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Abstract

New challenges in structural biology are driving the development of new technology,
such as photon counting pixel array detectors, and new modes of data collection,
such as serial synchrotron crystallography (SSX), in macromolecular crystallography
at synchrotrons. This in turn is creating the need for better algorithms and software
to extract the maximum amount of information from the diffraction data. The aim
of this project is to develop statistically robust methods for the integration and
analysis of X-ray diffraction data to address these challenges.

A method for estimating the background under each reflection during integration
that is robust in the presence of pixel outliers is presented. This uses a generalised
linear model (GLM) approach that is more appropriate for use with Poisson dis-
tributed data than traditional approaches to pixel outlier handling in integration
programs. The algorithm is most applicable to data with a very low background level
where assumptions of a normal distribution are no longer valid as an approximation
to the Poisson distribution.

A second algorithm for modelling the background for each Bragg reflection in a
series of X-ray diffraction images containing Debye-Scherrer diffraction from ice in
the sample is also presented. This method involves the use of a global background
model which is generated from the complete X-ray diffraction dataset. Fitting of
this model to the background pixels is then done for each reflection independently.

Finally, a model for the observed reflection profiles is described for the purpose
of improving the refinement of the crystal unit cell and orientation for still image
diffraction data collected at synchrotrons. This model consists of two components:
a Normal distribution is used to describe the distribution of wavelengths and a
Multivariate Normal distribution (MVN) is used to describe the distribution of
reciprocal lattice vectors for each reflection; this allows non-isotropic spot shapes to
be easily described. The parameters of the model are estimated from the data via
a simple maximum likelihood algorithm. The algorithms are incorporated into the
DIALS integration package.
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c∗ A reciprocal lattice basis vector.
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κ The scale factor for the Ewald sphere RLP product distribution.
L The lower triangular matrix of profile parameters.
λ0 The mean wavelength.
M The covariance matrix of the reciprocal lattice point distribution.
µ̄ The mean of the conditional distribution.
µ The mean of the RLP distribution in the reflection specific coordinate

system.
µ̃ The mean of the marginal distribution.
µXY The mean of the model in the XY axis.
µZ The mean of the model in the Z axis.
P The covariance matrix of the product of the Ewald sphere and RLP

distributions.
p The mean of the product of the Ewald sphere and RLP distributions.
Q The covariance matrix of the distribution of diffracted beam vectors.
q The mean of the distribution of diffracted beam vectors.
rE A reciprocal lattice vector lying on the Ewald sphere.
Re The rotation matrix into the reflection specific coordinate system.
S The observed 2D covariance matrix of the spot shape.
|s0 | The mean Ewald sphere radius µE = |s0 |.
s2 The laboratory space vector to the reciprocal lattice point.
Σ̄ The covariance of the conditional distribution.
σ2

E The variance of the Ewald sphere radius.
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σ2
λ The wavelength variance.
Σ The covariance matrix of the RLP distribution in the reflection specific

coordinate system.
Σ̃ The variance of the marginal distribution.
ΣXY The covariance of the model in the XY axis.
ΣZ The variance of the model along the Z axis.
x̄ The observed 2D position of the spot.
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Chapter 1

Introduction

1.1 Macromolecular X-ray Crystallography

Structural biology is the study of the molecular structure and function of biological
macromolecules. For decades, macromolecular X-ray crystallography (MX) has
been the dominant method for the determination of such structures. The Protein
Data Bank (PDB) (Berman, 2000) contains a database of biological structures
determined by a variety of experimental methods. At the time of writing, 150593
structures have been deposited, of which, 134588 (89%) were determined by X-ray
crystallography (PDB, 2019c). Despite the advancement of other experimental
techniques in recent years, such as nuclear magnetic resonance spectroscopy (NMR),
cryo electron microscopy (cryo-EM), micro electron diffraction (microED) and neutron
diffraction (ND), X-ray crystallography remains the most widely used experimental
technique for determining molecular structure (see Figure 1.1).

In macromolecular X-ray crystallography, molecules are purified and crystallised.
These crystals are then exposed to an intense beam of X-rays. This produces a
characteristic diffraction pattern of bright spots of varying intensity, which encodes
information about the 3D structure of the crystallised molecule. The diffracted
X-rays are recorded as a sequence of images by a 2D area detector, which then need
to be analysed to determine the atomic structure of the macromolecule as represented
by its electron density distribution.

In order to do this, the intensities of the diffraction spots are estimated from
the diffraction images and processed to compute crystal structure factor amplitudes.
Information about the structure factor phases is not recorded in the diffraction
pattern on the detector; however, they can be determined indirectly by various
methods via a process known as phase estimation. The electron density distribution
within the crystal unit cell can then be computed from the crystal structure factors,
and the atomic model placed to fit within the electron density to produce the 3D
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Figure 1.1: The percentage of structures deposited in the PDB solved using different experimental
methods: X-ray diffraction was used in 89% of structure solutions (PDB, 2019b).

structure. This process is described in more detail in the following sections.

1.1.1 Data collection at synchrotron facilities

Synchrotrons have been used to perform MX experiments for over 40 years (Phillips
et al., 1976). In contrast to laboratory X-ray sources, synchrotrons have the advantage
of being able to produce high brilliance monochromatic X-ray beams with tunable
wavelengths (Helliwell and Mitchell, 2015). Since crystals of macromolecules tend to
be small, and the strength of the diffraction is proportional to the illuminated volume
of the crystal, high brightness X-ray beams are required to produce strong diffraction
patterns to high resolution (James, 1948; Nave, 1989). Today, there are more than
100 MX beamlines at more than 20 synchrotrons around the world and more than
90% of new macromolecular structures determined by X-ray crystallography are
solved using data collected at a synchrotron (Helliwell and Mitchell, 2015; Owen
et al., 2016; BioSync, 2019).

The most common experimental approach to the collection of X-ray diffraction
data from a single crystal at modern synchrotron facilities is the rotation method
(Arndt and Wonacott, 1977). In this method, the crystal is mounted on a goniometer
between the X-ray beam and an area detector. During exposure, the crystal is
rotated over a set angular range to collect a sequence of diffraction images until the
desired volume of reciprocal space has been sampled.
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For some macromolecules of interest, it is not possible to produce large enough
and well diffracting crystals to perform a single crystal experiment. Since smaller
crystals require a more intense X-ray beam in order to achieve the same strength
of diffraction as a larger crystal, they are more susceptible to radiation damage.
Radiation damage occurs when the sample absorbs photons from the incident beam
resulting in the ionisation of atoms in the sample. It can induce both structural
changes in the molecule and also causes changes to the crystal lattice (Garman, 2010).
This limits the lifetime of the crystal in the beam and means that it may only be
possible to collect a small wedge rotation. Consequently, data from multiple small
wedges from multiple crystals must be combined in order to produce a complete
dataset. Averaging the intensity measurements can reduce noise but can also reduce
signal and add systematic errors due to differences resulting from non-isomorphism.

In recent years, the development of X-ray free electron laser (XFEL) facilities
has led to a particularly extreme form of multi-crystal data collection known as
Serial Femtosecond Crystallography (SFX) (Chapman et al., 2011). The X-rays at
an XFEL beamline are delivered in intense pulses where the pulse length is less
than 100 femtoseconds. This allows a diffraction pattern to be collected at room
temperature before any radiation damage occurs in the crystal; however, it also
results in the crystal being destroyed after a single exposure, often termed “diffraction
before destruction” (Neutze et al., 2000). As a result, no rotation is possible and
therefore each “still” image represents a single slice through reciprocal space. This
method of data collection is also gaining traction at synchrotrons (Stellato et al.,
2014; Gati et al., 2014; Owen et al., 2017; Weinert et al., 2017) where it is known as
serial synchrotron crystallography (SSX).

1.1.2 Data reduction

The electron density at any point in space, ρ(x, y, z), depends on the values of the
crystal structure factors, Fhkl , of all recorded reflections such that, for the P1 space
group:

ρ(x, y, z) =
1

V

∑
h

∑
k

∑
l

Fhkle−2πi(hx+ky+lz). (1.1)

Where, V is the crystal unit cell volume, (h, k, l) are the Miller indices and (x, y, z)
are the points in real space. For higher symmetry space groups, the equation contains
additional terms. The structure factors are complex valued; the amplitudes of the
structure factors are related to the intensities of the Bragg spots, Ihkl , by:

|Fhkl | =

√
K

Ihkl

LP
. (1.2)
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Where, LP is the Lorentz-Polarisation correction and K is a constant. In order
to infer the 3D positions of the atoms within the molecular structure from a set of
diffraction images, the reflection intensities and associated errors first need to be
estimated from the image pixel data. To do this, the unit cell and space group of
the crystal need to be determined along with the experimental geometry in order to
predict where on the diffraction images the Bragg spots are located. The intensity of
the Bragg spots can then be estimated simply by summing the background subtracted
pixel values corresponding to each reflection. The initial step of computing the raw
uncorrected intensities from the diffraction images is known as “integration” and is
performed by programs such as MOSFLM (Leslie, 1999), XDS (Kabsch, 2010b),
d*TREK (Pflugrath, 1997), HKL2000/DENZO (Otwinowski and Minor, 1997) and
DIALS (Winter et al., 2018).

The raw reflection intensities are then processed to put them on a common scale
and multiple measurements of the same reflection are merged; the intensities are
then converted into structure factor amplitudes. This process is performed by a
“scaling” program such as POINTLESS/AIMLESS/CTRUNCATE (Evans et al.,
2011; Winn et al., 2011), XSCALE (Kabsch, 2010b) or SCALEPACK (Otwinowski et
al., 2003). The process of extracting reflection intensities, and consequently structure
factor amplitudes, from the diffraction images is known as “data reduction”; A more
thorough description of the data reduction is given in Chapter 2.

1.1.3 Phasing

The diffraction pattern on the detector records information about the structure
factor amplitudes; however, the phase information is lost. In order to compute an
electron density map, both the structure factor amplitudes and phases are required;
therefore, the lost phases need to be determined indirectly. This is known as the
phase problem in crystallography. For small molecules (with up to around 1000
atoms in the asymmetric unit), direct methods for determining the phases have been
developed (Hauptman, 1997); however, these methods are generally not applicable
to larger macromolecules, particularly as they require atomic resolution in order to
find a phasing solution. An empirical rule-of-thumb is that if the resolution of the
data is less than 1.2Å then direct methods are unlikely to yield a solution (Sheldrick,
1990; Morris and Bricogne, 2003): the average resolution of a structure deposited in
the PDB is approximately 2.2Å (PDB, 2019a). The structure factor phases are then
typically determined using one of the following methods.

1. Molecular replacement (MR). The method of molecular replacement (Ross-
mann, 1972) seeks to exploit non-crystallographic similarity between molecular
structures to determine the phases. A homologous structure is used as a search
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model and provides the initial phases for the unknown molecular structure. A
rotation and translation search is then performed to find the best agreement
between the observed diffraction from the unknown molecule and the predicted
diffraction from the search model (Evans and McCoy, 2007). Traditional soft-
ware programs such as MOLREP (Vagin and Teplyakov, 1997) use a least
squares procedure to minimise the difference between the observed and pre-
dicted Patterson function (Patterson, 1934). More modern software programs
such as Phaser (McCoy et al., 2007) employ a Maximum Likelihood based
approach which selects the model with the highest probability given the data.
The majority, 77%, of new structures deposited in the PDB have been solved
using molecular replacement (Wojdyr, 2019).

2. Experimental phasing (EP). If there are no homologous structures for the
molecule of interest, or there is a homologue but a solution is not possible,
experimental phasing methods must be used to determine the phases of the
unknown structure. Experimental phasing methods attempt to determine
the phases by introducing a perturbation to the structure factors via the
introduction of a heavy atom, a wavelength change around an absorption
edge, or from Bijvoet differences if anomalous scattering is significant. Various
techniques for experimental phasing have been used such as; single isomorphous
replacement (SIR) where a dataset is collected from a native protein and a
single derivative which contains additional heavy atoms in the protein structure;
multiple isomorphous replacement (MIR) which is similar to SIR but uses
multiple derivatives; single isomorphous replacement with anomalous scattering
(SIRAS) and multiple isomorphous replacement with anomalous scattering
(MIRAS) which are similar to SIR and MIR respectively but also make use
of information from anomalous differences. Today, the most commonly used
experimental phasing method is single-wavelength anomalous dispersion (SAD).
This method has the advantage that it only requires a single dataset collected
at a wavelength near the absorption edge of a heavy atom present at a number
of sites within the macromolecular substructure. The heavy atoms will scatter
out of phase with the rest of the atoms in the molecule and analysis of the
anomalous differences between pairs of reflections related by inversion enables
the location of the heavy atoms within the substructure to be determined.
This partial solution can then be used to determine the phases for the whole
structure (Terwilliger et al., 2016). A related experiment is known as multi-
wavelength anomalous dispersion (MAD) which requires a number of datasets
to be collected from the same crystal at different wavelengths. Many software
packages are able to perform experimental phasing such as Phaser (McCoy
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et al., 2007), SHELX (Sheldrick, 2007) and SHARP (Bricogne et al., 2003).

1.1.4 Refinement and model building

Following the determination of the structure factor amplitudes and phases, an initial
electron density map can be calculated. The atomic model can now be placed within
the electron density in order to determine the 3D structure. A refinement program
is used to fit a chemically sensible atomic model into the observed electron density
whilst at the same time computing the best possible electron density map. However,
in crystallography, the optimal fit of the atoms is complicated by the fact that there is
generally a very small observation to parameter ratio. Therefore, in order to properly
fit the atomic model to the data, refinement programs must be able to utilise as
much information about the model and data as possible. Collecting high resolution
data is, therefore, important; adding more observations increases the observation to
parameter ratio. Prematurely cutting the resolution, and discarding possibly useful
information, in order to “improve” data processing statistics is therefore unhelpful
for the refinement.

Modern refinement programs such as REFMAC5 (Murshudov et al., 2011),
SHELXL (Sheldrick, 2015), BUSTER (Blanc et al., 2004) and phenix.refine (Afonine
et al., 2012) handle the observation to parameter ratio problem by utilising sophisti-
cated maximum likelihood methods and incorporating prior information such as the
protein sequence and physical knowledge of chemical bond lengths and bond angles
within a Bayesian framework. As well as being able to incorporate prior information
into the refinement, the use of Bayesian methods gives the additional advantage of
allowing direct incorporation of a variety of sources of information, such as experimen-
tal phasing information, within a rigorous statistical framework. Agreement between
the refined atomic model and the various sources of observed data is maximised
through the optimisation of the atomic coordinates, atomic displacement parameters
and scale factors whilst ensuring these restraints are not violated (Murshudov et al.,
2011). To facilitate this, refinement programs often come with databases of known
ligands and restraints. For the REFMAC5 program, these restraints are generated
by AceDRG (Long et al., 2017).

As well as typically being the final step in the structure solution pipeline, refine-
ment programs are also used as an intermediate step in order to improve partial
structural models and improve the electron density for automated model building
pipelines such as ARP/WARP (Langer et al., 2008), Buccaneer (Cowtan, 2006) and
SOLVE/RESOLVE (Terwilliger, 2003) which attempt to automatically trace the
backbone of the molecule and place the atoms within the electron density. Refine-
ment software is also incorporated into molecular graphics programs such as COOT
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(Emsley et al., 2010) in order to guide manual structural model updates. Given the
observed and calculated structure factor amplitudes, |Fobs | and |Fcalc |, the quality of
the refined structure is typically assessed by the crystallographic R-factor, given by:

R =

∑
h
|Fh,obs | − |Fh,calc |∑

h
|Fh,obs |

. (1.3)

This gives a measure of agreement between the refined model and the observed
data. However, assessment based purely on this indicator can result in over-fitting
of the data. Therefore, the free R factor (Brünger, 1992) is often used as well. A
“free” set of reflections is selected after data reduction and not used in the subsequent
phasing and refinement steps. These reflections are then used to compute the free R
factor. Successful refinement will result in a reduction in the free R factor.

1.2 Integration software

Over the years, numerous integration programs have been written; in the field of
X-ray crystallography, the fact that software has generally been well described in the
literature has enabled the quick development of new programs implementing new
features whilst taking advantage of previous developments. In the following sections,
a brief overview of the software currently being used for both rotation experiments
and serial crystallography experiments is given.

1.2.1 Programs designed for rotation data

MOSFLM

The MOSFLM (Leslie, 1999) program was the main integration program distributed
with the CCP4 (Winn et al., 2011) software suite. It has been widely used for the
processing of data collected using the rotation method for more than three decades.
In recent years, the indexing component of the program has also been used within
serial crystallography pipelines (White et al., 2016). It uses a 1D FFT algorithm
for auto-indexing and a 2D profile fitting algorithm for integration. The program
is written in FORTRAN with a graphical user interface, iMOSFLM (Powell et al.,
2017), written in Tcl/Tk. The software is open source.

XDS

The X-ray Detector Software (XDS ) program (Kabsch, 2010b) has been developed
for more than 30 years (Kabsch, 1988). It is best known for its use of the 3D profile
fitting method utilising a reflection specific coordinate system to perform the profile
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fitting in reciprocal space. It is written in FORTRAN and has been designed for high
performance and parallelism and it is included in various automated data processing
pipelines at synchrotrons (Winter, 2009). It also has a basic graphical user interface,
XDSGUI (Diederichs, 2019). The software is free for academic users.

HKL2000/DENZO

The HKL2000/DENZO suite of data processing programs (Otwinowski and Minor,
1997) has been in development since the 1990s. It is notable for providing the first
implementation of a FFT based auto-indexing algorithm. As with MOSFLM , it also
implements a 2D profile fitting algorithm. The software requires a paid user license
for use; it is especially popular at facilities in the USA, China and Japan.

EVAL15

The EVAL15 integration program (Schreurs et al., 2009) takes a unique approach
to integration. The majority of data processing programs perform profile fitting by
learning a set of reference profiles from the observed strong spots by empirically
averaging the observed refection profiles. EVAL15 performs an ab initio prediction
of the 3D reflection profile of each reflection by drawing from a set of probability
distributions that describe the experiment and constructing each reflection profile
using a ray-tracing approach. The program is generally used to integrate datasets
with pathologies that may cause problems for more traditional data processing
programs (Porta et al., 2011). The software is free for academic users.

1.2.2 Programs designed for still data

cctbx.xfel

The Computational Crystallography toolbox (cctbx ) is a collection of libraries for
performing many routine tasks in crystallography. cctbx.xfel (Brewster et al., 2016)
is the data processing module within the cctbx project for the data processing and
reduction of serial crystallographic data. The software was originally used to analyse
XFEL data but can also be applied to serial crystallographic data collected on a
synchrotron. The software is written in Python and C++ and is open source.

CrystFEL

CrystFEL is a pipeline for the processing of still X-ray diffraction data (White et al.,
2016). It was designed for processing data from XFELs but can also be used for
synchrotron serial diffraction data. The program is possibly the most widely used
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data processing program for the processing of still X-ray diffraction data. The
software is open source.

Cppxfel

Cppxfel is a set of programs for processing still X-ray diffraction data (Ginn et al.,
2016). It was designed to be a test-bed for new algorithms being developed for data
collected at XFELs. The algorithms developed in Cppxfel have been implemented in
other software packages such as DIALS and CrystFEL. The software is open source.

nXDS

The XDS program was adapted for use with serial crystallographic data; the resulting
program is called nXDS (Kabsch, 2014). The program adapts the 3D profile fitting
algorithm used in XDS for use with still images. The software is free for academic
users.

1.2.3 The DIALS framework

The Diffraction Integration for Advanced Light Sources (DIALS ) project (Winter
et al., 2018) aims to develop an extensible, modular framework for the development
of integration programs for macromolecular X-ray crystallography. A key objective
is to produce a software package that is capable of performing the data reduction
and analysis of X-ray diffraction data from both rotation and stills experiments in a
consistent way within the same framework. The software is written in a combination
of Python and C++. The high level interface source code is written in Python
and time critical algorithms requiring high-performance are written in C++. Since
the software is written in a modular way, new algorithms can be readily added
with minimal effort. The algorithms developed in this project will, therefore, be
implemented within the DIALS framework. DIALS is incorporated into the xia2
(Winter, 2009) automatic data processing pipeline and is, therefore, effectively run
on every MX dataset collected at Diamond Light Source.

1.3 Project motivation

1.3.1 New challenges in Crystallography

Various challenges facing structural biologists are driving the development of new
technology and new modes of data collection in macromolecular crystallography. The
development of advanced light sources such as XFELs has popularised “still” image
data collection strategies, both at XFELs and at synchrotrons. At the same time,
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the widespread automation of data acquisition on synchrotron beamlines and the
development of pixel array detectors, with their associated fast readout times and
near zero readout noise, have changed the way in which users interact with their
data. There is an urgent need for fast data processing software that is able to keep
up with the ever increasing speed of data collection, and that is able to provide
accurate intensity estimates from weak diffraction data.

1.3.2 Micro crystallography

During purification and crystallisation of the macromolecule, it may be difficult
or impossible to grow a crystal of sufficient size to perform a single crystal X-ray
diffraction experiment; however, it may be possible to grow many tiny micro crystals
from which it may be possible to collect a limited amount of data. Since the
reflection intensities are proportional to the size of the illuminated volume of the
crystal, diffraction data from micro-crystals is often very weak and noisy. In order
to achieve the same diffraction strength as for a larger crystal, the incident beam
intensity must be much higher. However, this also makes micro crystals much more
susceptible to radiation damage during data collection. As a result, it is necessary
to design new detector technology and data collection methods to collect data of
sufficient quality to solve the molecular structure from multiple weakly diffracting
crystals.

1.3.3 Pixel array detectors

Throughout the history of X-ray crystallography, changes in detector technology have
precipitated changes in data collection methodology and data processing software. A
prominent recent development in X-ray detector technology has been the development
of pixel array detectors, such as the DECTRIS PILATUS detector (Henrich et al.,
2009). Compared with previous generations of detectors, such as charge-coupled
devices (CCDs) and image plate detectors, photon counting pixel array detectors offer
a drastic reduction in the read out noise that can be achieved. Pixel array detectors
are composed of a 2D array of photon counting chips that operate independently of
one another; each individual detector pixel is essentially a stand-alone X-ray detector;
therefore, the point spread function is very small compared with CCD detectors.
Photon counting pixel array detectors operate by counting individual X-ray photons
as they impact on the detector. When a photon is absorbed by the sensor, it causes
a charge pulse; if the pulse exceeds a certain threshold then the counter is increased.
In this way, even single photons can be detected. Since the electronic noise in the
sensor is low compared with the threshold, the images are essentially noise free.
Another advantage that these detectors offer is fast readout times with maximum
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frame rates for the next generation DECTRIS EIGER detector being 3000Hz with
a 3.8µs dead time (Casanas et al., 2016). The combination of fast readout times
and low readout noise has changed the way that data is collected in MX; extremely
fine-sliced datasets can be collected without any increase in noise and datasets can
be collected in an incredibly short time period.

Whilst the quality of the data collected using these detectors is generally superior
to data collected using older detectors, they do raise their own issues. The photon
counts recorded in each pixel are Poisson distributed and do not need to be multiplied
by a gain value to convert from analogue to digital units as in data collected with
CCDs. The low read out noise of the detector also enables data to be collected with
very low background. It is common to find implicit assumptions that the pixel counts
are Normally distributed in algorithms within data processing programs; this is
appropriate for data with a high background but wholly inappropriate when applied
to low background data collected with a photon counting detector. The Poisson
distribution may be approximated by the Normal distribution for a large number
of counts but this approximation is inappropriate where counts are small. In this
case, algorithms need to be modified in order to make correct statistical assumptions
about the data. Photon counting detectors also have problems with a large photon
flux; they have a count rate limitation which when exceeded can result in counts
being lost. The detectors implement a count rate correction; however, this also has
an error associated with it. Finally, pixel array detectors have gaps between the
sensor chips which are handled through the use of “virtual pixels”. Along a row of
pixels, the gap between sensor chips has the same width as a single pixel and is
spanned by large pixels either side of the gap with a collecting area 1.5 times the
collecting area of a normal pixel. The counts from the two larger pixels are then
distributed into three virtual pixels after readout. Each large pixel contributes two
thirds of its counts to itself and one third of its counts to the gap pixel. This means
that the counts in the three virtual pixels are correlated. This can make it appear
that background pixel counts are under-dispersed relative to a Poisson distribution.
All these issues need to be addressed by data processing programs.

1.3.4 Serial synchrotron crystallography

A prominent development in the field of X-ray diffraction has been the emergence of X-
ray free electron lasers (XFEL); this in turn has popularised an experimental technique
known as serial femtosecond crystallography (SFX) (Chapman et al., 2011). In this
technique, diffraction from a single crystal results in a single “still” diffraction image
representing a single slice through reciprocal space; many thousands of diffraction
images are required to produce a complete dataset, each of which may contain

28



diffraction from one or more crystals. This mode of data collection has been adapted
for use at synchrotrons; a development known as serial synchrotron crystallography
(SSX) (Stellato et al., 2014). In the context of synchrotron experiments, the term
“serial crystallography” takes on a slightly broader meaning, encompassing both
“still” diffraction images, as in XFEL experiments, and individual small rotation
images. When performing a SSX experiment, it may be generally preferable to
collect individual small rotations rather than still images since small rotations allow
greater coverage of reciprocal space (Hasegawa et al., 2017); however, there are
cases when it is preferable to collect still images. For example, a fixed target setup,
collecting still diffraction images, allows users to perform the same experiment on
both a synchrotron beamline and an XFEL beamline. This then enables incremental
dose experiments to be performed in a time efficient manner at the synchrotron and
allows the direct comparison of dose-resolved SSX and radiation damage-free XFEL
structures of radiation sensitive proteins (Ebrahim et al., 2019).

Processing X-ray diffraction data from SFX and SSX experiments has a specific
set of challenges associated with it; as a result, new integration software has been
developed and established software, designed for rotation experiments, has had to
be modified (Kabsch, 2014; Kroon-Batenburg et al., 2015; Brewster et al., 2016;
Ginn et al., 2016; White et al., 2016). The difficulties in processing still image X-ray
diffraction data are numerous and related to the fact that each image only represents
a single thin slice through reciprocal space and each image contains diffraction from
a different crystal (or crystals). One of the defining characteristics of this data is,
therefore, that all the reflections are “partially” recorded and, consequently, all the
intensity measurements represent some fraction of the true reflection intensities. This
impacts everything from the indexing and refinement, to the integration and scaling.
Therefore, handling still diffraction data requires modification and special attention
in almost every aspect of a data processing program. New algorithms are needed to
improve the data processing for SSX to make it as robust, reliable and user friendly
as data processing for rotation data.

1.3.5 Project aims

The aim of this project is to develop statistically robust methods for the integration
and analysis of X-ray diffraction data being produced by new technologies, such as
pixel array detectors, and new methods of data collection, particularly SSX, which is
increasingly being used at synchrotrons. New methods and new technologies bring
with them new challenges for data processing software. The algorithms developed
as part of the project to address these challenges are incorporated into the DIALS
integration package; this allows the algorithms to be readily used to process data
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collected on MX beamlines at Diamond Light Source and at other synchrotrons that
include DIALS within their data processing pipelines. In the spirit of the DIALS
paradigm, the algorithms are developed and implemented in a modular way, allowing
many different algorithms to be tested and deployed as they become available.

The primary focus of this project is on data collected from synchrotron sources
using pixel array detectors, such as the PILATUS detectors used at Diamond Light
Source. This work is timely, since these types of detectors are now the norm
and assumptions made about the statistical properties of the data collected using
CCD detectors may no longer hold. In this project, algorithms are developed and
implemented making appropriate assumptions about the statistics of the data. The
development of better algorithms will facilitate information extraction from extremely
weak and noisy data that is a feature of many challenging structural biology problems.

This project has been carried out jointly at the Laboratory of Molecular Biology
(LMB) at the University of Cambridge and at Diamond Light Source (DLS), the
UK’s national synchrotron facility. A major advantage of conducting this research
and software development at a synchrotron facility is that it gives access to a wealth
of experimental data that can be used (with the appropriate permissions) for testing
and to guide algorithmic development. With the move to remote data collection and
ever greater automation on synchrotron beamlines, crystallographic data processing
is increasingly being done at the beamline rather than in the lab by individual users.
Therefore, developing the software at a synchrotron facility enables faster deployment
of the software where it is most needed: at the beamline.
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Chapter 2

Integration of X-ray diffraction data

2.1 Introduction

The essential structure of a diffraction data processing program for X-ray crystallog-
raphy has not changed much in over 40 years. Nyborg and Wonacott (1977) described
three systems in common use at the time: the Cambridge System (Nyborg et al.,
1975; Ford, 1982), the Harvard System, and the Munich System (Schwager et al.,
1975). These computer programs all performed the same basic procedure: taking
approximate values for the unit cell and experimental geometry as input, performing
a refinement of the parameters, predicting the location of the diffraction spots,
and then finally integrating them. The Cambridge System achieved arguably the
most enduring success, being the predecessor to the popular MOSFLM integration
program (Leslie, 1999) which has been in widespread use from that time until the
present day. A number of other integration programs have since been developed and
used within the field, most notably XDS (Kabsch, 1988), d*TREK (Pflugrath, 1999)
and HKL2000/DENZO (Otwinowski and Minor, 1997).

The work described in this thesis is implemented within the DIALS framework
(Waterman et al., 2013; Winter et al., 2018). The DIALS project was initiated with
the aim of writing new integration software to address new challenges within the field
resulting from the development of pixel array detectors, the popularisation of new
modes of data collection, such as serial femtosecond crystallography (SFX) and serial
synchrotron crystallography (SSX), and to exploit new computing infrastructure to
enable data processing to proceed on the same timescale as data collection. Following
the methodology of the cctbx (Grosse-Kunstleve et al., 2002), DIALS is a hybrid
system written in C++ and Python. Python lends itself well to rapid development,
with an emphasis on clean, portable code, and has an extensive standard library.
Various language features facilitate the easy implementation of generic code with
interchangeable components. There is, however, a performance overhead with the
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use of Python, due to the interpreted nature of the language, so performance critical
code is implemented in C++. The boost.python (Abrahams and Grosse-Kunstleve,
2003) language binding framework is used to export the C++ interface for use in
Python.

