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Abstract

Conservation laws that describe the behavior of partially molten mantle rock have
been established for several decades, but the associated rheology remains poorly under-
stood. Constraints on the rheology may be obtained from recently published experiments
involving deformation of partially molten rock around a rigid, spherical inclusion. These
experiments give rise to patterns of melt segregation that exhibit the competing effects
of pressure shadows and melt-rich bands. Such patterns provide an opportunity to infer
rheological parameters through comparison with models based on the conservation laws
and constitutive relations that hypothetically govern the system. To this end, we have de-
veloped software tools to simulate finite strain, two-phase flow around a circular inclusion
in a configuration that mirrors the experiments. Simulations indicate that the evolution
of porosity is predominantly controlled by the porosity-weakening exponent of the shear
viscosity and the poorly known bulk viscosity. In two-dimensional simulations presented
here, we find that the balance of pressure shadows and melt-rich bands observed in exper-
iments only occurs for bulk-to-shear-viscosity ratio of less than about five. However, the
evolution of porosity in simulations with such low bulk viscosity exceeds physical bounds
at unrealistically small strain due to the unchecked, exponential growth of the porosity
variations. Processes that limit or balance porosity localization should be incorporated
in the formulation of the model to produce results that are consistent with the porosity
evolution in experiments.

1 Introduction

Segregation and extraction of melt from the mantle control the chemical evolution of the man-
tle and crust over geological time. Observations of petrological and isotopic disequilibrium
suggest that melt extraction to produce oceanic crust is rapid and potentially localized into
channels (Kelemen et al., [1997). The mechanics of such melt extraction processes are still
somewhat mysterious. Equations that are thought to describe melt extraction are well estab-
lished (McKenzie, 1984), but these require refinement and validation. In particular, although
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the relevant conservation principles are known, the constitutive laws and closure conditions
remain poorly constrained.

New experiments by |Qi et al.| (2013) provide an opportunity to improve our understanding
of the rheology of partially molten rocks. In these experiments, a fine-grained, partially
molten aggregate of olivine and basalt is deformed around a nearly rigid, olivine sphere. The
experimental samples start with an approximately uniform porosity; after they are deformed,
quenched, and sectioned to reveal the resulting distribution of olivine and basaltic melt, they
show clear evidence for melt migration within the sample. Measurements of the resulting
patterns show that the spherical inclusion induces a perturbation to the pressure field around
it, driving flow of magma from the high-pressure sectors to the low-pressure sectors. These
sectors are known as pressure shadows.

Experimental results from a subset of the experiments by Qi et al.| (2013) indicate that the
pressure shadows can interact with emergent bands of high melt fraction. These bands are the
result of a known instability in deforming, partially molten aggregates. This instability has
been investigated theoretically (Stevenson, [1989; Spiegelman, 2003; |Katz et al., 2006; Butler,
2009, [2010; 'Takei and Katz, 2013; |Katz and Takei, [2013)) and experimentally (Holtzman et al.,
2003; |[King et al., |2010)) and has been shown to produce melt-enriched bands at a low angle
to the shear plane. In the experiments by Qi et al.|(2013), such melt bands nucleate at or
near the pressure shadows, and grow at the expense of the shadows.

The present work aims to derive constraints on the rheology of the partially molten mantle
from the aforementioned experiments. We hypothesize that the theory developed to model
partially molten aggregates (McKenziel [1984) can be used to describe the results obtained by
Qi et al.| (2013)) if the correct constitutive laws are included. In particular, we seek to quantify
the form and magnitude of the viscous resistance to compaction based on comparisons between
numerical simulations, analytical solutions, and laboratory experiments. Moreover, our goal
is to establish a framework for the interpretation of current and future laboratory experiments
that is based on the two-phase dynamics of partially molten aggregates.

Previous analysis by McKenzie and Holness (2000) modeled melt segregation into pressure
shadows around a rigid inclusion based on the theory of McKenzie (1984). The authors show
that the pattern of compaction and decompaction is sensitive to the ratio of the bulk to shear
viscosity. They develop analytical solutions for an extremal case where the compaction length,
the intrinsic length scale associated with the two-phase dynamics, is much larger than the size
of the rigid inclusion, and is hence approximated as being infinite. And in this context, they
solved only for the instantaneous pattern of pressure and (de)compaction associated with the
onset of flow. In contrast with this analysis, experiments are performed with a compaction
length that is on the order of the size of the spherical inclusion. Furthermore, patterns in
experiments develop over finite strain, during which segregation of melt and solid modifies the
viscosity structure, and the inclusion undergoes finite rotation. This is further complicated
by the emergence of melt bands in the experiments, and hence there is an interaction and
competition between the two modes of melt segregation. Hence the models of McKenzie
and Holness (2000)), while instructive, cannot be used to quantify constitutive parameters.
The present work addresses these deficiencies by computing time-dependent solutions of the
governing equations for a partially molten aggregate with finite compaction length.

