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Abstract— The use of biologically realistic (brain-like) control
systems in autonomous robots offers two potential benefits. For
neuroscience, it may provide important insights into normal and
abnormal control and decision-making in the brain, by testing
whether the computational learning and decision rules proposed
on the basis of simple laboratory experiments lead to effective
and coherent behaviour in complex environments. For robotics,
it may offer new insights into control system designs, for ex-
ample in the context of threat avoidance and self-preservation.
In the brain, learning and decision-making for rewards and
punishments (such as pain) are thought to involve integrated
systems for innate (Pavlovian) responding, habit-based learning,
and goal-directed learning, and these systems have been shown
to be well-described by RL models. Here, we simulated this
3-system control hierarchy (in which the innate system is
derived from an evolutionary learning model), and show that it
reliably achieves successful performance in a dynamic predator-
avoidance task. Furthermore, we show situations in which a 3-
system architecture provides clear advantages over single or
dual system architectures. Finally, we show that simulating
a computational model of obsessive compulsive disorder, an
example of a disease thought to involve a specific deficit in
the integration of habit-based and goal-directed systems, can
reproduce the results of human clinical experiments. The results
illustrate how robotics can provide a valuable platform to test
the validity and utility of computational models of human
behaviour, in both health and disease. They also illustrate
how bio-inspired control systems might usefully inform self-
preservative behaviour in autonomous robots, both in normal
and malfunctioning situations.

I. INTRODUCTION

Progress in the design of bio-inspired control systems for
autonomous robots have illustrated two important differences
when compared to real biological agents. First, the behavior
of animals is strongly governed by their sense of self-
preservation, since first and foremost they act to defend them-
selves against dangerous and mortal threats before engaging
in otherwise routine reward harvesting [1]. Second, animals
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have an internal hierarchy of control systems, from highly
automatic responding to complex deliberative reasoning,
which has evolved to balance the complexity of real-world
environments with computational cost [2]. The prospect of
embracing these characteristics offers the opportunity both to
improve control systems for autonomous robots, and enhance
their observable biological realism.

Reciprocally, insights from control theory and robotics
have inspired an understanding of the nature of action
learning and control in the brain. In particular, Reinforce-
ment Learning (RL) has proved a valuable framework for
understanding learning from experience in animal and human
experiments, including both state-dependent (Pavlovian) and
action-dependent (instrumental) learning [3]. However, these
models usually consider highly simplified decision-making
problems, and it remains unclear whether those that have
emerged for different levels of control can be integrated
together such that they are capable of coherent and effective
control on the sorts of test-beds used in robotics (although
there are existing computational accounts of integration of
model-based and model free systems [4]–[6] and innate-
model-free [7], [8], there are few accounts of 3-system
integration). As well as being a key test of their validity, this
is important because recent theories of human psychiatric
disease have proposed quite specific deficits in their com-
putational architecture, especially in models of punishment
learning [9], [10].

With these dual perspectives in mind, we aimed to test
neurobiological models of learning and action control within
a simulated robotics framework, and explore their application
to computational models of aberrant control. Specifically, we
set out three core aims:

• To consolidate computational neurobiological models
of a 3-system hierarchy of control incorporating in-
nate (Pavlovian) responding, habitual actions (model-
free control), and goal-directed (model-based control)
actions from a RL perspective, with particular emphasis
on punishment (escape and avoidance) learning.

• To test whether implementation of this integrated model
could yield effective avoidance behaviour in a dy-
namic predator task, and whether the incorporation of
3 systems harbours clear advantages to single-system
controllers in a number of specific situations.

• To explore whether disease specific hypotheses can be
modeled within this framework, taking the example of
obsessive compulsive disorder (OCD) as a deficit in the
transition of control between habit and goal-directed
controllers [11].



Achieving these aims would illustrate both the utility of a
robotics framework in understanding human decision-making
in health and disease, and may enhance the realism of bio-
inspired robots, especially in the domain of defensive and
self-preservative behaviour.

