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ABSTRACT

The life and research work of Professor R.L. Dobrushin (1929-1995) had a
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mathematical physics. The paper contains a biographical note, a review of
Dobrushin’s results, and a list of his publications.
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1. A Foreword

In the autumn of 1995, the mathematical community was shaken by the news from Russia
that Roland Dobrushin had died of cancer on November 12 at the age of 66. He was at the peak
of his creative powers; a number of his papers were in print or preparation. It is impossible to
know how many other works were in conception. We hope that his colleagues and pupils will be
able to reconstruct at least some of his ideas. Dobrushin’s energy during the last period of his life
is also demonstrated by the extensive travel he undertook in 1995 when he was already seriously
ill. Among other meetings, he attended the Conference in Mathematical Physics (Aragats, Armen-
ia, May 1995); the 23rd Bernoulli Conference on Stochastic Processes and Their Applications
(Singapore, June 1995); and the “Probability and Physics” Conference (Renkum, The Nether-
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lands, August 1995). He was planning to spend the autumn of 1995 in the Schrodinger Institute
in Vienna collaborating with several of his co-workers.

It is difficult to assess the scale of the loss to mathematics in general (and Russian mathema-
tics in particular) occasioned by his death. Dobrushin’s enormous contribution to modern mathe-
matics is not confined to his publications. He was a man who generated a special mathematical
aura. Everybody within his orbit who had the slightest talent for creating new mathematical re-
sults was quickly included in active and absorbing research. Such research was always deeply
motivated (important for newcomers) and conducted to the highest standards. For many mathe-
maticians the subject they began to work on with Dobrushin became their main topic of fruitful
research for years, if not decades, to come. His ideas and views, like waves in water, percolated
(and continue percolating) throughout the mathematical community, not always recognized as ini-
tiated by Dobrushin. Alas, the source of the waves is no longer with us.

A number of events dedicated to Dobrushin’s memory have taken place or are planned, e.g., a
session of the Moscow Mathematical Society, (April 1996), the conferences at the Schrodinger
Institute (Vienna, September 16-20, 1996), and INRIA (Versaille-Rocquencourt, October 21-25,
1996). Obituaries and biographical articles 3, 9, 35, 62, 70, 98] have been published; a number of
journals are to have special issues in his memory. The present paper is an attempt to describe
some of his research contributions; we have tried to make the material accessible to a large proba-
bilistic audience, maintaining at the same time the necessary level of mathematical rigor. We
pay special attention to the origins of his main ideas and to a retrospective analysis of his
methods. We believe that these are important issues that have perhaps not been discussed in
detail in the literature so far. A brief biography is provided, where we focus on several aspects of
his life. Dobrushin’s personality had a huge impact on entire fields of research in Russia and
abroad. @ We understand that our comments are inevitably one-sided and selective; it is
impossible, within the limits of a single article, to analyze in depth his influence upon the modern
state of research.

We also give a complete list of Dobrushin’s published works. In the case of Dobrushin’s

papers originally published in Russian and officially translated to English, we refer to the year of
Russian publication.

The references to the translated Russian papers by other authors are to their English transla-
tion. In general, while referring to the Russian papers, volumes, the names of the authors and the
titles of the journals, periodicals and volumes are reproduced in the Russian transliteration,
whereas the titles of the papers are given in the English translation. We apologize to the reader

for possible divergency with other translated versions of the same Russian titles which may exist
in the literature.

Commenting on the papers in which Dobrushin was a co-author, we give his name only (for
which we apologize to his numerous co-workers). This is merely for the sake of unity of style.
However, it should be noted that, at least in our experience, he was always the natural leader of a

team, without being patronizing. His ideas almost always worked well, and his picture of the
final result was astonishingly correct.

2. A Biographical Note

Dobrushin, who was of German, Jewish and Russian origin, was born on July 20, 1929, in
Leningrad (now St. Petersburg). His parents died when he was a child and he was brought up by
relatives in Moscow. His mathematical abilities were noted at school, but it is not known
whether his school interests were confined to mathematics. However, it is a fact that he
successfully took part in Mathematical Olympiads, a popular competition open to talented school
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children in which they had to solve specially selected and prepared questions (the term “olympiad
problem” in Russian mathematical jargon describes a particular style of question at these
competitions). An episode occurred when, in the course of solving an olympiad problem,
Dobrushin had to use an axiom about a partition of a plane by a single line, which he was not
aware of at the time. As a result, he wrote in his solution that, much to his embarrassment, he
did not know what a straight line was, a remark noted by the examiners.

After finishing secondary school in 1947, Dobrushin applied for admission to the Department
of Physics (Fiz-Fak) of Moscow State University (MSU). However, he failed to pass the entrance
examination, although apparently not on the basis of his abilities or knowledge of the subjects.
This was during the period of rising anti-Semitism in official propaganda. The Soviet authorities
were particularly sensitive about admitting Jews to this department, where a large number of
future nuclear scientists were trained.

Nevertheless, he was able to gain admission to the Department of Mechanics and Mathema-
tics (Mekh-Mat) of MSU. From the beginning he took an active part in a student seminar series
run by Dynkin. Here, he acquired a deep interest in probability theory and a particular probabi-
listic style of thinking which often distinguishes great scientists in the field. After graduating in
1952, Dobrushin was admitted as a research student, with Kolmogorov as supervisor. Once
again, he had great difficulty in obtaining this studentship, for reasons unrelated to his research.
It is well known that Kolmogorov had to use all his influence to have him admitted. Many excell-
ent mathematicians who graduated from MSU at around the same time, did not get research stu-
dentships.

In 1955, Dobrushin completed and defended his Ph.D. thesis, “A Local Limit Theorem for
Markov Chains.” He was then given a position at the Probability Section of Mekh-Mat. In 1956,
he was awarded the prize of the Moscow Mathematical Society for young mathematicians, a
prestigious award (though modest in material terms) that marked many future celebrities of
Soviet mathematics. Dobrushin’s thesis improved a series of theorems of his predecessors, among
whom one can mention Markov, Bernstein and Linnik.

The fifties were a time when information theory emerged and quickly progressed, following
the works of Shannon. Dobrushin also became interested in this area. We can only guess what
moved him in this direction. Such a decision might have been influenced by Kolmogorov who ad-
vised young mathematicians to work in the new fields of probability theorem. However, one
could suppose that Dobrushin was attracted by a striking “critical point” phenomenon discovered
by Shannon about the error probability in decoding a long message. Dobrushin studied general
conditions under which such a phenomenon holds; as before, he found a concept that is essential
for the validity of Shannon’s theorems, the so-called information stability. = Working on these
problems, he spent a large part of his time on propagating the ideas and methods of information
theory (he always took seriously the task of popularizing new ideas and was indefatigable in this
capacity). He edited the information theory section of Soviet Mathematical Reviews and began
running a seminar series in the recently created Institute for Problems of Information
Transmission (IPIT) of the then USSR (now Russian) Academy of Sciences. He ran this seminar
series until his final days and took his duties extremely seriously. In 1962, he prepared and
defended his doctorate on his results from Shannon’s theory. His doctorate was awarded at the
Moscow Institute of Applied Mathematics of the AS, where the mathematical part of the Soviet
space program was developed at that time.

In the early sixties, Dobrushin felt that the subject of information theory was beginning to be
exhausted, although he continued, with some interruptions, publishing papers in the field until
the late seventies. According to his colleagues and friends, he had similar feelings about many
areas of “classical” probability theory. Conceding that the whole stream of works in classical direc-
tions, rich in results and traditions, served an important purpose in constructing a unified theory,
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he came to the conclusion that focusing on traditional approaches somehow slowed down the de-
velopment of completely new fields. He gave much thought to this problem and voiced his dissat-
isfaction with the situation to his colleagues. His frequent conversations with one of the authors
of this paper (R.A.M.) were directed towards fundamental questions of statistical mechanics, in
particular, the problem of phase transitions. In general, his intention was to find common ground
between physics and probability theory (recall his attempt to be admitted to Fiz-Fak of MSU).

The second half of the fifties and the beginning of the sixties saw the start of a political thaw
which, however incomplete and contradictory, irreversibly changed people’s outlooks and created
a spirit of independence and in many cases, defiance of official doctrines. The future dissident
movement was founded in this spirit of defiance, as well as a general nonconformist attitude wide-
ly popular among scientists, writers, painters, and other members of the intelligentsia, especially
in Moscow and Leningrad. However, the regime was still a powerful structure and it had many
supporters who, for one reason or another, were prepared to oppose changes and close their eyes to
repressive measures against those critics of the system who dared to go too far. Dobrushin had a
socially active mind and a very strong and independent personality. Together with his deep con-
viction that democratic principles should be introduced into Russian society, this inevitably put
him on a collision course with officialdom and its supporters. The story of his confrontation with
the huge repressive machine is worth a separate article; here we mention the facts only.

In the autumn of 1956, a group of Mekh-Mat students made public a few copies of a typewrit-
ten literary bulletin. An early example of samizdat, there were among its authors and distribu-
tors names that left their mark on the future development of Russian mathematics. From a con-
temporary viewpoint, the bulletin’s contents were innocuous. They included a speech by a popu-
lar Soviet writer in which he criticized several of his colleagues hiding an obvious lack of talent be-
hind the orthodoxy of “socialist realism”, excerpts from John Reed’s essay on Trotsky (who, until
the Fall of 1991, was considered a political evil of Soviet history), and a number of verses by
young poets denied publication in the tightly controlled official magazines. The authors of the
bulletin were perhaps naive in thinking that the time of long-awaited freedom had arrived.

This made the Mekh-Mat authorities nervous. The Soviet Army had just invaded Hungary
to crush reform, and there was a danger of confrontation in the Middle East over Nasser’s nation-
alization of the Suez Canal. In this situation, it was decided that the bulletin should be treated
as an “outside enemy’s” activity. (It should be noted that some prominent Makh-Mat members
were outraged by the bulletin, primarily not because they disagreed with its contents or with the

fact of its distribution, but because they were afraid of official repressions against the depart-
ment.)