There is an explicit separation of the various data processing steps within the
DIALS framework. In order to ensure modularity, each step is contained within its
own command line program. The data flow within the DIALS framework is shown
in Figure 2.1 and each data processing step is described as follows:

1. Interpretation of image metadata: The first step is to construct an initial model
of the experimental geometry. This can be done manually; however, it is far
more convenient to initialise the experimental geometry from the metadata
contained within the headers of the diffraction images.

2. Spot finding : The diffraction images are then read and processed to extract
a list of coordinates and approximate intensities of strong spots observed on
each image.

3. Indexing : Using the initial experimental geometry and list of strong spots,
the basis vectors of the crystal lattice are determined along with the crystal
orientation; Miller indices are then assigned to the strong spots.

4. Refinement : Using the indexed strong spots, the initial experimental geometry,
and the crystal model determined during indexing, the experimental geometry
is optimised to determine a model that better predicts the location of the
Bragg spots on the images. This is done by minimising the sum of the squared
residuals between the observed and predicted positions of the spots on the
detector.

5. Integration: The refined model of the experimental geometry is then used to
predict where the Bragg spots will be recorded on the sequence of recorded
images. The pixels associated with the Bragg spots are then extracted from
the images and their intensities are estimated along with an estimate of the
error on the intensities.

6. Scaling : The raw reflection intensity estimates from the integration step are
then analysed to put intensities of symmetry equivalent reflections on a common
scale. The scaled intensities are then merged and averaged for each symmetry
equivalent reflection.

This chapter will describe each step of the data processing pipeline and an
implementation in the context of the DIALS project (Winter et al., 2018).
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Figure 2.1: The data flow within the DIALS framework. The beam, crystal, detector, goniometer,
profile and scan models are indicated by the yellow circles; hkl, I and σI are the miller indices,
intensities and errors on the intensities respectively. The initial experimental geometry is read
from the image metadata and strong spots are found on each image. A crystal model is then
found through auto-indexing and Miller indices are assigned to each strong spot. The experimental
geometry is then refined using the difference between observed and predicted strong spot positions.
The positions of all Bragg spots are then predicted and their intensities are estimated. Finally the
raw intensities of symmetry equivalent reflections are put on a common scale and averaged.
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Figure 2.2: The description of diffraction geometry for the rotation method. A monochromatic
X-ray beam is represented by the wave-vector s0, which intersects a sample rotation axis, given by
the unit vector m2, at the origin of the laboratory coordinate system, Oc. An abstract detector
plane is described in the real space laboratory coordinate system with an origin vector d0 and a
pair of orthogonal basis vectors

{
d̂x, d̂y

}
. Here, Od is the origin of the detector. The detector model

provides a pair of limits, Xlim and Ylim, forming a bounded rectangular panel within the plane.
A crystal model has its setting expressed in a φ-axis frame (aligned to the reciprocal laboratory
frame with origin, Ors, at a rotation angle of φ = 0◦) by the setting matrix UB, following the PDB
convention. Diffraction is represented by the wave-vector s1, which may be extended to the point
(x, y) at which it meets the detector panel, in the panel’s coordinate frame.

2.2 Experimental geometry

The experimental geometry can be described using a fully vectorial description that
expresses only the abstract geometry of the experiment and not other properties.
No assumptions are made about the geometry besides the intersection of the beam
with the crystal and rotation axis. In particular, the rotation axis is not assumed
to be orthogonal to the direction of the beam in the representation of a rotation
method scan. As the geometry consists of vector descriptions, in principle, their
components may be expressed in any chosen coordinate system; however, within
DIALS , the geometry is expressed using the standard imgCIF conventions (Bernstein
and Hammersley, 2006). Figure 2.2 shows the abstract experimental geometry for
the single crystal rotation experiment whose components are described in more detail
below.

The geometry of a single detector panel k is conveniently expressed by the matrix,
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dk =
(
dk

x dk
y dk

0

)
. For panel k, the columns of the matrix are the panel basis

vectors dk
x and dk

y , augmented by the translation vector dk
0, locating the origin of

the panel frame in laboratory space (Figure 2.2). The use of matrix dk conveniently
simplifies the equation for reflection prediction to a projection along a scattered
direction to the detector plane, completely avoiding trigonometric functions in favour
of matrix operations (Thomas, 1992).

The crystal geometry is defined by a right handed coordinate system with
reciprocal lattice basis vectors a∗, b∗ and c∗ such that a matrix, B, the reciprocal
space orthogonalisation matrix, is defined with columns, B = (a∗, b∗, c∗). The
orientation of the crystal is described via a rotation matrix, U.

2.2.1 Prediction of Bragg spots

Given a Miller index, h, crystal orientation matrix, U and the transpose of the
crystal reciprocal space orthogonalisation matrix, B, the vector to the reciprocal
lattice point is given by:

r0 = UBh. (2.1)

Rotation of reciprocal lattice point onto Ewald sphere

The reciprocal lattice point r0 will result in an observed Bragg reflection if it passes
through the Ewald sphere as shown in Figure 2.3. In a single crystal rotation
experiment, this occurs at some rotation by an angle, φ, around the goniometer
axis, m2 such that the rotated reciprocal lattice vector is given by rφ = R(m2, φ)r0.
Indeed where such a rotation exists, the reciprocal lattice point will pass through
the Ewald sphere twice: once as it enters the Ewald sphere and again as it exits.
The angles at which the crystal needs to be rotated for the reciprocal lattice point
to pass through the Ewald sphere can be calculated as follows (Kabsch, 2010a).

Given the goniometer rotation axis, m2, and the incident beam vector, s0, a right
handed coordinate system for the goniometer, (m1,m2,m3) can be defined, as in
Kabsch (2010a), such that

m1 =
m2 × s0
|m2 × s0 |

m3 = m1 × m2.

(2.2)

The distance of the reciprocal lattice point from the rotation axis is defined as
ρ =

√
|r0 |2 − (r0 · m2)

2. If |r0 | > 2|s0 |, then the reciprocal lattice point is at too
high a resolution to be rotated onto the Ewald sphere with radius |s0 |. Likewise,

35



Figure 2.3: The Ewald sphere. The crystal is rotated in the beam with beam vector, s0, and a
reciprocal lattice point, rφ, enters the diffracting condition at the point that it passes through the
Ewald sphere resulting in a diffracted beam vector, s1. In the figure, the reciprocal lattice points in
and out of the diffracting condition are indicated by the dark and light circles respectively.
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if ρ2 < (r · m3)
2 then the reciprocal lattice point is in a blind region of reciprocal

space and no rotation exists that will put the reciprocal lattice point onto the Ewald
sphere. The components of the rotated reciprocal lattice vector in the goniometer
coordinate system can be calculated as:

r · m3 = −

(
|r0 |

2

2 + (r0 · m2)(s0 · m2)

s0 · m3

)
r · m2 = r0 · m2

r · m1 = ±
√
ρ2 − (r · m3)

2.

(2.3)

The two angles at which the reciprocal lattice point passes through the Ewald
sphere can then be calculated as follows:

ρ cos(φ) = (r · m1)(r0 · m1) + (r · m3)(r0 · m3)

ρ sin(φ) = (r · m1)(r0 · m3) − (r · m3)(r0 · m1)

φ = tan−1(ρ sin(φ)/ρ cos(φ)).

(2.4)

Projection onto detector

The diffracted beam vector for a reciprocal lattice point rotated onto the Ewald
sphere, s1 = s0 + r can be projected onto the detector as follows. Inverting the
detector matrix, d, results in a transformation matrix, D = d−1; applying this
transformation to the diffracted beam vector, s1, gives a point in projective space,
v = Ds1. For this to result in a valid projection of the reciprocal lattice point onto
the detector, the vector component v3 must be greater than 0. If the value of v3 is
negative, then the projection is a negative distance along the diffracted beam vector
and does not impinge on the detector. The intersection of the diffracted beam vector
on the detector on the virtual detector surface is given by

Xmm =
v0

v2
, Ymm =

v1

v2
. (2.5)

The conversion of this virtual detector surface coordinate, which by convention
is given in millimetres, into a pixel coordinate on the detector is dependent on the
model of the detector. If the pixels have a fixed size and all the photon energy is
deposited at the surface of the detector then the pixel coordinates can be calculated
as Xpx,Ypx = (Xmm/size), (Ymm/size). However, many detectors require additional
corrections to compute the pixel coordinate. If the sensor has a finite thickness
and the diffracted X-ray beam is not orthogonal to the detector surface, the pixel
coordinate will depend on the mean distance at which the diffracted X-rays deposit
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their energy as discussed below.

2.2.2 Parallax correction

The physics of direct conversion pixel array detectors, particularly those with a
silicon sensor, gives rise to a small distortion of the diffraction image: the diffraction
spots are elongated due to the passage of the photons through the sensor. This gives
rise to a predictable effect on the central impact (Duisenberg et al., 2003) of the
reflection, which may be corrected by the “pixel to mm” mapping.

The absorption of photons in a material is given by the Beer-Lambert law.
Specifically, the fraction of photons transmitted a distance x into a material with
known linear attenuation coefficient, µa is given by

I(x)
I0
= exp(−µa x). (2.6)

From this, it can be shown that for a sample of thickness, t, the attenuation
length, La, the distance into the sample at which the mean absorption occurs, can
be calculated as:

La =
1

µa
−

(
t +

1

µa

)
exp (−µat) . (2.7)

For a diffracted beam vector, s1, striking a detector with normal vector, n̂, and
thickness, t0, the effective distance is t = t0/(s1 · n̂). Therefore,

La =
1

µa
−

(
t0

s1 · n̂
+

1

µa

)
exp

(
−
µat0
s1 · n̂

)
. (2.8)

The corrected position for a predicted ray impinging on the detector with fast
axis, dx, and slow axis, dy, is then

Xmm
′ = Xmm + La(s1 · dx)

Ymm
′ = Ymm + La(s1 · dy).

(2.9)

2.3 Interpretation of image metadata

Effective processing of X-ray diffraction data from single crystal diffraction exper-
iments relies on an accurate model of the experimental geometry, which in turn
depends on the ability to read, with no loss of information, the wide variety of data
formats used for X-ray diffraction experiments. While many experiments for macro-
molecular crystallography employ a simple geometry (rotation axis perpendicular to
the direct beam, coincident with one detector axis and in which the “beam centre”
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Figure 2.4: The CSPAD detector at the LCLS CXI beamline (a) and the PILATUS 12M-DLS at
Diamond Beamline I23 (b) (Courtesy of DECTRIS Ltd).

is somewhere near the middle of the detector) the general diffraction experiment
may employ a much more complex geometry, allowing for arbitrary positioning of a
complex detector and the sample rotation axis. For example, the experiment may
employ multi-axis goniometry or have a complex detector composed of multiple non-
coplanar sensor panels (such as the PILATUS 12M-DLS used on Diamond beamline
I23, Figure 2.4) (Wagner et al., 2016). Reliable reproduction of this geometry from a
range of different descriptions requires both a standardised representation and the
ability to import the experimental geometry from a variety of instruments. This
is complicated by the possibility of storing the information in different ways, e.g.
expressing the beam centre in pixels or mm, or with different coordinate system
conventions. While universal adoption of standards such as imgCIF (Bernstein and
Hammersley, 2006) for the recording of X-ray diffraction data could resolve these
challenges, historical precedent indicates that this is unlikely.
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The task of developing a tool to uniformly read diffraction image headers and data
has been addressed more than once. The CCP4 DiffractionImage library (Remacle
and Winter, 2007) was developed to support the DNA (Leslie et al., 2002) and xia2
(Winter, 2009) projects, as it was realised early on that reliable access to a range
of image headers was vital. This was, however, limited by a lack of extensibility
and by assumptions made early in the design that the experimental geometry would
correspond to the simple layout described above. The Computational Crystallography
Toolbox (cctbx ) (Grosse-Kunstleve et al., 2002) includes a package, iotbx.detectors ,
providing data access for the indexing program LABELIT (Sauter et al., 2004) and
the XFEL data analysis program cctbx.xfel (Sauter et al., 2013), yet it suffers similar
limitations. More recent efforts, such as FabIO (Knudsen et al., 2013) help to allow
general access to the data but have less emphasis on the metadata so critical for
crystallographic data and its analysis.

2.3.1 Implementation in DIALS

The diffraction experiment toolbox (dxtbx ) is a software toolkit within the cctbx for
writing new diffraction data visualisation and analysis applications, which has the
aim of allowing a completely general and user-extensible approach to the reading and
interpretation of diffraction image data and metadata (Parkhurst et al., 2014). The
dxtbx follows the principle that the interpretation and analysis of X-ray diffraction
data should be distinct and separable. This design allows the dxtbx to be generally
applicable to the reading of X-ray diffraction data and metadata and will help
to liberate developers of data processing software from the often tedious task of
supporting multiple file formats and data representations within their applications.

The dxtbx offers a general, user-extensible interface for the reading of X-ray
diffraction data and provides abstract models in C++ and Python to describe the
derived experimental geometry. For example, within the dxtbx , the geometry of a
detector is expressed as a collection of abstract planes, each of which has a per-pixel
mapping from the position on the surface to the pixel coordinates in the image.
This mapping may be used to correct for static effects such as module position or
CCD taper corrections, or for dynamic effects such as parallax correction in direct
conversion detectors (described in more detail in Section 2.2.2). The interface exposed
to the rest of the DIALS software is consistent, regardless of the underlying detector
implementation, and has been used to treat data from new and complex detectors
such as the CSPAD used for XFEL data collection at the Linear Coherent Light
Source (Herrmann et al., 2014; Brewster et al., 2016), the DECTRIS PILATUS
12M-DLS used for long wavelength data collection (Wagner et al., 2016) at Diamond
Light Source beamline I23, and the HDF5-format (The HDF Group, 1997) of the
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DECTRIS EIGER datasets (Casanas et al., 2016).
The principle behind the dxtbx is to separate the interpretation of X-ray diffraction

data from its analysis. Details of the experimental setup are encapsulated and exposed
using a common interface and reference frame for all data types, ensuring that the
client analysis code need not be aware of any file format specifics. The models
produced by dxtbx describe the key experimental components and may be used
directly, with no further transformation. dxtbx is also extensible in that a new
experimental setup may be supported by the addition of a single Python file, that
describes the local environment: once this has taken place no changes should be
needed within dxtbx or the analysis code for the data to be correctly interpreted.
Together these allow the developers of analysis code to focus on improving algorithms
rather than the support of numerous detector data formats. Finally, the use of a
completely general vectorial description of the experimental geometry allows for the
propagation of detailed calibration information into the analysis code, and may also
encourage analysis software to support a similarly general approach to the processing
of X-ray diffraction data.

Library design

Early in the development of the dxtbx , it was recognised that, in order to be generally
applicable, a library for reading diffraction image headers and data must satisfy the
following requirements.

1. It must have the ability to read image data and metadata from a wide variety
of detectors employing different file formats and experimental conventions.

2. The image data and metadata must be accessible via a single unified interface.

3. The library must be user-extensible without requiring modification of the
library source code.

4. Finally, the models used to represent the experiment must be able to accurately
capture the detector physics (e.g. distortion corrections) while being sufficiently
general to capture a wide variety of diffraction measurement setups.

To achieve these aims, the dxtbx implements an extensible plugin framework,
where beamline scientists and developers can add their own modules to handle input
from different file formats with different file representations. At the cost of writing
a small amount of Python code, the user may extend the library to support any
bespoke file format and transform the metadata therein to correspond to the standard
representation that is used within the dxtbx experimental models, which has been
adopted from the imgCIF standard. A simple high-level interface that enables access
to data from an entire sequence of images is also provided.
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Experimental models

The dxtbx uses the concept of experimental models to encapsulate certain aspects of
the experimental description that are separable with respect to one another. The
experimental models are encoded in four container classes: the beam, goniometer,
detector and scan. These contain information about the source wavelength and direc-
tion, the axis about which the crystal is rotated (for rotation data), the instrument
performing the measurements, and relationship between the image frames and any
rotation respectively. In the context of single crystal X-ray diffraction, the models are
completely general with respect to experimental technique and beamline hardware.
This is achieved by employing a fully vectorial description that expresses only the
abstract geometry of the experiment and not other properties as described in Section
2.2.

Many ideas from the proposals described in the EEC Cooperative Programming
Workshop on Position-Sensitive Detector Software (Bricogne, 1987) were used in the
development of dxtbx . In particular, the scheme for “virtualisation” discussed therein,
which involves forming an abstract and general definition for every component of the
diffraction experiment, was adopted. The dxtbx forms the basis of the “instrument
definition language” outlined at that workshop, by which actual beamline hardware
is mapped to its abstract model representation for any particular experiment.

Of the core experimental models, the detector model is necessarily the most
complex and requires further explanation. The basic unit of our abstraction is a
panel, which represents a rectangular detector plane1, oriented in laboratory space.
The simple case, where the detector is a container of one or more such panels, none of
which need to be co-planar, can accurately capture the half-barrel shaped PILATUS
12M-DLS constructed for Diamond Beamline I23 (Figure 2.4). For more exotic
detectors, the dxtbx supports a general hierarchical model allowing panels to be
organised into logically related groups and subgroups. This is necessary for the
CSPAD (Hart et al., 2012), used on the LCLS CXI beamline (Figure 2.4), where
individual panels may move with respect to each other.

In determining a position on the detector, dxtbx uses the concept of a virtual
detector plane. A position on the virtual plane is given by the panel identifier and
a coordinate in the two-dimensional Cartesian frame attached to that panel. This
point corresponds to the position at which photons impinge on the surface of the
detector, and is independent of the actual detector hardware in use. Behind the
virtual plane interface, the hardware-specific mapping between panel position and
pixel location is encapsulated within a millimetre-to-pixel function (and its inverse),

1Currently dxtbx supports only detectors made of a collection of flat rectangular sensors; support
for truly curved instruments, such as a Weissenberg image plate detector, could however be added
when the need arises.
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which must be supplied by code specific to the actual detector hardware. This will,
for example, take into account detectors with thick sensors, where the interaction
point within the sensor may alter the pixel position of the measurement. In dxtbx ,
this is realised by pairing the abstract detector model with a strategy class (Gamma
et al., 1994), that allows the behaviour of the detector model to be modified without
changing the model itself. This class is the natural place for all hardware-specific
distortions from the simple mapping, including parallax and geometrical distortion
effects, for example caused by an optical fibre taper.

In general, all algorithms that use the dxtbx models do so via the vectorial
representations summarised in Figure 2.2. This ensures that the choice of coordinate
frame is independent of the working of those algorithms, with the caveat that the
origin of the laboratory frame is located at the intersection of the primary beam and
the sample.

Image metadata interpretation

A plugin mechanism is provided to handle input from multiple file formats with
alternative descriptions of the experimental geometry with users or beamline staff
able to add their own plugins to handle bespoke image formats or specific local
variants. The ability to extend the library is primarily useful where either an unusual
piece of experimental hardware is present, or if the beamline has some idiosyncrasies,
for example a left-handed rotation axis. The plugin based model for handling different
data representations has two advantages: no external site-file is required for operation
and it enables complex corrections (e.g. tile position corrections for a PILATUS
detector) to be encoded in a self-contained way.

Image metadata storage

A module is provided to enable straightforward storage of modified image set meta-
data. An image set may then be created from the file representation, allowing
the refined experimental geometry to be saved for later use. The data are saved
using the JavaScript object notation (JSON) format (Crockford, 2006); this format
was chosen as it is human-readable, an open standard and is natively supported in
many programming languages. In particular, the Python standard library contains a
module for reading and writing arbitrary Python structures to JSON format, making
it convenient for use within the dxtbx .
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2.4 Spot finding

A set of observed spots is required in order to determine the unit cell and orientation
of the crystal. Therefore, the first task performed by a data processing program is to
analyse the raw X-ray diffraction images to extract a set of strong spots with well
determined centroids for use in indexing. Since the initial experimental geometry may
be poorly specified, spot finding algorithms typically do not require any experimental
information beyond the diffraction images themselves. Spot finding algorithms tend
to operate according to the following general procedure:

1. A pixel thresholding algorithm is applied to select strong pixels in the X-ray
diffraction image.

2. A list of spots is then extracted by determining connected regions in the
thresholded image (in two dimensions for still shots or three dimensions for
rotation data).

3. The size, centre of mass and total intensity of the observed spots are calculated.

4. The resulting spot list is then filtered based on user criteria, e.g. minimum
and maximum number of pixels in a spot, and the peak to centroid distance of
the spot.

The method used for identifying strong pixels in the X-ray diffraction images
differs in the various integration programs; the method used in XDS (Kabsch, 2010b)
and DIALS (Winter et al., 2018) is described here. The local mean, µ, and variance,
σ2, are calculated for each pixel (over the region around the pixel defined by the
kernel size) in each image. The local index of dispersion, D, is then calculated from
these quantities as

D =
(
σ2

µ

)
. (2.10)

For a detector with insignificant point-spread and gain G, a value of D ≈ G is
expected for the background, with G being unity for a photon counting detector.
The appropriate gain for integrating detectors is normally set by the relevant dxtbx
format class, but if required the value can be modified for spot finding. Strong pixels
are then identified through three sequential thresholding operations. First, pixels
with a value less than a global threshold value (by default set to zero) are discarded.
Next, a gain-dependent threshold is applied using the index of dispersion map to
identify regions of the image that contain strong pixels. This operation essentially
tests for regions of the image whose pixels are not drawn from a single Poisson
distribution, i.e. not a local flat-field. For Poisson-distributed data, the quantity
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D(N − 1) is approximately chi-squared distributed with N − 1 degrees of freedom,
where N is the number of pixels in the region (Frome, 1982). Therefore the expected
variance in D(N − 1) is 2(N − 1). Pixels are marked as potentially strong if the index
of dispersion in a local region around the pixel is greater than a certain number of
standard deviations, given by the parameter σB (by default set to 6.0), above the
expected value,

D > G

(
1 + σB

√
2

N − 1

)
. (2.11)

Finally, pixels in these regions are selected as strong if their raw values, ci, are
greater than a certain number of standard deviations, assuming a Poisson distribution,
given by the parameter, σS (by default set to 3.0), above the local mean,

ci > µ + σS
√

Gµ. (2.12)

This method will find features on the image, e.g. Bragg reflections, ice rings and
zingers.

Implementation in DIALS

In some integration packages, the initial spot finding is limited to a subset of the
data for the initial characterisation, i.e. indexing from a small number of images.
Within DIALS , however, the decision was made to globally model the experiment.
This has a significant effect on spot finding: the recommended usage (though this
is not mandatory) is to find spots throughout the data set and perform subsequent
indexing and refinement using this list of spots or a random subset. The spot list
is also used to designate which reflections will contribute to the construction of
reference profiles during integration.

For photon counting detectors, the default settings for the global threshold (0)
and gain (1) are usually appropriate. For other detectors where these defaults
are not correct, appropriate values can be set in the dxtbx library as part of the
detector model, or manually adjusted during spot finding. In DIALS , determining
appropriate parameters is easily accomplished via an interactive image viewer. The
image processing steps in the spot finding algorithm are shown in Figure 2.5.

2.5 Indexing

Given a set of observed strong spots from a set of diffraction images, an auto-indexing
program is able to determine the crystal unit cell parameters and orientation, and
also assign Miller indices to each of the observed spots. In the past, indexing
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Figure 2.5: The image processing steps of the spot finding algorithm. The original image (a),
the local mean (b) and variance (c) are calculated in a kernel centred on each pixel (by default, a
square kernel of size 7 × 7 pixels is used). The local index of dispersion (d) is then calculated. A
threshold (e) is applied to the index of dispersion image and this is combined with a threshold on
the individual pixel counts (f).
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algorithms typically needed prior information about the expected unit cell parameters
(Messerschmidt and Pflugrath, 1987); however, most modern integration programs
typically implement auto-indexing algorithms that are able to determine the unit
cell parameters by direct analysis of the strong diffraction spots without any prior
information. The only information required is a description of the experimental
geometry: specifically, the wavelength of the incident beam is required along with a
set of vectors describing the incident beam direction, detector position and detector
orientation. The basic procedure performed by an auto-indexing program is as
follows (Bricogne, 1986; Otwinowski and Minor, 1997; Powell, 1999; Sauter et al.,
2004; Gildea et al., 2014):

1. For each spot in a set of strong spots, the 3D centroid is calculated, giving
the position of the spot on the detector and the rotation angle at which it is
observed. A diffracted beam vector for the central impact of the spot, and
consequently a point in reciprocal space, can then be calculated.

2. The periodicity of the set of 3D points in reciprocal space is analysed and
a set of basis vectors is selected to determine a likely primitive unit cell. A
refinement of the experimental geometry can then be performed to minimise
the distance between the observed and predicted positions of the spots; for
rotation data, this takes into account the position of the spots on the detector
as well as their rotation angle.

3. Transformations are then applied to select the compatible Bravais lattices and
the experimental geometry is refined using the symmetry constraints for each
Bravais lattice. Heuristics are then applied to select a Bravais lattice from the
list; this typically involves selecting the highest symmetry solution which has
a low penalty (Powell, 1999) and low RMSD between the observations and
predictions.

4. Miller indices are then assigned to all the strong spots consistent with the
lattice.

5. In the case of multiple lattices, the procedure can repeated iteratively with the
remaining strong spots until no more spots can be indexed.

In order to determine the basis vectors of the reduced unit cell, auto-indexing
programs search for periodicity in the reciprocal space mapping of the observed
strong spots. It is in performing this task that the various implementations offered
by auto-indexing programs tend to differ. Fourier transforms provide a natural
framework for the analysis of periodic data; the use of a 3D Fourier transform of the
reciprocal space points for determining the basis vectors of the reduced unit cell was
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proposed by Bricogne (1986); however, performing a 3D fast Fourier transform (FFT)
is very computationally intensive so application of this algorithm was not practical
using the computer hardware available at the time. With advances in computing,
a practical implementation of the 3D Fourier transform auto-indexing algorithm
became feasible and the first implementation was provided by HKL2000/DENZO
(Otwinowski and Minor, 1997; Otwinowski et al., 2012). It was recognised that,
it was much less computationally expensive to compute many 1D FFTs with a
fine grid than a single 3D FFT with a much coarser grid. This precipitated the
development of a 1D Fourier transform auto-indexing algorithm (Steller et al., 1997;
Rossmann and Beek, 1999; Powell, 1999). This has since become known as the DPS
algorithm as it was first incorporated in the DPS software suite distributed with
ADSC CCD detectors (Powell, 1999). The algorithm works by computing several
thousand uniformly spaced projections of the spots in a hemisphere in reciprocal
space. The basis vectors are extracted by finding the non-collinear directions showing
the greatest periodicity.

Other, non Fourier transform based methods have also been developed. One
algorithm was described by Kabsch (1993) for implementation in XDS (Kabsch,
2010a) which involved reducing the list of reciprocal space points into a set of
difference vector clusters. Analysis of these clusters then enabled the extraction of
the basis vectors. A particular challenge in recent years has been the processing of
data containing multiple lattices on a single image. To address this, a real space
grid search auto-indexing algorithm was developed in order to index spots derived
from possibly multiple lattices (Gildea et al., 2014). This algorithm requires prior
knowledge of the unit cell parameters, meaning that only the orientation of the
crystals needs to be determined from the data. Possible orientations are sampled
uniformly within a hemisphere and scored to find combinations of basis vectors that
are consistent with the input unit cell parameters.

Implementation in DIALS

The philosophy of the DIALS framework is that there is not necessarily a “best”
algorithm for a particular task; consequently, the framework has been designed to
allow various algorithm implementations to be used. Indexing provides a concrete
example of this philosophy. DIALS offers three methods for determining the reciprocal
lattice basis vectors which can be selected at runtime by the user (i) a 1D Fourier
transform based algorithm, (ii) a 3D Fourier transform based algorithm, and (iii) a
real space grid search algorithm (Gildea et al., 2014).

Since auto-indexing requires knowledge of the experimental geometry, it is critical
that this information is specified correctly. Initial geometry taken from the image
metadata is often inaccurate; indeed, experience acquired from processing data from
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a variety of sources has shown that the most common cause of indexing failure is the
specification of an incorrect “beam centre” on the detector. An error in the beam
centre greater than half the distance between adjacent reflections will inevitably
result in mis-indexing of reflections. However, errors in the beam centre are generally
problematic for indexing; the mapping of the spots to reciprocal space will become
distorted, thereby making analysis of the periodicity difficult or impossible. In order
to mitigate this problem, algorithmic solutions have been devised: Sauter et al. (2004)
described a grid search algorithm that used information about the lattice spacings
to derive a better estimate of the beam centre. This algorithm is also implemented
within DIALS (Winter et al., 2018).

2.6 Refinement

In the context of X-ray diffraction data processing, refinement is the process of
optimising a set of experimental model parameters relating to the experimental
geometry that affect the prediction of the positions of the reflections and their shape
on the detector. There are three types of refinement implemented in data processing
programs: centroid refinement, which aims to minimise the difference between the
observed and predicted spot positions; profile refinement, which aims to model the
shape of spots on the detector; and post refinement, which aims to enable more
accurate estimation of the intensities of partially recorded reflections.

2.6.1 Centroid refinement

The initial experimental model supplied to the data processing program is derived
from the image metadata, but this may not always be accurate. In order to estimate
the reflection intensities, it is necessary to know their positions on the detector;
therefore, to ensure accurate intensity estimates, the prediction of the spot positions
must also be accurate. Accurate spot positions are calculated by performing a least
squares optimisation that aims to find the set of parameters that results in the
smallest sum of squared residuals between the observed and predicted spot positions
(Kabsch, 2010a; Waterman et al., 2016).

