
1

Online Particle Smoothing with Application to
Map-matching

Samuel Duffield, Sumeetpal S. Singh

Abstract—We introduce a novel method for online smoothing
in state-space models that utilises a fixed-lag approximation
to overcome the well known issue of path degeneracy. Unlike
classical fixed-lag techniques that only approximate certain
marginals, we introduce an online resampling algorithm, called
particle stitching, that converts these marginal samples into a
full posterior approximation. We demonstrate the utility of our
method in the context of map-matching, the task of inferring
a vehicle’s trajectory given a road network and noisy GPS
observations. We develop a new state-space model for the difficult
task of map-matching on dense, urban road networks.

Index Terms—State-space models, sequential Monte Carlo,
particle smoothing, backward simulation, map-matching, GPS.

I. INTRODUCTION

W IDELY used in modelling dynamical systems and time
series, a state-space model is fully defined by the

following distributions for the hidden {xt}∞t=0 and observed
process {yt}∞t=0

p(x0),

p(xt|xt−1), t = 1, 2, 3, . . .

p(yt|xt), t = 0, 1, 2, . . .

The statistical inference goal of smoothing is the task of
approximating the joint smoothing distribution (or posterior
distribution)

p(x0:T |y0:T) ∝ p(x0|y0)
T∏
t=1

p(xt|xt−1)p(yt|xt), (1)

where x0:T = (x0, . . . , xT) are latent states to be inferred and
y0:T = (y0, . . . , yT) are given observations.

For online smoothing, we have the additional requirement of
being able to quickly and accurately update an approximation
of p(x0:T−1|y0:T−1) to approximate p(x0:T |y0:T) in light of
receiving a new observation yT .

A popular and powerful approach to inference in generic
state-space models is that of particle filtering/smoothing (or
sequential Monte Carlo), see [1] for a recent, thorough review.
Particle smoothers approximate the joint smoothing distribu-
tion with a collection of weighted (or unweighted) particles

p(x0:T |y0:T) ≈
N∑
i=1

w
(i)
T δx0:T

(
x
(i)
0:T

)
,

S. Duffield and S.S. Singh are with the Department of Engineering,
University of Cambridge

Contact: sddd2@cam.ac.uk, sss40@cam.ac.uk
S. Duffield is supported by the UK Engineering and Physical Sciences

Research Council (EPSRC) doctoral training award

as opposed to particle filters which are only asked to ap-
proximate the filtering marginals p(xT |y0:T). Existing online
particle smoothing approximations either degenerate as the
length of the state-space model increases [2], [3] or only target
the smoothing marginals p(xt|y0:T) [4] rather than the joint
smoothing distribution. More recently, efficient techniques
have been developed to produce online approximations to ex-
pectations with respect to p(xt−1, xt|y0:T) [5], [6]. However,
these are integrand specific whereas a particle approximation
to the joint smoothing distribution is significantly more useful
as mathematical expectations can be calculated over a variety
of functions defined over full trajectories, thus providing the
user with complete flexibility.

In summary, our motivation is to develop an algorithm that
simultaneously satisfies the following requirements

(R1) Joint Smoothing: The algorithm efficiently approximates
p(x0:T |y0:T) rather than only marginals.

(R2) Online: Our approximation can be quickly updated as it
receives new observations.

(R3) Non-degenerate: The algorithm avoids the path degen-
eracy of classical particle filters.

The application of particle smoothing to urban map-
matching is particularly motivating. The combination of dense
road networks (with frequent intersections) and noisy GPS
observations leads to uncertainty over the location and route
of vehicles. This is a compelling application of online joint
smoothing where it is desirable to represent the route with a
diverse collection of particles, where each particles describes
a plausible vehicle trajectory.

The contribution of this work is both methodological and
applied.
• We develop a new online resampling method called par-

ticle stitching that converts marginal fixed-lag samples,
which are non-degenerate, into a full posterior approxi-
mation (1). In doing so we jointly satisfy (R1)-(R3) using
particle smoothing.

• We present a new state-space model for map-matching in
dense, urban road networks. We demonstrate the benefits
of uncertainty quantification over popular optimisation-
based approaches and show the performance of offline
particle smoothing can be matched by the online particle
smoothers introduced here.

The rest of the paper is structured as follows. In Sec-
tion II we discuss related online and offline algorithms for
particle smoothing, as summarised in TABLE I alongside
those introduced in this paper. Section III describes how to
combine blocked samples in a way that is invariant for a fixed-

2

lag joint smoothing distribution and Section IV introduces
two efficient online methods for generating these blocked
samples. Section V describes the problem of map-matching
and Section VI demonstrates numerically the benefits of
uncertainty quantification as well as the performance of the
introduced online particle smoothers and their sensitivity to
key parameters. In Section VII we conclude and discuss some
potential extensions.

II. BACKGROUND AND RELATED WORK

A. Particle Filtering and Path Degeneracy

A classical particle filter runs a single forward pass, up-
dating particles at every observation. Each update consists of
three steps: an optional resample step, a propagation step and
a weighting step. These steps are described in Alg. 1.

The resampling operation converts a weighted sample
into an unweighted sample that likely contains duplicates{
x(i), w(i)

}N
i=1
→
{
x(i), 1

N

}N
i=1

. The most common resam-
pling method is multinomial sampling (with replacement)

Sample a(i) ∼ Categorical({w(i)}Ni=1), i = 1, . . . , N,

Set x(i) ← x(a
(i)) w(i) ← 1/N, i = 1, . . . , N,

where Categorical({w(i)}Ni=1) =
∑N
i=1 w

(i)δ(i) simply draws
an index i from the index set {1, . . . , N} with probabilities
w(i).

Algorithm 1 Particle Filter

0: Input sample {x(i)0:T−1, w
(i)
T−1}Ni=1 approximating

p(x0:T−1|y0:T−1) and new observation yT .
1: Resample (optional){

x
(i)
0:T−1, w

(i)
T−1

}N
i=1
→
{
x
(i)
0:T−1,

1

N

}N
i=1

2: Propagate by sampling from some proposal distribution

x
(i)
T ∼ q

(
xT

∣∣∣x(i)T−1, yT) , i = 1, . . . , N .

Append to particle x(i)0:T =
(
x
(i)
0:T−1, x

(i)
T

)
.

3: Weight and normalise

w
(i)
T ∝

p
(
x
(i)
T

∣∣∣x(i)T−1) p(yT ∣∣∣x̃(i)T)
q
(
x
(i)
T

∣∣∣x(i)T−1, yT) w
(i)
T−1

i = 1, . . . , N .

4: Output sample {x(i)0:T , w
(i)
T }Ni=1 approximating

p(x0:T |y0:T)

Although most commonly used only to approximate the
filtering marginals p(xT |y0:T), the particle filter update as
described in Alg. 1 does provide an asymptotically unbiased
approximation to the full smoothing distribution p(x0:T |y0:T).

The reason that a classical particle filter is almost never
used to approximate the smoothing distribution is due to path
degeneracy. Path degeneracy occurs in state-space models
with large T . For repeated particle filter updates, the early

coordinates of particles (e.g. x(i)0) will only be altered in the re-
sampling step. Resampling can only decrease particle diversity
(the number of distinct particles) and therefore as T increases,
and resampling has occurred with suitable frequency, the
particle approximation of p(x0|y0:T) will eventually collapse
to just a single particle duplicated N times.