The departmental authorities summoned a meeting of the staff and students with the declar-
ed objective of “condemning” and “punishing” the “moral mutineers”, but in reality to demon-
strate “unanimous approval” of the official line at this complicated period. Such meetings were
part of a long tradition in Soviet political life, and their scenario was tested and improved count-
less times, although in post-Stalin times, enthusiasm for condemnation was not as great as it had
been. Speakers, carefully selected by the organizers in advance, duly denounced, with various de-
grees of histrionic severity, the heretics, and some of the accused demonstrated various degrees of
repentance. However, the planned course of the meeting was disrupted by Dobrushin’s speech, in
which he declared that the bulletin was a manifestation of the eternal principles of freedom, and
the authorities could only benefit if everybody were free to speak their mind. The absurdity of

the proceedings immediately became clear to all present, and the authorities, to their outrage, lost
control of the meeting.

However, Dobrushin’s words cost him (and not only him) dearly. The local Communist
Party bosses insisted that he should be fired. This was opposed by Kolmogorov, but even his in-
fluence had limits. There was no way for Dobrushin to be promoted, and he was not permitted
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to travel abroad, except to some countries under Soviet domination. (The system invented a spe-
cial term for such a category of people; very loosely it can be translated as “non-voyager”, more
precisely, “voyager to Socialist countries exclusively.”) All this could not prevent him from con-
tinuing to defy the authorities. He was a co-signatory of almost all the protest letters that
circulated in Moscow in the 1960s.

With time, the repressive side of the regime prevailed, and Dobrushin’s position at MSU be-
came precarious. At the beginning of 1967, he left Mekh-Mat and accepted an offer from the Insti-
tute for Problems of Information Transmission. He organized a laboratory at IPIT and worked as
its head until his death. The main direction of research in his laboratory was initially informa-
tion and coding theory. He later added the theory of complex stochastic systems which embraced
his emerging interests in statistical mechanics and queueing network theory (see below). He also
taught part-time at the Moscow Physical and Technical Institute (Fiz-Tekh) where he held a pro-
fessorship from 1967 to 1992. He took an active part in editing Problems of Information Trans-
mission which under him, became a well-known and respected journal. It must be mentioned
that the leadership of IPIT showed great courage in giving him such a prominent position, partly
explained by the different atmosphere prevailing in many institutes of the Academy of Sciences
(AS). There was traditionally a strong liberal spirit in these places, and numerous dissidents and
refuseniks enjoyed the loyalty of colleagues and the administration. There was also a general
inertia of the machinery of repression which made for greater freedom.

As the head of the laboratory, Dobrushin showed an extraordinary ability to recruit talented
young mathematicians and direct their work in a wide variety of problems. The climate he creat-
ed was extremely favorable for genuine intensive research and encouraged mutual sympathy and
friendship between the staff. Despite its relatively small size (about ten people), the laboratory
achieved prominence in several fields of mathematics. One member was awarded a Fields Medal,
another received the prize of the European Union of Mathematicians, a third, the distinguished
prize of the IEEE. In general, Dobrushin’s presence always created an atmosphere of good spirits,
a desire to learn and produce new work, and a readiness to help and share with others.

The period from the mid-sixties was the golden age of Dobrushin’s research career. Without
interrupting his work in information theory, in 1963, he along with Minlos, introduced a seminar
series at MSU, with the general aim of bringing statistical mechanics into the context of probabili-
ty theory. The following year, they are joined by Sinai and, for a short period, by Berezin and
Schwartz, and later still, Malyshev. The seminar series on statistical physics? became a forum
for intensive discussion of various problems in the new field and quickly gained an international re-
putation. A number of essential probabilistic concepts and constructions were created here which
describe the phenomena of statistical mechanics. Dobrushin’s main achievements during 1965-
1970 were the concepts of a specification and of a Gibbs’ random field. He understood that one of
the most important phenomena of interest in statistical physics, phase transition, is described as a
non-uniqueness of a Gibbs’ field with a given specification. He then gave a short and beautiful
proof of the existence of phase transitions in the Ising model and its modifications in dimensions
two and higher, and went further by investigating the structure of the set of pure phases in these
models. His main results in this direction are published in [1965a, 1966a, 1968a-c, 1970a-b,
1972a-b, 1973a-b, 1974c]. In our view, these papers are important not only because they laid the
foundation of the modern equilibrium statistical mechanics and solved a number of difficult
problems, but also (and perhaps mainly) because they contain or lead to many open questions
which we are sure will inspire future waves of research. It can be observed that many of his later
works inevitably became technically much more involved and less accessible for a wide audience.

Dobrushin’s results of 1968-1975 became instantly famous and attracted crowds of new re-
searchers from across the world. There were countless conferences and symposia and mutual

In this context, the terms statistical physics and statistical mechanics are interchangeable.
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visits where his theory was discussed at length and in detail. However, the author himself was
not able to put his foot beyond the Iron Curtain, although he was inundated with invitations. In-
stead, the stream of scientists from the Benelux countries, France, Germany, Italy, Japan, the
Scandinavian countries, Switzerland, the United Kingdom, and the United States came to see
Dobrushin in Russia or Soviet block states. Dobrushin’s case became a headache for Soviet offi-
cials, but the system remained adamant. A curious episode occurred when the papers about a
planned visit of an American colleague to IPIT arrived in the Institute during a very busy time.
The visitor’s name was misspelled in the course of translation to Russian, and Dobrushin in a
hurry did not recognize him. Consequently, the Institute did not give its approval and the visit
was canceled. In traditions of Cold War, the real cause of canceling the visit was not made
known to the American colleague, who suspected that the Soviet repressive institutions prevented
Dobrushin not only from going abroad, but also from meeting foreigners in his own country (such
measures were sometimes applied to people who fell in disgrace under the Soviet regime.) The
colleague gave an interview to Voice of America which was subsequently broadcast to the Soviet
Union. (In these days, the broadcasts from the West were regularly listened to by many in the
USSR. It was an alternative source of news to the official Soviet media.) Learning about the
broadcast, Dobrushin remembered the case. It took another year to make the visit possible, but
in the end, everyone was happy.

Working in an institute which specialized in the study of various aspects of information trans-
mission. Dobrushin naturally continued his own interest in these areas. By the mid-seventies, his
attention was mainly focused on problems in queueing network theory. Here, the object of study
is a collection of servers that process a “flow” of tasks (which depending on the context may be
messages, calls, programs, etc.) according to certain rules. The problems lie in assessing delays in
processing the tasks, loss probabilities, non-overload conditions, etc. Dobrushin approached these
problems by using analogies with objects from statistical physics. His influence in this field went
far beyond his published works and may be traced in numerous papers by his followers.

From 1988 when the Soviet Union entered the final phase of perestroika, Dobrushin was al-
lowed to travel without restrictions. With the change of political regime, he was also accepted
back at Moscow State University, where from 1991 to his death, he held a part-time professorial
position at the Probability Section of Mekh-Mat. In general, the character of research in the
USSR in many fields of mathematics and theoretical physics changed dramatically at that time.
The number of visiting scientists from the West went down whereas the opposite stream of visi-
tors from the Soviet Union became much more intense. The number of trips abroad and their du-
ration were considered by many as a sign of reputation and became a matter of competition. The
worsening economic and social situation forced the emigration, temporary or permanent, of lead-
ing and prominent specialists in practically all fields. The famous Moscow seminar series went
through hard times, and many of them ceased altogether. This was the case with the seminar
series in statistical physics. It continued with interruptions until 1994 and was then terminated.

In this situation, Dobrushin was one of the few whose enthusiasm remained constant. He was
a profound optimist by nature. Despite numerous offers, he never sought a permanent position in
the West although in 1994, he accepted an invitation to spend up to six months a year at the
Schrédinger Institute in Vienna. He traveled widely, but was always glad to return to Moscow.
He loved the city and the country, whatever it was called and whichever political force was in
power. After a period of protest in the sixties, he was not directly involved in any political activi-
ty, but continued to be deeply interested in politics, both inside Russia and abroad. He was a
great reader of journals and general and political magazines (e.g., during the Soviet era, he
regularly read Marxists magazines printed by leftist parties and groups in the West which he, at
some risk, managed to obtain from foreign friends and colleagues and kept in his flat). He evi-
dently had a very good understanding of the disposition of political forces. His predictions of poli-
tical events were always amazingly accurate.
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Dobrushin’s academic career at home developed in line with his status as a “non-voyager.”
The Mathematics Section of the USSR and then Russian AS did not elect him either a full
member or a member-correspondent; his candidacy was not even seriously discussed during
election campaigns. (To be precise, he never sought the election.) Despite his fame and
reputation, he was treated as an outsider by the Soviet mathematical officialdom, as were many
other outstanding mathematicians of his time. Partly this was due to anti-Semitism, partly to
the servility towards the Soviet system of some Academy members, and partly to the internal
rivalry between different groups of academicians. Dobrushin’s own anti-establishment attitude
did little to help him to become more popular with the Soviet academic elite. His staunch
reformist convictions were once more demonstrated in this address to the General Assembly of the
USSR AS in March 1990, at the high time of political debates on the future of the Soviet system
in general and the particular role of the Academy. This speech was enthusiastically greeted by
the large part of the audience which included young researchers but was met with skepticism by
the conservative part of academicians.

In 1982, Dobrushin was elected an Honorary Member of the American Academy of Fine Arts
and Sciences in Boston. High officials of the Soviet Academy of Sciences urged him to decline the
honor (it was the peak of the last period of confrontation of superpowers), but Dobrushin refused
to follow their “advice.” In 1993, he was elected an Associated Foreign Member of the USA Na-
tional Academy and in 1995, a Member of the European Academy.

