
Pointer Provenance in a Capability Architecture
Alfredo Mazzinghi

Dept. of Computer Science and
Technology

University of Cambridge
alfredo.mazzinghi@cl.cam.ac.uk

Ripduman Sohan
Dept. of Computer Science and

Technology
University of Cambridge

ripduman.sohan@cl.cam.ac.uk

Robert N.M. Watson
Dept. of Computer Science and

Technology
University of Cambridge

robert.watson@cl.cam.ac.uk

Abstract
We design and implement a framework for tracking pointer
provenance, using our CHERI fat-pointer capability architec-
ture to facilitate analysis of security implications of program
pointer flows in both user and privileged code, with mini-
mal instrumentation. CHERI enforces pointer provenance
validity at the architectural level, in the presence of complex
pointer arithmetic and type casting. CHERI present new op-
portunities for provenance research: we discuss use cases
and highlight lessons and open questions from our work.

Keywords provenance, pointer, CHERI

ACM Reference Format:
Alfredo Mazzinghi, Ripduman Sohan, and Robert N.M. Watson.
2018. Pointer Provenance in a Capability Architecture. In Proceed-
ings of Conference (TaPP’18). ACM, New York, NY, USA, 5 pages.

1 Introduction
Spatial memory safety seeks to ensure that invalid memory
accesses cannot occur, e.g., that a modification to a field of
an object in memory does not change any memory location
outside the address range allocated for the object. A large por-
tion of security vulnerabilities arise from the lack of memory
safety; whereas out-of-bound accesses to arrays or structures
are allowed in C code on common commercial architectures,
it is important to be able to reason about what represents
a pointer in memory, which part of memory the pointer is
actually pointing to, and whether it points to the intended ob-
ject. On most common architectures, this is complex because
integer data values can be arbitrarily interpreted as pointers;
thus, there is no reliable way to distinguish data and pointers
at the machine level. Moreover, pointers are offsets into a
process address space and do not carry information about
the pointed object (e.g. size or constant-ness).

The CHERI [6, 14] architecture attempts to solve the prob-
lem of memory safety in C while retaining high performance
and compatibility with existing code bases. CHERI point-
ers are fundamentally different from other architectures. A
CHERI pointer is an unforgeable token of authority (a capa-
bility) that grants access to a region of address space.
The CHERI architecture enforces pointer-provenance va-

lidity, ensuring that a valid pointer can be derived only from

TaPP’18, July 09–13, 2018, London, UK
2018.

other existing valid pointers. Pointers carry additional infor-
mation about how they can be used to access the referenced
region: they have a notion of base and bound addresses in
which they can be dereferenced, and they have permissions
that limit the way they can be dereferenced (e.g., read-only).

Moreover CHERI builds in-address space compartmentali-
sation on top of its pointers: pairs of code and data capabilities
grant access to a compartment and are used to perform func-
tion calls that cross a protection domain [11, 12]. Capability
pointers are monotonic: a new valid pointer can be created
only by restricting the access rights of another valid pointer.

Why pointer provenance?

CHERI implementations are required to track pointer prove-
nance, because the architecture enforces pointer-provenance
validity [13]. CHERI pointers are conceptually organised in a
tree, with the root at the boot-time capabilities spanning the
whole address space that the processor provides at platform
reset. Internally, our CPU implementations do not build this
tree; instead, they manage a tag bit to maintain whether a
pointer is valid and can produce other valid pointers.
CHERI provides three instructions that generate a new

pointer from another valid one1: fromptr converts a legacy C
address to a capability, setbounds and andperm respectively
shrink the memory bounds and clear access permission flags
of a capability. By tracing these instructions, we can deter-
mine the parent-child relationship between two capabilities
and reconstruct the provenance tree. Tracing load, store, call
and capability arithmetic instructions, allows to follow the
flow of capabilities as a program runs.
At any given time, the set of capabilities to which a pro-

tection domain has access determines which parts of ad-
dress space it is allowed to access, and how. Understanding
how programs manipulate capabilities is therefore critical
to understand how effectively a program is using CHERI
features and corroborate our understanding of the architec-
ture. Pointer provenance enables the analysis of stack and
heap allocation patterns, protection domain isolation and
delegation of resources via capabilities.

