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Abstract 
With ever growing data sets spanning DNA sequencing all the way to single-cell 

transcriptomics, we are now facing the question of how can we turn this vast amount of 

information into knowledge. How do we integrate these large data sets into a coherent whole 

to help understand biological programs? The last few years have seen a growing interest in 

machine learning methods to analyse patterns in high-throughput data sets and an increasing 

interest in using program synthesis techniques to reconstruct and analyse executable models 

of gene regulatory networks. In this review, we discuss the synergies between the two 

methods and share our views on how they can be combined to reconstruct executable 

mechanistic programs directly from large-scale genomic data.   
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Introduction 
Uncovering and understanding the programs that underlie the behaviour of cells is one of the 

major challenges in biology today. Understanding these programs will help us determine the 

molecular mechanisms of disease, and ultimately impact translational research. A central goal 

of executable biology [1] is the construction of executable mechanistic models of such cellular 

behaviour programs, and the development of computational techniques for automated 

analysis and inference of these models. In this review, we discuss two fields of computer 

science, machine learning and program synthesis that are focused on learning predictive 

models from data and on automated construction of computer programs from desired 

behaviours, respectively. These two fields can be seen as two sides of the same coin, 

particularly in the context of executable biology where we want to learn from large complex 

datasets, and where the artefact we ideally want to learn is a mechanistic model of the cell’s 

behaviour, which is essentially a program. 

Recent research has begun to blur the boundaries between these two fields, as machine 

learning researchers have begun to develop methods that can learn algorithmic patterns in 

data and as programming language researchers have begun to investigate the methods of 

deep learning for program synthesis.  Here, we explain the differences between these two 

approaches, discuss the growing connections between the two fields, and give our projections 

for how they can be combined to extract comprehensive cell signalling programs from the 

tsunami of genomic data. 

Machine learning for uncovering patterns in large data sets 
Machine learning allows us to approach problems that have no clear solution as a traditional 

program authored in human-readable source code [2], [3]. For example, how would you 

program a computer to recognise images of cats? There is no direct way to do this. Instead, 

one can use a machine learning algorithm to train a model on many images of cats, and have 

the algorithm learn the underlying patterns in the data in a way that generalises to new, 

previously unseen images. Then, when presented with a new image, the trained model is able 

to correctly predict whether it contains a cat or not.  

Machine learning can be used for classification problems (for example, object recognition – 

detect a face in an image), for regression (i.e., predict a continuous  variable given some input), 

or for sample generation (i.e., generate new objects that are similar to previously seen objects). 

A machine learning algorithm takes training data as an input and uses it to estimate a function 

f. The algorithm typically does this by optimising a metric that measures how well f fits the 

training data. Machine learning is distinguished from a regular optimisation problem by the 

requirement for generalisation to new, previously unseen data (in order not to over fit the 

training data). To test how well the trained model generalises, we evaluate the performance 

measure on test data, which is disjoint from the training data. 

Classical approaches to machine learning 

'Classical' machine learning approaches are based upon the careful extraction of features of a 

data set. These features are then plugged into a standard regression or classification algorithm, 

such as linear regression, naïve bayes, or the k-nearest neighbours classifier (see [3] for an 
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overview of these classic algorithms). The success or failure of the machine learning algorithm 

to make accurate predictions is largely dependent on the features it is presented with. In areas 

such as speech recognition and image classification, features of interest can be highly complex 

and must be thoroughly designed by hand by a domain expert, a process known as feature 

engineering. 

An example of using classical machine learning techniques in biology is the prediction of gene 

expression levels from transcription factor binding profiles using linear regression [4]. Yu et 

al. map genotype to phenotype in yeast using random forests with gene ontology terms as 

features [5]. Deng et al. built a predictive system for classifying genes as essential or non-

essential in bacteria by integrating gene expression, protein-protein interaction and genomic 

data, averaging the predictions of an ensemble of different models [6]. Applications of 

machine learning techniques to gene regulatory network reconstruction have focused on 

detection of statistical signals in gene expression data using clustering [7]–[9], correlation [10], 

[11], mutual information [12], Bayesian networks [13] or random forests [14]. 