Dobrushin served as a member of the editorial or advisory boards of Communications in
Mathematical Physics, Journal of Statistical Physics, Theory of Probability and Its Applications
and Selecta Mathematica Sovietica. He also edited a number of volumes of research papers of
Russian authors, both in Russian and English.

From 1991, Dobrushin increased the number of staff in his laboratory at IPIT, and greatly ex-
tended its research. It is now called the Dobrushin Mathematical Laboratory and carries out re-
search in a number of directions into information and coding theory, queueing network theorem,
mathematical physics and representation theory.

3. A Survey of Dobrushin’s Research History

3.1 Markov processes

In his first series of published papers, Dobrushin studied non-homogeneous Markov chains.
The main problem he was interested in is the central limit theorem (CLT) for this class of process-
es. As mentioned above, he invented a specific parameter known as the ergodicity coefficient
which describes a degree of “homogeneity” of a general Markov chain. Consider an array of ran-
dom variables

x( xM xM
x® x® x3,..,
(1)

Each row Xgn) Xg"),Xg"),. .. forms a Markov chain with the transition probabilities
Pg")(a,A) = [P’(Xi") 1EA] Xgn) =a). The ergodicity coefficient «,, of the nth row is defined by

[1 —sup | P{")(a, 4) — P{)(5, 4) ﬂ )
n a,b, A
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Dobrushin showed that

If the random variables in (1) are uniformly bounded and

1/3
ann

—00, (3)
then for array (1) the CLT holds true.

This result concluded a series of papers opened by a 1910 paper by Markov [63] who proved
the CLT for two-state chains under the condition

a, >a>0. (4)

The next step was made by Bernstein [12-14] who subsequently, in 1922, 1926 and 1928, obtained
the CLT, still in the case of two states, when

annlﬁ' € —00, (5a)

annl/s ~ ‘o0, (5b)
and

ann1/3 T ‘00 (6)

for any € > 0. In 1947, Sapogov [88] obtained the result where the chain again has two states and
obeys (3). For a general state-space, the CLT was proved under condition (5a) in [15] and (5b) in
[88]. For an arbitrary finite state-space it was proved under (6) by Linnik [60] in 1948.
Dobrushin [1956a-c] proved the CLT under condition (3) for a general “bounded” state-space
(e.g., an interval of a real line).

Dobrushin’s result may be treated as final (or close to final) because Bernstein [15] gave an
example in which oznn1 30 where the CLT does not hold (Dobrushin himself constructed an
example where the state-space of the Markov chain is the real line and the limiting law is not
Gaussian, but stable). It is worth noting that the previous statements were less elegant since they
did not use directly the ergodicity coefficient. As may be seen from the definition, «,, assesses
how different the probabilities of transition are, from different states into the same set; the CLT
holds when such a difference is not too large. In the proof of the CLT, Dobrushin uses martin-
gales; at that time such an approach was yet not widely popular. The idea used his papers may
be described by the word “contractivity.” In one form or another it was successfully used many
times in his subsequent papers.

Apart from the CLT, Dobrushin studied other problems from Markov chain theory. He ob-
tained necessary and sufficient conditions for the number of jumps of a non-homogeneous Markov
process to be finite [1954a]. He constructed an example of a Markov process with countably more
states each of which is instantaneous [1956d]. In a short note [1955b] he proved asymptotical
normality of the time that a symmetric random walk spends in a subset of Z. Paper [1956¢] was
a harbinger of his future interests. Let ¥, be a translation-invariant random point field in R¢
with a finite rate p. Assume that during the unit time each particle performs a random jump,
and the displacements of different particles are i.i.d., with probability density p(z), = € R%. Then

the random field ¥ generated at time n converges “weakly” to a homogeneous Poisson point
field ® with rate p.

At that time paper [1956¢] seemed rather atypical and did not give rise to systematic work in
this direction. However, the concept of an infinite particle system that emerged from this paper

had serious impact on his later research. From the end of the fifties onwards Dobrushin focused
on problems of information theory.

3.2 Information theory

One of the main problems of coding theory is: Given a “noisy” channel of information trans-
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mission, encode a text at the input port and decode it at the output port so that the error pro-
bability becomes negligible (or at least minimal). More precisely, suppose that a total of M
different “messages” is given, which are to be transmitted through a channel. To each message
one assigns a distinct codeword that is a sequence of n binary digits, n > log, M. The collection
M (= M,) of codewords is called a code (of length n); it is a subset of the set {0,1}" of 27
possible binary n-words.

In the course of transmission random errors occur; to start with, we assume that the statistics
of the channel is known, i.e., we know (for any n and any a € M and b € {0,1}") the probability
P(a|b) (= P(")(a | b)) to receive a word a given that a codeword b has been sent. A popular
example is a “memoryless” channel, where P(a|b)= []7_ w(a;|b;), a=(ay,..,a,), b=
(byy-.b,), a; =0 or 1; here, w(a,; | b,) is the probability of receiving binary symbol a; when b; has
been sent.

Suppose we use the maximum likelihood principle for decoding, according to which the re-
ceived word a is decoded by the codword b* that maximizes P(a|b) in b € M. (There exist both
rigorous and informal arguments in favor of such a decoder.) Call a number R € [0,1) a reliable

transmission rate (TR) if it is possible to vary M and n so that (i) M,n—o0, (ii) the ratio IOgnM

(called the transmission rate of code Ab) remains constant and equals R and (i7¢) the error-proba
bility max, c _/r[,[Za-.a # pP(a| b)] vanishes in the limit. Call the supremum C = sup[R: R a re

liable TR] the channel capacity. Then, by definition, the error-negligible transmission is possible
for R < C and not for R > C. How may one assess C or at least check that C > 07 The answer
was given by Shannon in 1948; we state it informally, following the original paper [89].

There exist a lower bound for C' (direct Shannon’s theorem) and an upper bound (converse
Shannon’s theorem), in terms of an asymptotical behavior of P(- | ) as n—oo. Under “natural”
assumptions on P(- | -) (e.g., for a memoryless channel) the lower and upper bounds coincide

(and may be calculated in terms of w(- | -)); moreover, for R < C the error-probability decays
exponentially.

As noted, Shannon result produced a strong impression at the time, in particular the exist-
ence (and a deep “physical” significance) of a “critical” value C. In his initial papers in informa-
tion theory, Dobrushin studied the possibility of extending Shannon’s theorems to a more general
set-up where the coding alphabet is arbitrary. He invented the above condition of information
stability which turns out to be sufficient for Shannon’s theorems to hold. He later extended the
theory to the case where the channel statistic is not known. Here is the result of [1975b].

Assume that the channel used for transmission is memoryless, but the symbol-to-symbol tran-
sition probability w(- | -) is not given (e.g., may vary from time to time); one knows only that it
belongs to a certain class W. The input symbols b; are from an “alphabet” X and the output
ones from Y; both X and Y are supposed to be finite (in the above set-up, X = Y = {0,1}).
Given a probability distribution p( = py) on X and w € W, set

I(p,w) = Z > 2 e xP(@)w(z, y)log w(z,y)

yey > e xp(Du(zy) 7 (M)
Cp( = CP(W)) :wnéing(paw% (8)

where W is the closed convex hull of W, and
C(=C(W)) = mrz;GCp. 9)

Suppose that at the input of the channel one has words a = (ay,...,a,) from X"; the total num-
ber of the input messages, as before, equals M. A code (more precisely, a coder-decoder pair) is
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defined as a set )
A={aD,B):i=1,..,M} (10)

where a()eX" B, CY" and a #a(J B,NB;=0, 1<i<j< M. If one receives a word
be B, it is decoded as a). The average error probablhty, given that the channel statistic, while
transmitting the sth digit, is determined by w, € W, s = 1,...,n, equals

M n .
e(A,w) = _]ll/f Z Z H ws(agl),ys), W= (Wy,...,w,). (11)

i=1 (yg...y,)€B;, s=1
The average error-probability of code A for a given class W is

e(A) =sup_e(A,w). (12)
wE W

The [1975b] theorem states:
For any probability distribution p on X satisfying some additional condition, for all R <

CP(W) there exists X such that, for 0 <A< X and all n large enough, there exists a code A of

length n and size M = [Q"R] and with e(A) < A. Conversely, for a% v >0, any A between 0 and

1 and all n large enough there is no code of length n and size | 2" +7) with e(A) < A

We do not go into detail of the additional condition on p. This condition is not just
technical. [1975b] gives examples where both the condition and the assertion of the theorem fail.
However, this condition apparently excludes only some “degenerate” variety of cases.

The above results are only a part of Dobrushin’s activity in information theory. We briefly
mention some others:

(¢)  Dobrushin discovered (and used) an elegant formula for mutual entropy [1959b]:

I((&m), Q) + 1(&m) = I(n;(€,€)) + 1(&, Q). (13)
Despite its simplicity, it had not previously been noted in the literature.
(b) He studied the capacity and e-entropy for some classes of channels and sources [1958¢],

[1963d].
(e) He established the dependence of the logarithm of the optimal error-probability as a
function of code length [1960c], [1962b].
(d)  He studied sequential decoding [1964a).
Dobrushin’s last work [1987¢] which was strong connections with information theory was devoted
to the e-entropy of Gibbs’ random fields for high temperatures.

3.3 Equilibrium statistical mechanics and the theory of random fields

The problem Dobrushin focused on at the beginning of the sixties was the construction of pro-
babilistic models of matter (gas or solid) exhibit the phenomenon of phase transitions. An impor-
tant role in his studies was played by [75] where a “physical” argument is developed showing that
the Ising model of a lattice ferromagnet should exhibit a phase transition when the dimension of
the lattice is two or higher. Notable publications were [81-83], developing useful tools for des-
cribing a state of an infinite physical system. Dobrushin was of course, aware of the famous
works [74] and [44] (and a number of later papers, e.g., [58]) giving the exact solution of the two-
dimensional Ising and related models. However, he deliberately (and somewhat demonstratively)
avoided the route of exact solutions, believing a qualitative theory to be the true path towards

understanding complicated phenomena. This attitude was typical of him in other fields of re-
search.

