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Genomic risk score offers predictive
performance comparable to clinical
risk factors for ischaemic stroke
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Recent genome-wide association studies in stroke have enabled the generation of genomic
risk scores (GRS) but their predictive power has been modest compared to established stroke
risk factors. Here, using a meta-scoring approach, we develop a metaGRS for ischaemic
stroke (IS) and analyse this score in the UK Biobank (n =395,393; 3075 IS events by age 75).
The metaGRS hazard ratio for IS (1.26, 95% Cl 1.22-1.31 per metaGRS standard deviation)
doubles that of a previous GRS, identifying a subset of individuals at monogenic levels of risk:
the top 0.25% of metaGRS have three-fold risk of IS. The metaGRS is similarly or more
predictive compared to several risk factors, such as family history, blood pressure, body mass
index, and smoking. We estimate the reductions needed in modifiable risk factors for indi-
viduals with different levels of genomic risk and suggest that, for individuals with high
metaGRS, achieving risk factor levels recommended by current guidelines may be insufficient
to mitigate risk.
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troke is a leading cause of death worldwide and the

leading cause of permanent disability!2. About 80% of

stroke cases are of ischaemic origin3. The risk of ischaemic
stroke (IS) is determined by a complex interplay of genetic and
environmental factors partly acting through modifiable risk fac-
tors such as hypertension and diabetes. Roughly thirty-five
genomic loci have been robustly associated with stroke*~7, and
many more genetic associations have been reported for stroke-
related risk factors®-14, e.g., over 1000 loci have been associated
with blood pressure (BP)!1:1>-19 and >100 with atrial fibrillation
(AF)1020, These data are now beginning to be harnessed to aid
risk prediction.

Recent work has highlighted the potential of genomic risk
scores (GRS) for risk prediction of common diseases2!-24,
Genomic risk prediction has a notable advantage over established
risk factors as it could be used to infer risk of disease from birth,
thus allowing the initiation of preventive strategies before con-
ventional risk factors manifest and their discriminative capacity
begins to emerge.

For stroke, a recent 90-SNP GRS derived from the MEGA-
STROKE GWAS meta-analysis? showed that genetic and lifestyle
factors are independently associated with incident stroke?4, and
that even among individuals with high GRS, lifestyle factors had a
large impact on risk, implying that risk could be reduced in those
with high genetic predisposition for stroke. However, in contrast
to GRSs for other cardiovascular diseases like coronary artery
disease (CAD)?1-23, the predictive power of previous GRS for
stroke has been limited?>~27, likely because of limited genetic data
for stroke and the well-known heterogeneity of the stroke
phenotype®’. Recent analytical advances have enabled more
powerful GRS construction, such as those leveraging multiple sets
of GWAS summary statistics?1:28, potentially allowing for power
and heterogeneity limitations to be overcome. Specifically, for
CAD, an approach where multiple GRSs are combined into one
meta-score (metaGRS) was found to improve risk prediction
over any one of the individual CAD GRS?L. Such an approach
may be widened to provide substantively improved genomic
prediction of stroke.

Here, we extend the metaGRS strategy to predict IS by incor-
porating GWAS summary statistics for stroke and its aetiological
subtypes along with GWAS summary statistics for risk factors
and co-morbidities of IS. This new IS metaGRS is validated and
compared with previously published GRS using UK Biobank29-30,
We next compare the predictive capacity of the IS metaGRS to
established non-genetic risk factors for IS. Finally, we assess the
additional information provided by the metaGRS in combination
with current guidelines for the treatment of established IS risk
factors and create joint models which predict absolute risk of
incident IS.

Results

Derivation of a metaGRS for ischaemic stroke. To create the
GRSs we randomly split the UK Biobank (UKB) British white
dataset (n =407,388) into a derivation (n=11,995) and valida-
tion set (n = 395,393; “Methods” section Fig. 1, Table 1). In order
to increase statistical power in the derivation phase, we enriched
the derivation set (n = 11,995) with IS events (n = 888, 7.4%). A
schematic of the overall study design is given in Fig. 1.