Due to the optional nature of the resampling step, adaptive
schemes are often applied, with a popular choice to be to
only resample if the effective sample size, ESS({w(i)}Ni=1) =
1/
∑N
i=1 w

(i) 2, falls below some threshold. Variants on the
effective sample size criterion have been developed that may
better quantify sample quality [11], [12], although not investi-
gated here. In addition to such criteria that ensure resampling
is only applied when necessary, a variety of techniques have
been developed to mitigate the effects of path degeneracy.
These include adaptively increasing the number of particles
[13] as well as more sophisticated resampling schemes [14]–
[16] which aim to only resample particles with negligible
weights. These approaches can improve performance over
multinomial resampling however still suffer the collapse in
the approximation of p(x0|y0:T) for T sufficiently large.

The merits of resampling are well known, in particular
resampling is vital in ensuring a diverse particle approximation
to the filtering marginals p(xT |y0:T) - often the particle filter’s
primary task. Indeed, a particle filter without resampling is
simply importance sampling on an a space whose dimension
increases with every new observation. As a result, the diver-
gence between importance and target distribution increases and
the number of particles must increase exponentially [17] - the
addition of resampling means a stable approximation to the
filtering marginals is maintained.

B. Marginal Fixed-Lag

An alternative approach in mitigating the path degeneracy
induced by repeated resampling is to simply stop resampling
the early coordinates of particles, as proposed in [4]. That is,
replace the resample step (Alg. 1, step 1) with the scheme
described in Alg. 2.

Algorithm 2 Marginal Fixed-lag Resampling (for T > L)

1: Fix {x(i)0:T−L−1}Ni=1

2: Resample only recent coordinates{
x
(i)
T−L:T , w

(i)
T

}N
i=1
→
{
x
(i)
T−L:T ,

1

N

}N
i=1

Stitch arbitrarily x(i)0:T = (x
(i)
0:T−L−1, x

(i)
T−L:T).

The justification for freezing x(i)0:T−L−1 is that after a certain
lag L the smoothing distribution of early coordinates become
(approximately) independent of new observations

p(x0:t|y0:T) ≈ p(x0:t|y0:min(t+L,T)), (2)

this represents a fixed-lag approximation.
The major issue with the fixed-lag resampling scheme

described in Alg. 2 is that early and recent coordinates of
particles are arbitrarily stitched together and therefore only

3

Joint
Smoothing Online Path

Degeneracy
Fixed-lag
Approx. Complexity

Particle Filter X X X N
Marginal Fixed-lag [4] X For large L X N
Forward Filtering-
Backward Smoothing [7] N2

Forward Filtering-
Backward Simulation [8] X

N2

N with RS†

Forward Smoothing
for Additive Functionals [5] X N2

PaRIS [6] X N with RS†

Block Sampling [9] X X X LN
Online Particle Smoother
(Alg. 4) X X For large L X

N2

N with RS†

Online Particle Smoother
with Backward Simulation
(Alg. 5)

X X X
LN2

LN with RS†

TABLE I: Comparison of particle smoothing algorithms, for number of particles N and fixed-lag parameter L.
†For these algorithms the rejection sampling technique of [10] can be applied to obtain linear complexity when a bound for
the transition density p(xt|xt−1) is available.

provide a particle approximation to the fixed-lag marginal
smoothing distribution:

pLmarg(x0:T |y0:T) =
T−L−1∏
t=0

p(xt|y0:t+L)

p(xT−L:T |xT−L−1, yT−L:T). (3)

As such we lose the ability to take expectations over the joint
distribution of early coordinates x0:T−L−1.

A more useful particle approximation targets the fixed-lag
joint smoothing distribution

pL(x0:T |y0:T) = p(x0|y0:L)
T−L−1∏
t=1

p(xt|xt−1, yt:t+L)

p(xT−L:T |xT−L−1, yT−L:T), (4)

which permits expectations over full trajectories x0:T .

C. Offline Smoothing

A popular method for approximating the smoothing distribu-
tion p(x0:T |y0:T) is that of forward filtering-backward smooth-
ing [7]. This method stores the output of each particle filter
update {x(i)t }Ni=1 ∼ p(xt|y0:t) and runs a full backward pass
that updates the weights based on the backward decomposition

p(xt−1|xt, y0:t−1) =
p(xt|xt−1)p(xt−1|y0:t−1)

p(xt|y0:t−1)
,

t = T, . . . , 1. (5)

Similarly, forward filtering-backward simulation (FFBSi)
[8] runs a full backward pass based on the same decompo-
sition, but samples a new ancestor from the particle cloud
(according to (5)) rather than only updating the weights and
thus targets the joint smoothing distribution. Additionally,
[10] showed that rejection sampling can significantly reduce
the complexity of this pass in the case that p(xt|xt−1) has
a tractable upper bound. An implementation of backward
simulation is described in, Alg. 6.

Both of these algorithms require a full backward pass in
light of every new observation and therefore are not suitable
for online smoothing. In addition, the popular PMCMC ap-
proach [18] is iterative in nature and thus not extensible to
online smoothing.

D. Online Smoothing

It was noted in [5] that the forward filtering-backward
smoothing algorithm can be implemented in a single forward
pass in the case of additive functionals, i.e. expectations of
the form

Ep(x0:T |y0:T)

[
T−1∑
t=0

gt(xt, xt+1)

]
. (6)

Computing such expectations is useful for calibrating the state-
space model parameters, see [3], [19], [20]. The PaRIS algo-
rithm [6] combines this technique with rejection sampling to
implement an efficient and cheap version of forward filtering-
backward simulation in a single forward pass (for additive
functionals).

Although it permits the implementation of these online
algorithms, the requirement of additive functionals is very
restrictive. Additionally, the forward only technique is function
specific, i.e. it directly updates an approximation to the ex-
pected value of the additive functional. Our approach induces
a controllable bias through the fixed-lag approximation but can
approximate any expectation Ep(x0:T |y0:T)[f(x0:T)] over the
joint smoothing distribution and is therefore significantly more
general than the marginal or additive functional approaches.

Block sampling [9] is an online method that targets the
joint smoothing distribution. Every time a new observation is
received, the block sampling scheme discards the most recent
coordinates (within lag L) and re-proposes from an enlarged
proposal distribution based on many more recent observations.
Although this scheme does make use of a fixed-lag parameter,
the weights and resampling still act on the full joint smoothing
distribution. By moving a larger proportion of the trajectories,
block sampling can (when combined with adaptive resampling
schemes) mitigate but not avoid path degeneracy as resampling

4

still takes place over full trajectories. Our proposed method
builds on the block sampling approach by proposing blocks
with a single coordinate overlap and then resampling in a way
that targets the fixed-lag joint smoothing distribution (4).

III. FIXED-LAG PARTICLE STITCHING

In this section, we first detail the technique underlying back-
ward simulation and then describe how the same technique
can be applied in a forward implementation under a fixed-lag
approximation.

A. Backward Simulation

In a single iteration of backward simulation, we have
samples{

x̃
(i)
t−1, w̃

(i)
t−1

}N
i=1

approximating p(xt−1|y0:t−1),{
x
(j)
t

}N
j=1

approximating p(xt|y0:T),

but desire samples from the joint{
(x

(j)
t−1, x

(j)
t)
}N
j=1

approximating p(xt−1, xt|y0:T).