II. AN INTEGRATED COMPUTATIONAL MODEL OF HUMAN
CONTROL SYSTEMS

The notion that animal and human action control is
supported by more than one system has a long history in psy-
chology [12]. The conventional dual system (’automatic’ and
’deliberative’) account has given way to an recognition that
there are 3 core systems for action control: innate/Pavlovian
responding, in which state-dependent values yield hard-wired
responses such as approach and withdrawal; habit-based
responding in which action values are learned through a
simple process of reinforcement or suppression; and goal-
directed responding involving potentially complex internal
representations of state and action space, incorporating tran-
sition probabilities and the identity of reward and punishment
outcomes [13]. Recent human behavioural and neuroimaging
studies have provided critical insight into the underlying
computations involved in these systems. Based on original
work on dopamine neuron responses in monkeys, there is
good evidence that Pavlovian learning for both rewards
[14], [15] and punishments [16] is well characterized by
RL (temporal difference) models. In the brain, this involves
mutually inhibitory prediction error responses for reward
and punishment converging in the ventral striatum [17].
Simple (presumptively habit-based) action learning has also
now been well studied, with good evidence of RL-like
prediction errors in dorsal regions of striatum [18], [19]. In
the case of punishment (pain), positively-valenced avoidance
prediction errors are also seen in dorsal striatum [20], al-
though negatively-valenced prediction errors have not been
consistently identified [21], raising a debate about whether
avoidance is achieved primarily by treating punishments as
negative rewards with action being governed by a reward
system incentivized by safety-states [22]. This structure is
based on classical two-factor theories of avoidance learning,
which posit that the inhibitory state of safety (i.e. predicting
the absence of punishment) motivates instrumental action
- an architecture that has close parallels with actor-critic
models of learning [23].

RL models of goal-directed behavior have been based
on experimental paradigms with either complex state-action
transition structures or abstract rules that govern outcome
probabilities [24]. But at least for rewards, there is evidence
of error-based brain responses sensitive to these structural
internal models that cannot be accounted for by simple re-
inforcement [25]. Again, these responses appear to converge
on the dorsal striatum, although possibly in more medial
regions than habit-based prediction errors [26]. Algorithmi-
cally, there is in principle considerable scope for a diversity
of representations, ranging from simple representations of
state-transitions [27], [28], spatial maps [29] to potentially
complex decision-trees that can support dynamic planning.

With several controllers capable of directing behavior,
more recent attention has been paid to exactly how the brain
decides how to choose between or integrate the decisions
of each system. In the case or Pavlovian responses, it may
be that they directly compete with or bias instrumental
actions, effectively providing a rapid, innate impulse to do
something, which may be especially important in the case of
threats [7], [30]. With regards to interactions between habit-
based and goal-directed controllers, some more sophisticated
theories propose some sort of uncertainty-based competition
between the outputs of each [4], [5]. Note, we refer to
the innate system as ’Pavlovian’ since Pavlovian learning
involves performing innately-specified behavioural programs,
although innate responses are emitted in the absence of
Pavlovian learning, when directly presented with an aver-
sive or appetitive (unconditioned) stimulus. Also, although
Pavlovian learning can be model-based [31], [32], we model
it here as a model-free process.

A summary of the architecture of a 3 system model for
integrated reward and punishment behavior is illustrated in
Figure 1. The model provides an architecture for control
based on the key results from human experiments. For
simplicity, it omits many additional details of control, includ-
ing forms of Pavlovian-instrumental interaction (conditioned-
suppression, Pavlovian-instrumental transfer), risk behaviour
(risk and ambiguity aversion), and different types of condi-
tioned response (preparatory and consummatory).

Fig. 1. Schematic diagram of integrated control systems for human
reward and punishment learning An agent-environment control diagram
showing 3 levels of control. Pavlovian learning reflects state-based learning,
but emits conditioned responses that may or may not influence the environ-
ment. The habit-based action system achieve avoidance using a reward-based
critic that derives from inhibition between reward and punishment systems.
Habit and goal-directed action systems compete for control following some
sort of arbitration interaction



III. COMPUTATIONAL MODEL

Following the neurobiological data, we set out to model
behaviour as determined by the joint control of three com-
ponents: innate (which we hereafter refer to as Pavlovian)
responses, model-free (habit-based) control and model-based
(goal-directed) control, to study their effect on the overall
system behavior. We simulated a prey in a predator-prey
setting in a virtual world, and observed how different com-
bination of modules affect the capability of the prey in es-
caping. Section III-A provides more details on the simulated
virtual world. Successively, the Pavlovian, model-free and
model based subsystem are described in Sections III-B, III-C
and III-D, respectively. Finally, Section III-E describes how
the modules are integrated to actually control the prey agent.

