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shift of the BAO spectrum induced by relic neutrinos can be detected at high significance in
future experiments.
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1 Introduction

Future cosmological observations have the potential to measure the radiation density of the
early universe at the subpercent level. This order of magnitude improvement over current
constraints would provide a new window into the very early universe and allow us to search
for extra light particles with very weak couplings to the Standard Model. Small changes to
the radiation density of the early universe lead to well-understood changes in the anisotropy
spectrum of the cosmic microwave background (CMB) [1–4]. The same effects also create
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imprints in the initial conditions for the clustering of matter and, hence, may be observable in
the late universe. It is therefore natural to ask how much the constraints on extra relativistic
species can be improved by including future observations of the large-scale structure (LSS)
of the universe.

Within the Standard Model (SM) of particle physics, neutrinos make a significant con-
tribution to the radiation density of the early universe. The cosmic neutrino background
(CνB) was created about one second after the Big Bang, when the expansion rate of the uni-
verse dropped below the weak interaction scale. Shortly after neutrino decoupling, electrons
and positrons annihilated, transferring their entropy to photons, but not to the neutrinos.
This slightly reduced the energy density of the neutrinos relative to that of the photons.
Nevertheless, 41 % of the total radiation density of the universe is still expected to be in the
form of cosmic neutrinos. The gravitational effect of the CνB has recently been observed in
the damping [2] and the phase shift [3, 5] of the CMB anisotropy spectrum.

An interesting consequence of many proposals for physics beyond the Standard Model
(BSM) are extra light particles [6], such as axions [7–9], axion-like particles (ALPs) [10], dark
photons [11, 12] and light sterile neutrinos [13]. These particles are often so weakly coupled
to the SM that they escape detection in terrestrial experiments. However, in astrophysics
and cosmology, we have access to high-density environments which can overcome the small
cross sections and allow a significant production of the extra species. For example, new light
particles can be produced in the interior of stars [14]. The absence of an anomalous extra
cooling over the lifetime of stars puts some of the best current constraints on weakly coupled
species. A similar argument can be applied to cosmology [15–17]. The high densities of the
early universe allow these particles to have been in thermal equilibrium with the SM and
can therefore make a significant contribution to the total radiation density of the universe.
New particles that are more weakly coupled than neutrinos would have decoupled before the
QCD phase transition. Their contribution to the final radiation density is then suppressed,
explaining why these particles have not been detected yet. In this paper, we will explore the
sensitivity of future cosmological observations to this type of BSM physics.

The search for light thermal relics has been adopted as one of the main science targets
of the next generation of CMB experiments, such as the CMB-S4 mission [18]. Through im-
proved measurements of small-scale anisotropies and polarization, future CMB observations
will be extremely sensitive to the damping and the phase shift of the anisotropy spectrum. In
this work, we explore the additional constraining power provided by current and future LSS
experiments, such as (e)BOSS [19, 20], DES [21], DESI [22], LSST [23] and Euclid [24]. It was
established in [25–27] that these surveys carry information about relativistic species. We will
examine how this information is encoded in both the shape of the matter power spectrum and
the spectrum of baryon acoustic oscillations (BAO). We find that measurements of the shape
of the power spectrum can significantly improve on the current CMB constraints, although
the largest improvements are subject to the usual challenge of modeling the power spectrum.
The peak locations of the BAO spectrum carry additional information about light relics that
is robust to corrections to the overall shape of the power spectrum [28], such as those arising
from nonlinear gravitational evolution [29–31]. We will explore in detail how this information
can be isolated in the BAO spectrum. This protected information may play a useful role in
elucidating apparent discrepancies between CMB and low-redshift measurements, and be a
valuable tool in the search for exotic physics in the dark sector.

The outline of the paper is as follows. In section 2, we present the theoretical motivation
for a precise measurement of the radiation density in the early universe, focusing on the
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effects of extra light species on the spectrum of acoustic oscillations. We highlight that
these effects are imprinted in both the CMB and BAO spectra. In section 3, we forecast
CMB and LSS constraints on the number of relativistic species, Neff , for a number of future
observations. In section 4, we isolate the information encoded in the phase shift of the BAO
spectrum and study the prospects for extracting this information in upcoming surveys. Our
conclusions are presented in section 5.

A series of appendices contain technical details of our analysis: in appendix A, we
describe our CMB forecasts and present results for a range of experimental configurations.
In appendix B, we provide details of our LSS forecasts. We define the specifications for the
galaxy surveys used in this work and present results for a range of data combinations and
cosmologies. In appendix C, we outline our method for extracting the broadband spectrum
and the phase shift. Finally, in appendix D, we show a few of the convergence tests that we
performed to establish the stability of our numerical analysis.

2 Cosmological signatures of light relics

It is rather remarkable that all current cosmological data (e.g. [32–35]) is fit by a simple
six-parameter model — the ΛCDM model. In this section, we introduce the standard cosmo-
logical model and its extension to include extra relativistic species. We review the imprints
that light particles leave on the cosmic microwave background and the large-scale structure
of the universe. We will pay particular attention to the unique signature that these particles
leave on the spectrum of acoustic oscillations. In the next section, we will quantify the level
of constraints on extra light species to be expected from future cosmological observations.

2.1 The standard model

The ΛCDM model includes two parameters characterizing the initial conditions, namely
the amplitude As and the tilt ns of the spectrum of primordial curvature perturbations.
The remaining four parameters are associated with the geometry and composition of the
universe: the matter content of the universe is described by the physical baryon and dark
matter densities, ωb ≡ Ωbh

2 and ωc ≡ Ωch
2, where h is the reduced Hubble constant h ≡

H0/
(
100 km s−1 Mpc−1

)
. Instead of the Hubble constant H0, we use the angular size of the

sound horizon at decoupling, θs ≡ rs(z∗)/DA(z∗), where rs is the physical sound horizon
and DA is the angular diameter distance, both evaluated at the redshift of decoupling, z∗.
The parameter θs receives a contribution from the dark energy density ΩΛ. The standard
six-parameter model is completed by the optical depth τ . In table 1, we list the fiducial
values of the ΛCDM parameters, based on the Planck best-fit cosmology [33].

In this work, we are interested in future measurements of the radiation density of the
universe. The contribution from photons, ργ , is fixed by the measured value of the CMB
temperature. In addition, the Standard Model of particle physics predicts a contribution
from neutrinos. The expected radiation density from each neutrino species is

ρνi =
7

8

(
4

11

)4/3

ργ ≡ a−1
ν ργ . (2.1)

The three neutrino species of the Standard Model (and their antiparticles) therefore con-
tribute a significant amount to the total radiation density in the early universe: ρν/ρr =∑

i ρνi/ρr ≈ 41 %. Although neutrinos decoupled at early times, their gravitational effects
are still relevant and have recently been observed in the CMB [3, 5].
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Parameter Fiducial Value Description

ωb 0.02230 Physical baryon density ωb ≡ Ωbh
2

ωc 0.1188 Physical dark matter density ωc ≡ Ωch
2

100 θs 1.04112 100× angular size of the sound horizon at decoupling

τ 0.066 Optical depth due to reionization

ln(1010As) 3.064 Log of scalar amplitude (at pivot scale k0 = 0.05 Mpc−1)

ns 0.9667 Scalar spectral index (at pivot scale k0 = 0.05 Mpc−1)

Neff 3.046 Effective number of (free-streaming) relativistic species

Yp 0.2478 Primordial helium fraction

Table 1. Parameters of the reference cosmological model and their fiducial values based on [33].

2.2 Extra light relics

Physics beyond the Standard Model may add an extra radiation density ρX to the early
universe.1 It is conventional to measure this radiation density relative to the density ρνi of a
single SM neutrino species:

∆Neff ≡
ρX
ρνi

= aν
ρX
ργ

, (2.2)

and define Neff = 3.046 + ∆Neff as the effective number of neutrinos, although ρX may have
nothing to do with neutrinos. Current measurements of the CMB anisotropies and the light
element abundances find [33, 36]

Neff = 3.04± 0.18 (CMB) , (2.3)

Neff = 2.85± 0.28 (BBN) , (2.4)

which is consistent with the SM prediction of Neff = 3.046. We expect that future cosmo-
logical observations will improve these constraints by up to an order of magnitude. Any
non-zero value for ∆Neff would indicate physics beyond the standard models of particle
physics and/or cosmology.

A natural source for ∆Neff 6= 0 are extra relativistic particles. Figure 1 shows the con-
tribution to ∆Neff from a single thermally-decoupled species as a function of the decoupling
temperature Tdec and the spin of the particle. The plot assumes that the extra species was
in thermal equilibrium at some point in the history of the universe and that the number of
relativistic degrees of freedom at decoupling was not significantly larger than the SM value.
We also assumed no significant entropy production after decoupling. We see that decoupling
after the QCD phase transition produces a contribution to Neff that is comparable to that
of a single neutrino species, which is in tension with current observations. Decoupling before
the QCD phase transition, however, creates an abundance that is smaller by an order of
magnitude and hence still consistent with current limits. Future observations will therefore
give us access to particles that are more weakly coupled than neutrinos. The exclusion of
the minimal thermal abundance ∆Neff = 0.027 would have important consequences for BSM
physics [15–17]. We find it intriguing that this threshold seems to be within reach of future
CMB and LSS observations. In this paper, we will quantify this expectation.

1This energy density may even be negative if it is not associated with a new particle species, but rather
with non-standard properties of neutrinos or changes to the conventional thermal history.
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Figure 1. Contributions of a single thermally-decoupled Goldstone boson, Weyl fermion or massless
gauge boson to the effective number of neutrinos, ∆Neff , as a function of its decoupling temperature
Tdec. The drop in ∆Neff around 150 MeV is due to the QCD phase transition, where we employed
the lattice QCD calculation of [37].

2.3 Phases of new physics

Keeping the acoustic scale θs fixed (e.g. by adjusting the Hubble constant H0), an increase
in the radiation density of the early universe reduces the mean free path of fluctuations in
the photon-baryon fluid and increases the damping of small-scale fluctuations [2] (see fig-
ure 2). The constraint in (2.3) is mostly derived from measurements of the CMB damping
tail [33, 38]. However, the damping tail is also affected by changes to the primordial helium
fraction, Yp, which induces a variation in the free electron fraction and hence the mean free
path of photons. In our forecasts, we will both fix Yp to the value demanded by BBN con-
sistency (ΛCDM+Neff) and vary it (ΛCDM+Neff+Yp) to explore the degeneracy with Neff .
The part of Neff that is associated with free-streaming relativistic particles leads to a char-
acteristic phase shift in the CMB spectrum [1, 3] (see figure 2), which helps to break the
degeneracy between Neff and Yp. The phase shift associated with SM neutrinos has recently
been measured in the Planck spectrum [3, 5].

In this work, we pay particular attention to the information about Neff contained in
the BAO spectrum. To isolate the BAO signal, we split the power spectrum into a smooth
(‘no-wiggle’) part and an oscillatory (‘wiggle’) part,

P (k) ≡ P nw(k) + Pw(k) . (2.5)

Our method for performing this separation is described in appendix C. We will demonstrate
that the most robust information about Neff lives in Pw(k). In particular, it was shown
in [28] that the phase of the BAO spectrum is immune to the effects of nonlinear gravitational
evolution. In figure 3, we show the dependence of the phase of the BAO spectrum on the
number of relativistic species Neff . We claim that this information is preserved after nonlinear
corrections are taken into account.

3 Future constraints on light species

We have argued that measuring the radiation density at the percent level provides an in-
teresting window into early universe cosmology and beyond the Standard Model particle

– 5 –



J
C
A
P
0
8
(
2
0
1
8
)
0
2
9

0.0

3.0

6.0

9.0

ωb, θs, aeq fixed

0.0

3.0

6.0

+ θD fixed

0 500 1000 1500 2000 2500
0.0

3.0

6.0

K l
[1
0
3
µ
K

2
]

+A fixed

950 1000 1050 1100 1150 1200 1250

l

3.5

4.5

5.5

.

0

1

2

3

4

5

6

7

Neff

Figure 2. Variation of the CMB power spectrum as a function ofNeff . The spectra have been rescaled,
so that the fiducial spectrum for Neff = 3.046 is undamped, i.e. the exponential Silk damping was
removed. Following [5], the physical baryon density ωb, the scale factor at matter-radiation equality
aeq ≡ ωm/ωr and the angular size of the sound horizon θs are held fixed in all panels. The dominant
effect in the first panel is the variation of the damping scale θD. In the second panel, we fixed
θD by adjusting the primordial helium fraction Yp. The dominant variation is now the amplitude
perturbation δA. In the third panel, the spectra are normalized at the fourth peak. The remaining
variation is the phase shift φ (see the zoom-in in the fourth panel).

physics. In this section, we will further quantify the constraining power of future cosmologi-
cal observations. We will consider two types of forecasts based on P (k) and Pw(k). We will
refer to these as ‘P (k)-forecasts’ and ‘BAO-forecasts’, respectively.