In [1965a, b] and [1966a] Dobrushin produced the first (and rather complicated) version of the
proof of the existence of phase transition in the Ising model dimension two and higher.
Alternative or similar arguments and proofs were given in [10, 24, 30] and [67]. In [1968a]
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Dobrushin developed a general approach to the concept of phase transition as the non-uniqueness
of a random field with a given system of conditional probabilities (or a given specification, as it
was later called). In [1968b, c] and [1969a] he put this problem in the context of various models
in statistical mechanics and in particular gave a new proof, short and beautiful, of the existence of
phase transitions in Ising-type models. It is this proof, refining the original Peierls argument,
which is now presented in most textbooks and reviews to demonstrate the phenomenon of phase
transitions. Additional chapters in [1970a, b] extend this theory. Together with papers [20, 56,
57, 82, 83] and [86] (see also [64-66]), these papers formed the foundation for further rapid
development of the probabilistic approach to the equilibrium statistical mechanics (and later on,
Euclidean quantum field theory). See [22, 25, 61, 85, 91, 94].

The main tool to describe a statistical mechanics model is the above—mentloned concept of
specification. Fix a finite set X and consider the X-valued functions o: z¢ —»X on a d-dimensional
cubic lattice 7. Any such function is treated as a configuration of “spins” on Z the value of
o(t) gives a state of the spin assigned to the lattice site ¢ € 7¢. Similar definitions hold when 7¢
is replaced by its subset. In the Ising model X = { -1, + 1}, the value o(t) = + 1 corresponds to
the 4+ and o(t) = —1 to the — direction of a spin at t € Z%. The space of the configurations on

Z% is the Cartesian product XZ . It is endowed with a natural metric, and one considers the pro-
bability measures on the corresponding Borel o-algebra B. Any such probability measure P is a
random field (RF) on 7. According to Kolmogorov’s theorem, it is glven by a consistent family
of “finite-dimensional” probability distributions P7 on XA, where A C Z% is an arbitrary finite

set of lattlce sites (for many purposes it is enough to consider lattice “cubes” {— N, — N + 1,.
N-1,N } ).

A %pec1ﬁcat10n is defined as a consistent family of conditional probability distributions
PA(. |7 5c) on XA, given a configuration 7 ,c on the complement A¢ = Z%\A (called a boundary

condltlon for A). A natural “physical” way to define such a family is to (a) fix a collection of
functions

@ ,: XAR1, (14)
(b) define functions of two variables o, € XA and Tac€ xA° by
and (c) set A:ANAFD
PMo, | :—1_—exp —H (o |7,¢)] 16
( A | AC) ZA(UAC) [ A( A I A )] ( )
As before, A (and K) runs here over finite subsets of Z%; ¢ T V or~\ in (15) is a configuration

on A formed by “joining” two configurations, JAOK which is the restriction of o, to A NA and
t_rx \A which in turn is the restriction of 7,c to A \A (the latter is empty when X C A, in which
case 0~ \ Ex \A is simply o the restriction of o, to A ). The quantity ZA(ﬁAc) in (16) is a

normalizing constant called the partition function with boundary condition e

Zp@ o)=Y, expl—H\(¢,]7,0)] (17)
?I'JA € XA
All series in (15) are supposed to converge absolutely.

Pictorially, {®,(c;)} is a family of “multi-body” interaction potentials contributing to a
“conditional” energy H ,(- ]EAC) in A given boundary condition @,¢; the sum in (15) describes
the “energy” of interaction of spins o(t), t€ A, constituting o, plus the energy of their
interaction with spins 7 (%), ¢ € A°, constituting 7 \c An important observation is that the
distribution PA(- |0AC) favors the configurations o, with a minimal energy H(0A|¢7Ac) (in
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physical terminology they are called ground states). In the Ising model, ®, is non-zero only when
A is a one- or a nearest-neighbor two-point subset of 7

—p(t)Bo(t) if |A] =1and A ={t},
BJo(t)o(t')if |A| =2, A={t,t'}, and ||t —-t"|] =1, (18)

0 otherwise.

Pp(op) =

The constant @ > 0 is the inverse temperature of the system; the abundance of constants is
used to analyze in detail the behavior of the model in various physical regions. The first line in
(18) describes a one-body (or self-) interaction; physically, it corresponds to an external magnetic
field, and the value p(t) € R' measures the strength of this field at site ¢t € Z¢ (sometimes called
the chemical potential at site t). When u(t) > 0, the field favors the + and when u(t) <0, the
— spin at site ¢. The second line describes a two-body or binary interaction (or coupling) of the
pairs of nearest-neighbor spins (|| || stands for the Euclidean norm), and J € R! is called the
coupling constant. When J < 0, the interaction favors the pairs of neighbor spins to be of the
same sign (in which case, the model is called ferromagnetic or attractive) whereas J > 0 favors
them to be of the opposite signs (in which case the model is called antiferromagnetic or repulsive).

Continuing further with ground states (GS), one can speculate that in the ferromagnetic case
with a space-homogeneous magnetic field (i.e., p(t) = p), the GS on the whole 7% is o= —1
when 4 <0 and o = + 1 when p > 0; thus, in the absence of the magnetic fields when p = 0, one
has two “competing” GSs. See Figure 1.

\\ \\
+1] +1] +1] !
+1] +1] +1 a1 -1 1

+1] +1] [/ -1 -1 4

+1 o S]]
+1] +1] B IEE

/ /

Figure 1

On the other hand, in the antiferromagnetic case with an alternating field (u(t) = — p(t') if t,
t' e 2% are nearest-neighbor) the GS is a “chessboard” configuration where o(¢) has the same sign
as pu(t). Again, the case pu(t) =0 leads to two GSs that are distinguished by ¢(0), the value
assigned to the origin O. (See Figure 2.) Furthermore, in both cases, in the absence of the
magnetic field, the competing GSs exhibit a symmetry. They are transformed into each other by
“flipping” the values of the spin (i.e., changing them to their opposites) at each lattice site.
Finally, in the ferromagnetic model, the GSs are translation-invariant, whereas in the antiferro-
magnetic one translation-periodic and transformed into each other by a unit space shift. (In fact,

the above configurations do not exhaust the set of (suitably defined) GSs, but they suffice for our
immediate purposes.)
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Figure 2

Dobrushin’s tour de force was to treat a specification as a primary object, rather than the
random field. The question is: how many RFs are there with a given specification? Or, if the
specification was constructed as in (16), (17), how many RFs do correspond to a given “potential”
{®,}? He termed them Gibbs’ random fields with a given potential; in the case of the Ising
model one speaks of a Gibbs RF with given values of #, y and J. (An alternative term used in
the literature is Gibbs’ states; we prefer in this article to follow Dobrushin’s original terminology.)
The uniqueness of a Gibbs RF is treated as the absence of a phase transition and the non-
uniqueness as its presence. In this case, it is desirable to describe the structure of the set of RFs
with a given specification (reduced to a study of “extremal” or at least translation-invariant
“extremal” elements of this set.)3 In certain situations (e.g., when the single-spin space X is
infinite), the problem of the existence of a Gibbs RF also becomes non-trivial.

At the same time, the paper [56] moved in a similar direction. This explains the term
“Dobrushin-Lanford-Ruelle (DLR) state” (or DLR measure).

As noted, Dobrushin produced in [1968b, c] a concise proof of the following fundamental fact.

In the Ising model with zero magnetic field (i.e., u(t) =0), the Gibbs RF is unique when (3 is
small, B < B, (i.e., the temperature is high) and non-unique (that is, there are at least two such
RFs) when B is large, 8 > i (i.e., the temperature is low). Furthermore, for B > B° and J <0
one of these Gibbs RFs is “close” to the GS o = +1 and another to o = —1. Simularly, for
B> pB° and J >0 one Gibbs RF is close to the chessboard GS with o(O) = —1 and another to
that with 0(O) = + 1. Like the corresponding GSs, these RFs are translation-invariant in the
ferromagnetic model and translation-periodic in the antiferromagnetic one and are transformed
into each other by “flipping” the spins (and also by the unit space shift in the antiferromagnetic
case); as (o0, they converge to the degenerate probability measures sitting exactly at the
corresponding GSs. On the other hand, as ($—0, the (unique) Gibbs’ RF converges to the
Bernoulli RF, with the i.i.d. values o(t), t € Zd, taking values & 1 with probability 1/2.

The proof was based on an ingenious use of the so-called contour technique going back to
[75]. The gap between f, and (Y remains wide. It is believed that there exists a “critical” value
Bepy Bo < B < 82, separating the uniqueness and non-uniqueness regions. In his papers,
Dobrushin also gives a general sufficient condition of existence and uniqueness of a Gibbs’ RF for
a general X. We describe Dobrushin’s uniqueness condition for the case when X is finite.

3The picture of the structure of the set of Gibbs’ RFs drawn against the values of main

parameters (e.g., in the case of the ferromagnetic Ising model, # and p) is called the phase
diagram.
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Let oft), t € 7%, be non-negative numbers such that

D a(t)<1. (19)
{£0
Then, if the inequality for the “one-site” conditional probabilities

iy IP{t}(a(t) —z|7

ze X

)— P{t)(a(t) — 2|7 )\

24\ {¢{ 74\(1y

(20)
<Y a(u- 01 (w) £ 7 (w)

uezd:usﬁt

holds true for all tez? and all configurations @

— d .
d and &, on Z*\{t}, there exisis a
unique Gibbs’ RF with the specifications {PA}. Z°\{t} L°\{t}

Using this result, he was able to check uniqueness in a large variety of cases, including the
ferromagnetic Ising model with p(t)=p #0 and antiferromagnetic with u(t) = — u(t') # 0,
[|t—1t"|| =1, where the GS is unique. He also established uniqueness in a wide class of one-di-
mensional models (with d = 1) in [1973b] and [1974a, b].