We used GWAS summary statistics that did not include the
UKB for five stroke outcomes and 14 stroke-related phenotypes
(Supplementary Table 1) to generate 19 GRSs associated with IS
(Fig. 1). As expected, the 19 individual GRSs were correlated with
each other in several distinct clusters: (i) any stroke (AS), IS,
cardioembolic stroke (CES), large artery stroke (LAS), and small
vessel stroke (SVS); (ii) the three CAD scores (1IKGCAD, 46K,

and FDR202); (iii) total cholesterol (TC), triglycerides (TG),
low-density lipoprotein cholesterol (LDL), and high-density
lipoprotein cholesterol (HDL); (iv) systolic BP (SBP) and diastolic
BP (DBP); and (v) body mass index (BMI) and type 2 diabetes
(T2D) (Fig. 2). From the 19 distinct GRSs, we constructed the
metaGRS using elastic-net logistic regression with 10-fold cross-
validation on the derivation set (Fig. 1; metaGRS; model weights
are shown in Supplementary Fig. 1), and subsequently converted
the model to a set of 3.2 million SNP weights, which are freely
available (https://doi.org/10.6084/m9.figshare.8202233).

We performed a sensitivity analysis to assess whether the
estimation of the metaGRS weights on the UKB derivation set led
to over-fitting (upwards bias in apparent performance) of the
score in the validation set. We developed a metaGRS based on
four component GRSs (AS, IS, BMI, and SBP) in cross-validation
on the derivation set. We compared this metaGRS with a score
derived using smtPred?®, which relies on the chip heritabilities
and genetic correlations estimated from the GWAS summary
statistics via LD score regression31:32, independently of the UKB
(Supplementary Fig. 2). Overall, the two scores were highly
correlated (Pearson r=0.98), and had indistinguishable associa-
tions with IS in the UKB validation set, indicating that our
metaGRS procedure did not lead to overfitting in the
validation set.

The metaGRS improves risk prediction of ischaemic stroke
compared with other genetic scores. Using the independent
UKB validation set, we next quantified the risk prediction per-
formance of the metaGRS, and evaluated its association with IS
via survival analysis. The metaGRS was associated with IS with a
hazard ratio (HR) of 1.26 (95% CI 1.22-1.31) per standard
deviation of metaGRS, which was stronger than any individual
GRS comprising the metaGRS (including the IS GRS [HR =1.18,
95% CI 1.15-1.22]) and was twice the effect size of the previously
published 90-SNP IS score** (HR=1.13 [95% CI 1.10-1.17];
Supplementary Fig. 3a). The metaGRS also increased the C-index
by 0.029 over the 90-SNP GRS (Supplementary Fig. 3b). We
also assessed the performance of the IS metaGRS for predicting
the AS outcome. We found the associations were consistently
weaker for AS than for IS, however, as with IS, the metaGRS was
a stronger predictor of AS than the 90-SNP GRS score (Supple-
mentary Fig. 3).

In a Kaplan-Meier analysis of IS, the top and bottom 10% of the
metaGRS showed substantial differences in cumulative incidence
of IS (Supplementary Fig. 4; log-rank test between the top decile
and the 45-55% decile: P = 3 x 10~%); these results were consistent
with a Cox proportional hazards model of the metaGRS assessing
the HRs for the top 10% decile vs the middle 45-55% decile
(Supplementary Fig. 5). The top 0.25% of the population were at a
threefold increased risk of IS vs. the middle decile (45-55%), with
HR =3.0 (95% CI 1.96-4.59) (Fig. 3).

There was no evidence for a statistical interaction of the
metaGRS with sex on IS hazard (Wald test in Cox proportional
hazard model, P=0.614), indicating that the substantial
differences in cumulative incidence between the sexes were
driven by differences in baseline hazards rather than by any sex-
specific effects of the metaGRS itself.

A small number of individuals (n=45) had recorded
haemorrhagic stroke before their primary IS event. We conducted
two sensitivity analyses to assess the impact of this on our results:
(i) excluding n =45 individuals from the analysis; (ii) adjusting
for haemorrhagic stroke status in the analysis. In both cases, there
was essentially no difference in the association of the metaGRS
with IS compared with the original analysis (HR=1.27 per
standard deviation of the metaGRS across the two analyses).
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Fig. 1 Study design. a Individual GRSs were derived in the UK Biobank training set (n =11,995) using GWAS summary statistics for individual traits. b The
metaGRS for ischaemic stroke was then derived by integrating individual GRSs using elastic-net cross-validation. ¢ Validation of the metaGRS for ischaemic
stroke was performed in the UK Biobank validation set (n =395,393). UKB UK Biobank, GWAS genome-wide association study, GRS genomic risk score.

