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Supporting Information Text15

In this supporting information, we explain the data set used for training and testing in the main contri-16

bution. Sec. S1 outlines the LJAT3 classification problem that was employed and the data sets that were17

generated. Sec. S2 describes the visualisation of solutions that is used throughout our main report. We also18

tabulate mean values for uphill and downhill barriers for individual transition states and for the pathway19

with the lowest maximum transition state energy connecting other minima to the global minimum.20

S1. Predicting the Outcome of Geometry Optimisation for an Atomic Cluster21

This benchmarking problem has been used in several previous contributions that employed neural network22

fits with single hidden layers (1–3). This work investigated how the corresponding machine learning23

landscapes and predictions varied with the number of nodes and the number of training data, including24

the effect of memory in sequences of molecular configurations. The system is a triatomic cluster bound25

by pairwise Lennard-Jones (4) and three-body Axilrod–Teller (5) terms, parameterised so that there are26

three permutational isomers of a linear minimum, distinguished by the central atom, and one additional27

minimum for an equilateral triangle with D3h symmetry. The total potential energy for this LJAT3 cluster28

is29

V = 4ε
∑

i<j
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, [1]30

where θ1, θ2 and θ3 are the internal angles of the triangle formed by atoms i, j, k. rij is the distance31

between atoms i and j, and Z is a parameter that weights the contribution of the three-body term. For32

Z = 2 the linear minima have potential energy V = −2.219 ε, and the triangle lies slightly higher with33

V = −2.185 ε. For the triangle r12 = r13 = r23 = 1.16875 σ, and in the linear minima the nearest-neighbour34

distances are both 1.10876σ.35

The aim of this multinomial logistic regression problem is to predict which of the four local minima36

a geometry optimisation will find, given some information about initial or intermediate configurations37

in terms of the interparticle distances. To generate data we consider starting geometries constructed38

from randomly distributing the three atoms in a cube of side length L. The initial values of r12 and r1339

were employed as the input data for all the tests conducted in the present work, and we considered two40

datasets, the first (D1) for 10,000 minimisations for a cube with L = 2
√

3 σ, and the second (D2) for41

200,000 minimisations with L = 1.385 σ. We used half of each dataset for training and half for testing,42

where appropriate. Dataset D1 was employed in previous work, while D2 was generated for the present43

investigation. Each local minimisation employed the same LBFGS minimisation routine described in44

Methods, and the convergence condition was taken as 10−6 for the root mean square gradient in reduced45

units of ε/σ.46

The molecular configuration is completely characterised by three interparticle distances, r12, r13, and47

r23. If we supply sufficient training data with these three inputs, predicting the outcome of minimisation48

can be essentially perfect. The problem is then equivalent to learning the basin of attraction for each local49

minimum, which is a well-defined volume of configuration space for steepest-descent minimisation (6, 7).50

By restricting the input data to r12 and r13, and omitting r23, we make the prediction problem harder.51

For the linear minima with atom 2 or atom 3 in the middle, r13 and r12, respectively, are much larger52

than for the triangle. However, these distances are only about 5% different in the triangle and the linear53

minimum with atom 1 in the central position. The basins of attraction of the triangle and this third54

linear minimum therefore overlap significantly in the space defined by r12 and r13. The best predictions55

we can achieve will therefore occur when we have converged the relative probabilities of finding these two56

structures as a function of r12 and r13.57

The same considerations will apply for larger molecules: if we sample the whole configuration space58

sufficiently, we should be able to predict which basin of attraction any starting structure corresponds to,59
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and the corresponding local minimum. Otherwise, the best we can do is to learn the relative probabilities,60

averaged over the missing degrees of freedom. Hence we find the current benchmark appealing because61

of the ability to generate arbitrary amounts of training and testing data, because of the clear physical62

interpretations, and because of the practical importance of the configuration volumes themselves. For63

example, the volume of basins of attraction provides measures of configurational entropy, which has been64

applied to analyse granular packings (8). Reliable prediction for the outcome of minimisation would enable65

us to reduce the time required for such calculations by stopping earlier, with a weaker convergence threshold66

on the magnitude of the gradient (9).67

S2. Visualisation of Solutions68

ba c

Fig. S1. Graphical representation of the LJAT3 classification problem. (a) Colored according to the true outcome determined by geometry optimization for the LJAT3 cluster.

The four optimal atomic configurations are associated with their corresponding basins of attraction. (b) Colored according to the predictions for the global minimum of a

single hidden layer neural network with 3 hidden nodes and 100 training data confined in the plane R
′ (AUC 0.98 from corresponding test set). (c) Colored according to the

predictions for the global minimum of a single hidden layer neural network with 10 hidden nodes trained on 100,000 training data in R (AUC 0.79 from corresponding test

set).

