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Abstract Appropriate regulation of autophagy is crucial for clearing toxic proteins from cells.

Defective autophagy results in accumulation of toxic protein aggregates that detrimentally affect

cellular function and organismal survival. Here, we report that the microRNA miR-1 regulates the

autophagy pathway through conserved targeting of the orthologous Tre-2/Bub2/CDC16 (TBC) Rab

GTPase-activating proteins TBC-7 and TBC1D15 in Caenorhabditis elegans and mammalian cells,

respectively. Loss of miR-1 causes TBC-7/TBC1D15 overexpression, leading to a block on

autophagy. Further, we found that the cytokine interferon-b (IFN-b) can induce miR-1 expression in

mammalian cells, reducing TBC1D15 levels, and safeguarding against proteotoxic challenges.

Therefore, this work provides a potential therapeutic strategy for protein aggregation disorders.

Introduction
The accumulation of toxic aggregation-prone proteins is a hallmark of multiple human disease states

such as Huntington’s (HD), Parkinson’s (PD), Alzheimer’s (AD) and forms of motor neuron disease

(Bosco et al., 2011). Clearance of aggregation-prone proteins can be promoted by inducing the

autophagy pathway (Ravikumar, 2002; Vilchez et al., 2014). Autophagy is a degradation system

that involves sequestration of cytoplasmic proteins and organelles by double-layered membranes

that form vesicles called autophagosomes. Fusion of autophagosomes with lysosomes results in deg-

radation of their contents and thereby removes toxic proteins and damaged organelles from cells to

maintain homeostasis. Due to the central role of autophagy in the removal of aggregation-prone

proteins, a better understanding of mechanisms controlling autophagy is essential for the identifica-

tion of novel therapeutic opportunities for multiple disease states.

microRNA (miRNAs) are single-stranded, non-coding RNAs of ~21–24 nucleotides in length that

post-transcriptionally regulate the expression of target genes (Bartel, 2009; Krol et al., 2010). miR-

NAs predominantly interact with mRNA targets through imperfect binding to motifs in target mRNA

30-untranslated regions (30UTRs) (Bartel, 2009). miRNA:mRNA interactions negatively impact the sta-

bility and translational capacity of mRNA targets in a rapid and reversible manner (Fabian et al.,

2010). The nature of imperfect binding specificity means that a single miRNA can regulate a large

number of mRNA targets involved in complex cellular processes, thereby tightly controlling genetic

networks during development and in response to stress (Pocock, 2011). As such, dysregulation of
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miRNA-controlled processes can cause severe physiological consequences for animal behavior and

survival (Boulias and Horvitz, 2012; de Lencastre et al., 2010; Finger et al., 2019; Grueter et al.,

2012; Kagias and Pocock, 2015; Nehammer et al., 2015; Vora et al., 2013). In addition, due to

their rapid and reversible regulatory capacity, miRNAs are prime candidate facilitators of responses

to proteotoxic stress.

miR-1 is a highly conserved miRNA that is detected in muscle, neurons and circulatory body fluid

of multiple metazoan phyla (de Rie et al., 2017; Kopkova et al., 2018; Kusuda et al., 2011;

Sokol, 2012) (Figure 1A). Multiple roles of miR-1 have been identified in the development and func-

tion of muscle in multiple systems (Simon et al., 2008; Sokol and Ambros, 2005; Zhao et al.,

2005). In C. elegans, mir-1 is expressed in pharyngeal and body wall muscle (BWM) and regulates

retrograde signaling at neuromuscular junctions of the latter (Hu et al., 2012; Simon et al., 2008).

However, the function of miR-1 in stress responses, including autophagy, is poorly understood.

Intriguingly, miR-1 expression is depleted in a Drosophila melanogaster model of AD (Kong et al.,

2014) and human miR-1 is reduced in the cerebrospinal fluid of patients with PD (Gui et al., 2015;

Margis et al., 2011). This prompted us to investigate if mir-1 is required for preventing the accumu-

lation of aggregation-prone proteins.

Here, we reveal an important function of miR-1 in combatting multiple proteotoxic threats. We

identify a highly conserved pathway through which miR-1 controls the accumulation of toxic protein

aggregates through the autophagy pathway in C. elegans and mammalian cells. The key regulatory

mechanism by which miR-1 controls toxic protein accumulation is through direct control of the Tre-

2/Bub2/CDC16 (TBC) Rab GTPase-activating proteins (Rab GAPs) TBC-7 and TBC1D15 in Caeno-

rhabditis elegans and mammalian cells, respectively. In concurrence with previous in vitro and in vivo

studies, we found that TBC1D15 specifically functions as a Rab GAP for the small GTPase Rab7 - a

known regulator of autophagy (Gutierrez et al., 2004; Peralta et al., 2010; Zhang et al., 2005). As

such, we show that TBC1D15 reduces the amount of active GTP-bound Rab7 and a constitutive

active Rab7 mutant circumvents the TBC1D15-mediated block in autophagy. In agreement with this

mechanistic association, we found that proper regulation of TBC protein expression by miR-1 per-

mits appropriate autophagic flux and clearance of toxic protein aggregates. Finally, we discover that

the cytokine interferon-b (IFN-b) positively regulates miR-1 expression in mammalian cells to pro-

mote autophagy and clearance of toxic protein aggregates. Together, these findings suggest novel

therapeutic approaches to prevent and/or clear toxic protein aggregation through the autophagy

pathway.

Results

mir-1 prevents polyglutamine aggregation
To gain insight into whether mir-1 potentially controls protein aggregation, we assayed mir-1 func-

tion using an established C. elegans transgenic polyglutamine model, which has the same type of

mutation as seen in HD (Figure 1) (Morley et al., 2002). This model expresses a polypeptide of 40

glutamine residues fused to yellow fluorescent protein (YFP) in BWM (Q40::YFP), hereafter referred

to as Q40 (Morley et al., 2002). Using two independently-derived mir-1 deletion alleles, mir-1

(gk276) and mir-1(n4102), we found that loss of mir-1 increases Q40 accumulation in BWM, without

affecting Q40 expression levels (Figure 1B–D and Figure 1—figure supplement 1). This phenotype

was not due to a non-specific change in muscle cell miRNA profile, as loss of the muscle-specific mir-

80, did not affect Q40 aggregation (Figure 1D). In C. elegans, mir-1 is expressed in BWM and the

pharynx (Simon et al., 2008). To characterize the functional locale of mir-1 in regulating Q40 aggre-

gation, we performed tissue-specific rescue experiments. We found that mir-1 expression in BWM,

but not in the pharynx or intestine, rescued the aberrant Q40 aggregation phenotype in mir-1

(gk276) animals (Figure 1E), demonstrating that mir-1 acts cell autonomously to control Q40 accu-

mulation. miRNAs predominantly regulate gene expression through imperfect base-pairing with tar-

get mRNA 30UTRs, causing RNA instability and/or translational repression (Bartel, 2009;

Lewis et al., 2005). To determine if a canonical miRNA:mRNA target interaction is required for mir-

1 function, we mutated two conserved nucleotides in the mir-1 seed sequence and repeated the res-

cue experiment (Figure 1E). Expressing mutated mir-1 (mir-1*) in BWM failed to rescue the Q40 pro-

tein aggregation phenotype of mir-1(gk276) animals (Figure 1E).
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Figure 1. mir-1 protects against proteotoxic stress. (A) Alignment of mature miR-1 sequences indicates deep conservation. The seed sequence of each

miR-1 family member is highlighted in blue and the conservation of C. elegans mir-1 is highlighted in gray. hsa = Homo sapiens, mmu = Mus musculus,

gga = Gallus gallus, xtr = Xenopus tropicalis, dre = Danio rerio, dme = Drosophila melanogaster, cel = Caenorhabditis elegans. (B–C) Visualization of

Q40::YFP aggregates (green foci) in (B) wild-type and (C) mir-1(gk276) animals. Scale bar, 50 mm. (D) Quantification of Q40::YFP aggregation in wild-

type, mir-1(gk276), mir-1(n4102) and mir-80(nDf53) animals. (E) Quantification of Q40::YFP aggregates in wild-type, mir-1(gk276) and mir-1(gk276)

animals transgenically-expressing the mir-1 hairpin in body wall muscle (myo-3 promoter), pharynx (myo-2 promoter) or intestine (ges-1 promoter).