Dobrushin returned to uniqueness problems in [1981a], [1983a], [1985a, b] and [1987a]. In
particular, in [1985a, b] and [1990c] a constructive uniqueness criterion was given which required
the verification of a finite, though possibly large, number of relations. Under this criterion, the
Gibbs’ RF had many “nice” properties, which were deemed a “complete analyticity.” Here,
Dobrushin’s earlier idea of contractivity played a crucial role.

In the non-uniqueness direction Dobrushin, following [67], extended the concept of a contour
and stated in explicit form the so-called Peierls condition [1974c]. This paper was an important
step towards the Pirogov-Sinai theory [77-80] (see also [23]) which gave a powerful method of
studying the low-temperature phase diagrams in the absence of symmetry.

One of the most impressive results achieved by Dobrushin in his study of the non-uniqueness
was the theorem for the existence of non-translation-invariant Gibbs’ RFs for the Ising model
with zero magnetic field in dimensions three and above. The point is that, say in the ferromagne-
tic case, the configuration o given by

o(t)= +1,if t = (t',...,t%) € Z¢ and t¢ > 0,

(21)

= —1,if t = (t},...,1%) € 7% and 1 < 0,
(see Figure 3) is also a GS, according to a “reasonable” formal definition. The question is whether
the configuration o in (21) “generates” a Gibbs RF in a way similar to the above translation-
invariant GSs. In [1973a] Dobrushin gave a positive answer for d >3 and ( large enough,
B> B> B Furthermore, as he believed, his results suggest that in dimension d > 3 there
should be another critical value ﬁir > f3., such that the non-translation-invariant Gibbs RFs
appear for 8 > ﬁir but not for g, < f < ﬁir. For the two-dimensional Ising model (d = 2) the
answer to the above question is negative, and for all § > 3, there are only two extremal Gibbs

RFs [1, 40]. Dobrushin came to a similar conclusion assuming that 3 large enough, but in a
wider class of two-dimensional models [1985¢].

Apart from the above series of results, Dobrushin progressed in a variety of other directions in
equilibrium statistical mechanics and related areas of probability theory. We give below a far
from exhaustive list of his activities.
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+1

-1

Figure 3

He analyzed logarithmic asymptotics of the partition function and their relation to the phase
diagram [1967a], [1972a], [1974d]. He also contributed to the study of the problem of equivalence
of ensembles [1977a).

He studied models with a continuous spin space X, producing spectacular results both for the
absence of phase transitions [1975a], [1978b] and their presence [1981b], [1986a]. He also
considered models with “non-standard” interaction potentials [1988b, c] showing unusual features
of phase transitions.

Investigating into the behavior at a critical point, he shaped the theory of auto-model (self-
similar) RFs. In particular, he found a new class of Gaussian auto-model (or self-similar) RFs
[1978a), [1979a], [1981c], [1988a].

In connection with the Euclidean quantum field theory, he established various properties of
Gaussian RFs [1979b, €], [1980a], [1983c, d]. We also mention an attempt to study the Euclidean
phase diagram of the two-dimensional boson P(¢), model. This attempt was unfortunately not
completed (after an announcement [1973c] there was no detailed proof published, and the credit
justifiably was transferred to [26-29] and [19] (see also [25])), but the by-products of these studies
filled the papers [1975¢], [1976a], [1978d] and provided a score of new results from the theory of
generalized Markov RFs on R4,

A striking example of Dobrushin’s creative ideas is connected with the problem of describing
specifications in terms of a potential. The question is whether the system conditional probabili-
ties of a Markov or “approximately Markov” RF can be written in a “Gibbsian” form (14)-(16)
for a suitable potential. In a sense, this may be regarded as an “inverse” problem to problem of
phase transition. The answer is yes, at least under “natural” regularity conditions on the specifi-
cation. See [5-7, 31, 51-52, 90, 95] and [99]. Dobrushin himself did not publish any result in this
direction, but his ideas were used in most of the related publications.

In the late eighties, Dobrushin began, following earlier works [68, 69], a detailed study of the
geometry of random shapes that separate different phases in the plane Ising model. Heuristically,
the way of describing such a shape was discussed in the last century by the Russian physicist
Wulff [101] (who proposed a rather general theory of shapes of surface tension). The rigorous
form of his theory for the two-dimensional Ising model was provided in the monumental papers
[1989b], [1992a, b] continued in [1993d], [1994c], [1995a, b] and [1996b]. The extension of this
approach to the Ising model in higher dimensions remains an open challenging problem.
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As a by-product of his studies in the Wulff theory in the late eighties, Dobrushin became deep-
ly interested in the large deviations approach to the theory of phase transitions [1992c], [1994c, d].
Dobrushin’s idea was that the famous Cramer transformation playing the crucial role in the
analysis of the large deviation probabilities is closely connected to the Gibbs representation (16).
In fact, he believed in a universality of the large deviations technique and tried to use it in var-
ious areas, including queueing network theory, see below.

3.4 Non-equilibrium statistical mechanics and processes with local interaction

At the end of the sixties, Dobrushin showed considerable interest in problems arising in the
theory of random automata networks. Initial impetus for research in this direction was given in
the sixties by Pyateckii-Shapiro and his co-workers who actively discussed related problems at a
seminar series at Mekh-Mat. In Dobrushin’s interpretation, with each site z of a lattice Zd, one
associates a random process %, with discrete or continuous time, and the conditional probability
m%(s | {s,}) for process n“ to be at time ¢ + 1 in state s given the states s, of processes n¥, y € z¢,
at the preceding time is determined by the s,’s with ||y —2 || < R, where Ry is a constant. (In
the continuous-time set-up, one has in mind the conditional rate of the jump of »* from s to s.)
Furthermore, the different processes n* evolve (conditionally) independently. One can say that
the whole family {n®,z € 7%} forms a Markov process 7 (with a continual state-space). Such proc-
esses were later called Markov processes with local interaction. In [1971a, b], Dobrushin gave a
formal construction of such a process and established sufficient conditions for convergence to an
invariant distribution. He also showed that the reversible invariant distributions are precisely
Gibbs RFs on Z% with a potential that is naturally calculated in terms of the conditional probabi-

lities {w®}. His papers are considered the origin of a theory that later became a well-established
field of probabilistic research, see [59].

Another direction of Dobrushin’s interests was the construction of the so-called non-equili-
brium dynamical systems of statistical mechanics. The problem is as follows. Consider a Hamil-
tonian system of equations in the d-dimensional Euclidean space

Sa,0= 1,0, i) = - gad % Vo 0-ul), (22)
: J
with the Hamiltonian

H({q,-,p,»})%;(pﬁt; V(lla; =l )). (23)

Here 1;,p; € R? are the positions and momenta of particles and V the pair interaction potential
depending on the Euclidean distance (the mass of a particle is taken to be one). A typical shape
of V(r), r >0, is given in Figure 4 below (the so-called Lennard-Jones type potential). The value
a >0 is the “hard core” diameter. The behavior of V for r ~ a reflects the repulsion when parti-
cles are near each other while decreasing as r—oo the decay of the interaction at large distances.
For r > a, V(r) is supposed to be smooth in r.

One is interested in solving the Cauchy problem for (22), with initial data (ID)

g;(0) = ¢% p,;(0) = pl. (24)
If the number of particles is finite, the solution of (22), (24) exists and is unique for a “massive”
set of ID {q?,pg} (exceptional cases are where || q(; — q(,)C || <a for some j # k and, depending on
the shape of V for r ~ a, some other “singular” ID (e.g., leading to triple collisions)). See, e.g.,
[76]. A similar assertion also holds where the particles are confined to a bounded domain D C R,
with the boundary condition of elastic reflection (or put on the d-dimensional torus Td).
However, in statistical mechanics, one considers the limit with an infinite system of type (22).

Hamiltonian (23) then becomes, as a rule, a formal expression, and the traditional way of proving
the existence and uniqueness of the solution of the Cauchy problem (22), (24) fails. In fact, it is
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possible to construct examples of ID for which the solution “blows” up or is not unique.

Figure 4

However, the following remark saves the day. For “large” systems, one is interested not in
the evolution of an “individual” ID, but rather of a probability distribution. That is, one is con-
cerned with having a solution to (22), (24) not for any ID, but for the set of ID supporting a
“natural” probability distribution.

First results in this direction were obtained in [53, 54] and (for a different class of systems) in
[55]). In particular, in [53, 54] the one-dimensional case d = 1 was considered, with a potential V
that was of a finite range (V(r) =0 for r > R;) and without hard core (i.e., with no singularity
for 0 <r <oo). The result was that the existence and uniqueness of a solution of an infinite
system (22) hold for a “massive” set of ID which have probability one with respect to a large
class of measures on the phase space of infinitely many particles. This set was described in
asymptotical terms, as well as the class within which existence and uniqueness hold.

The above restrictions on d and V were not considered to be natural, and many researchers
tried to remove them. An alternative approach was proposed in [93] and extended in a series of
papers completed with [81]. Here, dimension d was ultimately made arbitrary and the condition
on V allowed to include the potential of the type in Figure 4. However, the price to pay was that
the set of ID was made “less massive.” One could only guarantee that it had probability one
with respect to any Gibbs RF with potential V. Such a random field is defined and constructed
in a similar fashion to the lattice case discussed in Section 2.3. It turns out to be invariant (or
equilibrium) probability distribution under the shift along the solutions of (22). Owing to this
fact, results of this kind were referred to as equilibrium dynamical systems. In [1977b, c]
Dobrushin proposed a new construction of the solution to (22), (24) which allowed him to include,
in dimensions d = 1 and 2, “realistic” potentials V and establish the existence and uniqueness for
a set of ID having probability one with respect to a large class of measures, not necessarily equili-
brium ones. Up to now, these results have not yet been improved upon. In particular, Dobrushin

conjectured that in dimension d > 3 the problem of finding a “good” set of ID has a negative
answer.