Deep neural networks 

Deep learning, the application of deep neural networks to machine learning, is the current 

state-of-the-art in supervised learning [2]. While the explosion of deep learning research is 

recent, researchers have been working on the underlying models, artificial neural networks, 

since the 1940s, initially as computational models of the brain. Early applications of deep 

learning in biology include the use of neural networks to decipher the complex tissue-specific 

splicing regulatory code and to predict DNA-protein binding [15], [16]. 

There are two major features that distinguish deep learning from classical approaches to 

machine learning. The first is that neural networks can represent essentially any (continuous) 

function, rather than simple functions of a specific form [17]. This property is true of shallow 

neural networks, as well as deep ones. The second major difference between deep learning 

and classical machine learning is that deep neural networks perform representation learning. 

Representation learning solves the feature engineering problem faced by classical approaches 

to machine learning, mentioned above. In a deep neural network, the features themselves can 

also be learnt from the raw data, automatically. Figure 1 shows how a deep neural network 

can learn to represent the concept of an image of a person by building a hierarchy of 

representations, of increasing levels of abstraction [2]. 

Figure 2 shows an illustration of a deep neural network architecture for predicting the 

sequence specificities of DNA- and RNA-binding proteins [15]. The neural network is trained 

on sequence specificities measured by a range of experimental methodologies. The network 

then learns to generalise the patterns it finds in this data to discover both motifs and an 

associated score predicting their binding affinity. The resulting trained model can then be 

used to identify new binding sequences or predict the effect of DNA or RNA mutations. 

In a neural network, components called neurons are connected into a graph. A neuron receives 

a signal from each of its input neighbours, takes a weighted combination of these inputs 

(according to learned weights) and passes the result through an activation function to 

determine its output signal. In a deep neural network, these outputs are in turn fed into other 

neurons, and many layers can be stacked, with the input to the system arriving at the first 

layer and the output of the system arriving from the final layer. 
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To train a neural network, we define an objective function that measures how well the network 

outputs fit our training data. In modern machine learning, the objective function and the 

activation functions are differentiable, meaning that a small change in the weights of a neuron 

result in small changes to its output. We can track the effect of changing each neuron weight 

on the resulting objective value, and use a local optimisation algorithm to iteratively update 

all the weights to optimize the objective.  Because the objective function associated with a 

neural network is in general highly non-convex, a local optimisation algorithm may get stuck 

at a locally optimal, but not globally optimal choice of weights. It is therefore somewhat 

surprising that deep learning works so well. For image and speech recognition tasks, local 

optima which are far from the value of the global optimum do not seem to be a problem in 

practice. There has been some recent theoretical work on trying to understand this [18]–[21]. 

However, the presence of local optima seems to be a much larger issue for using deep learning 

approaches to synthesise programs, as we discuss next.  

Program synthesis for reconstructing gene regulatory networks 
Program synthesis is a method for automatically constructing a program that satisfies a given 

set of desired behaviours [22]–[25]. The set of behaviours can be given as a logical formula or 

as a set of input-output examples that the program should reproduce, or as some combination 

of the two. For example, we may want a program that can sort a list of integers. Rather than 

directly writing such a program, we may ask the computer to automatically find one for us. 

Unlike deep learning, program synthesis generally leads to discrete problems which can be 

exactly solved to obtain a globally optimal solution, using algorithms that leverage SAT, SMT, 

or integer linear programming solvers. 