We use a finite element discretization and implement the simulation code in the FEniCS
software framework (Logg et al., 2012; Logg and Wells| |2010)). FEniCS is an advanced library
of tools for finite element modeling. Our numerical solutions extend a new set of analytical
solutions for the instantaneous compaction rate surrounding a spherical inclusion at arbitrary



compaction length (Rudge, 2013|). The simulation code is benchmarked against analytical
theory, and our results are compared with patterns observed in experiments by [Qi et al.
(2013).

The manuscript is organized as follows. We first describe the governing equations of two-
phase mantle flow and discuss the numerical methods used to model them. Next, a pair of
benchmarks is presented: the first tests our calculation of instantaneous compaction around
a circular inclusion; the second examines the growth rate and advection of porosity bands.
We then explore the role of rheological parameters in three different model configurations of
increasing complexity. The first suite of simulations addresses the formation of melt bands in
a medium with randomly distributed melt, but without a rigid inclusion. The second suite
focuses on the evolution of pressure shadows around a circular inclusion for an initially uniform
porosity field. The final set of simulations incorporates both the random initial porosity and
the rigid, circular inclusion. We examine the competition between melt bands and pressure
shadows, and compare these simulations with previous experimental results.

2 Governing Equations

Mass and linear momentum balances for a two-phase (partially molten) system in a domain
Q CcR? 1< d< 3, can be written as follows (McKenziel [1984):
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where ¢ is the porosity, u, is the solid velocity, uy is the fluid velocity, and 1 = ¢us+(1—¢)us.
The fluid pressure is given by py; py is the fluid viscosity. Ky is the permeability, with the
subscript ¢ denoting a dependence on the porosity. Furthermore, & := ¢o s + (1 — ¢)os with
o s the fluid stress and o, the solid stress.

Equation describes mass conservation for the solid phase, and equation describes
conservation of mass for the two-phase mixture. Equations and are linear momentum
balances for the fluid phase and the two-phase mixture, respectively. It is assumed here that
there is no mass transport between the two phases, i.e., no melting or recrystallization takes
place, that the densities of the two phases are constant, and that gravitational forces are
negligible.

We assume a Newtonian constitutive model for &

o :=—pil+G(V-u)l+ 7, (5)
where (y is the effective bulk viscosity of the two-phase mixture and

2
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is the deviatoric stress; 7 is the effective shear viscosity.



Inserting equation (3) into , under the preceding constitutive assumptions, equations (|1))—
reduce to:
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where the primal unknowns are ¢, py and us.
To complete the problem, the following boundary conditions are applied:
K
——¢fo~n:00n on, (10)
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u, = w on 052, (11)

where w is prescribed, and the boundaries are taken to be impermeable.
To non-dimensionalize the equations above, we use the following scalings:

Ky = KOK:bv x=Hx', us= H'yus/a t= 7_175/’ (12)
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where ¢ is the reference porosity, Ko the permeability at the reference porosity, H a length
measure and  the imposed shear strain rate. The non-dimensional form of equations f@
are:

0

—¢+V’~(1—¢)u;=0, (13)

ot

! D2 / 1.1 /
= K = 14
Vi TryateVer e =0, (14)
_ 2

A\ <2n:ﬁe(u;)> +V ((RC(; - 37);5) v ué) - V'py =0, (15)
where €(u)) = (Vus + Vul)/2 is the strain-rate tensor, the bulk-to-shear viscosity ratio

R = (p/no and the length scale D = ¢/H, in which

5 \/<R+4/3W< (16)

Kf

is the compaction length at reference porosity ¢g.
In this study, we choose the non-dimensional permeability K, bulk viscosity ¢ (; and shear

viscosity 77, to be:
(@ (&) e



with n = 2 and m = 1; the porosity-weakening exponent « and the bulk-to-shear viscosity
ratio R are varied between simulations. The boundary conditions in non-dimensional form
become:

D2
" R+4/3
u, = w’ on 9. (19)

KyV'ps-n’ =0o0n 09, (18)

We dispense with the prime notation from this point and work at all times with the non-
dimensional form.

3 Model Setup and Benchmarks

The governing equations in the previous section are solved using the finite element method.
The finite element method is chosen for the ease with which arbitrarily shaped inclusions
can be modeled and to permit localized spatial refinement. The developed finite element
code builds on the open-source FEniCS Project libraries (Logg et al.l 2012; |Logg and Wells,
2010), and the complete code for reproducing all examples in this work is freely available as
supporting material. We summarize in this section some important aspects of the method
that we use, and validate the model against published analytic and computational results.