Here, and in the next sections, we have used tildes to represent
the particles from which we look to resample - particles
without tildes remain fixed. Seeing as {x(j)t }Nj=1 already have
the correct marginals this amounts to sampling

x
(j)
t−1 ∼ p(xt−1|x

(j)
t , y0:t−1) for j = 1, . . . , N.

We cannot sample from p(xt−1|x(j)t , y0:t−1) directly, so we
consider the decomposition

p(xt−1|x(j)t , y0:t−1) =
p(x

(j)
t |xt−1)p(xt−1|y0:t−1)∫

p(x
(j)
t |xt−1)p(xt−1|y0:t−1)dxt−1

.

and then use p(xt−1|y0:t−1) to form an importance sampling
approximation. Specifically, we use the particle filter’s empiri-
cal approximation in the numerator and denominator to obtain
the self-normalised weights [5], [8]

w
(i←j)
t−1 =

w̃
(i)
t−1p(x

(j)
t |x̃

(i)
t−1)∑N

k=1 w̃
(k)
t−1p(x

(j)
t |x̃

(k)
t−1)

.

where
∑N
k=1 w̃

(k)
t−1p(x

(j)
t |x̃

(k)
t−1) is an asymptotically unbiased

approximation of p(x(j)t |y0:t−1) and now
∑N
i=1 w

(i←j)
t−1 = 1.

Sampling from the empirical distribution∑N
i=1 w

(i←j)
t−1 δxt−1

(x̃
(i)
t−1) directly for each j is the O(N2)

backward simulation technique [8], which when iterated
for t = T, . . . , 1 is asymptotically unbiased for the joint
smoothing distribution p(x0:T |y0:T).

B. Fixed-lag Forward Simulation - Intractable

In this section we aim to approximate the fixed-lag joint
smoothing distribution defined in (4) during the forward pass
of particle filtering thus obtaining an online algorithm. In the
setting of fixed-lag forward simulation we have{

x
(i)
t−1

}N
i=1

approximating p(xt−1|y0:T−1),{
x̃
(j)
t , w̃

(j)
t

}N
j=1

approximating p(xt|y0:T),

where t = T −L. Recall the fixed-lag approximation uses all
past, present and at most L future observations to infer xt−1,
which implies p(xt−1|y0:T−1) ≈ p(xt−1|y0:T).

We desire unweighted samples from the joint{(
x
(i)
t−1, x

(i)
t

)}N
i=1

approximating pL(xt−1, xt|y0:T),

where pL(xt−1, xt|y0:T) = p(xt−1|y0:T−1)p(xt|xt−1, yt:T).
As
{
x
(i)
t−1

}N
i=1

have the correct marginal, obtaining the desired
joint samples amounts to sampling

x
(i)
t ∼ p(xt|x

(i)
t−1, yt:T) for i = 1, . . . , N.

We cannot sample this conditional density directly and (simi-
larly to backward simulation) employ importance sampling to
approximate it.

In order to use the empirical approximation of p(xt|y0:T) as
the sampling density (for an online implementation) we need
to write

p(xt|x(i)t−1, yt:T) =
ht(x

(i)
t−1, xt)p(xt|y0:T)∫

ht(x
(i)
t−1, xt)p(xt|y0:T)dxt

,

for some suitably defined non-negative and integrable function

ht(x
(i)
t−1, xt). We then use the set of samples

{
x̃
(j)
t , w̃

(j)
t

}N
j=1

in the numerator and also to approximate the denominator to
obtain a set of normalised weights

w
(i→j)
t =

w̃
(j)
t ht(x

(i)
t−1, x̃

(j)
t)∑N

k=1 w̃
(k)
t ht(x

(i)
t−1, x̃

(k)
t)

.

To find ht,

p(xt|x(i)t−1, yt:T) = p(xt|x(i)t−1, y0:T)

=
p(yt:T |xt)p(xt|x(i)t−1)

p(yt:T |x(i)t−1)
,

=
p(yt:T |xt)p(xt|x(i)t−1)
p(yt:T |x(i)t−1)p(xt|y0:T)

p(xt|y0:T).

where in the last line we have multiplied and divided
by p(xt|y0:T). A further application of Bayes’ theorem to
p(xt|y0:T) gives us

p(xt|x(i)t−1, yt:T) =
p(yt:T |y0:t−1)p(xt|x(i)t−1)
p(yt:T |x(i)t−1)p(xt|y0:t−1)

p(xt|y0:T).

Since p(xt|x(i)t−1, yt:T) integrates to 1, ht is clearly

ht(x
(i)
t−1, xt) =

p(xt|x(i)t−1)
p(xt|y0:t−1)

5

which is where we stop as the density p(xt|y0:t−1) is not
tractable (note that we could replace p(xt|y0:t−1) with an
empirical approximation using marginal filtering particles but
the resulting algorithm would have a prohibitive O(N3) com-
plexity).

C. Fixed-lag Forward Simulation - Tractable

In the previous section, the ht(x
(i)
t−1, xt) was intractable. We

address this problem by defining a new conditional density

π(xt, xt−1|x(i)t−1, y0:T) = p(xt|x(i)t−1, yt:T)λ(xt−1|x
(i)
t−1, xt)

which trivially admits p(xt|x(i)t−1, yt:T) as the marginal. The
potential dependency of λ on y0:T is implicit. The conditional
density λ is to be chosen and we show how to make this choice
so that when using p(xt−1, xt|y0:T) within an importance
sampling approximation of π, the weight is now tractable. In
keeping with the notation of the previous section,{

(x̃
(j)
t−1, x̃

(j)
t), w̃

(j)
t

}N
j=1

approximates p(xt−1, xt|y0:T),

where we have used tildes to represent the particles from
which we look to resample - non-tilde particles are fixed. We
remark that this idea of resolving the intractability of weights
via sampling a higher dimensional density is inspired by the
work of [9] for blocked resampling of the path-space particle
approximations.

Proposition 1. Let λ(xt−1|x(i)t−1, xt) = p(xt−1|y0:t−1) and
H(x

(i)
t−1, xt−1, xt) = p(xt|x(i)t−1)/p(xt|xt−1) then

π(xt, xt−1|x(i)t−1, y0:T)

=
H(x

(i)
t−1, xt−1, xt)p(xt, xt−1|y0:T)∫

H(x
(i)
t−1, xt−1, xt)p(xt, xt−1|y0:T)dxt−1:t

.

The self-normalised approximation of p(xt|x(i)t−1, y0:T) is{
x̃
(j)
t , w̃

(i→j)
t

}
where

w
(i→j)
t = w̃

(j)
t

p(x̃
(j)
t |x

(i)
t−1)

p(x̃
(j)
t |x̃

(j)
t−1)

(
N∑
k=1

w̃
(k)
t

p(x̃
(k)
t |x

(i)
t−1)

p(x̃
(k)
t |x̃

(k)
t−1)

)−1
.

(7)

The interpretation of this proposition for forward smoothing
is as follows: we can now sample from this approximation
of π directly. Discarding the sampled xt−1 leaves samples
(x

(i)
t−1, x

(i)
t) from the desired joint pL(xt−1, xt|y0:T). Repeat-

ing this for each i results in an O(N2) algorithm that is
asymptotically unbiased for the fixed-lag joint distribution.

