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3D Printable Vascular Networks Generated by
Accelerated Constrained Constructive
Optimization for Tissue Engineering

Andrew A. Guy, Alexander W. Justin, Dulce M. Aguilar-Garza and Athina E. Markaki

Abstract— One of the greatest challenges in fabricating
artificial tissues and organs is the incorporation of vascular
networks to support the biological requirements of the
embedded cells, encouraging tissue formation and matura-
tion. With the advent of 3D printing technology, significant
progress has been made with respect to generating vas-
cularized artificial tissues. Current algorithms to generate
arterial/venous trees are computationally expensive and
offer limited freedom to optimize the resulting structures.
Furthermore, there is no method for algorithmic generation
of vascular networks that can recapitulate the complexity
of the native vasculature for more than two trees, and
export directly to a 3D printing format. Here, we report such
a method, using an accelerated constructive constrained
optimization approach, by decomposing the process into
construction, optimization and collision resolution stages.
The new approach reduces computation time to minutes
at problem sizes where previous implementations have
reported days. With the optimality criterion of maximizing
the volume of useful tissue which could be grown around
such a network, an approach of alternating stages of con-
struction and batch optimization of all node positions is
introduced and shown to yield consistently more optimal
networks. The approach does not place a limit on the num-
ber of interpenetrating networks that can be constructed in
a given space; indeed we demonstrate a biomimetic, liver-
like tissue model. Methods to account for the limitations
of 3D printing are provided, notably the minimum feature
size and infill at sharp angles, through padding and angle
reduction, respectively.
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vascular networks, tissue engineering, 3D printing
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I. INTRODUCTION

VASCULARIZATION is one of the key challenges for
engineering new tissues and organs in the lab [1]. Tissue

constructs without a perfusable vascular network lack a mech-
anism for supplying cells with nutrients and removing CO2

and cellular waste; for this supply mechanism to be efficient,
it is important that the network displays hierarchy [2], [3]. By
incorporating a vascular network into a cell-ladened scaffold,
tissues with clinically relevant dimensions can be developed
and maintained, which could then be used as a replacement
for a diseased tissue. Furthermore, tissues and organs consist
of multiple interpenetrating tubular systems, including those
specific to the tissue function, such as the biliary system in
the liver. Until such complex systems are constructed in the
lab, fabrication of engineered tissue equivalents for complex
organs (e.g. liver, kidney) will remain a formidable challenge.

By algorithmically generating biomimetic and architec-
turally complex vascular network models, one can rapidly pro-
duce vascular networks capable of uniformly supporting high
densities of metabolically active cells in a 3D environment.
Such models can be used to simulate fluid flow (e.g. wall
shear stresses, velocity field), metabolite diffusion, and the
cellular environment. Furthermore, template structures from
these models can be fabricated via 3D printing techniques
(e.g. inkjet, extrusion-based, stereolithography) and incorpo-
rated into tissue engineered scaffolds to yield perfusable chan-
nels [4]. Such approaches involve a solid sacrificial template
around which biomaterials (frequently loaded with cells) are
cast. These sacrificial structures are removed (e.g. chemically,
thermally, mechanically) to produce a vascular network in the
biomaterial with channels of the same diameter as the 3D
printed feature.

Since manually constructing vascular structures using com-
puter aided design (CAD) packages is unfeasible for the
level of complexity required, procedural generation of vascular
networks is greatly preferable. Other applications for such
models include comparisons of diseased and physiological
tissues [5], surgical planning [6], [7], and the validation of
vessel segmentation algorithms [8]–[10].

A number of algorithms have been developed over the
past 25 years for arterial tree representation, considering the
physiological constraints associated with blood flow and the
hierarchical vasculature in the human body. The most common
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approach employed to produce realistic vascular networks
involves iterative growth [8], [10], [11]. Constrained Con-
structive Optimization (CCO) is a widely accepted method for
the generation of vascular trees [12]–[17]. Other approaches
include the Lindenmayer systems (L-systems) [9], [18], Global
Constructive Optimization [19] and the Random Walk Algo-
rithm [20]. In order to build a physiologically relevant arterial
tree, an optimality criterion must be fulfilled. The principle
of minimum intra-vascular volume is most commonly used to
ensure an optimal build [8], [11]–[14], [16]–[19]. In addition,
several assumptions are frequently applied to simplify these
models. The most common include laminar (steady-state) flow,
flow conservation, equal terminal flow and pressure, Newto-
nian fluid flow, and Murray’s law for optimal bifurcations;
networks that conform to this law maximize flow conductance
per unit volume [2]. Some algorithms simulate additional
phenomena such as the Fåhræus-Lindqvist effect (viscosity
changes with vessel diameter) [15], [20] and vascular growth
driven by oxygen demand [8], [20]. Most algorithms are used
to produce single vascular trees [8]–[10], [12], [13], [17]–[19],
[21], while only a few simulate full vascular networks [11],
[15] or include capillaries [16], [20].

Here, we describe a new CCO approach, capable of produc-
ing multiple and independent interpenetrating networks (e.g.
arterial, venous, epithelial, lymphatic). The networks bifurcate
from large vessels down to fine vessels and anastomose back
to large-sized vessels. The model allows for any volumetric
region to be uniformly supported with vessels and the spacing
between the vessels is also controllable. Thus, multiple inde-
pendent networks can be packed into the space. Further, our
approach is computationally efficient, and engages with vessel
collision detection after the vascular tree has been formed.
Alongside physical flow constraints, such as pressure and
flow rate, our approach incorporates a number of biomimetic
principles, including Murray’s law, which relates the parent
and daughter branch diameters, and minimal network volume
considerations.

Section II gives a brief overview of the fluid mechanics
and physiological laws underlying CCO, and the essential
inputs required to create a network. Section III outlines the
novel methods implemented, and presents an argument for
their efficiency; this is investigated in detail in Section IV,
alongside some demonstrative examples. The mathematical
notation used in this paper and parameters included in the
model are summarised in Table I.