After constructing a dynamical system of infinitely many particles, one naturally asks
whether it has “ergodic” properties of one kind or another. Dobrushin [1978c¢], [1985f], [1993b]
believed that “typically” such systems should exhibit convergence to a limiting distribution at
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large times, and the limit has to be a Gibbs RF with the potential V figuring in the original
system (22). He even produced a physical picture of such convergence. Formally, however, he
was able to check this fact only for some “degenerate” models [1979d]. We give here the
corresponding result for the so-called one-dimensional system of hard-rods. Equations of motion
may be formally written in the form (22), with d = 1 and the potential V(r) taking values 0 and

oo depending on whether > a or r < a where a > 0 is the diameter of a hard rod. See Figure 5
below.

Figure 5

Pictorially, the particles move on line R! freely when they are apart (i.e., 941—9;> a).
When they collide (i.e., Up1—9;= a) they exchange their momenta. Such a system may be con-
sidered completely integrable. The number (or fraction) of particles with a given momentum is
preserved in time. Dealing with hard rods, it is convenient to think of a “contraction” that re-
duces a hard rod to a point particle. The motion of the rods is then transformed into free
motion. Conversely, a “dilation” map transforms free motion into that of hard rods.

An equilibrium (invariant) distribution P for an infinite hard-rod system is a random marked
point process on the line R' with marks (momenta) from R! determined by the following
conditions:

(7) the distribution of the positions {q,} is translation-invariant, and, given that the origin
is “covered” by hard rod (i.e., |gq;| <a/2 for some i), the distances qj41—9;—a
between subsequent pairs of rods are (conditionally) i.i.d. and have an exponential
distribution of mean A ~1;

(it)  the momenta of the particles are i.i.d. random variables; their common distribution is
denoted by v.

The particle density under distribution P equals p :ﬁ. The above contraction and

dilation maps take this distribution to a Poisson marked process of rate A with i.i.d. marks and
vice versa.

As was proved in [2] and [92], the equilibrium dynamical system with an invariant measure of

the above type has (depending on v) good ergodic properties. Dobrushin extended such a picture
to a wider class of non-invariant measures. Namely:

Suppose Q 1s an arbitrary translation-invariant marked point process of density p and with an
individual momentum distribution v. Assume Q satisfies a condition of space mizing (see
[1979d]). Then the process Q, obtained from Q in the course of the hard-rod dynamics converges
as t—oo to the equilibrium distributions P with the same density p and momentum distribution v.
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The proof of this result was based on the aforementioned connection with the free motion for
which a similar convergence was established in [1979d], [1980e] in a wide situation (including any
dimension d > 1). As noted in Section 2.1, the main ideas here go back to [1956€].

Continuing further in this direction, Dobrushin pioneered the study of the so-called hydro-
dynamical limit (HL). This idea goes back to an earlier paper [71] (in the physical literature,
similar attempts may be traced to the thirties and forties. See e.g., [16] and references therein).
The problem is to establish a formal connection between system (22) describing the motion of
particles (i.e., dynamics at the micro-level) and hydrodynamical equations (Euler and Navier-
Stokes) describing the “collective” motion of a fluid or dense gas medium (i.e., a dynamics at a
macro-level). The existing ways of deriving Euler and Navier-Stokes equations are essentially
heuristic; to various degrees the same is true of other so-called kinetic equations (except for the
Vlasov equation which Dobrushin exhaustively studied in [1979¢]). For details, see [97]. The
attempt to derive the Euler equation in [71] was made under certain formal assumptions about
the solutions of the so-called BBGKY hierarchy equations. A careful analysis of these
assumptions shows that they are related to delicate ergodic properties of system (22) which up to
now have not been verified (and may not hold). Dobrushin adopted a different point of view. He
attempted to perform the HL for special models where assumptions from [71] (or their equivalent)
may be verified and the HL performed in a formally correct fashion. These models, though non-
trivial, may be too idealistic to lead to the usual Euler or Navier-Stokes equations (Dobrushin
used the term “caricatures of hydrodynamics”), but they display a mechanism behind the HL
which is believed to hold in more realistic systems. Dobrushin’s results for such caricature models

were published in [1980b-d], [1982a, b], [1983b], [1985f], [1986¢], [1988€], [1989a], [1990b], [1991a]
and [1993b).

It has to be said that Dobrushin’s papers [1980b-d], [1982a, b] and [1983b] were the first ones
to contain together the mathematically correct definition and the rigorous proof of the HL in the
form that is commonly used since then in the modern literature. (The definition of the HL was in-
dependently proposed in [96] on the basis of physical considerations.) The main feature of the HL
is the space-time scaling. In physical terms, one considers a family of probability distributions
{P€} of a particle systems which changes in space on the scale ¢ ~!. This means that the average
parameters of interest calculated around the space point ¢ =€~ 1z under P¢ are nice functions of
z€RY In [71] such parameters were the particle density p(z), the density of momentum p(z) =
(py(x),...,p4(z)) and the density of energy e(x). One then performs the shift of P along the
solutions of (22) by time t = ¢~ Lr r € R!, and calculates, in the shifted distribution IF’Z —1 the

above quantities, obtaining functions p(r;z), p(7;2) = (p{(7;2),..., py(r;)) and e(r;2) (more
precisely, these functions arise as the limits as ¢—0). Under the assumptions that have been
made in [71], these functions satisfy the Euler equation for a compressible fluid

%p(r;w) = —div[pp],

(T%{ppi](r;x) = —div[pp,p)(r;x) —%@(T;.’L‘), 1=1,...d, (25)

(%[pe](r; z) = —div[pep — Pp](7; ).

Parameters x and 7 are related here to the macro- whereas ¢ and ¢ are related to the micro-scale.
The quantity ? is a function of p, p and e giving the pressure of the system with interaction po-
tential V' from (22). It is related to the logarithmic asymptotics of the partition function with
given values of the particle number, momentum and energy densities. The appearance of the func-
tions p, p and e are not occasional. These functions give the space-time densities of the fundamen-
tal conserved quantities of motion: the number of particles, the total momentum and the total
energy. As was shown in [36-39] and [33], for a “generic” potential V, the above “canonical” first
integrals are the only possible invariants of the motion of an infinite system which satisfy a
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natural additivity condition; it is this condition that allows one to use them in equation (25) and
alike. On the other hand, there exist “exceptional” potentials for which the family of additive
invariants of the motion includes “exotic” first integrals. In dimension one (d = 1) these poten-
tials have been investigated in [34]. The hard-rod potential on Figure 5 is one of them.

Correspondingly, the one-dimensional hard-rod system was one of the first caricature models
to be investigated in connection with the HL. See [1980c, d] and [1983b]. As already observed, in
this model there exists an abundance of the constants of motion. Instead of a triple
(p(r;z),p(7;z),e(r;2)) one has to deal here with density o(7;x,v) of the particles with momen-
tum v at (macro-) point z at (macro-) time 7. The above scheme can then be carried through
and the following quasilinear hyperbolic partial differential equation emerges in the HL:

( vt /dvl(v —v)e(T;2,v") (1 - a/dwg('r;w, w))_ I)Q(T; ., v)} (26)

If the initial function p(0;-,-)>0 obeys sup 1 J dwo(0;2,w) < a and sup L fdwlw]|p
x € R x € R

63—7,9(7; z,v)

Tl

(0;z,w) < oo then the solution of (26) exists, is unique for all T € RY, and satisfies the same condi-
tions.

Equation (26) may be considered as an analog of the Euler equation for a hard-rod “fluid.”
The hard-rod model remains the only example of a “nonlinear” Hamiltonian system with interact-
ion where the HL. was performed at a rigorous level with no additional assumption. Recently, the
standard Euler equation was derived in [73] in the situation where equations of motion include
“stochastic” terms which remove the main difficulties one had to contend with in [71].

Dobrushin also spent a considerable time in thinking of how the Navier-Stokes equation
should be related to the HL procedure. His point of view was that it arises when one takes into
account the “next” correction to the limiting Euler equation, up to the order e. Such an

approach was not unanimously approved among the specialists, but confirmed on caricature
models [1982b], [1988¢] and [1990b].

A separate (although close) direction is the HL for various stochastic models, including proc-
esses with local interactions. Dobrushin’s ideas inspired many works in this field. His own results
in this direction are published in [1982b] and [1991a].

3.5 Queueing network theory

The last field of Dobrushin’s research on which we are going to comment is queueing network
(QN) theory. As was mentioned above, he was driven by fruitful analogies between this theory
and several areas of statistical physics. In both fields, one deals with a large system characterized
by complex interaction between its “components.” It must be noted that at the beginning of the
seventies when he began working in this direction, queueing theory was essentially oriented to-
wards problems related to an isolated device, with one or several channels of service. Under cer-
tain independence (and sometimes exponentiality) assumptions, an array of elegant formulas was
produced for the distribution and expected values of various random variables characterizing such
a queue, i.e, waiting time, queue size (number of customers in the queue), duration of a busy or
idle period, etc. Below we use the term the Pollaczek-Khintchine-type formulas when referring to
results of this kind, see, e.g. [32].

In QN theory, there existed papers [41, 42] forming a particular approach to QN problems
(the term Jackson’s networks was coined for the network class considered in these papers). The re-
sults of [41, 42] demonstrated striking features of the coming theory, but the consensus was that
in general, QNs are too complicated to be successfully studied at a mathematically rigorous level.
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The class of Jackson’s networks was later considerably extended [49, 50], but even the new class
(afterwards called Kelly’s networks) was quite restrictive for many applications.