To further assess the contribution of different classes of GRS in
the final score, we constructed two metaGRSs: (i) a score based on
stroke-related GRSs (AS, IS, CES, LAS, SVS) and CAD-related
GRSs (46K, FDR202, 1IKGCAD) but no other risk factors; and (ii)
a metaGRS based on stroke-related GRSs (AS, IS, CES, LAS, SVS)
and risk-factor-related GRSs (SBP, DBP, TC, LDL, HDL, TG, AF,
BMI, Height, T2D, Smoking) but no CAD-related GRSs
(Supplementary Fig. 6). Addition of either risk-factor GRSs or
CAD-related GRSs each led to more powerful metaGRSs
compared with the IS-only GRS, but the best score was achieved
when combining both types of GRS into the 19-component
metaGRS, indicating that both types of GRS had independent
information about stroke risk. Note that due to pleiotropy there is

some overlap between the genetic signal for CAD and risk factors
such as BP and cholesterol.

The ischaemic stroke metaGRS has comparable or higher
predictive power than established risk factors. We next com-
pared the performance of the metaGRS with established risk
factors33 for predicting IS. We examined seven risk factors at the
first UKB assessment: LDL cholesterol, SBP, family history of
stroke, BMI, diabetes diagnosed by a doctor, current smoking,
and hypertension (an expanded definition based on SBP/DBP
measurements, BP medication usage, self-reporting, and hospital
records; “Methods” section).
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Table 1 Study characteristics of the UK Biobank validation dataset.

medication)

Diabetes diagnosed by doctor, N (%)

Hypertension, N (%)

Family history of stroke, 1st degree relative, N (%)

High cholesterol, N (%)

Prevalent stroke events, N (%), any stroke before age 75
Prevalent stroke events, N (%), ischaemic stroke before age 75
Incident stroke events, N (%), any stroke before age 75
Incident stroke events, N (%), ischaemic stroke before age 75
On blood-pressure lowering medication, N (%)

On lipid-lowering medication, N (%)

18,675 (4.7%)
211,069 (53.4%)
104,831 (26.5%)

53,141 (13.4%)

4543 (11%)
1152 (0.3%)
2607 (0.7%)
1923 (0.5%)

80,880 (20.5%)

66,739 (16.9%)

1,449 (6.3%)
110,540 (61.2%)
45,569 (25.2%)
30,670 (17.0%)

2679 (1.5%)
787 (0.4%)
1531 (0.8%)
1207 (0.7%)

43,714 (24.2%)
40,164 (22.2%)

Baseline characteristic UK Biobank Male Female

N =395,393 N =180,653 (45.7%) N = 214,740 (54.3%)
Age, years [mean (sd)] 56.9 (8.0) 57.1(8.1) 56.7 (7.9)
Current smoker, N (%) 39,804 (10.0%) 21,261 (11.8%) 18,543 (8.6%)
Systolic blood pressure, mm Hg [mean (sd)] (adjusted for BP 143.3 (21.7) 146.9 (20.4) 140.2 (22.2)

7226 (3.4%)
100,529 (46.8%)
59,262 (27.6%)
22,471 (10.5%)
1864 (0.9%)
365 (0.2%)
1076 (0.5%)
716 (0.3%)
37,166 (17.3%)
26,575 (12.4%)

Follow-up time, years [mean (sd)] 6.3 (1.9) 6.2 (2.1) 6.4 (1.8)
Shown are characteristics obtained at the first UK Biobank assessment
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Fig. 2 Individual GRSs for stroke-related phenotypes and stroke outcomes correlate in several distinct clusters. Shown is the partial Pearson correlation
plot of individual GRSs in a random sample of 20,000 UK Biobank individuals. Estimates are from linear regression of each pair of standardised GRSs,
adjusting for genotyping chip (UKB/BILEVE) and 10 PCs. Stars indicate Benjamini-Hochberg false discovery rate < 0.05 (adjusting for 171 tests). GRSs were
ordered via hierarchical clustering of the absolute correlation. Anthrop anthropometric, cardio cardiovascular (other than CAD), SBP systolic blood pressure,
DBP diastolic blood pressure, Height measured height, BMI body mass index, T2D type 2 diabetes, IKGCAD coronary artery disease from 1000 Genomes,
46K coronary artery disease from Metabochip, FDR202 coronary artery disease from 1000 Genomes (top SNPs), CES cardioembolic stroke, AS any stroke,
IS ischaemic stroke, LAS large artery stroke, SVS small vessel stroke, TC total cholesterol, LDL low-density lipoprotein cholesterol, HDL high-density
lipoprotein cholesterol, TG triglycerides, AF atrial fibrillation, Smoking cigarettes per day.