A. Simulated environment

In our experiments a simple environment, where the effect
of the three subsystems can be clearly observed, was pre-
ferred over more realistic predator-prey simulation. Specifi-
cally, a time discrete simulation in a discretized space was
employed. The simulated world, shown in Fig. 2, comprised
obstacles and free areas in which the simulated predator and
prey agents could move.

The predator behavior was fixed (i.e. we assume the prey
is the only agent for which learning occurs), to remove
possible confounding effects caused by their co-evolution.
The predator always proceeded toward the prey in an (ap-
proximately) straight line. The prey could move two times
for each movement of the predator, so that escaping was
possible. Simulation was run over a set of episodes. At
the beginning of each episode, the agents were placed at a
random (free) position satisfying two conditions: the distance
between the two agents was within a predefined range (half
of the map side length) and the predator and the prey were
in sight (i.e. no obstacle blocks were placed between them).
Every time the distance between the two agents exceeded a
certain threshold (halt of the map side length), or when the
prey hid behind an obstacle, a new episode was started.

The fear/pain perceived by the prey was assumed to be a
function of the distance to the predator, with ”stronger” fear
was associated with shorter distances. Specifically, denoting
by d the prey-predator distance and by l the map side length,
the reward r was set as -5 for d < 0.1l, -4 for 0.1l ≤ d <
0.25l, -3 for 0.25l ≤ d < 0.3l, -2 for 0.3l ≤ d < 0.4l, -1 for
0.4l ≤ d < 0.5l and 0 otherwise.

B. Pavlovian responses

Pavlovian responses typically reflect simple
approach/withdrawal responses, and were simulated
using a feed forward network with a single hidden layer
with sigmoidal activation function. The input of the network
was a set of categorical variables describing the surrounding
of the prey. The output was the direction of movement.

In order to provide a sufficiently realistic simulation, the
hexagonal tessellation used for describing the environment
and the agents position is relatively fine. However, to pro-
duce meaningful behavior, the agents must be aware of a

Fig. 2. Map used for the experiments. The simulated environment
consisted of an approximately square area tessellated using regular hexagons
(this kind of tessellation presents the important property of assuring the same
Euclidean distance between the centers of all the tiles that have a common
vertex). In this figure, color indicates the content of the tile: blue for free
areas, gray for obstacles, yellow for the pray and black for the predator.

sufficiently wide surrounding area. For this reason, a coarser
subdivision of the world was introduced.

Specifically, the whole space was divided into 49 areas,
where each area Ai,j , 1 ≤ i, j ≤ 7, consisted of all the
hexagonal tiles for which the center cx, cy has coordinates
satisfying l i−1

7 ≤ cx ≤ l i7 and l j−1
7 ≤ cy ≤ l j7 . Each

area was described by a categorical variable taking one of
the following values: obstacle, predator or empty. An area
is categorized as obstacle when at least 20% of its tiles
consist of an obstacle, as predator if the predator’s tile is
contained in the area, and empty otherwise. The categories
of the area containing the prey and of the 8 neighboring
areas (in other terms, the categories of the prey’s Moore
neighborhood), represented with a 1-of-c coding, constituted
the neural network’s input. The network’s output consisted
of 9 neurons, one for each of these surrounding areas.
The center of the area corresponding to the most strongly
activated neuron was identified, and the movement in the
discrete world that best approximates a movement toward
such center was used as the Pavlovian response.

Pavlovian responses reflect an inherited set of primitive
actions that are learned through evolution. To capture this,
we set the weights of the network by neuroevolution. The
genetic algorithm was set as follows:

• population size of 500 individuals evolved for 15000
generations,

• value encoding, initial genome drawn from a uniform
distribution in the range [−0.1, 0.1],

• single point crossover with probability 0.9,
• floating point additive mutation, probability of mutation

for each gene 0.1, mutation increment sampled from a



uniform distribution in the range [−0.2, 0.2],
• roulette wheel selection, with elitism (4 individuals).
Care was placed in the gene’s ordering. Specifically in

the array we first placed all the weights of the arcs going
into the first hidden neuron, then all the weights of the arcs
going out from that same neuron, then the arcs going in
the second hidden neuron, etc. In this way, the crossover
operator is able to maintain part of the ”features” (nonlinear
combinations of the inputs) and their effect on the output
probabilities computed by an individual. The same property
does not hold if the weights are simply ordered by layer.