Dobrushin was not deterred by the apparent complexity of QNs. On the other hand, he was
not happy with the rather special exponentiality and independence assumptions made in the
above papers leading to the so-called product-form of the invariant distribution in Jackson’s and
Kelly’s networks. This was perhaps partly because of his general reservations about exactly solv-
able models. First, he proposed the so-called mean-field approach to the QN theory which he
demonstrated in [1976b] on the example of a so-called star-shaped message-switched network.

Such a network consists of a center C' and a number of input and destination nodes (senders
and receivers, respectively), Sy,...,S; and Dy,..., Dy, connected by the directed lines as on
Figure 6 below.

M S D
M N

Figure 6

On the input port of each line §;—C and C—»DJ-, there is a single server that processes (or trans-
mits along the line), on the FCFS basis, a corresponding stream of arriving “messages.” Messages
originally appear in nodes S,...,S,,; (or at the input ports of lines S,—C, 1 <i< M); one
assumes for definiteness that their arrival there is described by i.i.d. Poisson marked processes
§1,-- &y of rate A, each with i.i.d. marks. The marks in each process ; are triples (b; 11,12)
where b = 1,..., N is the address of a message and (I',/%) the pair of its service (or transmission)
times along lines 5;—C and C—Dy, respectively. The “individual” mark distribution is as
follows:

(a)  the b’s are equi-distributed (P(b = j) = 1/N);

(b))  the pair (I*,1%) is independent of b and has a fixed joint distribution v (e.g., {* and I?

may be independent or coincide (I' = 12)).

After being processed along the line S;—C, a message from &, with address b = j immediately
joins the queue for the line C—D,. After being processed along this line, it is considered de-
livered to its destination node D . and disappears from the network. One is interested in the dis-
tribution of the end-to-end delay of a given message, i.e., the time from a message appearance in
node S, to its delivery at Dj. This is clearly the sum w!+4 w?+ (! +1? where w! and w? are
message’s waiting times for server S;—C and server C—>Dj, respectively. To formally define the
corresponding random variables, we use the so-called Palm distribution where one of the messages
is “tagged” and followed through its journey along the path Si—>C—>Dj. Assume that [M/N] is
keep fixed an equal to k, and the non-overload conditions

A A
—1‘,;;§<1 (27)

hold where p! = ( [ (di* x di?)M) ™1, u? = (& [ v(dl* x dI?)1?) =1, The distribution of w! is then
given by a well-known Pollaczek-Khinchtine-type formula; for example, if I' has the exponential
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distribution of rate u!, )
P(w! > z) = 4 exp[(A - phHzl,z >0,
H (28)
=1,z <0.
However, the joint distribution of w!, w? and (1,1%) (and even the marginal distribution of w?)

cannot be written in a closed form. The theorem (in a slightly more general form than that given
in [1976Db]) is as follows.

Suppose that M, N—oo. Then the limiting distribution of random variable w? is as in (28),
replacing p' with u2. Furthermore, random wvariables w' and w? become asymptotically
independent and independent of the pair (11,12). Hence, the limiting distribution of the end-to-end
delay is the convolution of those of w' and w? and I* + 2.

This result means that the network with large values of M, N operates as a collection of
nearly independent servers each of which has to process a stream of tasks close in distribution to
a point process of a simple form (in the example under consideration, to a Poisson process). The
analogy with the mean-field picture in statistical mechanics is that each queue in the network
becomes asymptotically independent of the rest. However, the influence of the whole network on
a given server is manifested through the form of an “averaged” input stream feeding this server.
The mean-field approach proved to be very rewarding and was later developed in a number of
works. See, e.g., the reviews [48] and [1990a] and the references therein, as well as the paper [43].
Dobrushin returned to the mean-field-type results in his latest publication [1996a] where he
studied an example of a network with elements of control.

The network under consideration in [1996a] is pictured in Figure 7 below.

O

Figure 7

It contains N single servers Sy,...,5 fed with common exogenous stream of tasks ¢ which is
assumed to be Poisson of rate AN. Let the service times of the task be i.i.d., with the exponential
distribution of mean y ~! and suppose the non-overload condition

a<1 (29)
to be valid. Assume that, at the time of task’s arrival, one picks randomly a pair of servers, S,
and S, and then selects the one of the two with the shorter queue. One is interested in the
distribution of the queue size per server in such a network. It is clear that this distribution must
be “better” than if the servers were selected completely randomly. The latter model can be solved
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by means of the Pollaczek-Khintchine-type formulas.
It was proved in [1996a] that:

As N—oo, the average queue size distribution in the network with the above selection rule has
the limiting distribution

P(Q > m) = (-}j)zm_ Loms (30)

In the case of the completely random choice the probability in (30) equals (%)m and therefore
decays much slower with m. This illustrates the benefits of the control introduced in the model.

Another direction initiated by Dobrushin in the QN theory was focused on the concept of an
infinite network. The aim here was to grasp another feature on the behavior of complex QN’s, in-
stability of a stationary regime. Formally, it should be manifested in non-uniqueness of an invar-
iant distribution in a network with infinitely many nodes as opposite to the uniqueness for its fin-
ite counterpart. This is a striking analogy with the theory of phase transitions. In [1979f], Dobru-
shin has made an initial step in this direction, proving that for message-switched networks on the
infinite one-dimensional lattice the concept of an invariant distribution may be correctly defined,
and in the situation of small “transit” flows such a distribution is unique. This results influenced
a series of subsequent papers, see e.g., [11], [46, 47], and in particular [45], where Jackson’s net-

works on infinite graphs were analyzed and a non-uniqueness of an invariant distribution has been
established.

The third direction in the QN theory connected with the Dobrushin’s name was concerned
with general non-overload conditions guaranteeing the existence of a stationary regime. [In analo-
gy with his information-theoretical studies, he used the term the network capacity region.] The
problem here is to determine conditions in terms of expected values, similar to (27), (29), under
which the queues in a given network do not “blow-up.” For Jackson’s and Kelly’s networks, these
conditions may be directly derived from the product-form of the invariant distribution. Dobru-
shin believed that similar conditions hold for a general class of networks, but his conjecture was
later disproved (see, e.g, [17, 18]). He has not published any result in this direction, but his ideas
were instrumental for a number of papers (see again, the reviews [48] and [1990a] and a recent
work [87]). He also participated in the analysis of the form of an invariant distribution for a
general QN. More precisely, he associated with a network an “input-output transformation” that
takes an exogenous flow entering the network to the departure flow that leaves it. Many of his
predictions about the existence of and convergence to an invariant distribution for such a trans-
formation turned out to be correct, after recent works [4], [72] and [100].

As noted, in the late eighties, Dobrushin started an active research of a large deviations
approach to various problems, in particular, in QN theory. His results are contained in [1994b,
e]. In particular, in [1994b] he analyzed the probability of a large deviation for the waiting time
in a tandem single-server network. He discovered the so-called bottleneck phenomenon that the
logarithmic asymptotics of this probability is determined by the “slowest” server. The proof is
based on an elegant representation of the waiting time in terms of the input flow. This allowed
him to consider wide classes of exogenous processes, in contrast with most of the papers in the
field where one has to introduce rather restrictive exponentiality assumptions.

4. Dobrushin’s List of Publications

1952

a) On regularity conditions for time-homogeneous Markov processes with a countable set of
possible states, Uspekhi Matematicheskih Nauk 7:6 (1952), 185-191. [Russian]

1953
a) A generalization of the Kolmogorov equations for Markov processes with a finite number of
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possible states, Matematicheskii Sbornik 33:3 (1953), 567-596. [Russian]

b) A limit theorem for Markov chains with two states, Izvestia Akademii Nauk SSSR, Seriya
Matematich. 17:3 (1953), 291-330. [Russian] Translated in: Select. Transl. Math. Stat. and
Prob. 1 (1961), 97-156.

1954

a) Conditions of regularity for Markov processes with a finite number of possible states,
Matematich. Sbornik 34:3 (1954), 541-556. [Russian]

1955

a) A lemma on the limit of a superposition of random functions, Uspekhi Matematicheskih Nauk
10:2 (1955), 157-159. [Russian]

b) Two limit theorems for the simplest random walk on a line, Uspekhi Matematicheskih Nauk
10:3 (1955), 139-146. [Russian]

c¢) Central limit theorem for non-stationary Markov chains, Doklady AN SSSR 102:1 (1955), 5-8.
[Russian]

1956

a) On conditions for the central limit theorem for non-stationary Markov chains, Doklady AN
SSSR 108:6 (1956), 1004-1006. [Russian]

b) Central limit theorem for non-stationary Markov chains I, Teoriya Veroyat. i ee Primeneniya
1:1 (1956), 72-89. [Russian] Translated in: Theory Prob. Its Appl. 1 (1956), 65-80.

¢) Central limit theorem for non-stationary Markov chains II, Teoriya Veroyat. i ee Primeneniya
1:4 (1956), 365-425. [Russian] Translated in: Theory Prob. Its Appl. 1 (1956), 329-383.

d) An example of a countable homogeneous Markov process all states of which are transient,
Teoriya Veroyat. i ee Primeneniya 1:4 (1956), 481-485. [Russian] Translated in: Theory of
Prob. Its Appl. 1 (1956), 436-440.

e) On Poisson laws for the distributions of particles in space, Ukrainskii Mathematicheskii Zhurnal
8:2 (1956), 127-134. [Russian]

f) (With A.M. Jaglom), A complement of the translators, In: J. Doob. Stokhasticheskie Protsessy.
Izdatel’stvo Inostrannoii Literatury, Moscow (1956), 576-688. [Russian] (A complement to the
Russian translation of: Doob, J.L., Stochastic Processes, Wiley, New York 1953).

