primary tumours in facil-
itating stratification at the earliest disease timepoint, we chose to focus our analyses
on samples from cutaneous primaries (n= 204) and used the LN samples as an
internal validation.

Clinical covariate selection. Firstly, the association between distant relapse (yes/
no) and clinical covariates was studied both with or without controlling for length
of follow up (defined as the time from diagnosis to last follow up) and for treat-
ment (yes/no). When ignoring length of follow up and treatment, generalised
Cochran-Mantel-Haenszel tests (R-package coin40 v1.3-1) were used for nominal
clinical predictors as they have the Pearson’s Chi-square tests and Cochran-
Armitage trend tests as special cases, when respectively considering the clinical
covariate of interest as categorical or ordinal. For ordinal clinical covariates, we
reported the “nominal/nominal” association results when the “nominal/ordinal”
one was found less significant (as it is likely a sign that the assumption of linearity
required by the ordinal test was not met). Mann–Whitney–Wilcoxon tests were
used for continuous clinical covariates. When controlling for length of follow up
and treatment, likelihood ratio tests comparing the fits of logistic regression models
with and without the clinical predictor of interest were used. The p values were
corrected for multiple testing using the Holm–Bonferroni method (Supplementary
Table S1a). Note that, as the five-level stage variable was highly related to Nclass
(Spearman correlation coefficient over 0.85), we picked the one with the lowest
number of levels.

The variables two-level Breslow staging and two-level ECOG were significantly
associated with relapse. The variable two-level treatment was found to be related to
relapse, but is kept as control and the two-level EventMet was the variable of
interest indicating whether the patient relapsed or not. Therefore, the covariates
Stage, Breslow thickness, ECOG and treatment were accounted for in the design
formula of DESeq2 (ref. 41) without interactions and for further downstream
analysis.

Secondly, the association between clinical covariates and OS (calculated from
the time of diagnosis to the time of last follow up or death) and PFS (calculated
from the time of diagnosis to the time of last follow up or death/progression to
metastatic disease, whichever occurred first) was assessed by means of Cox
proportional hazard models (R-package survival42). Both outcomes were
considered as left-truncated due to delayed patient enrolment and right-censored
due to loss of follow up or alive at the time of the end of the study. Six years was
chosen as the minimum cut off for these analyses based on the original trial design.

Stage, sex, age and Nclass were significantly associated with both OS and PFS
(p < 0.05; Supplementary Table S1b, c). The state of distant relapse (“EventMet”)
was the most important variable but was not of our interest, hence dropped. ECOG
is a good predictor. Treatment was not significant (p > 0.05), but was kept in the
analysis. Also for PFS, ulceration (Ulc) was borderline at 5% level and was dropped
from further analysis. Therefore, stage, sex, age, Nclass, ECOG and treatment were
corrected for in subsequent gene-level survival analyses. The AVAST-M primary
melanoma dataset was also corrected for TIL counts (Clark Score, see also section
“Tumour-infiltrating lymphocyte analysis”).
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Differential expression analysis. Differential expression analysis between pri-
mary tumours that became metastatic vs those that remained non-metastatic over
the 6-year study period was performed using the package DESeq2 (ref. 41; v1.18; R
v3.6.1). The negative binomial models we considered controlled for the clinical
covariates Stage, Breslow thickness, ECOG and treatment, as well as for the library
size (offset). Raw read counts were provided as the input, with each column
representing a sample and each row representing a gene, along with the categorical
clinical information about each sample as colData. Samples with missing infor-
mation for any of these four covariates were removed from the analysis, leaving
194 samples in total. The adjusted p value cut off (FDR) was set to 0.1 using the
alpha parameter in DESeq2 results function and genes with FDR <0.1 were con-
sidered significantly differentially expressed.

Log-fold change shrinkage was applied using the lfcshrink function with apeglm
method from the apeglm package43 (v1.6.0; R v3.6). For visualisation and other
downstream analysis, variance stabilising transformation (vst) was used by means
of the DESeq2’s varianceStabilizingTransformation function with option blind=
FALSE.

Machine learning analysis. This section explains the steps followed to develop a
ML classifier for each signature and to evaluate their performance in predicting
relapse (yes/no). A summary of the pipeline is outlined in Supplementary Fig. S15.
The following steps were conducted using the following packages; caret44 v6.0-86,
DESeq2 v1.28.1; R v4.0.2, snakemake45 v5.17.0. The AVAST-M primary melanoma
dataset (n= 194) was used for classification model development and the AVAST-
M LN dataset (n= 143) was used to test the performance of the final model
(internal validation). In an independent analysis, we used only the AVAST-M LN
dataset for both training/testing (“Methods” section “Model development and
selection”).