II. CONSTRAINED CONSTRUCTIVE OPTIMIZATION

The required input parameters (those which do not have
default values) are listed in Table II. We follow the established
terminology of Schreiner [13] and refer to nodes in a tree
with no children as terminals, and the node which starts
the root vessel as the source. We used a constant-viscosity
model, as the vessel sizes we are currently able to manufacture
(r≥125 µm) are above the radius at which viscosity correction
has previously been applied [14]. Considering steady laminar
flow, the pressure difference over a branch, ∆P , is given as

∆P =
8µL

πr4
Q = RQ, (1)

TABLE I
SUMMARY OF NOTATION

Physical and derived values
µ Dynamic viscosity [kPa·s−1]
γ Murray’s law exponent [-]
x Position vector in R3 [mm]
Q Volumetric flow rate [mm3·s−1]
P Pressure [kPa]
L Branch length [mm]
r Branch radius [mm]
R Laminar flow resistance of a branch [kPa·s·mm−3]
R∗ Reduced resistance [kPa·s·mm]
f Child branch radius fraction of parent [-]

Collision resolution
Calculated values

sr Radial slenderness, L/r [-]
χ Branch length fraction of intersection [-]
w Weighting [-]
n̂ Unit normal vector in R3 [mm]
vp Perturbation vector in R3 [mm]
δ Overlap between branches [mm]

Input parameters and default values
kr Radial capture factor 1.2 [-]
ka Resolution aggression factor 1.5 [-]
C Relative compliance of a network 1.0 [-]
|v|min Minimum perturbation distance 50 µm
zp Terminal node cull penalty 4 [-]
zt Terminal node cull threshold 20 [-]
βc Critical flow ratio for immediate culling 100 [-]
r+ Radial padding to ensure separation 125 µm
rmin Minimum feature size (radial) 125 µm

Optimization
Calculated values

g̃(x) Approximation to the direction of the gradi-
ent of the volume of the entire network with
respect to the position, x, of a bifurcation

[mm3·mm−1]

∇εV (x) Finite-difference estimation of the volume
gradient with respect to the position, x, of
a bifurcation, with stride ε

[mm3·mm−1]

∆ The stride length to take, having determined
the direction: x← x−∆ · g̃(x)/|g̃(x)|

[mm]

Input parameters and default values
η Step length fraction 0.1 [-]
τ Termination length fraction 0.2 [-]
β Step fraction reduction ratio 0.5 [-]
zb Iterations between step fraction reduction 5 [-]

Construction
S Skip limit: the number of attempts allowed where no progress

is made. The most ‘lazy’ selection is achieved with S = 0,
and traditional CCO selection is with S =∞.

Computational scaling
N Total number of terminal nodes in the perfusion space.
n Number of terminal nodes currently in tree.
d(i) Terminal depth distribution: for a positive integer i, the

fraction of terminal nodes which have i parent segments to
the root node.

Sets and indexing
B All branches in the tree.
C Children, the immediate downstream elements.
U The chain of upstream elements to the root. Indexed as

{1...M}, with 1 being the first child of the root and M being
the immediate upstream element.

T Bifurcation triad, the elements surrounding a bifurcation:
T = {C, UM}.

0 Subscript for the root branch/node.
p Subscript for the parent branch/node in a given context.
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TABLE II
THE ESSENTIAL INPUTS TO THE CCO ALGORITHM, AND THEIR UNITS

Global
∆Ps Pressure drop from source to terminals kPa
xs Source node position mm

Per Terminal
x Position mm
Q Volumetric flow rate mm3·s−1

where L and r are the branch length and radius respectively,
µ is the dynamic viscosity (taken to be 4×10−6 kPa·s−1
for blood), Q is the volumetric flow rate and R the laminar
resistance. Physical constraints are provided by flow and
pressure consistency between children (C) and their parent (p):

Qp =
∑
i∈C

Qi, (2)

Pp = Pi +QiRi ∀i ∈ C. (3)

In calculations, the reduced resistance, R∗:

R∗ = Rr4, (4)

is used [12], as radii are only determined when needed.
The relationship between parent and child radii is fixed

by Murray’s law [2] to minimise power dissipation over the
network:

rγp =
∑
i∈C

rγi , (5)

where γ = 3, the standard result for minimum work, is
the default value. Values in the range 2 ≤ γ ≤ 3 are
physiologically relevant, with lower exponents being observed
in high-flow vessels. [3].

In this implementation, we use only nodes with at most
two children (i.e. bifurcations), but nodes with higher splitting
may be approximated by multiple close bifurcations with low
separation. At each bifurcation, the child radii are set by their
fraction, f , of the parent radius:

ri = firp, (6)

from which follows:

fγ1 + fγ2 = 1, (7)

and, by dividing (5) by rγ1 :

f1 =

[
1 +

(
r1
r2

)−γ]− 1
γ

, (8)

with a similar form for f2. By defining the terminal pressures
to be uniform, we can determine the global resistance from the
total flow rate, Q0, and pressure drop from source to terminals,
∆Ps, allowing the root radius, r0, to be calculated with (1)
and (4):

r0 =

(
R∗0
R0

) 1
4

=

(
Q0R

∗
0

∆Ps

) 1
4

, (9)

which is propagated down the tree using (6).

TABLE III
NODE TYPES, THEIR RELATIONSHIPS, AND DEPTH MODIFIERS.

Type Parents Children Depth modifier

Source 0 1 def
= 0

Bifurcation 1 2 + 1
Transient 1 1 + 0
Terminal 1 0 + 1

Since terminal pressures are uniform, we can use the
consistency constraint in (3) to calculate the child radius ratio
at a bifurcation,

r1
r2

=

(
R∗1Q1

R∗2Q2

) 1
4

, (10)

with which the radius fractions may be calculated using (8).
The reduced resistance of the parent branch at a bifurcation is
then calculated from its downstream components as

R∗p =
8µLp
π

+

(
f41
R∗1

+
f42
R∗2

)−1
. (11)

III. NEW METHOD: ACCELERATED CCO

The established CCO approach to producing multiple non-
intersecting networks adds terminals into the network by
considering multiple candidate topologies, optimising each for
volume and then selecting the minimum volume network with
no intersections [11], [15], [22]. The intersection test at each
stage leads to poor performance: the most efficient algorithm
reported in the literature [15] scales as O(N2 logN), where N
is the number of terminal nodes, requiring days of computing
time for complex cases.

We propose a novel method, breaking the process into
3 separate stages: Construction, Optimization, and Collision
Resolution (see Fig. 1). With the reasoning that the diameter
of any practical vasculature is small compared to the space it
serves, networks are constructed in parallel with no knowledge
of each other, and collisions between them are resolved by
making small excursions around the contact points. This is
achieved by introducing a new type of node, the transient
(see Table III), which acts to create piecewise approximations
to curved branches. Such nodes have previously been consid-
ered in the context of single arterial trees [10] to introduce
tortuosity.