Implementation in DIALS

Over the course of a rotation scan, the experimental models may change. This is
most evident in the crystal model: the unit cell volume may increase due to radiation
damage or the orientation may change due to crystal slippage during rotation. These
effects need to be incorporated into the experimental model for the prediction of
reflection positions. Traditionally, refinement of the experimental model parameters
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occurs during integration where small batches of images are processed together and a
single set of parameters is refined for each batch of images (Kabsch, 2010a). However,
this can result in discontinuities between refined parameters on adjacent images.
Within DIALS , the refinement is performed as a discrete step before integration
using information from the strong spots collected during spot finding across the whole
scan range. The crystal model is parameterised such that smooth variation in the
unit cell and orientation parameters is an explicit feature of the model (Waterman
et al., 2016).

DIALS also enables the joint refinement of multiple experiments. In this context,
an “experiment” refers to a single set of experimental models that results in a
diffraction pattern; for a rotation experiment, this means a beam, crystal, detector,
goniometer and scan model; for a serial experiment, this means a beam, crystal and
detector model. Experiments can share, for example, a detector or beam model as
shown in Figure 2.6. In the case of multi-crystal experiments, where each experiment
covers either a small rotation or consists of a single still diffraction image, the joint
refinement can enable better determination of the detector position and reduce
correlations between detector and crystal parameters. This then results in better
determination of the crystal unit cell and orientation which consequently improves
the predicted spot positions. Furthermore, in multi-crystal experiments, the quality
of data is variable and merging a subset of datasets might give better results than
merging all the acquired data. Since it is not generally computationally feasible
to try all combinations of datasets, programs such as BLEND (Foadi et al., 2013)
select a subset by clustering the datasets in a hierarchical manner based on metrics
derived from the unit cell parameters. Therefore, better determination of the unit
cell parameters can result in a better clustering and consequently a better selection
of datasets for merging.

2.6.2 Profile refinement

Once the positions of the reflections on the detector have been predicted, the shape
of the reflections on the detector needs to be determined in order to enable the
classification of pixels into foreground and background for each reflection. The shape
of the spots on the detector is typically determined by specifying a model of the
reflection profile in reciprocal space and estimating the parameters of the model
from the observed strong diffraction spots on the images. The profile model used
in XDS (Kabsch, 2010a) and DIALS (Winter et al., 2018) uses a non-orthogonal
coordinate system local to each reflection. For an incident beam vector, s0, and a
given reflection with diffracted beam vector, s1, this coordinate system is defined as
(Kabsch, 2010a):
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Figure 2.6: Two cases with multiple experiments. Here the circles indicate the beam (B), crystal
(C), detector (D), goniometer (G) and scan (S) models. (a) A rotation experiment with three
independent sweeps with different crystal and scan models but using the same beam, goniometer
and detector model. (b) A serial crystallography experiment with a single beam and two detectors
and three independent crystal models.

e1 =
s1 × s0
|s1 × s0 |

,

e2 =
s1 × e1
|s1 × e1 |

,

e3 =
s1 + s0
|s1 + s0 |

.

(2.13)

The e1 and e2 axes form a tangent plane on the surface of the Ewald sphere
centred on the intersection of the diffracted beam vector, s1, with the Ewald sphere.
This component of the transformation corrects for geometrical distortion as a result
of the obliquity of the incidence of the diffracted rays on the detector. The non-
orthogonal e3 axis corrects for the path taken by the reflection as it is rotated through
the Ewald sphere. The angle of rotation about the fixed rotation axis required for a
reflection to pass through the Ewald sphere is a function of its resolution and position
relative to the fixed rotation axis. High resolution reflections and reflections further
away from the rotation axis will pass through the Ewald sphere faster than lower
resolution reflections and reflections closer to the rotation axis. The shortest path
through the Ewald sphere is taken when the rotation axis is orthogonal to both the
incident and diffracted beam vectors. The increase in path length of the reflection
through the Ewald sphere is 1/(e1 · m2). Transformation into this coordinate system
makes reflections appear as if they had taken the same path through the Ewald
sphere.

51



For a pixel with observed diffracted beam vector, s′, and rotation angle, φ′, the
transformation to a point, (ε1, ε2, ε3), in this coordinate system is as described in
Kabsch (2010a):

ε1 =
e1 · (s

′ − s1)

|s1 |
,

ε2 =
e2 · (s

′ − s1)

|s1 |
,

ε3 = ζ(φ
′ − φ).

(2.14)

Where, ζ = m2 · e1. The reflection profile model is then a Normal distribution in
this reflection specific coordinate system such that:
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Where the parameter, σD, therefore, determines the extent of the reflection on
the face of the detector, and the parameter σM determines the extent of the reflection
over a range of images. These parameters are estimated from the list of indexed
strong spots identified previously during spot finding as described in Kabsch (2010a).
Using this model, partiality of a reflection, the fraction of the total intensity of the
reflection recorded on the detector images, is calculated as follows:

partiality =
1

2

[
erf

(
|ζ |(φ1 − φc)
√
2σM

)
− erf

(
|ζ |(φ0 − φc)
√
2σM

)]
. (2.16)

Where, φ0 and φ1 are the rotation angles covered by the image, and φc is the
rotation angle for the predicted location of peak of the Bragg reflection.

Implementation in DIALS

The default profile model used in DIALS is the same as that used in XDS . The σD

parameter is calculated as described in Kabsch (2010a) by computing the intensity
weighted variance of the diffracted beam directions of the pixels contributing to the
observed spot and then computing the mean of the variances over all strong spots.
The σM parameter is computed via a maximum likelihood estimator which extends
the method in Kabsch (2010a) and takes into account the number of images over
which the strong spots are recorded as well as the fraction of the reflection intensity
recorded on each image.
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2.6.3 Post refinement

Post refinement is performed after integration in order to provide better estimates
of the partiality for reflections which have not been fully recorded. As a crystal is
rotated, reflections pass through the Ewald sphere. Due to the effects of mosaicity,
the reflection covers a finite size in reciprocal space. A fully recorded reflection
will pass fully through the Ewald sphere; a partially recorded reflection will only
be rotated partially through the Ewald sphere. In the case of a partially recorded
reflection, only a fraction of the total expected intensity will be recorded. This
fraction can be calculated by applying a model of the reciprocal space reflection and
computing the fraction of the total volume of the spot that has been rotated through
the Ewald sphere. However, this can only be achieved if the unit cell parameters and
crystal orientation are known to a high accuracy. Post-refinement uses the integrated
and merged intensity to compute observed partialities; the unit cell parameters and
crystal orientation are then refined to minimise the difference between the observed
and expected partialities (Rossmann et al., 1979; Winkler et al., 1979). In DIALS ,
post refinement is not performed for rotation data.

In the processing of “still” X-ray diffraction images, the handling of partial
reflections is of additional importance. In this method, all reflections are partially
recorded and the recorded intensity essentially represents a slice through the reciprocal
space reflection profile. Calculating the fraction of observed intensity in this case is
non-trivial since the volume of the reflection profile that is rotated through is always
zero. Various models for computing the partiality of still diffraction images and
performing post-refinement have been proposed (Hattne et al., 2014; Sauter et al.,
2014; Sauter, 2015; Uervirojnangkoorn et al., 2015; Ginn et al., 2015).

2.7 Integration

Integration is the process of obtaining estimates of diffracted intensities and their
standard errors from the raw images recorded on an X-ray detector (Leslie, 1999).
The integration procedure can be separated into three discrete steps. The first is
the determination of the reflection mask which labels pixels that are part of the
reflection peak (foreground) and those in the background. The second step estimates
the background values under the peak. Finally the peak intensity is evaluated via
summation integration or profile fitting.

2.7.1 Background Estimation

Using the calculated profile model parameters, image pixel data are read into reflection
“shoeboxes” that contain the peak pixels and a substantial border of background
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pixels surrounding the peak as shown in Figure 2.7. In order to estimate the reflection
intensity from the peak pixels, the background needs to be subtracted. However,
since it is not possible to determine the background under the peak directly, the
background in the peak region of the reflection first needs to be modelled. This is
accomplished by using information from non-peak pixels in the local area of each
spot. The background is typically modelled as either a constant value (Kabsch,
2010a) or a plane (Leslie, 1999) centred on the reflection. An important step in the
background modelling is to ensure that the estimated background is not contaminated
by outlier pixels such as zingers, unmodelled intensity from adjacent reflections, Bragg
diffraction from ice, or reflections from a different lattice.

Implementation in DIALS

A number of different background models have been implemented in DIALS . The
background can either be modelled independently for each image contributing to
the reflection as a constant value or a plane; alternatively, the background across
the whole reflection can be modelled as either a constant or a 3D hyper-plane.
The constant value or plane is fit to the pixel values using a linear least-squares
estimator. Additionally, DIALS provides a range of outlier handling methods which
can be used with simple constant and linear background models and are particularly
appropriate for CCD data where a pedestal has been subtracted. However, with
modern photon counting detectors where the counts are Poisson distributed, these
traditional methods may produce background estimates that are biased for low
background levels because they assume that the pixel values are approximately
normally distributed, Therefore, the default background modelling algorithm in
DIALS uses a robust generalised linear model approach which explicitly assumes
that the pixel values are Poisson distributed. This method is appropriate across the
full range of observed background levels, it has been shown to be effective even when
the average background is below 1 count per pixel, and is particularly suitable for
photon counting detectors (Parkhurst et al., 2016). This method will be described in
more detail in Chapter 3.

2.7.2 Summation

Given an estimate for the background under the peak, the simplest integration
algorithm is direct summation, where the integrated intensity is obtained as the
sum of all background-subtracted pixel values in the peak region. Error estimates
are derived from Poisson statistics as described by Leslie (1999) and summarised
here. For a reflection shoebox containing m signal pixels and a background model for
the signal region derived from n background pixels, the total estimated background
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Figure 2.7: The shoebox of a reflection is the pixel aligned bounding box that contains the
foreground and background pixels assigned to the reflection. A mask is used to classify the pixels as
either foreground or background and this mask is generated from the profile model of the reflection
shape.

counts, Ibg, within the signal region are

Ibg =

m∑
i

bi . (2.17)

The summed intensity can then be calculated simply as the sum of the observed
pixel counts within the signal region, ci, minus the total estimated background counts
within the signal region, bi, as follows

Is =

m∑
i

(ci − bi). (2.18)

The variance on the estimated intensity is then

σ2
Is = Is + Ibg

(
1 +

m
n

)
. (2.19)

Summation integration does not give accurate intensity estimates if a reflection’s
pixels are overloaded, contain otherwise invalid values, or are contaminated with
signal from overlapping adjacent reflections.

Implementation in DIALS

A key difference between the various data processing programs is the way in which
partial reflections recorded across a number of images are handled. Programs that
implement 2D integration algorithms, such as MOSFLM (Leslie, 1999), typically
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evaluate and output the intensity of each partial reflection recorded on each image
independently resulting in a set of intensities for each reflection. Programs that
implement 3D integration algorithms, such as XDS (Kabsch, 2010b) typically evaluate
the total intensity of the reflection across all the images on which it was recorded
and output a single intensity for each reflection. Within DIALS , both methods are
supported and the summation intensity can be output as a single total summed
intensity or a set of partial summed intensities

2.7.3 Profile fitting

One of the most important developments in the analysis of X-ray diffraction data in
macromolecular crystallography was the introduction of the profile fitting method for
estimating the reflection intensities. The method of profile fitting assumes that both
weak and strong reflection profiles in a local region of reciprocal space all have the same
normalised shape and profile (Diamond, 1969; Ford, 1974). Reference profiles can
then be estimated from the measured data and applied to each reflection to provide
an estimate of the reflection intensity. Profile fitting offers improvements in the
estimates of intensity and standard error (Leslie, 1999) and offers additional benefits
in allowing estimation of saturated reflections and in dealing with incompletely
resolved diffraction spots. Since the initial exposition of the profile fitting method,
three general approaches have been developed for the construction of reference
reflection profiles from the measured data:

1. Empirical profile formation in detector space. Reference profiles are formed
by averaging the profiles of strong reflections directly on the detector. This
is commonly referred to as 2D profile fitting. This method is implemented
in MOSFLM (Leslie, 1999) and HKL2000/DENZO (Otwinowski and Minor,
1997).

2. Empirical profile formation in reciprocal space. Reference profiles are formed by
first transforming the reflection pixels into reciprocal space and then averaging
the transformed reciprocal space profiles. This is commonly referred to as 3D
profile fitting. This method is implemented in XDS (Kabsch, 2010b), d*TREK
(Pflugrath, 1999) and DIALS (Winter et al., 2018).

3. Model based profile formation. A model of the experiment is used to simulate
reflection profiles. The parameters of the physical model are then modified
in order to make the simulated reflection profiles match the observed profiles.
This method is implemented in EVAL15 (Schreurs et al., 2009).

A brief description of the different approaches is provided here. Without exception,
all popular integration programs for macromolecular crystallography contain an
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implementation of the profile fitting method; programs implementing the 2D and 3D
empirical profile formation methods are the most widely used.

2D profile fitting

In 2D profile fitting, reference profiles are formed by averaging the image pixels of
strong reflections directly on the detector (Ford, 1974; Rossmann et al., 1979; Leslie,
1999). The most widely used integration programs for macromolecular crystallography
implementing 2D profile fitting algorithms are MOSFLM (Leslie, 1999; Leslie and
Powell, 2007; Powell et al., 2017) and HKL2000/DENZO (Otwinowski and Minor,
1997). Further discussion about 2D profile fitting will be mainly limited to the
MOSFLM program.

Diffraction images collected using the rotation method contain a distorted view
of reciprocal space. This distortion depends on various factors such as the crystal
morphology and mosaicity, beam divergence and spectral dispersion, the obliquity of
the diffracted beam on the detector and other details of the experimental geometry.
Consequently, reflections from different parts of reciprocal space cannot be assumed
to have the same recorded profile on the detector: the profile of recorded reflections
changes across the face of the detector and over the course of the data collection.
Within MOSFLM , this variation is accommodated by determining a set of reference
profiles across the detector laid out in a grid formation (typically a 5x5 grid) (Leslie,
1999). In contrast, for HKL2000/DENZO , a reference profile is determined for each
reflection by averaging the profiles of all strong reflections within a specified distance
from the reflection (Otwinowski and Minor, 1997).

In MOSFLM , each image on which a reflection is recorded is processed separately.
If a reflection is recorded over several adjacent images, each image will result in a
separate measurement of the reflection intensity. In order to estimate the reflection
intensity, a measurement box is positioned on each reflection such that the pixels
around the predicted Bragg peak are labelled as either signal or background. The
parameters defining the size of the measurement box and the signal/background
mask are optimised separately for each reference profile grid point according to the
procedure described by Lehmann and Larsen (1974) such that the I/σ(I) within the
measurement box is maximised. All reflections assigned to a particular grid point
are then given the same measurement box.

The intensity is then evaluated by the equations given in Leslie (1999). For fully
recorded reflections, the profile fitted intensity scale factor and the background plane
are fitted simultaneously. For partially recorded reflections, the background plane is
fitted beforehand and the profile fitted intensity scale factor is computed separately.
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3D profile fitting

The quality of the profile fitted intensity estimates depends on the degree of similarity
between the predicted reference profile and the observed profile of the reflections on
the detector. In the rotation method, the observed reflection profiles are distorted due
to various effects associated with the details of the experimental geometry. Kabsch
(1988) showed that transformation of the observed reflection profiles into a reciprocal
space coordinate system reduced this distortion, resulting in reflection profiles of a
more uniform appearance. This enables better reference profile determination and
consequently better profile fitted intensity estimates.

Kabsch (1988) uses the β-axis described by Harrison et al. (1985) as the basis
of the transformation. In this method, the image pixels from all the images on
which a reflection is predicted to be observed are used to generate a single 3D
reflection profile in reciprocal space; this has come to be known as 3D profile fitting
to distinguish it from 2D detector space profile fitting. Although this method is
most closely associated with the XDS integration program (Kabsch, 2010b), it is
also implemented in d*TREK (Pflugrath, 1999) and DIALS (Winter et al., 2018).
A discussion of the method will be provided here and the specific implementation in
DIALS will be described in more detail later.

The algorithm is based around the local reflection specific reciprocal space
coordinate system defined in Equation 2.13. The counts in each pixel of the observed
reflection profile are then transformed and distributed to a grid in the reciprocal
space coordinate system. As in MOSFLM , a set of reference profiles are formed
at different points on the detector from nearby strong spots and each reflection is
profile fitted to its nearest reference profile.

The 3D profile fitting method has achieved particularly widespread use with the
move to more finely sliced data collection strategies. As shown in Figure 2.8, fine
sliced datasets tend to have fewer fully recorded reflections, fewer spatial overlaps,
lower X-ray background and fewer saturated pixels. The positional uncertainty of
reflections in finely sliced data is typically smaller due to the better sampling of the
individual spot shapes. Since profile fitting relies on accurate spot positions, this
can result in improved profile fitted intensities. However, the benefits of fine slicing
need to be balanced with the effect of detector readout noise. In the past, the use of
extremely fine slicing was counter productive due to the read out noise associated
with each image (Pflugrath, 1999); however, with the introduction of pixel array
detectors, which have extremely low readout noise, fine slicing incurs essentially zero
penalty in terms of data quality. In this regime, where almost all reflections are
partially recorded within a single image, the 3D profile fitting algorithm has clear
benefits over the 2D profile fitting algorithm due to its ability to use information
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Figure 2.8: For thickly sliced data (a) many reflections will be fully recorded on a single image,
for progressively finer sliced data (b) and (c) the intensity of the reflections will be spread across a
greater number of images. At the bottom of each figure is an example of how the intensity from a
single reflection may be distributed across multiple images.

from all images on which the reflection is recorded to perform the profile fit.

Model based profile fitting

The 2D and 3D profile fitting algorithms both rely on learning the shape of reference
profiles from nearby strong spots. As such they make the assumption that the profiles
of reflections in an area of reciprocal space are sufficiently similar that their profiles
can be assumed to be the same. In some cases, pathologies present in the data may
mean this assumption no longer holds. For example, overlapping spots, twin lattices,
satellite reflections, streaky spots from modulated structures, and multi-modal spots
from K-α1/K-α2 peak splitting may cause some profile fitting algorithms to fail or
give poor results (Duisenberg et al., 2003).

An alternative approach is to generate reference profiles for profile fitting from
a physical model of the experiment that can produce reference profiles specific for
each reflection. The idea of using a physical model to predict the profiles of Bragg
reflections was first discussed in Alexander and Smith (1962) who predicted the shape
of 1D profiles by considering aspects of the source size, wavelength, crystal shape
and mosaicity. The EVAL15 integration program (Schreurs et al., 2009) is the most
widely used program that implements a model based profile fitting algorithm. The
program employs a physical model consisting of a number of parameters describing
the crystal and experiment; a ray-tracing algorithm is then used to generate “general
impacts” (reference profiles) which are then fit to each reflection using a least squares
fit.
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The benefits of this approach are that it can result in more physically realistic
reference profiles, allow more accurate deconvolution of overlapping spots, and allow
physical properties of the crystal itself to be determined (Schreurs et al., 2009). The
difficulty with such an approach is that, since the reflection profiles observed on the
detector are a convolution of various effects such as crystal size and shape, mosaicity,
beam divergence and dispersion and experimental geometry, an exact transformation
is analytically intractable (Schreurs et al., 2009). Therefore computationally intensive
Monte Carlo ray tracing procedures are necessary. The difficulty then lies not in
simulating the reference profiles but in determining the parameters of simulation
from the data.

Benefits of profile fitting

The principal benefit of the profile fitting method is that appropriate use of the
algorithm can greatly improve the standard error on the estimated intensities as
compared with estimates from straight summation of the background subtracted
counts (Diamond, 1969). The improvement is greatest for reflections whose intensity
is small relative to the underlying background level. Leslie (1999) showed that, for
very weak reflections, the use of profile fitting can reduce the standard error on the
estimated intensity by a factor of

√
2. For strong reflections whose intensity is large

relative to the underlying background level, the profile fitted intensity can be shown
to converge to the summation intensity (Leslie, 1999) for an appropriate reference
profile; therefore, profile fitting does not provide any benefit for strong reflections.

For a typical unimodal reference profile, the profile weight decreases with the
distance from the centre of the reflection profile. As well as weighting the pixels with
low counts and low signal-to-noise less strongly, this has the desirable property that,
should a neighbouring reflection intrude into the signal region of the reflection being
integrated, its effect on the profile fitted intensity estimate will be less deleterious
than on the intensity estimate from summation integration (Leslie, 1999; Leslie,
2005). Profile fitting also permits the use of more appropriate ways of handling the
issue of overlapping spots. Bourgeois et al. (1998) described the use of a profile
fitting algorithm for the deconvolution of overlapping spots using a least-squares
procedure. They reported that the intensities of spots overlapping by as much as
60% can be effectively estimated using the procedure. Profile fitting can also be used
to estimate the intensity of overloaded spots by simply ignoring the contribution
of the spot pixels that are overloaded; this may also be achieved using a censored
regression. Intensity estimates from summation integration in this case may not be
possible.
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Pitfalls of profile fitting

During profile fitting, two main assumptions are made; spots close to one another in
reciprocal space have the same underlying profile, and the positions of the spots can
be accurately predicted (Pflugrath, 1999). Violation of either of these assumptions
can cause errors in the reference profiles which in turn will cause systematic errors in
the profile fitted intensities. These systematic errors will typically be small relative
to the random error due to Poisson statistics for weak reflections; however, since
these systematic errors tend to depend on the reflection intensity, they may be more
significant for strong reflections (Leslie, 1999).

To ensure that the requirement of the first assumption is met, Kabsch (1988)
developed the local reciprocal space transformation for use in the 3D profile fitting
algorithm. During execution, validation of the assumption of uniform profiles can be
done by computing the correlation between strong spots and their reference profiles;
strong spots should have a high correlation with their reference profile (Pflugrath,
1999).

Since the reference profiles are determined from the profiles of strong reflections,
the positional uncertainty in the reflection centroids will lead to broadening of the
reference profiles. Even in the absence of any positional error in the reflection centroid,
profile broadening will still occur due to the finite sampling size of the detector
pixels. In addition to this, error in the predicted position of the reflections will
also cause the reference profile to be mis-centred on the reflection. The broadening
of reference profiles will cause a systematic error in all the estimated reflection
intensities; however, the error in the predicted position will vary for each reflection
(Leslie, 1987). It should be noted that positional errors will also affect the summation
intensity estimates; if the integration shoebox is misplaced, a larger signal region
will be needed which will contain more background pixels, thereby increasing the
random error on the summed intensity. If the positional error is particularly large
then some of the reflection signal may lie outside the integration shoebox causing a
systematic error in the summed intensity.

In order to reduce the effect of positional errors in the profile fitting, it has been
suggested that reflection profiles could be “auto-centred”; the position of the reflection
on the detector can be varied until the optimum fit with the reference profile is found
(Leslie, 1987). However, this method is typically only possible for strong reflections
and may increase any systematic error in intensity estimates from profile fitting if
applied to all reflections (Greenhough and Suddath, 1986; Otwinowski and Minor,
1997).

Profile fitting to partially recorded reflections can also be problematic for the
2D profile fitting algorithm. This can result in either an over- or under-estimate in
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the profile fitted intensity depending on whether the reflection is more or less than
50% recorded. However, this systematic error has been shown to cancel out when
the partial intensity estimates are summed to give a single fully recorded intensity
estimate (Greenhough and Suddath, 1986).

Implementation in DIALS

In DIALS , 3D profile fitting is currently performed as described by Kabsch (2010a).
The image/rotation-space shoebox for each reflection is first transformed into its local
reciprocal space coordinate system in which the reflection profiles take on a more
uniform appearance, allowing their shapes to be modelled more effectively (Kabsch,
1988). In contrast to XDS , the reflection data is transformed onto the reciprocal
space grid by computing the overlap of each detector pixel with the transformed grid
point using a polygon clipping algorithm (Sutherland and Hodgman, 1974). The
fractional overlap is then used to determine the number of counts in each pixel that
is distributed to each grid point in the transformed grid. An example of a reference
profile is shown in Figure 2.9.

In order to aid parallel execution, blocks of images are integrated independently.
The blocks of images are overlapped so that the start of a block is aligned to the centre
of a preceding block. This ensures that the majority of reflections are fully recorded
within a single block, with a better profile fitting intensity estimate than reflections
split at block boundaries and reassembled after integration. Reference profiles are
created from the strong spots at several points across the detector surface for each
block of images being integrated. Each strong reflection contributes to its nearest
reference profiles using a Gaussian weight derived from its distance to the reference
profile such that reflections halfway between two reference profiles contribute half
their intensity to each reference profile. This is done to ensure that, if there are few
or no strong reflections recorded on a part of the detector, reference profiles will
still be computed to allow profile fitting to be performed for weak reflections. Once
the reference profiles have been created, the intensity is calculated by fitting each
reflection’s transformed profile to the nearest reference profile. The profile-fitted
intensity and error are calculated as described by Kabsch (2010a).

2.7.4 Data correction

After integration, a number of corrections are applied to the raw intensity estimates.
As a crystal is rotated about a fixed axis, different reflections will be in the diffracting
condition for different lengths of time depending on their position in reciprocal space;
this results in a predictable difference in observed intensity which is corrected for by
the Lorentz correction (Zachariasen, 1945) which is calculated as follows:

62



Figure 2.9: A reference profile used in profile fitting. Each image corresponds to a slice through
the 3D profile.
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L =
|s1 · (m2 × s0)|

|s1 | |s0 |
. (2.20)

The scattering intensity is also dependent on the polarisation of the incident
X-ray beam. Given a polarisation normal, np, and the polarisation fraction, fp, the
polarisation correction (Zachariasen, 1945) is given by

P = (1 − 2 fp)

(
1 −

(
np · s1

|s1 |

)2)
+ fp

(
1 +

(
s1 · s0
|s1 | |s0 |

)2)
. (2.21)

For pixel array detectors, the thickness of the detector pixels also has an effect
on the reflection intensities which requires correcting. Each X-ray photon has a
probability of being absorbed by the sensor after travelling a distance, t, through
the sensor. The effective thickness of the detector depends on the angle of incidence
of the diffracted beam vector, θ and the probability of it being absorbed depends on
the wavelength (and material) dependent X-ray linear attenuation coefficient, µa, of
the sensor (NIST, 2004). The correction, known as the detector quantum efficiency
(Winter et al., 2018) is given by

Q = 1 − exp

(
−µa(λ)

t
cos(θ)

)
. (2.22)

The corrected intensity is then Icorr = I(L/P)(1/Q).

2.8 Data reduction

Once integration has provided individual intensity estimates for all observed reflec-
tions in a dataset, data reduction is then used to compute a merged average intensity
estimate for each symmetry equivalent reflection. This requires the point group to
be specified; however, since it is generally not possible to determine the true space
group until the structure has been solved, a likely space group may be used in the
first instance. The first step of data reduction is, therefore, to select a probable space
group by analysing the unit cell and reflection intensities. Within the CCP4 suite,
this task is performed by the POINTLESS program (Evans, 2005).

Once the probable space group has been determined, symmetry equivalent reflec-
tions need to be re-scaled before they can then be merged; This is because various
physical experimental factors result in the individual intensities being recorded on
different scales. These physical factors include those affecting the incident beam,
such as fluctuations in intensity and absorption of the incident beam by the crystal.
There are also factors related to the rotation of the crystal about the fixed rotation
axis, such as changes in the illuminated crystal volume, absorption of the diffracted
beam and radiation damage. Additionally, there may be factors associated with the
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detector, such as variations in sensitivity across the detector surface, shadowing on
the detector and, in older detectors, shutter synchronisation errors (Evans, 2005;
Otwinowski et al., 2003; Kabsch, 2010a). To merge the symmetry equivalent intensity
estimates, a scale factor needs to be applied to each intensity estimate to correct
for these physical factors and to ensure that all intensities are on a common scale.
Within the CCP4 suite this task is performed by the AIMLESS program (Evans and
Murshudov, 2013). The parameters of the model are determined by minimising the
differences between symmetry equivalent observations to make the data as internally
consistent as possible according to the the following equation (Hamilton et al., 1965;
Fox and Holmes, 1966; Ford and Rollett, 1968):

Ψ =
∑

h

∑
l

whl(Ihl − ghl < Ih >)
2. (2.23)

Where, h is an index over all unique reflections, l is an index over all measurements
of a particular unique reflection, whl is the weight given to a particular observation
(typically the inverse of the variance), Ihl is an observed intensity, ghl is the inverse
scale factor on the intensity, and < Ih > is the true merged intensity. The merged
intensities are then calculated simply as:

< Ih >=

∑
l
whlghl Ihl∑
l
whlg

2
hl

. (2.24)

.
The errors on the integrated intensities are typically underestimated since they are

usually derived from Poisson statistics and do not take into account other potential
sources of error such as errors in the predicted position and errors resulting from
profile fitting. Therefore, data reduction programs attempt to improve the error
estimates by applying a correction to ensure that the normalised deviations from
the mean intensity, δhl = (Ihl− < Ih >)/σ(Ihl), follow a standard normal distribution
(Evans, 2005). This almost always results in an increase in the estimated errors on
the reflection intensities.

Data reduction programs differ in the implementation of their scaling model.
A simple scaling model, might apply a scale factor per image (known as batch
scaling); however, this model leads to discontinuities in the scale factors between
adjacent images. Therefore, a smoothly varying model is often used and may
perform better. A smooth model may be implemented by determining the scale
factors at regular intervals and interpolating using Gaussian weights as done in
AIMLESS (Evans and Murshudov, 2013). Scaling models also incorporate a B-factor
term which provides a resolution dependent radiation damage correction which is
allowed to vary as a function of time (or rotation). The B-factor correction is given
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by exp(−2B sin2(θ)/λ2). SCALEPACK (Otwinowski et al., 2003) implements an
alternative scaling model using exponential modelling of the scaling parameters which
are estimated via the minimisation of a chi-squared like target function. XSCALE
(Kabsch, 2010a) implements a non-parametric rather than physical scaling model in
which a finite grid of correction factors is used.