3.1 Fisher methodology

We will use standard Fisher information theory to forecast the constraints of future observa-
tions. While Fisher forecasts have to be used with care, they provide useful guidance for the
sensitivities and design of future experiments. In this section, we recall the basic elements of
the Fisher methodology and its application to galaxy surveys [39, 40]. The relatively stan-
dard Fisher forecasting of CMB observations is summarized in appendix A. Further details
on the LSS forecasting can be found in appendix B.

Given a likelihood function L(~θ ) for the model parameters ~θ ≡ {ωb, ωc, θs, τ, As, ns,
Neff , Yp}, we define the Fisher matrix as the average curvature of the log-likelihood around
the fiducial point in parameter space,

Fij = −
〈
∂2 lnL
∂θi ∂θj

〉
, (3.1)

where the expectation value denotes an average over all possible realizations of the data. If
the likelihood is Gaussian, then the inverse Fisher matrix gives the covariance matrix. This

means that F
−1/2
ii is the error on the parameter θi, when all other parameters θj 6=i are known,

while σ(θi) = (F−1)
1/2
ii is the error on θi after marginalizing over the other parameters. More

generally, the Cramér-Rao bound,

σ(θi) ≥
√

(F−1)ii , (3.2)

gives a lower limit on the marginalized constraints.
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Figure 3. Variation of the matter power spectrum P (k) (top) and the BAO spectrum Pw(k)/P nw(k)
(bottom) as a function of Neff . The physical baryon density ωb and the physical sound horizon at the
drag epoch, rs, are held fixed in all panels of the BAO spectrum. In the second BAO panel, we fixed
the scale factor at matter-radiation equality, aeq ≡ ωm/ωr. The variation in the BAO amplitude δA
is then the dominant contribution. In the third BAO panel, the spectra are normalized at the fourth
peak and the bottom panel shows a zoom-in illustrating the remaining phase shift.

The Fisher matrix for a galaxy survey is [41]

Fij =

∫ 1

−1

dµ

2

∫ kmax

kmin

dk k2

(2π)2

∂ lnPg(k, µ)

∂θi

∂ lnPg(k, µ)

∂θj
Veff(k, µ) , (3.3)

where Pg(k, µ) is the anisotropic galaxy power spectrum, µ is the cosine between the wavevec-

tor ~k and the line-of-sight, and Veff is the effective survey volume,

Veff(k, µ) ≡
∫

d3r

[
ng(~r )Pg(k, µ)

ng(~r )Pg(k, µ) + 1

]2

≈
[

n̄gPg(k, µ)

n̄gPg(k, µ) + 1

]2

V . (3.4)

In the second equality, we have assumed that the comoving number density of galaxies is
independent of position, ng(~r ) ≈ n̄g = const., and introduced the actual survey volume V .
To derive the constraints from independent redshift bins, we take V to be the volume within
each bin and add the corresponding Fisher matrices. The minimum wavenumber accessible
in a survey is given by the volume of the survey2 as kmin = 2π [3V/(4π)]−1/3.

2We assume that the survey volume has a spherical geometry. The geometry of a given redshift bin (or the
full survey volume) is neither spherical nor cubic, but we have checked that all of our results are essentially
unaffected by this choice.
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3.1.1 Modeling the power spectrum

In section 2.3, we introduced the linear matter power spectrum Plin(k), and separated it
into its smooth and oscillatory parts. In order to obtain semi-realistic constraints on most
parameters of the cosmological model, it is often sufficient to model the observed galaxy
power spectrum as Pg(k) ≈ b2Plin(k), where b is the linear biasing parameter. However,
the constraints on extra relativistic species are particularly sensitive to the way degeneracies
are broken and to the nonlinear damping of the oscillatory feature, so we need to be more
careful in the modeling of the signal [42–44]. Moreover, since observations only determine
the angular positions and redshifts of objects, we need to take into account the corresponding
redshift space distortions (RSD) and geometric projection effects.

Our model for the observed galaxy power spectrum is the following remapping of the
linear matter power spectrum:

Pg(k, µ) = b2F 2(k, µ)P nw(k, µ)
[
1 +O(k, µ)D(k, µ)

]
Z(k, µ) . (3.5)

All functions in this expression have an implicit redshift dependence. We now define the
different elements of (3.5):

• O(k, µ): this function encodes the BAO signal and can be written as

O(k, µ) ≡ B(k)Olin(k′(k, µ)) +A(k) , (3.6)

where Olin(k′) ≡ Pw
lin(k′)/P nw

lin (k′) is the normalized wiggle spectrum evaluated at the
rescaled wavenumbers [45]

k′ = k
√

(1− µ2)/q2
⊥ + µ2/q2

‖ , with q⊥ ≡
DA(z)

Dfid
A (z)

, q‖ ≡
Hfid(z)

H(z)
. (3.7)

This rescaling reflects the fact that the wavenumbers k cannot be measured directly, but
instead have to be derived from the measured angles and redshifts using the angular
diameter distance Dfid

A (z) and Hubble rate Hfid(z) of a fiducial cosmology. This is
often referred to as anisotropic geometric effects. In the limit of spherically-averaged

clustering measurements, these become isotropic and k′ = k/q, where q = q
2/3
⊥ q

1/3
‖ =

DV (z)/Dfid
V (z), with the radial BAO dilation given by DV ∝ (D2

A/H)1/3.
To model uncertainties in the BAO extraction, we have introduced two free

functions B(k) and A(k) in (3.6), which we take to be smooth polynomials in k (see
section 3.1.2). Ultimately, we will marginalized over these polynomials to remove any
information that is not robust to the BAO signal itself.

• b(z): the bias of the target galaxies (e.g. luminous red galaxies, emission line galaxies or
quasars) sets the overall amplitude of the signal in each redshift bin. We will make the
common assumption that b(z) ∝ 1/D1(z), where D1(z) is the linear growth function.
This means that the bias is larger at high redshifts, which implies that the galaxy power
spectrum may get significant corrections from nonlinear biasing even at high redshifts.

• F (k, µ): this function characterizes the effect of redshift space distortions. Follow-
ing [46], we write

F (k, µ) =
1(

q2
⊥q‖
)1/2 [1 + β µ′(k, µ)2R(k)

]
, (3.8)

– 8 –
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where β ≡ f/b, with the linear growth rate f ≡ d lnD1/d ln a. The factors of qi account
for differences in the cosmic volume in different cosmologies. Projection effects on the
angle to the line-of-sight are included as [45]

µ′(k, µ) = µ/
√
µ2 + (1− µ2)Q2 , (3.9)

where Q ≡ q‖/q⊥, which becomes unity in the isotropic case. BAO reconstruction
removes redshift space distortions on large scales, which we have modeled by adding
the factor R(k) = 1 − exp[−(kΣs)

2/2] in (3.8), where the value of Σs depends on the
experimental specifications, in particular the noise levels. In our baseline forecasts, we
take Σs →∞, i.e. R ≡ 1, but we comment on finite values of Σs in section 3.2.1.

• D(k, µ): this function models the nonlinear damping of the BAO signal [29, 47]

D(k, µ) ≡ exp

[
−1

2

(
k2µ2Σ2

‖ + k2(1− µ2)Σ2
⊥
)]
, (3.10)

where the damping scales perpendicular and parallel to the line-of-sight are given by

Σ⊥(z) = 9.4 (σ8(z)/0.9) h−1 Mpc , (3.11)

Σ‖(z) = (1 + f(z)) Σ⊥(z) , (3.12)

with σ8 being the amplitude of (linear) matter fluctuations at a scale of 8 h−1 Mpc. We
account for BAO reconstruction by decreasing these damping scales by an appropriate
factor, e.g. 0.5 for 50 % reconstruction. Following [25, 48], we include the degradation
in the reconstruction due to shot noise using a reconstruction multiplier r(x), i.e. Σi →
r(x)Σi. We obtain r(x) by interpolating over the table

r = (1.0, 0.9, 0.8, 0.7, 0.6, 0.55, 0.52, 0.5) ,

x = (0.2, 0.3, 0.5, 1.0, 2.0, 3.0, 6.0, 10.0) ,
(3.13)

with r(x < 0.2) = 1.0 and r(x > 10.0) = 0.5, which depends on the number density n̄g
via x ≡ n̄gPg(k0, µ0)/0.1734 evaluated at k0 = 0.14 h Mpc−1 and µ0 = 0.6. This means
that we assume 50 % reconstruction at high number densities and no reconstruction for
low densities.

• P nw(k, µ): the linear no-wiggle spectrum P nw
lin (k, µ) is determined from the linear power

spectrum using the method described in appendix C. Nonlinear corrections to this
spectrum can be parameterized as

P nw(k, µ) = B̃(k)P nw
lin (k′(k, µ)) + Ã(k) , (3.14)

where B̃(k) and Ã(k) are smooth functions (see section 3.1.2). For the purpose of our
BAO-forecasts, Ã(k) and B̃(k) are degenerate with A(k) and B(k) in (3.6) and it is
therefore consistent to use the linear spectrum.

• Z(k, µ): for photometric surveys, we take the uncertainty in the redshift determination
of the targets into account through the following function:

Z(k, µ) = exp
[
−k2µ2Σ2

z

]
, (3.15)

where Σz = c (1 + z)σz0/H(z) is given in terms of the root-mean-square redshift er-
ror σz0 [49, 50]. The redshift error, which depends on the experimental specifications,
reduces the effective resolution for modes along the line-of-sight. We neglect this effect
for spectroscopic surveys.
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When evaluating the derivatives in the Fisher matrix (3.3), the parameters b(z), β, R(k),
D(k, µ) and Z(k, µ) are always computed using the fiducial cosmology. We are assuming
that, after accounting for modeling uncertainties, no relevant cosmological information can
be recovered from these functions.

3.1.2 Accounting for broadband effects

Nonlinear evolution and biasing can change the shape of the power spectrum at high
wavenumbers in a way that cannot be modeled from first principles. We account for this
uncertainty by marginalizing over polynomials in k in both the P (k)- and BAO-forecasts. In
particular, the functions introduced in (3.14) are defined as

Ã(k, zi) =

Na∑
n=0

ãn,i k
n , B̃(k, zi) =

Nb∑
m=0

b̃m,i k
2m . (3.16)

As indicated, we allow independent polynomials in each redshift bin centered around zi.
The coefficients ãn,i and b̃m,i are included in the list of parameters θi. Derivatives with
respect to these parameters are determined analytically, using the fiducial values b̃0,i = 1
and ãn,i = b̃m6=0,i = 0. A more careful treatment would replace this polynomial model with
a perturbative model for the dark matter and biasing, and would marginalize over the bias
parameters. In practice, this has been shown to give qualitatively similar forecasts [51]. Our
marginalization procedure is therefore sufficient to illustrate the sensitivity of our forecasts
to broadband information.

Our BAO-forecasts will marginalize over the ‘broadband corrections’ in (3.6), with A(k)
and B(k) defined as in (3.16).3 At the level of the Fisher matrix, marginalizing over a
polynomial and an exponential are equivalent. As a result, the function B(k) captures the
uncertainty in the damping scales Σ‖ and Σ⊥ in (3.10). This implies that our marginalization
procedure will eliminate any cosmological information associated with the nonlinear damping
of the power spectrum, leaving the distinct information contained in the oscillating part of
the spectrum Olin(k′(k, µ)). This type of procedure is used in the analysis of BAO data to
correct for errors made in the modeling of P nw(k), see e.g. [52].

We will choose various levels of marginalization in our forecasts. This will help to
distinguish the information encoded in the smooth shape of the spectrum, P nw(k), from
that contained in the frequency and phase of the BAO spectrum, Pw(k). In addition, these
marginalizations also give a sense for the level of robustness of each type of information when
accounting for the various uncertainties in modeling the data of a realistic galaxy survey.

3.1.3 Extracting the BAO signal

In describing the power spectrum, we introduced the idea of marginalizing over polynomials
to remove the information in Pg(k) that is thought to be degenerate with nonlinear evolution
and galaxy biasing. The BAO spectrum is known to be robust to these effects and should
therefore survive any such treatment. In principle, the BAO signal could be isolated with
sufficient marginalization. However, in practice, it is more useful to extract the information
associated with the BAO signal before any marginalization. The robustness of the BAO
spectrum to nonlinearities means we can be more aggressive with our choice of kmax and less

3To avoid a proliferation of parameters, we will use an and bn for the parameters in both (3.6) and (3.14),
i.e. we will drop the tildes from now on. Which parameter set is meant will be clear from the context.
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cautious with our marginalization. Consequently, it is convenient to treat the BAO signal
and the broadband information independently.