Some insight into the different local minima in the cost function for a given neural network and training69

data can be obtained graphically for the LJAT3 prediction problem (3, 10). We construct a two-dimensional70

projection of coordinates in the plane r12 + r13 + r23 = 3re from the three-dimensional space {r12, r13, r23},71

where re = 21/6 is the equilibrium bond length in a dimer and in the equilateral triangle minimum. The72

orthogonal unit vectors v̂1 = (1, 1, −2)/
√

6 and v̂2 = (1, −1, 0)/
√

2 lie in this plane and are perpendicular to73

the {1, 1, 1} direction. We define projected coordinates x = (r12+r13−2r23)/
√

6 and y = (r12−r13)/
√

2. For74

a regular 700×700 grid with −
√

3re < x, y <
√

3re, we solve for r12, r13, and r23 with r12 + r13 + r23 = 3re,75

which gives 79524 geometrically feasible (x, y) points, and the associated values of {r12, r13, r23}, and76

Cartesian coordinates. The 79524 values of r12 and r13 constitute a third dataset D3. The feasible77

geometries are distributed over a triangle in (x, y) space, where the centre of each edge corresponds to a78

linear geometry with two distances of 3re/4 and one of 3re/2, and each vertex corresponds to two atoms79

coincident and the third at a distance of 3re/2. The equilateral triangular minimum maps to (x, y) = (0, 0).80

The pixels on the (x, y) grid are coloured according to the minimum with highest predicted probability81

when the associated configuration is used as input data for any given neural network. If the equilateral82

triangle has the highest probability the pixel is gray, while the three linear minima with atoms 1, 2, and83

3 in the centre are coloured red, green and blue, respectively. Since we are omitting r23 from all the84

training data, we anticipate that predictions will be significantly perturbed from previous calculations that85

included all three distances as inputs (3). The target result is given by the known outcomes obtained by86

energy minimisation with the same colour scheme (Fig. S1a). The basins of attraction for the three linear87

minima are symmetrically disposed along the three edges of the triangle in the (x, y) projection, while the88

remaining basin for the D3h minimum has three-fold symmetry in this space.89

Although this graphical representation only includes a subset of configurations in one plane defined in90

the three-dimensional space {r12, r13, r23}, comparison with the target reference pattern provides a very91

useful indication of how well any particular neural network performs. It can be used for any set of weights92
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in any of the neural networks we consider, including transition states and all the configurations along the93

pathways that connect the local minima. An illustrated profile for pathways leading to the global minimum94

is shown in Fig. S3, and a movie with frames constructed from all the pathway configurations is available95

as Supplementary Information. The capability to visualise cuts through a testing data set in terms of the96

evolution in the predictive capabilities might prove useful in understanding how to construct better fits in97

future work.98

S3. Area Under Curve99

To quantify the prediction capabilities of any given local minimum we calculated the area under curve100

(AUC) for receiver operating characteristic (ROC) plots of the true positive rate, Tpr, against the false101

positive rate, Fpr, as a function of the threshold probability, P , for predicting convergence to the equilateral102

triangle. These rates are defined as103

Tpr(W; P ) =
Ndata
∑

d=1

δc(d),0 Θ
(

p0(W) − P
)

/Ndata
∑

d=1

δc(d),0 ,104

Fpr(W; P ) =
Ndata
∑

d=1

(1 − δc(d),0) Θ
(

p0(W) − P
)

/Ndata
∑

d=1

(1 − δc(d),0) , [2]105

where Θ is the Heaviside step function and δ is the Kronecker delta. The AUC value is then106

AUC(W) =

∫ 1

0
Tpr(W; P ) dFpr(W; P ) , [3]107

and was obtained numerically.108
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Fig. S2. AUC values obtained for the global minimum fit to 5000 training data in database D1 with networks containing a single hidden layer and 3, 4, 5, 6, 10 and 15 nodes.

Global optimisation was performed for 5000 (r12, r13) pairs as a function of the number of steps to convergence in the geometry optimisation, as in previous work (2). (a)

Results for the 5000 testing data in database D1 for (r12, r13) pairs at the same number of steps to convergence as in each fit. (b) Results for the 79524 test data in

database D3. The plots for 3 and 15 hidden nodes are indicated in each case, and the AUC values generally increase with the number of nodes as the training configurations

approach the random initial configurations at the maximum number of steps from convergence.

We performed additional global optimisation runs for single hidden layers with 3, 4, 5, 6, 10 and 15 nodes109

using configurations corresponding to saved (r12, r13) data along the 5000 training minimisation sequences110

in database D1. As in previous work (2), we find that the AUC values for the minima obtained in training,111

and for configurations in the 5000 testing sequences in D1 at the same position in the minimisation, improve112

systematically as the geometry optimisations approach convergence (Fig. S2a). However, if we apply the113

solutions to the testing data in database D3 the best AUC values of around 0.75 correspond to fits using114
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the starting configurations, i.e. the random (r12, r13) training data (Fig. S2b). Not surprisingly, training115

only on configurations close to the four equilibrium geometries of the cluster produces best fits that do not116

generalise as well to different configurations.117

P.C. Verpoort, A.A. Lee, D.J. Wales 5 of 12



loss

s

0.492

0.494

0.496

0.498

0.500

0.505

0 50 100 150 200 250

Fig. S3. Loss profile for a pathway involving eleven minima and ten transition states for the 1HL network trained on 250 data for LJAT3 geometry optimisations. A graphical

representation of the predictions for the D3 test set is indicated for each minimum. The global minimum is the eighth in the sequence. The horizontal axis corresponds to the

integrated path length, s, which is calculated by treating the variable weights in the neural network according to a Euclidean distance metric.
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Table S1. Average uphill and downhill barriers for all the transition states and directly connected minima located

in training, excluding degenerate rearrangements (7, 11). The second table is the mean of the barrier divided by

the loss difference between the two minima, yielding a dimensionless parameter.