Contributions

We present a pointer provenance analysis approach that
takes advantage of unique features of CHERI and applies

1This is a simplification of the CHERI-MIPS ISA, for a more accurate de-
scription the reader should consult [13]



TaPP’18, July 09–13, 2018, London, UK Alfredo Mazzinghi, Ripduman Sohan, and Robert N.M. Watson

to both user and supervisor code (Section 2). We introduce
interesting use cases enabled by our approach and imple-
ment a prototype to support our experiments (Section 3). We
show that CHERI (and fat-pointer architectures in general)
provides interesting opportunities for provenance analysis.

2 Approach
CHERI allows to reliably distinguish valid pointers and to
determine bounds and access permissions on objects in mem-
ory at an architectural level. We can obtain the information
needed for our analysis by inspecting the instructions exe-
cuted by the processor, without additional instrumentation of
the binaries. Instruction traces, generated by our FPGA soft-
core and CHERI QEMU, include every instruction executed,
along with its results, exceptions, and memory accessed.
There are both advantages and disadvantages to using

this low-level tracing approach: traces are large and do not
scale well with the duration of code execution; however,
they allow us to trace both user and privileged code written
in any language that can be compiled for our architecture,
while being completely transparent to the executed code.
The scalability problem introduced by the size of instruction
traces can be mitigated: our implementation attempts to
process different chunks of the trace in parallel.
Our prototype is constituted of four main components

(appendix fig. 1): the trace source, the trace parser, the data
model, and the model visitors. A trace source, in our case
QEMU or an FPGA, generates instruction traces in a cus-
tom binary format. The parser reconstruct the provenance
tree of capabilities, records function and system calls, and
extracts debug information and symbols from the traced bi-
naries. The information collected by the parser is stored in
a convenient intermediate representation, the data model.
Debug information and symbols are used to map addresses
to symbols, and help recognise interesting events in the data
– such as capabilities returned by malloc(). The data model
is accessed using the visitor interface and allows to retrieve
information about the flow of pointers in the traced code.
The visitor interface can be used to modify the model (e.g., to
perform some optimisation steps) and to extract information
that can be used later to support visualisation tools.

Our initial prototype is built for a CHERI implementation
based on MIPS and focuses on the analysis of pointers in a
single-threaded user-space program on a single-processor
system. However, with few changes, our approach can sup-
port tracing across threads and different address spaces, and
may be ported to other CHERI-like architectures, because
the data model can be kept architecture independent, and
only the parser needs to be adjusted.

2.1 Abstraction Model

Our data model consists of three graphs: the pointer prove-
nance graph, the function call and system call graph, and a
protection domain transition graph (appendix fig. 2). In the

model, we use the number of CPU cycles from the beginning
of the trace as a relative measure of time.

In the pointer provenance graph, vertices represent a new
capability. When the parser encounters one of the instruc-
tions that create a capability, a new vertex in the graph is
generated. Every vertex in the pointer graph is associated
with a list storing all dereferences of the pointer, along with
the address of the dereferencing instruction. A separate list
keeps track of all memory locations where the pointer is
stored and the time interval in which the memory location
holds the pointer. Pointer graph vertices also store pointer
creation and destruction times. The destruction time is set
when the pointer is overwritten in the last memory location
or CPU register in which it is contained.

The call graph is used to hold information about function
and system calls. A vertex in the call graph represents a
function call or a system call, with the associated stack frame.
These vertices are associated with vertices in the provenance
graph that represent the pointers visible in CPU registers at
the time of the call and at the time of return.
The domain transition graph is used to keep track of

protection-domain crossing. It is similar to the call graph, but
holds domain-crossing function calls. Each vertex represents
a domain-crossing call and is associated with a vertex in the
call graph, which represents the domain entry function used.

The model does not use a portable format, such as PROV.
We attempt to use a compact representation given the large
amount of vertices in the graphs, however we did not fully
optimise the data structures to favour experimentation.