The evaluation function of genetic algorithm’s chromo-
some consisted of the average reward1 obtained by a prey
controlled by the corresponding neural network over a set
of simulations. Specifically, each neural network was tested
over 28 episodes, each comprising 80 time steps. The initial
locations of the agents for each of the 28 episodes was
decided beforehand and kept constant over the evaluations
to decrease the variance in the agent’s evaluations. We
experimentally confirmed that no overfitting emerged from
this choice.

As a final note, it is worth noting that additional layers
did not show performance improvements, while making the
mapping fully linear (i.e. removing the hidden layer) was
found to be strongly detrimental.

C. Model-free subsystem

Model-free decision was modeled using an actor-critic
model. Using the notation of [33]:

δt = rt+1 + γV (st+1)− V (st) (1)

V (st)← V (st) + α ∗ δt (2)

π(st, at)← π(st, at) + β ∗ δt (3)

where π are the modifiable policy parameters of the actor,
α = 0.02, β = 0.02, and γ = 0.99.

The state comprised three components:
1) The area (defined as explained in Section III-B) was

encoded as a single number. Using a single hex tile
would have lead to an excessively big state space, and
thus areas were used.

2) The direction from which the predator was approach-
ing, expressed as the angle of the segment linking the
two agents, discretized over 8 values.

3) The distance between the predator and the prey, dis-
cretized over three values: below 1/10 of the map size,
in the range 1/10 to 1/4 of the map size, and over 1/4
of the map size.

As done for the Pavlovian system, nine possible actions
were defined. These corresponded to the movement toward
the center of one of the areas in the Moore neighbourhood of
the current prey area. The actor employed an ε-greedy greedy
policy: with probability ε (ε = 0.1 in our implementation)

1Here and in the following we use the term reward, but it should be noted
that rewards are always negative or null, as they express the fear/pain level
perceived.

the action is random, and with probability 1 − ε it is
arg maxa p(st, a).

D. Model-based subsystem

The model-based subsystem evaluates the goodness of
each action at by performing a series of K Monte Carlo
simulations starting at the current state st and performing
at as the first action. The action that, on average, yields the
highest reward is then chosen.

To provide more detail, states and actions were the
same as utilised for the model-free subsystem described in
Section III-C. The models for the state-to-state transition
probability and the rewards were obtained by the agent
through online experience. For each start-state action pair,
the last L (in our implementation 4) states reached and
rewards received are stored. These L experiences are taken
as an approximation of the expected immediate reward and
expected transition probability. Keeping a history of events
of limited size, besides providing a constant upper limit on
the computational resources, assures the model is able to
quickly reflect changes in the environment.

The policy used during the Monte Carlo simulation was
a simple ε-greedy one. With probability εM the action is
random, and with probability 1 − εM it chooses the action
whose expected immediate reward (the average of the history
for the current state and that action) is the highest. Note that
the reward for state-action pairs never explored is assumed
to be 0, i.e. the highest possible value, since rewards are
only negative (see Section III-A). This is used to favour
exploration in the early stages of learning.

The rewards obtained during a fixed number of steps 0 ≤
i < M using this greedy policy, discounted by a factor γiM ,
are summed to obtain the evaluation for action a for a single
Monte Carlo run. As previously mentioned, the average over
K Monte Carlo simulation is taken as an indication of the
value of action a. The action leading to the highest value
is chosen with probability 1− εG, while a random action is
output with probability εG. In our implementation M = 5,
K = 10, εM = εG = 0.1, γM = 0.99.

We conclude with a remark on the choice of this kind
of simple implementation for the model-based subsystem.
One of the main requirements for this module is that it
should be very reactive in the face of change with respect
to the model-free module. One possibility could be to use
Q(λ) (see [34]), but such an approach would not be bio-
logically faithful because the computational load would be
distributed among all time steps. A similar reasoning led
to the exclusion of Dyna-PI and Dyna-Q (see [35] and [36],
respectively). A good, biologically plausible candidate would
be the algorithm presented in [5], but without modifications
with the state and action spaces that we are currently using
the learning times are prohibitive, especially when compared
to the model-free module.