We will use the term depth of a node similarly to its
standard usage with respect to tree data structures: the number
of edges between a node and the root. The difference is that
we do not regard the transient as increasing logical depth, as
we can package segments connected by transients into single
branches, which we view as the fundamental unit of the tree.
The tissue volume around a single terminal will be referred
to as a unit cell, and will be considered to be supplied by
the network if there is a terminal vessel linking this node to
the network (the terminal is constructed), or if a much larger
vessel is occupying the unit cell. The volume supplied by the
entire network is referred to as the perfusion space. When
multiple networks are created to meet at the same terminal
points (e.g. arterial/venous pairs), we refer to them as being
matched. There is no limit to the multiplicity of matching.
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(b)(i)

(b)(ii) (b)(iii)

(a)

Fig. 1. The Accelerated CCO process: starting from (a), there are
three actions available. (b)(i) Construction: adding new terminals into the
network. The network topology is altered, and the only geometry which
is altered is that of the branches connecting the new bifurcation (the
bifurcation triad, T , shown dashed). (b)(ii) Optimization: The network
topology is fixed, and the geometry of the entire network is altered to
minimize the total network volume. (b)(iii) Collision Resolution: All net-
works are considered, and an attempt is made to resolve any disallowed
intersections geometrically. If this fails, the network topology is altered
by removing terminals to make space for larger vessels, reducing the
network density in regions of unresolvable intersections.

We demonstrate techniques for these stages which scale as
O(N logN) in the best case, no more than O(N2) at worst,
with an expected average best case performance for volumes
of O(N4/3).

A. Creating a bifurcation
CCO iteratively adds terminal sites into the network, mean-

ing that the overall complexity is N times the complexity
within each iteration. At each iteration, a branch must be
selected from the existing network from which to create
a bifurcation, and the location of this bifurcation must be
determined. The standard method is to evaluate all existing
branches and pick the best, which must give at least O(N2)
scaling. A new counted selection process is proposed, which
moves down the tree until it encounters a given number of
consecutive branches which make no further progress to the
target site than their parent (Algorithm 1).

1) Candidate evaluation: The selector is supplied with an
evaluation function: this takes a branch and a terminal, and
returns a structure containing a reference to the branch, a
non-negative cost against which branches are compared, and
a flag indicating suitability. A branch being unsuitable does
not prevent its children from being tested, but does prevent it
from being passed back upstream if a less optimal but suitable
alternative is available. If the evaluator wishes to reject the
terminal (e.g. it is completely contained within a branch) the

cost is set to be negative and the suitability flag is set - this is
then guaranteed to be returned from the search process. The
terminal is rejected if no suitable candidates were found or
the cost is negative. For the investigations in this paper, we
consider only the Euclidean distance from the terminal node to
the branch as the cost function: with prescribed flow through
branches and pressure being fixed over the network, we expect
that longer paths will require larger radii. The suitability test
is whether the triangle formed by the set of nodes around the
bifurcation (the bifurcation triad, T ) is likely to degenerate
into a line. Extensions which we do not investigate here (but
are briefly touched upon in supplementary material) include
augmenting the cost with a flow rate term and providing a
maximum permissible flow asymmetry.

Algorithm 1 Counted selection method
Require: terminal, skipLimit : int[0,∞], evalFunc
Function Select(current, count) :

best ← current
for all child c of current.Branch do

candidate ← evalFunc(c, terminal)
if candidate.Cost < current.Cost then

downstream ← Select(candidate, 0)
if downstream.Suitable
and downstream.Cost < best.Cost then

best ← downstream
end if

else if count < skipLimit then
downstream ← Select(candidate, count + 1)
if downstream.Suitable
and downstream.Cost < best.Cost then

best ← downstream
end if

end if
end for
return best

2) Performance: The counted selection method will never
do worse than testing all existing branches, giving an upper
bound on complexity of O(n), where n is the number of
terminals currently constructed, since the number of branches
is Θ(n). When a low number of skips, S, is permitted, the
performance should scale as the mean depth of the branches
currently in the network. Furthermore, we can guarantee that
the depth of the bifurcation created will be less than or equal to
the depth produced by searching all existing branches, which
will help maintain the good balance required to achieve better
query performance. The minimum scaling would be achieved
if the tree had uniform depth balance, which would scale as
O(log n).

We expect that the depth distribution along these extremal
paths will be approximately uniform, with a mean that scales
with the characteristic number of terminals in any dimension,
for the following reasons: (1) the average path to the most
extreme terminals of a perfusion space will pass a number of
internal terminals that scales with the characteristic number of
terminals in any dimension; (2) minimum volume principles
suggest that the path should bifurcate into these terminals as
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soon as they are passed (observed in [16], [19], [23]–[25]).
We therefore expect performance of volumes to scale no better
than O(n1/3). For perfusion spaces where the terminals are
arranged as a shell around the inlet, better performance is
expected, whereas for long, thin volumes we expect the worst
case performance to be achieved.

Perfect depth balance can be achieved by using a space-
filling fractal [26], but the suitability of fractals for large-scale
organs is debatable [27]–[29]. Notably, manufactured models
which have been designed to achieve uniform depth balance
have only been shown to supply a line or plane of points [30],
[31].

B. Volume optimization

The network volume is approximated as being the sum of
cylindrical volumes over the the set of existing branches, B,

V (B) = π
∑
b∈B

r2bLb. (12)

Previous implementations have optimized the position of bi-
furcations as they are added into the network, which we will
refer to as ‘incremental’ optimization.

1) Accelerated incremental optimization: Karch et al. [32]
considered that when a bifurcation is moved, only the reduced
resistances and radii fractions in the direct path upstream
to the source must be re-evaluated. We introduce a new
derived property, the effective length, L∗, which allows the
approximation to the volume to be re-evaluated in a similar
manner, requiring only calculation along the path to the root,
avoiding the costly evaluation of the sum. By expanding the
sum and replacing radii with the root radius multiplied by their
chained fractions from (6) we get:

V (B) = π
(
L0r

2
0 + L1f

2
1 r

2
0 + L2f

2
2 r

2
0 + L1,1f

2
1,1f

2
1 r

2
0 + ...