1.28 per s.d., where the s.d. of SBP was 21.7 mm Hg) and current
smoking (incident IS HR = 1.25, s.d. = 0.3) (Supplementary Fig. 7).

Comparison of the C-index for time to incident IS revealed that
BP phenotypes, hypertension and SBP (C=0.590 [95% CI

As expected, established risk factors were positively associated
with incident IS, with hypertension being the strongest risk factor
(Supplementary Fig. 7). Notably, the HR of the metaGRS (incident
IS HR = 1.25 per s.d.) was similar to that of SBP (incident IS HR =
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Fig. 3 The metaGRS identifies individuals at increased risk of ischaemic stroke. Shown is the distribution of the metaGRS for ischaemic stroke in the UK
Biobank validation set (n =395,393), and corresponding hazard ratios. Hazard ratios are for the top metaGRS bins (stratified by percentiles) vs. the middle

metaGRS bin (45-55%).

0.577-0.603]; C=0.584 [95% CI 0.570-0.598], respectively), had
the largest C-indices, followed by the metaGRS (C = 0.580 [95%
CI 0.566-0.593]) and the remaining established risk factors
(Fig. 4). Notably, the metaGRS had a greater C-index than family
history of stroke (C=0.558, 95% CI 0.544-0.572; Fig. 4). The
metaGRS and hypertension contained similar additional informa-
tion on top of the other risk factors; adding either the metaGRS or
hypertension to the six other risk factors vyielded similar
predictive power, C=0.629 (95% CI 0.615-0.643) and C=
0.628 (95% 0.614-0.641), respectively. Finally, adding both the
metaGRS and hypertension to the six risk factors yielded the
model with the highest C-index, C = 0.637 (95% CI 0.623-0.650)
(Fig. 4). Note that LDL-cholesterol was not included in this
analysis as it had only weak associations with stroke and is not
considered a major stroke risk factor.

The metaGRS contributes to ischaemic stroke risk independent
of established risk factors. Given that the metaGRS is composed
of GRSs for stroke and stroke risk factors, we conducted several
complementary analyses to assess the association of the metaGRS
with these risk factors, and whether the metaGRS was associated
with IS risk independently of these risk factors. As expected, the
IS metaGRS was positively and significantly associated with all
seven risk factors (Supplementary Table 2). Adjusting for these
risk factors as well as BP-lowering and/or lipid-lowering medi-
cation status only modestly attenuated the association of the
metaGRS with incident IS (Supplementary Fig. 8), indicating that
the information contained in the metaGRS was only partially
explained by these factors. On the other hand, adjusting for the
metaGRS modestly but consistently attenuated the association of
each risk factor itself with IS risk (Supplementary Fig. 7). There

was no evidence for statistical interaction of the metaGRS effects
on incident IS with medication status at assessment (Wald test in
logistic regression, P=0.23 and P =0.82 for interaction of the
metaGRS with BP medication and cholesterol-lowering medica-
tion, respectively).

Predicting ischaemic stroke risk with established risk factors
and the metaGRS. The clinical utility of a GRS depends on its
performance in combination with established risk factors and risk
models. To examine this, we conducted analyses integrating infor-
mation on risk factor levels based on (i) recent ACC/AHA/AAP
A/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guidelines*
(SBP <120 mm Hg); (i) AHA/ASA guidelines for primary pre-
vention of stroke33 (BMI<25kgm™2); (iii) smoking status and
diabetes status. We used Cox models of these established risk fac-
tors and the metaGRS together with the estimated baseline cumu-
lative hazards to predict cumulative incidence of IS for individuals
with a high metaGRS (top 1%), average metaGRS (50%), and low
metaGRS (bottom 1%) along with two levels of risk factors: (i)
meeting guideline targets for the above risk factors’* and (i) the
following combination of risk factors representative of an individual
at typical stroke risk: SBP = 140 mm Hg, BMI = 30 kg m—2, current
smoking, and no diagnosed diabetes.

The predicted risk of IS for individuals with a high metaGRS
(top 1%) and high levels of risk factors was maximal by age 75,
reaching a cumulative incidence of 8.5% (95% CI 5.2-11.6%) for
males and 5.1% (95% CI 3.1-7.1%) for females (Fig. 5a). Effective
reduction in the levels of the modifiable risk factors (SBP, BMI,
and smoking) to match guideline targets was predicted to result
in a substantial reduction in risk, down to 2.8% (95% CI
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Fig. 4 The metaGRS for ischaemic stroke has comparable or higher predictive power than established risk factors. Shown are the C-indices for incident
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PCs. Results are for the UKB validation set, excluding prevalent stroke events (n=390,849). Red circles represent genetic/genomic scores; black circles

represent non-genetic scores. Error bars represent 95% confidence intervals.

