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Abstract

In this paper, we demonstrate through examples how the concept of a Semantic

Web based knowledge-graph can be used to integrate combustion modelling into cross-

disciplinary applications and in particular how inconsistency issues in chemical mech-

anisms can be addressed. We discuss the advantages of linked data that forms the

essence of a knowledge-graph, and how we implement this in a number of interconnec-

ted ontologies, speci�cally in the context of combustion chemistry. Central to this is

OntoKin, an ontology we have developed for capturing both the content and the se-

mantics of chemical kinetic reaction mechanisms. OntoKin is used to represent example
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mechanisms from the literature in a knowledge-graph which itself is part of an existing,

more general knowledge-graph and eco-system of autonomous software agents that are

acting on it. We describe a web interface which allows users to interact with the sys-

tem, upload and compare existing mechanisms, and query species and reactions across

the knowledge-graph. The utility of the knowledge-graph approach is demonstrated for

two use-cases � querying across multiple mechanisms from the literature, and modelling

the atmospheric dispersion of pollutants emitted by ships. As part of the query use-

case, our ontological tools are applied to identify variations in the rate of a hydrogen

abstraction reaction from methane as represented by ten di�erent mechanisms.

Introduction

Modelling combustion in devices as part of relevant applications such as pollution prediction

necessarily covers multiple domains. As an example, consider the prediction of emissions

from ships, which involves at the very least a fuel model, and internal combustion engine

model, data on wind direction and speed, an atmospheric dispersion model, and terrain

and building models. In practice, this requires compatibility of data obtained from various

sources in di�erent formats and seamless interaction between various pieces of software � in

short, interoperability.

Chemical kinetic fuel models, i.e. reaction mechanisms, form an essential part of any

simulation of emissions from a combustion device, but may not always be readily available

for a particular fuel of interest and thus may need to be created in some way from existing

databases. The latter can be achieved for example either through automated mechanism gen-

eration tools (e.g.1), or through assembly of subsets of species and reactions from (possibly

multiple) previously published mechanisms.

When trying to assemble a mechanism by combining collections of species and reactions

from multiple sources, one encounters two well-known classes of consistency problems2,3.

The �rst one relates to unique identi�cation: What should be one and the same species
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may have been given di�erent names or labels in models originating from di�erent sources.

And vice versa, species that ought to be distinct may have been given identical labels in

di�erent mechanisms. The second problem relates to data-inconsistency: The same species

or reaction from di�erent sources may have been assigned di�erent thermodynamic or kinetic

parameter values, respectively, with variations at times well beyond reported uncertainties.

The two, at �rst sight perhaps seemingly unrelated, challenges of interoperability and

consistency have in common that they can be both addressed at the same time using ideas

from the Semantic Web4. The Semantic Web o�ers the ability to connect previously isolated

pieces of data, associate meaning to them, and represent knowledge extracted from them. It

is this collection of entities and the connections between them that de�nes the knowledge-

graph. Autonomous software agents5 can then navigate this graph to manipulate it and

interact with human and machine users.

A natural way to implement a knowledge-graph is by means of ontologies6 � collections of

entities and relationships between them. There have been several attempts to build a Chem-

ical Semantic Web7 using chemical ontologies8 representing elements and substances to meet

an increasing interest to generate knowledge from chemical data and to facilitate data shar-

ing. A number of ontologies have been developed to capture and represent the semantics and

knowledge of chemicals and chemical interactions with di�erent levels of granularity. On-

toCAPE (Ontology for Computer Aided Process Engineering)9 was developed as a formal

ontology for modelling chemical processes, including the concepts (classes) of elements, spe-

cies, and reactions. In addition, a number of cross-domain ontologies that cover aspects

of chemical modelling have been developed. ChEBI10 is an ontology created for represent-

ing concepts and relations belonging to chemistry and biology. PubChemRDF11 represents

structures and metadata of chemical substances and compounds. In addition to chemical

semantic resources, there are initiatives that have led to well-established chemical databases

(PubChem12, PrIMe2, and Reaxys (https://www.reaxys.com), to name but a few).