Proof. Expanding the density π yields

π(xt, xt−1|x(i)t−1, y0:T)
= p(xt|x(i)t−1, yt:T)λ(xt−1|x

(i)
t−1, xt),

=
p(yt:T |xt)p(xt|x(i)t−1)

p(yt:T |x(i)t−1)
λ(xt−1|x(i)t−1, xt).

Dividing by the sampling distribution p(xt−1, xt|y0:T) =
p(xt−1|y0:T)p(xt|xt−1, yt:T) gives

π(xt, xt−1|x(i)t−1, y0:T)/p(xt−1, xt|y0:T)

=
p(yt:T |xt)p(xt|x(i)t−1)

p(yt:T |x(i)t−1)p(xt−1, xt|y0:T)
λ(xt−1|x(i)t−1, xt).

Bayes’ theorem on p(xt−1, xt|y0:T) gives

π(xt, xt−1|x(i)t−1, y0:T)/p(xt−1, xt|y0:T)

=
p(xt|x(i)t−1)p(yt:T |y0:t−1)

p(xt|xt−1)p(yt:T |x(i)t−1)p(xt−1|y0:t−1)
λ(xt−1|x(i)t−1, xt).

We now observe that the choice of λ(xt−1|x(i)t−1, xt) =
p(xt−1|y0:t−1) will make all terms involving (xt−1, xt)
tractable.

π(xt, xt−1|x(i)t−1, y0:T)

=
p(xt|x(i)t−1)p(yt:T |y0:t−1)
p(xt|xt−1)p(yt:T |x(i)t−1)

p(xt−1, xt|y0:T).

Algorithm 3 Fixed-lag Particle Stitching

0: Input samples {x(i)0:T−L−1}Ni=1 and {x̃(j)T−L−1:T , w̃
(j)
T }Nj=1,

bound ρ ≥ p(xT−L|xT−L−1) and the maximum number
of rejections to attempt R.

1: Calculate the non-interacting stitching weights and nor-
malise in j

ŵ
(j)
T ∝ w̃

(j)
T /p(x̃

(j)
T−L|x̃

(j)
T−L−1) j = 1, . . . , N .

2: for i = 1, . . . , N do
3: for r = 1, . . . , R do
4: Sample c∗ ∼ Categorical({ŵ(j)

T }Nj=1)
5: Sample u ∼ U(0, 1)

6: if u < p(x̃
(c∗)
T−L|x

(i)
T−L−1)/ρ then

7: Accept c∗

8: break
9: end if

10: end for
11: if a sample c∗ was accepted then
12: Set x(i)T−L:T = x̃

(c∗)
T−L:T

13: else
14: Calculate the stitching weights and normalise in j

w
(i→j)
T ∝ w̃(j)

T

p(x̃
(j)
T−L|x

(i)
T−L−1)

p(x̃
(j)
T−L|x̃

(j)
T−L−1)

j = 1, . . . , N .

15: Sample ci ∼ Categorical({w(i→j)
T }Nj=1)

16: Set x(i)T−L:T = x̃
(ci)
T−L:T

17: end if
18: end for
19: Output sample {x(i)0:T }Ni=1 approximating pL(x0:T |y0:T).

6

In (7), we have described above an empirical approximation
that stitches together particles from p(xT−L−1|y0:T−1) with
those from p(xT−L−1:T−L|y0:T). By the conditional inde-
pendence structure of state-space models this is equivalent
to stitching together blocks from pL(x0:T−L−1|y0:T−1) with
those from p(xT−L−1:T |y0:T) - assuming we can sample from
p(xT−L−1:T |y0:T).

Sampling from p(xT−L−1:T |y0:T) is not directly possible
for non-trivial state-space models. In Section IV we describe
two efficient methods for block sampling by recycling previ-
ously generated particles (Alg. 4 and Alg. 5).

The fixed-lag particle stitching described provides a method
to, in principal, approximate the full smoothing distribution
p(x0:T |y0:T). It does so by using very separate tools to the
forward-only techniques in [5], [6], these techniques do not
require any stitching and directly update an expectation over
additive functionals. Our method generates a collection of
particles approximating the joint smoothing distribution and
is therefore far more general. We have utilised the block
sampling framework from [9], in particular through the bal-
ancing distribution λ. However, the particle stitching is novel
and effectively uses a fixed-lag approximation to implement a
forward implementation of the technique underlying backward
simulation [8]. This is in contrast to [9], where particles are
reweighted and resampled over full trajectories and therefore
still suffer from path degeneracy.

D. Rejection Sampling

Sampling from (7) can be done directly at a computational
complexity of O(N2). However, when a bound for the transi-
tion density is available

ρ ≥ p(xT−L|xT−L−1) ∀xT−L−1, xT−L, (8)

we can utilise the rejection sampling approach of [10] to
avoid calculating the normalisation constants and bring the
computational complexity down to O(N). In practice, the
rejection sampling is not always faster than the direct one.
A pragmatic approach is the hybrid described in [21] where
for each particle, up to R < N samples are proposed to the
rejection sampler, if all are subsequently rejected the direct
scheme is applied, thus setting R = 0 recovers the direct
scheme. This hybrid algorithm is described in Alg. 3.

IV. SAMPLING FROM p(xT−L−1:T |y0:T)
We now describe two methods for sampling coordinates

x̃T−L−1:T in a way that is asymptotically unbiased for
p(xT−L−1:T |y0:T), and can therefore be plugged into the
fixed-lag particle stitching procedure.

A. Particle Filter

Recall the online setting where we have unweighted par-
ticles {x(i)0:T−1}Ni=1 approximating pL(x0:T−1|y0:T−1) and re-
ceive a new observation yT .

Our first method is based on the fact that the particle
approximation provided by a classical particle filter is asymp-
totically unbiased for the full joint smoothing distribution

p(x0:T |y0:T). Although this approximation deteriorates due to
path degeneracy it may still be sufficient for sampling the
recent coordinates xT−L−1:T .

Thus, we propose applying the classical particle filter
proposal and weighting steps to {x(i)0:T−1}Ni=1, generating
weighted particles {x(i)0:T , w̃

(i)
T }Ni=1, before splitting the trajec-

tories{
x
(i)
0:T , w̃

(i)
T

}N
i=1

→
{
x
(i)
0:T−L−1

}N
i=1

and
{
x̃
(i)
T−L−1:T , w̃

(i)
T

}N
i=1

,

where x̃
(i)
T−L−1:T = x

(i)
T−L−1:T . Under the fixed-lag ap-

proximation, x0:T−L−1 is conditionally independent of yT
and therefore the new weights need not apply to these
earlier coordinates. Whereas the {x̃(i)T−L−1:T , w̃

(i)
T }Ni=1 are

asymptotically unbiased for the desired sampling distribution
p(xT−L−1:T |y0:T) and can therefore be plugged into the
stitching procedure, Alg. 3. The coordinates xT−L−1 are
duplicated to provide the overlap required for stitching.

Algorithm 4 Online Particle Smoother (for T > L)

0: Input smoothing sample {x(i)0:T−1}Ni=1 and new observation
yT .

1: Fix {x(i)0:T−L−1}Ni=1

2: Execute particle filter propagate and weight steps, Alg. 1:
steps 2:3

Generate {x̃(j)T−L−1:T , w̃
(j)
T }

N
j=1

from {x(j)T−L−1:T−1}
N
j=1 and yT ,

forming a weighted sample approximating
p(xT−L−1:T |y0:T).