The observed BAO spectrum is defined by

Og(k, µ) ≡
Pw
g (k, µ)

P nw
g (k, µ)

= D(k, µ)O(k, µ) , (3.17)

where D(k, µ) and O(k, µ) were introduced in (3.5). To derive the new Fisher matrix for the
BAO spectrum directly, we first write the derivatives of Pg(k, µ) as

∂ lnPg(k, µ)

∂θi
=

1

P nw
g + Pw

g

(
∂P nw

g

∂θi
+
∂Pw

g

∂θi

)
. (3.18)

We then drop the term proportional to ∂θiP
nw
g since it is degenerate with the marginalization

over the broadband corrections. For the same reason, we write ∂θiP
w
g ≈ b2F 2DP nw ∂θiO,

i.e. we do not act with the derivatives on the functions D(k, µ) and bF (k, µ). The derivative
in (3.18) therefore becomes

∂ lnPg(k, µ)

∂θi
≈ D(k, µ)

1 +D(k, µ)O(k, µ)

∂O(k, µ)

∂θi
. (3.19)

While the derivatives that we have dropped are non-zero, the marginalization procedure
described above is designed to remove them and the forecasts for cosmic parameters should
consequently be the same. Removing this information by hand (and marginalizing) ensures
that our BAO-forecasts do not include these broadband effects, as we will show in figure 5.
The resulting Fisher matrix is then given by

Fij =

∫ 1

−1

dµ

2

∫ kmax

kmin

dk k2

(2π)2

D(k, µ)2

(1 +D(k, µ)O(k, µ))2

∂O(k, µ)

∂θi

∂O(k, µ)

∂θj
Veff(k, µ) . (3.20)

We note that this Fisher matrix depends on P nw
g (k, µ) only through Veff(k, µ), which deter-

mines the signal-to-noise. For photometric surveys, we replace Veff(k, µ)→ Z(k, µ)2Veff(k, µ)
to account for the redshift error and the associated reduction of power along the line-of-sight.
In principle, we should model P nw

g (k, µ) using the nonlinear (galaxy) power spectrum, given
that we will work close to the nonlinear regime. However, nonlinear evolution also correlates
the modes and produces a non-Gaussian covariance matrix. Since most of the surveys under
consideration in this paper are limited by shot noise, using the nonlinear power spectrum
without taking into account the associated mode coupling in the covariance would artificially
increase the number of signal-dominated modes. To be consistent with the use of a Gaussian
covariance, our forecasts will therefore use the linear broadband spectrum.

3.2 Summary of results

We are now ready to forecast the constraints of current and future CMB and LSS observa-
tions on the effective number of relativistic species Neff . Unless stated otherwise, our baseline
analysis assumes a ΛCDM+Neff cosmology in which the primordial helium fraction Yp is fixed
by consistency with BBN. At the end of the section, we will also present results with Yp as a
free parameter. We will further dissect the information content of the BAO spectrum in the
next section.

In appendix A, we present detailed forecasts for current and future CMB experiments.
The expected 1σ constraints for representative versions of the Planck satellite, a near-term
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spectroscopic photometric

CMB BOSS eBOSS DESI Euclid DES LSST

Planck 0.18 0.14 0.13 0.087 0.079 0.17 0.14

CMB-S3 0.054 0.052 0.051 0.045 0.043 0.054 0.052

CMB-S4 0.030 0.030 0.030 0.028 0.027 0.030 0.030

Table 2. Forecasted 1σ constraints on Neff for various combinations of current and future CMB and
LSS experiments using P (k)-forecasts with kmax = 0.2 h Mpc−1.

spectroscopic photometric

CMB BOSS eBOSS DESI Euclid DES LSST

Planck 0.18 0.15 0.15 0.14 0.14 0.16 0.15

CMB-S3 0.054 0.052 0.052 0.050 0.050 0.054 0.052

CMB-S4 0.030 0.030 0.030 0.029 0.029 0.030 0.030

Table 3. Forecasted 1σ constraints on Neff for various combinations of current and future CMB and
LSS experiments using BAO-forecasts with kmax = 0.5 h Mpc−1.

CMB-S3 experiment and a future CMB-S4 mission are σ(Neff) = 0.18, 0.054, 0.030, respec-
tively. In section A.3, we show how these constraints depend on variations of the experimental
configurations. We would like to know how much these CMB constraints would improve with
the addition of LSS data.

We will give the results of two types of forecasts based on P (k) and Pw(k). Our
P (k)-forecasts apply the Fisher matrix (3.3) with kmax = 0.2 h Mpc−1 and marginalize over
bm≤1. To be conservative about nonlinear biasing, we do not increase kmax at large redshifts,
despite the (near-)linearity of the matter power spectrum. Our BAO-forecasts use the Fisher
matrix (3.20) with kmax = 0.5 h Mpc−1 and marginalize over an≤4, bm≤3. We will also show
how these forecasts depend on the choice of kmax and the level of marginalization.

3.2.1 Constraints from planned surveys

A number of galaxy surveys are expected to take place over the next decade. The power of
these surveys to constrain Neff is most sensitive to the survey volume, the number densities of
galaxies and the redshift errors (spectroscopic versus photometric). The precise specifications
of the surveys used in our analysis are given in appendix B, where we also present more
detailed forecasts for the full set of parameters.

Baseline results. In table 2, we present the 1σ constraints on Neff for various combi-
nations of current and future CMB and LSS experiments using the full P (k)-forecast. In
table 3, we compare these results to the same experiments using our BAO-forecasts. At
BOSS levels of sensitivity and number densities, the BAO feature makes the most significant
impact on constraints, particularly when combined with a CMB experiment like Planck. In
contrast, with the larger volume and redshift range of DESI, the broadband shape carries
most of the information and can lead to a significant improvement in the constraint on Neff

both for Planck and a typical CMB-S3 experiment. Finally, photometric redshift surveys
like DES and LSST generally perform worse than spectroscopic surveys because they are
effectively two-dimensional for the scales of interest. However, the employed redshift error is
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Figure 4. Forecasts for BOSS and DESI combined with Planck as a function of the smallest (left)
and largest (right) Fourier modes used in the forecast, kmin and kmax, with kmax = 0.5 h Mpc−1 in
the left panel. The solid and dashed lines indicate the constraints from the P (k)- and BAO-forecasts,
respectively. Shown as the dotted lines are the “optimal constraints” as described in the main text.
The lower panel displays the linear BAO spectrum and an estimate of the noise levels.

conservative and we do not take the full potential of these surveys into account as we are only
considering observations of galaxy clustering and have not included weak gravitational lens-
ing measurements, for instance. We expect the constraints to improve with these additional
LSS observables, but quantifying this is beyond the scope of this work.

Sensitivity to kmax. The broadband signal is sensitive to nonlinear effects and we should
therefore understand how sensitive these results are to the choice of kmax. In particular,
we have chosen kmax = 0.2 h Mpc−1 in table 2, but the usable range of scales is uncertain.
Figure 4 shows how the constraints vary as a function of the maximal wavenumbers included
in the analysis, kmax, for both the P (k)- and BAO-forecasts. For the BAO-forecasts, we see a
clear plateau for kmax > 0.2 h Mpc−1. This behavior is due to the damping of the oscillations
at higher k relative to the smooth power spectrum. Cosmic variance is ultimately determined
by the amplitude of the smooth power spectrum and one cannot recover the high-k oscillations
even by lowering the shot noise. In contrast, the P (k)-forecasts show improvements out to
kmax > 0.3 h Mpc−1.

Given that the BAO spectrum is robust to nonlinear evolution, it is natural to consider
an optimal combination of the P (k) and BAO spectra that uses all the available information.
This means using P (k) up to a certain kmax and adding BAO-only information for larger k.
The kmax of the P (k) analysis then becomes the kmin of the BAO analysis to avoid double
counting the information. Results for this optimal combination are shown as the dotted line
in figure 4.

Sensitivity to marginalization. High-redshift galaxy surveys benefit significantly from
measuring highly biased objects. These large biases can offset the growth function,
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Figure 5. Forecasts for BOSS and DESI combined with Planck as a function of the largest Fourier
modes used in the forecast, kmax, using various levels of both additive and multiplicative marginaliza-
tion, cf. the ai and bi-terms in (3.16). We have varied the number of parameters in the marginalization
from none (/a) to five (an≤4) and none (/b) to six (bm≤5), respectively. The dashed line shows the con-
straints from a standard isotropic BAO analysis for comparison.

b(z)D1(z) = const., and keep the amplitude of the galaxy power spectrum effectively fixed
at high redshift. This boost is important for maintaining a signal above the shot noise,
which we have assumed is redshift-independent. As a consequence, high-redshift and low-
redshift galaxy power spectra are equally sensitive to uncertainties in the biasing coefficients.
This is particularly significant when determining the largest wavenumbers that carry useful
cosmological information. While taking kmax > 0.2 h Mpc−1 is appealing to maximize the
constraints on Neff , we must also marginalize over successively more bias parameters. Fig-
ure 5 shows how the results depend on the marginalization scheme. While both the P (k)- and
BAO-constraints degrade significantly when going from no marginalization to a few bias pa-
rameters, the BAO-forecasts quickly become robust to the marginalization. In contrast, the
P (k)-forecasts weaken notably with additional biasing, but always lie below the BAO-only
results, as one would expect. This confirms the intuition that the information that is pri-
marily driving the constraints derived from P (k) is present in the no-wiggle power spectrum,
P nw(k), instead of the BAO spectrum.

It is instructive to compare the results of our BAO-forecasts with those of a standard
BAO analysis. Specifically, it is conventional to use the BAO signal to constrain only qi,
i =⊥, ‖, defined in (3.7) and derive parameter constraints from them.4 These derived limits

4We also compared the constraints coming from the full anisotropic treatment (cf. section 3.1.1) with the
isotropic approximation. The BAO-forecasts only weaken at small wavenumbers depending on the marginal-
ization procedure, but reach the same plateau values at large wavenumbers as our baseline analysis. In
contrast, the constraints on Neff are systematically weaker in the isotropic P (k)-forecasts at the level of 15 %
for kmax = 0.2 h Mpc−1.
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spectroscopic photometric

Parameter CMB BOSS eBOSS DESI Euclid DES LSST

Planck
Neff 0.32 0.25 0.22 0.14 0.13 0.29 0.23

Yp 0.018 0.016 0.016 0.013 0.012 0.017 0.015

CMB-S3
Neff 0.12 0.12 0.11 0.094 0.088 0.12 0.11

Yp 0.0069 0.0068 0.0067 0.0060 0.0058 0.0069 0.0066

CMB-S4
Neff 0.081 0.079 0.078 0.070 0.067 0.081 0.078

Yp 0.0047 0.0046 0.0046 0.0043 0.0042 0.0047 0.0046

Table 4. Forecasted 1σ constraints on Neff and Yp for various combinations of current and future
CMB and LSS experiments using P (k)-forecasts with kmax = 0.2 h Mpc−1.

spectroscopic photometric

Parameter CMB BOSS eBOSS DESI Euclid DES LSST

Planck
Neff 0.32 0.29 0.29 0.28 0.28 0.30 0.29

Yp 0.018 0.018 0.018 0.018 0.018 0.018 0.018

CMB-S3
Neff 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Yp 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069

CMB-S4
Neff 0.081 0.080 0.080 0.079 0.079 0.081 0.080

Yp 0.0047 0.0047 0.0047 0.0046 0.0046 0.0047 0.0047

Table 5. Forecasted 1σ constraints on Neff and Yp for various combinations of current and future
CMB and LSS experiments using BAO-forecasts with kmax = 0.5 h Mpc−1.

on Neff are shown as the dashed lines in figure 5. The fact that the standard BAO constraints
are slightly weaker than those of our full BAO-forecasts, even after marginalization, suggests
there is information in the BAO spectrum beyond the BAO scale. We will explore this further
in section 4.

Degeneracy with Yp. To explore possible degeneracies between the effective number
of relativistic species Neff and the primordial helium fraction Yp, we now consider a
ΛCDM+Neff+Yp cosmology. In tables 4 and 5, we present the 1σ constraints on Neff and
Yp for various combinations of current and future CMB and LSS experiments using P (k)-
forecasts and BAO-forecasts, respectively. As expected, the CMB-only constraint on Neff

become worse due to the well-known degeneracy between Neff and Yp in the CMB damping
tail. When broadband information is included, we find significant improvements in the con-
straints on both Neff and Yp. However, this improvement cannot be attributed to the phase
shift as we see only modest improvements in our BAO-forecasts. The broadband shape of
the matter distribution is sensitive to the expansion history and to free-streaming neutrinos,
but is not significantly affected by Yp. As a result, the broadband information in P (k) can
break CMB degeneracies even without the phase shift information.