3.1 Discretization

To solve the dimensionless governing equations —, together with the boundary con-
ditions in equation 7, using the finite element method we first cast the equations
in a weak form. To handle the time derivative in the solution of the porosity evolution
equation , the Crank-Nicolson scheme is used. For equations and , the P2~ P!
Taylor—-Hood element on triangles is used. The weak forms and finite element scheme are

detailed in Appendix [A]

3.2 Boundary and Initial Conditions

Figure [I] shows a schematic of the domain and boundary conditions used for the simulations
presented in Section [4] In all simulations, the top and bottom boundary are impermeable.
The velocity is prescribed on these boundaries to create simple shear with the top moving to
the right:

(o, 1/2) = (54.0)  wbeone, /) = (5 40) (20)

where + is the shear strain rate. The domain is periodic in the z-direction. In simulations
with an inclusion, we additionally enforce zero net torque on the inclusion boundary using a
Lagrange multiplier, and make the inclusion rotate as a rigid body using Nitsche’s method
(see Appendix B).

The simulations that are presented in Section {4 either have a uniform initial background
porosity ¢g = 0.05, or a random initial field around ¢¢ = 0.05 with a maximum perturbation
amplitude A = 0.03. This is within the range of initial porosities used in experiments (for
example [Holtzman and Kohlstedt} 2007;|Qi et al., 2013)). The random field is created once, and
then re-used for all simulations to ensure reproducibility. The random initial perturbations
in the porosity field are coarser than the grid scale, so that porosity variations are sufficiently
resolved.
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Figure 1: Schematic of the domain and boundary conditions used for the simulations presented
in Section |4l The side boundaries indicated by P are periodic; the top and bottom boundaries
have a prescribed horizontal velocity. The height of the domain is indicated by H, and the
radius of the inclusion around the origin is given by a.

3.3 Rheology

The porosity-weakening exponent « (see equation ) has been experimentally determined
to be around 26 for diffusion creep and 31 for dislocation creep (Kelemen et al., [1997; Mei
et al., 2002)); o = 28 has previously been used in simulations (e.g., Katz et al., 2006)). In
this study, we vary a between 0 and 50 so that we can establish, in detail, the effects of this
porosity-weakening exponent on model dynamics.

The bulk-to-shear viscosity ratio R, however, is significantly less well-constrained. [Simp-
son et al. (2010) used homogenization theory on two interpenetrating, viscously deformable
fluids to deduce that the bulk-to-shear viscosity ratio R is proportional to the porosity as
¢!, and consider R ~ 20 for a background porosity ¢ = 0.05. In contrast, Takei and Holtz-
man (2009) find, through a micro-scale model of diffusion creep of a grain partly wetted by
melt, that R ~ 5/3, independent of porosity except when the porosity is vanishingly small
(or when it is above the disaggregation fraction). In the simulations presented in Section
we use bulk-to-shear viscosities between 5/3 and 100 to encompass the values advocated in
the above referenced studies.

With increasing strain, the amplitude of porosity variations is expected to grow. Given
that there is no porosity-limiting term in the model, the porosity perturbations will grow to
values beyond the mathematical bounds of zero and one. Therefore we terminate simulations
when the porosity anywhere within the domain becomes smaller than zero or larger than one.

3.4 Benchmark 1: Instantaneous Compaction Around a Circle

The instantaneous compaction around a circular inclusion in a medium with a uniform initial
porosity has been described analytically by Rudge (2013) and therefore lends itself as a
benchmark for numerical simulations of compaction.

The far field velocity consists of simple shear and can be written as us, = (¥y,0) in terms



of a strain rate 4. The governing equations f are solved with us = 0 and Vpy-n =0
on the circle. This results in the following analytical solutions for matrix velocity us and
pressure py (Rudgel 2013]):

4G 2HKo(r) 9F 8G  HKs(r)
Uy = U + <—r4 +r2>E'X+ <_r4+r6_7«3 (x-E-x)x,  (21)
ABF  HEs(r
pf_(_ A + Tg( )>X'E‘X7 (22)

where K, (r) is the modified Bessel function of the second kind, B =n/(¢ + (4/3)n), and
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where 7 is the distance from the center of the inclusion and a the radius of the circle. This
solution assumes a finite compaction length §, and all lengths have been scaled with the
compaction length.

E is the constant, trace-free, symmetric, second-rank, strain rate tensor of the far-field

flow, E = % (Vuoo + Vu&), which can be written in components as
10 4%
E=—-1| . . 26

FKQ (T)

The compaction rate is:

V - u,

x-E-x. (27)

Figure [2h shows the antisymmetric pattern of the instantaneous compaction rate, with
two positive and two negative lobes around the circle in the shape of a quadrupole. The
negative compaction rate lobes form where overpressure causes melt to be expelled, leading
to compaction and therefore low porosity. The positive lobes have an underpressure, and
therefore attract melt and decompact, resulting in high porosity.