Mutation of the mir-1 seed sequence (Muscle mir-1*) abrogates rescue from body wall muscle. Mature mir-1 sequences (wild-type mir-1 or mutated mir-

1*) used for rescue experiments are shown (box). Red nucleotides indicate the mutations in the seed sequence used in mir-1* rescue experiments,

which are predicted to hinder interactions with mir-1 targets. (F) Body bends in wild-type, mir-1(gk276) and mir-1(n4102) mutant animals expressing a-

synuclein::YFP. (G) Survival of wild-type, mir-1(gk276) and mir-1(n4102) animals after exposure to 4 hr of 35˚C heat stress. Transgenic expression of wild-

type mir-1 hairpin, but not mutated mir-1*, in body wall muscle rescues mir-1(gk276) heat stress sensitivity. All experiments were performed in triplicate

Figure 1 continued on next page
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The expression of expanded polyglutamine repeats in muscle is toxic and progressively affects

muscle function and C. elegans motility (Morley et al., 2002). We found that Q40 toxicity was exac-

erbated in mir-1 mutant animals in an age-dependent manner (Figure 1—figure supplement 2). To

determine if mir-1 has an effect on motility in a non-proteotoxic environment, we tested the motility

of animals expressing the control Q0::YFP transgene as well as wild-type and mir-1(gk276) animals

devoid of transgenes (Figure 1—figure supplement 2). We observed a slight decrease in motility in

mir-1 mutant animals expressing Q0::YFP and with no transgene (Figure 1—figure supplement 2),

suggesting that loss of mir-1 may cause defects in muscle proteostasis, which are exacerbated when

animals are overloaded with protein aggregates. Taken together, mir-1 prevents Q40 protein accu-

mulation in BWM and protects against proteotoxicity, presumably through 30UTR-directed regula-

tion of its target gene(s).

mir-1 protects against proteotoxic threats
To determine whether mir-1 generally guards against proteotoxic stress, we examined two other

stress paradigms. First, we used a PD model where the aggregation-prone human a-synuclein is

fused to YFP and transgenically expressed in BWM (van Ham et al., 2008). This model elicits age-

dependent accumulation of a-synuclein inclusions and a decline in motility (Cooper et al., 2015;

van Ham et al., 2008). We found that loss of mir-1 causes an increase in the number of a-synuclein::

YFP inclusions and ~50% reduction in motility (Figure 1F and Figure 1—figure supplement 3). Sec-

ond, we analysed mir-1 function in heat stress sensitivity - a more general proteotoxic stress

(Figure 1G). Elevated temperature places added pressure on the protein folding machinery causing

endogenous proteins to misfold and form toxic aggregates (Wallace et al., 2015). We found that

loss of mir-1 caused severe heat stress sensitivity and that resupplying wild-type mir-1, but not

mutated mir-1 (mir-1*), in BWM rescues this phenotype (Figure 1G). In addition to acute environ-

mental stressors, the aging process causes accumulation of misfolded proteins (Brignull et al.,

2007). Surprisingly, mir-1 mutant animals exhibit wild-type lifespan (Figure 1—figure supplement

4), suggesting that mir-1 primarily acts to combat proteotoxic challenges and/or that parallel path-

ways overcome proteostasis defects during aging. Alternatively, the activities of mir-1 in controlling

protein aggregation are uncoupled from lifespan regulation. Together, our data show that mir-1

plays a broad role in protecting against the accumulation of aggregation-prone proteins and the

toxic effect of acute heat stress.

mir-1 Directly Regulates tbc-7 Expression in C. elegans
Our data provide evidence that mir-1 targets an mRNA or mRNAs that encode vital regulators of

proteotoxic stress. To identify these targets, we employed two complementary approaches. We

used RNA sequencing to identify differentially expressed genes in mir-1(gk276) animals compared

to wild-type (Supplementary files 1–2). In parallel, we knocked down the expression of predicted

mir-1 target genes (TargetScanWorm release 6.2) using RNA-mediated interference (RNAi) to iden-

tify regulators of mir-1(gk276) heat stress sensitivity (Figure 2—figure supplement 1). These experi-

ments revealed a single gene called tbc-7 as a putative candidate mir-1 target. We found that tbc-7

mRNA, a highly conserved predicted mir-1 target, is elevated in mir-1(gk276) animals (Figure 2A

and Supplementary files 1–2). Further, reducing tbc-7 expression fully suppressed heat stress sensi-

tivity of mir-1(gk276) animals (Figure 2B and Figure 2—figure supplement 1). TBC-7 is uncharacter-

ized and predicted to encode a Rab GTPase-activating protein (Rab GAP) member of the Tre-2/

Bub2/CDC16 (TBC) family (Gao et al., 2008). To determine the tbc-7 expression pattern, we

Figure 1 continued

and at least 10 animals were scored per experiment. Error bars show standard error of the mean (SEM). ****p<0.0001, n.s. not significant to the control

(one-way ANOVA analysis, followed by Dunnett’s multiple comparison test).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Quantification of Q40::YFP Expression.

Figure supplement 2. Motility Analysis.

Figure supplement 3. mir-1 prevents the formation of a-synuclein inclusions.

Figure supplement 4. mir-1 Lifespan Analysis.
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Figure 2. miR-1 directly regulates TBC 30UTRs in C. elegans and mammals. (A) Relative tbc-7 mRNA levels measured by quantitative real-time PCR in L4

larvae. Data normalized to values for wild-type worms. Two independent reference genes (pmp-3 and cdc-42) were used. Error bars show standard

error of the mean (SEM) obtained from n = 3 biological replicates and three technical replicates each. **p<0.001, *p<0.005 (one-way ANOVA analysis,

followed by Dunnett’s multiple comparison test). (B) Survival of wild-type and mir-1(gk276) animals (incubated on control (L4440) or tbc-7 RNAi bacteria)

after exposure to 4 hr of heat stress (35˚C) (n = 30). ***p<0.001, n.s. not significant (one-way ANOVA analysis, followed by Dunnett’s multiple

comparison test). (C) Predicted mir-1 binding site on the 30UTR of tbc-7 mRNA (green) and seed sequence in mir-1 (blue). Mutated nucleotides in the

tbc-7 30UTR for experiments (E–F) are in red. (D) Indicated DNA constructs were co-transformed as multi-copy extrachromosomal arrays for experiments

in (E–F). (E) Expression of heterologous reporter transgenes for control unc-54 30UTR (gfp) and wild-type and mutated tbc-7 30UTR (mCherry) constructs

in body wall muscle. (F) Quantification of gfp and mCherry fluorescence of transgenic animals calculated as CTF/total area of fluorophore (n = 30).

****p<0.0001, n.s. not significant (one-way ANOVA analysis, followed by Dunnett’s multiple comparison test). (G) WB of TBC1D15 and a-tubulin and (H)

quantified bands from HeLa cells transfected with scrambled (Scr) or miR-1 mimics (n = 5). Data are mean fluorescence intensities ± SEM. **p<0.01

(Students t-test). (I) Predicted miR-1 binding site on the 30UTR of TBC1D15 mRNA (green) and seed sequence in miR-1 (blue). Mutated nucleotides in

the TBC1D15 30UTR for experiments (L–M) are in red. (J–K) Quantification of flow cytometry analysis of HeLa cells co-expressing scrambled (Scr) or miR-

1 mimic together with (J) GFPd2-30UTR TBC1D15 (n = 4) or (K) mutated GFPd2-30UTR TBC1D15mutant (n = 5). Data are mean fluorescence

intensities ± SEM, **p<0.01 (Students t-test).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. RNAi screen to identify mir-1 targets important for the heat stress response.

Figure supplement 2. tbc-7 expression pattern.

Figure 2 continued on next page
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generated a transgene driving green fluorescent protein (GFP) under the control of a tbc-7 promoter

(Ptbc-7::gfp). We detected fluorescence in the intestine, head cells and importantly in BWM (Fig-

ure 2—figure supplement 2), the site-of-action for mir-1 in regulating proteotoxic stress. Together,

our data confirm single-cell transcriptional profiling that detected tbc-7 expression in multiple tis-

sues, including in BWM (Cao et al., 2017).

To assess whether mir-1 directly regulates tbc-7 expression in vivo, we used a well-established

30UTR sensor assay (Pedersen et al., 2013). We generated a transgene expressing two reporters in

BWM: one red fluorescent protein (mCherry) ‘sensor’ reporter controlled by the tbc-7 30UTR and

another with a gfp ‘control’ reporter controlled by the unc-54 30UTR, which does not contain any

mir-1 binding sites (Figure 2C–F). In wild-type animals expressing this transgene, we detected

robust gfp expression and weak mCherry expression (Figure 2E–F). When the same transgene was

transferred into the mir-1(gk276) mutant, we observed high mCherry expression, suggesting that

mir-1 directly represses the tbc-7 30UTR (Figure 2E–F). Further, when we disrupted the predicted

mir-1 binding site in the tbc-7 30UTR mCherry sensor, we observed high red fluorescence in wild-

type animals, confirming that mir-1 regulation is required to repress tbc-7 expression (Figure 2E–F).

As mir-1 directly downregulates tbc-7 expression, we hypothesized that overexpressing tbc-7 in

BWM (the site of mir-1 action) would phenocopy a mir-1 mutant phenotype in wild-type animals. We

found that overexpressing tbc-7 in wild-type BWM causes increased accumulation of Q40 aggre-

gates, but did not enhance the Q40 aggregation phenotype of mir-1(gk276) animals (Figure 2—fig-

ure supplement 3).

miR-1 Directly Regulates TBC1D15 Expression in Mammals
The mature mir-1 sequence is completely conserved from worms to humans (Figure 1A). We found

that Drosophila and human orthologs of TBC-7 - Skywalker and TBC1D15, respectively - are also

predicted targets of miR-1 (Figure 2—figure supplement 4), and in the case of TBC1D15, this rela-

tionship is suggested by CLIP data (Kishore et al., 2011). We have shown that mir-1 directly regu-

lates tbc-7 expression in C. elegans. Therefore, to ask if the regulatory function of miR-1 is

conserved, we measured TBC1D15 protein in mammalian cells (Figure 2G–H). We found that miR-1

overexpression reduced levels of TBC1D15 mRNA and protein in HeLa cells (Figure 2G–H and Fig-

ure 2—figure supplement 5A). Additionally, a gfp ‘sensor’ reporter containing the wild-type

TBC1D15 30UTR is downregulated by miR-1 overexpression, and this downregulation requires the

miR-1 binding site (Figure 2I–K and Figure 2—figure supplement 5B–C). These data show that, as

in C. elegans, miR-1 directly interacts with the 30UTR of a TBC protein-encoding mRNA to downre-

gulate its expression.

miR-1 Regulation of TBC Protein Levels Controls Autophagy
Our data reveal a miR-1/TBC protein regulatory axis is conserved in worms and mammals. TBC pro-

teins control vesicular transport in cells by enhancing Rab GTPase hydrolysis of guanosine triphos-

phate (GTP) to guanosine diphosphate (GDP) (Strom et al., 1993). Rab GTPase guanosine-binding

status is important for interaction-specificity with effector molecules (Stein et al., 2012). Therefore,

TBCs can precisely control the specificity and rate of vesicular transport routes and thus have been

functionally associated with autophagy (Kern et al., 2015). Indeed, TBC1D15 acts as a Rab GAP for

the small GTPase Rab7 - a known autophagy regulator (Gutierrez et al., 2004; Kirisako et al.,

1999; Peralta et al., 2010; Zhang et al., 2005). This posits an evolutionary conserved function for

miR-1 in controlling autophagy through TBC protein regulation.