Comments on reconstruction. In our baseline forecasts, we took R ≡ 1 in (3.8), which is
equivalent to taking Σs →∞. A few comments are in order regarding the effect of a finite Σs.
As discussed in [53], the optimal smoothing scale Σs used in the BAO reconstruction depends
on the noise levels of the experiment. Having said that, we have found only small changes
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in our results when going from Σs =∞ to finite Σs. The constraints quoted in tables 2 to 5
are basically unaffected, except for DESI and Euclid in the P (k)-forecasts, where the impact
is also mild. Changing Σs from 30 h−1 Mpc to 15 h−1 Mpc and 10 h−1 Mpc, the constraint
on Neff slightly weakens from 0.090 to 0.093 and 0.096 for Planck+DESI (0.082, 0.086 and
0.090 for Planck+Euclid) in ΛCDM+Neff compared to the quoted 0.087 (0.079) in table 2.
In practice, this roughly 10 % effect has to be compared to the impact on the reconstruction
efficiency.

3.2.2 Designer’s guide for future surveys

One of the main benefits of a Fisher forecast is that it can inform the design of future exper-
iments. For spectroscopic surveys, the basic parameters are the total number of objects, Ng,
the maximal redshift, zmax, and the sky area in square degrees, Ω. From these, we derive the
survey volume, V , and the comoving number density, n̄g.

5 In this section, we will explore
how the constraints on Neff depend on these parameters.

Most of the survey characteristics are encoded in the effective survey volume,6 Veff ,
cf. (3.4) and (3.20). The dependence of Veff on the survey parameters is somewhat non-
trivial. Increasing V (by increasing zmax and/or Ω), at fixed Ng, will also reduce n̄g. For
signal-dominated modes, n̄gPg � 1, this effect is not important and the effective volume
scales approximately as Veff ∝ V . However, for n̄gPg � 1, the shot noise is important and
the reduction in the comoving density is more important than the increase in the volume,
so that the effective volume scales as Veff ∝ V −1. This means that we will only benefit from
an increase in the volume as long as the modes of interest, k ∈ [0.1, 0.3] h Mpc−1, are signal
dominated.

As mentioned before, the increased linearity of the matter distribution at high redshifts
is undermined by the larger biasing. As a result, the main benefit of large zmax is the increased
survey volume and hence the total number of modes. Unfortunately, the survey volume only
grows slowly with redshift for z > 2 and the resulting improvements in parameters is relatively
modest for large increases in zmax. The situation is slightly different for the BAO spectrum
as the nonlinear damping factor D(k, µ) depends on the clustering of the matter directly and
is therefore less important at high redshifts. However, the BAO signal alone has a relatively
modest effect on Neff forecasts in general and the change to the damping factor consequently
does not make a visible difference in our forecasts.

In the top panel of figure 6, we present P (k)-forecasts for Neff for a variety of survey
configurations, assuming Yp is fixed by BBN consistency. We see that the largest improvement
comes from increasing Ng from 107 to 108. As we increase the number of objects further,
we reach the cosmic variance limit for all modes of interest. We see that an optimistic
future survey combined with a near-term CMB experiment can provide constraints that are
comparable to (or slightly stronger than) those projected for CMB-S4 alone. Having said
that, it does not appear that one can push the measurement of Neff well beyond the CMB-S4
target. Moreover, as in the case of the planned experiments, the improvements from the
BAO signal alone are rather small.

5For simplicity, we will assume that the comoving number density can be approximated by a constant over
the complete survey volume. However, very similar results are obtained for BOSS and DESI when using the
specific redshift-dependent number densities.

6The effective survey volume also depends on the linear bias parameter b through n̄gPg ∝ n̄gb
2. This

dependence is degenerate with a rescaling of n̄g, so we will take b(z = 0) ≡ 1 and vary n̄g. This ignores the
impact that changes in b may have on redshift space distortions.
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Figure 6. Future constraints for ΛCDM+Neff (top) and ΛCDM+Neff+Yp (bottom) from the full
galaxy power spectrum, Pg(k), up to kmax = 0.2 h Mpc−1 as a function of the total number of objects,
Ng, at fixed survey area Ω = 20 000 deg2 (left) and as a function of the survey area Ω (or sky
fraction fsky) for fixed zmax = 2 (right). The comoving number density is assumed to be constant and
given by the total volume of the survey. For “CVL” (red), all modes in the survey are assumed to be
measured up to the limit set by cosmic variance. Solid and dashed lines correspond to combining the
LSS data with CMB-S3 and CMB-S4 data, respectively. The gray lines indicate the level of sensitivity
of the respective CMB experiments alone.

The value of LSS becomes more significant as we expand the space of parameters. The
bottom panel of figure 6 shows P (k)-forecasts for ΛCDM+Neff+Yp. We again see that the
most significant jump in sensitivity arises when Ng increases from 107 to 108. We note that
a factor of two improvement in σ(Neff) over CMB-S4 seems possible. We also see that the
P (k)-forecasts for Neff marginalized over Yp are competitive with CMB-only forecasts with
Yp held fixed. In this sense, P (k) adds robustness to the measurement of Neff under broader
extensions of ΛCDM. The improvement in Yp is slightly weaker, but shows the same general
trend.
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Figure 7. Forecasts for two future surveys combined with CMB-S4 as a function of the largest
Fourier modes used in the forecast, kmax, using various levels of both additive and multiplicative
marginalization. We have varied the number of parameters in the marginalization from none (/a) to
five (an≤4) and none (/b) to six (bn≤5), respectively. The employed experimental specifications for the
“Future”-survey are Ng = 108, zmax = 3 and fsky = 0.5, whereas the “CVL”-survey is cosmic variance
limited for all k up to kmax over fsky = 0.5 and zmax = 6.

The range of accessible modes in near-term galaxy surveys is limited by their reliance
on highly biased objects, but more futuristic surveys may not have the same limitations.
Future surveys can also have high signal-to-noise beyond k = 0.2 h Mpc−1, making it worth
to consider the impact of increasing kmax. In figure 7, we show the potential reach of two
representative surveys. The first, denoted “Future”, is characterized by Ng = 108, fsky = 0.5
and zmax = 3, which is roughly the same as a spectroscopic follow-up to LSST. The second,
denoted “CVL”, is cosmic variance limited for all k ≤ kmax over fsky = 0.5 and zmax = 6.
In principle, a 21 cm intensity mapping survey could achieve similar performance [27]. We
see that σ(Neff) ∼ 0.015 is achievable through the measurement of P (k) in either survey for
kmax = 0.5 h Mpc−1, although the improvement with CVL is more robust to marginalization.

4 Measurements of the phase shift

In the previous section, we showed how much the combination of future CMB and LSS
measurements can improve the sensitivity to extra relativistic species. The dominant source
of improvement came from the broadband shape of the power spectra, P nw(k), rather than
the BAO spectrum, Pw(k). Nevertheless, the shift of the acoustic peaks is a particularly
robust signature of free-streaming, relativistic species [28] and is therefore an interesting
observable in its own right. In this section, we will isolate the signal coming from the phase
shift and forecast our ability to measure it in future surveys. Measuring the BAO phase
shift provides an independent test of pre-recombination physics in a low-redshift observable.
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This could be used to shed light on possible discrepancies between low- and high-redshift
measurements or as a discovery channel for exotic new physics.

4.1 Isolating the phase shift

The BAO feature in Fourier space can be written as

Olin(k) = A(k) sin
[
α−1rsk + φ(k)

]
, (4.1)

where the parameter α represents changes in the BAO scale rs, and the amplitude modula-
tion A(k) and the phase shift φ(k) encode a number of physical effects that alter the time
evolution of the baryons. While α and A(k) are implicit functions of redshift, φ(k) is redshift
independent. Relativistic species are the unique source of a constant shift in the locations of
the BAO peaks in the limit of large wavenumbers, i.e. φ(k → ∞) = φ∞ [1, 3]. In practice,
however, the measurement of the BAO spectrum occurs over a relatively small range of scales
with a small number of (damped) acoustic oscillations. On these scales, the k-dependence of
the shift can be relevant. Furthermore, additional k-dependent shifts from other cosmological
parameters may also have to be taken into account [4].

To measure the phase shift φ(k), we will construct a template for the k-dependence as
a function of the relevant parameters. For small variations around their fiducial values, it is
a good approximation to treat the shifts arising from each cosmological parameter indepen-
dently. By varying one parameter at a time and measuring the change in the peak locations,
we can construct a template φ(k) =

∑
i βi(

~θ )fi(k). For ΛCDM+Neff , the parameters As, ns,
and τ do not affect the evolution of the baryons prior to recombination and, therefore, do not
change the phase of the oscillations. The parameters ωb and θs do alter the BAO spectrum,
but are effectively negligible for any realistic parameter range. The shifts induced by ωc and
Neff , on the other hand, can be significant.

The parameter that is most independent of Neff is not the dark matter density ωc, but
the scale factor at the time of matter-radiation equality, aeq. Since CMB data essentially
fixes aeq, our template model can be reduced to

φ(k) = β(Neff)f(k) , (4.2)

namely the shift induced by changing Neff at fixed aeq. This is the same choice made by
Follin et al. [5] in their CMB measurement of the phase shift. Fixing aeq also reproduces
the expected constant phase shift at large wavenumbers. The template for the phase shift at
fixed ωc, in contrast, does not approach a constant at large wavenumbers, which implies that
the change of aeq to maintain constant ωc is introducing a phase shift of comparable size to
the constant shift induced by varying Neff . For our applications, this additional shift plays
no role, but it could be useful in future investigations.

We describe the measurement of the phase shift and the construction of the template
in appendix C. In short, we determine the shift in the locations of the peaks/troughs and
zeros of the BAO spectrum compared to the fiducial cosmology with Neff = 3.046 and sample
100 different cosmologies with varying Neff at fixed aeq. It is convenient to normalize the
template f(k) such that β = 0 and 1 for Neff = 0 and 3.046, respectively. In figure 8, we
illustrate how the peaks/troughs and zeros of the BAO spectrum change in response to this
variation in Neff . We see that the phase shift created by Neff approaches a constant at large
wavenumbers in line with physical expectations.

The measurement of the phase shift is challenging because it requires a very accurate
model of the no-wiggle spectrum P nw(k) across a wide range of cosmological parameters.
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Figure 8. Template of the phase shift f(k) as defined in (4.2). The numerical phase shifts (blue)
were obtained by sampling from 100 different cosmologies with varying Neff and rescaling by β(Neff)
as defined in (4.6). The bars indicate the standard deviation in these measurements at the positions
of the peaks (light blue) and zeros (dark blue) compared to the fiducial BAO spectrum. The red line
shows the fitting function defined in (4.3). The dashed gray line is an analytic approximation to the
constant phase shift [1, 3].

Errors in P nw(k) effectively change the functions A(k) and B(k) in (3.6) and lead to errors
in the measurement of the BAO peaks and zeros, respectively. The small size of the phase
shift in figure 8 only exacerbates this problem. Fortunately, while the template is difficult to
generate, our forecasts using the template are very stable. Furthermore, the template is well
approximated by a simple fitting function,

f(k) =
φ∞

1 + (k?/k)ξ
, (4.3)

where φ∞ = 0.227, k? = 0.0324 h Mpc−1 and ξ = 0.872 were obtained by a weighted fitting
procedure. From the analytic treatment at high wavenumbers k, we expect φ∞ = 0.191π εfid+
O(ε2fid) ≈ 0.245 to linear order [1, 3], where ε(Neff) = Neff/(aν+Neff) is a measure of the excess
radiation density, (ρr − ργ)/ρr, with aν ≈ 4.40 as introduced in (2.1). This approximation
overestimates the value obtained using the fitting formula by about 8 %, which is consistent
with the expected corrections from higher orders in εfid ≈ 0.41. Around k ∼ 0.1 h Mpc−1,
where BOSS and DESI have the largest signal-to-noise ratio, the relative difference is almost
50 %, which makes it evident that the offset from the analytic approximation has to be taken
into account in an analysis such as the one proposed below, whereas the precise shape of the
template plays a sub-dominant role. We also note that this template is basically independent
of changes to the BAO scale rs, for example due to changes in the dark matter density.

We use the measured phase template to write the BAO spectrum in terms of the spec-
trum in the fiducial cosmology:

O(k) = Ofid

(
α−1k + (β − 1) f(k)/rfid

s

)
, (4.4)

where α ≡ α(zi) takes an independent value in each redshift bin centered around zi and β is a
single parameter for the entire survey. A measurement of α(zi) and β can then be translated
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into constraints on cosmological parameters using

α(~θ; z) ≡ q rfid
s /rs = [DV (z)/rs] / [DV (z)/rs]fid , (4.5)

β(Neff) ≡ ε/εfid , (4.6)

where the parameters q and DV were introduced in section 3.1.1. With this normalization,
the largest possible phase shift due to Neff is given by β(Neff →∞) = 2.45.

In section 4.3, we will show that the forecasts produced using only these templates are
in agreement with the forecasts using the full BAO spectrum. From a measurement of β > 0,
one gets a constraint on Neff that is only associated to the size of the phase shift. This
approach is analogous to the template-based measurement of the phase shift in the CMB
by Follin et al. [5]. The measurement of Neff from the phase alone ignores the effects of
Neff on α, but has the advantage that any detection is unambiguously7 a measurement of
free-streaming relativistic particles.