mean barriers

H = 1 H = 2 H = 3

Ndata uphill downhill uphill downhill uphill downhill

100 0.114 × 10−1 0.531 × 10−2 0.155 × 10−1 0.468 × 10−2 0.158 × 10−1 0.489 × 10−2

1000 0.985 × 10−4 0.196 × 10−4 0.239 × 10−2 0.853 × 10−3 0.314 × 10−2 0.978 × 10−3

2000 0.704 × 10−4 0.415 × 10−4 0.126 × 10−2 0.534 × 10−3 0.144 × 10−2 0.489 × 10−3

10000 0.109 × 10−3 0.455 × 10−4 0.466 × 10−3 0.186 × 10−3 0.748 × 10−3 0.274 × 10−3

100000 0.603 × 10−4 0.432 × 10−4 0.185 × 10−3 0.973 × 10−4 0.775 × 10−3 0.198 × 10−3

mean barriers divided by loss difference of minima

H = 1 H = 2 H = 3

Ndata uphill downhill uphill downhill uphill downhill

100 10.70 9.70 6.683 5.683 7.612 6.612

1000 2.131 1.131 5.767 4.767 4.915 3.915

2000 2.743 1.743 6.570 5.570 4.466 3.466

10000 3.167 2.167 7.952 6.952 5.672 4.672

100000 13.359 12.359 6.588 5.588 2.096 1.096
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Table S2. Average downhill barrier to the global minimum for all the other minima located in training, and average

of the downhill barrier divided by the loss difference between the two minima (scaled column).

H = 1 H = 2 H = 3

Ndata scaled scaled scaled

100 0.105 × 10−3 0.0178 0.276 × 10−2 0.0783 0.324 × 10−2 0.0781

1000 0.298 × 10−5 0.0905 0.357 × 10−3 0.0562 0.540 × 10−3 0.0462

2000 0.589 × 10−4 0.9777 0.101 × 10−3 0.0676 0.566 × 10−4 0.0294

10000 0.415 × 10−5 0.0597 0.316 × 10−4 0.4342 0.324 × 10−4 0.0477

100000 0.663 × 10−5 0.3301 0.332 × 10−4 0.3019 0.216 × 10−4 0.0286
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Fig. S4. Reduced test loss plotted against reduced train loss of minima of the the LJAT loss function landscapes for H = 2, 3 and Ndata = 100, 1000, 2000. The train

loss is divided into 100 intervals and the test loss is averaged over all minima found with train loss in the interval. The reduced train (test) loss is defined as Lred(L) =
L−Lmin

Lmax−Lmin
, where Lmax is the maximal and Lmin is the minimal train (test) loss value in the corresponding database of minima. The graph shows how for the average

test loss increases towards the bottom of the train loss landscape for Ndata = 1000, 2000, as one would normally expect. For Ndata = 100 however, the average test

loss seems to be decreasing again at the bottom of the train loss landscape.
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S4. Example Disconnectivity Graphs for a Structural Glass-Former118

Two examples of disconnectivity graphs obtained for model structural glass-formers are shown in Figure S5119

for comparison with the loss function landscapes illustrated for neural networks. The system in question is a120

binary mixture of particles interacting via a Lennard-Jones potential (4) modelled with periodic boundary121

conditions and 60 or 256 particles in the supercell, described as BLJ60 and BLJ256, respectively. Here,122

BLJ60 contains 48 type A and 12 type B particles, while BLJ256 contains 204 A and 52 B particles, and the123

results correspond to a number density of σ−3
AA, where 21/6σAA is the pair equilibrium separation for two124

A particles. The corresponding pair well depth is ǫAA. Choosing σAA = 1 and ǫAA = 1 defines a system125

of reduced units, and the additional parameters are σAB = 0.8, σBB = 0.88, ǫAB = 1.5, and ǫBB = 0.5.126

(15) The pairwise interactions were shifted and truncated according to the Stoddard-Ford scheme to assure127

continuous energy and first derivatives. The database for BLJ60 contains over 11000 minima, and the128

database for BLJ256 has 2500.129

The potential energy landscapes in Figure S5 exhibit hierarchical structure, which appears to be common130

to other structural glasses (16–18), with numerous low-lying amorphous configurations separated by high131

barriers or order 30kBTg for glass transition temperature Tg. Full details of the database construction and132

analysis can be found in the original reports (12–14).133
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Fig. S5. Example disconnectivity graphs for binary Lennard-Jones systems containing 60 atoms, BLJ60 (top), and 256 atoms, BLJ256 (bottom), in periodically repeated supercells.(12–14)
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Movie S1. Graphical representation of the predictions for the D3 test set along the pathway134

shown in Fig. S3.135
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