3: Stitch together

{x(i)0:T−L−1}
N
i=1 and {x̃(j)T−L−1:T , w̃

(j)
T }

N
j=1 → {x

(i)
0:T }

N
i=1.

using Alg. 3.
4: Output sample {x(i)0:T }Ni=1 approximating pL(x0:T |y0:T)

The algorithm is described in Alg. 4, and ends up being
a relatively simple modification to a classical particle filter
where the resampling step is compulsory and altered to include
the stitching probabilities in the weights (7).

When the transition bound (8) is available the complexity
of the update remains O(N) or O(N2) when the bound is
unavailable.

B. Partial Backward Simulation

If the lag parameter L is chosen to be too large, the above
mechanism will still suffer from path degeneracy in the same
way a particle filter does. To remedy this we propose a partial
run of backward simulation (Alg. 6) at each time step to reju-
venate the trajectories xT−L−1:T . This technique is considered
in [22] for generating samples from p(xT−L:T |y0:T) without
the subsequent stitching.

This has the additional requirement of storing the marginal
approximations {x̃(k)t , w̃

(k)
t }Nk=1 for t = T−L−1, . . . , T from

7

Algorithm 5 Online Particle Smoother with Backward Simu-
lation (for T > L)

0: Input smoothing sample {x(i)0:T−1}Ni=1, marginal filtering
samples {x̃(k)t , w̃

(k)
t }Nk=1 for t = T−L−1, . . . , T − 1 and

new observation yT .
1: Fix {x(i)0:T−L−1}Ni=1

2: Execute particle filter update, Alg. 1, to generate the new
marginal filtering sample

Generate {x̃(k)T , w̃
(k)
T }

N
k=1

from {x̃(k)T−1, w̃
(k)
T−1}

N
k=1 and yT .

3: Run partial backward simulation, Alg. 6, on the weighted
filtering samples

{x̃(k)t , w̃
(k)
t }Nk=1, for t = T, . . . , T−L−1

→ {x̃(j)T−L−1:T }
N
j=1.

forming an unweighted sample approximating
p(xT−L−1:T |y0:T).

4: Stitch together

{x(i)0:T−L−1}
N
i=1 and {x̃(j)T−L−1:T ,

1
N }

N
j=1 → {x

(i)
0:T }

N
i=1.

using Alg. 3.
5: Output sample {x(i)0:T }Ni=1 approximating pL(x0:T |y0:T)

and filtering samples {x̃(k)T , w̃
(k)
T }Nk=1, t = T − L, . . . , T .

the particle filter, but permits the use of adaptive resampling
and completely avoids path degeneracy.

The resulting algorithm, Alg. 5, has a complexity of O(LN)
per update if the transition bound (8) is available otherwise
O(LN2).

Both techniques to sample from p(xT−L−1:T |y0:T) utilise
the output of a particle filter. Indeed, they are also directly
applicable to alternative filtering techniques such as auxiliary
particle filters [23] and the backward simulation approach is
also applicable to filters that discard historic trajectories such
as the marginal particle filter [24]. In fact, Proposition 1 is
very general and can be applied to any collection of particles
that have the correct marginals - including more sophisticated
approaches that resample using information from both the
weights and the samples [15], [25].

V. MAP-MATCHING

Map-matching is the task of inferring the true trajectory
of a vehicle given noisy GPS observations and a map of the
road network. A road network is defined as a graph within
R2, where intersections are represented by nodes (vertices)
and roads (assumed to be single lanes and one-way) are
represented by edges with a two-way road being represented
by two edges. Some collections of nodes and edges are
depicted in Fig. 1, 3 and 5, with map-matched vehicle routes
overlaid. The recorded GPS observations (see Fig. 1) may lie
outside the road whereas valid vehicle positions/trajectories to
be inferred must strictly lie on the road. Following [26], [27]

(a) Arbitrary stitching, [4], Alg. 2. Discontinuities
where the vehicle jumps, e.g. e(x0) 6= eo1.

(b) Fixed-lag particle stitching, Alg. 3

Fig. 1: Comparison of fixed-lag techniques for map-matching.
Each image displays a single trajectory from the resulting
particle approximation. Both techniques produce plausible
marginals but arbitrary stitching fails to produce a continuous
trajectory.

for urban road networks we infer the vehicle’s position along
an edge but not it’s width within the road.

Applications of map-matching are wide-ranging and thus
a general purpose algorithm is highly desirable. Existing
probabilistic approaches to map-matching have mostly adopted
the approach of [26], where each observation is snapped to the
nearest point on any and all edges that fall within a truncation
distance. These points then form a discrete hidden Markov
model, on which the Viterbi algorithm can produce a single
route of high probability. In contrast, our approach provides
uncertainty quantification through a collection of particles,
with each particle representing a possible route. Previous
applications of particle filtering to map-matching [28], [29] fail
to tackle the problem of path degeneracy, with the exception
of [27] who introduce the use of FFBSi for offline map-
matching. Our formulation is similar to that of [27] but differs
through the inclusion of a term in the transition density adapted
from [26] that penalises non-direct routes (which is vital in
dense urban road networks), as well as the use of the optimal
proposal density (that takes into account the new observation)
rather than simply the bootstrap proposal which will perform
poorly for small GPS noise or dense road networks.

Traditional fixed-lag smoothing [4], Alg. 2 where particles
are arbitrarily stitched together is not appropriate for map-
matching, as seen in Figure 1. As these methods target the
product of smoothing marginals in (3), arbitrary stitching

8

x0 e1, x1 e2, x2 . . . eT , xT

y0 y1 y2 yT

Fig. 2: Conditional independence structure of the state-space
model for map-matching.

cannot produce a continuous trajectory and therefore does not
permit expectations over multiple observation times.

In the rest of this section, we describe our state-space model
for map-matching, the optimal proposal distribution and the
induced weights in the context of fixed-lag particle stitching. In
the next section we present some results on synthetic and real
data. An open source python package providing easy offline
and online map-matching is provided 1 alongside code for all
the simulations to follow.

A. Model Variables

We define a state-space model for a single vehicle’s trajec-
tory with the variables
• et ⊂ N, a finite ordered set of edge labels that define a

connected path. Each edge label corresponds to a unique
one-way section of road. The variable et details the edges
traversed (and in which order) between observation times
t−1 and t, including the choices made at encountered
intersections (nodes).

• xt ∈ R2 the position of the vehicle at observation time.
The variable xt defines a Cartesian coordinate restricted
to lie on the road network, specifically xt lies on the final
edge of the finite ordered set of edge labels et, for t > 0.

• yt ∈ R2 noisy observation of the vehicle’s position xt,
not restricted to the road network.

Note here the change of notation from the previous section,
now xt refers only to vehicle position and the full latent states
are x0, (e1, x1), (e2, x2), . . . , (eT , xT) as depicted in Fig. 2.

We denote eot for the first edge in the ordered set et and e∗t
for the final edge, thus et = (eot , . . . , e

∗
t). We use the notation

e(xt) to denote the edge label on which xt lies, so e(xt−1) =
eot and e(xt) = e∗t .

B. Model Distributions

Our transition density can be written as

p(et, xt|xt−1) =γ(‖xt − xt−1‖et)
exp(−β|‖xt − xt−1‖et − ‖xt − xt−1‖|)
Z(xt−1)

−1, (9)

with normalising constant

Z(xt−1) =
∑
et

∫
xt

γ(‖xt − xt−1‖et) (10)

exp(−β|‖xt − xt−1‖et − ‖xt − xt−1‖|)dxt.