We will also be interested in the measurement of β when a prior on α is included, e.g.
from the CMB.8 In a given cosmological model, the parameter α is fully determined by the
set of cosmological parameters, α = α(~θ ). As the α(zi) inferred from the CMB are correlated
between the n redshift bins of a galaxy survey and n is in general larger than the number of
cosmological parameters, we compute the n-dimensional inverse covariance matrix according
to C−1

α = ATFA, where F is the Fisher matrix and A is the pseudo-inverse of ∇~θ ~α. We
use the CMB Fisher matrices for the ΛCDM+Neff cosmology as in section 3. We can then
impose the α(zi)-prior on the redshift-binned likelihood function L(α, β; zi) according to
L(β) ∝

∫ ∏
zi

dαi
∏
zi
L(αi, β; zi)π(α1, . . . , αn), where αi ≡ α(zi) and π is the n-dimensional

Gaussian prior with covariance matrix Cα. The observed posterior distribution of α(zi) could
also be constructed by evaluating α(zi) for each point in a given CMB Markov chain.

4.2 Constraints from planned and future surveys

We will now show how well the phase shift can be measured in planned galaxy surveys. It
is useful to first understand the parameter space α–β without imposing a prior on α. Both
parameters affect the locations of the acoustic peaks and are therefore quite degenerate. We
will use likelihood-based forecasts to ensure accuracy. We will confirm that the posterior
distributions9 of α and β are Gaussian, while the constraints on Neff derived from this
parameterization are significantly non-Gaussian. This suggests that a Fisher matrix forecast
in terms of α and β would be more reliable than one that starts directly from Neff .

We define the phase shift relative to the fiducial model with Neff = 3.046. The broad-
band spectrum for the fiducial model can be isolated by using the method in appendix C
or through the use of a fitting function along the lines of [52]. These methods generate the
BAO spectrum Ofid(k) and hence O(k) via (4.4). We compute the log-likelihood using the
same noise and modeling as in the Fisher matrix (3.20).

Planned surveys. Forecasts for the one- and two-dimensional posteriors are shown in
figure 9 for both BOSS and DESI. We see that for both surveys the posterior distributions are
Gaussian. The best-fit Gaussian for BOSS and DESI has σ(β) = 1.3 and 0.47, respectively,

7We have explicitly checked that our template gives an unbiased measurement of β. In particular, we have
verified that we reproduce β ≈ 0 for a cosmology with Neff = 0.

8We also indirectly use the CMB data to constrain other cosmological parameters, in particular the time
of matter-radiation equality aeq, so that we can ignore any additional phase shifts not associated with Neff .

9Since we assume flat priors for the parameters, we can identify the posteriors with the likelihoods.
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Figure 9. Left : contours showing 1σ and 2σ exclusions in the α–β plane for BOSS and DESI.
For purpose of illustration, we have reduced these surveys to a single redshift bin (and therefore a
single α-parameter). The gray bands indicate Planck priors for α assuming the median redshift is
z = 0.4 and 1.0 for BOSS and DESI, respectively. Right : one-dimensional posterior distributions of
β for BOSS and DESI. The dashed and dotted lines indicate the use of a redshift-dependent CMB
prior on α from Planck and CMB-S4, respectively.

which corresponds to a rejection of β = 0 at 77 % and 98 % confidence. Clearly, BOSS cannot
exclude β = 0 (and hence Neff = 0) without any prior information from the CMB. Since the
weakness of the constraint on β is driven by the degeneracy with α (see the left panel in
figure 9), we expect to get significant improvements in the constraints on β after imposing
a CMB prior on α. Inspection of the two-dimensional contours already shows that we will
sizeably limit the range of β. The posterior distribution with the prior from Planck (CMB-
S4) is shown in the right panel of figure 9. For BOSS, we find σ(β) = 0.76 (0.50) which
implies that β > 0 at 81 % (95 %) confidence. Evidence for this signature of free-streaming
neutrinos has been seen in existing data [54]. For DESI, we should find strong evidence for
a phase shift with σ(β) = 0.30 (0.22) which excludes β = 0 at 3.5σ (4.6σ).

To translate these results into constraints on Neff , we use the relationship between β
and Neff given in (4.6). This map is nonlinear over the measured range of β and we therefore
anticipate the posteriors to be non-Gaussian. The derived Neff -posteriors in figure 10 indeed
show a highly non-Gaussian distribution. As anticipated from the β-posterior for BOSS, the
constraints on Neff are relatively weak without imposing a Planck prior on α.

We also see that the constraining power is significantly weaker at bounding large values
of Neff than small ones. This asymmetry is simply a reflection of the fact that increasing Neff

does not produce proportionally larger phases shifts. This asymmetry was also seen in the
CMB constraints of Follin et al. [5], likely for the same reason. Recall that we have an upper
limit on the phase shift of β < 2.45, which is saturated for Neff →∞. In practice, this means
that for Neff � aν ≈ 4.40, we will have an equal likelihood10 for every value of Neff because
they produce identical spectra. As a result, a flat prior on Neff (rather than β) will lead
to ill-defined results because the integral

∫∞
dNeff L(Neff) will diverge. On the other hand,

for highly-significant detections of β > 0, a flat prior over any reasonable range of Neff will
produce stable results. We are not quite in this regime with BOSS, which is why we will only
quote constraints on β.

10Realistic values of Neff are not quite in the asymptotic regime, but still show the weakened distinguishing
power for larger Neff .
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Figure 10. Posterior distributions of Neff for BOSS (blue) and DESI (red) derived from the phase
shift in the BAO spectrum, i.e. via the measurement of β. The dashed and dotted lines indicate that
a redshift-dependent CMB prior on α has been imposed using Planck and CMB-S4, respectively.

spectroscopic photometric

BOSS eBOSS DESI Euclid DES LSST

BAO 1.3 1.0 0.47 0.40 2.6 1.0

+ Planck prior 0.76 0.70 0.30 0.26 1.1 0.50

+ CMB-S4 prior 0.50 0.48 0.22 0.19 1.0 0.42

Table 6. Forecasted 1σ constraints on the amplitude of the phase shift β for current and future LSS
experiments. We also show the constraints on β after imposing a redshift-dependent prior on the
BAO parameter α from Planck and CMB-S4.

Table 6 shows the projected constraints on β for a variety of planned surveys with and
without priors from the CMB. We see that roughly a factor of three improvement can be
achieved in spectroscopic surveys going from BOSS to Euclid. Both DESI and Euclid should
have sufficient sensitivity to reach a more than 5σ exclusion of β = 0 when imposing a
Planck prior. As before, galaxy clustering measurements in photometric surveys do not lead
to competitive constraints as they are effectively two-dimensional on the relevant scales.

Future surveys. Given the robustness of the phase shift as a probe of light relics, a high-
significance detection of the phase shift in LSS would be a valuable piece of cosmological
information. We have seen that current and planned surveys can detect the phase shift, but
are not expected to produce constraints on Neff that are competitive with those from the
CMB. It is natural to ask if future surveys can reach this level of sensitivity.

Like the measurement of the BAO scale, the measurement of the phase requires large
signal-to-noise for 0.1 h Mpc−1 . k . 0.3 h Mpc−1. As long as the number density is suffi-
ciently large to keep the shot noise below cosmic variance, we gain primarily by increasing
zmax to achieve larger survey volumes. At larger levels of the shot noise, we only measure a
few peak locations well which increases the degeneracy between α and β. Figure 11 shows
results for a variety of possible survey configurations. As before, the constraints on β can be
mapped into constraints on Neff using (4.6). We see that with 108 objects and zmax > 3, we
consistently obtain σ(Neff) < 0.5 (1.0) with (without) a prior on α included.
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Figure 11. Future constraints on the amplitude of the phase shift β as a function of zmax and Ng,
assuming fsky = 0.5. The dashed and dotted lines indicate that a CMB prior on α has been imposed
using Planck and CMB-S4, respectively. The corresponding 1σ lower limit on Neff , which is Neff =
3.046− σ−(Neff), is indicated by the right axis.

To put these results into context, the measurement of Follin et al. [5] of Nφ
eff = 2.3+1.1

−0.4

from the Planck TT spectrum is comparable to a survey with Ng = 109 objects out to

redshift zmax = 3. Follin et al. also forecasted σ(Nφ
eff) = 0.41 for Planck TT+TE+EE which

is near the sensitivity of future LSS surveys when increasing the redshift range to zmax = 6.
Reaching this level of sensitivity will be extremely challenging with an optical survey, but
could potentially be achieved with 21 cm intensity mapping [27].

4.3 Comparison to parameter-based approach

It is instructive to compare the results of our template-based forecasts to a more direct
parameter-based approach to isolating the phase shift. In the parameter-based approach, we
define two new parameters θ̃s and Ñeff that play the role of θs and Neff in the BAO signal,
but are taken to be independent of the same parameters in the CMB. We will then fix all
remaining cosmological parameters in the BAO spectrum using the CMB, except ωc which
we traded for aeq. As with our template extraction, holding aeq fixed ensures that the phase
shift approaches a constant at large wavenumbers, whose value is determined by Ñeff . Beside
measuring the phase of the BAO signal, the parameter Ñeff also contributes to the scale
parameter α and could therefore be constrained by the standard BAO-scale measurement if
all the other cosmological parameters are fixed to their Planck best-fit values. Introducing
the additional parameter θ̃s gives enough freedom to remove this effect and any constraint
on Ñeff must be coming from the phase shift alone. This is analogous to isolating the phase
shift in the CMB by marginalizing over Yp or any other parameters that are degenerate with
the Neff -induced change to the damping tail [3]. We will confirm this expectation in our
forecasts.

Typically, the advantage of the parameter-based approach is that it is easy to imple-
ment. However, in this case, we found it more difficult to set up reliably. The phase shift
ultimately controls the breaking of the degeneracy between θ̃s and Ñeff and, as we discussed
in section 4.1, P nw(k) must therefore be determined sufficiently accurately to not produce
errors in this shift. To compute the likelihood directly, we must re-compute P nw(k) for every
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Figure 12. BOSS (left) and DESI (right) two-dimensional 1σ and 2σ contours for Ñeff and θ̃s,
determined (‘directly’) from the likelihood for the BAO spectrum for each value of the parameters
and derived (‘from (α, β)’) from the redshift-binned likelihood for α and β. We find good agreement
between both methods, suggesting that the two-dimensional parameterization is capturing most of
the relevant information. The dashed lines indicate the fiducial values.

value of the cosmological parameters. Producing stable results for the BAO spectrum across
a wide range of parameters can be very computationally expensive and technically challeng-
ing. Simpler and faster methods can work well near the fiducial cosmology (such as the use
of a fitting function), but often produce noisy results as the parameters vary significantly
and typically underestimate the likelihood as we depart from the fiducial cosmology (and,
hence, overestimate the constraining power).

Despite the challenge presented by a parameter-based approach, it has the advantage
that it should capture all of the cosmological information available. It is therefore useful
to compare the results of the parameter-based and template-based approaches to see if the
template is missing information. Fortunately, we will see that the posterior distributions
of Ñeff and θ̃s can be largely reproduced as a derived consequence of the template-based
forecasts. From the previous subsections, we should anticipate that the posteriors for Ñeff

and θ̃s will be non-Gaussian, and will therefore require the calculation of the likelihood for
Ñeff and θ̃s directly and not only the Fisher matrix. We will follow the same approach as
described in section 4.2. Computing the full likelihood is quite involved, which is the reason
why we will assume that the CMB data fixes the other cosmological parameters to their
fiducial values, except for Ñeff and θ̃s.

Results of the likelihood analysis in terms of these parameters for both BOSS and
DESI are shown in figure 12. We see that the results are similar, which establishes that our
templates are capturing most of the information available in the BAO spectrum. This is
an important observation because it allows us to simplify the analysis to a two-parameter
template without much loss of information. In fact, the conclusion that these likelihoods
are the same is not easily reproduced with any method of BAO extraction, but requires the
robustness and stability of a method such as the one we use. Given instead our phase shift
template, one can reliably compute Fisher matrices or likelihoods for α and β, and derive
the implications for cosmological parameters from them. Future surveys such as DESI show
somewhat larger differences between the two methods, which suggests that more information
could potentially be extracted by using additional and/or alternative templates.

The doubling of cosmological parameters to treat the CMB and LSS independently, like
in the case of Ñeff and θ̃s, has useful conceptual advantages even if we derive constraints on
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Figure 13. Sensitivity of planned and future LSS surveys to Neff using the galaxy power spectrum
(solid) and the BAO spectrum (dashed) marginalized over two bias parameters, bm≤1.

these parameters from the posterior of α and β. Growing tensions between the CMB and
certain low-z measurements have garnered much attention, but lack a compelling explanation.
Measuring θ̃s and Ñeff in the BAO spectrum may provide a new perspective on this issue
without the need for a CMB anchor.