To examine the function of mir-1 and tbc-7 in autophagy we used two independent C. elegans

strains. First, we used a strain that expresses a GFP-tagged LGG-1/Atg8 reporter, to enable visuali-

zation of autophagosomes as fluorescent puncta (Figure 3) (Chang et al., 2017; Kang et al., 2007).

When autophagy is activated, cytosolic LGG-1-I/Atg8 is conjugated to phosphatidylethanolamine at

Figure 2 continued

Figure supplement 3. Overexpression of tbc-7 causes Q40::YFP aggregation.

Figure supplement 4. miR-1 targeting of TBC proteins is conserved.

Figure supplement 5. TBC1D15 30UTR analysis.
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Figure 3. mir-1 and tbc-7 control stress-induced autophagy. (A) Fluorescent images of BWM expressing GFP::

LGG-1/Atg8 in wild-type, mir-1(gk276) and Pmyo-3::tbc-7 overexpressing animals under control conditions,

immediately after heat shock for 1 hr at 35˚C (HS) or 1 hr after recovery from heat shock at 15˚C (HS +

recovery). GFP::LGG-1 puncta = arrowheads. Scale bar, 10 mm. (B–C) Quantification of GFP::LGG-1/Atg8 puncta in

Figure 3 continued on next page

Nehammer et al. eLife 2019;8:e49930. DOI: https://doi.org/10.7554/eLife.49930 7 of 24

Research article Biochemistry and Chemical Biology Genetics and Genomics

https://doi.org/10.7554/eLife.49930


the phagophore membrane, forming lipidated LGG-1-II/Atg8, that is present in vesicular autophago-

some structures (Bento et al., 2016). Thus, the number of GFP::LGG-1-positive puncta can be used

as a readout of autophagic activity. We found that the number of GFP::LGG-1 puncta in mir-1

(gk276) mutant BWM was not different from wild-type in standard laboratory conditions (Figure 3).

However, loss of mir-1 abrogates the autophagic heat stress response, as does tbc-7 overexpression

in BWM (Figure 3). To confirm these data, we used an alternative strain (mCherry::GFP::LGG-1) that

enables autophagic flux to be examined by measuring autolysosome number (Chang et al., 2017).

Using this reporter, we found that mir-1 mutant animals have a reduced number of autolysosomes in

unstressed conditions and are unable to mount an autophagic response to heat stress (Figure 3—

figure supplement 1). Together, these data suggest that mir-1 regulation of tbc-7 expression is

required to control autophagy-dependent stress responses.

To examine the role of miR-1/TBC1D15 on autophagy in mammalian cells, we measured LC3-pos-

itive vesicular structures and LC3-II protein abundance (Figure 4). Overexpression of miR-1 in HeLa

cells increased both the number of LC3-positive puncta per cell and total LC3-II protein levels, indi-

cating an increase in the number of autophagosomes (Figure 4A–B and Figure 4—figure supple-

ment 1A). To investigate autophagy flux further we made use of the vesicular ATPase inhibitor

bafilomycin A1 (BafA1), which inhibits lysosomal acidification and thereby blocks the ability of lyso-

somes to fuse with autophagosomes. This enables assessment of autophagy flux indicated by the

amount of LC3-II positive autophagosomes accumulating over a time period of 4 hr

(Rubinsztein et al., 2009). Upon expression of miR-1 mimics in combination with Baf A1, LC3-II lev-

els were even further increased, suggesting that miR-1 promotes autophagy flux (Figure 4A–B).

TBC1D15 knockdown cells exhibited the same phenotype as miR-1 overexpression (Figure 4—fig-

ure supplement 1B–C), suggesting that miR-1-mediated downregulation of TBC1D15 promotes

autophagy flux. To support this, miR-1 overexpression also increases the autolysosome/autophago-

some ratio, scored with a mRFP-GFP-LC3 reporter (Figure 4—figure supplement 2A–C), confirming

that this is indeed due to an increase in autophagy flux rather than a blockage of the pathway.

We next overexpressed TBC1D15 in HeLa cells to further characterize its role in autophagy. We

found that TBC1D15 overexpression increased LC3-II levels, which did not further increase in the

presence of Baf A1, indicating a block in the autophagy pathway (Figure 4C–D). This was further val-

idated by TBC1D15 overexpression in HeLa cells expressing the mRFP-GFP-LC3 reporter, which

revealed large stationary autophagosomes and decreased autolysosome/autophagosome ratio

(Figure 4E–G and Videos 1–2). miR-1 did not change basal LC3-II levels in cells overexpressing

TBC1D15, in the presence or absence of Baf A1, when compared to cells expressing TBC1D15 with

scrambled control (Figure 4H–I). Thus, ectopic expression of TBC1D15, which is not regulated by its

endogenous 30UTR, masks miR-1-induced autophagy flux presumably via its blocking effect on

autophagy. Together, these data show that miR-1 regulation of TBC1D15 controls autophagy and

that unrestricted expression of TBC1D15 causes a late-stage block in autophagy flux.

miR-1 Prevents Mutant Huntingtin Aggregation by Controlling
Autophagy
Our collective data suggest that manipulation of the miR-1/TBC1D15 axis could be used to reduce

the accumulation of polyglutamine aggregates in human cells. To examine this possibility, we

expressed EGFP-tagged mutant human huntingtin exon 1 fragment with 74 polyQ repeats (HTTQ74)

in HeLa cells and manipulated miR-1 and TBC1D15 levels (Figure 5). Overexpression of two inde-

pendently derived miR-1 mimics reduced the number of cells containing HTTQ74 aggregates after 48

hr of HTTQ74 expression (Figure 5A and Figure 5—figure supplement 1), a phenomenon that corre-

lates with autophagy induction (Ravikumar, 2002). Conversely, miR-1 has no effect on the

Figure 3 continued

BWM of animals and conditions shown in (A). The values represent the number of green puncta in mir-1(gk276) (B)

and Pmyo-3::tbc-7 overexpressing (C) animals normalized to one green puncta in wild-type animals for each

condition. n > 15. ± SEM ****p<0.0001, n.s. not significant (Welch’s t-test).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. mir-1 controls stress-induced autophagy.
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Figure 4. Human miR-1 regulates autophagy by controlling TBC1D15 expression. (A) WB and (B) quantification of LC3-II normalised to a-tubulin from

HeLa cells expressing Scr or miR-1 mimics +/- bafilomycin. Data are mean fluorescence intensities of bands ± SEM (n = 3–5). **p<0.01, ***p<0.001 (one-

way ANOVA with Dunnett’s correction). (C) WB and (D) quantification of LC3-II normalised to a-tubulin from HeLa cells expressing empty

vector (control) or TBC1D15 overexpression vector +/- bafilomycin. Data are mean fluorescence intensities of bands ± SEM normalised to a-tubulin

(n = 5). n.s. not significant to the control, ***p<0.001 (two-way ANOVA with Bonferroni correction). (E) IF images of HeLa cells stably expressing mRFP-

GFP-LC3 and transfected with empty vector (control) or TBC1D15 overexpression vector. Scale bar, 10 mm. (F) Quantification of green and red vesicles

and (G) red/green vesicle ratio from (E) ± SEM (n = 3, 12–14 cells per replicate). **p<0.01, ***p<0.001 (Student’s t-test). (H) WB and (I) quantification of

HeLa cells co-transfected with Scr or miR-1 mimic together with empty vector or TBC1D15 overexpression vector +/- bafilomycin. Data are mean

fluorescence intensities of LC3-II bands normalized to a-tubulin ± SEM (n = 7). **p<0.01, ***p<0.001 (two-way ANOVA with Bonferroni correction).

Figure 4 continued on next page
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percentage of cells with HTTQ74 aggregates in autophagy-null cells, using CRISPR/Cas9 knockout of

ATG16L1 - a protein essential for autophagosome formation - confirming that miR-1 acts through

the autophagy pathway (Figure 5B). We further found that TBC1D15 knockdown lowered, and over-

expression increased, the percentage of HTTQ74 positive cells (Figure 5C–D). The combination of

TBC1D15 overexpression and HTTQ74 induced considerable cell death in the HeLa cells after 48 hr

of expression, thus for this condition the transgenes were only expressed for 24 hr. Co-expression of

miR-1 had no effect on the percentage of cells with HTTQ74 aggregates induced by TBC1D15 over-

expression (Figure 5E) for similar reasons as in Figure 4H–I (see above), showing that correct regula-

tion of TBC1D15 is important to prevent the accumulation of toxic protein aggregates.