E. Arbitration

The idea behind the integration of the modules is that
for strong and sudden fear/pain the module determining



the behavior should be the simplest and fastest, that is
the Pavlovian subsystem. When the environment is easily
predictable, in other terms there is no ”surprise”, the habit,
i.e. the model-free system should become a reliable provider
of control. Conversely, when the environment yields frequent
unexpected changes, more substantive goal-based reasoning
is required and the model-based subsystem should be prior-
itized.

The value of δ can be taken as an indication of the
”surprise”, while the reward r itself constitutes a measure
of the fear in our implementation. In practice, the value of δ
has a dynamic that is too fast for arbitration, so a low pass
filtering is opportune. Furthermore, as it may be desirable
to model independently positive surprises (in our case the
absence of expected pain) and negative surprises (unexpected
pain), we define the two following quantities:{

δ̄pos ← (1− ρ) ∗ δ̄pos + ρ ∗max(δ, 0)
δ̄neg ← (1− ρ) ∗ δ̄neg + ρ ∗min(δ, 0)

(4)

correspondingly to positive and negative surprises, respec-
tively (ρ = 0.1 in our experiments).

With the above definitions, the arbitration becomes:

if (δ̄neg < κpavlδneg AND last reward < κpavlr)
use Pavlovian

else if (κmodbneg < δ̄neg OR δ̄pos > κmodbpos)
use model based

else
use model free

(5)

where κpavlδ , κpavlr, κmodbneg and κmodbpos are opportune
constants, with κpavlδneg < κmodbneg (in our implemen-
tation κpavlδ = −7, κpavlr = −3, κmodbneg = −3 and
κmodbpos = 1).

Other models for the integration of model-based and
model-free subsystems, based on the relative uncertainty of
each subsystem, were recently proposed [5], [27]. In [27]
the uncertainty, defined as SPE, is computed, however the
actual arbitration between the modules is a sole function of
the elapsed time (an exponential decay), and thus not suited
(neither biologically plausible) for our setup. Conversely,
the approach presented in [5] could be extended to fit
our setup, and comparison of our simple model with an
integration derived from Lee et al.’s work is an important
topic for future work. A fundamental difference between the
arbitration module described in this Section and the ones
based on relative uncertainty is the stage at which arbitration
can occur. In our case, arbitration can occur either before or
after the computation of the optimal actions by each module.
When arbitration is done beforehand, unselected modules
can skip their computation. In case an action and its relative
uncertainty is needed, however, the modules considered for
integration need to compute their solutions, with relative
uncertainty, and only afterwards the arbitration can choose
which module’s action to execute.

IV. EXPERIMENTS

The first goal of the experimental simulation was to
confirm that each of the three modules, when used alone,

is able to produce useful behaviors. The second goal was to
explore whether they could be integrated, and to observe
the influence that each component brought to the overall
system. Finally, as an example of the capability of the
model in simulating different emergent behaviors by simple
alteration of the parameter values, we aimed to show how
an experimental OCD-like behavior could be reproduced.

Figure 3 shows that learning converges for all three
modules, when applied alone. It is important to note that
the neuroevolutionary (i.e. the genetic algorithm) used for
the Pavlovian module was carried out only once, before
the integration of the modules, and then the weights are
fixed. This corresponds to the evolution among generations
of individuals. Once an individual is born, its hard-coded
responses are immutable. On the other hand, model-free and
model-based subsystems are assumed to model the learning
that occurs in the single individual. It could be argued that in
real animals evolution of the Pavlovian response can continue
after model-free and model-based reactions appears, but for
simplicity we opted for a fixed set of responses.

We also note that the model-based module is designed to
be very reactive (only the last 4 state-action-reward sets are
stored) and its implementation is stochastic (10 Monte Carlo
simulations), thus it has much more variability in the chosen
action (and consequently, on the rewards achieved) compared
to the other modules.

Figure 4 provides a comparison on the model-free module
acting alone and when it acts together with the Pavlovian
responses. It can be seen that even if in the long run the
Pavlovian subsystem slightly decreases the performance of
the model-free module acting alone, in the initial phases of
the learning adding Pavlovian responses is advantageous.

A similar effect can be observed for the combination of
model-free and model-based learning shown in Fig. 5. Again,
the model-based module gives an initial advantage, at the
expense of a later decrease of the overall performance.