1https://github.com/SamDuffield/bmm

The summation in (10) is taken over all possible series of
edges starting at e(xt−1). ‖xt − xt−1‖et is the distance
travelled between xt−1 and xt along the series et (restricted
to the road network) whereas ‖xt − xt−1‖ is the great circle
distance (not restricted to the road network).

Thus the following distributions fully define our state-space
model:
• γ(‖xt − xt−1‖et). Prior on distance travelled between

observations - some simple analytical distribution on R+,
penalising lengthy routes. We assume an exponential
distribution with probability mass at 0 to represent the
possibility of the vehicle remaining stationary (due to
traffic lights, heavy traffic etc)

γ(d) = p0I(d = 0) + (1−p0)I(d > 0)λe−λd. (11)

• exp(−β|‖xt − xt−1‖et − ‖xt − xt−1‖|) adapted from
[26], penalising non-direct (or winding) routes. Non-
direct routes with lots of curvature will have a high
discrepancy between the road distance travelled and great
circle distance and thus will have a low probability under
this term, reflecting a driver’s preference to take short,
direct routes where possible.

• p(yt|xt) = N (yt|xt, σ2
GPSI2). Isotropic Gaussian obser-

vation noise.
• We set p(x0) to be uniform on the road network. I.e. no

prior information on the start of the trajectory other than
constricting it to the road network (as with all inferred
positions).

To make p(x0|y0) tractable we define the initial observation
density to be a truncated Gaussian:

p(y0|x0) ∝ N (y0|x0, σ2
GPSI2) I(||y0 − x0|| < rGPS),

giving

p(x0|y0) ∝ N (x0|y0, σ2
GPSI2) I(||y0 − x0|| < rGPS),

where x0 is restricted to the road network but y0 is not. In
our simulations we set rGPS = 5σGPS.

C. Optimal Proposal

The (locally) optimal proposal [7] for particle filtering
combines the transition density (9) and the newly received
observation yT :

qopt (xT , eT |xT−1, yT) ∝ p(eT , xT |xT−1)p(yT |xT). (12)

The standard reweighting step of the particle filter update (Alg.
1) then becomes

w
opt (i)
T ∝ p(yT |x(i)T−1),

where

p(yT |xT−1) =
∑
eT

∫
xT

p(eT , xT |xT−1)p(yT |xT) dxT , (13)

is the normalisation constant of (12).
Neither sampling from the optimal proposal (12), nor eval-

uating the subsequent weights (13), nor evaluating the normal-
ising constant of the transition density (10) are immediately

https://github.com/SamDuffield/bmm

9

tractable as we do not have closed form expressions for the
edge geometries.

Instead, we opt to approximate the required integrals nu-
merically by discretising the edges up to some maximal
possible distance travelled dmax. This numerical integration
can be implemented efficiently across particles by caching
route searches and likelihood evaluations, as many particles
will typically lie on the same or adjacent edges.

D. Fixed-lag Particle Stitching

In the context of the particle stitching described in Sec-
tion III, we propose stitching together each

(x
(i)
0:T−L−1, e

(i)
1:T−L−1)

with a sample from
{
(x̃

(j)
T−L−1:T , ẽ

(j)
T−L:T)

}N
j=1

.

Thus the adjusted weights become

w
(i→j)
T ∝

p(ẽ
(j)
T−L, x̃

(j)
T−L|x

(i)
T−L−1)

p(ẽ
(j)
T−L, x̃

(j)
T−L|x̃

(j)
T−L−1)

w
(j)
T I

(
e(x

(i)
T−L−1) = ẽ

o (j)
T−L

)
.

Similarly, for the rejection sampling we get non-interacting
weights

ŵ
(j)
T ∝ w

(j)
T /p(ẽ

(j)
T−L, x̃

(j)
T−L|x̃

(j)
T−L−1),

and we accept a sample if e(x(i)T−L−1) = ẽ
o (j)
T−L and

u <γ
(
‖x̃(j)T−L − x

(i)
T−L−1‖ẽ(j)T−L

)
exp

(
−β
∣∣∣‖x̃(j)T−L − x(i)T−L−1‖ẽ(j)T−L

− ‖x̃(j)T−L − x
(i)
T−L−1‖

∣∣∣)
ρ−1,

where u ∼ U(0, 1) and we have a bound ρ > γ (d) for any
d. The availability of this bound depends on the choice of
distribution for γ(·), in the case of (11) a bound is available:
ρ = max((1− p0)λ, p0).

VI. SIMULATIONS

We tuned the model hyperparameters using offline gradient
expectation-maximisation [19] (running offline FFBSi for the
E-step) over 20 routes from the Porto taxi dataset [30] where
observations are 15 seconds apart, resulting in values of p0 =
0.14, λ = 0.07/15, β = 0.05 and σGPS = 5.2, all edges are
discretised to a resolution of 1m.

The true map-matching posterior is analytically intractable
and instead we use the approach of [27] as our gold standard
for benchmarking: offline forward filtering-backward simula-
tion with a large N = 1000, i.e. Alg. 1 to generate the filtering
marginals and Alg. 6 for the smoothing particles.

A. Synthetic Data

In Fig. 3 we demonstrate the benefits of uncertainty quan-
tification for offline map-matching by comparing our particle
based gold standard (offline FFBSi) which is the approach
of [27] against the popular optimisation approach of [26]
on synthetic observations for a trip between the Cambridge
Engineering department and the Fort St George pub.

(a) Gold standard, offline FFBSi
with N = 1000. All trajectories
overlaid.

(b) Viterbi map-matching [26].

(c) Histograms represent p(‖xt−xt−1‖et |y0:T)
from FFBSi. Spots represent distances inferred
using Viterbi map-matching.

Fig. 3: Offline particle smoothing vs Viterbi map-matching for
synthetic trip across Cambridge.

Although the optimisation based approach finds a plausible
route (point estimate) it misses out on others that are equally
plausible and thus valuable information is lost, this is par-
ticularly prevalent when inferring the distances the vehicle
travelled, Fig. 3c. There is significant uncertainty in both the
edges traversed and the distances travelled that is captured by
FFBSi but not by the Viterbi algorithm.

All particles generated by FFBSi represent a plausible
route - more direct routes are preferred but not overly so -
this provides evidence to suggest the model is well suited
to difficult dense urban road networks and that the optimal
proposal is efficiently generating high probability particles.

10

(a) Online Particle Smoother (b) with Backward Simulation.

Fig. 4: Total variation distance from gold standard (offline
FFBSi) for posterior over cumulative distance travelled in
each minute of a 16 minute taxi route (observation every 15
seconds) [30]. Simulations averaged over 20 random seeds.

In the problem considered here and in [26], [27] there is
no variability in the position of the vehicle along the width of
the road - arguably more suitable for dense, urban networks.
A less constrained inference problem in e.g. [31] would also
infer the position along the width of the road. The model can
then be formulated with Gaussian noise allowing Kalman filter
or Rao-Blackwellisation techniques (that are not applicable to
our state-space model) can be used to accelerate inference.

B. Real Data

We now explore the effects of the algorithmic parameters
in the online particle smoothers (sample size, lag parameter
and number of rejections) for map-matching a route from the
Porto taxi dataset [30].