The Single Cell Network Synthesis toolkit (SCNS) is a method for synthesising executable 

models of gene regulatory networks in the form of Boolean networks from single-cell gene 

expression data [26], [27]. SCNS is based upon viewing single-cell gene expression profiles as 

though they were states of an asynchronous Boolean network, and then solving the problem 

of reconstructing a Boolean network from its state space. This algorithm uses a combination 

of enumerative search, graph reachability and Boolean satisfiability solving to extract a gene 

regulatory network model that best matches the state space data (Figure 3a). Before SCNS can 

be used, gene expression data first must be discretised to binary data, where continuous gene 

expression values are converted to Boolean on/off values. 

The SCNS approach can be applied to study developmental processes, and requires 

measurement of sufficient single-cells to get reasonable coverage of a system across a time 

course. We applied this methodology to study early blood development in the mouse embryo, 

capturing nearly 4000 cells with blood-forming potential across four sequential time points. 

We designed this experiment so that approximately one embryo equivalent of cells was 

collected at each time point, giving a comprehensive single-cell resolution picture of the 

developmental process and allowing us to find a model that can explain transitions from early 

cell states to late cell states. Once a model has been found, it can be used to make predictions 

which can be validated experimentally. If the model predicts that transcription factors A and 

B are both required for activation of C, experiments can be designed that mutate binding sites 

for A and B individually and in combination and assess the effects on the expression of C. If 
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the model predicts that overexpression or knockout of a specific gene eliminates or adds 

model states, this can be tested via corresponding overexpression/knockout studies. 

The Reasoning Engine for Interaction Networks (RE:IN) synthesises Boolean networks from 

prior knowledge of the gene regulatory network connections together with a set of desired 

stable states that the constructed model should have [28] (Figure 3b). The search for a 

compatible model is encoded as a logical formula and solved using an SMT solver. Again, this 

specification is discrete, given by binary stable states and the presence of network edges. Dunn 

et al. used this method to reconstruct a minimal Boolean network model that can explain 

embryonic stem cell pluripotency. 

Connections between machine learning and program synthesis 

for learning programs from data 
Recently, machine learning researchers have begun to extend their deep neural network 

models so that they can learn algorithmic patterns in data. At the same time, researchers 

working in program synthesis have begun to investigate the methods of deep learning for 

program synthesis, and so these two fields have begun to overlap. Below we survey the latest 

developments in these fields, and in the next section we will discuss how these advances could 

be used to improve methods for synthesising biological models.  

Deep learning researchers have found that by augmenting networks with an external data 

structure such as a tape, stack or list, they can train models to learn simple algorithms [29]–

[38]. Compared to regular programs, there is no interpretable source code representation for 

these trained models. They are black boxes given by a huge number of parameters on a neural 

network, and they can only be understood by their actions on given inputs [39]. 

On the other side, in the programming languages community, there has been work on 

applying the methods of differentiable models and deep learning to the problem of 

synthesising (the source code of) programs. The tool TerpreT has been developed to 

understand the capabilities of machine learning techniques relative to traditional alternatives 

based on discrete models and exact constraint solving [39]. The conclusions of this study were 

that constraint solving significantly outperformed the direct application of machine learning 

methods. Gaunt et al. also showed that on a simple problem there are exponentially many 

local optima in the solution space and that empirically they arise often in practice during 

training. However, the use of differentiable models and deep learning does provide some 

interesting possibilities, such as synthesising programs from perceptual data such as images 

[40]. Differentiable Forth is a similar work, where a Forth program with “holes” is sketched 

by the user, and then the holes are filled in by machine learning methods [41]. 

In Adaptive Neural Compilation, Bunel et al. introduce an approach for compiling an existing 

program to a differentiable model, then try to find a more efficient model for solving the same 

problem, by demanding that it agrees with the original program on a set of input-output 

examples [42]. The resulting model is then translated back to source code. In Neuro-Symbolic 

Program Synthesis, Parisotto et al. use a novel neural network architecture to search over the 

space of source code to find a matching program [43]. Very recently, Balog et al. introduced 

DeepCoder, an approach which uses neural networks to guide traditional search techniques 
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rather than directly using machine learning methods to search through the space of programs 

[44]. This approach combines the advantages of program synthesis and machine learning to 

scale to harder problems. 