1.7-3.9%) for males and 1.7% (95% CI 1.0-2.4%) for females by
age 75, thus substantially compensating for the high genomic risk.

Conversely, for individuals matching the guidelines for
established risk factors (Fig. 5b), there were notable differences
in IS incidence for individuals in the top (1%) compared with the
bottom (1%) of the metaGRS; with 2.8% (95% CI 1.7-3.9%) vs.
1.2% (95% CI 0.7-1.7%) in males and 1.7% (95% CI 1.0-2.4%) vs.
0.7% (95% CI 0.4-1.0%) in females, respectively, by age 75. These
results further indicate that the metaGRS captures residual risk of
stroke not quantified by existing risk factors.

Discussion

In this study, we developed a genomic risk score for IS based
on GWAS summary statistics for 19 stroke and stroke-related
traits. We quantify the predictive power of the IS metaGRS
by comparing it to previously published genetic scores and
measures of established non-genetic risk factors, and demonstrate
its added value in combination with established risk factors
and in the context of current guidelines for primary stroke pre-
vention. While GRS for stroke are not yet at the level necessary
for clinical translation, our analyses constitute several significant
advances.

First, we showed that the IS metaGRS had stronger association
with IS than previously published genetic scores, doubling the
effect size of the most recent genetic score. To put its performance
in context, we estimated the IS metaGRS identified the 1 in 400
individuals who were at threefold increased risk of IS, a level of
risk and frequency similar to common monogenic cardiovascular
diseases, such as familial hypercholesterolaemia (FH), a risk
factor for myocardial infarction®>. Monogenic forms of stroke,
such as CADASIL, are relatively rare3®, thus the IS metaGRS may
represent a potential new avenue to more common polygenic risk
stratification, in combination with established risk factors.

Second, the IS metaGRS had comparable predictive power to
SBP, higher predictive power than other established risk factors
measured, apart from hypertension, and captured residual risk
not quantified by the established risk factors. In anticipation of a
potential role in early screening, we estimate the risk reduction
through modifiable stroke risk factors across different metaGRS
backgrounds, and further show that current guidelines for stroke
risk factors may be insufficiently stringent for individuals at high
metaGRS.

Third, we explicitly modelled how changes in modifiable risk
factors, such as SBP and BMI, can compensate for high genomic
risk. Previous research has demonstrated that intervening on
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Fig. 5 Predicted cumulative incidence of ischaemic stroke. Shown is the predicted cumulative incidence of IS in subjects with either (a) high levels of the
metaGRS along with different risk factor levels (red: outside the guidelines; cyan: within the guidelines); or (b) risk factors within accepted guidelines along
with different levels of the metaGRS (cyan: top 1% of the metaGRS; grey: middle 50% of the metaGRS; dark blue: bottom 1% of the metaGRS). Results are
based on the UKB validation set, excluding prevalent stroke events (n=390,849). Error bars represent 95% confidence intervals.

modifiable risk factors can compensate for increased genetic risk
of disease?1:37. However, these analyses relied on simply counting
the number of elevated risk factors, which does not account for
the differences in effect size between various risk factors.
Importantly, our approach was flexible in that various combi-
nations of risk factor reductions can lead to the same outcome in
terms of risk.

Our approach shows, for different genomic risk backgrounds,
how modifiable risk factors could, in principle, be tailored to an
individual’s ability to reduce an established risk factor(s) while
maintaining an overall acceptable level of absolute risk. Similarly,
this approach could potentially be used to guide early prevention
of stroke: identifying individuals at increased risk early in life,
who would then be targeted for more intensive lifestyle mod-
ifications, similar to the roles that have been proposed for genetics
in cancer risk stratification38. Unlike most established risk factors
which may vary over time and are typically not informative at an
early age, the metaGRS remains stable and can be derived from
birth. Later in life, when measurements of established risk factors
are available, these can be further combined with the metaGRS to
give the most accurate prediction of a person’s risk of incident
stroke. Further research is required to determine what levels of
risk factor reductions will be achievable and cost effective in
practice.