2.2 Optimisations

It is possible to introduce some optimisations to lower the
time required to parse the trace, the time to inspect the data
model and reduce the size of the model.
A naïve implementation of the parser iterates the trace

sequentially; however, the information in traces is local to a
relatively small number of instruction entries. The full con-
tent of the registers can be recovered from the most recently
executed exception handler, where all registers are saved;
the remainder of the data is available in the trace entries for
each instruction (address, updated register content, memory
accessed etc.). Because of this locality property it is possible
to parse the trace using a MapReduce approach: each thread
produces a subset of the provenance and call graphs, which
are merged to generate the final model. The merge process
is also necessary to verify the consistency of the state of
memory and registers at subgraph boundary – specifically,
which memory locations are expected to hold pointers and
which pointers are expected to be in CPU registers.

In some cases the compiler creates temporary capabilities,
for instance when reducing bounds and permissions of a
capability, a setbounds instruction is followed by an andperm.
The capability returned by setbounds is only used as input to
andperm, therefore this sequence of instruction is logically a



Pointer Provenance in a Capability Architecture TaPP’18, July 09–13, 2018, London, UK

single pointer creation. The parser normally produces two
vertices in the graph, one for each new capability, however
we can merge these two operations into a single vertex rep-
resenting the resulting final pointer. This helps save space
and reduce the amount of vertices in the provenance graph.
Optimisations of the dereference and memory location

lists have not been implemented in our prototype yet, and
are left for future work. The list of pointer dereferences
and locations where pointers are stored in memory should
provide fast access to the elements; e.g., a radix tree could
be used for memory locations. Entries in the dereference
list may also be coalesced into a single entry representing
the dereference of a range of addresses, which is a common
pattern formemory copying and zeroing operations. This can
be accomplished by checking whether the last dereference
was adjacent to the current one and updating the number of
bytes accessed in last dereference.

2.3 Limitations

Interactions among different threads, different processes, and
in general different address-spaces are tricky to handle. Our
approach enables this case with minimal changes, although
we leave the implementation of a prototype that solves this
problem for future work. Thread support influences only
the call and domain transition graphs, because the address
space where the pointers are valid does not change. It is
sufficient to detect when context switching occurs and to
build a different call and domain transition graph for each
thread. Multiple processes can be handled by replicating the
current model for each process.
The parser needs changes to be able to detect context

switches and address space switches, as well as properly
handle shared physical memory pages, because capabilities
in such pages may leak to other address spaces. The former
can be done by having the kernel emit markers for context
switches in the trace, or detecting and analysing calls to
the context switch routine in the kernel. Handling physical
memory sharing is generally harder, and requires keeping
track of the TLB (Translation Look-aside Buffer). InMIPS this
is visible from traces, because the TLB is software-managed;
in other architectures, the trace producer may need to emit
special trace entries for this type of events.
The approach proposed is able to observe only a single

execution path. It cannot make claims about every possible
program execution. This limitation is acceptable, given our
goal to aid understanding and debugging CHERI features.
Although our work is restricted to CHERI, existing solutions,
such as Intel PT and ARM CoreSight, show that there is a
growing interest in fine-grained hardware tracing. Our anal-
ysis technique suggests that similar solutions may benefit
from providing insight on pointer provenance.

3 Use cases

We identify some use cases that are representative of how
the model can be used to reason about high-level properties
of traced code. Our work focuses on security-related consid-
erations, although the technique presented can be used for
other purposes as well. We developed a prototype tool [1]
that is currently being used to measure bounds effectiveness
in small C programs compiled for CHERI, such as openssl.

Pointer lifetime. We define pointer lifetime as the inter-
val between pointer creation and the time when the tag bit is
unset on the last copy of the pointer, either in memory or in a
CPU register. From a security perspective, it is interesting to
detect whether pointers are used, or could be used, after they
are freed. The destruction time stored for provenance graph
vertices, allows to determine whether a pointer remains in
memory after being passed to free(). In particular, we are
able to determine whether some pointers are left behind (e.g.,
in the stack after a stack frame is deallocated), and could be
exploited by a potential attacker.

Reachable memory. At any point in a CHERI program,
the memory that can be accessed is the transitive closure of
the set of capabilities immediately available in CPU registers.
This analysis is useful to reason about compartment isolation
and object delegation. We can detect the set of private objects
by observing pointer sub-trees, where all pointers are never
accessible outside a compartment. Delegation is detected by
observing capabilities exchanged across a domain boundary.