IFN-b induces miR-1 expression to prevent mutant huntingtin
aggregation
We next examined the therapeutic potential of boosting miR-1 expression to reduce HTTQ74 accu-

mulation through the autophagy pathway. By examining the extant literature, we discovered that

the cytokine interferon-b (IFN-b) positively regulates miR-1 expression in hepatic cells

(Pedersen et al., 2007). As IFN-b can promote autophagy flux (Ambjørn et al., 2013) and alleviate

models of neurodegenerative disease (Ejlerskov et al., 2015), we hypothesized that the therapeutic

effect of IFN-b may, at least in part, be due to induction of miR-1. In mouse primary cortical neurons,

we found that IFN-b induced miR-1 expression

by 2-fold and concomitantly decreased Tbc1d15

protein levels (Figure 6A–C). Conversely, brains

of 3 month old Ifnb–/– mice have significantly

increased levels of Tbc1d15 protein (Figure 6—

figure supplement 1A–B). To examine whether

IFN-b can induce autophagy and reduce HTTQ74

accumulation through miR-1/TBC1D15, we used

HeLa cells as a model. We found that IFN-b also

induces miR-1 and reduces TBC1D15 levels in

HeLa cells (Figure 6—figure supplement 2). We

found that IFN-b regulation of TBC1D15 requires

an intact miR-1 30UTR binding site as a wild-type

TBC1D15 30UTR gfp sensor, but not a miR-1

binding site-mutated TBC1D15 30UTR gfp sen-

sor, is downregulated by IFN-b (Figure 6D–E).

To establish if IFN-b depends on miR-1 to con-

trol autophagy and HTTQ74 accumulation, we

performed genetic knockdown and overexpres-

sion experiments. First, we found that IFN-b

treatment reduces HTTQ74 aggregate accumula-

tion, but this was abolished in cells stably

expressing a hairpin inhibitor against miR-1 (Off-

miR-1) (Figure 6F–G). In the presence of Baf A1,

IFN-b causes a further increase in LC3-II levels,

however, this is diminished in Off-miR-1 HeLa

cells (Figure 6H–I). These data indicate that IFN-

b enhancement of autophagy flux and reduction

of HTTQ74 accumulation is dependent on miR-1

induction.

Figure 4 continued

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. miR-1 and TBC1D15 control autophagy.

Figure supplement 2. miR-1 overexpression induces autophagy flux.

Video 1. Autophagy flux in cells expressing an empty

(control) vector. HeLa cells stably expressing mRFP-

GFP-LC3 were transfected with empty vector (Video 1)

or TBC1D15 overexpression vector (Video 2) and live

cell imaging was conducted the following day. Notice

the presence of large immobile mRFP- and GFP-

positive autophagosomes in TBC1D15 overexpressing

cells, implying a block in autophagosome maturation.

Cells were imaged once every second for a period of 2

min and the movies are displayed at a speed of 10

frames per second.

https://elifesciences.org/articles/49930#video1
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We have shown that the beneficial effects of

miR-1 overexpression on autophagy and HTTQ74

accumulation is abrogated by an autophagy

block caused by TBC1D15 overexpression. We

therefore tested whether disruption of autoph-

agy flux by TBC1D15 would prevent IFN-b pro-

motion of autophagy. Treating control cells with

either IFN-b or Baf A1 caused an increase in

LC3-II levels (Figure 6—figure supplement 3A–

B). Additionally, co-treatment with IFN-b and Baf

A1 generates a further increase in LC3-II levels

compared to either IFN-b or Baf A1 alone, sup-

porting the role of IFN-b in promoting autoph-

agy flux (Figure 6—figure supplement 3A–B).

As shown previously, TBC1D15 overexpression

blocks autophagy (Figure 4D). Neither IFN-b nor

Baf A1, either independently or in combination,

further increased LC3-II levels caused by

TBC1D15 overexpression, further confirming

that excess TBC1D15 causes a late-stage

autophagy block (Figure 6—figure supplement

3A–B). Correct regulation of TBC1D15 is impor-

tant, as TBC1D15 overexpression abrogated

Video 2. TBC1D15 overexpression causes large

stationary autophagosomes.

https://elifesciences.org/articles/49930#video2
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Figure 5. miR-1 reduces mutant Huntingtin aggregation through the autophagy pathway. (A) Quantification of the percentage of cells containing HTT-

positive aggregates co-expressing scrambled (Scr) or miR-1 mimics with EGFP-HTTQ74 for 48 hr ± SEM (n = 3, 200–400 cells per replicate). ***p<0.001

(one-way ANOVA). (B) CRISPR/Cas9 ATG16L1 knockout HeLa cells co-expressing scrambled (Scr) or miR-1 mimics with EGFP-HTTQ74 for 48 hr.

Quantification of the percentage of cells containing HTT-positive aggregates ± SEM (n = 3, 200–400 cells per replicate). *p<0.05 (Student’s t-test), n.s.

not significant (one-way ANOVA). (C–E) Quantification of the percentage of cells containing HTT-positive aggregates in HeLa cells co-expressing EGFP-

HTTQ74 with (C) scrambled (Scr) or siRNA against TBC1D15 for 48 hr (n = 4, 200–400 cells per replicate), (D) empty or TBC1D15 overexpression vector

for 24 hr (n = 3, 200–400 cells per replicate), or (E) a combination of Scr or miR-1 mimic together with empty or TBC1D15 overexpression vector for 48

hr (n = 6, 200–400 cells per replicate) ± SEM. (C–D) *p<0.05, **p<0.005, n.s. not significant (Student’s t-test) or (E) (two-way ANOVA with Dunnett’s

correction).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. miR-1 overexpression reduces HTTQ74 accumulation IF images of HeLa cells co-expressing scrambled miRNA (Scr) or

independent miR-1 mimics with EGFP-HTTQ74 stained with antibodies against LC3 (red), phalloidin (blue), and DAPI (gray).
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Figure 6. IFN-b induction of miR-1 controls mutant Huntingtin aggregation. (A) WB and (B) quantification of Tbc1d15 normalized to a-tubulin of cortical

neurons from mice treated with recombinant mouse IFN-b (100 U/ml) for 1–24 hr (n = 4). Data are mean fluorescence intensities of bands ± SEM. n.s.

not significant to the control, *p<0.05, **p<0.01, ***p<0.001 (one-way ANOVA). (C) RT-PCR of miR-1a-3p normalized to miR-191 from mouse cortical

neurons treated with recombinant mouse IFN-b (100 U/ml) for 24 hr (n = 3). **p<0.01 (Student’s t-test). (D–E) Flow cytometry analysis of HeLa cells

expressing (D) GFPd2-30UTR TBC1D15 (n = 4) or (E) mutated GFPd2-30UTR TBC1D15mutant (n = 5) treated with recombinant human IFN-b (1000 U/ml)

for 6 or 24 hr. Data are presented as fluorescence intensity histograms and bar graphs showing mean fluorescence intensities ± SEM. *p<0.05,

***p<0.0001 (one-way ANOVA). (F) Quantification of HTTQ74 aggregates in HeLa cells expressing EGFP-HTTQ74 treated with recombinant human IFN-b

(1000 U/ml) for 24 hr. Graph shows percentage of cells containing EGFP-HTTQ74-positive aggregates (n = 4, 400 cells per replicate) ± SEM. **p<0.01

(Student’s t-test). (G) Quantification of HTTQ74 aggregates in HeLa cells expressing GFP-Off-control or GFP-Off-miR-1 (miR-1 hairpin inhibitor) with

EGFP-HTTQ74 and treated with recombinant human IFN-b (1000 U/ml) for 48 hr. Graph represents percentage of cells containing EGFP-HTTQ74-positive

aggregates (n = 5, 400 cells per replicate) ± SEM. ***p<0.001, ****p<0.0001 (two-way ANOVA with Bonferroni correction). (H) WB of LC3, GFP and a-

tubulin and (I) quantification of LC3-II normalized to a-tubulin from HeLa cells stably expressing GFP-Off-Control and GFP-Off-miR-1 treated with

Figure 6 continued on next page
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IFN-b-mediated reduction of HTTQ74 accumulation (Figure 6—figure supplement 3C). We previ-

ously showed that neurons from mice lacking the Ifnb gene display a late-stage block in autophagy,

causing accumulation of a-synuclein aggregates and Lewy bodies (Ejlerskov et al., 2015). Similarly,

CRISPR/Cas9 knockout of the Ifnb gene in neuronally-differentiated N2A cells increased the number

of cells with HTTQ74 aggregates (Figure 6—figure supplement 3D). Our data suggest that these

disease-causing phenotypes may in part be explained by dysregulation of TBC1D15.