)
,

(13)
from which common factors may be recursively extracted:

πr20
(
L0 + f21

(
L1 + f21,1 (L1,1 + ...) + ...

)
+ f22 (L2 + ...)

)
.

(14)
We can now define the effective length relationship at termi-
nals and bifurcations:

L∗term = Lterm, (15)

L∗p = Lp + f21L
∗
1 + f22L

∗
2. (16)

The total volume downstream of a branch is therefore

V (B) = πr20L
∗
0. (17)

The update rule can be generalized to any cost function of the
form considered by Schreiner et al. [23]:

C(B, λ, ρ) =
∑
b∈B

rρbL
λ
b , (18)

where λ, ρ are arbitrary constants. Using the following substi-
tutions: Li → Lλi , f2i → fρi , the general form of the evaluation
becomes:

C(B, λ, ρ) = rρ0L
∗
0. (19)

2) Batch optimization: The fundamental limitation of in-
cremental optimization is that the effect of moving a single
bifurcation on the entire network becomes negligible as the
total number of nodes becomes large. Since we will deal with
any intersections at a later point in the algorithm, we may
interrupt the build at various stages to optimize every single
bifurcation at once.

Karch et al. [32] demonstrated that the volume of the whole
network when perturbing a single bifurcation has a single
minimum somewhere within the bifurcation triad, permitting
the use of the simplest method of minimization; gradient
descent of the volume with respect to the position of each
bifurcation:

x′ = x− η∇V (x), (20)

where η is some small parameter. Whilst we could use the
accelerated volume calculation method to estimate the gradient
at each node, we would pay a computational cost per iteration
of N times the mean depth of the whole tree, giving an
expected O(N4/3) scaling for perfusion spaces.

A constant time approximation to the gradient, giving an
overall scaling per iteration of Θ(N), is justified here. Starting
by differentiating (17) with respect to a bifurcation position,

∇V (x) = πr20∇L∗0(x) + 2πL∗0r0∇r0(x), (21)

we note from (9) that the root radius is a function of only
root reduced resistance, R∗0, given that the flow rates and total
pressure drop are fixed by the logical configuration of the tree.
Since changes in R∗ propagate upwards from the bifurcation
to the root, we see from (11) that there is a scalar gradient
chain through the upstream nodes, Um: m ∈ {1 . . .M}, where
1 denotes the first child of the root and M the immediate
upstream node of the bifurcation, and the vector terms are
introduced at the bifurcation triad via their physical lengths
(using C to denote the set of child branches):

∇R∗0(x) =
dR∗0
dR∗U1

(
M−1∏
i=1

dR∗Ui
dR∗Ui+1

)
dR∗UM
dR∗p

∇R∗p(x), (22)

∇R∗p(x) =
8µ

π

(
∇Lp(x) +

∑
i∈C

dR∗p
dR∗i
∇Li(x)

)
. (23)

In order to avoid vanishing gradients due to deep chains, we
wish to approximate the gradient direction and work out the
step size later. Defining β = r1/r2, the bifurcation relationship
yields:

dR∗p
dR∗1

= −
(
f41
R∗1

+
f42
R∗2

)−2(
(1 + β−γ)

− 4
γ

R∗21

(
β−γ

1 + β−γ
− 1

)

− (1 + βγ)
−4−γ
γ βγ

R∗2R
∗
1

)
.

(24)
The expression for the second child can be found by exchang-
ing the indices. Considering that

z

1 + z
− 1 ≤ 0 ∀z ≥ 0, (25)

we know that the gradient chain elements are all positive.
∇R∗0(x) therefore points in the same direction as ∇R∗p(x).



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2019

Disregarding the scaling factor (8µ/π) and evaluating the
length gradients in (23), we get g̃(x), the approximation to
the gradient direction:

g̃(x) =
x− xp
Lp

+
∑
i∈C

dR∗p
dR∗i

(x− xi)
Li

. (26)

For the approximation to be suitable requires the terms in
(21) from the effective length derivative to be either pointing
in a similar direction, or small. The gradient of the parent
effective length at a bifurcation with respect to the position of
a different bifurcation downstream is:

∇L∗p(x) = ∇Lp(x) +
∑
i∈C

(
f2i ∇L∗i (x) + 2fiL

∗
i∇fi(x)

)
,

(27)
and we claim the following:

1) ∇Lp(x) = 0 for all terms not in the bifurcation triad.
Whilst not in the exact same direction as (26), they have
similar components (physical length gradients multiplied
by positive coefficients) and arrive at the root expression
having been attenuated by every f2i on the way, reducing
their effect.

2) One of the f2i ∇L∗i (x) terms at each bifurcation is zero,
as it has no downstream changes.

3) Each fiL∗i∇fi(x) term has a gradient chain downstream
to an expression proportional to (26). A pair is intro-
duced at each bifurcation, and are attenuated by fewer
f2i terms than the physical length terms at the root. It is
possible for the proportionality to (26) of this term to be
negative: a small number of bifurcations will suffer this
at enough nodes that the approximation will be pointing
in the reverse direction to the true gradient.

The approximation of the gradient direction in (26) seems
acceptable when considering the bulk movement of nodes,
increasingly so at larger depths. In the case of transient nodes,
we can view the parent and child branches together as a
single element, meaning that only the length term of the parent
reduced resistance is involved:

∇R∗p(x) ∝
(
∇Ltotal(x) =

x− xp
Lp

+
x− xc
Lc

)
, (28)

which gives a direction that is the mean of the branch unit
vectors towards the transient, and the expected result of
equilibrium lying on the line between parent and child.

All that remains is to determine the perturbation distance,
∆, which is set to be a fraction, η, of the minimum length in
the bifurcation triad, T :

∆ = η ·min(Lp, L1, L2). (29)

However, without a termination condition we may find that
bifurcations are pulled into overlap with other nodes, in-
creasing collisions. When the overlap is at a terminal, this
can have disastrous consequences for the completeness of
perfusion due to terminal culling (see §III-C.6). Movement
is prevented when the shortest triad length is less than a
termination fraction, τ , of the minimum distance between
surrounding nodes:

min(Lp, L1, L2) ≤ τ ·min(|x1 − xp|, |x2 − xp|, |x2 − x1|).
(30)

Should equilibrium lie outside of the termination regions,
low amplitude oscillations or limit cycles may be established
due to the increased step size in this region. Convergence
can be encouraged in practice by ensuring that η starts small
(limiting the potential overstep) and by reducing η over time.
A simple implementation is to specify a reduction fraction and
block length, with care taken to ensure that the block length is
appropriate for the initial η - small strides need more iterations
before reduction.