Debugging security violations.When a security viola-
tion occurs (i.e., by dereferencing a pointer outside bounds
or use-after-free), the provenance graph can be used to find
the origin of that pointer and determine in which function
it has been created.

Measure reachableROPgadgets.By inspecting themem-
ory referenced by executable pointers, it is possible to deter-
mine at a given point in the trace howmany ROP gadgets are
available to an attacker. A separate analysis of the binaries
that are traced is necessary to look for gadgets.

Measure bounds effectiveness. We can reason about
how well CHERI pointers are protecting access in the pres-
ence of different allocator policies for setting bounds or com-
piler options. We observe whether the size of the bounds
in the traced code is reduced, while the code continues to
function as expected. If some large pointers disappear in
favour of pointers with tighter bounds, some parts of the
address space that are not required and could potentially be
used maliciously are no longer accessible.

Protection enforcement consistency. We can use ELF
metadata and DWARF debug information to check whether
the bounds enforced at run-time are consistent with the size
of data structures and type qualifiers of variables.



TaPP’18, July 09–13, 2018, London, UK Alfredo Mazzinghi, Ripduman Sohan, and Robert N.M. Watson

4 Open Questions
With our work, we hope to raise the interest of the com-
munity towards the research opportunities for provenance
analysis offered by capability architectures.

Scalability.
There are different ways to address the scalability issue

presented by the size of instruction traces. Avoiding storing
the trace would probably offer better performance if we only
care about the intermediate representation and never look
back in the instruction trace. Interactive inspection of the
data would require optimisations in the model, to allow fast
and possibly parallel search operations. Our simple model
works for tracing fairly small programs and non-interactive
data analysis. The instruction trace format may be improved
to let the hardware perform some form of compression of the
trace entries. Visualisation techniques are also a challenge: it
is hard to display our provenance data in a way that exposes
meaningful properties of the code.

OS Level Support. The OS may help detecting certain
events. It is worth enabling the kernel to pause and restart
tracing with thread granularity to simplify single-thread trac-
ing. Adding no-op instructions to emit process and thread
identifiers during context switching, and page table informa-
tion may be useful to simplify tracking multiple processes.

5 Related Work
Memarian et al. [9] suggest that the C language standard
provides a provenance interpretation for pointers. Our ap-
proach benefits from how CHERI maps this concept into its
provenance validity enforcement.

Large execution traces are used by omniscient debuggers
such as TOD [10] and ODB [8] to step backward in time and
recover the root cause of bugs more easily. While TOD and
ODB focus on Java, the technique is generic and there are
commercial solutions such as TimeMachine and UndoDB
that work for native code. Our traces could be used to ex-
tend such debuggers with pointer provenance information.
However, we are interested only in pointer manipulations,
for which our data model needs to store less information.

TAEDS [15] is a trace-based framework for tracking Java
data structure evolution history. Our work could support
a similar analysis technique for native code and determine
data structure bounds and visibility.
Provenance tracking techniques have been used to sup-

port different security-related analyses, such as tracking the
origin of null pointers [3], detect dangling pointers [4], iden-
tify leaks of sensitive data [2, 7]. Hardware techniques have
been proposed to detect pointer corruption attacks [5]. Our
approach attempts to be more generic and could be used to
support similar types of analysis.

6 Conclusion
We present a methodology that takes advantage of archi-
tectural features of a capability architecture for provenance

applications. We describe how raw data from instruction
traces can be organised to support reasoning and practi-
cal measurement of high-level security-related properties
of CHERI codebases. Despite limitations of our technique,
we show that a capability architecture that enforces pointer
provenance validity is valuable to enable provenance analy-
sis at a low level, with minimal code instrumentation.

Acknowledgments
This work was supported by a research contract from Google, Inc. This work
was also supported by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract
FA8750-10-C-0237 (“CTSRD”). The views, opinions, and/or findings con-
tained in this report are those of the authors and should not be interpreted
as representing the official views or policies of the Department of Defense
or the U.S. Government.