Once data reduction is completed, it is necessary to determine the structure
factor amplitudes from the merged intensities. This involves computing the square
root of each merged intensity. Problems result if the merged intensity is negative
as this would yield an imaginary structure factor amplitude. Excluding negative
reflections, or setting them to zero, biases the distribution of intensities resulting
in a perturbation of the electron density map and refined atomic model (French
and Wilson, 2012). In order to avoid this problem, programs such as CTRUNCATE
(Winn et al., 2011) implement a procedure using Bayesian statistics to ensure that
all the intensity estimates are positive, with the Wilson distribution (Wilson, 1949)
being used as a prior distribution for the reflection intensities (French and Wilson,
1978). Application of this model results in negative and small positive intensities
being modified but does not result in much change in large positive intensities. These
corrected intensities are then used to determine the structure factor amplitudes. It
should be noted that these corrected intensities should not be used in any further
analysis since they are biased. Indeed, rather than using structure factor amplitudes,
modern phasing and refinement programs are moving towards using the intensities
themselves to avoid explicitly performing this correction.
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Chapter 3

Robust background modelling using
Generalised Linear Models

3.1 Introduction

In macro-molecular crystallography (MX), integration programs - such as MOSFLM
(Leslie, 1999), XDS (Kabsch, 2010b), d*TREK (Pflugrath, 1999) and DIALS (Wa-
terman et al., 2013; Winter et al., 2018) - are used to estimate the intensities of
individual Bragg reflections from a set of X-ray diffraction images. Whilst details of
the processing differ, these programs all follow the same basic procedure to calculate
the intensity estimates. For each reflection, pixels in the neighbourhood of the
predicted Bragg peak are labelled as either “foreground” or “background” pixels
through the application of a model of the shape of the reflection on the detector.
The reflection intensity may be estimated by subtracting the sum of the estimated
background values from the sum of the total number of counts in the foreground
region. This is termed “summation integration”. The background in the foreground
region is unknown and is, therefore, estimated from the surrounding background
pixels assuming smooth variation in the background counts.

An accurate estimate of the background is a prerequisite for deriving an accurate
estimate of the reflection intensity. Integration programs typically assume that the
background in the vicinity of a reflection peak can either be modelled as a constant
value (Kabsch, 2010a) or a plane with a small gradient (Leslie, 1999). Since the
reflection peak typically extends across an area containing a small number of pixels,
these assumptions generally hold true and the resulting simple models have the
advantage of being computationally inexpensive to calculate from the surrounding
background pixels.

The situation is complicated by the presence of pixels whose values appear not
to be drawn from the same distribution as other pixels in the background region
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assuming the simple background model. Typically these pixels contain a higher
number of counts relative to their neighbours than would be expected if they were
drawn from the same distribution. For example, the counts can be the result of
hot pixels (defective pixels which always show a large number of counts), zingers
(random unmodelled spikes in intensity from, for example, cosmic rays), intensity
from adjacent reflections, ice rings, or other unmodelled intensity. Background
estimation routines in integration programs need to be resistant to such outlier pixels.
Therefore programs implement methods to exclude outliers from the background
calculation.

In this chapter, a new outlier handling method using robust generalised linear
models is introduced. This algorithm is implemented within the DIALS framework
which also provides implementations of several simple outlier handling algorithms
as well as algorithms used in other integration packages. The application of this
new algorithm is then compared with the application of the other outlier handling
methods available within the DIALS framework. The following methods have been
implemented in DIALS :

1. null. No outlier handling is used.

2. truncated. This method excludes extreme pixel values by discarding a fraction
of the the pixels (by default 5%) containing the highest and lowest number of
counts.

3. nsigma. This method excludes extreme pixel values by computing the mean
and standard deviation (σ) of the pixel values and computing a threshold such
that all pixels with values outside µ±Nσ are discarded, where the default value
for parameter N is 3. In our implementation, the procedure is applied once;
however, an alternative approach may be to apply the procedure iteratively.

4. tukey. This method excludes extreme pixel values by computing the median
and interquartile range (IQR). Pixels with values < Q1 − N ∗ IQR and values
> Q3 + N ∗ IQR are discarded, where Q1 and Q3 are the first and third quartile
respectively and the default value for N is 1.5

5. plane. This is an implementation of the method used in MOSFLM (Leslie,
1999). The authors were fortunate to have access to the MOSFLM source code
and were, therefore, able to verify that the algorithm implemented in DIALS
gave equivalent results. First a percentage of the highest valued pixels are
discarded and a plane is computed from the remaining background pixels such
that the modelled background at each pixel position (x, y) is z = a + bx + cy,
where the origin of x and y is at the peak position. The value of a is, therefore,
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the mean background. All pixels are then checked and those with an absolute
deviation from the plane |zobs − z | > N

√
a, where the default value for N is 4

are discarded. The plane could then be iteratively refitted; however, within
the implementation in DIALS , the plane is only fit once.

6. normal. This is an implementation of the method described in Kabsch (2010a).
The method assumes that the pixel values in the background region are ap-
proximated by a normal distribution. The pixels are sorted by increasing
value and their distribution checked for normality. The highest valued pixels
are then iteratively removed until the distribution of the remaining pixels
is approximately normal. It should be noted that the authors did not have
access to the XDS source code so were unable to verify that the algorithm
implemented in DIALS gave equivalent results. Additionally, newer versions
of XDS adapted for low background data use a different method (Diederichs,
2015).

7. glm. The robust generalised linear model algorithm described in this chapter.

Most of the methods for handling outliers described above rely on the assumption
that the pixel values are drawn from a normal distribution, whereas in reality the data
are Poisson distributed. As the mean expected value increases, a Poisson distribution
is well approximated by a normal distribution; however, as the mean tends towards
zero, this approximation becomes increasingly inappropriate. Therefore, although
successfully used for data collected on CCD detectors, traditional methods may have
problems when used on data collected on photon counting detectors such as the
DECTRIS PILATUS (Henrich et al., 2009). Data collected using these detectors are
associated with having a lower background than data collected on CCD detectors.
This is partly due to the opportunity for collecting increasingly fine φ-sliced data
offered by these detectors due to the fast readout and reduced noise associated with
them (Mueller et al., 2011). Additionally, new beamlines have been designed where
the whole experiment, including the sample and detector, is kept under vacuum
(Wagner et al., 2016) yielding data with very low background due to the absence of
scattering by the air. Furthermore, the design of beamlines has also contributed to
the ability to collect data with lower background. Evans et al. (2011) showed how,
for small crystals, matching the beam size to the size of the crystal could result in a
drastic reduction in the X-ray background by reducing the volume of non-diffracting
material that the X-rays impinge upon.

Intuitively, outlier handling methods which remove values purely from one side
of the distribution will result in a biased estimate of the Poisson mean. Since the
Poisson distribution is asymmetric, simple outlier handling techniques which remove
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a fixed percentage of pixels from either side (as in the truncated method described
above) may also introduce bias. The bias for the truncated estimator of the Poisson
mean is given below:

λ − E[λtrunc] = λ −

b∑
j=a

jP(y = j)

b∑
j=a

P(y = j)

= λ

(
1 −

Q(b, λ) −Q(a − 1, λ)
Q(b + 1, λ) −Q(a, λ)

)
.

(3.1)

Here E[λtrunc] is the expected value of the truncated estimator and Q(x, λ) =

Γ(x, λ)/Γ(x) is the regularised gamma function. The bias of the estimator is dependent
on the Poisson mean λ. In the case of the non-truncated estimate of the mean of
a Poisson distribution, a = 0 and b = ∞. Q(∞, λ) = 1 and Q(0, λ) = Q(−1, λ) = 0;
therefore, the bias of the non-truncated estimator is zero. It should be noted that
any method which attempts to remove outliers from the data will systematically
reduce the variance of the distribution even when no outliers are present.

In this chapter, it is shown how the use of inappropriate outlier handling methods
can lead to poor background determination and systematic bias in the estimated
background level. The use of a simple robust estimation method using generalised
linear models where the pixel values are explicitly assumed to be drawn from a
Poisson distribution is proposed. It is shown that use of this algorithm results in
superior statistical behaviour compared to existing algorithms.

3.2 Algorithm

3.2.1 Generalised linear models

Generalised linear models, first described in Nelder and Wedderburn (1972), are a
generalisation of ordinary linear regression. In linear regression, the errors in the
dependent variables are assumed to be normally distributed. Generalised linear
models extend this to allow the errors in the dependent variables to be drawn from a
range of distributions in the over-dispersed exponential family, including the Poisson
distribution.

The exponential family of probability distributions

The exponential family contains many well known probability distributions, including
the Normal, Poisson, Binomial and Gamma distributions; the general form is defined
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as follows:

f (x |θ) = h(x)exp (η(θ)T(x) − A(η)) . (3.2)

Where, x is the random variable and θ is a parameter of the distribution; h(x),
η(θ), T(x) and A(η) are known functions and in the case of the Poisson distribution
are given by:

h(x) =
1

x!
, η = log(θ), T(x) = x, A(η) = eη . (3.3)

Link function

In linear regression, the dependent variables, µ, are related to the matrix of ex-
planatory variables (also known as the design matrix), X , and the vector of model
parameters, β, via a linear predictor, such that µ = η = Xβ. In the generalised linear
model framework, the linear predictor, η = Xβ, is related to the dependent variables
via a link function, g(µ) = η, which depends on the probability distribution. For the
Poisson model, the link function is the natural logarithm, so that log(µ) = η = Xβ;
therefore, the expected values are given by, µ = eXβ. The generalised linear model
framework essentially allows the expected value of the response to be transformed,
thereby avoiding any need to transform the data itself. The maximum likelihood
estimate is typically found using iteratively reweighted least squares. This is done as
it is computationally flexible and allows a numerical solution to be found when it is
difficult to maximise the likelihood function directly.

3.2.2 Robust estimation

A method to apply robust estimation to the generalised linear model framework
is described by Cantoni and Ronchetti (2001). For convenience, the terms used in
the following equations are given in the list of symbols on page 13. The maximum
likelihood function is replaced by a quasi-likelihood estimator whose score function,
U is given by:

U =
n∑

i=1

[
ψc(ri)w(xi)

µi
′√

φvµi
− a(β)

]
= 0. (3.4)

Here xi is a row of the design matrix, µi
′ =

∂µi
∂β =

∂µi
∂ηi

xi, and ri =
yi−µi
√
vµi

are the
Pearson residuals for each observation, yi, with respect to its expected value µi

and variance vµi . φ is the dispersion, which, for a Poisson distribution is known to
be equal to 1. The functions w(xi) and ψc(ri) provide weights on the explanatory
variables and dependent variables respectively. Here, since it is assumed that each
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pixel has identical weighting, the weights for the explanatory variables, x, are set
to 1 (i.e. w(xi) = 1). The weighting on the dependent variables, ψc(ri), gives the
estimator its robust characteristics. In this application of the algorithm, the Huber
weighting function is used as described by Cantoni and Ronchetti (2001) and shown
below:

ψc(ri) =


ri, |ri | ≤ c

c ∗ sgn(ri), |ri | > c
. (3.5)

This weighting function has the effect of damping values outside a range defined
by the tuning constant, c. A value of c = 1.345 is used, corresponding to an efficiency
of 95% for a normal distribution (Heritier et al., 2009). The efficiency of an estimator
is a measure of how optimal the estimator is relative to the best possible estimator.
Increasing the value of the tuning parameter increases the efficiency of the estimator
but decreases its robustness to outliers. A value of c = ∞ results in the same
estimator as for the standard GLM approach.

The constant a(β) is a correction term used to ensure Fisher consistency; i.e. the
correction term ensures that an estimate based on the entire population, rather than
a finite sample, would result in the true parameter value being obtained (Fisher,
1922). The estimator is said to be Fisher consistent if E[U] = 0. The correction term

is computed simply by expanding E[U] =
n∑

i=1

[
E[ψc(ri)]w(xi)

µi
′

√
vµi
− a(β)

]
= 0 and is

given by:

a(β) =
1

n

n∑
i=1

E[ψc(ri)]w(xi)
µi
′

√
vµi

. (3.6)

The algorithm was implemented in C++ for use within DIALS . It is available in
the glmtbx package within the cctbx library (Grosse-Kunstleve et al., 2002). In this
implementation, the parameter estimates are obtained by solving equation 3.4 using
iteratively reweighted least squares as described in Cantoni and Ronchetti (2001)
and Heritier et al. (2009).

3.2.3 Robust GLM algorithm implementation in DIALS

The equations for asymptotic variance of the estimator in Cantoni and Ronchetti,
2001, Appendix B and Heritier et al., 2009, Appendix E.2 contain an error (Cantoni
2015 private communication). A description of the algorithm, including corrections,
is given here.

The background, µi, at each pixel is estimated from the generalised linear model as
log(µi) = Xβ. Given initial model parameter estimates β(t), the parameter estimate
for the next iteration of the algorithm, t + 1, is given by:
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β(t+1) = β(t) + I−1U . (3.7)

Where I is the Fisher information matrix and U is the scoring function, given
by:

U =
n∑

i=1

[
ψc(ri)w(xi)

µi
′

√
vµi
− a(β)

]
=

n∑
i=1

[
(ψc(ri) − E[ψc(ri)])w(xi)

µi
′

√
vµi
)

]
.

(3.8)

The only additional term that needs to be calculated here is the expectation
E[ψc(ri)]. In order to compute this, let us denote j1 = bµi − c

√
φvµic and j2 =

bµi + c
√
φvµic. For a Poisson distribution

b∑
a

(
j
µ
− 1

)
P(y = j) = P(y = a − 1) − P(y = b). (3.9)

The expectation, E[ψc(ri)], is then given by:

E[ψc(ri)] =

∞∑
j=0

ψc

(
j − µi
√
vµi

)
P(yi = j)

= c(P(yi ≥ j2 + 1) − P(yi ≤ j1))

+
µi
√
vµi
(P(yi = j1) − P(yi = j2)).

(3.10)

The Fisher information matrix, I, is given by:

I = E

[
−
∂U

∂β

����
β=β(t)

]
= XTBX . (3.11)

The diagonal components of the matrix B are given by:

bi = E
[
ψc(ri)

∂

∂µi
log(P(yi |xi, µi))

] w(xi)
(
∂µi
∂ηi

)2
√
vµi

. (3.12)

For a Poisson distribution, ∂µi
∂ηi
= ∂eηi

∂ηi
= eηi = µi and ∂

∂µi
log(P(yi |xi, µi)) =

yi−µi
µi
=

yi−µi
vµi

. The expectation is given by:
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E
[
ψc(ri)

∂

∂µi
log(P(yi |xi, µi))

]
= E

[
ψc

(
yi − µi
√
vµi

)
yi − µi

vµi

]
=

∞∑
j=0

ψc

(
j − µi
√
vµi

)
j − µi

vµi
P(yi = j)

= c
µi

vµi
(P(yi = j1) + P(yi = j2))

+
µi

2

vµi
3/2
(P(yi = j1 − 1) − P(yi = j2 − 1)

+
1

µi
P( j1 <= yi <= j2 − 1) − P(yi = j1) + P(yi = j2)).

(3.13)

3.2.4 Background models

In applying the GLM approach to modelling of the background pixel intensity, instead
of modelling the expected background as a constant or a plane, the logarithm of the
expected background is modelled as a constant or a plane. It should be noted that,
for a constant background model, the two are equivalent. The rows of the design
matrix for the constant and planar model are xi = (1) and xi = (1, pi, qi) respectively,
where (pi, qi) is the coordinate of the ith pixel on the detector.

Considering that the algorithm will be applied to each reflection in the dataset
independently, and a typical X-ray diffraction dataset contains many reflections (a
high multiplicity dataset may have > 106 reflections), there is a requirement for the
algorithm to be computationally efficient. Since the background models being used
are very simple, the general algorithm can be simplified; this is described below for
the constant background model.

3.2.5 Simplified algorithm for constant background model

In the case of the constant background model (i.e. where a robust estimate of the
mean of the background pixels is calculated), the model only has a single parameter,
β, and the rows of the design matrix, X , are all defined as xi = 1. The estimate of
the background is then, µi = µ = exp(β) and the iterative algorithm to estimate the
model parameter, β is simplified to the following:

β(t+1) = β(t) + U/I. (3.14)

Since the expectations of E[ψc(ri)] and E
[
ψc(ri)

∂
∂µ log(P(yi |xi, µ))

]
do not depend

on yi, and µi = µ is the same for each point, they are constant for a given value of µ
as shown below:
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C1(µ) = E[ψc(ri)]

= c(P(yi ≥ j2 + 1) − P(yi ≤ j1))

+
√
µ(P(yi = j1) − P(yi = j2)).

(3.15)

C2(µ) = E
[
ψc(ri)

∂

∂µ
log(P(yi |x, µ))

]
= c(P(yi = j1) + P(yi = j2))

+
√
µ(P(yi = j1 − 1) − P(yi = j2 − 1)

+
1

µ
P( j1 <= yi <= j2 − 1) − P(yi = j1) + P(yi = j2)).

(3.16)

The scoring function, U and the Fisher information, I are then simplified to the
following:

U =

(
n∑

i=1

ψc(ri) − nC1(µ)

)
√
µ (3.17)

I = nC2(µ)µ
√
µ. (3.18)

The updated value of the parameter estimate, β(t+1) is then given by:

β(t+1) = β(t) +

n∑
i=1

ψc(ri) − nC1(µ)

nµC2(µ)
. (3.19)

3.3 Analysis

3.3.1 Experimental data

To evaluate how different outlier handling methods affect the quality of the processed
data, four datasets were used. For each dataset, the average background pixel value,
binned by resolution can be seen in Figure 3.1 and a randomly selected spot, observed
at 3Å, is shown in Figure 3.2. In each case, the background is primarily composed of
pixels with 0 or 1 counts in them. Any algorithm which assumes a normal distribution
of pixel values is expected to perform badly on this data.

1. A weak Thaumatin dataset collected on Diamond beamline I04 and available
online (Winter and Hall, 2014). This dataset was chosen as it is a standard
test dataset used by the DIALS development team. The average background
over all resolution ranges is less than 1 count per pixel and there is also a low
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incidence of outliers in the background pixels; an outlier handling algorithm
should be able to handle good data without degrading it. The dataset was
processed to a resolution of 1.2 Å.

2. A Ruthenium Polypyridyl complex bound to duplex DNA (Hall et al., 2011)
collected at Diamond beamline I02 and available online (Winter and Hall,
2016). This dataset was chosen due to the presence of a number of outliers
in the background that were observed to cause the wrong point group to be
found in the downstream data processing. The dataset was processed to a
resolution of 1.2 Å. The average background is around 2.5 counts per pixel at
low resolution but decreases rapidly at high resolution.

3. A weak Thermolysin dataset collected on Diamond beamline I03 and available
online (Winter and McAuley, 2016). This dataset was chosen because it is
extremely weak, with an average background of less than 0.15 counts per pixel
across the whole resolution range. Additionally, it was observed that some
data processing programs gave poor results for this data, which was attributed
to the poor handling of the low background. The dataset was processed to a
resolution of 1.5 Å.

4. A weak FutA dataset collected on Diamond beamline VMX-m. This dataset
was collected during one of the first user data collections on the beamline. The
dataset was chosen as an example of the type of data that will be typical of
this beamline; the reflections are very weak and the background is less than
0.15 counts per pixel across the entire resolution range. The dataset consists of
a number of “wedges” covering a small rotation; out of an initial 28 wedges, 17
were successfully indexed and integrated. Subsequently, 12 wedges were scaled
and merged together to give the dataset used here. The dataset was processed
to a resolution of 2.1 Å.

3.3.2 Data analysis

Each dataset was processed with xia2 (Winter, 2009) using DIALS (Winter et al.,
2018) as the data analysis engine. Subsequent data reduction was performed in xia2
using the programs POINTLESS (Evans, 2005), AIMLESS (Evans and Murshudov,
2013) and CTRUNCATE (Winn et al., 2011). Identical data processing protocols
were used for each dataset with the exception of the choice of outlier handling method.
Details of how the data processing was performed are given in Section A.1

76



Figure 3.1: The average background level across the resolution range for each dataset.

3.3.3 Background estimates

In general, for well-measured data, pixel outliers in the background region should
only affect a minority of reflections. This is the case for the four datasets considered
here, where most reflections are free from pixel outliers in the background region. It
is therefore expected that, for the majority of reflections, the background estimates
using a well behaved outlier handling algorithm should be comparable to those using
no outlier handling. Figure 3.3 shows a histogram of the normalised difference in
background estimates with and without outlier handling for five existing methods
and the GLM approach adopted here.

It can be seen that the traditional outlier handling methods introduce negative
bias into the background estimate; the background level is systematically lower than
that using no outlier handling. Of additional concern is the percentage of reflections
whose background is estimated as exactly zero due to all non-zero valued pixels
in the background being rejected by the outlier handling algorithm, as shown in
Table 3.1. For some of the algorithms, this percentage is very high, particularly
when applied to the very weak Themolysin and FutA datasets, indicating that for
low background levels, the algorithm is rejecting all non-zero pixels as outliers. In
contrast, for the GLM method, it can be readily seen that the background estimates
show significantly less systematic bias in the background level than seen for the other
methods. On average, the background estimates resulting from the GLM method
are approximately equal to those with no outlier handling. The mean normalised
difference between the estimates from the GLM method and the estimates with
no outlier handling are −3.67 × 10−5, −8.38 × 10−4, 3.38 × 10−4 and −2.93−3 for the
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Figure 3.2: An example reflection shoebox with pixel values, observed at 3Å, for (a) Thaumatin,
(b) DNA, (c) Thermolysin and (d) FutA.
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Table 3.1: The percentage of reflections where all non-zero pixels were rejected by the outlier
handling algorithm resulting in a background estimate of zero counts per pixel.

Thaumatin DNA Thermolysin FutA
truncated 0.0% 0.0% 0.0% 2.7%
nsigma 31.3% 0.9% 76.3% 88.5%
tukey 77.9% 56.8% 95.0% 98.5%
plane 0.7% 0.0% 30.2% 32.7%
normal 37.0% 0.0% 78.2% 88.9%
glm 0.0% 0.0% 0.0% 0.0%

Thaumatin, DNA, Thermolysin and FutA datasets respectively.
To test the behaviour of the GLM method in the presence of outlier pixels, we

selected Bragg reflections whose background regions contained outliers as follows.
Reflections whose background pixels have an index of dispersion (variance/mean) > 10

were selected and on this basis 15 out of 389442 reflections were chosen for the
Thaumatin dataset, 60 of out 219431 for the DNA dataset, 272 out of 3322808 for
the Thermolysin dataset and 53 out of 39606 for the FutA dataset. For Poisson
distributed data, the index of dispersion should be equal to 1 (with a variance of
2/(N − 1), where N is the sample size). Values much greater than 1 indicate that
the pixel values are over-dispersed relative to a Poisson distribution. This indicates
that the pixel values are not all drawn from the same distribution and thus provides
a reasonable, straightforward, method of selecting reflections with potential pixel
outliers.

Figure 3.4 shows the difference between the estimated background and the median
background value (i.e. the most robust estimate of the background) for no outlier
handling and for the GLM method. It should be noted that whilst the median is
the most robust estimate, in the sense that it is the estimate of central tendency
least susceptible to outliers, it is not appropriate for use here because, for very
low background, the median is likely to be equal to zero and the background will
be systematically underestimated. However, for a Poisson distribution with rate
parameter λ, the bounds of the median are λ − ln(2) <= median < λ + 1/3 (Choi,
1994); a robust estimate of the background level should be within these bounds. As
expected, with no outlier handling, the background estimate is vastly overestimated
for increasing index of dispersion. With the robust GLM algorithm, the estimated
background value is within the bounds given by the median background value,
indicating that the algorithm is adequately handling outliers.
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Figure 3.3: Histogram of normalised differences between the mean background with outlier
handling for each outlier algorithm and the mean background with no outlier handling. For clarity,
the plots for the GLM method are shown separately. The vertical black line indicates zero difference
between the estimates. The estimates using the GLM algorithm are distributed more symmetrically
around the null estimates, while all the other algorithms show significant systematic bias in the
estimated background levels.
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Figure 3.4: The difference between the estimated background value with either no outlier handling
or with the GLM algorithm, and the median (i.e. most robust) background estimate for Bragg
reflections with large indices of dispersion in the surrounding background pixels (an indication of
the presence of pixel outliers) for (a) Thaumatin, (b) DNA, (c) Thermolysin and (d) FutA. The
horizontal black lines in each plot are at ln(2) and −1/3; for a Poisson distribution, the bounds on
the median are λ − ln(2) <= median < λ + 1/3 (Choi, 1994).
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Table 3.2: The twin fractions deduced from the L-test (column label “L”) and the 4th moments
test (column label “M”) reported by CTRUNCATE for each dataset processed using each outlier
handling algorithm.

Thaumatin DNA Thermolysin FutA
Algorithm L M L M L M L M
truncated 0.04 0.00 0.50 0.28 0.50 0.23 0.04 0.00
nsigma 0.50 0.27 0.50 0.50 0.50 0.50 0.50 0.30
tukey 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.32
plane 0.06 0.01 0.50 0.42 0.50 0.50 0.15 0.11
normal 0.50 0.30 0.50 0.50 0.50 0.50 0.39 0.27
glm 0.03 0.00 0.04 0.00 0.03 0.00 0.03 0.00
null 0.03 0.00 0.05 0.00 0.03 0.00 0.03 0.00

3.3.4 Effects on data reduction

Since the background values are systematically underestimated for many of the
algorithms, the intensities of the reflections are systematically overestimated. This
impacts on the distribution of observed reflection intensities resulting in the ap-
pearance of too few weak reflections being recorded. This can cause problems with
statistics that test for twinning in the data (Yeates, 1997). Two such statistics are
the L-test (Padilla and Yeates, 2003) and the moments test (Stein, 2007). Table
3.2 shows the twin-fractions resulting from application of the two twinning tests
as implemented in CTRUNCATE for each dataset and for each outlier handling
algorithm. Table 3.2 shows that, in most cases, the traditional outlier handling
algorithms introduce the appearance of twinning to varying degrees. In contrast, for
the data processed with no outlier handling, and for the GLM method, this effect is
consistently absent.

The impact on the distribution of intensities is illustrated in more detail by
Figures 3.5 and 3.6. Figure 3.5 shows the cumulative distribution function for |L | as
produced by CTRUNCATE for each dataset and each outlier handling method. For
clarity, the results from the GLM algorithm are shown in a separate plot in each case.
Figure 3.6 shows the 4th acentric moments of E, the normalised structure factors,
against resolution for each dataset processed with each outlier handling method.

For error free data, the 4th acentric moment of the normalised structure factors
against resolution takes on a value of 2 for untwinned data and 1.5 for perfectly
twinned data (Stein, 2007). When the variances on the intensities are taken into
account, the value of the moments is inflated by σ(I)2/< I >2; this is shown by the
black theoretical curve in Figure 3.6; this curve was generated by the Phaser program
(McCoy et al., 2007). Here we can see that as resolution increases, the data based on
traditional methods show a reduced spread in the distribution of intensities which
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may be interpreted as increasing amounts of twinning. In reality, the plot probably
results from a dual effect. The background level decreases at high resolution, so
the effect of the bias in the background estimates becomes increasingly pronounced.
At the same time, the intensity of the reflections also decreases at high resolution
meaning that the relative effect of the systematically lower background estimates
are amplified. In contrast, the GLM method shows the expected behaviour. At low
resolution, the 4th moment is around 2, indicating no twinning. At high resolution,
the moments increase as expected due to the decreasing signal-to-noise ratio; the
increase follows the theoretical curve.

3.4 Conclusion

The use of a robust generalised linear model algorithm for the estimation of the
background under the reflection peaks in X-ray diffraction data has been presented.
Traditional methods for handling pixel outliers systematically underestimate the
background level and consequently overestimate the reflection intensities even in
the absence of any pixel outliers in the raw data. This can cause statistical tests to
give the false impression that a crystal is twinned. The GLM method used here is
robust against such effects. When no outliers are present, the estimates given by
the GLM algorithm are, on average, the same as those with no outlier handling; the
mean normalised difference between the estimates derived from the GLM method
and those with no outlier handling are −3.67 × 10−5, −8.38 × 10−4, 3.38 × 10−4 and
−2.93 × 10−3 for the Thaumatin, DNA, Thermolysin and FutA datasets respectively.
When outliers are present, the method gives values within the expected bounds of the
median. The method is implemented in DIALS and is currently the default algorithm
when run stand-alone or through xia2 . This work was published in Parkhurst et al.
(2016).
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Figure 3.5: Cumulative distribution function for |L | for Thaumatin with (a) the traditional outlier
handling methods and (b) with the GLM method, for DNA with (c) the traditional outlier handling
methods and (d) with the GLM method, for Thermolysin with (e) the traditional outlier handling
methods and (f) with the GLM method, and for FutA with (g) the traditional outlier handling
methods and (h) with the GLM method.

84



Figure 3.6: 4th acentric moment of E vs resolution for Thaumatin with (a) the traditional outlier
handling methods and (b) with the GLM method, for DNA with (c) the traditional outlier handling
methods and (d) with the GLM method, for Thermolysin with the (e) traditional outlier handling
methods and (f) the GLM method, and for FutA with the (g) traditional outlier handling methods
and (h) the GLM method. The theoretical curve for the acentric moments is shown in black.
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Chapter 4

Background modelling in the
presence of ice-rings

4.1 Introduction

In macromolecular crystallography (MX), for data collected using the rotation
method, a dataset is typically composed of a sequence of X-ray diffraction images
(Arndt and Wonacott, 1977); each image covers a fixed oscillation and, as the crystal
is rotated, individual reflections enter and subsequently exit the diffracting condition.
Integration programs - such as MOSFLM (Leslie, 1999), XDS (Kabsch, 2010b),
d*TREK (Pflugrath, 1999), HKL2000/DENZO (Otwinowski and Minor, 1997) and
DIALS (Winter et al., 2018) - are used to predict where each Bragg reflection will
appear on the detector and then to provide an estimate of each reflection’s intensity.
The simplest method for computing the reflection intensities is via summation
integration; most integration programs provide an implementation and whilst details
may differ, the procedure is generally the same.