TBC1D15 blocks autophagy through Rab7 inactivation
The small GTPase Rab7 is an instrumental component in regulating the fusion between autophago-

somes and lysosomes (Ganley et al., 2011). In concurrence with this role, we found that Rab7 knock-

down in HeLa cells causes a significant increase in LC3-II, but when Baf A1 was added no difference

was observed between Rab7 knockdown cells and scrambled siRNA control, showing that lack of

Rab7 causes a late-stage block in the autophagy pathway (Figure 7A). To determine whether the

TBC1D15-mediated autophagy block is caused by its GAP activity on Rab7, we made use of two

Rab7 mutants - a constitutive active (Q67L) and a constitutive inactive (T22N) - which mimic the GTP-

and GDP-bound versions of Rab7, respectively. Co-expressing TBC1D15 together with Rab7wt or

Rab7T22N did not change the autophagy block induced by TBC1D15, however, when co-expressed

with Rab7Q67L, the LC3-II levels were significantly increased upon treatment with Baf A1 (Figure 7B).

By immunofluorescence, we observed that in HeLa cells expressing high levels of TBC1D15, the dis-

tribution of Rab7wt was more cytosolic and there was an accumulation of large autophagosome

structures, which resembles the distribution observed in cells expressing Rab7T22N (Figure 7C). Con-

versely, in cells with low TBC1D15 expression, Rab7wt was, as expected, associated with vesicular

structures and without accumulation of autophagosomes. In cells expressing the constitutive active

Rab7Q67L, even high expression of TBC1D15 did not affect the vesicular distribution of Rab7 and

minimal autophagosome accumulation was observed. By using an antibody that specifically recog-

nises GTP-bound Rab7, we further confirmed by immunoprecipitation and immunofluorescence that

TBC1D15 expression reduces the amount of GTP-bound Rab7 in HeLa cells (Figure 7D–E). Collec-

tively, these data provide evidence that TBC1D15 acts as a GAP against Rab7 and thereby promotes

Rab7 inactivation, which consequently causes a late-stage block in autophagy.

Discussion
This study provides a previously unknown and highly conserved link between miR-1 and autophagy.

Using gene knockouts and overexpression experiments, we demonstrate that elevated levels of miR-

1 promote autophagy flux and reduce the accumulation of toxic protein aggregates in both C. ele-

gans and mammalian cells. In C. elegans, mir-1 functions to prevent the accumulation of polyglut-

amine aggregates in body wall muscle and abrogates the detrimental effects of a-synuclein and heat

stress on behaviour and physiology. In mammalian cells, miR-1 promotes autophagy to protect

against the accumulation of mutant huntingtin in mouse cortical neurons and HeLa cells. The mecha-

nistic basis for the autophagy-promoting effect of miR-1 is through regulation of Tre-2/Bub2/CDC16

(TBC) Rab GTPase-activating proteins TBC-7 and TBC1D15 in Caenorhabditis elegans and mamma-

lian cells, respectively. Of particular relevance is the known function of TBC1D15 in controlling the

activity of Rab7, which is a central regulator of autophagy acting after LC3-II conjugation/autophago-

some formation (Gutierrez et al., 2004; Kirisako et al., 1999; Peralta et al., 2010; Zhang et al.,

2005). Loss of Rab7 activity causes an impairment of autophagic flux and autophagosome accumula-

tion, the same phenotypes we observe with overexpression of TBC1D15. These data are consistent

Figure 6 continued

recombinant human IFN-b (1000 U/ml) for 6 hr, bafilomycin (400 mM) for 4 hr or in combination (n = 4) ± SEM. *p<0.05, **p<0.01, n.s. not significant

(Student’s t-test).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. IFN-b regulates TBC1D15 expression the mouse brain.

Figure supplement 2. IFN-b regulates miR-1 and TBC1D15 expression in HeLa cells.

Figure supplement 3. TBC1D15 overexpression abrogates IFN-b-induced reduction of HTTQ74 aggregates.
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Figure 7. TBC1D15 reduces GTP-bound Rab7. (A) WB and quantification of LC3-II from HeLa cells transfected with scrambled siRNA or siRNA against

Rab7 (Rab7D) +/- bafilomycin (4 hr, 400 nM). Data are mean fluorescence intensities of bands ± SEM normalised to a-tubulin (n = 3). *p<0.05,

***p<0.001 (two-way ANOVA). (B) WB and quantification of LC3-II normalised to a-tubulin from HeLa cells co-expressing pcDNA3.1 and EGFP, or

TBC1D15 with either EGFP, pIRESneo-myc–Rab7wt, EGFP-Rab7Q67L, or EGFP-Rab7T22N for 24 hr before treatment with bafilomycin (4 hr, 400 nM). Data

are mean fluorescence intensities of bands ± SEM normalised to a-tubulin (n = 6). *p<0.05, **p<0.01, ***p<0.001 (two-way ANOVA). (C)

Immunofluorescence (IF) images of HeLa cells co-expressing TBC1D15 with pIRESneo-myc-Rab7wt, EGFP-Rab7Q67L or EGFP-Rab7T22N stained with

antibodies against LC3 and TBC1D15. Scale bars, 10 mm. (D) WB showing immunoprecipitation (IP) of GTP-bound (active) Rab7 from HeLa expressing

pcDNA3.1 or TBC1D15. Data are mean fluorescence intensities of GTP-bound Rab7 (IP) normalized to the endogenous level of Rab7 (cell lysate) ± SEM

Figure 7 continued on next page
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with TBC1D15 being a GAP for Rab7, and thereby decreasing the activity of this Rab GTPase

(Gutierrez et al., 2004; Kirisako et al., 1999; Peralta et al., 2010; Zhang et al., 2005). In a previ-

ous study, we showed that therapeutic application of the cytokine IFN-b can alleviate models of neu-

rodegenerative disease (Ejlerskov et al., 2015). However, the molecular mechanism underlying the

therapeutic effect of IFN-b was not fully defined. We found here that IFN-b induces miR-1 expression

in mouse cortical neurons and that this regulation, at least in part, accounts for the therapeutic func-

tion of IFN-b in clearing aggregation-prone proteins.

This work shows that miR-1 controls the expression of the related proteins TBC-7 in worms and

TBC1D15 in mammalian cells. Using genetics and mutational analysis of the tbc-7 and TBC1D15

30UTRs, we revealed that miR-1 directly regulates the expression of these genes. Conservation of

this regulatory relationship in such evolutionarily distant species suggests that regulation of TBC pro-

tein expression by miR-1 is critical for survival. We did not however detect a detrimental effect on

lifespan of C. elegans lacking mir-1, therefore, we hypothesize that miR-1 plays an essential role, at

least in worms, in combating proteotoxic stress. This is supported by the sensitivity of mir-1 mutant

C. elegans to heat stress and the age-dependant decline of motility caused by human a-synuclein.

Our results show that miR-1 expression, and its regulation of TBC1D15 in mammalian cells, is con-

trolled by IFN-b. How IFN-b controls miR-1 expression is unknown. In mammals, IFN-b, and IFN-a

subtypes, are known to interact with the IFN a/b receptors 1 and 2, which dimerize to activate the

JAK1 and TYK2 kinases (Shuai et al., 1993). Upon activation JAK1 and TYK2 phosphorylate and acti-

vate the family of STAT proteins, which form homo and heterodimers, translocate to the nucleus and

regulate the expression of interferon-stimulated genes (Silvennoinen et al., 1993). It will be interest-

ing to investigate if miR-1 is regulated by this canonical pathway to control autophagy flux. C. ele-

gans does not encode IFN-b, however, STAT proteins are expressed (Tanguy et al., 2017;

Wang and Levy, 2006). Intriguingly, RNAi-induced knockdown of STA-1 causes lethality to animals

expressing a-synuclein in body wall muscle, suggesting that this transcription factor may control

accumulation of aggregation-prone proteins in C. elegans (Hamamichi et al., 2008).

To conclude, we have identified a highly conserved regulatory axis through which the miR-1 gene

controls the accumulation of aggregation-prone proteins in C. elegans and mammalian cells. We

determined that miR-1 performs these protective roles by controlling the expression of TBC proteins

- TBC-7 in worms and TBC1D15 in mammals. This conserved mechanistic relationship maintains

appropriate levels of autophagic flux to enable toxic protein aggregates to be efficiently removed.

Our data imply that deficits in miR-1 and TBC protein function may contribute to the etiology of pro-

tein aggregation disorders and their manipulation by IFN-b could provide novel therapeutic oppor-

tunities in treating these diseases.

Materials and methods

C. elegans and mouse strains
All C. elegans strains were cultured at 20˚C as previously described unless otherwise stated (Bren-

ner, 1974). The following strains were used: N2 (Bristol strain, wild-type), RJP3690 mir-1(gk276)I,

RJP3691 mir-1(n4102)I, AM141 rmIs133[Punc-54:: Q40::YFP]X, RJP3636 mir-1(gk276)I; rmIs133[Punc-

54::Q40::YFP]X, RJP3672 mir-1(n4102)I; rmIs133[Punc-54::Q40::YFP]X, RJP3584 mir-80(nDf53)III;

rmIs133[Punc-54::Q40::YFP]X, RJP3596 mir-1(gk276)I rpIs194[Pmyo-3::mir-1; Pelt-2::gfp]; rmIs133

[Punc-54::Q40::YFP]X, RJP3636 mir-1(gk276)I; rpEx195[Pmyo-2::mir-1; Pmyo-2::mCherry]; rmIs133

[Punc-54::Q40::YFP]X, RJP3660 mir-1(gk276)I; rpEx329[Pges-1::mir-1; Pmyo-2::mCherry]; rmIs133

[Punc-54::Q40::YFP]X, RJP3657 mir-1(gk276)I; rpEx196[Pmyo-3::mir-1*; Pmyo-2::mCherry]; rmIs133

[Punc-54::Q40::YFP]X, NL5901 pkIs2386[Punc-54:: a-synuclein::YFP + unc119(+), RJP3679 mir-1

(gk276)I; pkIs2386[Punc-54:: a-synuclein::YFP + unc119(+), RJP3595 mir-1(n4102)I; pkIs2386[Punc-

54:: a-synuclein::YFP + unc119(+), RJP3920 rpEx1674[Ptbc-7::GFP + Pttx-3::mCherry].