Dataset preparation and pre-processing. The AVAST-M primary melanoma
(training) dataset was prepared such that each column/feature contained infor-
mation about all the patients/samples. These features could either be the expression
values of the genes within the signature and/or the categorical clinical covariate
metadata. In the latter case, the categorical clinical covariates were converted to
numeric dummy variables using one-hot encoding. The clinical outcome data
(relapse vs non-relapse) were used as labels for the analyses. The AVAST-M LN
dataset (testing) dataset was pre-processed in the same way, such that the order of
the features was preserved as in the training dataset and in case where the clinical
covariates were used as features, they were converted to dummy variables from the
train clinical covariates using the predict function in R.

In case of the gene expression data, vst transformation was applied to both
training and testing dataset. To apply vst transformation on the testing dataset,
mean-dispersion estimates learnt on the training dataset were used.

Next, the features corresponding to near-zero variance were removed using the
default parameters of the trainControl function (R-package caret; i.e., freqCut=
95/5, uniqueCut= 10). The same feature(s) were removed from the testing dataset
before evaluating the performance of the fully trained model.

Model development and selection. The aim of this analysis was to critically assess
whether the Cam_121 gene expression signature (with or without clinical covari-
ates as features) could outperform clinical covariates alone in predicting relapse
(yes/no). We also compared this to the predictive power of two published prog-
nostic signatures (LMC_150 (ref. 16) and Decision-Dx Melanoma12) in an inde-
pendent analysis. In this model, the training/testing was carried out on the
AVAST-M LN dataset instead of AVAST-M primary melanoma dataset on which
feature selection was performed for Cam_121 and clinical covariates. This was
undertaken to reduce the risk of over-optimistic results that might arise from
feature selection and testing from the same dataset. In developing a classification
model for each of these five signatures of interest, seven different ML classifiers
were considered, including; Bayesian generalised linear model46 (bayesglm), Lasso
and elastic-net regularised generalised linear model47 (glmnet), k-nearest neigh-
bour48 (knn), linear discriminant analysis49 (lda), random forest50 (rf) and support
vector machine51 with linear (svmLinear) and radial kernel (svmRadial).

To avoid overfitting, repeated tenfold cross validation (repeats= 1000) was
performed for model development and evaluation. Leave-one-out cross validation
method (Supplementary Fig. S15) and bootstrap resampling method (Fig. 3e;
repeats = 1000) were also tested to see if the choice of resampling method altered
our results. This was implemented using the trainControl function (R-package
caret).

At each training step, a random search was performed using 100 random
(combinations of) hyperparameter(s) and the set of hyperparameter(s) leading to
the largest maximum AUROC estimate on the training dataset was selected. Using
this approach, we obtained 14 different classification models (7 classifiers × 2
resampling methods) for each of the five different signatures. To select the final
best performing classification model for each signature, the model giving the
highest AUROC value was selected for testing on the AVAST-M LN dataset.

When training the random forest classifier on the feature set Cam_121 with
clinical covariates, we estimated the average feature importance score based on
repeated tenfold CV and displayed them by means of boxplots using geom_boxplot
function in R.

Gene expression vs covariate performance comparison per patient. In order to
compare the performance of the signatures: “Cam_121+ clinical covariates”,
“Cam_121” and “clinical covariates” on the AVAST-M LN dataset (n= 143) on a
per-patient basis, the labels predicted by their respective best performing classifiers
were extracted (tenfold CV+ svmRadial, tenfold CV+ svmRadial and tenfold CV
+ svmLinear respectively). Venn diagrams obtained by means of the venn.diagram
function from the VennDiagram package52 (v1.6.20) in R were used to visualise
overlaps.

Statistical analyses. To check whether the Cam_121 gene expression signature
performed better in predicting relapse (yes/no) than models built on clinical cov-
ariates alone across multiple (n= 7) classifiers, Welch Two Sample t tests were used
(R function t.test with option var.equal= FALSE, paired= FALSE and alternative
= “greater”) for each performance metric and each combination of signature and
clinical covariate at the 5% level. The null hypothesis was that the true difference in
mean performance across seven classifiers between both conditions (“clinical cov-
ariates alone” vs “signature with/without clinical covariates”) equals 0, while the
alternative hypothesis was that the true difference in means is >0.