To validate the numerical results, we compute the Lo difference e between the numerical
solid velocity field ul and the analytical solution uf given in equation :

ol —udfl

, (28)
[[ug||

for different radii of the inclusion a. The results are shown in Figure [2b. The analytical solu-
tion assumes an infinite domain, whereas the numerical solution is affected by the boundaries
at the top and bottom. These boundary effects (and therefore e) are reduced if the size of the
inclusion is decreased relative to the domain size while still resolving the compaction around
the inclusion.
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Figure 2: (a) Instantaneous compaction pattern around a circular inclusion under simple
shear (only a part of the full domain is shown). The top moves to the right, the bottom to
the left. (b) Lo difference e between the analytical and numerical velocity field, for various
inclusion radii, with a mesh of 160 x 160 cells. The inclusion radius « is given as a fraction
of the height of the domain.



3.5 Benchmark 2: Plane Wave Melt Bands

We will now look at the angle and growth of melt bands as they rotate under simple shear in a
rectangular, two-dimensional domain with aspect ratio 4. This benchmark aims to reproduce
analytical solutions of initial melt band growth rate (Spiegelman, 2003).
The initial condition for this benchmark is a plane wave in the porosity field, described
by:
Ginit (z,y) = 1.0 + Acos (kox sin (0y) + koy cos (60)) (29)
The wavenumber and melt band angle at t = 0 are given by ko = |k|;—o and 6y = tan=*[k2/ kg],
respectively. The amplitude of the perturbation (A) must be small for the linear approxima-
tion in the analytical solution to be valid. The analytical solution for melt band growth rates
is (Spiegelman), 2003):
M
o+ (4/3)m0

The strain rate £, is equal to 1/2 for simple shear. The numerical melt band growth rate is
computed as follows:
(1—¢o)

SN =—"">
Ado
Figure 3| shows the melt bands rotating with increasing shear, i.e., with progressing time. The
band angle 6(t) is given by (Katz et al., [2006]):

54 = a(l — ¢g)26,,sin 26 . (30)

V-us. (31)

(32)

H(t):tan_l[ sin o }

cos g — tsin g

We first validate the numerical results by comparing numerical and analytical growth rates
for different initial melt-band angles 6y. Figure displays a sinusoidal dependence on 6.
Figure shows that the numerical error in the growth rate decreases with decreasing grid
spacing h and with decreasing wavenumber kg. A higher wavenumber results in narrower
melt bands, and therefore requires smaller grid cells in order to be sufficiently resolved. The
rate of convergence is approximately of order O(h?) in both cases.

The analytical solution is valid only when perturbations in the porosity field are small,
which becomes apparent when the perturbation amplitude is increased, as shown in Figure [d.
The difference between the numerical and analytical growth rates becomes significant for
amplitudes > 1072, Hence the analytical solution does not hold under experimental conditions
where perturbations have magnitudes of O(1072) to O(10~!). This is unsurprising given
the that analytical growth rate is obtained by linearizing the governing equations about a
uniform-porosity state.

4 Results

We now present three model problems of increasing complexity. First, we consider melt bands
in a partially molten medium without an inclusion but with a randomly perturbed initial
porosity field. Then we investigate the compaction pattern around a circular inclusion in an
initially uniform porosity field. Finally, we combine a randomly perturbed initial porosity
field with a circular inclusion.

The simulations presented in Section [4] with no inclusion are solved on a uniform square
mesh with 300 x 300 cells, such that the cell size is approximately 5 x 1073, Simulations with
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the solid velocity with respect to the simple shear velocity field.
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n = 80. (b) Relative error in initial melt band growth rate as a function of grid spacing h =
1/n for kg = 87 and 167; 6y = 30°. The dotted line indicates an order O(h?) convergence. (c)
Relative error in initial melt band growth rate for various porosity perturbation amplitudes,
with n = 80 and kg = 4w. For all simulations shown: porosity-weakening exponent o = 1,
background porosity ¢g = 0.05, bulk-to-shear viscosity ratio R = 10, and the compaction
length § = 1.
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an inclusion have a mesh that is linearly refined towards the inclusion boundary, with cell
sizes ranging from 1 x 1072 near the outer boundaries to 2 x 1073 near the inclusion.

4.1 Melt Bands in a Random Medium Without an Inclusion

For a partially molten medium without any inclusions, we consider a random initial porosity
field with a perturbation amplitude of 0.03 with a background value of 0.05 (Figure ) We
study a suite of simulations with a wide range of values for the porosity-weakening exponent
(v € [15,50]) and bulk-to-shear viscosity ratio (R € [1.7,100]) in order to establish the
parameter regime for which melt-rich bands readily develop. For this case, we do not consider
simulations with a = 0, since a positive porosity-weakening exponent is required for a non-zero
melt band growth rate (see equation ([30)).