Figure 7 continued

(n = 3). **p<0.01 (Student’s t-test). (E)IF of HeLa cells expressing empty vector or TBC1D15 stained with antibodies against GTP-bound Rab7, TBC1D15

and DAPI. Scale bar, 10 mm.

Nehammer et al. eLife 2019;8:e49930. DOI: https://doi.org/10.7554/eLife.49930 15 of 24

Research article Biochemistry and Chemical Biology Genetics and Genomics

https://doi.org/10.7554/eLife.49930


Ifnb–/– mice (Erlandsson et al., 1998) were backcrossed 20 generations to B10.RIII and housed in

standard facilities. Sex- and weight-matched B10.RIII wild type mice (Ifnb+/+) were used as control.

Experiments that were performed in accordance with the ethical committees in Denmark and

approved by the Institutional Review Boards.

Generation of C. elegans transgenic strains
All constructs were injected into young adult hermaphrodites as complex arrays with PvuII digested

bacterial DNA (80 ng/ml) and Pmyo-2::mCherry (5 ng/ml) or Pelt- 2::gfp as co-transformation marker.

RNA-mediated interference
RNAi clones were obtained from the Ahringer C. elegans RNAi feeding library. All clones were

sequenced and verified before use. Experiments were performed as follows; YA staged animals

were moved to RNAi bacteria-seeded NGM plates and left to produce progeny for three days. Then

10 L4 staged animals were picked to plates seeded with 50 ml RNAi bacteria and left at 20˚C for 24

hr. 4 plates with 10 worms were assayed for each of three replicates. Then animals were heat

shocked for 5 hr at 35˚C in a single layer in a ventilated incubator to ensure an equal distribution of

heat. After heat shock the animals were left to recover for 17 hr at 20˚C and then scored for survival

by touching with a platinum wire and the animals that did not respond were scored as dead.

Quantification of aggregates
The total number of aggregates was counted in body wall muscles using a Zeiss, AXIO Imager M2

fluorescence microscope at magnification 40x. All experiments were performed on L4 animals (for

Q40::YFP) or day one adults (for a-synuclein::YFP) in triplicates with at least 10 worms counted per

replicate. The experimenter was blind to genotype and the presence or absence of rescuing arrays.

Thrashing assay
To assay motility, animals at day 3 or day seven post L4 were placed in 10 ul of M9 liquid, allowed to

recover for 10 s. and then number of body bends was counted for one minute. A total of 10 worms

were counted per each of three replicates. Animals not moving at all were censored from the experi-

ments. The experimenter was blind to genotype.

Heat shock assay
Five young adult worms were cultured on nematode growth medium (NGM) plates seeded with 300

ml of OP50 Escherichia coli bacteria to produce progeny at 20˚C for three days. Ten L4 larval staged

animals were incubated on NGM plates seeded with 50 ml of 24 hr old OP50 bacteria at 20˚C for 24

hr. Four plates with ten worms were assayed for each of three replicates. Animals were heat shocked

for 4 hr at 35˚C in a single layer in a ventilated incubator to ensure an equal distribution of heat.

After heat shock, animals were recovered for 17 hr at 20˚C and scored for survival by touching with a

platinum wire. Animals that did not respond were scored as dead. The experimenter was blind to

genotype and the presence or absence of rescuing arrays.

RNA preparation and qRT-PCR analysis
C. elegans
RNA sequencing and RT-qPCR experiments were performed in triplicate. RNA was isolated from

synchronised L4 animals: 2400 animals/sample for RNA-seq and 400 animals/sample for qPCR valida-

tion. Samples were washed three times in M9 buffer, resuspended in TRIzol (Invitrogen) and frozen

in liquid nitrogen. Samples were repeatedly thawed at 37˚C, vortexed for 30 s, then re-frozen in liq-

uid nitrogen a total of 7 times. Homogenates were mixed with chloroform (Sigma), centrifuged and

RNA within the upper phase was purified using the RNeasy mini kit (Qiagen) as per kit instructions,

and included DNase digestion. For qPCR analysis, 300 ng of purified RNA was converted to cDNA

using the ImProm II Reverse Transcription System (Promega), as per kit instructions, using an Oli-

godT:Random primer ratio of 1:3. Samples were diluted to 5 ng/ml, qPCR analysis was performed

using LightCycler 480 SYBR Green (Roche). RNA expression levels were normalized to two reference

genes, cdc-42 and pmp-3. The oligonucleotides used are available on request.
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Mammalian cells
For detection of miR-1–3 p and miR-191, RNA was extracted with QIAzol (Qiagen) and purified with

a miRNeasy mini kit (Qiagen cat. no. 217004). TaqMan MicroRNA Reverse Transcription kit was used

for cDNA synthesis (20 ng RNA from cortical neurons and 100 ng RNA from HeLa cells) using miR-

specific TaqMan probes according to manufacturer description. For quantitative real-time PCR miR-

1–3p and miR-191 specific TaqMan probes were used according to manufacturer description using

an Applied Biosystem StepOne Plus Real-Time PCR machine for detection. Each sample was ana-

lysed in technical triplicates. For detection of TBC1D15 mRNA levels, HeLa cells were transfected

with scrambled or miR-1 mimic and after two days mRNA was extracted with RNeasy mini kit (Qia-

gen, cat. no. 74104) and cDNA generated with QuantiTect Reverse Transcription kit using 1 mg of

mRNA (Qiagen; cat. no. 205313). RT-PCR quantification was performed with the Maxima SYBR

green/ROX qPCR kit (Thermo Scientific; cat. no. K0222) using 100 ng of cDNA per sample and signal

was measured with an Applied Biosystem StepOne Plus RT PCR system. The following RT-PCR pri-

mers were used: human TBC1D15; Fw: GGA TGC CGA AGT AAT AGT GG; Rev: ACT GGA GTC

CTT TCT AGC; human GAPDH: Fw: GAC AAC AGCCTC AAG ATC ATC; Rev: ATG AGT CCT TCC

ACG ATA. Three biological replicates were measured in technical triplicates.

RNA sequencing library construction and transcriptome analysis
RNA sequencing was performed at Micromon Genomics (Monash University). mRNA samples were

converted to indexed Illumina sequencing libraries using Illumina’s TruSeq Stranded mRNA Sample

Prep Kit, employing oligo (dT)-conjugated beads to enrich for polyadenylated transcripts. Libraries

were quantitated using a Qubit DNA HS kit (Invitrogen, Carlsbad CA., USA), sized using an AATI

Fragment Analyzer (Advanced Analytical Technologies Inc, USA), and sequenced on an Illumina

NextSeq500 configured to produce 75 nt paired-end reads. Fastq files were generated by bcl2fastq,

trimming 3’ adapter sequences.

The sequencing reads in fastq format were processed using the RNAsik pipelining tool, version

1.5.0 as follows. Reads were assessed for quality and duplication using FastQC v0.11.5 (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc) and mapped to the C. elegans genome (version

WBcel235, downloaded from Ensembl) using STAR v2.5.2b (Dobin et al., 2013). Uniquely mapping

read-pairs were assigned to annotated transcript exons (including splice-junctions) contained in the

Ensembl GTF file for genome build WBcel235 using FeatureCounts v1.5.2 (Liao et al., 2014), aggre-

gating at the gene level to produce genewise counts for each sample. This gene-count matrix was

loaded into the Degust tool (http://degust.erc.monash.edu) for differential gene expression analysis.

Genes that failed to accrue at least 10 counts in at least one sample were filtered out and the sam-

ples were normalized for library size by the TMM method (Robinson and Oshlack, 2010). Testing

for differential gene expression between the miR-1 and N2 conditions was then performed using

Limma-voom (Law et al., 2014).

Molecular cloning
mir-1 rescue constructs were generated by PCR amplification of the mir-1 hairpin and cloned down-

stream of the myo-3, myo-2 or ges-1 promoters. A standard site-directed mutagenesis protocol was

used to generate the mir-1 construct with mutated seed sequence mir-1*. The oligonucleotides used

are available on request. The human TBC1D15 30UTR was amplified from genomic DNA and subcl-

oned into the pCAG-GFPd2 vector, a gift from Connie Cepko lab (Addgene plasmid #14760; http://

n2t.net/addgene:14760; RRID:Addgene 79148) using NotI and Bsu36I. Forward primer: TATA

TgcggccgcTCACTGTTCTTGCTTTTTTGGG and reverse primer: CCATTAATTAAAATGTCTTCAGAA

TGCTcctgaggGTGC. Mutations in the miR-1 seed region of the 3’UTR of TBC1D15 were introduced

using a site-directed mutagenesis kit (Agilent, cat. no. 200515).