In Fig. 4, we analyse the posterior distribution for the
cumulative (road) distance travelled by the taxi each minute.
As observations are received every 15 seconds this amounts
to expectations averaged over blocks of the full smoothing
distribution and thus marginal approximations (3) would be
insufficient. For each minute of the trip, we compare particle
approximations by calculating the total variation distance over
the empirical distributions. This total variation distance is
calculated by binning the distance travelled variable, then the
empirical distributions are defined over a discrete space and

(a) Gold standard, offline FFBSi
with N = 1000.

(b) Online particle smoother
with L = 0 and N = 200. Poor
approximation due to small lag.

(c) Online particle smoother,
L = 10 and N = 200. Evi-
dence of path degeneracy due to
large lag.

(d) Online particle smoother
with backward simulation, L =
10 and N = 200.

Fig. 5: The start of a route from [30] with various particle
approximations.

the total variation distance is tractable

TV
(
{d(i)1 }

N1
i=1, {d

(j)
2 }

N2
j=1

)
=

1

2

∑
[a,b]∈D

∣∣∣∣∣∣ 1

N1

N1∑
i=1

I[d(i)1 ∈ [a, b]]− 1

N2

N2∑
j=1

I[d(j)2 ∈ [a, b]]

∣∣∣∣∣∣ ,
where D represents [0,∞) discretised into 5 metre width bins
and the empirical distances are assumed to be unweighted
(although easily adjusted to include weights).

Fig. 5 depicts the varying algorithmic performance on the
start of the route.

We initially observe that setting L = 0 performs very poorly
for all sample sizes. The overly small lag parameter results in
a large deviation between the true smoothing distribution (1)
and the joint fixed-lag smoothing distribution (4), Fig. 5b.

The online particle smoother suffers from path degeneracy
for the large lag L = 10 as observed by a loss of particle
diversity (compared to the backward simulation techniques)
in Fig. 5c. It does however perform well for L = 3.

The addition of backward simulation completely avoids the
issue of path degeneracy, but induces a bias by targeting
pL(x0:T |y0:T) rather than p(x0:T |y0:T), this bias is control-
lable through the choice of the lag parameter, L. We observe
that increasing the lag parameter from L = 3 to L = 10 does
little to improve performance and as such can posit that the
distributions (1) and (4) are suitably close for L = 3.

We have not compared numerically to the marginal or
additive functional based smoothers described in section II

11

(a) Online Particle Smoother (b) with Backward Simulation.

Fig. 6: Algorithmic runtime vs number of rejections tolerated
for L = 3. Runtimes averaged over 65 observations and 20
random seeds.

(such as PaRIS [6]) as by definition (6) they are not suitable
to expectations over multiple observation times as analysed in
Fig. 4 and depicted in Figure 1.

A classical particle filter can be recovered by setting L =∞
in the online particle smoother and would suffer path degener-
acy to an even greater extent than the online particle smoother
with L = 10.

Finally, in Fig. 6 we compare the effect on algorithmic
runtime from increasing the maximum number of rejections,
R, attempted in the hybrid stitching scheme Alg. 3, as well as
backward simulation if applicable. Recall that setting R = 0
recovers the full O(N2) scheme. For a suitably large number
of rejections the runtimes of both algorithms can be seen to
increase linearly in N .

VII. DISCUSSION

In this work, we have developed techniques to efficiently
approximate the full joint smoothing distribution or rather
the fixed-lag approximation to it in an online setting, this is
highly desirable as it permits the online estimation of a range
functions that are defined over full trajectories or any subset
thereof. The online particle smoother (Alg. 4) comes at the
same computational complexity as a classical particle filter,
whereas the inclusion of backward simulation (Alg. 5) negates
the issue of path degeneracy for more difficult models where
a large lag parameter is required.

We formulated a state-space model that is specifically
designed for urban map-matching and demonstrated the value
of particle based uncertainty quantification versus established
optimisation based approaches. We then showed that the
performance of gold standard offline smoothing FFBSi can
be obtained with the online particle smoothers.

The choice of the lag parameter L determines the distance
between the distributions pL(x0:T |y0:T) and p(x0:T |y0:T),
naturally we desire this to be small and therefore L large.
The question of how large is a difficult one as it is dependent
on the mixing of the state-space model, as discussed in
[6]. In practice, the lag parameter can be tuned through

preliminary runs on offline or simulated data. This can be
done by analysing the sensitivity of smoothing expectations
of interest (model-specific) to the value of the lag parameter
L and comparing against the true underlying values (in the
case of simulated data) or the equivalent expectation from
FFBSi. This is investigated for map-matching in Figure 4.
The tuning of L is perhaps easier for the online particle
smoother with backward simulation. The backward simulation
completely avoids the issue of path degeneracy and thus error
only arises from Monte Carlo variance and the difference
between pL(x0:T |y0:T) and p(x0:T |y0:T). An interesting ex-
tension would be to investigate the use of a variable lag
parameter which is chosen dynamically, as achieved for a
function specific version of the marginal fixed-lag particle filter
in [32].

It would be desirable to obtain theoretical results bounding
the error induced by the introduced online particle smoothers.
We leave this for future work as we anticipate the analysis
to be somewhat intricate - combining the work on central
limit theorems for particle smoothing such as [5], [10] and
the bias induced by a fixed-lag approximation [2]. As well
as quantifying the impact of using the tractable weights with
overlapping coordinate from III-C as opposed to the optimal
but intractable weights in III-B.

The realisation of a low-probability transition or observation
in the true underlying process can cause degeneracy either at
stitching time or in the filtering weights. It is possible to rein-
troduce particle diversity by applying an MCMC kernel after
stitching as in resample-move particle filters [33] or particle
rejuvenation [34]. The MCMC kernel is applied independently
to each particle and must be invariant for the full smoothing
distribution p(x0:T |y0:T). As we are only concerned with
increasing particle diversity rather than taking ergodic averages
we need only propose moving a subset of the trajectories,
whether that be at stitching time or the latest observation time.

REFERENCES

[1] N. Chopin and O. Papaspiliopoulos, An Introduction to Sequential
Monte Carlo, ser. Springer Series in Statistics. Springer International
Publishing, 2020.

[2] J. Olsson, O. Cappé, R. Douc, and Éric Moulines, “Sequential Monte
Carlo smoothing with application to parameter estimation in nonlinear
state space models,” Bernoulli, vol. 14, no. 1, pp. 155 – 179, 2008.

[3] G. Poyiadjis, A. Doucet, and S. S. Singh, “Particle approximations of
the score and observed information matrix in state space models with
application to parameter estimation,” Biometrika, vol. 98, no. 1, pp. 65–
80, 02 2011.

[4] G. Kitagawa and S. Sato, Monte Carlo Smoothing and Self-Organising
State-Space Model. New York, NY: Springer New York, 2001, pp.
177–195.

[5] P. Del Moral, A. Doucet, and S. S. Singh, “A backward particle
interpretation of Feynman-Kac formulae,” ESAIM: M2AN, vol. 44, no. 5,
pp. 947–975, 2010.

[6] J. Olsson and J. Westerborn, “Efficient particle-based online smoothing
in general hidden Markov models: The PaRIS algorithm,” Bernoulli,
vol. 23, no. 3, pp. 1951–1996, 08 2017.

[7] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197–208, Jul. 2000.