5 Conclusions

Large-scale structure surveys are an untapped resource in the search for light relics of the
hot big bang. The growing statistical power of these surveys will make them competitive
with the CMB in terms of the constraints they will provide on a broad range of cosmological
parameters. Moreover, the combination of CMB and LSS observations will allow powerful
and robust tests of the physical laws that determined the structure and evolution of the early
universe.

In this paper, we have explored the potential impact of LSS surveys on measurements of
the parameter Neff . We have found that the dominant statistical impact of future surveys lies
in the shape of the galaxy power spectrum. The distribution of dark matter in the universe is
altered through the gravitational influence of the free-streaming radiation, leading to changes
in the shape of the power spectrum that can be detected at high significance. A summary
of the reach of selected planned and future surveys is given in figure 13. We see that BOSS
and DESI can extend results significantly beyond the current CMB constraints. Futuristic
surveys combined with a future CMB-S4 mission could achieve σ(Neff) ∼ 0.015, which is
close to reaching the target of ∆Neff = 0.027 at a significance of 2σ.

Future LSS surveys will also be able to detect the coherent shift in the peak loca-
tions of the BAO spectrum. This would be an intriguing measurement as this phase shift is a
highly robust and unambiguous probe of light relics and the cosmic neutrino background [28].
Moreover, it is sensitive to extensions of ΛCDM without requiring the CMB as an anchor.
Improved measurements of the phase shift may therefore play a useful role in elucidating
apparent discrepancies between CMB and low-redshift measurements of the Hubble param-
eter H0 [55].
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Future CMB and LSS observations could have a significant impact on our understanding
of fundamental physics. In this paper, we have argued that, in the case of Neff , these
observations can play complimentary roles by both increasing the raw sensitivity and adding
to the robustness of the measurement. We have also shown that the BAO spectrum carries
more accessible cosmological information than only the acoustic scale. A broader exploration
will likely reveal more targets that benefit from this complementarity.
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A Forecasting CMB constraints

Forecasting the sensitivities of future CMB observations is by now a standard exercise; see
e.g. [18, 60–62]. For completeness, this appendix collects the basic elements of our CMB
Fisher analysis, as well as the specifications of the CMB experiments that were used in our
analysis.

A.1 Fisher matrix

The Fisher matrix for CMB experiments can be written as

Fij =
∑
X,Y

lmax∑
l=lmin

∂CXl
∂θi

[
CXY
l

]−1 ∂CYl
∂θj

. (A.1)

The covariance matrix CXY
l for each multipole l and X = ab, Y = cd, with a, b, c, d = T,E,B,

is defined by

Cabcd
l =

1

(2l + 1)fsky

[
(Cacl +Nac

l )(Cbdl +N bd
l ) + (Cadl +Nad

l )(Cbcl +N bc
l )
]
, (A.2)
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Frequency [GHz] 30 44 70 100 143 217 353

θb [arcmin] 33 23 14 10 7 5 5

∆T [µK arcmin] 145 149 137 65 43 66 200

∆P [µK arcmin] — — 450 103 81 134 406

Table 7. Specifications for the Planck-like experiment used in [62] and in the CMB-S4 Science
Book [18]. The dashes in the first two columns for ∆P indicate that those frequency channels are not
sensitive to polarization.

where CXl are the theoretical CMB power spectra, NX
l are the (Gaussian) noise spectra of

a given experiment and fsky is the effective sky fraction that is used in the cosmological
analysis. We employ perfectly delensed power spectra and omit the lensing convergence for
simplicity as it is sufficient for our purposes. We however comment on the effects of these
assumptions below. The noise power spectra are

NX
l = (∆X)2 exp

{
l(l + 1) θ2

b

8 ln 2

}
, (A.3)

where ∆X = ∆T,∆P are the map sensitivities for temperature and polarization spectra,
respectively, and θb is the beam width (taken to be the full width at half maximum). Note that
we set NTE

l ≡ 0 as we assume the noise in temperature and polarization to be uncorrelated.
For a multi-frequency experiment, the noise spectrum (A.3) applies for each frequency channel
separately. The effective noise after combining all channels is

NX
l =

[∑
ν

(
NX,ν
l

)−1
]−1

, (A.4)

where NX,ν
l are the noise power spectra for the separate frequency channels ν.

A.2 Experimental specifications

Our specifications for the Planck satellite are collected in table 7. The adopted configuration
is the same as that used in the CMB-S4 Science Book [18]. For the low-l data, we use the
unlensed TT spectrum with lmin = 2, lmax = 29 and fsky = 0.8. We do not include low-l
polarization data, but instead impose a Gaussian prior on the optical depth, with σ(τ) = 0.01.
For the high-l data, we use the unlensed TT, TE, EE spectra with lmin = 30, lmax = 2500
and fsky = 0.44. Since the low-l and high-l modes are independent, we simply add the
corresponding Fisher matrices.

We parameterize future CMB experiments in terms of a single effective frequency with
noise level ∆T , beam width θb and sky fraction fsky. We will present constraints as a function
of these three parameters. We take θb = 3′, ∆T = 5µK arcmin and fsky = 0.3 as the fiducial
configuration of a CMB-S3-like experiment. For a representative CMB-S4 mission, we adopt
the same configuration as in the CMB-S4 Science Book [18]: θb = 2′, ∆T = 1µK arcmin
and fsky = 0.4. For both experiments, we use unlensed temperature and polarization spectra
with lmin = 30, lTmax = 3000, lPmax = 5000. We add the low-l Planck data as described
above, include high-l Planck data with fsky = 0.3 and fsky = 0.2 for CMB-S3 and CMB-S4,
respectively, and impose the same Gaussian prior on the optical depth τ as for Planck.
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Parameter Planck CMB-S3 CMB-S4 Planck CMB-S3 CMB-S4

105 ωb 16 5.1 2.7 26 8.3 3.8

104 ωc 16 8.3 7.1 26 10 7.9

107 θs 29 9.4 5.9 44 13 6.7

ln(1010As) 0.020 0.020 0.020 0.021 0.020 0.020

ns 0.0040 0.0023 0.0020 0.0093 0.0040 0.0030

τ 0.010 0.010 0.010 0.010 0.010 0.010

Neff — — — 0.18 0.054 0.030

Table 8. Forecasted sensitivities of Planck, CMB-S3 and CMB-S4 for the parameters of ΛCDM and
ΛCDM+Neff .

Parameter Planck CMB-S3 CMB-S4 Planck CMB-S3 CMB-S4

105 ωb 24 8.2 3.8 26 8.4 3.8

104 ωc 17 8.6 7.2 49 21 14

107 θs 33 9.9 6.3 89 27 15

ln(1010As) 0.020 0.020 0.020 0.022 0.020 0.020

ns 0.0082 0.0038 0.0029 0.0093 0.0040 0.0030

τ 0.010 0.010 0.010 0.010 0.010 0.010

Neff — — — 0.32 0.12 0.081

Yp 0.012 0.0037 0.0021 0.018 0.0069 0.0047

Table 9. Forecasted sensitivities of Planck, CMB-S3 and CMB-S4 for the parameters of ΛCDM+Yp
and ΛCDM+Neff+Yp.

Unlike the CMB-S4 Science Book, we do not include delensing of the T- and E-modes.
For Neff forecasts, this was shown to have a negligible impact [63], while using unlensed
spectra overestimates the constraining power of the CMB by roughly 30 % for Neff+Yp. We
are primarily interested in the improvement in parameters from adding LSS data, which
should be robust to these relatively small differences. We also ignore the lensing convergence
as it does not impact the constraints on these parameters.

A.3 Future constraints

As a point of reference, we present constraints derived from CMB observations alone. In
table 8, we show the 1σ constraints for Planck and the described representative configurations
of CMB-S3 and CMB-S4. In table 9, we display how these constraints vary when we allow
the primordial helium fraction Yp to be an additional free parameter. The differences in
the forecasted sensitivities for Planck compared to the constraints published in [33] can be
attributed entirely to the improvement in σ(τ) which arises from the imposed prior on the
optical depth τ . The forecast of Neff for CMB-S3 is a rough estimate and will be subject to
the precise specifications of the respective experiment. While the precise design of CMB-S4
is also undetermined at this point, σ(Neff) = 0.03 is a primary science target and is therefore
more likely to be a reliable estimate of the expected performance.

In figure 14, we demonstrate how the constraints on Neff depend on the sky fraction fsky,
for three different values of θb and fixed noise level ∆T = 1µK arcmin. When varying the

– 29 –



J
C
A
P
0
8
(
2
0
1
8
)
0
2
9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

fsky

0.02

0.03

0.04

0.05

0.06

σ
(N

e
ff
)

θb = 1′

θb = 2′

θb = 3′

Figure 14. Marginalized constraints on Neff as a function of the sky fraction fsky for three values of
the beam width θb and fixed noise level ∆T = 1µK arcmin.
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Figure 15. Marginalized constraints on Neff as a function of the beam size θb and the temperature
noise level ∆T , for fixed sky fraction fsky = 0.4.

total sky fraction, we also appropriately change the contribution of the included high-l Planck
data. In figure 15, we illustrate the constraint on Neff as a function of the beam size θb and
the noise level ∆T , for fixed sky fraction fsky = 0.4. Comparing figure 15 to the equivalent
figure in the CMB-S4 Science Book [18] (figure 22), we see that the difference between the
two forecasts is ∆σ(Neff) ≈ 0.002. This can be attributed to the effects of imperfect delensing
and is completely negligible for our purposes.

B Forecasting LSS constraints

In this appendix, we collect the specific information regarding the planned LSS surveys which
we used in our Fisher and likelihood forecasts. We also provide the full set of constraints on
all of the cosmological parameters and cosmologies that are studied in this paper.
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z̄ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75

b 1.79 1.90 1.98 2.09 2.32 2.26 2.38 3.09

103 n̄g [h3 Mpc−3] 0.289 0.290 0.300 0.304 0.276 0.323 0.120 0.0100

V [h−3 Gpc3] 0.0255 0.164 0.402 0.704 1.04 1.38 1.72 2.04

Table 10. Basic specifications for BOSS derived from [25] with a sky area of Ω = 10 000 deg2 resulting
in roughly 1.4× 106 objects in a volume of about 7.5 h−3 Gpc3.

z̄ 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25

b 3.07 2.07 1.57 1.57 1.61 3.51 1.98 2.35

105 n̄g [h3 Mpc−3] 0.463 21.3 35.5 23.6 5.40 0.563 1.53 1.48

V [h−3 Gpc3] 0.208 0.258 0.307 0.352 0.392 0.429 0.461 0.489

b 3.07 2.42 2.45 2.56 7.84 3.51 1.98 2.35

105 n̄g [h3 Mpc−3] 0.463 13.5 7.02 3.35 0.0412 0.563 1.53 1.48

V [h−3 Gpc3] 0.830 1.03 1.23 1.41 1.57 1.71 1.84 1.96

z̄ 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15

b 3.65 2.40 2.42 2.08 2.10 3.33 3.35 1.72 1.73

105 n̄g [h3 Mpc−3] 0.664 1.66 1.76 2.03 2.15 0.912 0.965 2.91 3.07

V [h−3 Gpc3] 0.513 0.533 0.551 0.565 0.577 0.587 0.594 0.600 0.604

b 3.65 2.40 2.42 2.08 2.10 3.33 3.35 1.72 1.73

105 n̄g [h3 Mpc−3] 0.664 1.66 1.76 2.03 2.15 0.912 0.965 2.91 3.07

V [h−3 Gpc3] 2.05 2.13 2.20 2.26 2.31 2.35 2.38 2.40 2.42

Table 11. Basic specifications for eBOSS derived from [25]. The redshift range is covered twice,
first showing the survey covering Ω = 1500 deg2 that will include emission line galaxies (resulting in
roughly 3.8× 105 objects in a volume of about 8.0 h−3 Gpc3), and then the survey with Ω = 6000 deg2

that will not (resulting in roughly 7.2× 105 objects in a volume of about 32 h−3 Gpc3).

B.1 Survey specifications

Below, we provide the experimental specifications for the galaxy surveys used in our forecasts.
We have slightly simplified the details compared to [25], for example. In particular, we group
different types of tracers (e.g. luminous red galaxies, emission line galaxies or quasars) into
a single effective number density and bias. We find our results to be fairly insensitive to
many of these details and well approximated by a fixed number of objects distributed with
a constant comoving number density over the same redshift range.

The employed parametrization of the spectroscopic redshift surveys BOSS, eBOSS,
DESI and Euclid are provided in tables 10 to 13. For eBOSS, we combine BOSS and the two
eBOSS configurations of table 11 into one survey neglecting the small overlap. We effectively
treat each redshift bin with mean redshift z̄ as an independent three-dimensional survey.
Our Fisher matrix is the sum of the Fisher matrices associated with each bin, F =

∑
z̄ Fz̄.