Figure [Be-d shows that for o = 28 and a small bulk-to-shear viscosity ratio R of 1.7,
high-porosity bands form rapidly, and are well-developed at a strain of 0.1. The bands rotate
clockwise in the simple shear velocity field, but continue to re-form at 45°. The bands with
positive compaction rate and high porosity dominate over the negative compaction rate and
low-porosity features due to the porosity weakening rheology.

For R = 20, melt bands have not fully formed yet at a strain of 0.5, as shown in Figure [5e-
f. Even though bands are not widely present in the porosity field, the high compaction rate
areas are concentrated in narrow bands at 45° to the plane of shear. As melt bands grow
more slowly for higher bulk-to-shear viscosity ratios (see equation ), the re-forming at a
45° angle happens at a slower rate, and small parts of the bands in the compaction rate field
have therefore a higher angle than for the R = 1.7 case.

A small bulk-to-shear viscosity ratio (R < 10) and a large porosity-weakening exponent
are required to form persistent shear bands. Both factors enhance melt band growth rates, and
thus cause the porosity to exceed the physical range of [0, 1] more rapidly. We therefore con-
clude from these simulations that it is challenging to obtain simulations with well-developed
melt bands at high strains while keeping the porosity within physical bounds.

4.2 Compaction Around an Inclusion with Uniform Initial Porosity

We now introduce a circular inclusion into the domain. With a uniform initial porosity,
the instantaneous compaction rate at a strain of zero is identical to the pattern shown in
Figure 2 (Benchmark 1). When a medium with a = 0 and R = 50 is deformed by simple
shear, the porosity field initially develops according to this instantaneous compaction rate
pattern as indicated in Figure [Gh-b. As the strain increases, the porosity lobes rotate around
the inclusion according to the simple shear velocity field. Figures [6c and [6f show that the
high-porosity lobes become stretched, and grow faster and into sharper features than the low-
porosity lobes. Even though the porosity exponent in the shear viscosity is zero in the case
shown here, the permeability and bulk viscosity still depend on porosity (see equation )

The compaction rate evolves in a different manner than the porosity. The divergence
of the velocity field is mainly governed by the prescribed constant simple shear. Hence the
non-rotating instantaneous pattern generally dominates, as illustrated in Figure [6b. At high
strains, the compaction rate is affected by the large porosity variations that have developed.
Figures[6d and f show that the areas with highest porosity and therefore lowest bulk viscosity
are most easily deformed, partially overprinting the instantaneous pattern, which results in
deformed compaction rate lobes.
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Figure 5: (a) Porosity and (b) compaction rate in a partially molten medium with random
initial porosity under simple shear without inclusion, a = 28 and R = 1.7, at its initial state.
(c) Porosity and (d) compaction rate for the same simulation, at a strain of 0.1. (e) Porosity
and (f) compaction rate for a simulation with R = 20 at a strain of 0.5. In all cases, the top
boundary moves to the right and the bottom boundary to the left.



porosity

0.0515
'E0.0S]
-0.05
-0.049
0.0485-
porosity
O.]—E
;0.08
-0.06
0.04
0.02
O,
(e) ; ; s [
012} 1 0.03
9 0.02f
0.10} ©
> c
= 0.01f
3oosf || | O -
g : s 2 o0.00
0.06} : 1 g
H H O —-0.01fp
N oo
0 /2 ™ 37m/2 2m 0 /2 m 37m/2 2m
Angle Angle

Figure 6: Porosity (left) and compaction rate (right) for a simulation with uniform initial
porosity, R = 50 and o = 0, at strains 0.1 (a-b) and 4.0 (c-d). (e) Porosity and (f) compaction
rate integrated between a and 2a for different angles at various strains.
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Figure 7: (a) Porosity and (b) compaction rate for a simulation with uniform initial porosity,
R = 1.7 and o = 0, at a strain of 0.3. (c) Porosity and (d) compaction rate integrals at
various strains.

To further analyze the evolution of porosity and compaction rate, we compute integrals
of ¢ and V - u, from the boundary of the inclusion at radius r = a outward to a radius of
r = 2a, for a series of azimuths between 0 and 27:

2a 2a
L a, é/ (V-u,) dr.

aJa

(33)

These integrals show the rotation and evolution of the asymmetry of the high- and low-
porosity lobes in Figure [flg, and the deformation of features in the compaction rate field in
Figure [Gh.