1. First, the location and extent of each reflection on the detector is predicted and
pixels are assigned as either foreground or background depending on whether
they are predicted to contain signal from the Bragg reflection or not.

2. The background under the reflection peak is then estimated from the surround-
ing background pixels since it is not possible to measure the background under
the peak directly. As such, a model of background is required and the model
fitted to the background pixel data.

3. Finally, the reflection intensity is estimated by summing the total counts in
the foreground region and subtracting the sum of the estimated background
counts.
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In most integration programs, simple background models have been employed; a
major reason for this is the necessity of having a computationally efficient implemen-
tation since the background needs to be estimated for a large number of reflections
in each dataset. The best way to model the general reflection background is not
always obvious since the background varies considerably between datasets. As such,
the background under each reflection peak is often assumed to be a constant value
(Kabsch, 2010a) or a plane with a small gradient (Rossmann et al., 1979; Otwinowski
and Minor, 1997; Leslie, 1999). In DIALS , either a constant or planar background
can be used (Parkhurst et al., 2016). These simple models have been employed with
great success for many years (Diamond, 1969; Otwinowski and Minor, 1997; Leslie,
1999; Kabsch, 2010a) since, in a typical MX X-ray diffraction dataset, individual
reflections extend over a small number of pixels and the local X-ray background is
usually relatively flat.

Whilst such a simple background model may be appropriate in the majority of
cases, particularly for well-measured data, it is not applicable where the background
changes significantly over the extent of a single reflection peak. In such cases a
flat or planar background model is likely to provide an inaccurate estimate of the
background in the reflection peak region. Large variation in the background counts
can be the result of various effects such as scattering from the cryostream nozzle
or, in serial crystallography, from the linear jet that transports crystals into the
beam which creates a streak of diffraction perpendicular to the jet direction. Large
variations are also often seen around the backstop; however, these reflections are
usually omitted from processing due to their large Lorentz factor. Perhaps the
most common pathology seen in diffraction images resulting in a large variation in
background counts is the presence of water ice rings (Mitchell and Garman, 1994).
A detailed description of the theoretical manifestation of cubic and hexagonal ice
(the most common forms) in diffraction images can be found in Thorn et al. (2017).
In practice, when cubic ice diffraction is observed, hexagonal ice diffraction is also
observed (Fuentes-Landete et al., 2015).

If the background is assumed to be locally flat, but ice rings are present, the
reflection intensities will be systematically biased. The effect on the background
estimation caused by the presence of ice rings can be readily seen by plotting the
scaled reflection intensities as a function of resolution, as shown in Figure 4.1. This
plot shows a large spike in the reflection intensities at ice ring resolutions, with a
drop in the reflection intensities either side of the ice ring; i.e. the presence of ice
rings causes both systematic over- and under-estimation of the reflection intensities
at characteristic resolutions. Indeed, at high-resolution, where the true reflection
intensities are very small, the positive systematic bias in the background estimate
causes the average reflection intensity to be less than zero at resolutions immediately
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Figure 4.1: Intensity vs resolution for a dataset with strong ice rings. Such plots can be readily
generated by AUSPEX (Thorn et al., 2017). The points show the intensities for individual reflections.
The characteristic ice ring resolutions are shown here in grey with automatically detected ice rings
being flagged in red. Spikes in reflection intensity are observed at ice ring resolutions indicating
bias in the background determination.

either side of the ice rings.
This can be explained by considering the application of a simple background

model to a reflection positioned close to an ice ring as illustrated in Figure 4.2.
As the ice ring intrudes into the background region of the reflection shoebox, the
background level in the reflection peak region is over-estimated due to the higher
valued counts from the ice ring. When the reflection foreground covers the peak of
the ice ring, then the background region of the reflection shoebox contains pixels
with fewer counts than should be modelled in the reflection peak. Consequently, the
background in the reflection peak will be under-estimated and the reflection intensity
will be over-estimated. This leads to many reflections being rejected as outliers
during data reduction and thus a loss of information. This effect is more pronounced
for sharper ice rings; however, on average, fewer reflections will be affected than in
the case of more diffuse ice rings which cover a larger resolution range.

For most integration programs, the handling of ice rings and other complex
background features is problematic and proper modelling is rarely attempted. Some
programs, such as MOSFLM and XDS , provide parameters to exclude reflections
within a user-specified resolution range (i.e. those falling on ice rings). Therefore,
in these programs, reflections falling on ice rings can be easily excluded from the
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Figure 4.2: Illustration of the effect of ice rings on the background determination when a simple
plane model is employed. The shaded rectangles indicate the background pixels used to estimate
the background. When the reflection is centred on the tail of the ice ring (A) the background is
over-estimated. When the reflection is centred on the peak of the ice ring (B) the background is
under-estimated.

processing if desired; however, this usually results in a loss of otherwise potentially
useful information. In d*TREK and HKL2000/DENZO (Otwinowski and Minor,
1997) parameters are provided to remove reflections whose background counts vary
excessively; however, this will also result in information loss. It is often the case
that the reflections recorded on ice rings are handled during scaling rather than
integration. This is particularly the case at higher-resolution where ice rings may not
be immediately visible on single detector images. Scaling programs such as AIMLESS
(Evans and Murshudov, 2013) have outlier handling routines that exclude intensity
measurements that are not consistent between symmetry equivalent reflections.
Additionally, a resolution range can be set to exclude reflections from the scaling.
Programs such as CTRUNCATE (Winn et al., 2011), phenix.xtriage (Zwart et al.,
2005) and AUSPEX (Thorn et al., 2017) can be used to automatically determine -
from the scaled reflection data - whether the data have been contaminated by ice
rings.

An attempt to handle ice rings external to the integration program is described
by Chapman and Somasundaram (2010). They describe a method to subtract the
ice ring intensity from the raw image data as a pre-processing step before integration.
However, this approach is not ideal since the statistics of the data will be altered.
Furthermore, the shape of the ice rings are assumed to be radially Gaussian with
resolution and perfectly circular which may not be the case in practice. The data
as recorded by a photon-counting detector is “count data” which is well modelled
by a Poisson distribution. The Poisson distribution is discrete and only valid for
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positive pixel counts. Subtracting the background prior to the integration will result
in the data no longer being Poisson distributed with some pixels possibly containing
negative counts and others containing a non-integer number of counts. This will
invalidate assumptions about the statistical properties of the data in the integration
program and impact the estimation of the errors in the intensities. For this reason the
ice ring background should be modelled explicitly during the reflection integration
step.

4.2 Algorithm

In this chapter, a new algorithm for modelling the X-ray diffraction background in
the presence of ice rings is described. The algorithm consists of two distinct steps;
first a global model of the background at each image pixel is generated, then the
model is fit locally and independently for each predicted reflection in the dataset.
The algorithm is implemented within the DIALS framework and the program usage
is given in Appendix A.2.

4.2.1 Global background model

The current implementation, within DIALS (Winter et al., 2018), is restricted to a
static model that is applied to reflections over the entire rotation scan. For the static
background model algorithm, let us assume that the shape of the background model
remains fairly stable across all the images in the dataset. In the case where the
background is contaminated with ice rings, an approximate model should perform
better than a flat background model; this therefore represents an improvement in
the handling of data with complex background.

The global background model is calculated as the mean value at each pixel,
averaged over all images in the dataset. This method for generating the global
background model is computationally efficient and simple to compute; care needs to
be taken to ensure that the inclusion of outlier pixels does not cause the background
model to be distorted. In this context, outlier pixels are considered to be pixels
which contain intensity from predicted reflections as well as unmodelled intensity
which may come from reflections whose extent is badly predicted, zingers (random
spikes in intensity from, for example, cosmic rays), or other sources.

Intensity from predicted reflections is handled by generating a mask for each
image delineating the foreground and background for each reflection, and then to
only use background pixels for the global background model. The mask contains
True where the pixels are predicted to only contain background counts and False
where they are predicted to contain intensity from predicted reflections. Once the
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process concludes and a mean value is computed at each pixel, the number of images
contributing to the mean for each pixel is calculated. A second pixel mask is then
generated containing True where the number of contributed images is greater than
some user-specified value (by default 10) and False otherwise. In this way, pixels
where only a small number of images have contributed are excluded. Where the
number of images in the dataset is less than 10, the minimum number of required
images is reduced; however, the method is most effective where a larger number of
images is available.

In order to ensure that the model is not affected by outliers caused by unmodelled
intensity, a number of filters are applied to the mean image to produce the final
background model as follows:

1. Firstly, the mean image and mask are transformed into a polar image such that
columns in the transformed image correspond to lines of constant resolution.
This requires that each pixel in the raw untransformed image is mapped onto
the transformed grid. In the implementation described here, this is done by
computing the overlap of each pixel in the raw image with the transformed
grid and then using a polygon clipping algorithm (Sutherland and Hodgman,
1974) to compute the overlapping area between the pixel and the grid. This
fractional overlap is used to determine the fraction of counts in each pixel that
is distributed to each grid point in the transformed image. The number of
counts in the raw and transformed image is then conserved. The benefit of
applying filtering to this transformed image rather than the raw mean image
is that, in the case of ice rings in particular, the background is likely to vary
less along lines of constant resolution. Therefore, the variation along columns
in the transformed image is likely to be small and most variation will occur
along the rows which correspond to increasing resolution. The polar transform
will tend to sample pixels at high resolution less finely than at low resolution
resulting in smoothing along lines of constant resolution.

2. Median filtering is then applied to the columns of the transformed image such
that for each pixel, the median of the neighbouring N (by default 10) pixels
along each column (wrapped at the column ends) is used. This has the effect
of removing the effect of unwanted outliers, in particular high-valued pixel
outliers.

3. The transformed image will contain pixels that are masked out; these need to be
filled in order to provide full coverage of the detector for the background model.
Again, since the image has been transformed and the variation along columns
is small, the missing pixel values can be filled using a simple iterative diffusion
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algorithm based on application of Laplace’s equation with Dirichlet boundary
conditions whereby missing pixels are iteratively filled with the values derived
from adjacent pixels until convergence is achieved (Guillemot and Le Meur,
2014). The missing pixels could also be filled by fitting, for example, a 2D
spline surface.

4. Finally, the polar image is transformed back via the same polygon clipping
process with the counts in the transformed image being redistributed to the
image in the original coordinate system. Application of this gridding procedure
will result in some additional smoothing in the processed image. The final
result is a smoothly varying global background model.

4.2.2 Maximum likelihood fitting for each reflection

The background is fit to each reflection locally and independently by simply scaling
the background model to fit the counts in the background region of the reflection
in question. The pixel counts are assumed to be drawn from a Poisson distribution.
The terms used in the following equations are given in the list of symbols on page 13.
For each pixel, i, in the reflection background, consisting of N pixels, the probability
of observing ci counts, given the background model, bi, scaled by the parameter B is
as follows:

P(ci |B, bi) =
(Bbi)

ci exp(Bbi)

ci!
. (4.1)

The value of the parameter, B, is then estimated via maximum likelihood by
considering the joint probability distribution over the N pixels.

L =
N∏

i=1

(Bbi)
ci exp(Bbi)

ci!
. (4.2)

Using the log likelihood and taking derivatives with respect to the scale parameter,
∂ log(L)/∂B = 0, results in a very simple and computationally efficient equation for
the scale factor, B, for each reflection which is simply:

B =
∑N

i=1 ci∑N
i=1 bi

. (4.3)

However, this equation for the scale factor is not resistant to pixel outliers in
the reflection background which must be handled to ensure that the background
estimates are reliable. Since the data are Poisson distributed, a principled approach
to the modelling of the background in the presence of pixel outliers would be to use
a robust generalised linear model (GLM) algorithm (Parkhurst et al., 2016); however,
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whereas the robust GLM algorithm can be made computationally efficient for the
case of a flat background model, it is difficult to optimise for more complex models.
Since the background needs to be estimated for a large number of reflections in
each dataset, computational efficiency is a requirement of any background modelling
algorithm during integration; therefore, a simpler approach was taken in this case.
The Anscombe variance stabilising transform for a Poisson distribution (Anscombe,
1948), given by y = 2

√
x + 3/8, was used to transform the Poisson distributed

data such that it is approximately normally distributed with a variance of 1. This
transformation is biased where the Poisson scale parameter is very small (< 4);
however, in the case of data where the background is contaminated with ice rings,
the background is generally much larger and this approximation may be used. The
robust estimation is then performed using the Huber weighting function (Huber,
1964) such that for a pixel, i, with transformed value yi, predicted value µi, variance
vi = 1 and residual ri = (yi − µi)/

√
vi, the pixel weighting, wi, will be given by:

wi =


1, |ri | ≤ c

c/|ri | |ri | > c
. (4.4)

This weighting function has the effect of damping values outside a range defined by
the tuning constant, c, whose default value is 3 (i.e. transformed pixel values greater
than 3 standard deviations from the mean are damped). The quasi-likelihood equation
implementing this robust algorithm is then solved using iteratively reweighted least
squares.

4.2.3 Robust M-estimator for background scale factor

In robust estimation, M-estimators minimise a function of residuals of the following
form:

min
n∑

i=1

ρ(ri). (4.5)

The value of each residual, ri, depends at each iteration on the value of the
parameter estimates, β. Taking derivatives with respect to each parameter, β j , gives:

n∑
i=1

∂ρ(ri)

∂ri

∂ri

∂β j
= 0. (4.6)

Weights are then defined as:

wi =
1

ri

∂ρ(ri)

∂ri
. (4.7)

93



The equation to be solved then becomes:

n∑
i=1

wiri
∂ri

∂β j
= 0. (4.8)

The parameter estimates can be found at each iteration as:

β(t+1) = (XTWX)−1XTW y. (4.9)

In order to fit the global background model, a single scale factor is used. The
design matrix, X then has a single column. Therefore, each iteration can then be
simplified to the following equation:

β(t+1) =

n∑
i=1

xiwiyi

n∑
i=1

xiwi xi

. (4.10)

In our implementation, the Huber function is used which gives the robust function
of residuals as follows:

ρ(ri) =


ri
2/2, |ri | ≤ c

c(|ri | − c/2) |ri | > c
. (4.11)

This results in the following weighting function:

wi =


1, |ri | ≤ c

c/|ri | |ri | > c
. (4.12)

4.3 Analysis

4.3.1 Experimental data

In order to evaluate the effect on the quality of processed data when there are
prominent ice rings in the X-ray background, some datasets were selected from
the Joint Centre for Structural Genomics (JCSG) (Gabanyi et al., 2011). Whilst,
the method also applicable to data collected on other detectors, only datasets
collected using a DECTRIS PILATUS detector (Henrich et al., 2009) were considered
for analysis. Datasets were chosen manually by inspecting a plot of the intensity
versus resolution using AUSPEX (Thorn et al., 2017); those datasets showing a
noticeable systematic bias at ice ring resolutions were used (see Figure 4.6). Two
datasets (4MJG and 4PUC) were identified for which reflections in entire resolution
ranges corresponding to ice rings had been discarded in deposition; in the following
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analysis, the data were processed without omission. 13 datasets that showed ice
ring pathologies and which were successfully processed using DIALS inside the xia2
(Winter, 2009) automatic processing pipeline were used in the analysis. Table 4.1
shows the datasets used in more detail, giving the known space group and resolution.
Further details about the data processing, data reduction and refinement are given
in Appendix A.3.

4.3.2 Refinement results

The Rwork and R f ree statistics reported by REFMAC5 for each dataset as processed
with both the default background algorithm and global background algorithm are
shown in Table 4.1; additionally, R f ree for each dataset is shown in Figure 4.3.
The improvement in Rwork and R f ree is shown for both summation integrated data
and profile fitted data. It can be seen that in each case, both Rwork and R f ree

are reduced by the use of the global background model algorithm over the default
background algorithm. An improvement is seen when the data is processed using both
summation integration and profile fitting. In some cases (e.g. 4KW2 and 4OPM)
the improvement is minor; however, in others, such as 4PUC, the improvement in
the refinement R factors is dramatic, with R f ree being reduced by 4.9%. In the case
of 4PUC, as previously reported, reflections from entire resolution ranges around ice
rings were omitted in the deposited data (the completeness of the deposited data
was 78.1%, the completeness of the data processed here is 99.3%). In general, most
datasets see a moderate improvement in the R f ree; the mean improvement in R f ree

across all datasets was 2.0% when using summation integration and 1.1% when using
profile fitting. Profile fitting also consistently results in lower Rwork and R f ree than
summation integration and the improvement in Rwork and R f ree when using the new
global background model algorithm is slightly lower than the improvement seen with
data processed using summation integration.

4.3.3 Case studies

Of the 13 JCSG datasets processed above, three were selected for more detailed
analysis. The first image and the average background versus resolution for each of
the datasets is shown in Figure 4.4. The datasets were chosen as follows:

• 4PUC. This dataset shows an example of very strong and prominent ice rings.
The ice rings in this dataset are narrow and the three inner rings corresponding
to hexagonal ice rings can be clearly distinguished in the diffraction images.
Handling reflections falling on these ice rings is likely to be a challenge for
current background modelling algorithms. Each image in the dataset covered

95



Table 4.1: A list of JCSG datasets with ice ring pathologies. The improvement in Rf ree reported
by REFMAC5 for data integrated using the global background model algorithm over data integrated
with the default background algorithm is given for profile fitted intensities (prf) and summation
intensities (sum). For each dataset, the same set of integrated reflections were used for the different
sets of processing. Here ∆ = Rdef ault − Rglobal; a positive value indicates an improvement using the
global background model algorithm. For brevity, columns with data from the default background
algorithm are labelled “D” and columns with data from the global background algorithm are labelled
“G”. The completeness is shown for the data processed (DIALS ) and the completeness reported in
the PDB. For 4PUC, an Rf ree of 19.98% is reported in the PDB. For this dataset, reflections falling
on ice rings were excluded from processing resulting in low completeness. Refining the subset of
reflections present in the deposited data processed using the new background algorithm against the
deposited structure resulted in an Rf ree of 19.46%.

Completeness (%) R f r ee (sum) (%) R f r ee (pr f ) (%)
PDB ID SG Resol. (Å) Multipl. DIALS PDB D G ∆ D G ∆

4DN6 P42212 2.80 12.6 100.0 99.0 35.1 34.0 1.1 34.2 33.1 1.1
4E6E P3221 2.12 12.5 99.9 99.6 29.7 26.8 2.8 26.7 25.6 1.1
4EF1 P1211 1.90 3.4 98.0 97.8 34.7 31.9 2.8 31.7 30.2 1.5
4EPZ C2221 1.68 4.2 98.5 98.0 25.1 22.6 2.5 22.2 21.4 0.8
4EZG P212121 1.50 5.3 98.8 99.0 23.5 22.2 1.3 20.2 19.8 0.4
4FMR P1211 2.25 6.9 97.2 97.9 26.4 25.0 1.4 25.5 24.6 1.0
4HF7 C2221 1.77 9.8 99.7 98.2 36.9 32.1 4.8 28.9 27.5 1.4
4IEJ P6122 1.45 8.3 100.0 99.8 30.9 29.5 1.3 27.2 26.6 0.6
4KW2 F432 2.32 110.4 100.0 99.8 23.9 23.8 0.1 23.0 22.9 0.1
4MJG P3221 2.65 8.2 99.9 88.7 29.7 28.3 1.4 28.3 27.6 0.7
4OPM C121 1.70 7.0 99.6 97.1 23.4 22.7 0.7 20.9 20.7 0.2
4PS6 P1211 1.25 6.2 93.7 85.8 21.5 20.3 1.2 18.4 17.9 0.5
4PUC P212121 2.00 9.2 99.3 78.1 29.8 25.4 4.4 28.1 23.2 4.9

Figure 4.3: The Rf ree after refinement using the REFMAC5 program for both summation
integration (sum) and profile fitting integration (prf) using both the default background algorithm
assuming a flat background model and the global background model algorithm. In all cases, the
global background model results in an improvement in the Rf ree factors from refinement. Using
profile fitting (prf) instead of summation (sum) also results in an improvement in Rf ree in each
case.
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a rotation of 0.25 degrees. This is a MAD dataset consisting of 3 sweeps at
different wavelengths. In the data processing, all 3 sweeps were used and
merged together.

• 4EF1. This dataset shows a moderate improvement in the R factors. The
dataset has ice rings from nano crystalline cubic ice. Each image in the dataset
covered a rotation of 0.3 degrees.

• 4KW2. This dataset shows the smallest improvement in the R factors. The
dataset has ice rings from nano crystalline cubic ice. Each image in the dataset
covered a rotation of 0.5 degrees. This is a MAD dataset consisting of 18
sweeps at different wavelengths. In the data processing, all 18 sweeps were
used and merged together.

4.3.4 Pixel statistics

During the creation of the global background model, the mean, variance and index
of dispersion (variance / mean) are calculated independently for each pixel across
all images in the rotation scan. Note that pixels predicted to contain intensity
from reflections are not used in the calculation of these images. The mean and
index of dispersion are shown for each dataset in Figure 4.5. From a qualitative
inspection, the mean background image visually resembles a smoothed version of
the raw image data shown in Figure 4.4. The dispersion images, however, indicate
that the variation in the background is not uniform across the detector surface. In
particular, background pixels not containing ice rings appear to vary very little across
the rotation scan, as indicated by the index of dispersion being close to 1.0. By
contrast, pixels containing ice rings appear to show much greater variation across
the scan, with an index of dispersion of greater than 2.0 in some cases. This appears
to indicate that the intensity of the ice ring background varies much more than the
general background counts.

4.3.5 Intensity versus resolution

Figure 4.6 shows the intensity plotted against resolution for all reflections in each
dataset with the default background algorithm and the new global background model
algorithm. In each case, for the default background algorithm, it can be seen that
the reflection intensities at ice ring resolutions suffer from systematic bias. This is
shown as spikes in the intensity at ice ring resolutions. These spikes are due to the
background of reflections lying at ice ring resolutions being under-estimated. So
the reflection intensity is over-estimated. Small dips in intensity can be seen either
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Figure 4.4: The first image for each dataset and the corresponding average background versus
resolution for 4PUC (top), 4EF1 (middle) and 4KW2 (bottom). Ice rings are visible as discrete
or diffuse rings. Note the irregular ice rings in the diffraction image of 4PUC resulting from the
dominating ice crystal orientation. Also note that the maximum resolution on each image differs;
therefore the ice rings are not always in the same place on the detector.
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Figure 4.5: The mean and dispersion images for 4PUC (a-b), 4EF1 (c-d) and 4KW2 (e-f). The
mean image is the mean value at each pixel through the image stack; the index of dispersion image
shows the variation across the dataset at each pixel. In the mean image, the ice rings are clearly
visible. The dispersion images also show the structure of the detector. The boundaries between the
detector chips are visible as lines of pixels that are under-dispersed relative to a Poisson distribution.
This is due to the use of virtual pixels between chips that share counts and whose values are
therefore correlated.
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side of the ice rings, showing how the background is over-estimated as the ice ring
intrudes into the background region of the reflection shoeboxes, thereby causing
the reflection intensities to be under-estimated. This is particularly noticeable for
dataset 4PUC where the shift is dramatic. Dataset 4EF1 shows a moderate increase
in reflection intensities at the ice ring resolutions; 4KW2 only shows a fairly minor
shift visible in the ice ring at 3.7Å.

For the new global background model algorithm, the intensity estimates appear
to be greatly improved. For the 4EF1 and 4KW2 datasets, the spikes at ice ring
resolutions are completely absent, indicating that the systematic bias in the intensity
estimates has been reduced relative to the bias for the default background algorithm.
For the 4PUC dataset - the most challenging data - there is some improvement;
however, peaks at some ice ring resolutions are still present. This is due to the ice
ring background being sharp and irregular with time dependent variation throughout
the dataset. Taken together, these conditions provide a difficult modelling challenge.
The algorithm computes the global background model over a number of images;
therefore, the algorithm will tend to perform worse where there are large time
dependent variations in the background shape. Nevertheless, 4PUC, showed the best
improvement in refinement R-factors as shown in Table 4.1.

4.3.6 Moments of E and R f ree versus resolution

The left panel of Figure 4.7 shows the 4th acentric moments of E, the normalised
structure factors, calculated by CTRUNCATE (Winn et al., 2011), for each dataset
processed with both the default background algorithm and the new global background
model algorithm. For error-free data, the 4th moment takes on a value of 2 for
untwinned data and 1.5 for perfectly twinned data (Stein, 2007). When the variances
on the intensities are taken into account, the value of the moments is inflated by
σ(I)2/< I >2 as described in Section 4.3.7; this is shown by the theoretical curve in
Figure 4.7; this curve was generated by the Phaser program (McCoy et al., 2007).
The right panel in 4.7 shows the R f ree versus resolution as reported by REFMAC5
(Murshudov et al., 2011).

The moment plots seem to mirror those seen in the intensity versus resolution
plots. Dataset 4PUC shows large deviations from the expected value of 2 at ice ring
resolutions with the default background algorithm. After application of the new
global background model algorithm the moments, whilst better behaved, still show
the effect of the ice rings. For 4EF1, the moments differ at ice ring resolutions for
data processed with the default background algorithm and data processed with the
new global background algorithm. However, the variation is small relative to the
noise. For 4KW2, which showed little improvement after application of the global
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Figure 4.6: The intensity versus resolution of reflections processed using the default background
algorithm (on the left) and the new global background model algorithm (on the right) for datasets,
4PUC (a-b), 4EF1 (c-d) and 4KW2 (e-f). All plots were generated by AUSPEX (Thorn et al.,
2017). The points represent the individual intensities and the vertical bars show the resolutions at
which ice rings may be found. The red bars refer to suspected ice rings found by AUSPEX .
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background model algorithm, the ice rings seem to have very little effect on the
moments. For data processed with both the default background algorithm and the
new global background model algorithm, the moments follow the expected theoretical
curve. It is clear that the moments are not always a clear indicator of ice rings in the
data. In particular, a mild pathology may not alter the moments such that the effect
is visible through the noise; however, the effect may be visible for more prominent
ice ring cases - such as for dataset 4PUC.

A plot of the R f ree with resolution provides a better indication of the effect of ice
rings in the data; however, it is only available after refinement. For datasets 4PUC and
4EF1 the effect of applying the new global background model algorithm is immediately
clear: the R f ree at ice ring resolutions is drastically decreased relative to the R f ree

using the default background algorithm. As also shown in the previous analysis, the
difference observed in the R f ree for dataset 4KW2 is negligible. Inspecting this plot
may give some indication as to the effect of ice rings on the data, particularly for
data containing very prominent ice rings - such as dataset 4PUC.

4.3.7 The effect of noise on the intensity moments

The observed reflection intensity, Io is the sum of the true intensity, It , and a noise
contribution, n, such that Io = It + n. Therefore, the first and second moment of Io

can be written as:

< Io > =< It > + < n >

< I2o > =< Io >
2 +var(It) + 2cov(It, n) + var(n).

(4.13)

The normalised moment can then be written as the following ratio:

< I2o >
< Io >2

= 1 +
var(It) + 2cov(It, n) + var(n)

(< It > + < n >)2
. (4.14)

Let us denote k = var(It )
<It>2 , then the above ratio can be written as:

< I2o >
< Io >2

= 1 +
k + 2cov(It, n) <n>

<It>
+

var(n)
<It>2

(1 + <n>
<It>
)2

. (4.15)

The value of k depends on the distribution of true intensities. For single crystal
intensities without statistical peculiarities such as twinning and pseudo-translation,
k = 1. For merohedral twinning, k = 1

2 . For n-fold twinning, k = 1
n . Therefore, for

single crystal, untwinned data, the ratio is given by:
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Figure 4.7: The 4th acentric moments of E, the normalised structure factors, versus resolution
for datasets (a) 4PUC, (c) 4EF1 and (e) 4KW2. The red line indicates the default background
algorithm and the blue light indicates the new global background model algorithm. The expected
value for untwinned data is shown in black by the theoretical curve. The Rf ree versus resolution
for datasets (b) 4PUC, (d) 4EF1 and (f) 4KW2. The red line indicates the default background
algorithm and the blue light indicates the new global background model algorithm.
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< I2o >
< Io >2

= 1 +
1 + 2cov(It, n) <n>

<It>
+

var(n)
<It>2

(1 + <n>
<It>
)2

. (4.16)

Assuming in each case that there is no correlation between the signal and the
noise (i.e. cov(It, n) = 0).

1. If the mean noise, < n > is 0 and the variance of the noise, var(n), is close to
zero, then:

< I2o >
< Io >2

= 2. (4.17)

Typically, at low resolution, where reflection intensities are large relative to
the noise, the moments tend to this value.

2. If the mean noise, < n > is non-zero and the variance of the noise, var(n), is
close to zero, then:

< I2o >
< Io >2

= 1 +
1

(1 + <n>
<It>
)2
. (4.18)

In this case, the ratio depends on the value of the mean noise, < n >. If the
reflections intensities are underestimated, then the mean noise will be negative.
When the average noise is close to − < It > then the ratio will become very
large. If the reflection intensities are overestimated, then then mean noise is
positive. As < n > /< It > tends to infinity, the ratio will tend towards a value
of 1, mimicking twinned data.

3. If the mean noise, < n >, is zero and the variance of the noise, var(n), is
non-zero, then:

< I2o >
< Io >2

= 2 +
var(n)
< It >2

(4.19)

In this case, the ratio is always greater than 2 and as var(n) increases relative to
the true reflection intensity, < It >, the ratio also increases. At high resolution,
where reflection intensities are small relative to the noise, this trend in the
ratio towards infinity is often seen.

4.3.8 Application to data with no ice rings

As a control, a weak Thaumatin dataset collected on Diamond beamline I04 and
known to contain no visible ice ring pathologies (Winter and Hall, 2014) was processed

104



to ensure that the new global background model algorithm gives good results in the
case of well collected data. The average background over all resolution ranges is
less than 1 count per pixel; it also has a low incidence of outliers in the background
pixels. The dataset was processed to a resolution of 1.2 Å using the same procedure
as described in Appendix A.3.