[8] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing for
nonlinear time series,” Journal of the American Statistical Association,
vol. 99, no. 465, pp. 156–168, 2004.

[9] A. Doucet, M. Briers, and S. Senecal, “Efficient block sampling strate-
gies for sequential Monte Carlo methods,” Journal of Computational
and Graphical Statistics, vol. 15, no. 3, pp. 693–711, 2006.

12

[10] R. Douc, A. Garivier, E. Moulines, and J. Olsson, “Sequential Monte
Carlo smoothing for general state space hidden Markov models,” The
Annals of Applied Probability, vol. 21, no. 6, pp. 2109–2145, 2011.

[11] L. Martino, V. Elvira, and F. Louzada, “Effective sample size for im-
portance sampling based on discrepancy measures,” Signal Processing,
vol. 131, pp. 386–401, 2017.

[12] V. Elvira, L. Martino, and C. P. Robert, “Rethinking the effective sample
size,” arXiv: Computation, 2018.

[13] V. Elvira, J. Mı́guez, and P. M. Djurić, “Adapting the number of
particles in sequential Monte Carlo methods through an online scheme
for convergence assessment,” IEEE Transactions on Signal Processing,
vol. 65, no. 7, pp. 1781–1794, 2017.

[14] R. Douc and O. Cappe, “Comparison of resampling schemes for particle
filtering,” in ISPA 2005. Proceedings of the 4th International Symposium
on Image and Signal Processing and Analysis, 2005., 2005, pp. 64–69.

[15] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle
filtering: Classification, implementation, and strategies,” IEEE Signal
Processing Magazine, vol. 32, no. 3, pp. 70–86, 2015.

[16] A. Koppel, A. S. Bedi, V. Elvira, and B. M. Sadler, “Nearly consis-
tent finite particle estimates in streaming importance sampling,” IEEE
Transactions on Signal Processing, pp. 1–1, 2021.

[17] S. Chatterjee and P. Diaconis, “The sample size required in importance
sampling,” Ann. Appl. Probab., vol. 28, no. 2, pp. 1099–1135, 04 2018.

[18] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain
Monte Carlo methods,” Journal of the Royal Statistical Society: Series
B (Statistical Methodology), vol. 72, no. 3, pp. 269–342, 2010.

[19] N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski, and N. Chopin, “On
particle methods for parameter estimation in state-space models,” Statist.
Sci., vol. 30, no. 3, pp. 328–351, 08 2015.

[20] P. Del Moral, A. Doucet, and S. S. Singh, “Uniform stability of a particle
approximation of the optimal filter derivative,” SIAM Journal on Control
and Optimization, vol. 53, no. 3, pp. 1278–1304, 2015.

[21] E. Taghavi, F. Lindsten, L. Svensson, and T. B. Schön, “Adaptive stop-
ping for fast particle smoothing,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2013, pp. 6293–6297.

[22] T. Clapp and S. Godsill, “Fixed-lag smoothing using sequential impor-
tance sampling,” 1999.

[23] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” Journal of the American Statistical Association, vol. 94, no. 446,
pp. 590–599, 1999.

[24] M. Klaas, N. d. Freitas, and A. Doucet, “Toward practical n2 Monte
Carlo: The marginal particle filter,” in Proceedings of the Twenty-
First Conference on Uncertainty in Artificial Intelligence, ser. UAI’05.
Arlington, Virginia, USA: AUAI Press, 2005, p. 308–315.

[25] L. Martino and V. Elvira, “Compressed monte carlo with application in
particle filtering,” Information Sciences, vol. 553, pp. 331–352, 2021.

[26] P. Newson and J. Krumm, “Hidden Markov map matching through noise
and sparseness,” in Proceedings of ACM SIGSPATIAL GIS 2009, New
York, NY, USA, 2009, p. 336–343.

[27] M. Roth, F. Gustafsson, and U. Orguner, “On-road trajectory generation
from gps data: A particle filtering/smoothing application,” in 2012 15th
International Conference on Information Fusion, 2012, pp. 779–786.

[28] P. Davidson, J. Collin, and J. Takala, “Application of particle filters to a
map-matching algorithm,” Gyroscopy and Navigation, vol. 2, no. 4, p.
285, Oct 2011.

[29] K. Kempinska, T. Davies, and J. Shawe-Taylor, “Probabilistic map-
matching using particle filters,” arXiv e-prints, p. arXiv:1611.09706,
Nov. 2016.

[30] L. Moreira-Matias, J. Gama, M. Ferreira, J. Moreira, and L. Damas,
“Predicting taxi-passenger demand using streaming data,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 14, pp. 1393–1402,
09 2013.

[31] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P. . Nordlund, “Particle filters for positioning, navi-
gation, and tracking,” IEEE Transactions on Signal Processing, vol. 50,
no. 2, pp. 425–437, 2002.

[32] J. Alenlöv and J. Olsson, “Particle-based adaptive-lag online marginal
smoothing in general state-space models,” IEEE Transactions on Signal
Processing, vol. 67, no. 21, pp. 5571–5582, 2019.

[33] W. R. Gilks and C. Berzuini, “Following a moving target—Monte Carlo
inference for dynamic Bayesian models,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 63, no. 1, pp. 127–146,
2001.

[34] F. Lindsten, P. Bunch, S. S. Singh, and T. B. Schön, “Particle ancestor
sampling for near-degenerate or intractable state transition models,”
2015.

Algorithm 6 Backward Simulation

0: Input marginal filtering samples {x̃(k)t , w̃
(k)
t }Nk=1 for t =

0, . . . , T , bound ρ ≥ p(xt|xt−1) and the maximum num-
ber of rejections to attempt R.

1: Resample {x̃(k)T , w̃
(k)
T }Nk=1 → {x

(i)
T }Ni=1

2: for t = T − 1, . . . , 0 do
3: for i = 1, . . . , N do
4: for r = 1, . . . , R do
5: Sample c∗ ∼ Categorical

(
{w̃(k)

t }Nk=1

)
6: Sample u ∼ U(0, 1)

7: if u < p(x
(i)
t+1|x̃

(c∗)
t)/ρ then

8: Accept c∗

9: break
10: end if
11: end for
12: if a sample c∗ was accepted then
13: Set x(i)t = x̃

(c∗)
t

14: else
15: Calculate interacting weights and normalise in k

w
(k←i)
t ∝ p(x(i)t+1|x̃

(k)
t)w̃

(k)
t k = 1, . . . , N .

16: Sample ci ∼ Categorical
(
{w(k←i)

t }Nk=1

)
17: Set x(i)t = x̃

(ci)
t

18: end if
19: end for
20: end for
21: Output unweighted sample {x(i)0:T }Ni=1 approximating

p(x0:T |y0:T).

	Introduction
	Background and Related Work
	Particle Filtering and Path Degeneracy
	Marginal Fixed-Lag
	Offline Smoothing
	Online Smoothing

	Fixed-lag Particle Stitching
	Backward Simulation
	Fixed-lag Forward Simulation - Intractable
	Fixed-lag Forward Simulation - Tractable
	Rejection Sampling

	Sampling from p(xT-L-1:T|y0:T)
	Particle Filter
	Partial Backward Simulation

	Map-Matching
	Model Variables
	Model Distributions
	Optimal Proposal
	Fixed-lag Particle Stitching

	Simulations
	Synthetic Data
	Real Data

	Discussion
	References