References
[1] 2018. cheriplot Github repository. (2018). https://github.com/

CTSRD-CHERI/cheriplot
[2] Steven Arzt et al. 2014. FlowDroid. ACM SIGPLAN Notices 49, 6 (jun

2014), 259–269.
[3] Michael D. Bond et al. 2007. Tracking bad apples. In Proceedings of the

22nd annual ACM SIGPLAN conference on Object oriented programming
systems and applications - OOPSLA ’07, Vol. 42. ACM Press, New York,
New York, USA, 405.

[4] Juan Caballero et al. 2012. Undangle: early detection of dangling
pointers in use-after-free and double-free vulnerabilities. ISSTA (2012),
133.

[5] S Chen et al. 2005. Defeating memory corruption attacks via pointer
taintedness detection. Dependable Systems and Networks, 2005. DSN
2005. Proceedings. International Conference on (2005), 378–387.

[6] David Chisnall et al. 2015. Beyond the PDP-11: Architectural Support
for a Memory-Safe C Abstract Machine. SIGARCH Comput. Archit.
News 43, 1 (March 2015), 117–130.

[7] Adam P Fuchs, Avik Chaudhuri, and Jeffrey Foster. 2010. SCanDroid :
Automated Security Certification of Android Applications. Read 10,
November (2010), 328.

[8] Bil Lewis. 2003. Debugging Backwards in Time. (oct 2003).
arXiv:cs/0310016

[9] Kayvan Memarian et al. 2016. Into the depths of C: elaborating the de
facto standards. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation - PLDI 2016,
Vol. 51. ACM Press, New York, New York, USA, 1–15.

[10] Guillaume Pothier, Éric Tanter, and José Piquer. 2007. Scalable omni-
scient debugging. ACM SIGPLAN Notices 42, 10 (oct 2007), 535.

[11] Robert N.M. Watson et al. 2015. CHERI: A hybrid capability-system
architecture for scalable software compartmentalization. In Proceedings
- IEEE Symposium on Security and Privacy, Vol. 2015-July. 20–37.

[12] R. N. M. Watson et al. 2016. Fast Protection-Domain Crossing in the
CHERI Capability-System Architecture. IEEE Micro 36, 5 (Sept 2016),
38–49.

[13] Robert N. M. Watson et al. 2017. Capability Hardware Enhanced RISC
Instructions: CHERI Instruction-Set Architecture (version 6). Technical
Report UCAM-CL-TR-907.

[14] JonathanWoodruff et al. 2014. The CHERI capability model: Revisiting
RISC in an age of risk. In Proceedings - International Symposium on
Computer Architecture. 457–468.

[15] Xiao Xiao, Jinguo Zhou, and Charles Zhang. 2011. Tracking data
structures for postmortem analysis. Proceeding of the 33rd international
conference on Software engineering - ICSE ’11 (2011), 896.

https://github.com/CTSRD-CHERI/cheriplot
https://github.com/CTSRD-CHERI/cheriplot
http://arxiv.org/abs/cs/0310016


Pointer Provenance in a Capability Architecture TaPP’18, July 09–13, 2018, London, UK

A Appendix

qemu/
FPGA

Visitor library interface

Parser

trace data

ELF metadata

trace

binaries

model

run

Figure 1. System architecture

P1

P2 P3

Provenance graph

F1

F2 F3

Call graph

D1

D2 D3

Domain tran-
sition graph

Dereferenced

t0 0xbeef load
t1 0xcafe store

. . .

Stored at

(t2, t3) 0xdead
(t4, in f ) 0xbaad

. . .

visible

via

used
stored

Heap allocation analysis
Stack allocation analysis

. . .

use

Figure 2. Model data structure. Domain transition graph entries
are associated to call graph vertices that represent the domain
crossing function call. Call graph entries are associated to pointer
arguments, return values, and all the pointers visible by the func-
tion. Each pointer graph vertex is associated to two tables. The
Dereferenced table records the time, address and kind of pointer
dereferences. The Stored at table records where and how long a
pointer have been stored at a given location. Additional analysis
steps are built on top of this model.


	Abstract
	1 Introduction
	2 Approach
	2.1 Abstraction Model
	2.2 Optimisations
	2.3 Limitations

	3 Use cases
	4 Open Questions
	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Appendix