It was found that use of the global background model algorithm for this dataset
resulted in no difference in the refinement R factors. Refinement with REFMAC5
resulting in the same R f ree for data processed with both the default background
algorithm and the new global background model algorithm. When summation
integration was used, the R f ree was 18.1% in each case; when profile fitting was
used, the R f ree was 17.4% in each case. Thereby further illustrating the trend seen
previously where a reduction is R f ree is observed when using profile fitting over
summation integration. Furthermore, plots of the moments with resolution and the
R f ree with resolution showed no difference between data processed with the default
background algorithm and the global background model algorithm.

4.4 Conclusion

The use of a new global background model algorithm for the processing of X-ray
diffraction data in the presence of ice rings has been presented. Traditional approaches
to background modelling as implemented in current integration programs do not
adequately cope with the task of modelling reflection background that is not well
described by either a constant or a plane with a small slope. Consequently, these
methods introduce systematic bias into the background estimation for reflections
whose integration shoeboxes overlap with ice rings. This bias renders the majority of
reflection intensities at certain resolutions unreliable if the dataset is contaminated
by ice diffraction. At the peak of an ice ring, reflection intensities tend to be over-
estimated due to an under-estimation of the reflection background. To either side of
the ice ring, reflection intensities tend to be under-estimated due to an over-estimation
of the reflection background. The use of a simple global background model algorithm
has been shown to correct for these issues. Modelling the background in the presence
of ice rings is challenging; however, correct modelling can have a noticeable effect
on the downstream data processing. Finally, it is important to note that, whilst it
is possible to correct for the effect of ice rings in data processing software, better
results can be obtained by ensuring that samples are not contaminated with ice to
begin with. This work was published in Parkhurst et al. (2017).
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4.4.1 Future improvements

The current implementation uses a simple static background model which is applied
to each image in the dataset. A future enhancement to the algorithm may be to
employ a scan-varying global background model, where the model is allowed to vary
over the course of the rotation scan. Additionally, the algorithm may be enhanced
by generating a number of models (for example a flat and planar model as well as
a curved model based on the global background model) and fit to each reflection
with the model then being selected by a model selection algorithm, for example, the
Akaike Information Criteria (AIC) (Akaike, 1973). Finally, the uncertainty in the
determination of the global background model, as well as the uncertainty in the
fitted background could be propagated to provide better estimates of the total error
in the estimated intensities.

106



Chapter 5

Profile modelling for serial
synchrotron X-ray diffraction data

5.1 Introduction

A major difficulty often faced by crystallographers is growing suitably large and
well diffracting crystals to collect data to the desired resolution in a single crystal
X-ray diffraction experiment. The diffracted signal is proportional to the illuminated
volume of the crystal; therefore, for small crystals, in order to achieve the same
strength of diffraction as from a larger crystal, a higher intensity beam is needed;
this then entails more radiation damage to the crystal. Whilst cryo-cooling can
help to slow the rate of radiation damage (Garman and Owen, 2006), it is often
not enough to collect a full dataset from a single micro-crystal. Averaging intensity
observations can help to improve the signal to noise ratio; therefore, when a large
crystal is not available it is common to use data from many small crystals and to
merge the resulting intensity measurements.

In recent years, the emergence and development of X-ray free electron lasers
(XFEL) has popularised an experimental technique known as serial femtosecond
crystallography (SFX) (Chapman et al., 2011); the XFEL beam delivers a femtosecond
pulse of X-rays which allows a diffraction pattern to be collected at room temperature
without radiation damage - so called “diffraction before destruction”. Since the XFEL
beam destroys the crystal in a single pulse, only one diffraction pattern, a “still”
image representing a single slice through reciprocal space, can be collected per crystal;
therefore, in order to collect a complete dataset, many thousands of crystals are
required.

At the same time, developments at synchrotron facilities have enabled MX
beamlines to achieve micrometer sized X-ray beams that can match the size of very
small crystals (Evans et al., 2011). Together with the development of high viscosity
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Lipidic cubic phase (LCP) injectors (Weierstall et al., 2014), crystallographic sample
chips (Mueller et al., 2015) and fast, portable fixed-target acquisition systems (Sherrell
et al., 2015), this has enabled the experimental techniques used at XFEL facilities to
be adapted for use at a synchrotron; a development known as high throughput serial
synchrotron crystallography (SSX) (Stellato et al., 2014; Gati et al., 2014; Owen
et al., 2017; Weinert et al., 2017). In the context of synchrotron experiments, the
term “serial crystallography” takes on a slightly broader meaning, encompassing both
“still” diffraction images, as in XFEL experiments, and individual small rotation
images. Due to the longer exposure times used at synchrotron beamlines compared
to XFEL beamlines, it is not possible to avoid radiation damage entirely; however, it
can be partially alleviated by dividing the total dose over a large number of crystals
collected with a small dose.

When performing a SSX experiment, it may be generally preferable to col-
lect individual small rotations rather than still images since small rotations allow
greater coverage of reciprocal space and the measurement of fully recorded reflections
(Hasegawa et al., 2017); however, as discussed below, there are cases when it is
preferable to collect still images. The throughput for the collection of a serial dataset
composed of many still images can be an order of magnitude higher than for the
collection of a serial dataset composed of many small rotation images using the
same translation hardware (Wierman et al., 2019). For an experiment done using
a micro-crystal chip on Diamond beamline I24, as shown in Figure 5.1, a full chip
with 25,600 positions1 can be collected in less than 10 minutes and approximately
25 grids can be collected every 12 hours: this is the equivalent of 640,000 positions
shot, each of which may contain one or more crystals (Owen et al., 2017).

For some cases, it is desirable and convenient to be able to perform the same
experiment on both a synchrotron beamline and an XFEL beamline. For example,
still image SSX experiments enable incremental dose experiments, where each position
on the chip is exposed multiple times, to be performed in a time efficient manner;
this enables dynamic studies of X-ray driven biological processes where electrons
produced by the incident X-ray beam trigger reactions in the biological sample.
Ebrahim et al. (2019) used a fixed target setup to perform a direct comparison of
dose resolved SSX and radiation damage free XFEL structures of a radiation sensitive
protein. Furthermore, synchrotron beam time is much easier to obtain than XFEL
beam time; performing the SSX experiment at a synchrotron would allow for the
assessment of sample and experimental workflows and could allow the feasibility of
experiments for XFEL to be tested to provide useful supporting evidence for XFEL
beamtime applications. The portable, compact hardware used for still image SSX

1Owen et al. (2017) refers to a previous version of the chip; information about the latest version
can be found at https://www.diamond.ac.uk/Instruments/Mx/I24/I24-serial.html.
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Figure 5.1: (a) The serial crystallography experimental setup on Diamond beamline I24, (b)
a sample grid for data collection, and (c) a schematic of an element of the sample grid. Both
traditional rotation experiments and serial crystallography experiments with either still images or
small rotations can be performed on the beamline. Images courtesy of Danny Axford, Diamond
Light Source.

enables the same experimental setup to be used in both cases (Sherrell et al., 2015).
In order to cope with the specific challenges posed by still image X-ray diffraction

data, new integration programs such as cctbx.xfel (Brewster et al., 2016), Cppxfel
(Ginn et al., 2016) and CrystFEL (White et al., 2016) have been developed, and
traditional integration programs, previously optimised for processing data from
rotation experiments, such as XDS (Kabsch, 2014) and EVAL15 (Kroon-Batenburg
et al., 2015) have required some modification. Within DIALS , processing of still
images is done via the dials.stills_process pipeline which shares algorithms and
software with cctbx.xfel .

The challenges in processing still image X-ray diffraction data are numerous
and related to the fact that each image only represents a single, thin slice through
reciprocal space. Each still image typically only contains a small number of strong
spots and, since each image contains diffraction from a different crystal with a unique
unit cell and orientation, each image needs to be indexed independently. This usually
requires the space group and approximate unit cell to be known a priori since a
single still image will not, in general, provide enough information to determine
them automatically. The small number of strong spots are then used to refine the
experimental geometry. Although not an issue in SSX, in XFEL data processing
a significant issue has been handling the complex metrology of the detectors used
(Brewster et al., 2018). If the detector is not moved during a data collection, the
detector can be treated as fixed for all images; by performing a joint refinement of the
detector parameters using data from all images, the detector position and orientation
can be determined very accurately which consequently improves the determination
of the crystal unit cell and orientation (Waterman et al., 2016).

However, in the refinement of the experimental geometry from still image diffrac-
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tion data, there is a dependence in the prediction on the exact form of the reflection
reciprocal space profile model. Within DIALS , the default profile model has two
components (Sauter et al., 2014); the mosaic block size which manifests geometrically
as spherical reciprocal lattice points, and an angular spread of mosaic blocks which
manifests as a spherical cap around each reciprocal lattice vector (Nave, 1998).
For still image diffraction data, the shape of the reciprocal lattice point (RLP)
distribution has a substantial effect on the observed position of the reflection on
the detector, whereas this is generally not the case for data collected using the
rotation method. This can be seen by considering a reflection with a non-isotropic
RLP distribution, centred on the RLP, at a random orientation with respect to the
Ewald sphere. For a fully recorded reflection in a rotation experiment, the entire
reflection will be rotated through the Ewald sphere and will be recorded on the
detector. The intensity weighted centre of mass of the observed reflection on the
detector images will then correspond to the predicted position of the reflection. For
a still image, where only a slice of the RLP distribution results in diffraction, the
intensity weighted centre of mass of the reflection recorded on the detector image will
not, in general, correspond to the predicted position of the reflection. The predicted
position, depends on the profile model used as shown in Figure 5.4. For a profile
model consisting of a spherical RLP distribution with a monochromatic beam, the
predicted centre of mass of the reflection is found by computing the diffracted beam
vector corresponding to the point on the Ewald sphere closest to the RLP. For a
profile model consisting of a spherical cap mosaicity model and a monochromatic
beam, the predicted centre of mass of the reflection is found by computing the
shortest rotation about an arbitrary axis that puts the reflection on the Ewald sphere
(Sauter et al., 2014). For a non-isotropic RLP distribution and monochromatic beam,
the centre of mass is offset and is dependent on the shape of the profile. For a
wavelength distribution with a wide bandpass, the centre of mass of the reflection
tends towards the centre of mass of the RLP.

For still image diffraction data, the set of reflections which will actually be
recorded on the diffraction image, and the set of reflections which will be entirely
absent, are also dependent on the reflection profile model. Since an image represents
a slice through reciprocal space and individual reciprocal lattice points are unlikely
to be touching the surface of the Ewald sphere, the set of observed reflections will
depend on the profile model. Given a RLP whose centre is some distance from the
Ewald sphere, a selection criterion must be used to determine whether that reflection
will be observed. A good algorithm will predict the reflections that are actually
observed on the image without predicting reflections that are entirely absent. If
observed reflections are not predicted, this is termed “under-prediction”; if absent
reflections are predicted, this is termed “over-prediction”.
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In practice, for real data, it may not be obvious whether a reflection is not visibly
recorded on the diffraction image because (a) no part of the reflection is in the
diffracting condition or (b) it has an intrinsically low intensity. This can only be
properly determined once the true intensities are known after scaling and merging of
the data. Likewise, diffraction images may contain reflections from multiple lattices
and contain other sources of noise. However, if a reflection indexed by a particular
crystal is observed on the image and is not predicted then it is obvious that the set of
reflections has been under-predicted by the algorithm. In the case of over-prediction,
absent reflections can be dealt with at a later stage during scaling and merging
of the data; however, for under-prediction, valuable information is lost completely
after integration. Therefore, a small amount of over-prediction may be desirable to
reduce loss of information. It has been observed that under-prediction of observed
reflections is a particular problem for the standard prediction algorithm for still
image diffraction data in DIALS (Winter, 2018; Axford, 2018; Nakane, 2018).

In this chapter, an enhanced model for the observed reflection profile is described;
the model consists of two components: a Multivariate Normal distribution (MVN)
is used to describe the distribution of reciprocal lattice vectors around the RLP
for each reflection, and a Normal distribution is used to describe the distribution
of wavelengths. By using a MVN distribution to describe the RLP distribution,
non-isotropic spot shapes can be easily described. Additionally, Normal distributions
have various useful properties which allow the parameters of the profile model to
be estimated easily from the data via a maximum likelihood algorithm. It is shown
that, application of the profile model to simulated data and SSX data collected
from Diamond beamline I24 results in better determination of the crystal unit cell
parameters and orientation, and allows more accurate prediction of the reflection
positions on the detector. Furthermore, the enhanced algorithm is better able to
predict which reflections are observed on the detector. The algorithm is implemented
within a stand-alone program, dials.potato.

5.2 Algorithm

5.2.1 Model

In order to model the observed profile of the diffraction spots recorded on the
detector, the finite shape of the RLP distribution and the distribution of wavelengths
are considered. For convenience, the mathematical symbols used along with their
definitions are given in the list of symbols on page 13.
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Figure 5.2: The RLP distribution in reciprocal space. The size of each spot in reciprocal space is
described by a MVN distribution. The black line represents the surface of the Ewald sphere in the
case of a δ-function model. The distribution of reciprocal lattice vectors around each RLP is the
same; however, it is worth noting that the intensity of each reflection will be different and this is
indicated in the diagram by a variation in the colours of the reflection profiles.

Reciprocal lattice point distribution

The RLP distribution can be modelled as a Multivariate Normal (MVN) distribution
in reciprocal space centred on the reciprocal lattice point and described by a 3D
covariance matrix. The MVN distribution allows for anisotropy in the spot shape
and has various properties that simplify calculations and make it a convenient choice
for the RLP distribution. For a RLP, r0 = UBh, the distribution of reciprocal lattice
vectors, r , is given by

r ∼ N(r0,M). (5.1)

Where the RLP covariance matrix, M, in reciprocal space coordinates has the
following components:

M =
©­­«
M11 M12 M13

M21 M22 M23

M31 M32 M33

ª®®®¬ . (5.2)

All reciprocal lattice points are assumed to have the same distribution in reciprocal
space so the shapes of all spots can be described by a single set of model parameters
as shown in Figure 5.2.
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Wavelength distribution

The distribution of X-ray wavelengths is modelled as a Normal distribution with
mean wavelength, λ0, and variance, σ2

λ , such that:

λ ∼ N(λ0, σ
2
λ ). (5.3)

If the variance of the wavelength distribution is equal to zero, the distribution
is modelled as a δ-function, i.e. a monochromatic beam with wavelength λ0; in
this case, simplifying approximations can be used for the general impact of the
reflection. Synchrotron beamlines for MX are typically monochromatic with very
small wavelength dispersion (the energy resolution is dE/E ≈ 1 × 10−4); in this case,
a δ-function wavelength distribution may be sufficient as an approximation. However,
there are cases, such as pink beam experiments, where a spread of wavelengths
needs to be considered. Considering the spread of wavelengths to be approximately
Normally distributed allows for convenient modelling of the product of the reciprocal
lattice point profile with the wavelength distribution as shown in Section 5.2.3. This
model is appropriate for data collected at a synchrotron; however, X-rays from
XFEL beamlines typically have a multi-modal peaked wavelength distribution that is
different for each image and is not well characterised by a smoothly varying unimodal
distribution.

Reflection specific coordinate system

It is convenient to perform some calculations in a reflection specific coordinate
system shown in Figure 5.3. Given a reciprocal lattice vector, r0, and an incident
beam vector, s0 with length |s0 | = 1/λ0, the vector to the reciprocal lattice point
in laboratory space is s2 = s0 + r0. If |s2 | = |s0 | then the centre of the RLP lies
directly on the Ewald sphere; however, this is not generally the case. For a RLP with
laboratory vector, s2, the basis vectors of the reflection specific coordinate system
are defined as follows:

e1 =
s2 × s0
|s2 × s0 |

e2 =
s2 × e1
|s2 × e1 |

e3 =
s2
|s2 |

(5.4)

The reflection specific coordinate system is similar to that defined in Kabsch
(2010a) for describing the standard reflection profiles. The e1 and e2 vectors form a
tangent plane on the Ewald sphere surface and describe the transverse and radial
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Figure 5.3: The reflection specific coordinate system.

components of the spot shape around the beam centre. The e3 vector is just the unit
vector pointing from the centre of the Ewald sphere to the centre of the reciprocal
lattice point. These basis vectors form a rotation matrix:

Re =
©­­«
e11 e12 e13
e21 e22 e23
e31 e32 e33.

ª®®®¬ (5.5)

This rotation matrix transforms the RLP laboratory space vector, s2, to lie along
the Z axis of the local reflection coordinate system.

Model parametrisation

The RLP distribution is described by its 3D covariance matrix. In order to be valid,
the covariance matrix is required to be positive semi-definite. This can be enforced by
using the Cholesky decomposition to parameterise the RLP covariance matrix. The
parametrisation is given such that M = LL∗, where L∗ is the conjugate transpose of
L, a lower triangular matrix with positive diagonal elements. The RLP covariance
matrix is then fully described by 6 parameters, (m1,m2,m3,m4,m5,m6), the non-zero
elements of matrix L, where

L =
©­­«
m1 0 0

m2 m3 0

m4 m5 m6

ª®®®¬ . (5.6)

The RLP covariance matrix is then:
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M = LL∗ =
©­­«

m2
1 m2m1 m4m1

m2m1 m2
2 + m2

3 m4m2 + m5m3

m4m1 m4m2 + m5m3 m2
4 + m2

5 + m2
6

ª®®®¬ . (5.7)

For the wavelength distribution, if the δ-function wavelength model is used,
no additional parameters are required. If a Normal distribution is used, a single
parameter is required to describe the variance, σ2

λ .

5.2.2 General impact for δ-function wavelength model

The general impact discussed here refers to the distribution of diffracted beam vectors
on a virtual spherical detector at a distance |s0 |; i.e. the distribution of diffracted
beam vectors on the Ewald sphere. This distribution can be described simply,
whereas the distribution projected onto the flat detector plane will be necessarily
more complex. It is assumed that the Ewald sphere is flat on the scale of the size of
a spot. In this case, the general impact is approximated by the shape of the spot on
a tangent plane on the Ewald sphere surface as given by the local reflection specific
coordinate system.

Given the RLP distribution covariance matrix, M , the diffracted beam vector, s2
and the local reflection specific coordinate system transformation matrix, Re, the
shape of the reflection profile in the local reflection specific coordinate system is
simply the transformed RLP distribution which is a MVN distribution with mean,
µ, and covariance matrix, Σ, given by:

µ = Re s2

Σ = ReMRe
T .

(5.8)

To compute the general impact then requires the calculation of the conditional
distribution of the MVN distribution on the tangent plane of the Ewald sphere. This
requires the decomposition of the 3D MVN distribution, P(e1, e2, e3), into the 1D
marginal distribution, P(e3), along the e3 basis vector, and the 2D conditional distri-
bution, P(e1, e2 |e3), on the plane formed by the e1 and e2 basis vectors conditional
on the distance between the Ewald sphere and RLP along the e3 basis vector. The
transformed RLP distribution, P(e1, e2, e3), can then be written as P(e1, e2 |e3)P(e3).
In this case, the marginal distribution is the projection of the MVN distribution onto
the e3 basis vector and the conditional distribution is a slice of the MVN distribution
on the (e1, e2) plane at a given position along e3. A convenient property of the MVN
distribution is that both the marginal and conditional distributions are also Normal
distributions. Given a MVN distribution with mean vector, µ, and covariance matrix,
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Σ, the marginal and conditional distributions can be computed by partitioning the
mean vector and covariance matrix such that:

µ =

(
µ1

µ2

)
(5.9)

and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. (5.10)

Here, µ1 is the 2D vector mean of the conditional distribution, µ2 is the scalar
mean of the marginal distribution, Σ11 is the 2D covariance matrix of the conditional
distribution and Σ22 is the scalar variance of the marginal distribution. The marginal
distribution has a mean, µ̃, and variance, Σ̃, given by:

µ̃ = µ2 = µZ

Σ̃ = Σ22 = ΣZ .
(5.11)

Using the properties of block matrix inversions, as shown in Appendix A.4, the
conditional distribution of the MVN distribution can be shown to have mean, µ̄, and
covariance matrix, Σ̄, given by:

µ̄ = µ1 + (Σ12)(Σ22)
−1(|s0 | − µ2) = µXY

Σ̄ = Σ11 − (Σ12)(Σ22)
−1(Σ21) = ΣXY .

(5.12)

The marginal distribution gives information about the distribution of spots that
will be observed and the conditional distribution gives information about the general
impact of a spot in its local reflection specific coordinate system. The mean of the
conditional distribution can be understood as the “central impact” and the variance
of the conditional distribution can be understood as describing the “general impact”.
The centre of mass of the reflection recorded on the Ewald sphere can then be
approximated by using the point in the reflection specific coordinate system at the
mean of the conditional distribution on the Ewald sphere and rotating back into the
laboratory frame as follows and shown in Figure 5.4:

s1 = Re
T

(
µXY

|s0 |

)
(5.13)
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Figure 5.4: The predicted diffracted beam vector; the mean of the conditional distribution on
the Ewald sphere approximated by the plane formed by the (e1, e2) axes in the reflection specific
coordinate system.

5.2.3 General impact for Normal wavelength model

For the Normally distributed wavelength model, the calculation of the general impact
is slightly more complicated than for the monochromatic case. The interaction
between the wavelength distribution and the reciprocal lattice point distribution, for
an instantaneous still image, can be thought of as the product of two distributions
in reciprocal space: the RLP distribution and the distribution of Ewald spheres
resulting from the wavelength spread as shown in Figure 5.5. In general, this product
distribution will be very complicated and may not be possible to describe analytically.
However, it is possible to describe this interaction in terms of a product of Normal
distributions by considering a linear approximation.

Ewald sphere distribution

A Normal distribution of wavelengths can be visualised as a distribution of Ewald
spheres as shown in Figure 5.6. In order to model the interaction of the Ewald sphere
distribution and the RLP distribution for a given reflection, an approximation of the
Ewald sphere distribution in the local reflection specific coordinate system is required.
To this end, the Ewald sphere distribution is modelled for each reflection as a Normal
distribution along the e3 basis vector of the local reflection specific coordinate system.
For a reciprocal lattice vector, r , to satisfy the diffraction condition at wavelength,
λ, the following must hold: ���� s0

λ |s0 |
+ r

���� = ���� s0
λ |s0 |

���� . (5.14)
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Figure 5.5: The product of the Ewald sphere distribution with the reciprocal lattice point
distribution.

Therefore, the wavelength that will excite a particular reciprocal lattice point, r
is given by:

λ = −
2

|s0 |

s0 · r

r · r
. (5.15)

Given a line between a point in reciprocal space, rE =
s2
|s2 |
− s0, lying on the mean

Ewald sphere with radius, |s0 |, and the origin, points in reciprocal space, r , lying
along that line can be written as a function of z along that line as follows:

r = z
(
s0 + rE

|s0 |

)
− s0. (5.16)

By taking r as a function of z, the Taylor expansion of Equation 5.15 around
z = |s0 | is

λ(z) ≈
1

|s0 |
−
2(z − |s0 |)
rE · rE

. (5.17)

Rearranging for z then gives:

z = −
(λ − λ0)rE · rE

2
+

1

λ0
(5.18)

If the wavelength is Normally distributed with mean, λ0, and variance, σ2
λ , then

z is Normally distributed about |s0 | with variance given by:

σ2
E =

( rE · rE

2

)2
σ2
λ . (5.19)
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Figure 5.6: The distribution of Ewald spheres resulting from a Normally distributed spread
in wavelengths (a). The inset rectangle is shown in (b) with a RLP. Even for a large spread in
wavelengths, the Ewald sphere appears of uniform thickness on the scale on a RLP.

The spread of Ewald spheres can be approximated as a Normal distribution
around the mean Ewald sphere where the variance of the distribution increases with
half the squared distance to the point on the Ewald sphere in reciprocal space.

Product of two Normal probability density functions

The product of two Normal probability density functions, N(µ1, σ2
1 ) and N(µ2, σ

2
2 ),

is a scaled Normal distribution with mean and variance given by:

µ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ

2
2

σ2 =
σ2
1σ

2
2

σ2
1 + σ

2
2

.

(5.20)

Product of the Ewald sphere and Reciprocal lattice point distributions

The local approximation of the product of the Ewald sphere distribution and the
RLP distribution can be described by considering the conditional and marginal
distributions of the RLP distribution. The effect of the wavelength distribution can
be approximated by a Normal distribution along a vector from the centre of the
mean Ewald sphere with radius |s0 |. The distribution has a mean, |s0 |, and variance
σ2

E . The marginal distribution of the RLP distribution along this vector has a mean,
µ2, and variance, Σ22. Using the result of the product of two Normal probability
density functions as shown above, the product of the local Ewald sphere distribution
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and the marginal distribution of the RLP distribution has a mean and variance given
by

p2 =
µ2σ

2
E + |s0 |Σ22

Σ22 + σ
2
E

P22 =
σ2

EΣ22

Σ22 + σ
2
E

= κΣ22.

(5.21)

The Ewald sphere distribution has the effect of increasing the variance of the
marginal distribution by a factor, κ = σ2

E

Σ22+σ
2
E

, and moving the mean of the marginal
distribution towards the centre of the RLP. Using the properties of block matrices,
as shown in Appendix A.5, the joint distribution of the conditional reciprocal lattice
distribution and the product of the marginal and Ewald sphere distribution can be
shown to have a mean, p, and covariance matrix, P, as follows:

p =

(
µ1 + Σ12Σ

−1
22 (p2 − µ2)

p2

)
P =

(
Σ11 − Σ12Σ

−1
22Σ21(1 − κ) κΣ12

κΣ21 κΣ22

)
.

(5.22)

This has the property that, as the variance of the wavelength distribution goes to
zero, κ goes to zero and the product distribution tends to the conditional distribution
of the RLP distribution. As the variance of the wavelength distribution goes to
infinity, κ goes to 1 and the product distribution tends to the RLP distribution.
This is shown graphically in Figure 5.7 which shows the product distribution for
a monochromatic beam, small bandpass and large bandpass; the first column in
the figure shows the local distribution of Ewald spheres; the second column shows
the anisotropic RLP distribution; the third column shows the product of the Ewald
sphere distribution and the RLP distribution; the fourth column shows a 2D slice
of the general impact of the spot on the detector, the true location of the central
impact using the profile model and naive estimate of the central impact.

Distribution of diffracted beam vectors

Given the shape of the illuminated spot in reciprocal space, let us now consider
the distribution of diffracted beam vectors that would arise from the spot. The
spread of wavelengths results in an increased spread in spot size on the detector. The
diffracted beam vector for a point in reciprocal space, r , can be written as follows,
using Equation 5.15:
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Figure 5.7: The distribution resulting from the interaction of the Ewald sphere distribution with
the reciprocal lattice point distribution for a monochromatic beam, small bandpass and large
bandpass. The centre of the reciprocal lattice point (RLP) is marked with a circle in the heat maps
and the centre of mass of the product distribution (PRD) is marked with a cross. the resulting
general impact is shown in each case along with the true central impact (profile) and the predicted
central impact if the naive prediction is used (naive). The approximated general impact is shown
as the solid line and the true general impact as the coincident dashed line.
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s(r) =
s0
|s0 |

1

λ(r)
+ r = −

1

2

(r · r)

(s0 · r)
s0 + r . (5.23)

Equation 5.23 can be approximated by performing the Taylor expansion about
the central point of the distribution in reciprocal space, r c = p, such that s(r) ≈

s(r c) + J(r c)(r − r c). Here, the matrix of derivatives, J is given by:

J(r c) = 1 −
1

2
s0

(
2(r c · s0)r c − (r c · r c)s0

(r c · s0)2

)T

. (5.24)

The distribution of diffracted beam vectors can therefore be approximated by a
Normal distribution with mean, q = s(r c), and variance, Q = JPJT . To compute
the general impact on the virtual spherical detector, the distribution is marginalised
in the local reflection specific coordinate system on the (e1, e2) plane. The mean and
covariance matrix are partitioned as follows:

q =

(
q1

q2

)
Q =

(
Q11 Q12

Q21 Q22

)
.

(5.25)

The distribution of the general impact in the local reflection specific coordinate
system is then a Normal distribution with mean, µXY = q1, and covariance matrix,
ΣXY = Q11. The variance of the distribution around the mean Ewald sphere is
ΣZ = κΣ22.

5.2.4 Parameter estimation

Observed data

The input data to the algorithm is a set of strong indexed spots and an initial
experimental model. Each strong spot contributes various pieces of information from
which the model parameters may be inferred.

1. The observed centroid position gives information about where the centre of
mass of the spot should be predicted.

2. The distribution of pixel values making up the spot gives information about
the general impact of the spot and the size of the spot in reciprocal space.

3. The list of strong spots itself gives information about which spots are close to
the Ewald sphere and the distribution around the Ewald sphere surface.
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Maximum likelihood algorithm

Given a set of N observed strong spots, the parameters of the profile model can be
estimated from the observed data via a maximum likelihood estimator. Each observed
spot is recorded across a number of pixels on the detector; this constitutes the general
impact of the spot on the detector. Rather than considering this distribution on the
detector directly, the distribution of the pixels counts mapped to the local reflection
specific coordinate system is used. For both the monochromatic and Normally
distributed wavelength models, the distribution of the diffracted beam vectors in
the local reflection specific coordinate system can be approximated as a bivariate
Normal distribution. The projection of this distribution onto the detector surface
results in a distribution that is in general not Normal; therefore, this approximation
significantly simplifies the estimation of the model parameters.