3) Initial bifurcation position: If we do not optimize the
network incrementally, we need a method of determining
where to place a bifurcation upon creation. Rather than place it
at the arithmetic mean position of the nodes in T , we propose
that a more suitable (yet still trivial to calculate) approximation
to the optimal position, x̃, is a weighted arithmetic mean, with
the weighting being the flow:

x̃ =

∑
n∈T Qnxn∑
n∈T Qn

. (31)

Considering the extreme case, we see that this reduces the
deviation taken by high flow branches:

Q1 � Q2 =⇒ x̃ ≈ 1

2
(xp + x1), (32)

which helps minimize the length of the main branches.

C. Collision resolution
The collision resolution scheme is an iterative approach with

three actions available:
1) Insert a transient in a branch to create an excursion.
2) Move a bifurcation/transient.
3) Remove a terminal.

We aim to minimise the removal of terminals, and care is
taken to ensure that this only occurs when a much larger
branch has no possible place to be moved - in this case
the unit cell is essentially marked as having no useful tissue
volume to support, and the loss to total flow does not harm
the completeness of perfusion.

1) Detection: A naive approach to collision detection would
be to test every branch against each other, which gives a
complexity of Θ(N2). By the use of an appropriate hierarchi-
cal bounding tree we can achieve O(N logN + k1+ε) query,
where k is the number of intersections, by rejecting entire
groups using simple tests. In this case, we use Axially Aligned
Bounding Boxes (AABBs), which can find a rejection in at
most 6 comparisons [33].

Unfortunately, structures optimized for query have a high
construction cost [34] – we use the assumption that we
have produced a roughly balanced tree, combining sibling
bounds at bifurcations into downstream bounds, which are then
combined with their parent branch local bounds to produce the
global bounds for that branch. This is by no means optimal in
query, as at each layer of the tree we have both a leaf element
and two child branches. We again expect query performance
to scale as N times the mean depth – we sacrifice optimal
query for linear cost of construction, as we must recalculate
the bounds for each iteration of resolution. The query routines
are demonstrated in Algorithms 2 and 3.
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TABLE IV
INTERSECTION DATA AND THEIR PURPOSE.

Name Type Description
Indeterminate Boolean Whether a single mutual normal direction could not be established.
NormalAB Vector3 (Normalised) If determinate, the normal from branch A to B. If indeterminate and collinear, a randomly

generated mutual normal. Otherwise, the in-plane direction from A to B.
Fraction, Closest (A,B) Real[0,1], Vector3 The fraction along each branch of the closest point, and the evaluated point itself. Only valid

if determinate.
Start, End (A,B) Real[0,1], Real[0,1] If indeterminate, the start and end fractions of intersection.
Distance2, Overlap Real, Real The square separation distance, used for determining intersection, and the overlap if intersecting.

Algorithm 2 Collision detection
Subroutine TestTree(a, b) :

immune ← GenerateImmuneSet(a)
TestDownstream(b, a)
for all child ca of a do

if TestBounds(ca.Global, b.Local) then
TestTree(ca, b)

else
for all child cb of b do

if TestBounds(ca.Global, cb.Global) then
TestTree(ca, cb)

end if
end for

end if
end for

Algorithm 3 Collision detection downstream search
Subroutine TestDownstream(root, check) :

if not immune.Contains(check)
and TestBounds(root.Local, check.Local) then

data ← TestBranches(root, check)
if data.Intersecting then

intersections.Add(data)
end if

end if
for all child c of root do

if TestBounds(check.Local, c.Global) then
TestDownstream(c, check)

end if
end for

We model branches as capsules, which have simple inter-
section tests. The intersection data produced are shown in
Table IV. Intersections where a single mutual normal direction
between the branch directions cannot be established (the
branches are either co-directional or collinear) are referred to
as indeterminate, and are handled separately, as there may not
be a single point of closest approach between the centrelines
of the branches.

2) Immune sets: In the case of matched networks, the parent
branch of a terminal node must intersect with each of the
parents of the other matched terminals. An immune set is
generated whenever the end node of a branch indicates it
has matched partners, and intersection tests with branches in
the set are skipped. For intersections within a network, each
branch must generate an immune set of at least its sibling,

children and parent. However, in cases where the branches
have low slenderness we allow the set to be expanded:
branches are recursively added both upstream and downstream
until the logically closest node pair between the test branch
and set-generating branch no longer touch.

3) The determinate case: Firstly, a decision is made as to
whether the start and end nodes of each branch are involved
in the intersection, by comparing the distance between the
nodes and the point of closest approach, d, to the branch
radius. Using the radial slenderness of the branch, sr, the
fraction along the branch of closest approach, χ = d/L, and
a radial capture constant, kr, the start and end conditions are
respectively (

d

r
=
d

L

L

r
= χsr

)
< kr, (33)

(1− χ)sr < kr. (34)

If either node passes its test, a request is filed to move the
intersecting nodes by a perturbation vector, vp. If both nodes
fail, a transient is requested at the closest approach point of
the centreline plus vp. The perturbation distance is calculated
by multiplying the overlap, δ, defined as the sum of the branch
radii minus the separation between the branch centrelines, by
an aggression factor ka, which tries to prevent the potential
increase in branch radii after movement from causing the
same collision again; this distance is then divided between
the branches by their weighting fractions, which must satisfy

wA + wB = 1. (35)

The perturbation vector, vp, is therefore given by

vp = δkawn̂ (36)

where wn̂ is the weighted normal in the relevant direction for
each branch.

After all intersections have been processed, all node per-
turbation requests are averaged into a single perturbation for
this iteration, which is clamped to ensure a minimum step
size, |v|min. This reduces the number of iterations required,
but can introduce needless tortuosity if |v|min is too large.
Transient requests are also averaged to insert a single transient
per branch in each iteration. There is no minimum distance for
these, as any unresolved intersections will be captured by the
newly inserted transient in the next iteration, which will then
follow the rules for node perturbations to ensure a solution is
found.
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4) The indeterminate case: In this case the node tests are
of the same form as the determinate case, but with the
length fraction replaced by the intersection range start and
end fractions, respectively. There is now the possibility to
request both node perturbations and transient insertion: all
node requests are made the same as before; then, should any
node in the intersecting set of A be stationary, a transient is
requested at the midpoint of B’s intersection range plus the
perturbation vector, and vice versa.