We translated the survey specifications used in [25] into three numbers per redshift bin: the
linear galaxy bias b, the comoving number density of galaxies n̄g and the bin volume V .
This is sufficient to fully specify the Fisher matrix in each bin. The spherical bin volume is
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z̄ 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

b 1.13 1.39 1.64 1.81 1.87 1.89 1.90 1.82 1.53

103 n̄g [h3 Mpc−3] 2.38 1.07 0.684 0.568 0.600 0.696 0.810 0.719 0.558

V [h−3 Gpc3] 0.229 0.563 0.985 1.45 1.94 2.41 2.86 3.28 3.66

z̄ 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85

b 1.47 1.49 1.58 1.62 1.73 2.01 1.98 2.56 4.17

103 n̄g [h3 Mpc−3] 0.522 0.506 0.454 0.356 0.242 0.127 0.0736 0.0289 0.00875

V [h−3 Gpc3] 4.00 4.30 4.56 4.79 4.98 5.14 5.28 5.39 5.48

Table 12. Basic specifications for DESI derived from [25], covering a sky area Ω = 14 000 deg2 and
resulting in roughly 2.3× 107 objects in a volume of about 61 h−3 Gpc3.

z̄ 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35

b 1.06 1.11 1.16 1.21 1.27 1.33 1.38 1.44

103 n̄g [h3 Mpc−3] 0.637 1.46 1.63 1.50 1.33 1.14 1.00 0.837

V [h−3 Gpc3] 2.58 3.07 3.52 3.92 4.29 4.61 4.89 5.13

z̄ 1.45 1.55 1.65 1.75 1.85 1.95 2.05

b 1.51 1.54 1.63 1.70 1.85 1.90 1.26

103 n̄g [h3 Mpc−3] 0.652 0.512 0.357 0.246 0.149 0.0904 0.0721

V [h−3 Gpc3] 5.33 5.51 5.65 5.77 5.87 5.94 6.00

Table 13. Basic specifications for Euclid derived from [25], covering a sky area Ω = 15 000 deg2 and
resulting in roughly 5.0× 107 objects in a volume of about 72 h−3 Gpc3.

given by

V =
4π

3
fsky

[
dc(zmax)3 − dc(zmin)3

]
, dc(z) =

∫ z

0
dz

c

H(z)
, (B.1)

where fsky is the sky fraction, dc(z) is the comoving distance to redshift z, and zmin =
z̄ − ∆z/2 and zmax = z̄ + ∆z/2 are the minimum and maximum redshift of the respective
bin. Throughout this paper, we use redshift bins of width ∆z = 0.1.

For the photometric surveys DES and LSST, we follow [25] and define the sur-
veys by using (α, β, z∗, Ntot, b0) = (1.25, 2.29, 0.88, 12 arcmin−2, 0.95) and (2.0, 1.0, 0.3,
50 arcmin−2, 0.95), respectively. These parameters are related to those used in our forecasts
as follows:

n̄g(z̄) =
Ntot

V

β/z∗
Γ [(α+ 1)/β]

∫ zmax

zmin

dz (z/z∗)
α exp

{
− (z/z∗)

β
}
, (B.2)

b(z̄) =
D1(0)

D1(z̄i)
b0 , (B.3)

with gamma function Γ and linear growth function D1(z).
For DES, we employ a survey area of Ω = 5000 deg2 and a redshift coverage of

0.1 ≤ z ≤ 2.0, while we take 20 000 deg2 and 0.1 ≤ z ≤ 3.5 for LSST. This results in
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approximately 1.4× 108 and 5.9× 108 objects in a total survey volume of about 24 h−3 Gpc3

and 215 h−3 Gpc3 for the two surveys, respectively. We neglect the spectroscopic redshift er-
ror as it is expected to be comparable to (or smaller than) the longitudinal damping scale Σ‖,
but use a conservative root-mean-square photometric redshift error of σz0 = 0.05 for both
DES and LSST. Finally, we reiterate that, by considering galaxy clustering alone, we only
take a subset of the cosmological observables into account, in particular for photometric
surveys, and we therefore expect to underestimate the full power of these experiments.

B.2 Future constraints

Using these specifications, we generated forecasts for all of the cosmological parameters dis-
cussed in the main text in combination with the Fisher matrices for Planck, CMB-S3 and
CMB-S4. We include both P (k)- and BAO-forecasts for ΛCDM (table 14), ΛCDM+Neff (ta-
ble 15), ΛCDM+Yp (table 16), and ΛCDM+Neff+Yp (table 17). As in section 3.2.1, the
P (k)-forecasts use wavenumbers up to kmax = 0.2 h Mpc−1 and marginalize over the bm≤1-
terms of (3.16). For the BAO-forecasts, we set kmax = 0.5 h Mpc−1 and marginalize over
an≤4 and bm≤3 in each redshift bin. As we marginalize over galaxy bias, our forecasts show
no improvements beyond the CMB for ln(1010As) and τ . We therefore do not include these
two parameters in the following tables.

Apart from the improvements in the constraints on Neff and Yp, which we already
discussed in section 3.2.1, we see that mainly ωb and ωc benefit from combining the discussed
LSS surveys with CMB experiments. The sensitivities may be enhanced by factors of three
(two) and more compared to Planck (CMB-S3). We note that the DESI specifications of
table 12 are slightly more optimistic overall than what was considered in [22] resulting in
roughly the same BAO-forecasts and up to about 5 % better P (k)-forecasts.

Comparing our forecasts with the ones obtained from the BAO scale alone (combined
with Planck), we see that the BOSS analysis for ΛCDM is nearly optimal, but improvements
on the constraints of more than 10 % can be achieved in extended cosmologies. For instance,
the constraints on ωb, ns and Neff improve by 3 % or more, and ωc in ΛCDM+Yp even by
12 %. For DESI, the obtained sensitivities can generally be increased by a larger amount,
e.g. up to 15 % for ωb and ns in ΛCDM+Neff , and for ωc in ΛCDM+Yp.

C Broadband and phase shift extraction

In this appendix, we describe our implementation of a robust broadband extraction method
and the computation of the phase shift template.

C.1 Broadband extraction

The split of the matter power spectrum into a broadband (‘no-wiggle’) part and an oscillatory
(‘wiggle’) part, P (k) = P nw(k) +Pw(k), is not uniquely defined, but depends on the method
that is being used. In the following, we describe our method for extracting the broadband
spectrum which is robust and stable over a very large parameter space.

Computationally it is easier to identify a bump over a smooth background than to find
the zeros of oscillations on top of a smooth background. This suggests that it is convenient
to sine transform the matter power spectrum to discrete real space where the oscillations
map to a localized bump. We then remove this bump and inverse transform back to Fourier
space.
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Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 16 13 13 12 11 14 12

104 ωc 16 8.9 7.7 4.6 4.3 13 8.2

107 θs 29 28 27 27 27 29 28

ns 0.0040 0.0033 0.0032 0.0028 0.0027 0.0037 0.0033

(a) Planck + P (k).

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 5.1 4.9 4.9 4.7 4.6 5.0 4.8

104 ωc 8.3 6.7 6.1 4.0 3.7 7.8 6.3

107 θs 9.4 9.1 9.0 8.7 8.6 9.3 9.1

ns 0.0023 0.0021 0.0021 0.0019 0.0019 0.0022 0.0021

(b) CMB-S3 + P (k).

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 2.7 2.7 2.7 2.6 2.6 2.7 2.6

104 ωc 7.1 6.0 5.6 3.9 3.6 6.8 5.8

107 θs 5.9 5.7 5.6 5.3 5.2 5.9 5.7

ns 0.0020 0.0018 0.0018 0.0016 0.0016 0.0019 0.0018

(c) S4 + P (k).

Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 16 13 13 13 13 15 14

104 ωc 16 8.7 8.0 5.1 5.5 13 9.4

107 θs 29 27 27 27 26 29 27

ns 0.0040 0.0031 0.0031 0.0028 0.0028 0.0037 0.0032

(d) Planck + BAO.

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 5.1 5.0 5.0 4.9 4.9 5.1 5.0

104 ωc 8.3 6.5 6.2 4.4 4.6 7.9 6.8

107 θs 9.4 9.0 8.9 8.6 8.6 9.3 9.0

ns 0.0023 0.0021 0.0020 0.0019 0.0019 0.0022 0.0021

(e) CMB-S3 + BAO.

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 2.7 2.7 2.7 2.7 2.7 2.7 2.7

104 ωc 7.1 5.9 5.7 4.2 4.3 6.8 6.1

107 θs 5.9 5.6 5.6 5.2 5.2 5.9 5.7

ns 0.0020 0.0018 0.0018 0.0016 0.0016 0.0019 0.0018

(f) S4 + BAO.

Table 14. Full set of forecasted 1σ constraints in a ΛCDM cosmology for current and future LSS
surveys in combination with the CMB experiments Planck, CMB-S3 and CMB-S4. We do not quote
the sensitivities to ln(1010As) and τ as they are the same as in table 8 for all combinations.
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Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 26 19 18 15 15 24 20

104 ωc 26 23 21 15 13 25 19

107 θs 44 41 40 35 34 43 39

ns 0.0093 0.0068 0.0061 0.0039 0.0035 0.0085 0.0069

Neff 0.18 0.14 0.13 0.087 0.079 0.17 0.14

(a) Planck + P (k).

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.3 7.9 7.8 7.3 7.1 8.2 8.0

104 ωc 10 9.6 9.2 7.8 7.5 10 8.8

107 θs 13 12 12 12 12 12 12

ns 0.0040 0.0037 0.0036 0.0029 0.0028 0.0039 0.0037

Neff 0.054 0.052 0.051 0.045 0.043 0.054 0.052

(b) CMB-S3 + P (k).

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.7 3.7 3.6 3.6 3.8 3.7

104 ωc 7.9 7.1 6.8 5.5 5.3 7.6 6.7

107 θs 6.7 6.6 6.5 6.2 6.2 6.7 6.5

ns 0.0030 0.0029 0.0028 0.0025 0.0024 0.0030 0.0029

Neff 0.030 0.030 0.030 0.028 0.027 0.030 0.030

(c) S4 + P (k).

Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 26 18 18 17 17 22 19

104 ωc 26 26 26 26 26 26 26

107 θs 44 43 43 43 43 44 44

ns 0.0093 0.0065 0.0063 0.0059 0.0059 0.0081 0.0067

Neff 0.18 0.15 0.15 0.14 0.14 0.16 0.15

(d) Planck + BAO.

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.3 7.8 7.7 7.4 7.4 8.2 7.8

104 ωc 10 10 9.9 9.6 9.6 10 10

107 θs 13 13 13 13 13 13 13

ns 0.0040 0.0035 0.0035 0.0031 0.0032 0.0039 0.0036

Neff 0.054 0.052 0.052 0.050 0.050 0.054 0.052

(e) CMB-S3 + BAO.

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.7 3.7 3.7 3.7 3.8 3.7

104 ωc 7.9 7.2 7.1 6.5 6.5 7.8 7.3

107 θs 6.7 6.6 6.6 6.5 6.5 6.7 6.6

ns 0.0030 0.0028 0.0028 0.0025 0.0025 0.0030 0.0028

Neff 0.030 0.030 0.030 0.029 0.029 0.030 0.030

(f) S4 + BAO.

Table 15. As in table 14, but for an extended ΛCDM+Neff cosmology.
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Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 24 19 19 17 16 22 20

104 ωc 17 8.9 7.8 4.7 4.3 13 8.6

107 θs 33 30 29 27 27 32 30

ns 0.0082 0.0066 0.0063 0.0048 0.0044 0.0077 0.0068

Yp 0.012 0.011 0.0100 0.0087 0.0082 0.011 0.011

(a) Planck + P (k).

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.2 7.9 7.8 7.5 7.4 8.1 7.9

104 ωc 8.6 6.8 6.3 4.0 3.7 8.1 6.6

107 θs 9.9 9.5 9.4 8.9 8.8 9.8 9.5

ns 0.0038 0.0035 0.0034 0.0030 0.0029 0.0037 0.0036

Yp 0.0037 0.0036 0.0036 0.0034 0.0033 0.0037 0.0036

(b) CMB-S3 + P (k).

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.8 3.8 3.7 3.7 3.8 3.8

104 ωc 7.2 6.1 5.7 3.9 3.6 6.9 5.9

107 θs 6.3 6.0 5.9 5.5 5.4 6.2 6.0

ns 0.0029 0.0028 0.0028 0.0025 0.0024 0.0029 0.0028

Yp 0.0021 0.0021 0.0021 0.0020 0.0020 0.0021 0.0021

(c) S4 + P (k).

Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 24 19 19 18 18 22 19

104 ωc 17 8.7 8.0 5.5 5.7 14 9.4

107 θs 33 29 29 28 28 31 29

ns 0.0082 0.0063 0.0062 0.0059 0.0059 0.0075 0.0065

Yp 0.012 0.011 0.011 0.0100 0.011 0.011 0.011

(d) Planck + BAO.

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.2 7.8 7.8 7.6 7.6 8.1 7.9

104 ωc 8.6 6.6 6.3 4.4 4.6 8.2 6.9

107 θs 9.9 9.3 9.3 8.8 8.9 9.8 9.4

ns 0.0038 0.0034 0.0034 0.0031 0.0031 0.0037 0.0035

Yp 0.0037 0.0036 0.0036 0.0035 0.0035 0.0037 0.0036

(e) CMB-S3 + BAO.

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.8 3.8 3.8 3.8 3.8 3.8

104 ωc 7.2 5.9 5.7 4.2 4.3 6.9 6.1

107 θs 6.3 5.9 5.8 5.4 5.5 6.2 5.9

ns 0.0029 0.0027 0.0027 0.0025 0.0025 0.0029 0.0028

Yp 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021

(f) S4 + BAO.

Table 16. As in table 14, but for an extended ΛCDM+Yp cosmology. The constraints on ln(1010As)
and τ are the same as in table 9 for all combinations.
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Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 26 20 19 17 16 24 21

104 ωc 49 40 35 23 21 45 34

107 θs 89 76 70 53 50 84 69

ns 0.0093 0.0069 0.0065 0.0048 0.0045 0.0086 0.0071

Neff 0.32 0.25 0.22 0.14 0.13 0.29 0.23

Yp 0.018 0.016 0.016 0.013 0.012 0.017 0.015

(a) Planck + P (k).

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.4 8.0 7.9 7.5 7.5 8.3 8.1

104 ωc 21 20 19 15 14 20 18

107 θs 27 26 26 22 21 27 25

ns 0.0040 0.0037 0.0036 0.0030 0.0029 0.0039 0.0037

Neff 0.12 0.12 0.11 0.094 0.088 0.12 0.11

Yp 0.0069 0.0068 0.0067 0.0060 0.0058 0.0069 0.0066

(b) CMB-S3 + P (k).

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.8 3.8 3.7 3.7 3.8 3.8

104 ωc 14 14 13 12 11 14 13

107 θs 15 15 14 13 13 15 14

ns 0.0030 0.0029 0.0028 0.0025 0.0024 0.0030 0.0029

Neff 0.081 0.079 0.078 0.070 0.067 0.081 0.078

Yp 0.0047 0.0046 0.0046 0.0043 0.0042 0.0047 0.0046

(c) S4 + P (k).

Parameter Planck BOSS eBOSS DESI Euclid DES LSST

105 ωb 26 19 19 18 18 23 20

104 ωc 49 49 49 48 48 49 49

107 θs 89 87 87 87 87 88 88

ns 0.0093 0.0066 0.0065 0.0060 0.0061 0.0081 0.0068

Neff 0.32 0.29 0.29 0.28 0.28 0.30 0.29

Yp 0.018 0.018 0.018 0.018 0.018 0.018 0.018

(d) Planck + BAO.

Parameter CMB-S3 BOSS eBOSS DESI Euclid DES LSST

105 ωb 8.4 7.9 7.9 7.6 7.7 8.3 8.0

104 ωc 21 21 21 21 21 21 21

107 θs 27 27 27 27 27 27 27

ns 0.0040 0.0035 0.0035 0.0032 0.0032 0.0039 0.0036

Neff 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Yp 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069

(e) CMB-S3 + BAO.

Parameter CMB-S4 BOSS eBOSS DESI Euclid DES LSST

105 ωb 3.8 3.8 3.8 3.8 3.8 3.8 3.8

104 ωc 14 14 14 14 14 14 14

107 θs 15 15 15 15 15 15 15

ns 0.0030 0.0028 0.0028 0.0025 0.0026 0.0030 0.0028

Neff 0.081 0.080 0.080 0.079 0.079 0.081 0.080

Yp 0.0047 0.0047 0.0047 0.0046 0.0046 0.0047 0.0047

(f) S4 + BAO.

Table 17. As in table 16, but for an extended ΛCDM+Neff+Yp cosmology.
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An algorithm for the discrete spectral method was outlined in section A.1 of [64]. Con-
cretely, the relevant steps of our implementation are:

1. Provide P (k): compute the theoretical matter power spectrum P (k) using CLASS [56]
for discrete wavenumbers k up to a chosen kmax and log-log interpolate using cubic
splines.

2. Sample log[kP (k)]: sample log[kP (k)] in 2n points for an integer number n. These
points are chosen equidistant in k.

3. Fast sine transform: perform a fast sine transform of the log[kP (k)]-array using the
orthonormalized type-II sine transform. Denoting the index of the resulting array by i,
split the even and odd entries, i.e. those entries with even i and odd i, into separate
arrays.

4. Interpolate arrays: linearly interpolate the two arrays separately using cubic splines.

5. Identify baryonic bumps: compute the second derivative separately for the interpolated
even and odd arrays, and average over next-neighboring array entries to minimize noise.
Choose imin = i∗ − 3, where i∗ is the array index of the first minimum of the second
derivative. Set imax = i∗ + ∆i, where i∗ is the array index of the second maximum of
the second derivative, and ∆i = 10 and 20 for the even and odd array, respectively.
These shifts were obtained empirically, but are found to give reliable and stable results
for a large range of n and kmax.

6. Cut baryonic bumps: having found the location of the bumps within [imin, imax] for
the even and odd arrays, respectively, remove the elements within this range from the
arrays. Then, fill the gap by interpolating the arrays rescaled by a factor of (i + 1)2

using cubic splines. This is analogous to interpolating r2 ξ(r) instead of the correlation
function ξ(r) at separation r.

7. Inverse fast sine transform: merge the two arrays containing the respective elements
without the bumps, and without the rescaling factor of (i+ 1)2, and inversely fast sine
transform. This leads to a discretized version of log[kP nw(k)].

8. Provide P nw(k) and Pw(k): in order to cut off numerical noise at low and high
wavenumbers, perform two cuts at k1 and k2, where k1 = 3 · 2−n and the value of k2 is
found as the trough of |P (k) − P nw(k)|/P nw(k) following the smallest maximum (be-
fore the oscillation amplitude increases again due to the numerical artefacts intrinsic
to the procedure). The reliably extracted no-wiggle spectrum P nw(k) is then valid for
k ∈ [k1, k2]. In practice, choose n and kmax large enough initially so that k1,2 are out-
side the range of wavenumbers of interest, e.g. those covered by a survey. The wiggle
spectrum in this range is then given by Pw(k) = P (k)− P nw(k).

Examples of the broadband extraction using this procedure are shown in figure 16. We see
that the extraction method is unbiased, i.e. the resulting wiggle spectrum both oscillates
around zero and asymptotes to zero for large wavenumbers. In addition, it is robust and
stable over a large parameter space at small computation time (depending on n). As the
position of the first BAO peak is close to the peak of the matter power spectrum, it is sensitive
to how exactly the baryonic bump is removed. However, we have checked that the computed
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Figure 16. Top: extracted broadband spectrum P nw(k) compared to the full power spectrum P (k)
for Neff = 3.046 (left) and 10 (right). The spectra are rescaled by k3/2 to exaggerate any oscillations.
Bottom: extracted BAO spectrum Pw(k)/P nw(k) for Neff = 3.046 and 10 with linear (left) and
logarithmic (right) k-axis.

constraints on cosmological parameters are insensitive to this uncertainty. The same holds
for varying the parameters n and kmax with fixed shifts in step 5 as long as k1,2 are outside
the range of wavenumbers of interest.

C.2 Phase shift measurement

In the following, we describe our method for computing the phase shift template used in the
likelihood analysis of section 4.

First, we compute the BAO spectrum using CLASS and the broadband extraction method
detailed above for a given value of Neff . In practice, we set the primordial helium fraction Yp
to the fiducial value, but the final template is independent of this choice. As discussed
in section 4.1, we keep the time of matter-radiation equality fixed at its fiducial value by
changing the dark matter density ωc according to

ωc =
aν +Neff

aν +Nfid
eff

(
ωfid
c + ωfid

b

)
− ωfid

b , (C.1)

where aν is defined in (2.1). We then fit the following envelope function to the maxima of
the absolute value of the BAO spectrum:

a(k) ≡ e(k)d(k) , where
e(k) ≡ 1−Ae exp {−ae (k/ke)

κe} ,
d(k) ≡ Ad exp {−ad (k/kd)

κd} . (C.2)
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The parameters Ai, ai, κi, with i = d, e, are fitting parameters, while ke is the location of
the peak of P nw(k) and kd is the wavenumber associated with the mean squared diffusion
distance. These fitting functions are motivated by the modeling in [5, 65]. We define the
‘undamped spectrum’ as

O(k) ≡ a(k)−1Pw(k)/P nw(k) . (C.3)

For the fiducial cosmology, for instance, we find the following parameters: Ae ≈ 0.141,
ae ≈ 0.0035, κe ≈ 5.5, ke ≈ 0.016 h Mpc−1, and Ad ≈ 0.072, ad ≈ 0.32, κd ≈ 1.9,
kd ≈ 0.12 h Mpc−1.

Before we can measure the phase shift, we have to match the sound horizon at the drag
epoch, rs, to that in the fiducial cosmology to remove the change to the BAO frequency
induced by Neff . By rescaling the wavenumbers as k → rfid

s /rs k, we fix rsk to the fiducial
model for all wavenumbers k. For convenience, we also normalize the spectrum such that the
amplitude of the fourth peak is the same as in the fiducial cosmology.

Finally, we can extract the phase shift as the shift of the peaks/troughs and zeros of
O(k) relative to the fiducial cosmology, δk∗ = k∗ − kfid

∗ . To obtain the template f(k), we
sample 100 cosmologies with varying Neff ∈ [0, 3.33],11 and define

f(k) ≡
〈

1

1− β(Neff)

δk∗(k;Neff)

rfid
s

〉
Neff

, (C.4)

where β(Neff) is the normalization introduced in (4.6). The bars in figure 8 indicate the
locations of the peaks/troughs/zeros of the fiducial spectrum O(k) and their length shows
the standard deviation in these measurements which is generally small.

D Convergence and stability tests

One of the motivations for including our full list of forecasts in appendix B is to make
the results reproducible. It is therefore also important that we explain how the numerical
derivatives were computed in the Fisher matrix, including the employed step sizes. In this
appendix, we provide this information and demonstrate that the step sizes are appropriate
for the convergence and stability of our calculations.

The numerical derivatives in (3.3) and (3.20) are computed using a symmetric difference
quotient or two-point stencil, f ′(θ) = [f(θ + h)− f(θ − h)]/(2h), with fiducial parameter
value θ and absolute step size h. For each parameter, we choose the step sizes given in
table 18 resulting in relative step sizes, hrel = h/θ, that are generally of order O

(
10−2

)
.

In figures 17 and 18, we show that our results are converged for both the P (k)- and
BAO-forecasts. The results in these figures (as in the rest of this paper) use CLASS with a
high-accuracy setting. We have also checked that the forecasted constraints are converged
when employing the standard accuracy setting, but note that the results are slightly less
stable to changes away from these values. For the P (k)-forecasts, we see that a sufficiently
small step size is needed, but a further decrease in the step size still leads to converged
results. The BAO-forecasts, by contrast, show islands of convergence where performance
decreases both when the step size is increased and when it is decreased. This behavior is

11We restrict to this range of values of Neff as we observed a small, but unexpected jump in the peak
locations around Neff ∼ 3.33. Below and above, the peak locations change coherently with Neff . This range
was then chosen as we are mostly interested in smaller Neff . However, we expect the template to be also valid
for larger Neff outside the sampling range.
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Parameter h hrel

ωb 0.0008 3.6× 10−2

ωc 0.002 1.7× 10−2

100 θs 0.002 1.9× 10−3

ln(1010As) 0.05 1.6× 10−2

ns 0.01 1.0× 10−2

τ 0.02 3.0× 10−1

Neff 0.08 2.6× 10−2

Yp 0.005 2.0× 10−2

Table 18. Absolute and relative step sizes, h and hrel, used when computing the derivatives in the
Fisher matrices.
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Figure 17. Results of the convergence test for the P (k)-forecasts of DESI in the fiducial ΛCDM+Neff

cosmology. The spectra for the numerical derivatives were computed using a high-accuracy setting of
CLASS. The dashed lines indicate the step sizes employed in our forecasts.

more noticeable using the standard accuracy setting of CLASS, but likely reflects the fact
that the BAO feature is itself a small effect and small step sizes are therefore more likely to
produce effects comparable to numeric or modeling errors.
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Figure 18. As in figure 17, but for the BAO-forecasts of DESI.
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