Both the bulk-to-shear viscosity ratio R and the porosity-weakening exponent « in the
shear viscosity have a profound effect on the porosity evolution and compaction rate. A
smaller bulk-to-shear viscosity ratio results in faster and more asymmetric growth of features
in the porosity field, and causes the porosity to go out of bounds more quickly. For example,
the simulation with R = 1.7 and a = 0 in Figure [Th and ¢ shows a similar porosity field as
the case with R = 50 but with larger amplitudes. The compaction rate field is more strongly
affected by the porosity for smaller R because the porosity differences in space are larger. A
low porosity acts to decrease the compaction rate. As the porosity lobes rotate with shear and
become misaligned with the non-rotating compaction rate lobes, they decrease the magnitude
of negative compaction rate lobes in an asymmetric manner (Figure |f|b, d). This simulation
goes out of physical bounds for a strain > 0.3.

In the small bulk-to-shear viscosity regime, the effect of the porosity exponent « is par-
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Figure 8: (a) Porosity and (b) compaction rate for a simulation with uniform initial porosity,
R = 1.7 and o = 28, at a strain of 0.1. (c) Porosity and (d) compaction rate integrals for
various strains.

ticularly discernible. When « is chosen to be the experimentally determined value of 28,
the porosity reaches the physical limits at an even smaller strain of 0.1. The porosity and
compaction rate features in Figure [§] develop similar to the melt bands seen in the previous
section, with an elongated shape towards 45° from the plane of shear. The maximum value
of the compaction rate grows with time when o > 0, and its peaks flatten with the widening
high-compaction rate lobes.

Figure [9] summarizes the controlling effect of R and «; for a@ = 0, increasing R causes
compaction around the inclusion to have larger amplitudes, resulting in sharper positive
porosity lobes (that are advected, Figure Ela) and deformed negative compaction rate lobes
(Figure [9p). Figure [Ot-d shows that when a = 28, a higher R results in wider and flatter
positive lobes in porosity and compaction rate, indicating behavior similar to melt bands.

4.3 Melt Bands and Pressure Shadows Around an Inclusion

The final suite of tests involves a random initial porosity field around the inclusion. Generally,
the porosity goes out of bounds significantly faster than in the preceding tests, as the com-
paction around the inclusion compounds the growth of porosity in melt bands. Figure
shows that this results in less extensive melt bands, even with high « and low R where, at
most, short high-porosity bands can be seen adjacent to the inclusion for a case with a = 28
and R = 1.7. The compaction rate shows both the bands and the effect of the inclusion
(Figure ) In the integrals, melt bands distinguish themselves by peaks that flatten with
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Figure 9: (a) Porosity and (b) compaction rate integrals for simulations with uniform initial
porosity, a = 0 at v = 0.3, for various values of R. (c¢) Porosity and (d) compaction rate for
simulations with a = 28 at v = 0.1, for various values of R.
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Figure 10: (a) Porosity and (b) compaction rate for a simulation with random initial porosity,
R = 1.7 and o = 28, at a strain of 0.06. (c) Porosity and (d) compaction rate integrals for
the same simulation, at various strains. The solid lines are fits with Fourier functions with
the lowest 9 coeflicients included.

strain, whereas pressure shadows around the inclusion manifest themselves as a sinusoidal
quadrupole shape. Figure [[0c indicates that the porosity amplitudes increase as the positive
lobes grow faster with increasing strain. In the compaction rate field in Figure [I0{d, only the
positive lobes grow. An increase in R causes melt bands to grow more slowly, and compaction
around the inclusion to be dominant over domain-wide melt bands, as shown in Figure [11a-b.
This is especially reflected in the porosity and compaction rate integrals in Figures [ITf-d
and [12| which, for large R, closely resemble the uniform case with wide troughs and sharp
peaks.

4.4 Model regimes

The results of the three sets of simulations are summarized as a function of the porosity expo-
nent « and bulk-to-shear viscosity ratio R in Figure[I3] The maximum strain ymax reached in
simulations is an indicator for the effective growth rate brought about by all melt segregation
processes together. Generally, ymax increases with decreasing effective growth rate, i.e., with
increasing R and decreasing «, indicated by the black contours in Figure Figure
shows that simulations with uniform initial porosity and with only linear compaction around
an inclusion evolve to the largest strains of the three suites. The maximum strain is the lowest
in simulations where compaction around the inclusion competes with the exponential growth
of melt bands originating in the random initial porosity field, as indicated in Figure .
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simulations with uniform initial porosity and an inclusion. The background color denotes the
scaled average width of high-porosity lobes W. The black circles indicate parameter combi-
nations used in simulations. (b) Maximum strains in simulations with random initial porosity
without an inclusion. The red circles indicate simulations that do not display significant melt
bands at the final strain ymax, the green circles indicate simulations that do. (¢) Maximum
strains reached in simulations with random initial porosity with an inclusion.
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For the simulations with uniform initial porosity, we compute the average width W of
the two high-porosity lobes around the inclusion at the final strain scaled by 0.57 (the width
of a lobe in its initial state), shown as the color background in Figure . A scaled lobe
width larger than one indicates flattened high-porosity lobes and narrow low-porosity lobes,
and therefore shearing, such as in Figure [Bp. On the other hand, W < 1 indicates that
the high-porosity lobes are narrow and advected according to the simple shear velocity field,
as for example in Figure [Gp. The lobe width increases with o and decreases with R, and
is inversely proportional to the maximum strain, demonstrated by the contours of W that
parallel those of maximum strain. Therefore W must be proportional to the growth rate of
porosity anomalies.