To compare the AUROC obtained on the testing dataset, DeLong’s tests53 were
used using the roc.test function with alternative “greater” from the pROC
package52 v1.16.2 in R, where the null hypothesis is two AUROC obtained from the
model trained on gene expression as features and the model trained on clinical
covariates as features are equal, while the alternate hypothesis is that the model
trained on gene expression as features performs better than the model trained on
clinical covariates as features. The p values and the z decision threshold values from
the test were reported.

Determination of the weighted expression score cut-off to define “high” and
“low” absolute risk of death at 5 years. Data from the LMC were used to
calculate the absolute risk of death at 5 years (this dataset was chosen for this
analysis due to the preponderance of early-stage patients; stage I= 194 samples;
stage II= 279 samples; stage III= 76 samples). Five-year MSS was calculated such
that those patients who died due to melanoma within 5 years of follow up were
assigned event= “Yes” and those that did not were assigned event= “No”. Those
patients who did not yet die and were followed up for <5 years were removed from
the analysis due to inadequate follow up.

The quantile cut offs 0.25, 0.33 and 0.5 were used to divide patients into high/
low groups based on their corresponding weighted Cam_121 expression score.
Absolute risk of death at 5 years was calculated as the ratio of patients where event
= “Yes” to the total number of patients within each stage (I–III). The cut off giving
the maximal separation (of absolute risk of death) between high/low groups was
selected. This was achieved using a 0.33 quantile cut off of the weighed Cam_121
expression score and subsequent references to high/low Cam_121 risk groups refer
to these high/low weighted stratification cohorts.

Survival analyses. For each sample, a vector of weighted signature expression
scores was calculated by using Eq. 1 on the vst normalised gene expression data.
The standardised scores were then used as a continuous predictor in Cox regres-
sion models fitted by means of the coxph function of the survival package42 (v3.1-
12) in R (v3.6.3). The HR (95% CI) and p values corresponding to the signature
were reported in both univariate and multivariate analyses. Note that in case of the
two published signatures, median gene expression scores were used instead of the
weighted gene expression scores.

In order to display Kaplan–Meier (K–M) survival curves, samples were divided
into “high”/“low” signature expression groups based on the 0.33 quantile cut off
which we obtained from the absolute 5-year risk assessment in “Methods” section
“Determination of the weighted expression score cut off to define “high” and “low”
absolute risk of death at 5 years”. Samples with weighted signature expression score
greater than this cut off were assigned to the “high” group and those with weighted
signature expression score lower than this cut off were assigned to the “low” group.
Of note, we found that the 0.33 quantile cut off of the weighted gene expression
scores were remarkably consistent across all the external datasets (data not shown).
The survival distribution of both groups was finally compared by means of logrank
tests using survfit function from the survival package (v3.1-12) in R (v3.6.3). The
parallel processing was conducted using snakemake45 v5.17.0. The K–M curves
were plotted using plot function from the R-package graphics54 v3.6.3 and
ggsurvplot function from R-package survminer55 v0.4.7.

Tumour immune microenvironment analysis. Sample-level gene expression data
from the AVAST-M primary melanoma cohort was deconvoluted into infiltrating
immune cell scores using the Angelova dataset25. This dataset reports 812 marker
genes corresponding to 31 immune cell subtypes. Out of these 812 genes, 53 genes
were missing from our 38,690 gene list. Therefore, two immune cell subtypes
MDSC (myeloid-derived suppressor cells) and NK56_bright (natural-killer
CD56bright cells), with >1% of missing marker genes were removed from further
analysis, leaving 719 marker genes corresponding to 29 cell types.

Immune cell correlation analysis. To perform correlation analysis for each cell type,
the median of the corresponding marker genes’ expression for each sample (y-axis)
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was plotted against the weighted Cam_121 expression score for that sample (x-
axis). To calculate the overall immune score, the median of all 719 marker genes
was used for the analysis.

A regression line was fitted through these points using the geom_smooth
function (method= “lm”) of the ggplot2 package56 (v3.3.0) in R (v3.6.2). The
Pearson’s correlation coefficient (ρ) between the immune cell score and the
signature, as well as the p value of the corresponding test of association were
estimated by means of the function stat_cor of the ggpubr package57 (v0.2.5) in R
(v3.6.2). Samples were coloured according to their metastatic status. With red
points indicating the samples obtained from patients who later metastasised (Yes)
and blue points indicating the samples obtained from patients who didn’t (No).
The density plots were made using the geom_density_2d function of R-package
ggplot2 (ref. 51; v 3.3.0).