Finally, Fig. 6 shows the effect of adding the model-
based system (which one assumes requires some higher-order
cognition) to the combination of Pavlovian and model-free
subsystem (which is likely to be present even in primitive an-
imals). The addition of the model-based subsystem provides
a cost over long term performance, but with an advantage in
early learning (difficult to see in the figure because of the
steepness of the curve). This is more clear in Table I, which
reports the performance increase for the first e episodes,
for various values of e, obtained by adding the goal-based
subsystem.

Figure 7 shows how frequently each module is activated
as learning goes on. It clearly illustrates how the model-
based and Pavlovian responses influence the initial stages of
learning, giving more and more control to the model-free
system over time.

In the last experiment, we aimed to simulate a charac-
teristic experimental (pathological) behaviour observed as a
hallmark of Obsessive-Compulsive Disorder (OCD). Accord-
ing to a novel behavioural neuroscientific theory [11], OCD
is proposed to emerge as an enhanced reliance on model-



Fig. 3. Learning convergence of the single modules. The left panel shows the convergence of the neuroevolution for the Pavlovian (innate) module.
The convergence of the model-free module is shown in the central panel. The convergence of the model-based module in reported in the right panel. Note
that here and in the following figures a moving average filter of width 1000 is applied on the curves to make them more legible.

Fig. 4. Combination of Pavlovian responses and model-free subsystem.
The left panel shows a comparison between the model-free module acting
alone (darker curve) and when acting together with the Pavlovian subsystem
(lighter curve). The right panel shows with higher detail the initial part of
the curves, highlighting the advantage brought by the Pavlovian reactions.

Fig. 5. Combination of the model-free and model-based subsystem. The
left panel shows a comparison between the model-free module acting alone
(darker curve) and when acting together with the model-based subsystem
(lighter curve). The right panel shows with higher detail the initial part of the
curves, highlighting the advantage brought by the model-based subsystem.

free habits during avoidance. In a recent experiment, OCD
patients were trained to perform an action to avoid a pun-
ishment, they observed a relative failure of subjects to shift
from model-free to model-based control when punishments
were devalued (i.e. when an outcome that was previously
punishing was no longer so, because of an experimental
rule informed to the patients) action [37]. This fit with
the hypothesis that this derives from a reduced transition
from model-free control to model-based control i.e. excessive
avoidance ’habits’.

e Average reward increase
100 +0.1375
200 +0.1723
300 +0.1891
500 +0.1772
750 +0.1565

1000 +0.1283

TABLE I
ADVANTAGE OF ADDING THE GOAL-BASED SUBSYSTEM TO THE

OTHER TWO MODULES, OBTAINED FOR THE FIRST e EPISODES,
AVERAGED OVER 10 INDEPENDENT RUNS.

Fig. 6. Combination of the three subsystems. Comparison between the
combination of model-free and Pavlovian subsystem (lighter curve) with
respect to the three modules acting together (darker curve). Over a long
horizon, it can be seen that the combination of 3 systems is disadvantageous,
but over the first few hundred trials, there is a clear advantage, as outlined
in Table 1.

We aimed to mimic this result using our model. First, the
prey underwent the usual learning in presence of the predator
causing pain/fear. When learning converged, the sign of the
rewards was reversed, such that the predator delivered a
positive reward. In this case, thus, staying still (or even better
proceeding toward the predator) clearly becomes the best
policy.

We tested the behavior of two versions of the prey: a
”healthy individual” and an ”OCD patient” version. In order
to simulate the impairment in the activation of model-based
reasoning, the value of κmodbpos was raised for the ”OCD
patient” prey, and left unvaried for the ”healthy individual”.

The behavior of the two preys is compared in Fig. 8. The
vertical axis reports the time required for a prey to have
a distance for the predator exceeding 1/4 of the map size,
or hiding behind an obstacle. Clearly, this time should be
the shortest possible during normal training, and the longest
possible (theoretically, infinite) during the phase with reverse
rewards. We found that the ”healthy individual” was much
quicker at increasing this time after the rewards inversion,
exactly as observed in real experimental patients.