The J-Park Simulator (JPS, http://www.theworldavatar.com) is an implementation of
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a universal knowledge-graph that uses semantic representation to harness the reasoning and

inferencing power of ontologies to perform cross-domain simulations.

The purpose of this paper is to present a proof of principle of how the concept of a

knowledge-graph can be used to address both the problem of interoperability in cross-domain

applications involving combustion and the problem of naming and data inconsistencies in

chemical reaction mechanisms. We aim to achieve this through two examples. In the �rst

one, we apply ontological tools we have developed to query across multiple mechanisms from

the literature, and �nd inconsistencies in the rate of a hydrogen abstraction reaction from

methane as represented by ten di�erent mechanisms. In the second example, we integrate

kinetic fuel models in the form of mechanisms with an internal combustion engine model,

real-time weather and ship location data, and an atmospheric pollutant dispersion model to

simulate emissions from ships.

A knowledge-graph approach

The World Avatar

The J-Park Simulator (JPS) is an automation-centric implementation of a World Avatar as

a decentralised privacy-aware extendable system that supports data-driven decision making

via the use of data and models that can be publicly available or privately owned and that are

represented and linked using a knowledge-graph (Fig. 1). While respecting the accessibility

restrictions put in place, the approach allows the navigation of automated intelligent soft-

ware agents through relevant information objects that have di�erent levels of accessibility to

generate, store and analyse data, and enables the interoperability of data and models across

multiple domains.

Linked Data13 is the state-of-the-art approach for generating the Web of data with se-

mantics. JPS provides structure to data and semantics using a knowledge-graph built upon

the principles of Linked Data using ontologies. This allows the representation of data en-
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Figure 1: The J-Park Simulator (JPS) as an implementation of a World Avatar knowledge-
graph, including autonomous software agents that act upon it.

compassing both empirically observed results, and calculated output, to record the state

of a system and involved models (both physics and data-based) to characterize the system

as a function of its state and other model parameters. JPS facilitates automation of tasks

via an eco-system of computational and representational agents (of various types14, featur-

ing behaviours15 including simple, composite, sequential and parallel) which operate on the

knowledge-graph. The OntoAgent ontology16 has the logical infrastructure and coverage in

terms of concepts and properties for the codi�cation of agents.

JPS has been readily applied to many aspects of Industry 4.017 due to the codi�cation of

operational semantics of models and data. An example of this is the development of process

optimising solutions for the Eco-Industrial Park (EIP) on Jurong Island in Singapore. An

5



EIP is comprised mainly of product manufacturers and service providers collaborating to ad-

dress issues related to CO2 footprint and particulate emission, and recover and reuse of waste

materials and heat to achieve environmental and economic bene�t18. An EIP may involve

recovered waste-heat supply to district heating, material exchanges, energy systems, and

wastewater treatment networks, which can be modelled at di�erent levels such as unit oper-

ations, processes, plants, and networks as well as optimised for improved performance19,20.

A number of ontologies have been developed for the JPS which seamlessly connect with

the relevant branches of OntoCAPE21, including OntoEIP 22, designed for resource and trans-

portation networks, and chemical process plants, an EIP energy system ontology 23, built for

a decision-making system integrating data from heterogeneous sources, and a biodiesel plant

ontology 24, built for simulating and optimising biodiesel production.

The work described in this paper is positioned within this context. It addresses the

needs of JPS by developing an ontology to represent chemical mechanisms and integrate the

corresponding data into its knowledge-graph. This supports the automation of processes

within JPS by enabling intelligent agents to query and manipulate the knowledge-graph,

and thus to search and retrieve mechanisms for a given task.