A scaled lobe width W > 1 is seen for R < 10 when « > 15, and for R < 5 when a = 15.
This could be viewed as the regime where melt-rich bands could develop. For small R and
large o, W decreases again; this indicates the underdevelopment of porosity lobes for small
maximum strain.

In simulations with random initial porosity without a inclusion, melt bands are seen for
R < 20 when a < 50, and for R < 20 when o = 50 (indicated by the green circles in
Figure ) Figure shows that in simulations with random initial porosity and a circular
inclusion, melt bands are more elusive and only develop for R < 5 and « > 15. Outside this
narrow regime, the porosity field is dominated by compaction around the inclusion.

5 Discussion

The numerical models of partially molten mantle material presented in this paper explore
the evolution of melt segregation as a function of the bulk-to-shear viscosity ratio R and the
porosity-weakening exponent of the shear viscosity «. These parameters control the balance
between pressure shadows around an inclusion and domain-wide melt bands. Generally, the
pressure shadows around the inclusion dominate the porosity field. There is a small portion of
the parameter regime that allows for significant development of melt bands, requiring a small
bulk-to-shear viscosity ratio and therefore a material that is relatively easily compactable.

The porosity field that represents the melt distribution in the simulations does not bear
close resemblance to the experimental results obtained by |Qi et al. (2013]). Most importantly,
we are not able to reproduce prominent melt bands adjacent to the inclusion, that overprint
the pressure shadows around the inclusion. Secondly, the strains at which the porosity in
the simulations exceeds the physical regime of [0, 1] are significantly smaller than those at
which the experiments fail. |Qi et al.| (2013) report maximum local strains between 0.9 and
5.0, whereas in our numerical simulations with a random initial porosity around an inclusion
the maximum strains are between 0.03 and 0.8. Furthermore, when the porosity increases
past ~ 0.25 in partially molten rock, it disaggregates and the solid particles are in suspension.
We do not consider these processes in our numerical models since laboratory experiments are
terminated before reaching the disaggregate regime.

In our simulations, the presence of an inclusion causes the porosity to go out of bounds
more quickly, as the compaction in pressure shadows around the inclusion compounds the
porosity growth in melt bands directly adjacent to the inclusion. For the same total strain,
simulations with and without a circular inclusion show the same amount of melt band devel-
opment, indicating that the lack of melt bands in simulations with the inclusion compared to
the simulations without the inclusion is exclusively the result of a smaller maximum strain.
The exact maximum strain reached in a simulation is not necessarily relevant, as it may de-
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pend on the placement of the initial random high-porosity perturbations directly adjacent to
the inclusion. Rather the observed trends in maximum strains as a function of model param-
eters inform us about the effective growth rates of porosity near the inclusion as a result of
the two competing modes of melt segregation.

The porosity going out of bounds is indicative of physics not captured by the set of
governing equations and constitutive relations presented in this paper. Several studies suggest
possible modifications to constitutive relations that would limit the growth of sharp porosity
gradients. For example, Bercovici et al. (2001)) use surface tension terms, and |Takei and Hier-
Majumder| (2009)) consider a second melt segregation process aside from decompaction and
compaction of the solid that results from dissolution and precipitation in the melt. Keller et al.
(2013) implement a higher-order polynomial form for the porosity-dependent permeability
that results in a decrease in permeability for very high porosities. The most appropriate
approach to this question remains a debate; more theoretical work is likely needed to resolve
it. Incorporation of mechanisms that prevent the porosity going out of bounds at small
strains could lead to a larger parameter space for which simulations display melt bands than
indicated in this paper.

Melt-rich bands are observed to form at shallow angles of 15-20° (Holtzman et al., 2003;
Holtzman and Kohlstedt, 2007; King et al., [2010; Qi et al., 2013)). In numerical models, melt
bands form at 45° angle to the simple shear plane, unless a non-Newtonian rheology with large
stress exponent (n > 3) (Katz et al., 2006|) or an anisotropic viscosity is used (Takei and Katz,
2013; Katz and Takei, [2013)). In this work, we are primarily concerned with understanding
the model behavior as function of the bulk-to-shear viscosity ratio and the porosity-weakening
exponent. The incorporation of non-Newtonian and anisotropic viscosities is a topic of ongoing
work, and should improve comparisons of our simulations with experimental results.