To confirm the relationship between the signature and immune cells, a PCA
analysis was performed. For each cell type, the corresponding marker genes’
expression was projected into the principal component space and the first two
principal components explaining the maximum variance were plotted against each
other. These samples were then coloured by the “high”/”low” weighted Cam_121
expression score groups obtained during the survival analysis and shaped by the
“high”/”low” groups based on marker genes’ median expression corresponding to
that particular cell type. Here, to divide the samples into two independent
categories based on their marker genes’ expression, the median cut off was used,
where the sample with marker genes’ median expression value above its overall
median value was assigned to the “high” group and that with marker genes’median
expression value below its overall median value was assigned to the “low” group.

Gene set enrichment analyses. Preranked GSEA (GSEA-P) was implemented using
the GSEAPreranked tool of the GSEA software from Broad Institute58,59 (v4.0.2).
Hallmark gene sets were downloaded from the MSigDB database60 (v6.2.0). The
genes were preranked according to their shrinked log-fold change values obtained
in the differential expression analysis and the GSEAPreranked tool was run with
default parameters with the enrichment statistic set to “classic”.

Tumour-infiltrating lymphocyte analysis. H&E slides corresponding to each of the
194 samples were digitally scanned to 40× magnification using the Vectra Polaris
scanner from AKOYA biosciences. TIL scores were double blindly evaluated by
two experienced pathologists. Two different scoring methods were used including;
(i) the Clark scoring26 and (ii) the MIA system27. This resulted in an agreement of
56% and 40%, respectively. This lack of consistency in scoring (particularly within
the “non-brisk” group) has been previously noted in the literature61,62. We used a
third independent expert pathologist to assess those slides where the two pathol-
ogists failed to agree. After removing the slides with poor scan quality, we had
Clark TIL scores for 133 primary tumours and MIA TIL scores for 135 primary
tumours.

Once the scores were obtained, a violin plot was plotted between the scores and
the standardised weighted Cam_121 score using the geom_violin function of
ggplot2 package. The p values for pairwise comparisons were obtained using t test
and the global p value was computed using ANOVA. This was implemented using
the stat_compare_means function from the R-package ggpubr (v0.2.5)57.

Visualisation of inherent distribution of samples. To visualise if the samples
cluster by their metastatic status, PCA was performed on the primary melanoma
samples (n= 204) and LN samples (n= 175) using 1000 most variable genes. This
analysis was performed using the prcomp function from R-package stats54 (v3.6.2),
plotted using the qplot function from ggplot2 package56 (v 3.2.1) and the scree plot
was generated using the screeplot function, also using the R-package stats54

(v3.6.2). The samples were further coloured by whether they metastasised or not
and shaped by their tissue of origin.

Testing signature performance against randomly selected genes. In order to
test the performance of our signature against randomly selected genes, random
genes of the 121 gene length were selected from 19,434 protein-coding genes. The
analysis was repeated using the exact same pipeline to compare its performance
against our signature. This process was repeated 1000 times without replacement
using 1000 different seeds and the p value testing the significance of our signature
was defined as a left-tailed event for predicting OS/PFS survival. This analysis was
inspired from the SigCheck package63 (v2.14.0) in R (v3.5.1), whereby the plotting
function sigCheckPlotSurvival was modified to accept scores generated from our
analysis.

Power calculation for the external validation datasets. To assess whether sig-
nificant validation of our signature was likely in the external validation datasets, we
performed a simulation-based power analysis considering R= 2500 Monte Carlo
samples. Simulation parameters, like the proportion of events for both outcomes,
the hazard ratios and the predictor and right-censored time-to-event distributions,
were based on the AVAST-M study. The log-normal and exponential distributions
were respectively chosen to model time-to-relapse and time-to-death from time-to-
relapse. The normal distribution was selected to model censoring for both
outcomes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw RNA-sequencing data (forward and reverse fastq files) has been made available
at the European Genome-Phenome Archive at the EBI under the following dataset
accession ID: EGAD00001006401. The source data underlying this paper are also
available through the GitHub repository: Manikgarg/MelanomaTranscriptomics [https://
github.com/Manikgarg/MelanomaTranscriptomics/tree/master/Source_Data)64. The
clinical and gene expression data from The Cancer Genome Atlas (TCGA-SKCM), can
be downloaded from the cBioPortal37. Data from the Leeds Melanoma Cohort16, Lund
Melanoma Cohort22 and the Australia Melanoma Genome Project23 are available from
the source publications.The MSigDB database60 gene set collections are available for
download from http://www.gsea-msigdb.org/gsea/downloads.jsp#msigdb. Source data
are provided with this paper.

Code availability
The code to reproduce the results is available at the GitHub repository: Manikgarg/
MelanomaTranscriptomics (https://github.com/Manikgarg/MelanomaTranscriptomics/
tree/master/scripts)64.
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