The probability of observing a count in the reflection specific coordinate system
can be given in terms of the conditional probability distribution on the tangent plane
to the Ewald sphere surface along the (e1, e2) axes, and the marginal probability
distribution on the e3 axis orthogonal to that plane, P(x, y, z) = P(x, y |z)P(z). Each
spot is predicted to be a distance, ε = |s2 | − |s0 | from the Ewald sphere along the
e3 axis and each pixel in the spot maps to a point, x = (x, y), in the (e1, e2) plane.
Given the mean, µXY , and covariance matrix, ΣXY , of the expected distribution of
diffracted beam vectors, and the expected variance of the distribution of observed
strong spots around the diffracting condition, ΣZ , the probability of observing a
count at a point, (x, ε) is

P(x, y |z) =
1√

(2π)2 |ΣXY |
exp

(
−
1

2
(x − µXY )

TΣXY
−1(x − µXY )

)
P(z) =

1
√
2πΣZ

exp

(
−
1

2
ε2ΣZ

−1

)
.

(5.26)

Therefore, given N observed strong spots, where a spot, i, has contributions from
Mi detector pixels, j, and each pixel in the spot, (i, j), has observed counts of ci, j ,
the log likelihood can be written as

L = −
1

2

N∑
i

Mi∑
j

ci, j
[
ln(ΣZi) + ΣZ

−1
i ε2i

]
−
1

2

N∑
i

Mi∑
j

ci, j
[
ln(|ΣXY i |) + (xi, j − µXY i)

TΣXY
−1
i (xi, j − µXY i)

]
.

(5.27)

The total observed counts, ctot , mean, x̄, and covariance, S, of each spot are given
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by

ctot =

M∑
j

c j, x̄ =
1

ctot

M∑
j

c j x j, S =
1

ctot

M∑
j

c j(x j − x̄)(x j − x̄)T . (5.28)

By making use of the cyclic permutation property of the matrix trace operator,
the log likelihood equation can then be written in terms of these statistics as follows

L = −
1

2

N∑
i

ctot,i
[
ln(ΣZi) + ΣZ

−1
i ε2i

]
−
1

2

N∑
i

ctot,i
[
ln(|ΣXY i |) + tr(ΣXY

−1
i Si) + (x̄i − µXY i)

TΣXY
−1
i (x̄i − µXY i)

]
.

(5.29)

This removes the inner sum over the spot pixels from the likelihood equation.
Since the statistics, x̄, ctot and S do not depend on the model parameters, they only
need to be calculated once; therefore, the pixel values only need to be accessed once
rather than each time the log likelihood is evaluated. This simplification allows a
practical implementation of the algorithm that is computationally less expensive.

To estimate the parameters, the Fisher scoring algorithm is used (Fisher, 1922).
This algorithm is similar to the standard Newton Raphson algorithm for optimisation,
except that the Fisher information matrix (the negative of the expected value of
the Hessian) is used rather than the observed Hessian. Since the observed Hessian
depends on the data, it can become poorly conditioned and the resulting optimisation
can diverge. In contrast, the Fisher information matrix, I, is guaranteed to be
positive semi-definite (the value of zTI z is non-negative for any non-zero column
vector z) so convergence is more robust. The Fisher scoring algorithm also has the
benefit of only requiring the first derivatives to be explicitly calculated as shown
in Equation 5.34; this results in a simpler algorithm and a less computationally
intensive implementation (Osborne, 1992). At each iteration, (t + 1), the parameters
β are updated according to the following equation

β(t+1) = β(t) + I
(
β(t)

)−1
V

(
β(t)

)
. (5.30)

Where V(βk) =
∂L
∂βk

is known as the score function and the elements of the Fisher
information matrix, I, are given by

Ikl = −E
[
∂2L

∂βk∂βl

]
. (5.31)

In practice, a line search is required in order to ensure that at each iteration the
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log likelihood is guaranteed to increase.

First derivatives of the log likelihood function

As shown in Petersen and Pedersen (2012), the derivative of the determinant, trace
and inverse of a matrix, A, are given by:

∂

∂x
|A| = |A|tr

(
A−1

∂A

∂x

)
,

∂

∂x
tr(A) = tr

(
∂A

∂x

)
,

∂

∂x
A−1 = −A−1

∂A

∂x
A−1. (5.32)

Using these identities, the derivative of the log likelihood function in Equation
5.29 with respect to an abstract parameter, βk , is

∂L

∂βk
= −

1

2

N∑
i

ctot,i

[
ΣZ
−1
i
∂ΣZi

∂βk
− ΣZ

−1
i
∂ΣZi

∂βk
ΣZ
−1
i ε2i + 2ΣZ

−1
i ε i

∂ε i

∂βk

]
−
1

2

N∑
i

ctot,i

[
tr

(
ΣXY

−1
i
∂ΣXY i

∂βk
− ΣXY

−1
i
∂ΣXY i

∂βk
ΣXY

−1
i

(
Si + (x̄i − µXY i)(x̄i − µXY i)

T
))]

−
1

2

N∑
i

ctot,i

[
2 tr

(
ΣXY

−1
i

(
(x̄i − µXY i)

∂µXY i

∂βk

T ))]
.

(5.33)

The derivatives of the quantities ΣXY , µXY , ΣZ and ε with respect to the param-
eters, β, are given in Appendix A.7 for the monochromatic wavelength model and
Appendix A.8 for the Normal wavelength model.

Fisher information matrix

The Fisher information matrix is the negative of the expected value of the Hessian
matrix of second derivatives. The expected values of the first and second moments of
the distribution of the spots either side of the Ewald sphere surface are E[ε i] = 0 and
E

[
ε2i

]
= ΣZi; the first and second moments of the general impact of the spot in the

local reflection specific coordinate system are E [(x̄i − µXY i)] = 0 and E[Si] = ΣXY i.
The elements of the Fisher information matrix only require the first derivatives and
can be calculated as follows
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Ikl = −E
[
∂2L

∂βk∂βl

]
=

1

2

N∑
i

ctot,i

[
ΣZ
−1
i
∂ΣZi

∂βk
ΣZ
−1
i
∂ΣZi

∂βl
+ 2ΣZ

−1
i
∂ε i

∂βk

∂ε i

∂βl

]
+
1

2

N∑
i

ctot,i

[
tr

(
ΣXY

−1
i
∂ΣXY i

∂βk
ΣXY

−1
i
∂ΣXY i

∂βl
+ 2ΣXY

−1
i

(
∂µXY i

∂βk

∂µXY i

∂βl

T ))]
.

(5.34)

5.2.5 Integration

Once the profile model has been determined and the unit cell and orientation of
the crystal have been refined, the reflections are then predicted on the image and
subsequently integrated. The procedure is the same as described in Winter et al.
(2018). For each of the predicted reflections, a shoebox is generated containing a set
of pixels constituting the foreground region of the spot and a set of pixels constituting
the background region of the spot. A background model is then estimated from the
background pixels (Parkhurst et al., 2016). This background model is then applied
to the foreground pixels and the “summation” intensity is estimated as the total
background subtracted pixel counts within the foreground region. Currently, no
profile fitting is done; however, the profile model affects the spot prediction and the
delineation of the foreground mask for in the reflection shoebox. The prediction and
mask calculation are described below.

Prediction

Reflections expected to be observed on the image are predicted using the following
procedure. First, a list of all possible Miller indices are generated out to a user
specified resolution cut off. In the absence of a resolution cut off, the maximum
resolution is determined from the maximum resolution at the corners of the detector.
For each reflection, the distance from the central Ewald sphere is then calculated
and if the reflection is within the χ2 quantile with probability 0.9973 (corresponding
to 3σ in the univariate case) then the reflection is predicted; otherwise, the reflection
is not predicted, as shown in Figure 5.8. Larger reflection profiles in reciprocal space
will result in more spots being predicted on the image.

Mask calculation

For each predicted reflection, a mask is calculated that separates pixels into foreground
and background pixels. The foreground pixels are those pixels which, when mapped
to the local reflection specific coordinate system, are within the χ2 quantile with
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Figure 5.8: Spot prediction. Reflections close to the Ewald sphere (the solid black line) are
predicted; those more distant from the Ewald sphere are not predicted. The distance is dependent
on the variance of the reciprocal lattice point distribution. In the diagram, the shape of the RLP
distribution is the same for each RLP; however, it should be noted that the intensities are different
for each RLP, as indicated by the different colours of the reflections profiles.

probability 0.9973 (corresponding to 3σ in the univariate case). The shoebox is then
expanded to contain a number of background pixels around the foreground region to
be used in the background calculation. The shape of the foreground mask on the
detector depends on the reflection profile model and the orientation of the detector.

5.3 Analysis

5.3.1 Experimental data

In order to evaluate the effect of the profile modelling algorithm on SSX data, three
datasets were selected. An example of a spot at 3Å for each dataset is shown in
Figure 5.9.

1. In order to provide a simple evaluation of the algorithm, 1000 images were
simulated using the simtbx package within cctbx (Grosse-Kunstleve et al., 2002),
which provides a wrapper for the nanobragg program (Holton, 2018). Each
image was simulated independently using identical parameters and a crystal
with space group P21 and unit cell parameters (39.5, 78.5, 48.0, 90, 97.8, 90).
For each image, the crystal orientation was randomly assigned by uniformly
sampling from misset angles between 0 and 2π. The benefit of using simulated
data in the analysis is that the entire geometry of the experiment is known;
therefore, the results of the profile model refinement procedure can be evaluated
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Figure 5.9: An example of a 3Å spot from the simulated dataset (a), FutA dataset (b) and HEWL
dataset (c).

against the known experimental geometry.

2. FutA, an iron-binding protein (Polyviou et al., 2018) collected on Diamond
beamline I24. The dataset consists of 12,800 images with space group P21.
The median unit cell parameters determined from refinement using dials.potato
are (39.54, 78.33, 48.16, 90, 97.79, 90). Data courtesy of Rachael Bolton and Ivo
Tews, Southampton University.

3. A lead bound hen egg white Lysozyme (HEWL) dataset collected on Diamond
beamline I24. The dataset consists of 17,828 images with space group P43212.
The median unit cell parameters determined from refinement using dials.potato
are (79.13, 79.13, 38.26, 90, 90, 90). Data courtesy of John Beale and Danny
Axford, Diamond Light Source.

5.3.2 Data analysis

Each dataset was processed according to the following procedure:

1. Each image in the dataset was processed independently using dials.stills_process
with the standard profile model algorithm. The standard profile model assumes
a spherical RLP and spherical cap mosaicity model. For the simulated data,
since the exact beam and detector geometry was known a priori from the
simulation, these quantities were fixed in the refinement and were not allowed
to vary. Thus, the geometry refinement was only able to vary the crystal unit
cell and orientation parameters to fit the data.

2. For the FutA and HEWL data, the experimental models for all images were then
combined and a joint refinement of all the experimental models was performed
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(Waterman et al., 2016). The beam and detector models were assumed to be
the same for each image. This enables more accurate determination of the
beam and detector geometry. In the case of the simulated data, this was not
necessary since the beam and detector geometry were already known.

3. For the FutA and HEWL data, each image was subsequently re-processed
independently using dials.stills_process a second time with the standard profile
model algorithm. The beam and detector geometry were fixed to a reference
beam and detector model derived from the result of the joint refinement. Again,
this was not necessary for the simulated data.

4. The successfully processed images were then selected. Of the input images, a
number of images failed during indexing; the number of indexing failures for
each dataset can be see in Table 5.1. For the experimental data, the major
cause of processing failure was that there were too few strong spots on the
image to determine the crystal unit cell and orientation. This was a particular
problem for the FutA data where the majority of images could not be processed
for this reason.

5. The successfully processed images were then re-processed using the dials.potato
program implementing the enhanced profile model algorithm described in
this chapter. The detector and beam geometry were fixed to the reference
geometry derived from the joint refinement; therefore, only the crystal unit
cell, orientation and profile model parameters were refined.

6. Finally, the images successfully processed by the enhanced algorithm were
selected. The dials.potato program applies more stringent requirements on the
number of strong spots to perform the refinement than dials.stills_process . The
input spots are first mapped to reciprocal space and assigned a fractional Miller
index. If the distance in fractional Miller indices from the mapped position
to the nearest integer Miller index exceeds 0.3 then the spot is removed and
labelled as unindexed. A minimum of 10 indexed spots are required for the
refinement, otherwise the program will terminate with an error. Analysis of
the individual images indicated that the failures most often occurred when the
input spots could not be indexed by the input model. The number of discarded
images is shown in Table 5.1.

More details about the data processing can be seen in Appendix A.9.
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Table 5.1: Data processing statistics. The rows show the number of diffraction images, the
number of images successfully integrated by dials.stills_process, the number of images subsequently
successfully integrated by dials.potato. Then the number of images that failed to be processed by
dials.stills_process and the number of images that additionally failed to be processed by dials.potato.
Then for the images which were successfully processed by dials.stills_process but failed to be process
by dials.potato, the average number of strong spots observed on the image and the average number
of spots that could be indexed on the image, average number selected for refinement and average
number rejected by centroid outlier detection.

Simulated FutA HEWL
N images 1,000 12,800 17,828
N success stills process 995 2,378 15,518
N success potato 995 2,323 15,074
N failure stills process 0 10,422 2,310
N failure potato 0 55 444
Mean N spots in failure N/A 40.4 21.3
Mean N indexed in failure N/A 14.9 16.2
Mean N selected in failure N/A 7.5 7.1
Mean N outliers in failure N/A 7.4 9.1

5.3.3 Analysis of crystal orientations

For the simulated data, the crystal unit cell and orientation are known for each image
in advance; therefore, the unit cell and orientation determined by the algorithm can
be compared directly with the true values. Given a crystal with a known orientation
matrix, U1, and estimated orientation matrix, U2, the difference in orientation can be
compared simply by computing the rotation matrix that transforms one orientation
to the other. This rotation matrix is simply R = U1U

T
2 ; the rotation angle is

θ = cos−1
(
tr(R)−1

2

)
. Obviously, where the crystal orientation is better determined,

the angular difference between the true and estimated orientation matrices will be
smaller. Since, for the FutA and HEWL data, the “true” orientation of each crystal is
unknown, it is only possible to perform this analysis for the simulated data. Figure
5.10 shows the distribution of the angular differences between the true and estimated
orientation matrices for all images in the simulated dataset for the data processed
with the standard algorithm and the enhanced algorithm. It can be seen that the
variance of the angular differences is much smaller for the data processed using the
enhanced algorithm. This indicates that the orientations of the crystals are better
determined using the enhanced algorithm.
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Figure 5.10: The angular difference between the known simulated crystal orientation and the
refined orientation from (a) the standard algorithm and (b) the enhanced algorithm.

5.3.4 Analysis of crystal unit cell parameters

As before, for the simulated data, the true unit cell parameters are known and are
the same for each simulated image. For the FutA and HEWL data, the true unit
cell parameters are unknown and will indeed be different for each image. However,
the distribution of the unit cell parameters can be analysed; since each image is
refined independently, a tighter distribution of unit cell parameters may indicate
that the unit cell parameters are better determined. The mean unit cell parameters
can be used as a reference for comparing the unit cell parameters estimated by the
refinement algorithms; however, this can be affected by outliers, so the median unit
cell parameters are used instead.

Instead of comparing the unit cell parameters directly, it is instead convenient
to compute the difference between the estimated reciprocal space orthogonalisation
matrix, B2 and a reference, B1, which may either be derived from the known true
unit cell parameters or the median unit cell parameters. The difference between
these matrices can be quantified using the distortion index (Thompson et al., 2018).
This is a measure of the fractional distortion between the two matrices; a smaller
number indicates a smaller distortion. Given the metrical matrices, G1 = BT

1B1 and
G2 = BT

2B2, the distortion index, d, can be computed as follows:

D = G1G
−1
2 ,

d =
1

2
‖D − 1‖1 =

1

2

3∑
i=1

3∑
j=1

|Di j − 1i j |.
(5.35)

Figure 5.11 shows the distortion index between the estimated reciprocal space
orthogonalisation matrices and a reference matrix for each dataset. In each case, it
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can be seen that the distortion index is significantly lower for the estimates provided
by the enhanced algorithm than for the estimates provided by the standard algorithm.
However, the improvement is larger for the simulated data than for the FutA data
and HEWL data. For the simulated data, the enhanced algorithm results in a
70% reduction in the standard deviation of the distortion index over the standard
algorithm (from 0.0101 to 0.0030). For the FutA data, the reduction is 27% (from
0.0049 to 0.0036) and for the HEWL data, the reduction is 7% (from 0.0027 to
0.0026). Since, in the case of the FutA and HEWL data, the median unit cell
parameters are used rather than the true unit cell parameters for each crystal (which
are unknown), it may be that the variance in the estimated unit cell parameters is
dominated by the variance in the “true” unit cell parameters or the trade-off between
the unit cell and orientation parameters. Therefore, the distortion index between the
estimated unit cell and the median unit cell is dominated by the intrinsic difference
between the unknown “true” unit cell and the median unit cell.

The spread in the estimates of the individual unit cell parameters for each dataset
can also be seen in Figure 5.12. Here it can be seen that, for the simulated data and
the FutA data, the variance in the unit cell parameter estimates is lower using the
enhanced algorithm than using the standard algorithm. In particular, the spread in
the estimated unit cell angles is much lower in both cases. For the HEWL data, the
spread in the unit cell parameters does not differ much between the two algorithms;
this may be due to the fact that the higher symmetry means that fewer parameters
need to be determined in the refinement, meaning the remaining parameters may be
better determined.

5.3.5 Analysis of positional residuals

The accuracy of the algorithm in predicting the positions of spots on the image was
assessed by comparing the observed positions of the spots on the images with their
predicted positions. The observed position of a diffraction spot is determined by
calculating the intensity weighted average “centroid” of the pixels contributing to
the spot. The observed position is then dependent on the pixels which are used to
compute the centroid. In order to avoid biased centroid estimates, the pixels used to
determine the spot centroid must not be biased towards the predictions from either
algorithm. Additionally, the centroids of weak spots are poorly determined so only
strong spots were used in the analysis.

For the simulated data, it was possible to extract very accurate “true” observed
positions of the diffraction spots; the simulator produces both a diffraction image
with various sources of noise and an ideal image without any noise. To compute the
observed centroids, the noise-free images were used. In the noise-free images, the
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Figure 5.11: The distortion index (Thompson et al., 2018) between the known or median B

matrix and the refined B matrix for the standard algorithm (left) and the enhanced algorithm
(right) for the simulated data (top), FutA data (middle) and HEWL data (bottom).
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Figure 5.12: The standard deviation of estimated unit cell parameters from the standard algorithm
(old) and the enhanced algorithm (new). For the simulated data and the FutA data, the space
group is P21 and the alpha and gamma unit cell angles are exactly equal to 90 degrees. For the
HEWL data, the space group is P43212 and all the unit cell angles are 90 degrees.
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background pixels are all zero so the pixels contributing to the individual spots can
be segmented very easily. The observed position of each spot is then the intensity
weighted average of the non-zero pixels. For the FutA and HEWL data, the observed
spot positions must be estimated from the noisy data. This is done by selecting
pixels in the vicinity of a spot and computing the background subtracted intensity
weighted average pixel position. In order to avoid bias in the centroid positions, the
following procedure is performed.

• The set of strong spots found during the initial spot finding is selected. An
initial estimate of the observed spot position is calculated from the “strong”
pixels selected by the spot finding algorithm.

• For each strong spot, a shoebox of size 21x21 pixels, centred on the observed
centre of mass, is computed. A mask containing all pixels whose centres lie
within 6 pixels of the observed centre of mass are assigned as foreground pixels;
the remaining pixels are assigned as background pixels.

• The background within the foreground region of the shoebox is then estimated
from the set of background pixels.

• An updated observed position is determined by computing the background
subtracted intensity weighted average centroid of the foreground pixels. The
shoebox is then re-centred on the new observed position and the procedure
is iterated until the observed position of the spot changes by less than some
small value. This is typically reached after a few iterations.

The residuals between the observed and predicted spot positions in the X and
Y detector positions were then calculated. Additionally, the radial and transverse
components of the residuals relative to the direct beam position on the detector were
calculated. Since a different set of reflections may be predicted for the standard and
enhanced algorithms, the set of common reflections was used in this analysis.

The X, Y, radial and transverse RMSDs were then calculated for each image for
both the standard and enhanced algorithm. The difference between the RMSDs for
the standard and enhanced algorithms were then calculated to determine if there
was any improvement in the prediction of the spot positions. Figure 5.13 shows the
distribution of differences in the different components of the RMSDs for each dataset.
For each dataset, the average RMSD for the enhanced algorithm is lower than the
average RMSD for the standard algorithm. This is the case for the X, Y, radial and
transverse RMSDs. For the simulated data, the improvement is roughly the same
for each component; however, for the FutA and HEWL data, the RMSDs in the X
direction appear to have improved more than the RMSDs in the Y direction. The

135



reason for this is unclear but may be related to the synchrotron X-ray beam profile on
Diamond beamline I24 which differs in the horizontal and vertical directions (which
are roughly aligned with the X and Y directions on the detector). The RMSD in the
radial direction also shows a greater improvement than the RMSD in the transverse
direction.

5.3.6 Analysis of predictions

Each still diffraction image represents a slice through reciprocal space. The set
of reflections that are predicted to be observed on the image is model dependent;
given a RLP that is a distance from the Ewald sphere, some criteria for determining
that the spot is close enough to be observed is imposed. Therefore, different profile
models produce different sets of predicted reflections. Ideally, all the spots that are
observed on the image should be predicted by the algorithm. Observed diffraction
spots may be unpredicted for a number of reasons, for example, the diffraction image
may contain contributions from multiple crystals which haven’t been identified or
there may be pathologies in the crystal that are difficult to model; however, since
under-prediction leads to a loss of information, for the purposes of integration, all
observed diffraction spots should be integrated with minimal over-prediction. Excess
reflections that are zero or have very low partiality can be handled during scaling or
post-refinement.

Figure 5.14 shows the fraction of observed strong spots that have been predicted
by the standard and enhanced algorithms for each dataset as a function of the total
number of observed strong spots. It can be seen that, in each case, the enhanced
algorithm results in the successful prediction of a larger fraction of observed strong
spots than the standard algorithm. Indeed, for the FutA and HEWL datasets, the
standard algorithm drastically under-predicts the number of spots observed on the
diffraction images, with the enhanced algorithm often predicting more than twice the
number of observed strong spots. For the simulated data, the number of unpredicted
spots is lower; however, the enhanced algorithm still performs better.

Figure 5.15 shows the fraction of strong spots predicted in resolution bins. Across
the entire resolution range, the enhanced algorithm predicts more of the observed
strong spots than the standard algorithm. For the simulated data, the enhanced
algorithm essentially predicts all the observed spots, with the standard algorithm
slightly under-predicting. For the FutA data, the enhanced algorithm predicts more
than 85% of the observed strong spots across the entire resolution range. At low
resolution, it slightly under-predicts the number of observed strong spots; however at
high resolution, more than 90% of observed strong spots are predicted. For the HEWL
data, the enhanced algorithm predicts more than 90% of observed strong spots across

136



Figure 5.13: The distribution of the difference in X (column 1), Y (column 2), radial (column 3)
and transverse (column 4) RMSDs for the simulated data (top), FutA data (middle) and HEWL
data (bottom). Here, old refers to the standard algorithm and new refers to the enhanced algorithm.
The black line indicates zero difference in the RMSD and the red line indicates the mean difference
in the RMSD. In each case, the mean difference in the RMSD is negative indicating that the
standard RMSD is larger than the enhanced RMSD.
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the entire resolution range. In contrast, for both the FutA and HEWL data, the
standard algorithm under-predicts the number of observed strong spots; only between
65% and 80% of observed strong spots are predicted across the whole resolution
range. An example image for each dataset is shown in Figure 5.16 showing the strong
and weak spots predicted by the enhanced algorithm and the spots predicted by
both algorithms. This provides an illustration of the extent of the improvement to
the set of predicted spots by the enhanced algorithm over the standard algorithm.

5.4 Conclusion

In the processing of still X-ray diffraction data, the positions of the reflections on the
detector depends on the form of the profile model used for the reflections. The use
of a Multivariate Normal distribution to describe the shape of the reciprocal lattice
points combined with a Normal distribution model for the spread in wavelengths has
been presented. The algorithm was evaluated through its use on three datasets: a
simulated dataset generated by the nanobragg simulator, and two still image datasets
collected on Diamond beamline I24 with a fixed target setup. It has been shown that
the use of this model can result in an improvement in the determination of the crystal
unit cells and orientations. Use of the profile model also results in better prediction
of reflection positions on the detector and better prediction of the set of reflections
actually present. The method is implemented within DIALS and can currently be
used via a stand-alone program dials.potato that is run after dials.stills_process as
detailed in Appendix A.9.
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Figure 5.14: A comparison of the predictions from the standard and enhanced algorithms. The
fraction of strong spots observed on the images that were predicted by each of the algorithms for (a)
the simulated data, (c) the FutA data, and (e) the HEWL data. The ratio of the number of number
of strong spots predicted for the enhanced algorithm and the number of strong spots predicted by
the standard algorithm for (b) the simulated data, (d) the FutA data, and (f) the HEWL data.

Figure 5.15: The fraction of strong spots predicted by both the algorithms in resolution bins for
(a) the simulated data, (b) the FutA data, and (c) the HEWL data.
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Figure 5.16: An example from each dataset for the spots predicted by the standard and enhanced
algorithms.
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Chapter 6

Discussion

6.1 Conclusions

The aim of the project was to develop statistically robust algorithms for the integration
and analysis of X-ray diffraction data in order to address new developments in data
collection and detector technology resulting from new and emerging challenges
in macromolecular crystallography. These new trends are driven in part by the
constantly improving ability for structural biologists to collect data from ever smaller
crystals resulting in weaker, noisier, but still measurable, diffraction.

New photon counting pixel array detector technology has resulted in a revolution
in data collection for X-ray crystallography. These detectors have very fast readout
times and essentially zero readout noise allowing complete, finely-sliced datasets
to be collected within seconds. In these detectors, the pixels operate essentially
independently resulting in a very small point spread function; additionally, the direct
photon counting nature of the detectors means that even a single photon can be
accurately measured. However, these properties mean that integration algorithms in
data processing programs need to be modified in order to correctly handle the data
generated by these new detectors.

Smaller crystals result in an increased prevalence of radiation damage which
means that it may not be possible to collect a full rotation from a single crystal. The
use of micro crystals then requires data from multiple crystals in order to create a
complete dataset. In the extreme case, this results in each single crystal producing a
single diffraction image. This mode of data collection, known as serial crystallography,
is becoming more popular at synchrotrons and provides another challenge to data
processing programs.
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6.1.1 Robust background modelling using Generalised Linear

Models

In the integration of the reflection intensities, pixel outliers in the neighbourhood
of the Bragg peak are assigned as either foreground pixels containing signal or
background pixels. The background under the reflection peak is then estimated by
applying a model derived from the set of nearby background pixels. In order to provide
an accurate estimate of the reflection intensity, it is, therefore, necessary to ensure
that the estimate of the reflection background is also accurate; this is complicated
by the presence of pixels outliers, such as zingers, ice rings and unmodelled intensity
from adjacent reflection, in the reflection background. If these pixels are used within
the background calculation, then the background estimate will be positively biased
resulting in an underestimation of the reflection intensity. Therefore, they need to
be properly handled by the background procedure.

The outlier handling methods described in the literature of integration programs
explicitly or implicitly assume a Normal distribution. However, for very weak data
collected on pixel array detectors, where the average number of background counts
may be less than a single count per pixel, this assumption is not appropriate: only
when the number of counts is large, is the Normal distribution a good approximation
to the Poisson distribution. Use of these methods, causes an underestimation of
the reflection background and an overestimation of the reflection intensities. In
extreme cases, the background for every reflection may be incorrectly estimated as
zero. This positive bias in the reflection intensities causes data processing statistics
to look superficially better since adding a positive constant to all reflections makes
symmetry equivalent reflections appear more similar; however, it can also give the
false impression that the data are twinned, especially at high resolution where the
data are weaker.

An algorithm was developed using a robust Generalised Linear Model (GLM)
framework to estimate the reflection background in the presence of pixel outliers.
Within the GLM framework, the data are explicitly assumed to be Poisson distributed,
allowing the data to be handled in a principled way. Use of the algorithm results
in a significant improvement in the estimated background and removes the positive
bias in the integrated reflection intensities. The algorithm is very robust and
enables better determination of weak reflection intensities at high resolution, allowing
more information to be extracted from weak datasets. This can potentially have
a significant impact on the refined electron density. The algorithm is the default
background algorithm in DIALS .

The algorithm is designed for use with Poisson distributed data. This is ap-
propriate for photon counting pixel array detectors which are now the norm at
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synchrotron facilities; however, other detectors, such as CCDs, may have different
properties. Integrating detectors convert a total analogue charge into a number of
counts; during this process, a pedestal may be subtracted and a multiplicative gain
applied. Problems can occur if the detector is poorly calibrated; if the pedestal
subtracted is larger than the number of counts in a pixel then the pedestal subtracted
pixel will have a negative value. In a strictly Poisson framework, negative pixel
values are not permissible. In some extreme cases, the detector may be so poorly cal-
ibrated that a significant number of pixels are negative and the resulting background
estimate for some reflections may itself be negative; this means that subtracting
the background actually increases the total signal pixel counts! Whilst it could be
argued that, in these cases, the detector should be better calibrated, users expect
that the data processing software should still provide a result. Therefore, if the data
are pathological and contain negative counts, the background estimate is done via a
fallback to a method assuming a Normal distribution. Another limitation is that,
currently, the GLM estimator for a non-constant background is computationally
expensive; a faster implementation is needed.

6.1.2 Background modelling in the presence of ice-rings

The background under the reflection peak is typically modelled as a constant or
a plane. Since the X-ray background tends to vary slowly on the scale of a single
reflection on the detector, these models are generally appropriate; however, there are
occasions when these simple models are no longer adequate. A common pathology
in X-ray diffraction datasets is the presence of water ice rings. These ice rings result
in a sharp variation in the background in the radial direction away from the beam
centre; a simple constant or plane background model is then no longer sufficient to
describe the variation of the background counts underneath the reflection peak. If a
simple background model is used then the background will tend to be over-estimated
for reflections lying on the edge of the ice ring, since pixels at the ice ring peak will
contribute to the background model estimation. Conversely, the background will
tend to be under-estimated for reflections lying on the peak of the ice ring, since only
pixels at the edge of the ice ring will contribute to the background model estimation.
This will result in systematic errors in the integrated reflection intensities; this can
be readily seen in the scatter plots of intensity as a function of resolution produced
by AUSPEX (Thorn et al., 2017). One approach to deal with reflections lying on the
ice rings is to exclude all reflections within a resolution range covering the ice ring;
however, this inevitably leads to a loss of information which may cause a lack of
completeness, problems in refinement and distortion in the electron density maps. A
better solution is to correctly model the shape of the ice ring during the background
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model determination such that the ice ring contribution can be correctly subtracted
during integration.