An important feature of laboratory experiments is their three-dimensional nature. Numer-
ical simulations should also be performed in three dimensions to advance a detailed quantita-
tive comparison with experimental results. The compaction rate around a circular inclusion in
two dimensions decays as 1/7? and around a spherical inclusion in three dimensions as 1/73.
We therefore expect pressure shadows to be spatially limited in three-dimensional models,
which could allow planar melt bands to become more prominent. However, such computa-
tions in three dimensions are computationally challenging as they involve very large systems
of equations. The key to tractable simulations in three dimensions is the development of
effective preconditioners to accelerate the solution of linear systems. Research in this area
is underway (Rhebergen et al.l 2013)), and the implementation and use of recently devel-
oped preconditioners will enable three-dimensional computations of two-phase flow at high
resolutions, which will be the core of future work.

6 Conclusions

We computed two-dimensional models of partially molten mantle material under simple shear,
with and without inclusions that perturb the flow. The model configurations are based
on recent laboratory experiments that exhibit pressure shadows around an inclusion and
associated melt bands as competing features in the melt distribution. Previous theoretical
studies only considered instantaneous solutions to the governing equations; we improve on this
by computing the evolution of the two-phase material with strain. The simulations display
the pressure shadows around a circular inclusion, as well as abundant melt band development
in simulations without an inclusion. The geometry and evolution of these features depend on
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the bulk-to-shear viscosity ratio as well as on the porosity-weakening exponent in the shear
viscosity. However, it has proven challenging to determine a parameter regime for which melt
bands develop in the presence of an inclusion. We find that a bulk-to-shear viscosity ratio
of less than 5 is required in our simulations. For such small bulk-to-shear viscosity ratios,
the porosity field reaches its physical bounds at unrealistically small strains. This indicates
that an important component of the physics is not captured in the governing equations and
constitutive relations outlined in this paper, and some form of limiter on porosity weakening
would be required to obtain numerical results that resemble the laboratory experiments more
closely.
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A  Weak Form

To solve equations 7, together with boundary conditions in equation 7, we
cast them in a weak form. Given ¢, the weak solutions us and py satisfy

0= /{22n¢e(us) t€(vy)dx + /Q(RC¢ = 2ny)(V - us)(V - vy) dx

D2
[ pVevids— [ ¢V usds— | | =2 ) K;Vp;- Vg dx, (34
/pr v, dx /QQf u, dx /Q<R+4/3> oVps-Vapdx, (34)

where v, and gy are arbitrary test functions. To obtain the weak form of equation it will
be useful to first discretize in time. We use a Crank-Nicolson time stepping scheme:

b — ¢ + At (us L Vgmid (1 gmidyy . us> —0, (35)

where At is the time step, ¢™id = %(qﬁ + ¢%) and ¢° and ¢ are, respectively, the known and
unknown porosities from the previous and current time step. Given ug from the previous
time step, the weak solution ¢ satisfies

0= / w <¢ — 0+ At <us Vi _ (1 pmidyy u>> dx, (36)
Q

where w is an arbitrary test function.
Additionally, we apply standard streamline upwind Petrov-Galerkin stabilization by adding
a term rgyupg to the porosity transport equation (Brooks and Hughes, [1982):

1 [ hlug| hlug|
off = = 1 1
Keft 5 < 5 —i—‘ 5 (37)
keff
rSUPG = 5 (us - Vw) ren dx, (38)
a [us

where h is the cell size, |ug| is the norm of the solid velocity field, and rcn is the residual of

equation .
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B Boundary Conditions on the Inclusion

We impose a no-net torque boundary condition on the circular inclusion:

/xx(o--n)ds—O (39)
Qs

which is applied by adding a term Fy, to the weak form in equation (34)):
FL:)\-/ x X (6 -n) ds, (40)
Qs

where A is the Lagrange multiplier, which reduces to (0,0, \) in our two-dimensional model.
The second boundary condition on the inclusion is a rigid body rotation. Nitsche’s method
is used to ensure that u; = w x x on the inclusion boundary. This is a variationally consistent
method for the weak imposition of Dirichlet boundary conditions, consisting of a term Fy
added to the weak form in equation :
10
FN:/ F(us—wxx)-vs—(us—wxx)‘tv—vs-tuds (41)
where h is the cell size, and w is the unknown rotation rate of the inclusion. t, and t, are
traction vectors (& - n) corresponding to velocities us and vs. For the simulations presented
here, w = (0,0,w).
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