5) Perturbation weighting: It often makes little sense to
perturb a high-flow and low-flow path equally, as volume
minimization suggests that the path with lower flow should
yield. The simplest way to weight the perturbations to achieve
this is using the total flow fraction of the opposing branch.
However, between networks where the overall pressure dif-
ferences are substantially different, the effect of perturbations
on the root radius (and subsequently all radii) is amplified
in the low-pressure case, so the user can specify a relative
compliance, C, for each network to compensate for this. The
overall perturbation weights are therefore:

wA =
QBCA

QACB +QBCA
,

wB =
QACB

QACB +QBCA
,

(37)

which satisfy the constraint in (35).
6) Terminal culling: As generated volumes become larger,

the probability of situations where root branches grow to sizes
similar to the terminal spacing increases, creating potentially
unresolvable collisions with the stationary terminal nodes.
Even if a solution were to be found, the tortuous structures
created by diverting the flow around the terminal would
increase volume, and optimization steps would most likely pull
the branches back into the terminal, perpetuating the issue. To
resolve this, a culling stage was added.

Whenever a request to move a terminal is made, the resolver
increases its cull count by a user-specified penalty, zp. After
each iteration of resolution, the resolver checks the count
of each node against a threshold value, zt, and any nodes
with counts greater than this are culled from their networks,
alongside their matched partners. The resolver then decrements
the count of all nodes, clamping values at zero.

Aggressive culling prevents the distortion of branches close
to the source at the expense of those downstream, where
solutions may be available if more attempts were allowed. To
permit less aggressive culling whilst still protecting the root
branches a critical ratio, βc, is specified and if the condition

Qtermβc < Qbranch (38)

is met, the terminal is immediately removed from the network.
7) Ensuring 3D printability: The radii of vessels are kept

above the printer minimum feature size, rmin, by adjusting the
overall pressure drop if necessary. To ensure vessel spacing
is above the minimum feature size of the printer, their radii
are padded for collision resolution purposes by another input
parameter, r+.

In terminal segments spaces between the narrow vessels
are at risk of infill in printing, should the angle at which

they meet be too large. We therefore provide the user with
the option to smooth terminal segments as a final action
before exporting the model to a CAD format. We export
to Autodesk® Inventor® 2017 onwards, as well as directly
exporting to .STL files.

IV. RESULTS

A. Collision resolution
A demonstration of collision resolution and terminal

smoothing working for a simple case is shown in Fig. 2. Whilst
not perfect, angles have been mostly reduced to below 90°.
An instance of terminal culling can also be seen, as there is a
terminal in Fig.1a(ii) (right inset, circled) that is not present in
Fig.1b(ii). Regions such as this, where we have one or more
high-flow branches, are exactly where we expected to need to
cull terminals.

B. Computational scaling
Performance of construction was tested by generating net-

works for an Edge-fed Cubic Volume (ECV), where the source
node was placed above the centre of one face of a cubic
terminal layout; a Centre-fed Spherical Shell (CSS), where the
terminals were placed uniformly over the surface of a sphere,
and the source node placed at the centre; and an Above-fed
Planar Surface (APS), where a square surface of terminals is
supplied by a network descending from a central out-of-plane
source node. An example of each network is shown in Fig. 3.
An important note is that for the CSS case the skip limit, S,
must be increased. If S = 0, the order of construction becomes
important: if the children of the first bifurcation point away
from the target site, the bifurcation will be created at the root.
Should the next terminal have a similar relationship to the new
initial bifurcation, the process will repeat and the output will
be a spiky sphere. For each setting 100 tests were performed
with a fresh random number generator, seeded by the system
tick count.

Fig. 4 shows a polynomial scaling estimate for each case.
It can be seen that the mean performance on the ECV scales
faster than previous algorithms by roughly a factor of N1/2,
with a number of outliers seeing far better performance. The
CSS case scales best, despite the fact that S had to be increased
for this geometry. Whilst we might have expected the APS to
have seen better performance again, due to the ability to use
lower values of S, the minimum volume structure does not
bifurcate out-of-plane very often: the optimal volume solution
is to move rapidly to the plane and then branch out in-plane
(see Fig. 3), which we would expect to scale as O(N3/2),
using the argument that the extremal paths pass a number of
terminals scaling as O(N1/2).

1) Terminal depth distributions: Comparing terminal depth
distributions (which we will denote as d(i) to represent the
fraction of terminals at depth i) across sizes is meaningless
without a normalization: in this case, we know that the
perfectly balanced tree will have all of its terminals at a depth
of logN , and we therefore compare distributions normalized
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(b)

(i) (ii)

(a)

(i) (ii)

(c)

(ii)(i)

Fig. 2. A matched arterial/venous network pair supplying a cube of 64 terminals spaced at 4 mm, with a minimum radius of 125 µm. In (a), a
network is shown after construction and volume optimization, showing (i) sharp angles prone to infill, and (ii) a large intersection. Shown in (b) is
the same network after collision resolution and terminal smoothing, with (i) greatly reduced terminal angles, and (ii) clearance between the major
vessels. In a(ii), the circled region shows a terminal which is not present in b(ii) due to terminal culling in collision resolution. Scale bars: main
image: 2.5 mm, insets: 1 mm. (c) A 3D printed model template of the matched arterial/venous network. (i) The model was printed on a Solidscape
S350 using Midas build material (blue) and melt dissolvable support (orange). (ii) Support material was removed using a selective solvent bath and
model dried in air. Model displays precise reproduction of the algorithmically-generated network. Scale bar: 2.5 mm.

against this. These comparable distributions are referred to
as d(i′), where i′ = i/ logN . For notational convenience,
we do not explicitly mention the dependence of d on N and
geometric factors.

Fig. 5 shows that, as expected, the depth distribution mean
and standard deviation for an ECV is seen to grow almost
exactly as N1/3, suggesting that we could do no better than
O(N4/3) performance overall, if we were able to find a cost
function to use in the construction phase that prevents needless
downstream searches more effectively than the Euclidean
distance. The distribution for the CSS case shows a very slight

decay (Fig. 6), suggesting that the performance floor would
be closer to O(N logN) if we were to supply a shell-like
geometry for which we may use S = 0.