Lastly, even for individuals within risk factor levels recom-
mended by current guidelines (SBP < 120, BMI < 25, not currently
smoking, no diagnosed diabetes), our models predict substantial
differences in risk between different metaGRS levels. These results
suggest that for individuals with high metaGRS, achieving cur-
rently recommended risk factor levels may not be sufficient and
that it is time to contemplate whether future guidelines on pri-
mary and secondary stroke prevention should integrate genetic
information when defining treatment goals for high-risk indivi-
duals. Ultimately, the practical implications of these results to
stroke risk screening in the general population will require public
health modelling, taking into account what is considered ‘high
risk’ of stroke in the context of each country and health system,
and the efficacy of interventions or treatments that are available
for risk reduction.

Our study has several limitations. Compared with GRS for
other common conditions, such as CAD?!, the performance of
our metaGRS for stroke is limited. A likely reason is that stroke is
more heterogeneous and that GWAS sample sizes for mechan-
istically defined stroke subtypes are still limited in comparison
with other diseases. As stroke GWAS progress, GRS will become
more powerful3®40, We did not observe substantial advantage
from incorporating GRSs based on GWAS summary statistics
for specific IS subtypes (LAS, CES, SVS) over that of IS as a
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whole; however, we were not able to examine subtype-specific
outcomes in the UKB due to the lack of such detailed informa-
tion. There may still be benefit from developing subtype-specific
scores that take advantage of the unique genetic architecture of
each subtype?!. The number of older individuals (>75 years) in
UKB is limited at this stage, reducing our ability to model stroke
risk in the age strata where the majority of events occur.
Furthermore, the duration of follow-up in UKB is relatively
limited and, because of the limited number of assessments, we
could not model the cumulative effect of BP and smoking
over time; however, we accounted for potential regression
dilution bias in SBP measurements via the use of diagnosed
hypertension, which showed stronger associations with stroke.
Family history of stroke in UKB may be less comprehensive
than in stroke-specific studies, limiting its predictive power,
and overall the UKB study population is healthier than the
general UK population*?, which could have led to under-
estimation of some of the effects of risk factors. Further inde-
pendent validation of the stroke metaGRS in other cohorts would
be necessary before considering its clinical use; however, this is
challenging given that the majority of available stroke GWAS
studies have been included in MEGASTROKE. Nonetheless,
recent successful validation of our previous CAD metaGRS?! in
French-Canadian cohorts*3 suggests that scores developed on the
UK Biobank are generalisable to other cohorts of European
ancestry. Our modelling assumes that risk factors, such as SBP
and BMI, can be varied independently of each other. In practice,
common lifestyle interventions such as exercise and diet will
likely affect several risk factors at a time. Finally, this study
focused on British white ancestry and it is yet unknown what
performance is achievable in individuals of different ancestry;**
successful development of scores in non-Europeans will require
both stroke GWAS summary statistics from non-Europeans as
well as sufficiently large prospective studies of stroke on which to
validate these scores.

Taken together, despite challenges in phenotypic heterogeneity
and corresponding GWAS power, our study presents the most
powerful IS genomic risk score to date and assesses its potential
for risk stratification in the context of established risk factors and
clinical guidelines. It lays the groundwork for larger GWAS of
stroke and its multiple subtypes as well as analyses which leverage
the totality of information available for stroke genomic risk
prediction.

Methods

Study participants. This study was conducted under the UK Biobank project
#26865, under the approval of the North West Multi-centre Research Ethics
Committee (MREC) in the UK. All participants of UK Biobank provided written
informed consent.

The UK Biobank (UKB) study?*3? included individuals from the general UK
population, aged between 40-69 years at recruitment. Recruitment included a
standardised socio-demographic questionnaire, as well as medical history, family
history, and other lifestyle factors. Several physical measurements (e.g., height,
weight, waist-hip ratio, systolic and diastolic BP) were taken at assessment.

Individual records were linked to the Hospital Episode Statistics (HES) records
and the national death and cancer registries. The age of event was age at the
primary stroke event (the diagnostic algorithm for stroke in UKB can be found at
http://biobank.ndph.ox.ac.uk/showcase/docs/alg_outcome_stroke.pdf; last accessed
11/04/2019).

We defined stroke risk factors at the first assessment, including: diabetes
diagnosed by a doctor (field #2443), BMI (field #21001), current smoking (field
#20116), hypertension, family history of stroke, and LDL cholesterol. For
hypertension we used an expanded definition including self-reported high BP
(either on BP medication, data fields #6177, #6153; or SBP > 140 mm Hg, fields
#4080, #93; or DBP > 90 mm Hg, data fields #4079, #94) as well as hospital records;
for registry cases, we use HESIN (hospital admission) and death registry data
including both primary and secondary diagnoses/causes of death (HESIN: ICD9
401-405, ICD10 110-115; death: ICD10 110-I15, data fields #40001, #40002). For
family history of stroke, we considered history in any first-degree relative (father,
mother, sibling; fields #20107, #20110, and #20111, respectively).