OntoKin, OntoCompChem, and OntoSpecies

OntoKin25 is a chemical ontology specialised for representing and managing chemical kinetic

reaction mechanisms. OntoKin includes semantics of chemical data in the representation of

reaction mechanisms using Description Logic (DL). This o�ers advantages such as interop-

erability between chemical kinetic systems, agents' ability to comprehend chemical mechan-

isms automatically, the capability to perform complex semantic queries on the mechanisms

in the Web environment, and easy detection of thermodynamic, transport and reaction data

inconsistencies across mechanisms.

OntoCompChem26 is an ontology for quantum chemistry calculations. It is an extension

of the Gainesville Core27 ontology and CompChem28. The goal of OntoCompChem is to add
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DL-based semantics of chemical data to computational chemistry calculations. This enables

interoperability between quantum chemistry software, automated agents to understand such

calculations, and reduced consumption of computational resources via the reuse of already

performed calculations.

OntoSpecies is an ontology designed to capture both generic and domain-speci�c inform-

ation about species, such as empirical formula, molecular weight and standard enthalpy of

formation. The ontology focuses on the linking of quantum chemistry calculations represen-

ted in OntoCompChem with reaction mechanisms codi�ed in OntoKin. Due to its generic

structure, the ontology can be used to map existing databases of species. The ontology is

suitable for harvesting and curating species data to develop high-quality resources of species.
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Figure 2: Selected concepts, properties, and relations demonstrating links between the On-
toKin, OntoSpecies, and OntoCompChem ontologies.

Figure 2 illustrates the three ontologies with a small subset of their concepts, data prop-

erties, and relations which are building blocks of the knowledge-graph. For OntoKin, the

�gure shows the Mechanism, Species and Thermo Model concepts. The ontological model of

the Mechanism concept consists of data and metadata of a mechanism. The Species concept
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includes data properties and relations of a chemical species. The Thermo Model concept

de�nes the structure of thermodynamic models required for a species. The hasQuantumC-

alculationIRI data property represents an IRI (Internationalised Resource Identi�er) which

connects the thermodynamic model to computational chemistry calculations of a species.

The hasUniqueSpeciesIRI data property represents an IRI which connects a species in a

mechanism to its corresponding representation in OntoSpecies. The OntoKin ontology is

available here: http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl.

Figure 2 depicts the G16, Geometry Optimisation, Molecule and Atom concepts of On-

toCompChem. The G16 concept is an ontological model for the representation of electronic

structure calculations, while Geometry Optimisation represents the molecular geometry of

both stable minima and transition state species. The hasCoordinates object property is

used for the codi�cation of the 3D geometry of a molecule. The hasUniqueSpeciesIRI data

property links computational chemistry calculations of a species to its corresponding rep-

resentation in OntoSpecies by means of an IRI. The OntoCompChem ontology is available

here: http://theworldavatar.com/ontology/ontocompchem/ontocompchem.owl.

Figure 2 includes the Species, Empirical Formula, Element Number and Element con-

cepts of OntoSpecies. The Species concept is designed to model a real-world species. Ele-

ment de�nes the ontological structure to describe a chemical element or an atom, whereas

Element Number establishes a link between a chemical element and its quantity within

a species. The data properties that belong to OntoSpecies are dc:identi�er, which codi-

�es the unique identi�er of a species, and skos:altLabel, which codi�es alternative names.

Adopting best practices in ontology development, these properties are reused from Dub-

lin Core (dc)29 and Simple Knowledge Organisation System (skos)30, respectively. This

modelling choice separates the names of a species from its identity. As a result, a species

which has multiple names can still be recognised uniquely via its identi�er (this approach

is also taken for example by the CAS Registry and PrIMe2). OntoSpecies thus addresses

the species naming issues mentioned in the introduction, including isomers etc., via enfor-
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cing a unique entry for each real-world species. The OntoSpecies ontology is available here:

http://www.theworldavatar.com/ontology/ontospecies/OntoSpecies.owl.

Populating the knowledge-graph

For this paper, the OntoKin knowledge-graph is populated by integrating the ontological

representation of 50 arbitrarily chosen publicly available mechanisms from the literature.