2) Collision resolution: The number of iterations required
for total collision resolution (Fig. 7) is seen to have a weak
increase with the number of terminal nodes, but remains fairly
constant over the range of problem sizes that we are currently
interested in. The position of source nodes determines the
shape of the distribution: when inlet and outlet are on opposite
sides of the perfusion volume, low-flow branches of each
network will be intersecting high-flow branches of the other,
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APS

ECV CSS

Fig. 3. Single sample networks for the 3 configurations used for
testing performance: edge-fed cubic volume (ECV), centre-fed spherical
shell (CSS) and above-fed planar surface (APS), with their bounding
geometries shown.
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Fig. 4. Estimate of polynomial scaling of build time, t, for an edge-
fed cubic volume (ECV), centre-fed spherical shell (CSS) and above-fed
planar surface (APS). Note that the CSS case required S = 1 due
to the geometry of the problem, whereas the others were able to use
S = 0. 100 tests performed at all settings.

which is more likely to require many iterations to fully resolve.
An estimate of the computational scaling of a single itera-

tion of collision resolution is shown in Fig. 8. Whilst there is
a lot of variability in the time taken, it is seen to scale better
than construction. However, for sizes that we are currently
generating, the time taken is similar to, if not greater than, the
time taken in construction.

C. Volume of generated networks
The mean volumes of ECV networks with 1000 terminals

generated using various selection methods, V̄ , are shown in

TABLE V
VOLUME MEAN AND STANDARD DEVIATION FOR A 1000 TERMINAL ECV

BY SKIP SELECTION PARAMETER RELATIVE TO THE FULL SELECTION

POLICY (EQUIVALENT TO S = ∞). 100 TESTS PERFORMED AT ALL

SETTINGS.

S 0 1 2 ∞
V̄ /V̄∞ 0.8869 0.9074 0.9193 1.0000

sV /V̄∞ 0.0243 0.0245 0.0245 0.0383
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0.06

0.08
(a)

3 3.5 4 4.5 5

0.5

1

1.5

2
(b)

Fig. 5. Terminal depth distributions for the cubic volume (ECV). (a)
The observed comparable distributions d(i′) for a range of terminal
counts N , which broaden with increasing N . (b) The growth in mean,
d̄, and standard deviation, sd, of terminal depth distributions follow the
expected power law in N . 100 tests performed at all settings.
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Fig. 6. Terminal depth distributions for the spherical shell (CSS). (a) The
observed comparable distributions d(i′) for a range of terminal counts
N , which remain similar despite large changes in N . (b) The normalized
mean, d̄, and standard deviation, sd, of terminal depth distributions are
seen to vary much less with N than the ECV case. 100 tests performed
at all settings.



GUY et al.: 3D PRINTABLE VASCULAR NETWORKS... 11

(a) Neighbouring Inlet and Outlet

(b) Opposing Inlet and Outlet

Fig. 7. The number of iterations required for collision resolution for
an ECV network with (a) neighbouring and (b) opposing inlet and
outlet. Box plot shows minimum, median, maximum, and interquartile
range. Outliers (determined as being more than 1.5 interquartile ranges
beyond the upper and lower quartiles) are plotted as crosses. 100 tests
performed at all settings.
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Fig. 8. An estimate of a polynomial scaling law for the time required per
iteration of collision resolution for an ECV network. 100 tests performed
at all settings.

Table V, normalized against the reference volume of the
traditional ‘full’ search, V̄∞. The standard deviations, sV , seen
in this are also shown, again normalized by V̄∞, to give an
idea of the susceptibility of each method to the randomness
in the build order. The optimization scheme used for these
was incremental and flow weighted. It can be seen that
the minimum volume is achieved using the most aggressive
scheme (skip limit, S = 0) and that the standard deviation of
volumes is lower when using counted selection compared to
the full search case, S = ∞. Due to the fact that it is not
possible to use S = 0 with all geometries, we recommend
using S = 1 as a default.

1) Verifying the gradient approximation: Fig. 9 shows the
distribution of alignment between the fast gradient approxima-

0 20 40 60 80 100
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0.4

0.5

0.6
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0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 9. Alignment of finite difference estimated gradient, ∇εV (x),
with g̃(x), the fast approximation to the gradient, for 100 instances of
an 8000 terminal ECV network. The contours represent the cumulative
distribution of alignments at each bifurcation depth, plotted in increments
of 0.1, with the color scale varying from 0 to 1.

tion, g̃(x), and a finite-difference estimation of the gradient,
∇εV (x), with stride size ε = 0.01 mm, measured as the dot
product between their directions:

Alignment =
g̃(x)T∇εV (x)

|g̃(x)||∇εV (x)|
. (39)

This was measured for all bifurcations in 100 instances of an
8000 terminal ECV as a function of bifurcation depth. Whilst
we see somewhat poor alignment at lower bifurcation depths
(up to 10% of nodes being moved in the wrong direction),
at depths at which the majority of the bifurcations reside
(25 to 75) we find that 80% of nodes show alignment above
0.8, showing that in almost all cases, the O(N1/3) saving in
complexity does not excessively sacrifice optimality.

2) Effect of optimization schemes: The effect of various
optimization schemes is shown in Fig. 10. At each size,
the mean volumes and confidence intervals were normalised
against the flow-weighted, incrementally optimized scheme
for that size, denoted VQ,I(N). Our implementation of an
incremental optimizer terminated when it failed to reduce the
volume by at least a certain fraction (in this case 10−4) of
the current volume. Once the network is large enough, it
is not possible for the newly created bifurcations to make
such a significant impact on the volume, and the optimizer
terminates almost immediately. This is most likely the reason
for flow weighting having such an effect when using the
incremental optimizer; when many bifurcations are deemed
too insignificant to spend time optimizing individually, the
effects of better initial position for each have a large impact
on total volume.