V. DISCUSSION

The experiment illustrates that a neurobiologically based
3-system control model of learning and decision-making
can support robust control in simulated autonomous agents
in complex environments. We showed that the integration
of different controllers does not disrupt the convergence



Fig. 7. Frequency of activation of the three modules.. From the left
to the right we have the percentages of activation during a sample run of
the three modules model-based, model-free and Pavlovian. The percentages
were obtained passing through a moving average filter of size 5000 the
three vectors containing the integer 1 when each module was activated and
0 when it was not, then multiplying the results for 100.

Fig. 8. Comparison between healthy subject and OCD patient. The
time taken by the preys to escape (i.e. having a distance for the predator
exceeding 1/4 of the map size, or hiding behind an obstacle) for an ”OCD
patient” (lighter curve) and an ”healthy individual”(darker curve).

of either of them, and that each system contributes an
important advantage to control. That is, Pavlovian responses
and model-based reasoning provide an initial advantage in
new environments, at the expense of a lower maximum
performance when learning converges. We also showed that
this framework can be used to test computational theories of
psychiatric disease, taking the specific case of OCD as an
example.

The results illustrates how an integrated system prioritizes
short-term safety over long term performance, which is
likely to be especially important in uncertain, dynamic and
dangerous environments. This illustrates a novel strategy
for ’Safe RL’ [38]. Note that the model-based system and
the innate/Pavlovian system acheive this in different ways:
the model-based system by rapid, computationally expensive
new learning of contingencies in the face of uncertainty,
and the innate/Pavlovian system by importing the wisdom
of evolutionary knowledge as a sort of ’prior’ on the action

value space.
From the perspective of neuroscience, these findings are

useful because existing computational theories have been
developed and tested on highly simplified tasks, such as one-
step or two-step bandit tasks with a small set of available
actions. But scaling these models up and allowing their
integration and interaction is not trivial, and their capacity to
support robust behaviour in complex, dynamic environments
has not previously been tested. It therefore provides an
important demonstration of their validity.

Inevitably with a complex, multi-controller model of con-
trol, the parameter space is large, and there are several
assumptions and approximations required to take individual
components of neurobiological models into an integrated
systems-level model. It is beyond the scope of this paper
to exhaustively consider how model performance depends on
parameter values, but using computationally and biologically
reasonable parameter values shown to lead to clear results.
Another area of uncertainty in the literature to date is on
the integration and arbitration of controllers [4], [5]. But
despite this complexity and uncertainty, the robustness of
the architecture to parameter changes in our experiments
provides support to the the validity of the human/animal
multi-system architecture. Indeed, parameter tuning may
allow significant further optimisation, for instance in regards
to the long-term reduction in performance that results from
having Pavlovian and model-based controllers in stable,
largely stationary environments (to whatever extent this is
or is not a realistic circumstance).

Of particular interest is the applicability of the modelling
approach presented to understanding disorders in neuro-
science. There is now a growing argument that several
psychiatric disorders can be understood in terms the dysfunc-
tion of specific computational mechanisms - a field called
computational psychiatry [9], [39]. In the context of aversive
behaviours, this includes disorders such as OCD, phobias,
post-traumatic stress disorder, anxiety disorder, depression,
and chronic pain. However, despite plausible computational
hypotheses for each, there is still a large step to be tra-
versed between a simple model and a complex behavioural
phenotype. In our study of OCD here, although we have
not modelled a full phenotype of compulsive behaviours
clinically observed, we at least illustrate the capacity of our
model to accommodate what is thought to be one of the
most characteristic experimental findings observed - the over-
reliance on avoidance habits. This demonstration is intended
to illustrate the principle of a constructivist approach to
disease modelling, as opposed to provide anything like a
comprehensive account of OCD. As such, we hope that
this framework could be used to characterise a fuller set of
experimental behaviours and naturalistic ’symptoms’ in OCD
and other disorders.

The model we present also holds useful insights into
control systems for robots, since we show that multi-
component control systems can convey clear advantages in
certain situations, especially early learning. In so doing,
they may also help achieve a separate goal in robotics



- to enhance life-likeness of robots. In particular, it is
likely that life-likeness might be especially enhanced not so
much by extraordinary computational capabilities of robots,
but by their assimilation of human imperfections, such as
proneness for errors, behavioural traits such as impulsivity
and compulsivity, and susceptibility to psychiatric disease.
This latter point also illustrates the capacity for autonomous
robots to develop their own ’psychiatric’ malfunction when
adopting bio-inspired architectures.
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