1957
a) Some classes of homogeneous denumerable Markov processes, Teoriya Veroyat. i ee Primene
niya 2:3 (1957), 377-380. [Russian] Translated in: Theory Prob. Its Appl. 2 (1957), 366-369.

1958

a) The continuity condition of a sample function of a martingale, Teoriya Veroyat. i ee Primene-
niya 3:1 (1958), 97-98. [Russian] Translated in: Theory Prob. Its Appl. 3 (1958), 92-93.

b) A statistical problem arising in the theory of detection of signals in the presence of noise in a
multichannel system and leading to stable distribution laws, Teoriya Veroyat. i ee Primeneni-
ya 3:2 (1958), 173-185. [Russian] Translated in: Theory Prob. Its Appl. 3 (1958), 161-173.

¢) Information transmission in a channel with feedback, Teoriya Veroyat. i ee Primeneniya 3:4
(1958), 395-412. [Russian] Translated in: Theory of Prob. Its Appl. 3 (1958), 367-383.

d) A simplified method of experimentally evaluating the entropy of a stationary sequence,
Teoriya Veroyat. 1 ee Primeneniya 3:4 (1958), 462-464. [Russian] Translated in: Theory
Prob. Its Appl. 3 (1958), 428-430.

1959

a) A general formulation of the basic Shannon theorem in information theory, Doklady AN SSSR
126:3 (1959), 474-477. [Russian]
b) A general formulation of the basic Shannon theorem in information theory, Uspekht

Matematicheskih Nauk 14:6 (1959), 3-104. [Russian] Translated in: AMS Translations 33
Series 2 (1961), 323-438.
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¢) Optimum information transmission through a channel with unknown parameters, Radiotehnika
i Electronika 4:12 (1959), 1951-1956. [Russian] Translated in: Radio Engineering and
FElectronics 4:12 (1959), 1-8.

1960

a) Passage to the limit under the information and entropy signs, Teoriya Veroyat. i ee Primene-
niya 5:1 (1960), 29-37. [Russian] Translated in: Theory Prob. Its Appl. 5 (1960), 25-32.

b) Properties of sample functions of a stationary Gaussian process, Teoriya Veroyat. i ee Primene-.
niya 5:1 (1960), 132-134. [Russian] Translated in: Theory Prob. Its Appl. 5 (1960), 120-122.
¢) The asymptotic behavior of the probability of errors when information is transmitted through
channel without memory with symmetric matrix of transition probabilities, Doklady AN SSSR
133:2 (1960), 265-268. [Russian] Translated in: Soviet Mathematics - Doklady 1 (1960), 829-

832.

d) (With Ya.l. Hurgin and B.S. Tsybakov). An approximate computation of the capacity of
radio channels with random parameters, In: Trudy Vsesoyuznogo Soveschachnia po Teorii
Veroyatnosteir 1 Matematicheskoi Statistike, Izdatel’stvo AN Arm SSR (Yerevan, 1958).,
(1960), 164-171. [Russian]

e) (With A.M. Jaglom and ILM. Jaglom). Theory of information and linguistics, Voprosy
Yazykoznaniya 9:1 (1960), 100-110. [Russian]

1961

a) Mathematical method in linguistics, Matematicheskoe Prosveschenie 6 (1961), 37-60. [Russian]

b) Mathematical problems in Shannon theory of optimal coding of information, In: Problemy
Peredachi Informatisii 10, Izdatel’stvo AN SSSR, Moscow (1961), 63-107. [Russian]
Translated in: Proc. Fourth Berkeley Symp. on Math. Stat. and Prob. 1960 (1962), 211-252.

1962

a) Optimal binary codes for small rates of transmission of information, Teoriya Veroyat. i ee Pri-
meneniya 7:2 (1962), 208-213. [Russian] Translated in: Theory Prob. Its Appl. 7 (1962), 199-
204.

b) Asymptotic estimates of the probability of error for transmission of messages over a discrete
memoryless communication channel with a symmetric transition probability matrix, Teoriya
Veroyat. i ee Primeneniya 7:3 (1962), 283-311. [Russian] Translated in: Theory Prob. Its
Appl. 7 (1962), 270-300.

¢) Asymptotic estimates of the probability of error for the transmission of messages over a
memoryless channel with feedback, Problemy Kibernetiki 3 (1962), 161-168. [Russian]

d) (With B.S. Tsybakov). Information transmission with additional noise, IEEE Trans. Inform.
Theory 8 (1962), 293-304.

1963

a) Asymptotic optimality of group and systematic codes for some channels, Teoriya Veroyat. i ee
Primeneniya 8:1 (1963), 52-66. [Russian] Translated in: Theory Prob. Its Appl. 8 (1963), 47-
60.

b) Individual methods for the transmission of information for discrete channels without memory
and messages with independent components, Doklady AN SSSR 148:6 (1963), 1245-1248.
[Russian] Translated in: Soviet Mathematics - Doklady 4 (1963), 253-256.

¢) Unified methods for the transmission of information: a general case, Doklady AN SSSR 149:1
(1963), 16-19. [Russian] Translated in: Soviet Mathematics - Doklady 4 (1963), 257-259.

d) (With M.S. Pinsker and A.N. Shiryaev). An application of the entropy to problems of signal
detecting against a background of noise, Litovskii Matematicheskii Sbornik 3:1 (1963), 107-122.
[Russian]

e) (With R.A. Minlos). Possibilities of applications of limit theorems of probability theory to
some physical problems, In: Predel’nye Teoremy Teorii Veroyatnosteii Izdatel’stvo FAN,
Tashkent (1963), 15-37. [Russian]
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1964

a) On the Wozencraft-Reiffen method of sequential decoding, Problemy Kibernetiki 12 (1964),
113-123. [Russian]

b) Investigation of conditions for the asymptotic existence of the configurational integral of the
Gibbs distribution, Teoriya Veroyat. ¢ ee Primeneniya 9:4 (1964), 626-643. [Russian]
Translated in: Theory Prob. Its Appl. 9 (1964), 566-581.

¢) Methods of probability theory in statistical physics, In: Trudy Zimne: Shkoly po Teorii
Veroyatnosteit i Matematicheskooit Statistike, Izdatel’stvo KGU, Kiev (Uzhgorod, 1964), 221-
263. [Russian]

1965

a) Existence of a phase transition in the two-dimensional Ising models, Doklady AN SSSR 165:5
(1965), 1046-1048. [Russian] Translated in: Soviet Physics - Doklady 10 (1965), 111-113.

b) Existence of a phase transition in two and three dimensional Ising models, Teoriya Veroyat. 1

ee Primeneniya 10:2 (1965), 209-230. [Russian] Translated in: Theory Prob. Its Appl. 10
(1965), 193-213.

1966

a) Existence of phase transitions in models of a lattice gas, Proc. Fifth Berkeley Symp. on Math.
Stat. and Prob. 1965 3 (1966), 73-87.

b) Theory of optimal coding of information, In: Kibernetiku - na Sluzhbu Kommunizmu 3
Energija, Moscow (1966), 13-45. [Russian]

1967

a) (With R.A. Minlos). Existence and continuity of the presure in classical statistical physics,
Teoriya Veroyal. i ee Primeneniya 12:4 (1967), 595-618. [Russian] Translated in: Theory
Prob. Its Appl. 12 (1967), 535-559.

b) Shannon theorems for channels with synchronization errors, Problemy Peredachi Informatisii
3:4 (1967), 18-36. [Russian] Translated in: Problems of Inform. Trans. 3:4 (1967), 11-26.

1968

a) The description of a random field by means of conditional probabilities and conditions of its
regularity, Teoriya Veroyat. i ee Primeneniya 13:2 (1968), 201-229. [Russian] Translated in:
Theory Prob. Its Appl. 13 (1968), 197-213.

b) Gibbsian random fields for lattice systems with pairwise interactions, Funktsional’nyi Analis i
ego Prilozheniya 2:2 (1968), 31-43. [Russian] Translated in: Functional Analysis and Its
Appl. 2 (1968), 292-301.

¢) The problem of uniqueness of a Gibbsian random field and the problem of phase transition,
Funktsional’ny: Analis @ ego Prilozheniya 2:2 (1968), 44-57. 'Translated in: Functional
Analysis and Its Appl. 2 (1968), 302-312.

d) (With N. Vvedenskaja). Calculation on a computer of the capacity of communication channels
with exclusion of symbols, Problemy Peredachi Informatisii 4:3 (1968), 92-95. [Russian]
Translated in: Probl. of Infor. Trans. 4:3 (1968), 92-95.

1969

a) Gibbsian fields. General case, Funktsional’nyi Analis @ ego Prilozheniya 3:1 (1969), 27-35.
[Russian] Translated in: Functional Analysis and Its Appl. 3 (1969), 22-28.

b) (With LI. Pjatetskii-Shapiro and N.B. Vasiljev). Markov processes on an infinite product of

discrete spaces, In: Proc. of the Soviel-Japanese Symposium in Prob. Theory (Khabarovsk,
June 1968), Khabarovski-Novosibirsk (1969), 3-30. [Russian]

¢) (With M.S. Pinsker). Memory increases transmission capacity. Problemy Peredachi Informat-
su 5:1 (1969), 94-95. [Russian] Translated in: Problems of Inform. Trans. 5 (1969), 77-78.

1970

a) Gibbsian random fields for particles without hard core, Teoreticheskaya i Matematicheskaya
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Fizika 4:1 (1970), 101-118. [Russian]

b) Prescribing a system of random variables with conditional distributions, Teoriya Veroyat. i ee
Primeneniya 15:3 (1970), 469-497. [Russian] Translated in: Theory Prob. Its Appl. 15
(1970), 458-486.

c¢) Unified methods of optimal quanitization of messages, Problemy Kibernetiki 22 (1970), 107-
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