For individuals on BP-lowering medication, we adjusted SBP by adding
+15 mm Hg as per Evangelou et al.1%%>. We used LDL-cholesterol from the UKB
biomarker panel, measured at first UKB assessment. For individuals on lipid-
lowering medication at the time of assessment (n = 66,737), we adjusted the
measured LDL-cholesterol level by +1.5 mmol L~1.

We excluded individuals with withdrawn consent, self-reported stroke at age
<20 years due the potential unreliability of these records, and those not of British
white ancestry (identified via the UKB field ‘in.white.British.ancestry.subset’?%),
leaving a total of n =407,388 individuals. We censored the age of stroke at
75 years.

Genotyping quality control. The UKB v2 genotypes were genotyped on the UKB
Axiom array, and imputed to the Haplotype Reference Consortium (HRC) by the
UKB;?? SNPs on the UK10K/1000Genomes panel were excluded from the current
analysis. Imputed genotypes were converted to PLINK hard calls. For the initial
GRS analysis, we considered genotyped or HRC-imputed SNPs with imputation
INFO > 0.01 and global MAF > 0.001 (14.5 M autosomal SNPs). A further QC step
was performed on the final metaGRS (see below).

Generation of the metaGRS. We randomly sampled n = 11,995 individuals from
the UKB dataset, oversampling individuals with AS events, leading to 2065 indi-
viduals with AS (of which 889 were also IS events) and 9935 non-AS referents. This
subset was used for developing GRSs, and was excluded from all further analysis.
Five individuals were later removed due to withdrawn consent.

Using the UKB derivation set, we generated 19 GRSs for phenotypes associated
with stroke (Supplementary Table 1). To minimise the risk of over-fitting due to
overlap of individuals between the GWAS meta-analyses and the UKB validation
dataset, we selected GWAS that did not include the UK Biobank in their meta-
analysis.

The three CAD GRSs (46K, IKGCAD, FDR202) were generated previously
using an n = 3000 derivation subset of the UKB (included in the larger n =
11,995 subset employed here);?! briefly: (i) the 46K score was derived by LD
thinning of the Metabochip summary statistics;*® (ii) the IKGCAD was derived by
LD thinning of the 1000Genomes CAD summary statistics;*’ and (iii) the
FDR202 score was from the 1000Genomes CAD summary statistics, consisting of
SNPs with associations at false discovery rate < 0.05. The AF GRS was derived from
a GWAS of AF*8 using a pruning and thresholding approach. For the remaining
GRSs, we used published summary statistics to generate a range of scores based on
different r2 thresholds with PLINK*® LD thinning (-indep-pairwise), and selected
one optimal model (in terms of the largest magnitude hazard ratio), resulting in
one representative GRS for each set of summary statistics.

Each GRS was standardised (zero mean, unit standard deviation) over the entire
dataset. Next, we employed elastic-net logistic regression®” using the R package
‘glmnet™! to model the associations between the 19 GRSs and stroke, adjusting for
sex, genotyping chip (UKB vs BiLEVE), and 10 genetic PCs. A range of models
with different penalties was evaluated using 10-fold cross-validation. The best
model, in terms of highest cross-validated AUC (area under receiving-operating
characteristic curve), was selected as the final model and held fixed for validation in
the rest of the UKB data. The final adjusted coefficients for each GRS (odds ratios)
in the penalised logistic regression are shown in Supplementary Fig. 1, in
comparison with the univariate estimates (based on one GRS at a time).

The final per-GRS log odds y;, ..., y19 were converted to an equivalent per-SNP
score via a weighted sum

m
GRS oc Y, (o + e +22a), (1)
£

where m is the total number of SNPs, 0, ..., 019 are the empirical standard
deviations of each of the 19 GRSs in the derivation data, ajj, ..., &9 are the SNP
effect sizes (from the GWAS summary statistics) for the jth SNP in each of the
GRSs, respectively, and x;; is the genotype {0, 1, 2} for the ith individual’s jth SNP.
A SNP’s effect size aj; was considered to be zero for the kth score if the SNP was
not included in that score. This resulted in 3.6 million SNPs for inclusion in the
metaGRS.