Batch optimization is a clear improvement over incremental,
giving a mean volume reduction greater than 10% as well
as being more consistent. In this example, we interrupted
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Fig. 10. Relative volumes at various sizes with S = 2 under
various initial bifurcation weightings (unit, w = 1, and flow, w = Q)
and optimization schemes, with 95% confidence bounds. Note that the
points for w = 1 with batch optimization have been offset for clarity.
100 tests performed at all settings with ECV configuration.

the build at fractions of (0.1, 0.2, 0.5, 1) to perform 10
iterations of optimization, which gave similar total time to
the incrementally optimized case at the intermediate value of
N = 8000. Even with batch optimization, flow-weighting is
still relevant - unit-weighting gives worse performance and
higher uncertainty at all terminal counts, and worsens as
terminal count increases. This is due to the fact that geometric
and topological optimization are not actually separable: flow-
weighting provides a better guess of the optimal geometric
configuration, which leads to better topology (we select can-
didates based on distances, a geometric property), which in
turn is more responsive to geometric optimization.

Using finite-difference gradient estimation at depths below
10 produced a small (<1%) improvement to mean volume in
the case of N = 8000, suggesting that the power of batch
optimization arises from the bulk movement of nodes that
are individually insignificant, where the approximation to the
gradient is better.

D. Pseudo-biomimetic 3D printable vascular systems
One of the key aims in manufacturing networks is that

the inlet vessel is of a realistic diameter, to allow future
anastomoses to native vessels. To achieve this, we adjusted
pressures after construction to give correct dimensions at the
inlet. Since the focus is on the higher flow branches, Murray’s
exponent was set to γ = 2 to give more realistic radius decay
in these vessels [3]. We have aimed to produce the most
volume-optimal models, which can result in highly asymmetric
bifurcations near the root. The most extreme bifurcation ratio,
β = r1/r2 where r2 > r1, we have recorded is β = 0.082,
which is within the reported range in real tissue, β > 0.05 [35],
but real tissue does not show as many large asymmetries as the
volume-optimal designs. A short discussion on the distribution
of vessel lengths and radii, as well as a method to improve
biomimimeticism and its impact on performance, is provided
as supplementary material. For these models, rmin = r+ =
125 µm, the current 3D printable limit in removable material.

(a) (b)

Fig. 11. A matched arterial/venous pair of kidney-like dimensions. In
(a), terminals are spaced at 5 mm giving 2,000 total, with all vessels
greater than 400 µm in diameter. This model took 1.95 s computational
time to produce. In (b), terminals are spaced at 2.5 mm giving 16,000
total, but vessels are approaching the printable limit of 250 µm diameter.
This model took 39.13 s computational time to produce. Scale bars:
10 mm.

Whilst we have not yet implemented the accurate geometry
of organs, we have used simple approximations with realistic
dimensions to demonstrate 3D printable models at large scales.
For a method to adapt the collision resolution technique to
approximate real organ geometry, the reader is referred to
supplementary material. Fig. 11 shows an approximation to
a human-sized kidney model as a cuboid with a matched
arterial/venous network pair. Provided that there is sufficient
space to resolve the intersections without excessively culling
terminals (dependent upon the ratio between unit cell spacing
and minimum vessel diameter, as well as the number of
networks), the Accelerated CCO approach can be successfully
deployed over a wide range of unit cell densities. The volume
of the kidney was taken to be 5 cm × 5 cm × 10 cm, with
arterial diameter 5 mm and venous diameter 6 mm [36]–[38].

A human-sized liver (Fig. 12) was approximated as a
triangular prism supplied and drained by a quadruply-matched
network. The volume was taken to be 20 cm × 15 cm × 5 cm,
with inlet diameters of 12 mm (hepatic vein), 10 mm (portal
vein), 6 mm (hepatic artery), and 4.5 mm (bile duct) [39]–[42].

The model displays several biomimetic features; these in-
clude the four networks present in the liver, alongside com-
parable inlet sizes and overall dimensions. However, there are
currently some limitations to the level of biomimicry using
this algorithm. In the liver, the hepatic artery, portal vein and
biliary tree follow the same path through to the lobe, segmental
and sub-segmental regions. In our model, the three networks
follow independent paths through the structure, and the sub-
unit regions are not defined at any length-scale. However,
these characteristic elements of the physiological liver could
be incorporated into our models through subdivision of the
perfusion space, and by initially creating a single network
which is split into three. The inability to 3D print capillary-
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Bile duct
Portal vein

Hepatic artery

Hepatic vein

Fig. 12. A quadruply-matched network with liver-like dimensions.
Terminals are spaced at 10 mm, giving 750 total. All vessels are above
300 µm diameter. This model took 1.22 s computational time to produce.
Scale bar: 20 mm.

sized features limits the inclusion of the lobule micro-structure
present in the native liver. Finally, one notable departure from
the physiological liver is that the biliary tree connects to
the blood vessel trees through each of the terminals. This,
while not biomimetic, is necessary to clear the 3D printed
template material from the channel network (when the bulk
matrix is micro-porous). A discussion and close-up renderings
of possible unit cell structures is included as supplementary
material.

It is of note that each unit cell in the CCO model is
supported with its own terminal, therefore producing a uniform
pressure distribution in the perfusion space, which leads to
biomimetic vascular networks. This is in contrast to networks
fabricated via 3D printing methods where the perfusion space
is typically supplied through a series of one-dimensional chan-
nels [30], [43], [44] leading to variation in pressure across the
perfusion space. Further, the space occupied by connections
between inlet and terminal one-dimensional channels will
produce unsupported regions within the tissue construct.

V. CONCLUSION

The success of tissue engineered constructs largely depends
on the incorporation of perfusable vascular networks which
can support the biological functions of the embedded cells.
While 3D printing techniques have evolved to create complex
structures with geometric precision, currently there is no
method for automatic generation of 3D printable vascular net-
works for arbitrary scales and spaces, and for interpenetrating
networks. Here, we report a method for generating 3D print-
able vasculature templates, based on Constrained Constructive
Optimization, by dividing the process into distinct stages
of construction, optimization and collision resolution. The
method accounts for physical constraints (flow conservation,
pressure consistency), physiological constraints (minimum
network volume, Murray’s law, no short-circuit intersections),
and manufacturing constraints (minimum feature sizes, infill
prevention). Construction times are significantly faster than
those previously reported on vascular trees. Computational

complexity is observed to scale as O(N1.57), a factor of
N0.43 logN better than the previous best implementation (N :
number of terminal nodes). The conversion of these networks
into perfusable channel systems, embedded in biomaterials,
requires the use of sacrificial 3D printing techniques; however,
discussion of this is beyond the scope of this computational
work.
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