The largest mechanism contains more than 2,800 species and 18,000 reactions, whereas the

smallest one contains 14 species and 33 reactions, resulting in a total of over 16 million

subject-predicate-object triples when deployed in an RDF4J triple-store.

The agent that creates instances in the knowledge-graph when a mechanism is uploaded

relies on a conversion agent to convert between CHEMKIN31 mechanism �les and OWL (Web

Ontology Language) �les. The conversion agent supports the transformation of mechanisms

in both directions between CHEMKIN and OWL, which is also used to prove that the

generated OWL �les faithfully preserve the source data. The agent uses the OWL API

(https://github.com/owlcs/owlapi), a Semantic Web tool for creating ontologies, in the

generation of OWL �les. A knowledge-graph population agent integrates the mechanisms

with the wider JPS knowledge-graph.

Results and Discussion

This section introduces two use-cases to show how the OntoKin ontology and mechanism-

integrated JPS knowledge-graph can be applied: Querying across mechanisms and the at-

mospheric dispersion of pollutants emitted by ships.

Querying across mechanisms

OntoKin has been developed to allow any user to upload chemical mechanisms to the JPS

knowledge-graph, and to query the knowledge-graph to retrieve and compare species and
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Figure 3: Screen-shot of the web-based OntoKin user interface showing available queries.

10



Figure 4: Screen-shot comparing heat capacity at constant pressure for benzene appearing
in three di�erent names across mechanisms.

reaction data. A web-based User Interface (UI) to demonstrate this is available at the

following link: http://theworldavatar.com/ontokin. A screen-shot of the UI is shown in

Fig. 3.

The OntoKin system consists of three main components � the UI, a business logic

layer and the underlying JPS knowledge-graph. The UI allows uploading mechanisms in

CHEMKIN format. The business logic layer includes a CHEMKIN to OWL conversion

agent, an OWL �le consistency checking agent, an OWL �le uploading component and a

query component. The conversion agent can assess the validity of a CHEMKIN mechanism.

It is necessary to upload at least the kinetic mechanism and the thermodynamic data �les.
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Figure 5: Screen-shots comparing pre-exponential factors and Arrhenius rates of the reaction
CH4 + OH → CH3 + H2O across mechanisms.
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Transport data and surface chemistry �les are optional. If user-provided �les represent a

complete mechanism, the converter proceeds with the conversion and reports success or fail-

ure. In case of success, a consistency check is performed using the HermiT reasoner. If the

OWL �le passes the consistency check, it is uploaded to the JPS knowledge-graph.

The UI allows users to select from a list of prede�ned queries (see Fig. 3). The UI

translates the user input into a SPARQL (SPARQL Protocol and RDF Query Language)

query that is used to search the knowledge-graph. The results are displayed as charts or

tables in the UI. The queries prede�ned in the system will allow identifying the mechanisms

containing a species of interest, as well as comparing the thermodynamic data of a species

and rate coe�cients of a reaction across mechanisms.

An example of how to use the UI and the mechanisms in the knowledge-graph is shown

in Fig. 4, which compares the heat capacity of benzene across a selection of mechanisms

in the knowledge-graph32�39. We note that in this case, the UI allows us to retrieve the

information from the knowledge-graph even though benzene appears under three di�erent

names: C6H633�36,39, A132,37, and A1-C6H638. We observe, as is well-known, that the ther-

modynamic data used for benzene varies across the literature.

Furthermore, the UI allows querying the rate parameters of a reaction of interest. Fig-

ure 5 shows pre-exponential factors and reaction rates as a function of temperature for a

hydrogen abstraction reaction from methane as reported by32�41. Temperature exponents

and activation energies are also available via the UI but are not shown here. As before, we

�nd variations in the reported rate parameters.