Microscopy
Animals were anaesthetized with 20 mM NaN3 on 5% agarose pads and images were taken by an

AXIO Imager M2 fluorescence microscope and Zen software (Zeiss).
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Mammalian cell culture
For primary cortical neuron (CN) cultures, cortexes were dissected from 1-day-old B10.RIII mice

pups and processed as previously described (Ejlerskov et al., 2015). Neurons were cultured in Neu-

robasal medium (Gibco) containing B27 (2%), GlutaMax (0.5 mM) and gentamicin (10 mg/ml) for 8–

10 days on culture plates pre-coated with poly-D-lysine (137,500 cells/cm2). Half of the medium was

changed every 3–4 days. HeLa and N2A neuroblastoma cells were maintained in DMEM containing

GlutaMax, 10% Foetal bovine serum (FBS) and 1% Penicillin/Streptomycin (P/S). Media was changed

every 2–3 days and cells were split every 3–4 days. For neuronal differentiation, N2A cells were cul-

tured for 4 days in DMEM medium containing GlutaMax, 1% FBS and retinoic acid (20 mM).

Transfection
Cells were seeded at a density of 20,000 cells/cm2 and the following day they were transfected with

Lipofectamine 2000 or Mirus TransIT according to manufactures protocol. The following day cells

were treated with bafilomycin A1 (400 nM) for 4 hr or were left untreated. The following plasmids

were used: miRIDIAN microRNA Human hsa-miR-1–3 p – mimics (Dharmacon; cat. no. C-300585-05-

0005, C-300586-05-0005); Lentivector hsa-miR-1–3 p inhibitor and control in pLenti-III-miR-Off vector

from abmgood (cat. no. mh30019 and m007); mRFP-GFP-LC3 was a kind gift from Tamotsu Yoshi-

mori; pEF6-myc-TBC1D15 a kind gift from Aimee Edinger (Addgene plasmid# 79148; http://n2t.net/

addgene:79148; RRID:Addgene 79148); pEGFP-C1 (Clontech); EGFP-HTTQ74 (vector backbone

pEGFP-C1; HTT exon 1) (Narain et al., 1999); pCAG-GFPd2 a gift from Connie Cepko lab (Addgene

plasmid #14760), pCAG-GFPd2-30UTR-TBC1D15, pCAG-GFPd2-30UTR-TBC1D15mutant, pIRESneo-

myc-Rab7wt, pEGFP-C1-Rab7Q67L, pEGFP-C1-Rab7T22N. Rab7-expressing plasmids were kind gifts

from Professor Matthew Seaman, University of Cambridge. When transfecting with miR-1 mimics or

siRNA knockdown oligos the medium was changed the following day and bafilomycin A1 was added

48 hr after initial transfection. For co-transfections with miR-1 mimics cells were transfected with

miR-1 24 hr prior to EGFP-HTTQ74, TBC1D15, empty vector, GFPd2-30UTR-TBC1D15 or GFPd2-

30UTR-TBC1D15mutant.

Immunofluorescence staining and imaging
After 48–72 hr of EGFP-HTTQ74 expression, cells were fixed in 4% PFA for 10 mins, blocked in block-

ing buffer (5% normal goat serum, 1% bovine serum albumin, and 0.25% triton-X-100) and incubated

with LC3 antibodies (Cosmo, cat.no. CAC-CTB-LC3-2-IC) dissolved 1:150 in blocking buffer over-

night at 4˚C. The following day, cells were washed three times in PBS, incubated with Alexa fluor sec-

ondary antibodies (Invitrogen) 1:1000 and phalloidin 633 (Molecular Probes, cat. no. A22287) 1:400

in blocking buffer for 60 mins at room temperature. Subsequently, nuclei were stained for 5 min with

DAPI (Sigma, D9564) 1:1000 in PBS, washed three times in PBS, and mounted on glass slides with

ProLong Gold Antifade Mountant (cat. no. P36930). Images were acquired with a Zeiss 880 confocal

microscope, equipped with a live cell imaging incubator, using 405 nm, 488 nm, and 568 nm, and

633 nm lasers and a pinhole of 0.8 mm. For live cell imaging, cells were maintained at 37˚C and 5%

CO2 in a humidified incubator and images were acquired at a speed of 1 per second for 2 min. Mov-

ies were generated as avi files in ImageJ and displayed at a speed of 10 frames per second. LC3- (in

fixed cells detected with antibody) and mRFP-GFP-LC3-positive (live cell imaging) vesicles were

quantified using ImageJ and Volocity. Each image contained 2–4 cells and a total of 12–24 cells

were scored in each technical replicate. EGFP-HTTQ74 positive aggregates were quantified by man-

ual counting using the 63x objective on a Zeiss Axio Imager M2 microscope. Each condition was set

up in duplicates and 200–400 cells were counted per technical replicate.

Flow cytometry analysis
HeLa cells were transfected with scrambled or miR-1 mimic one day prior to transfection with

GFPd2-30UTR-TBC1D15 or GFPd2-30UTR-TBC1D15mutant. The following day, cells were placed on ice

and stained with live/dead cell marker (Invitrogen, cat. no. L23102) according to manufactures proto-

col before analysis with Accuri C6 flow cytometer using the FL1-A channel for detection of GFP sig-

nal and FL4-A for detection of dead cells. The cells were analysed in technical duplicates measuring

the mean intensity fluorescence for 15,000–20,000 cells per well in the live cell population.
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Western blot analysis
C. elegans
Young adult animals were picked directly into SDS sample buffer, boiled for 15 mins at 95˚C and

cooled on ice. The solution was centrifuged for 10 mins at 3000 rpm and equal amounts of sample

were loaded onto a protein gel, separated by SDS page and protein analysis was assayed with GFP

antibody (Roche), PolyUbiquitin antibody (Sigma) and a-tubulin (12G10 - Developmental Studies

Hybridoma Bank, University of Iowa).

Mammalian cells
Cells were lysed in Triton X-100 buffer (1% Triton X-100, 100 mM NaCl, 50 mM Tris-HCl, 1 mM

EGTA, and 10 mM MgCl2) containing phosphatase inhibitor cocktail 2 and 3 (Sigma, cat.no. P5726

and P0044), and cOmplete protease inhibitor cocktail (Roche, cat. no. 11873580001) for five mins at

room temperature and then kept on ice. The lysis suspensions were harvested and centrifuged at

16,100 g for 5 mins at 4˚C and the supernatants collected. For primary tissue isolation, brains from 3

months old wt and Ifnb–/– mice were dissected and homogenized in Triton-X-100 lysis buffer (same

buffer as detailed above) with a 1 ml Dounce homogenizer. Lysates were spun through a Qiagen

Shredder tube at 16,100 g for 5 min at 4˚C and the supernatants were harvested and spun an addi-

tional round at 16,100 g for 10 min at 4˚C, before the final supernatants were collected. The protein

concentrations were measured with Biorad DC protein assay (cat. no. 5000112) reagent and equal

amounts of sample were run on SDS-PAGE gels and transferred to PVDF Immobilon-FV membranes

(Millipore, cat. no. IPFL20200). Membranes were blocked in either 5% milk or 5% BSA and subse-

quently incubated with primary antibodies overnight. The following day membranes were washed

three times in PBS with 0.1% tween-20 (PBS-T), and incubated with species-specific secondary anti-

bodies coupled to 680 nm or 800 nm fluorophores (Li-Cor) in 5% milk or 2% BSA. Finally, the mem-

branes were washed three times in PBS-T and signal detected in Li-Cor Odyssey scanner using the

700 nm and 800 nm emission filters. Mean fluorescence band intensities were quantified using Image

Studio Lite version 5.2.

Immunoprecipitation (IP) of GTP-bound Rab7
HeLa cells were plated in 10 cm dishes and transfected with empty vector or TBC1D15-expressing

vector using Lipofectamine 2000. The following day cells were processed with Rab7 activation assay

kit according the manufacturers protocol (NewEast Biosciences cat. no. 82501). In short, the cells

were washed two times in ice-cold PBS–, resuspended in pre-warmed growth media (37˚C) contain-

ing GTP-gS (100 mM), and incubated at 37˚C for 30 min with gentle agitation. The cells were then

lysed at 4˚C for 10 min and then centrifuged at 16,100 g for 5 min at 4˚C. Supernatants were col-

lected and incubated with rotation with an antibody against GTP-bound Rab7 (cat. no. 26923) or

mouse IgG negative control (DAKO cat. no. X-0931) together with protein A/G agarose beads for

one hour at 4˚C. Finally, the beads were washed three times in ice-cold lysis buffer and bound GTP-

Rab7 was removed from the beads by boiling the samples for 5 min in 2X SDS-PAGE sample buffer.

The beads were spun at 5,000 g for 10 s and the IP pull-down supernatants were harvested and

processed for western blotting as described above with an antibody against Rab7 (cat. no. 21069).

Autophagy experiments
C. elegans
Animals were incubated at 20˚C for two generations prior to the experiment. Young adult animals

were then heat shocked for 1 hr at 35˚C (heat shock) or recovered for 1 hr at 15˚C (heat shock +

recovery) before being imaged by confocal microscopy.

Mammalian cells
For autophagy flux assays, cells were treated with bafilomycin A1 (400 nM) for 4 hr and subsequently

lysed in Triton X-100 buffer and processed for WB as described above. When co-treating HeLa cells

with recombinant human IFN-b, cells were pre-treated with IFN-b (1000 U/ml) for 2 hr before the

addition of bafilomycin (400 nM) for 4 hr.