We conducted a sensitivity analysis to evaluate whether stricter quality control
filtering would impact the performance of the metaGRS; removing SNPs with
imputation INFO < 0.4 and MAF < 0.01 did not substantially affect the association
of the metaGRS with stroke, hence, we selected the metaGRS with stricter QC as
the final score, bringing the total number of SNPs to 3.2 million.

Evaluation of the metaGRS. The metaGRS developed using the derivation set was
held fixed and evaluated in the UKB validation subset (n = 395,393) using a Cox
proportional hazard model. We conducted complete case analysis due to the low
proportion of participants with any missing values for the seven risk factor vari-
ables of interest (5.1% of participants).

Age was used as the time scale in the Cox proportional hazard regression. The
regression was stratified by sex and weighted by the inverse probability of selection
into the validation set, together with robust standard errors (R package
‘survival2). All analyses were adjusted for chip (UKB vs BiLEVE) and 10 PCs of
the genotypes (as provided by UKB2?). For analyses of incident stroke, age at UKB
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assessment was taken as time of entry into the study. Cox models of the metaGRS
did not show deviations from proportional hazard assumptions, based on the
global test for scaled Schoenfeld residuals (P = 0.32).

The predicted cumulative risk curves (as a function of time t) were calculated
using ‘survfit.coxph’ within each stratum of sex as

1-S(1)=1- exp(fﬁo(t)exp<xT[§>>, (2)

where S(¢) is the cumulative survival at time t, I/{\O(t) is the estimated baseline
cumulative hazard at time ¢, x is the vector of the predictor variables set to the values

of interest, and E is the vector of the estimated log hazard ratios for each predictor.

We performed a sensitivity analysis testing whether the association of the
metaGRS with IS was affected by familial relatedness in the validation set.
Relatedness analysis was done using KING®3 v2.1.4, based on ~784,000 autosomal
SNPs measured on the Axiom chip, identifying n = 336,643 participants in the
UKB validation set with kinship more distant than that of 2nd degree. There was a
negligible difference in the association between the metaGRS and stroke in the full
UKB validation set and within this distantly related subset of individuals.

Calibration of the metaGRS risk score was evaluated by fitting logistic
regression models of the metaGRS (adjusting for sex, chip, and 10 genetic PCs) in
the derivation set, predicting the absolute risk of event in the test set (allowing for
the 9.38-fold lower observed baseline rate of events between the testing set
compared with the derivation set), and evaluating the proportion of test set
individuals with stroke events within each decile of the predicted risks
(Supplementary Fig. 9). Pointwise confidence intervals were obtained via the
binomial test for proportions.

We estimated the heritability of IS explained by the metaGRS, on the liability
scale, using the R? and partial R? obtained from linear regression of the stroke
outcomes on metaGRS (partial R? was from linear regression adjusted for sex, age
of assessment, genotyping chip, and 10 PCs). The estimates were converted to the
liability scale®, assuming that the IS prevalence in UKB represents that of the
general population (K = 0.008). Due to a lack of robust estimates of the heritability
of stroke, we examined a range of plausible 42 values from 0.1 to 0.4, yielding
estimates of explained heritability ranging from 7.7 to 1.8%, respectively
(Supplementary Fig. 10).

We performed sensitivity analysis to assess the effect of potential geographical
stratification within the UKB> on the metaGRS. We compared the original
metaGRS with residuals of the metaGRS regressed on (i) the first 10 PCs, (ii) first
10 PCs and natural cubic splines of the geographical north-south coordinates and
east-west coordinates (3 degrees of freedom each), (iii) the first 30 PCs and splines
of the coordinates, (iv) first 10 PCs and a thin-plate regression spline (TPRS)
representing smooth interactions between the two coordinates®, and finally (v)
also adding the UKB assessment centre (Supplementary Fig. 11a). For the
unadjusted score, we observed some variation across the north and east coordinates
(up to 0.4 standard deviations), however, adjusting for PCs and the coordinates
attenuated this variation substantially, with the TPRS method eliminating it
completely. Despite the attenuation in geographical stratification, we observed
negligible change in the association of the residuals of the scores with IS events
(Supplementary Fig. 11b), indicating that any geographical stratification in UKB
was not driving the metaGRS’s association with stroke.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The SNP weights for the ischaemic stroke metaGRS are available at https://doi.org/
10.6084/m9.figshare.8202233.

The UK Biobank genotype and phenotype data is available on application to the UK
Biobank project at http://www.ukbiobank.ac.uk.
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