We emphasise that the selection of mechanisms for this study is entirely arbitrary, as one

of the goals of this paper is to demonstrate the suitability of the UI to identify and explore

the information available in the knowledge-graph.
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Atmospheric dispersion of pollutants emitted by ships

In Singapore, the Green Port Programme (GPP), which is part of the Maritime Singapore

Green Initiative (MSGI), had come into e�ect on 1 January 2020 to encourage ocean-going

vessels anchoring at the Port of Singapore through the implementation of an incentive-

driven model to reduce emissions for achieving environmental sustainability42. The GPP

reduces the port or harbour dues by 25% if ships use Lique�ed Natural Gas (LNG) as a

marine fuel and meet the Energy E�ciency Design Index (EEDI) de�ned by the International

Maritime Organisation (IMO). This indicates that the GPP does not make it mandatory to

use a speci�c fuel. Though there is an allowed upper limit (≤0.50% m/m) on the amount

of sulphur content in clean fuels used in such vessels, emissions of sulphur dioxide (SO2),

nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and particulate matter PM2.5

and PM10 from each ship can be arbitrary.

Predicting the dispersion of emissions from ships involves heterogeneous data, models

and tools from di�erent domains. Interoperability and how it can be achieved in applica-

tions involving multiple domains is illustrated in Fig. 6, which shows a cross-domain use-

case from JPS (http://www.theworldavatar.com/JPS/?lat=52.076&lon=4.31&zoom=14.

5&tilt=0.0&rotation=0.6). As shown in the �gure, within JPS the SRM Engine Suite

(https://cmclinnovations.com/products/srm), which is a software developed to evalu-

ate the performance of and emissions from internal combustion engines, simulates the ex-

haust emissions from a ship's diesel engine. ADMS, the Atmospheric Dispersion Modelling

System (https://cerc.co.uk/environmental-software.html), simulates the dispersion

of pollutants emitted from each point source. ADMS uses real-time weather data extracted

from the Web and added to the JPS knowledge-graph by agents. In the simulations, SRM

uses reaction mechanisms retrieved automatically by an agent from the knowledge-graph via

SPARQL queries using IRIs of the mechanisms. The response from the knowledge-graph is

the corresponding mechanism in RDF, which is converted to a form that is processable by

the SRM. In this use-case, we use several ontologies including OntoKin and OntoCAPE to
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Figure 6: Knowledge-graph based interoperability allows cross-domain integration of, in this
example, chemical fuel models, internal combustion engine simulation, live weather and ship
data, geometry of buildings, and atmospheric pollutant dispersion simulation.

enable interoperability between software from di�erent domains. The atmospheric dispersion

of the emissions is visualised in JPS using Google Maps (Fig. 7).

Conclusions

In this paper we have demonstrated how a knowledge-graph approach can be used to address

naming and data inconsistency problems in chemical kinetics and achieve interoperability

allowing to describe complex combustion-derived air-pollution scenarios. We showed two use-

cases. In the �rst one, we used OntoKin, an ontological model which captures the semantics
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Figure 7: Screen-shot of dispersion of pollutants, as emitted by ships (black dots), in the
atmosphere over the Marina Bay in Singapore, shown as a concentration map, with selected
buildings.

of chemical kinetic reaction mechanisms as they are used in combustion, to represent a

collection of mechanisms from the literature and thus integrate them into the knowledge-

graph of the J-Park Simulator. We applied the ontological tools we have developed to query

across multiple mechanisms, and identi�ed variations in thermodynamic data as well as

reaction rates. The tools provide a �rst step towards facilitating querying and comparing

mechanisms via the Semantic Web. In the second use-case, we integrated a kinetic fuel model

with an internal combustion engine model, real-time weather and ship location data, and an

atmospheric pollutant dispersion model to simulate emissions from ships, thus establishing

interoperability between a number of software agents and heterogeneous data sources. In the

future, the amount of data in the knowledge-graph will be scaled up, including links to other

types of data sources and identi�cation of the highest quality thermodynamic and kinetic

data, and more advanced tools for human and machine-interaction will be developed in the

form of more intelligent agents acting on the knowledge-graph.
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