Nehammer et al. eLife 2019;8:e49930. DOI: https://doi.org/10.7554/eLife.49930 19 of 24

Research article Biochemistry and Chemical Biology Genetics and Genomics

https://doi.org/10.7554/eLife.49930


Statistical analysis
All statistical analysis was performed using the GraphPad Prism 5.0 software. Student’s t-test, one-

way or two-way ANOVA analysis followed by Dunnett’s or Bonferroni’s multiple comparison tests

were used. Data is presented as means ± SEM.
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Gutierrez MG, Munafó DB, Berón W, Colombo MI. 2004. Rab7 is required for the normal progression of the
autophagic pathway in mammalian cells. Journal of Cell Science 117:2687–2697. DOI: https://doi.org/10.1242/
jcs.01114, PMID: 15138286

Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. 2008. Hypothesis-based RNAi screening
identifies neuroprotective genes in a parkinson’s disease model. PNAS 105:728–733. DOI: https://doi.org/10.
1073/pnas.0711018105, PMID: 18182484

Hu Z, Hom S, Kudze T, Tong XJ, Choi S, Aramuni G, Zhang W, Kaplan JM. 2012. Neurexin and neuroligin
mediate retrograde synaptic inhibition in C. elegans. Science 337:980–984. DOI: https://doi.org/10.1126/
science.1224896, PMID: 22859820

Kagias K, Pocock R. 2015. microRNA regulation of the embryonic hypoxic response in Caenorhabditis elegans.
Scientific Reports 5:e11284. DOI: https://doi.org/10.1038/srep11284

Kang C, You YJ, Avery L. 2007. Dual roles of autophagy in the survival of Caenorhabditis elegans during
starvation. Genes & Development 21:2161–2171. DOI: https://doi.org/10.1101/gad.1573107, PMID: 17785524

Kern A, Dikic I, Behl C. 2015. The integration of autophagy and cellular trafficking pathways via RAB GAPs.
Autophagy 11:2393–2397. DOI: https://doi.org/10.1080/15548627.2015.1110668, PMID: 26565612

Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y. 1999. Formation
process of autophagosome is traced with Apg8/Aut7p in yeast. The Journal of Cell Biology 147:435–446.
DOI: https://doi.org/10.1083/jcb.147.2.435

Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. 2011. A quantitative analysis of CLIP
methods for identifying binding sites of RNA-binding proteins. Nature Methods 8:559–564. DOI: https://doi.
org/10.1038/nmeth.1608, PMID: 21572407

Kong Y, Wu J, Yuan L. 2014. MicroRNA expression analysis of adult-onset Drosophila alzheimer’s disease model.
Current Alzheimer Research 11:1–891. DOI: https://doi.org/10.2174/1567205011666141001121416,
PMID: 25274109

Kopkova A, Sana J, Fadrus P, Machackova T, Vecera M, Vybihal V, Juracek J, Vychytilova-Faltejskova P, Smrcka
M, Slaby O. 2018. MicroRNA isolation and quantification in cerebrospinal fluid: a comparative methodical
study. PLOS ONE 13:e0208580. DOI: https://doi.org/10.1371/journal.pone.0208580, PMID: 30532175

Krol J, Loedige I, Filipowicz W. 2010. The widespread regulation of microRNA biogenesis, function and decay.
Nature Reviews Genetics 11:597–610. DOI: https://doi.org/10.1038/nrg2843, PMID: 20661255

Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, Lucas G. 2011. Differential expression of
MicroRNAs in mouse pain models. Molecular Pain 7:1744-8069-7-17. DOI: https://doi.org/10.1186/1744-8069-
7-17

Law CW, Chen Y, Shi W, Smyth GK. 2014. Voom: precision weights unlock linear model analysis tools for RNA-
seq read counts. Genome Biology 15:R29. DOI: https://doi.org/10.1186/gb-2014-15-2-r29, PMID: 24485249

Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell 120:15–20. DOI: https://doi.org/10.1016/j.cell.2004.12.
035, PMID: 15652477

Nehammer et al. eLife 2019;8:e49930. DOI: https://doi.org/10.7554/eLife.49930 22 of 24

Research article Biochemistry and Chemical Biology Genetics and Genomics

https://doi.org/10.1038/nbt.3947
http://www.ncbi.nlm.nih.gov/pubmed/28829439
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.1016/j.cell.2015.08.069
http://www.ncbi.nlm.nih.gov/pubmed/26451483
https://doi.org/10.1016/S0960-9822(98)70086-7
https://doi.org/10.1016/S0960-9822(98)70086-7
http://www.ncbi.nlm.nih.gov/pubmed/9501984
https://doi.org/10.1146/annurev-biochem-060308-103103
http://www.ncbi.nlm.nih.gov/pubmed/20533884
https://doi.org/10.1038/s42255-019-0033-z
http://www.ncbi.nlm.nih.gov/pubmed/31535080
https://doi.org/10.1016/j.molcel.2011.04.024
https://doi.org/10.1016/j.molcel.2011.04.024
http://www.ncbi.nlm.nih.gov/pubmed/21700220
https://doi.org/10.2174/092986608784567483
http://www.ncbi.nlm.nih.gov/pubmed/18537741
https://doi.org/10.1016/j.cell.2012.03.029
http://www.ncbi.nlm.nih.gov/pubmed/22541436
https://doi.org/10.18632/oncotarget.6158
http://www.ncbi.nlm.nih.gov/pubmed/26497684
https://doi.org/10.1242/jcs.01114
https://doi.org/10.1242/jcs.01114
http://www.ncbi.nlm.nih.gov/pubmed/15138286
https://doi.org/10.1073/pnas.0711018105
https://doi.org/10.1073/pnas.0711018105
http://www.ncbi.nlm.nih.gov/pubmed/18182484
https://doi.org/10.1126/science.1224896
https://doi.org/10.1126/science.1224896
http://www.ncbi.nlm.nih.gov/pubmed/22859820
https://doi.org/10.1038/srep11284
https://doi.org/10.1101/gad.1573107
http://www.ncbi.nlm.nih.gov/pubmed/17785524
https://doi.org/10.1080/15548627.2015.1110668
http://www.ncbi.nlm.nih.gov/pubmed/26565612
https://doi.org/10.1083/jcb.147.2.435
https://doi.org/10.1038/nmeth.1608
https://doi.org/10.1038/nmeth.1608
http://www.ncbi.nlm.nih.gov/pubmed/21572407
https://doi.org/10.2174/1567205011666141001121416
http://www.ncbi.nlm.nih.gov/pubmed/25274109
https://doi.org/10.1371/journal.pone.0208580
http://www.ncbi.nlm.nih.gov/pubmed/30532175
https://doi.org/10.1038/nrg2843
http://www.ncbi.nlm.nih.gov/pubmed/20661255
https://doi.org/10.1186/1744-8069-7-17
https://doi.org/10.1186/1744-8069-7-17
https://doi.org/10.1186/gb-2014-15-2-r29
http://www.ncbi.nlm.nih.gov/pubmed/24485249
https://doi.org/10.1016/j.cell.2004.12.035
https://doi.org/10.1016/j.cell.2004.12.035
http://www.ncbi.nlm.nih.gov/pubmed/15652477
https://doi.org/10.7554/eLife.49930


Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence
reads to genomic features. Bioinformatics 30:923–930. DOI: https://doi.org/10.1093/bioinformatics/btt656,
PMID: 24227677

Margis R, Margis R, Rieder CR. 2011. Identification of blood microRNAs associated to parkinsonı̆s disease.
Journal of Biotechnology 152:96–101. DOI: https://doi.org/10.1016/j.jbiotec.2011.01.023, PMID: 21295623

Morley JF, Brignull HR, Weyers JJ, Morimoto RI. 2002. The threshold for polyglutamine-expansion protein
aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. PNAS 99:
10417–10422. DOI: https://doi.org/10.1073/pnas.152161099, PMID: 12122205

Narain Y, Wyttenbach A, Rankin J, Furlong RA, Rubinsztein DC. 1999. A molecular investigation of true
dominance in Huntington’s disease. Journal of Medical Genetics 36:739–746. DOI: https://doi.org/10.1136/
jmg.36.10.739, PMID: 10528852

Nehammer C, Podolska A, Mackowiak SD, Kagias K, Pocock R. 2015. Specific microRNAs regulate heat stress
responses in Caenorhabditis elegans. Scientific Reports 5:e8866. DOI: https://doi.org/10.1038/srep08866

Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. 2007. Interferon modulation of
cellular microRNAs as an antiviral mechanism. Nature 449:919–922. DOI: https://doi.org/10.1038/nature06205,
PMID: 17943132

Pedersen ME, Snieckute G, Kagias K, Nehammer C, Multhaupt HA, Couchman JR, Pocock R. 2013. An epidermal
microRNA regulates neuronal migration through control of the cellular glycosylation state. Science 341:1404–
1408. DOI: https://doi.org/10.1126/science.1242528, PMID: 24052309

Peralta ER, Martin BC, Edinger AL. 2010. Differential effects of TBC1D15 and mammalian Vps39 on Rab7
activation state, lysosomal morphology, and growth factor dependence. Journal of Biological Chemistry 285:
16814–16821. DOI: https://doi.org/10.1074/jbc.M110.111633, PMID: 20363736

Pocock R. 2011. Invited review: decoding the microRNA response to hypoxia. Pflügers Archiv - European Journal
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