Challenges and future directions 
From the viewpoint of executable biology, the task of automatically generating mechanistic 

insights from genomic data amounts to reconstructing gene regulatory network programs. 

This task poses two main challenges: (1) scalability – due to the sheer volume of data available, 

and (2) handling the non-discrete and often noisy nature of that data. Combining program 

synthesis with deep learning can potentially help address both of these problems (Figure 4). 

Scalability. While the potential for uncovering biological mechanisms from large data is huge, 

combinatorial synthesis methods such as those used in the Single Cell Network Synthesis tool 

– SCNS [26], [27] and the RE:IN tool [28] do not scale up sufficiently. Recently, combinatorial 

search methods augmented by a machine learning component to guide the search process 

have been successfully applied to improve baseline methods for automated theorem proving 

[45], [46] and program synthesis [44] and there is hope for further progress. 

Non-discrete data. Current combinatorial synthesis methods rely on clean, discrete data and 

well-defined behaviours. Some valuable data sources, however, such as single-cell mass 

cytometry [47], are noisy and hard to discretise. A major attraction of machine learning 

methods is their ability to deal with noisy, continuous data. Thus, a combination of program 

synthesis and machine learning methods could reconstruct executable models directly from 

continuous expression data. Functions describing gene regulatory interactions could be 

represented as compact regularised neural networks. Then, using techniques developed in 

recent research on differential interpreters [39], [42], [44], [48]–[50], these networks could be 

translated back to a human-readable formula and a logical, executable model. There is now a 

deluge of data from DNA sequencing [51], imaging, proteomics [47] and metabolomics  [52] 

that as of yet has not been leveraged to reconstruct mechanistic models. The potential for 

uncovering biological mechanisms from this data is huge, but will require both the scalability 

and robustness to noise found in machine learning methods and the ability to extract 

executable, human-interpretable models found in methods developed in the program 

synthesis community. 

Going forward, combining deep learning and program synthesis will allow us to incorporate 

into executable models information from diverse data sources, which may be continuous, 

noisy or perceptual and therefore difficult to deal with using existing methods. Taken 

together, these developments hold the promise of innovative methods for turning genomic 

datasets into a comprehensive map of human cells in health and disease. 
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Figures 

 

Figure 1. Representation learning. Deep neural networks learn to represent concepts in terms 

of progressively simpler ones. At the lowest level of the network, raw pixel values are input 

into the model. The next layer of the model identifies edges, by comparing the brightness of 

neighbouring pixels. The third layer takes the representation of edges, and uses them to 

represent corners and contours. The forth layer is able to detect entire parts of specific objects, 

by combing together contours and corners. Finally, the model outputs a classification of the 

image which it determines based upon the object parts fed from the forth layer. Crucially, 

none of these abstract concepts is provided a-priori by the programmer.  Instead, they are 

directly learnt from the raw data. Reproduced, with permission, from [2]. 
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Figure 2. Deep learning in biology. A deep neural network architecture for predicting the 

sequence specificities of DNA- and RNA-binding proteins. Reproduced, with permission, 

from [15]. 

 

 

 

 

Figure 3. Executable gene regulatory network model synthesis. Boolean network models 

synthesised by SCNS (A) and REIN (B), from single-cell gene expression data and from 

relevance networks + stable state specifications respectively. Reproduced, with permission, 

from [27] and [28]. 
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Figure 4. Combining representation learning and program synthesis to reconstruct human-

interpretable, executable models from a variety of biological data sources. In our first 

proposed approach, using machine learning to scale synthesis to larger data sets, a neural 

network will output a probability distribution over features of the data. This will be used to 

guide a constraint solver, by looking for models with high-probability features first. In the 

second proposed approach, neural network methods will be directly applied to learn a model 

from non-discretised data, which will be translated to a human-interpretable form.  
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