A global background modelling algorithm for X-ray diffraction data was imple-
mented. The algorithm operates by computing an average value for each background
pixel. The average background is then processed and smoothed along lines of constant
resolution to produce a background model for use in integration. The background
model is then fit locally to model the background of each reflection using a robust
estimator to reduce the deleterious impact of pixel outliers in the reflection back-
ground. The use of the global background model algorithm reduces the negative
impact of ice rings on the estimation of the reflection intensities: the systematic
error in the intensities is much reduced or eliminated. A counter intuitive result
is that correctly handling the ice rings in the reflection background can result in
worse overall merging statistics. This effect is due to the fact that adding a positive
constant to all symmetry equivalent reflections causes those intensities to appear to
be more similar; the R merge, which is a measure of similarity between symmetry
equivalent reflections then tends to improve. However, correct handling of the ice
ring background is beneficial for refinement and can result in an improvement to the
Rwork and R f ree and better quality electron density maps.

Currently, the global background modelling algorithm only supports a static
model of the X-ray background. Since the X-ray background is expected to vary over
the course of a scan, an obvious extension to the method would be to implement a
scan-varying background model which could take into account these variations. The
global background modelling algorithm is more computationally intensive than the
standard local background modelling approach; indeed it requires a separate pass
over the image data in order to first construct the global background model. The
background modelling is also currently run as a separate manual processing step
and is therefore not generally included in automatic data processing pipelines by
default. However, it could be easily integrated by including a check for the presence
of ice rings before optionally processing the data using the global background model
algorithm.

6.1.3 Profile modelling for serial synchrotron X-ray diffrac-

tion data

Due to the increasing use of micro crystals, for which radiation damage is a significant
issue, multi crystal data collection strategies have become more popular. In the
extreme case, this can mean a crystal per diffraction image. At XFELs, where all
the X-rays are delivered in a femtosecond pulse, it is not possible to rotate the
crystal in the beam and the data are a set of still diffraction images covering a slice
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through reciprocal space. This mode of data collection is also becoming more popular
at synchrotrons, where it is called serial synchrotron crystallography (SSX). Serial
crystallography at synchrotrons can refer to both small rotations or still images.
Whilst it may be preferable to perform a small rotation, since a larger, better defined,
region of reciprocal space will be covered, there are some occasions in which it is
preferable to collect still images. For example, collecting still images is simpler from a
hardware perspective and the experiment can be easily ported to an XFEL beamline,
allowing the same experiment to be performed at both a synchrotron and an XFEL.

However, the processing of still image diffraction data presents a set of unique
challenges that requires the development of new algorithms. If the reflection profiles in
reciprocal space are non spherical, and the wavelength distribution is monochromatic,
then the centre of mass of the spot will be given by the conditional distribution of
the reciprocal lattice point on the Ewald sphere. This depends on the exact form of
the reflection profile and, depending on the orientation of the reflection in reciprocal
space, this will result in a different centroid being recorded on the detector. This then
implies that centroid based refinement of experimental geometry and crystal unit cell
and orientation also requires profile information. There are further complications if
there is a spread of wavelengths. A larger spread of wavelengths will result in larger
spots and will also change the centre of mass of the spot as recorded on the detector.
Additionally, the set of spots predicted to be observed on the diffraction image is
dependent on the reflection profile model; a larger profile results in a greater number
of reflections being predicted to have some fraction of their total intensity recorded
on the image. Therefore, a reflection profile model needs to be used in order to
perform the refinement and reflection prediction.

A model was developed utilising an anisotropic 3D multivariate Normal distri-
bution to model the shape of the reflection profile in reciprocal space along with
a Normal distribution to model the spread of X-ray wavelengths. The parameters
of the model are estimated via a maximum likelihood algorithm which takes into
account the centre of mass of the spot as well as the extent of the spot on the detector
(i.e. its general impact) and its distance from the mean Ewald sphere. Use of the
algorithm results in reduced spread of unit cell parameters, indicating that the unit
cells may be better determined relative to the standard profile model algorithm. It
also results in improved predictions for the reflection centroids. Finally, it results in
better prediction of the set of observed spots, relative to the standard profile model
algorithm which tends to under-predict the set of spots visible on the detector. A
limitation of the algorithm is that it doesn’t take into account scaling and partiality
(i.e. post refinement is not performed). Once fully implemented, this may result in
better determination of the crystal unit cell and orientation.
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6.2 Future work

The algorithms presented here all have scope for future development and improvement.
The GLM background modelling could be improved by extending efficient implemen-
tations to non-constant models. Additionally, some detectors have a pedestal that
is subtracted from the raw pixel counts resulting in negative pixel counts. Better
analysis of the distribution of these pixel counts could yield better statistical methods
for these data. This would require the uncertainty in the pedestal subtraction to be
estimated. Another challenge that needs to be addressed is the development of new
integrating detectors implementing dynamic gain variation, where the gain is varied
according to the amount of charge deposited on the pixel (Mozzanica et al., 2018).

The global background modelling algorithm could be extended by implementing a
scan varying global background model which describes the variation in the background
across both the detector and the scan. The software could also be made more user
friendly by implementing better integration of the code into automatic data processing
pipelines and graphical user interfaces.

The reflection profile modelling algorithm for synchrotron still images might be
improved by better utilisation of reflection intensity information. However, post
refinement for still image diffraction data is known to be problematic, particularly
in the calculation of reflection partialities. This is especially the case for data
collected at synchrotrons with a monochromatic beam where the notion of partiality
is not well defined. More generally, the processing of stills image data within the
DIALS framework has scope for improvement. This entails the development of
better algorithms but also requires more user friendly tools and better automation;
indeed, this is a frequent request from beamline scientists and users. In the context
of SSX in general and the DIALS project in particular, there is a real need for
better methods for scaling and merging of still X-ray diffraction data. One approach
being investigated is to avoid the direct estimation of reflection partiality from the
experimental geometry by fitting a functional form directly to the observed partiality.

The reflection profile modelling algorithm for stills currently assumes a unimodal
spot shape; however, it is common to have split crystals that result in split diffraction
spots on the image. The algorithm could be extended in order to properly model
these split spots. This may also have application for the processing of rotation data;
particularly during profile fitting, where proper modelling of the split spots may
improve the intensity estimation. Currently, implementing a profile fitting algorithm
for still images data is problematic. For rotation data, the reference profiles are
typically generated via empirically averaging the profiles of strong reflections. This
generally requires knowledge of the fully recorded profile of a large number of strong
diffraction spots; however, in stills diffraction data, there is only a single slice through

146



reciprocal space and no spots are fully recorded. Furthermore, there are far fewer
strong reflections for use in generating the reference profiles than there are for rotation
data. In addition to this, since the crystal unit cell and orientation parameters are
typically less well determined for still data than for rotation data, the resulting
uncertainty in the spot positions will lead to larger errors in the reference profiles
and profile fitted intensities. So profile fitting for still images presents problems in
both building the reference profiles from the partial reflections and then fitting them
to partial reflections. An approach to generate reference profiles might be to use
reference profiles generated from multiple still images to perform profile fitting. If
this could be done then it may improve the estimated intensities from the stills data.
However, the validity and consistency of using profiles from many crystals would
need to be ascertained.

With each new generation of detectors, there is an increase in the rate of data
collection. There is then a corresponding demand from beamline scientists and users
for data processing software to keep up with the speed of data collection in order to
provide live feedback that can help to inform and guide the experiment. Moore’s law
no longer holds (Waldrop, 2016): the speed of serial execution is not increasing fast
enough for data processing to keep up with the output of new detectors. Therefore,
data processing programs need more efficient algorithms and better exploitation of
parallelism in to order to achieve significant performance gains. The challenge of
high data rate crystallography is only likely to increase.

Data processing in macromolecular crystallography is a mature field; however,
some challenges still remain. These challenges are often driven by user requirements,
such as extracting as much signal as possible from tiny crystals. There are also
areas, as well as those already discussed where active research may still produce
some benefit. For example, ray tracing approaches, if made efficient and robust,
may offer a substantial improvement in terms of the accuracy and utility of profile
fitting. To this end, whole image modelling, including modelling of the background
could enable both better background determination and intensity estimation within a
single consistent framework. This ray tracing scheme would require improvements in
optimisation methods such as stochastic, Bayesian, modelling approaches. However,
it might be beneficial in cases where there isn’t enough data to generate empirical
reference profiles for profile fitting, such as in still X-ray diffraction images and small
rotations.

6.3 Impact, deployment and use of the software

It has been an aim of this project to deliver production quality software for both
individual users and for deployment on synchrotron beamlines within automated data
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processing pipelines. To that end, the algorithms and software have been designed
to be generally applicable as opposed to merely targeting a specific experiment,
diffraction dataset or beamline. Within the DIALS project as a whole, a significant
amount of effort was put into ensuring that the software works and is available across
multiple computing platforms: the software can be run on Linux, Windows and Mac
operating systems. This entailed a large amount of testing and debugging, and the
production of a significant amount of user and developer documentation. It is good
practice to do these things even if the software is only intended to be used by a single
person or within a single lab: scientific results derived from the output of computer
programs requires those computer programs to be robust, reliable and well tested.
However, these practices are additionally important when the software is intended to
be used by the wider community.

The DIALS framework has been developed as part of a collaboration with
contributions from many software developers. As one of the first people involved in
the project, I was responsible for implementing most of the low level core functionality
of the DIALS framework on which many other developments have been built.
Considerable time and effort was put into ensuring that these components were
written to be robust and reliable with sensible user facing APIs for other developers
to use. Finally, the DIALS framework contains a suite of data processing programs
which are all required to behave consistently and seamlessly exchange data with
one another. I designed the command line interfaces and implemented the data
structures and data file serialisation to address these requirements.

The DIALS software itself exists as a set of command line programs; however, it
is also incorporated into automated data processing pipeline software such as xia2 ,
through which it is available to beamline scientists and users at Diamond Light
Source and other synchrotrons. As such, the software is used to process essentially
every dataset collected on every Diamond MX beamline. Given the increasing
importance of automation, particularly in the context of remote data collection
which is becoming more common, beamline users are increasingly likely to rely on
automated pipelines to process their data. This is particularly the case given the ever
increasing size of X-ray diffraction datasets produced by new generations of detectors.
It is reaching the point where the storage and transfer of raw diffraction images
makes it impractical for users to process them in the lab: data will increasingly be
processed in situ at the synchrotron.

When the DIALS project was started, the only supported integration package
within the CCP4 suite was MOSFLM ; at the time of writing, DIALS is now the
main integration program within the CCP4 suite; as such, DIALS is distributed and
used throughout the world by CCP4 users. Additionally, starting in 2015, tutorials
on how to use DIALS have been given at every CCP4 structure solution workshop
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and DIALS has been used by workshop attendees to solve various difficult data
processing problems. A common request from users, particularly at data processing
workshops, has been that a graphical user interface (GUI) would be desirable to
enable users who are unfamiliar with the command line to more easily process their
data. In order to achieve this, the DIALS graphical user interface (DUI) is being
developed by Luis Fuentes Montero (Fuentes-Montero, 2019).

At the time of writing, DIALS has been used to solve 241 structures deposited
in the PDB; since many structure depositions only state xia2 as the data processing
program (which may mean either DIALS or XDS ), it is difficult to determine the
exact number. However, some analysis has revealed that more than 1000 further
structures are likely to have be processed using DIALS (Graeme Winter, private
communication). The software is open source, distributed under a BSD licence, and
freely available for anyone and everyone to use. The source code is available online
and can be download from the GitHub repository 1.

1https://github.com/dials/dials
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Appendix A

Appendix

A.1 GLM background algorithm usage in DIALS

The command line parameters needed to invoke each method are listed in Table
A.1. To set these parameters through xia2 , they should be saved to a file (e.g.
parameters.phil) and xia2 called as follows:

# Call xia2 with DIALS specifying the integration parameters

xia2 -dials \

dials.integrate.phil_file=parameters.phil \

image=image_0001.cbf

A.2 Ice ring background algorithm usage in DIALS

The algorithm was implemented in C++ for use within DIALS . The global back-
ground model calculation is implemented as a separate command line program,
dials.model_background. This program generates a file, background.pickle, which
contains the computed global background model. It also generates a series of diag-
nostic images which can be used to inspect the properties of the dataset and the
quality of the background model prior to integration. These include the minimum
and maximum value at each pixel in the dataset and the mean, variance and index
of dispersion (variance / mean) images. The mean image is used to generate the
background model and the index of dispersion image is useful for evaluating the
variation in the background at each pixel. Recalling that for a Poisson distribution,
the index of dispersion, D = variance/mean = 1, then values significantly greater
than 1.0 will indicate large variation in the counts for that pixel over the course of
the dataset. An image of the final background model is also generated; viewing this
allows a qualitative assessment of whether the generated model is appropriate for
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Table A.1: The parameters required to invoke a particular background algorithm in DIALS .

Algorithm Parameters
truncated integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=truncated
nsigma integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=nsigma
tukey integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=tukey
plane integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=plane
normal integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=normal
null integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=null
glm integration.background.algorithm=glm

the data. The mean image or generated background model could also be used to
provide automatic ice ring detection.

The background model is then applied in the dials.integrate program by setting
the background.algorithm=gmodel user parameter to perform integration using the
global background model algorithm. The robust or non-robust fitting algorithm
can be selected via a user-parameter depending on what is most appropriate for
the particular dataset. Currently, the input experiments file must contain the
profile information generated from a successful integration run; therefore, an initial
integration run is required before performing the global background modelling. In
future versions of DIALS , these steps may be applied together. Sample program
usage is shown below.

# Compute the global background model

dials.model_background integrated_experiment.json

# Integrate using the new global background model algorithm

dials.integrate \

integrated_experiments.json \

background.algorithm=gmodel \

background.gmodel.robust.algorithm=True \

background.gmodel.model=background.pickle
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A.3 Ice ring background data processing, reduction

and refinement

Aside from the choice of background model algorithm, the details of the processing
were identical in each case. Each dataset was processed with xia2 (Winter, 2009)
using DIALS (Winter et al., 2018) as the data analysis engine. The integrated
experiments.json file produced by xia2 after integration was then passed into a
new program (dials.model_background) which was used to compute the global
background model. The data was then integrated again, first using the default
background algorithm and then using the global background model algorithm. In
each case the data were integrated using summation integration and profile fitting.
Reflections falling on ice rings were not excluded from the data processing. For
datasets composed of more than one sweep, each sweep was integrated separately.

The data were processed using xia2 with the DIALS pipeline as follows, where
${PATH_TO_IMAGES} is a place holder for the path to the directory containing the
image data.

# Run xia2 using the DIALS pipeline

xia2 pipeline=dials atom=X ${PATH_TO_IMAGES}

The procedure for re-integrating the data using the global background model
algorithm and again with the default background algorithm is shown as follows
where ${ORIGINAL_EXPERIMENTS} is a place holder for the path to the integrated
experiments.json file from the xia2 processing.

# Compute the global background model

dials.model_background ${ORIGINAL_EXPERIMENTS}

# Integrate using the default background algorithm

dials.integrate \

${ORIGINAL_EXPERIMENTS} \

background.algorithm=glm

# Integrate using the new global background model algorithm

dials.integrate \

${ORIGINAL_EXPERIMENTS} \

background.algorithm=gmodel \

background.gmodel.model=background.pickle

The data reduction was performed using POINTLESS (Evans, 2005), AIMLESS
(Evans and Murshudov, 2013) and CTRUNCATE (Winn et al., 2011) specifying the
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known space group and the resolution as reported in the PDB entry for each dataset.
For datasets composed of more than one sweep, the datasets were scaled and merged
together in AIMLESS to produce a single merged MTZ file. A free set of reflections
for cross-validation in refinement was then selected using the FREERFLAG program.
The UNIQUEIFY script in the CCP4i GUI application (Winn et al., 2011) was
used to ensure that the same free set was used for the processing of all instances of
the same PDB entry. Prior to refinement, the coordinates in the PDB file for the
dataset were randomised using PDBSET (Winn et al., 2011) with a maximum noise
level of 0.4Å to ensure that there was no bias in the refinement and R f ree calculation.
Finally, each dataset was refined to convergence against the randomised structure
using REFMAC5 (Murshudov et al., 2011).

A complete script detailing the data reduction and refinement steps is shown
below where ${PDBID}, ${SPACEGROUP} and ${RESOLUTION} are place holders for
the known PDB identifier, space group and resolution respectively.

# Check the space group

pointless <<<EOF

HKLIN integrated.mtz

HKLOUT unscaled.mtz

CHOOSE SPACEGROUP ${SPACEGROUP}

END

EOF

# Scale the data

aimless <<<EOF

HKLIN unscaled.mtz

HKLOUT scaled.mtz

RESO HIGH ${RESOLUTION}

END

EOF

# Convert to amplitudes

ctruncate \

-hklin scaled.mtz \

-hklout truncated.mtz \

-colin "/*/*/[ IMEAN ,SIGIMEAN]"

# Select the free set for validation

freerflag \

HKLIN truncated.mtz \
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HKLOUT free.mtz

# Use CCP4i GUI to select same free set using "uniqueify"

# Then output file "unique.mtz" for each case.

# Randomise coordinates

pdbset \

XYZIN ${PDBID}.pdb \

XYZOUT ${PDBID}_randomised.pdb <<<EOF

NOISE 0.4

END

EOF

# Do the refinement

refmac5 \

XYZIN ${PDBID}_randomised.pdb \

XYZOUT refined.pdb \

HKLIN unique.mtz \

HKLOUT refined.mtz <<<EOF

MAKE NEWLIGAND CONTINUE -

HYDROGEN ALL

MONI DISTANCE 1000000

NCYCLE 80

RIDGE DEST SIGMA 0.01

END

EOF

A.4 Block matrix inversion

If a matrix, A, can be partitioned as follows:

A =

(
A11 A12

A21 A22

)
, (A.1)

then, as shown in Petersen and Pedersen (2012), its inverse is

A−1 =

(
A11 A12

A21 A22

)
. (A.2)

Where
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A11 = (A11 − A12A
−1
22A21)

−1 = A−111 + A−111A12(A22 − A21A
−1
11A12)

−1A21A
−1
11

A12 = −(A11 − A12A
−1
22A21)

−1A12A
−1
22 = (A

21)T

A21 = −A−122A21(A11 − A12A
−1
22A21)

−1 = (A12)T

A22 = A−122 + A−122A21(A11 − A12A
−1
22A21)

−1A12A
−1
22 = (A22 − A21A

−1
11A12)

−1.

(A.3)

A.5 Product of the Ewald sphere and RLP distri-

butions

As shown in Equation 5.22, the joint distribution of the conditional reciprocal lattice
distribution and the product of the marginal and Ewald sphere distributions then
has a mean, p, and covariance matrix, P give by:

p =

(
µ1 + Σ12Σ

−1
22 (p2 − µ2)

p2

)
P =

(
Σ11 − Σ12Σ

−1
22Σ21(1 − κ) κΣ12

κΣ21 κΣ22

)
.

(A.4)

This can be seen by doing the block matrix inversion of the covariance matrix:

P−1 =

(
P11 P12

P21 P22

)
. (A.5)

Where the components of the inverted matrix are

P11 = [Σ11 − Σ12Σ
−1
22Σ21(1 − κ) − (κΣ12)(κΣ22)

−1(κΣ21)]
−1

= [Σ11 − Σ12Σ
−1
22Σ21]

−1

P12 = −[Σ11 − Σ12Σ
−1
22Σ21]

−1(κΣ12)(κΣ22)
−1

= −[Σ11 − Σ12Σ
−1
22Σ21]

−1Σ12Σ
−1
22 = (Σ

21)T

P22 = (κΣ22)
−1 + (κΣ22)

−1(κΣ21)[Σ11 − Σ12Σ
−1
22Σ21]

−1(κΣ12)(κΣ22)
−1

= (κΣ22)
−1 + Σ−122Σ21[Σ11 − Σ12Σ

−1
22Σ21]

−1Σ12Σ
−1
22 .

(A.6)

Now D2 = (x − p)TP−1(x − p) is expanded as follows:
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D2 = (x1 − p1)
TP11(x1 − p1) + 2(x1 − p1)

TP12(x2 − p2) + (x2 − p2)
TP22(x2 − p2)

= (x1 − p1)
T (Σ11 − Σ12Σ

−1
22Σ21)

−1(x1 − p1)

− 2(x1 − p1)
T (Σ11 − Σ12Σ

−1
22Σ21)

−1Σ12Σ
−1
22 (x2 − p2)

+ (x2 − p2)
T [(κΣ22)

−1 + Σ−122Σ21(Σ11 − Σ12Σ
−1
22Σ21)

−1Σ12Σ
−1
22 ](x2 − p2)

= [(x1 − p1) − Σ12Σ
−1
22 (x2 − p2)]

T (Σ11 − Σ12Σ
−1
22Σ21)

−1[(x1 − p1) − Σ12Σ
−1
22 (x2 − p2)]

+ (x2 − p2)
T (κΣ22)

−1(x2 − p2).

(A.7)

Now expanding for p1:

(x1 − p1) − Σ12Σ
−1
22 (x2 − p2) = x1 − µ1 − Σ12Σ

−1
22 (p2 − µ2) − Σ12Σ

−1
22 (x2 − p2)

= x1 − µ1 − Σ12Σ
−1
22 (x2 − µ2)

= x1 − µ̄.

(A.8)

Which gives us the joint distribution of the conditional distribution and product
of the marginal and Ewald sphere distributions:

(x − p)TP−1(x − p) = (x1 − µ̄)T Σ̄
−1
(x1 − µ̄) + (x2 − p2)

T (κΣ22)
−1(x2 − p2). (A.9)

A.6 Derivatives of the RLP parametrisation

The reciprocal lattice point covariance matrix is specified by parameters using the
Cholesky decomposition. The covariance matrix, as shown in Equation 5.7 is

M = LL∗ =
©­­«

m2
1 m2m1 m4m1

m2m1 m2
2 + m2

3 m4m2 + m5m3

m4m1 m4m2 + m5m3 m2
4 + m2

5 + m2
6

ª®®®¬ . (A.10)

The derivatives of the covariance matrix, M, with respect to each of the parame-
ters, (m1,m2,m3,m4,m5,m6), is:
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∂M
∂m1
=

©­­«
2m1 m2 m4

m2 0 0

m4 0 0

ª®®®¬ ,
∂M
∂m2
=

©­­«
0 m1 0

m1 2m2 m4

0 m4 0

ª®®®¬ ,
∂M
∂m3
=

©­­«
0 0 0

0 2m3 m5

0 m5 0

ª®®®¬
∂M
∂m4
=

©­­«
0 0 m1

0 0 m2

m1 m2 2m4

ª®®®¬ ,
∂M
∂m5
=

©­­«
0 0 m1

0 0 m3

m1 m3 2m5

ª®®®¬ ,
∂M
∂m6
=

©­­«
0 0 0

0 0 0

0 0 2m6

ª®®®¬ .
(A.11)

A.7 Derivatives for δ-function wavelength model

For the monochromatic wavelength model, the derivatives of the quantities ΣXY , µXY ,
ΣZ and ε with respect to the parameters, β, are as follows

∂ΣXY

∂βk
=

(
∂Σ

∂βk

)
11

−

(
∂Σ

∂βk

)
12

Σ−122Σ21 + Σ12Σ
−1
22

(
∂Σ

∂βk

)
22

Σ−122Σ21 − Σ12Σ
−1
22

(
∂Σ

∂βk

)
21

∂µXY

∂βk
=

(
∂µ

∂βk

)
1

+

(
∂Σ

∂βk

)
12

Σ−122 ε − Σ12Σ
−1
22

(
∂Σ

∂βk

)
22

Σ−122 ε − Σ12Σ
−1
22

∂ε

∂βk

∂ΣZ

∂βk
=

(
∂Σ

∂βk

)
22

∂ε

∂βk
= −

(
∂µ

∂βk

)
2

.

(A.12)

For a given reflection, the rotation matrix, Re transforms a point in reciprocal
space into the local reflection specific coordinate system. The covariance matrix in
the reflection specific coordinate system is then: Σ = ReMRe

T . Therefore:

∂Σ

∂βk
= Re

(
∂M

∂βk

)
Re

T . (A.13)

Where the derivatives of M with respect to the model parameters are given in
Appendix A.6.

A.8 Derivatives for Normal wavelength model

For the Normal wavelength model, the derivatives of the quantities ΣXY , µXY , ΣZ

and ε with respect to the parameters, β, are as follows
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∂ΣXY

∂βk
=

(
∂Q

∂βk

)
11

∂µXY

∂βk
=

(
∂q

∂βk

)
1

∂ΣZ

∂βk
= κ

(
∂Σ

∂βk

)
22

+ Σ22

(
∂κ

∂βk

)
∂ε

∂βk
= −

(
∂µ

∂βk

)
2

.

(A.14)

The derivatives of the mean, q, and covariance matrix, Q, of the diffracted beam
vectors are given by:

∂q

∂βk
=

(
1

s0 · p

) [(
p ·

∂ p

∂βk

)
+
1

2

(
p · p

s0 · p

) (
s0 ·

∂ p

∂βk

)]
s0 +

∂ p

∂βk

∂Q

∂βk
=

(
∂J

∂βk

)
PJT + J

(
∂P

∂βk

)
JT + JP

(
∂J

∂βk

)T

.

(A.15)

Where the derivatives of matrix, J , are given by:

∂J

∂βk
= −

s0
(p · s0)2

[(
∂ p

∂βk
· s0

)
p + (p · s0)

∂ p

∂βk
−

(
∂ p

∂βk
· p

)
s0

−
2(p · s0)p − (p · p)s0

p · s0

(
∂ p

∂βk
· s0

)]
.

(A.16)

The mean, p, and covariance matrix, P, of the product distribution of the Ewald
sphere and RLP distributions can be partitioned as follows:

p =

(
p1

p2

)
P =

(
P11 P12

P12 P22

)
.

(A.17)

The derivatives of the components of the mean, p, are:
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(
∂ p

∂βk

)
1

=

(
∂µ

∂βk

)
1

+

(
∂Σ

∂βk

)
12

Σ−122 (p2 − µ2) − Σ12Σ
−1
22

(
∂Σ

∂βk

)
22

Σ−122 (p2 − µ2)

+ Σ12Σ
−1
22

((
∂ p

∂βk

)
2

−

(
∂µ

∂βk

)
2

)
(
∂ p

∂βk

)
2

=

(
1

Σ22 + σ
2
E

) [(
∂µ

∂βk

)
2

σ2
E + µ2

(
∂σ2

E

∂βk

)
+ |s0 |

(
∂Σ

∂βk

)
22

− p2

((
∂Σ

∂βk

)
22

+

(
∂σ2

E

∂βk

))]
.

(A.18)

The derivatives of the components of the covariance matrix, P, are:

(
∂P

∂βk

)
11

=

(
∂Σ

∂βk

)
11

−

(
∂Σ

∂βk

)
12

Σ−122Σ21(1 − κ) + Σ12Σ
−1
22

(
∂Σ

∂βk

)
22

Σ−122Σ21(1 − κ)

− Σ12Σ
−1
22

(
∂Σ

∂βk

)
21

(1 − κ) + Σ12Σ
−1
22Σ21

(
∂κ

∂βk

)
(
∂P

∂βk

)
12

=

(
∂κ

∂βk

)
Σ12 + κ

(
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∂βk

)
12(

∂P

∂βk

)
21

=

(
∂κ

∂βk

)
Σ21 + κ

(
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∂βk

)
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∂βk
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=
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22
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(A.19)

The derivatives of the scale factor, κ, are:

∂κ

∂βk
=

(
1

Σ22 + σ
2
E

) (
(1 − κ)

(
∂σ2

E

∂βk

)
− κ

(
∂Σ

∂βk

)
22

)
. (A.20)

The derivatives of the Ewald sphere variance, σ2
E , are:

∂σ2
E

∂βk
= (rE · rE )

(
rE ·

∂rE

∂βk

)
σ2
λ +

( rE · rE

2

)2 ∂σ2
λ

∂βk
. (A.21)

The derivatives of the point on the Ewald sphere, rE , are:

∂rE

∂βk
=

1

|s2 |

(
∂ s2
∂βk

)
−

s2
|s2 |3

(
∂ s2
∂βk
· s2

)
. (A.22)

A.9 Still image data processing

In order to process the data, the following procedure was performed. First the images
were imported using the dials.import command. Then each image was processed
independently using dials.stills_process as shown below.
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# Import the data

dials.import ${PATH_TO_IMAGES}

# Run dials stills process

dials.stills_process \

datablock.json \

stills_process.phil

A joint refinement of the detector and beam models when then performed.

# Combine the experiments

dials.combine_experiments \

*indexed.pickle

*refined_experiments.json \

reference_from_experiment.detector=0

# Perform a join refinement of the beam and detector

dials.refine \

combined_experiments.json \

combined_reflections.pickle \

../refine.phil

The data were then processed again using dials.stills_process now using the
refined geometry; for this run, the detector and beam models remain fixed and only
the unit cell and orientation are allowed to vary.

# Run dials stills process

dials.stills_process \

datablock.json \

stills_process_with_fixed_detector.phil

Finally, each image is processed independently with dials.potato. The input to the
program is the set of strong spots and the refined experiments from dials.stills_process
as follows:
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# Process an image with potato

dials.potato \

strong.pickle \

refined_experiments.json
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