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Abstract— After sixty years of quantitative biophysical mod-
eling of neurons, the identification of neuronal dynamics from
input-output data remains a challenging problem, primarily
due to the inherently nonlinear nature of excitable behaviors.
By reformulating the problem in terms of the identification of
an operator with fading memory, we explore a simple approach
based on a parametrization given by a series interconnection
of Generalized Orthonormal Basis Functions (GOBFs) and
static Artificial Neural Networks. We show that GOBFs are
particularly well-suited to tackle the identification problem, and
provide a heuristic for selecting GOBF poles which addresses
the ultra-sensitivity of neuronal behaviors. The method is
illustrated on the identification of a bursting model from the
crab stomatogastric ganglion.

I. INTRODUCTION

This paper explores the potential of a simple parametriza-
tion for the identification of a nonlinear system that can be
represented as the feedback interconnection between an inte-
grator and an operator with fading memory [3], as shown in
Figure 1. Our interest in this particular structure is that it en-
compasses most biophysical models of neuronal circuits [4],
[5]. In such models, the integrator represents the neuronal
membrane model, whereas the operator with fading memory
represents the input-output mean-field relationship between
voltage and the internal currents arising from the opening and
closing of myriad ion channels. Feedback between these two
components destroys the fading memory property, and indeed
this property is ruled out by observed neuronal behaviors
such as excitability, autonomous oscillations, and chaos.

The motivation to preserve the biophysical decomposition
of Figure 1 in a system identification setting is obvious: the
identification of nonlinear systems with fading memory is
a mature topic [16], [26], [25], whereas the identification
of feedback systems lacking this property is challenging. In
the latter case, it is difficult to obtain any guarantees on
the behavior of the identified system. While the availability
of noiseless state measurements allows some results to be
established [19], internal neuronal states cannot be measured.
This limitation poses further issues concerning model iden-
tifiability [28] and optimization tractability [1]. Furthermore,
the lack of fading memory prohibits the use of contraction
constraints recently advocated to improve the trainability of
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Fig. 1. The general model structure of a neuronal system.

recurrent models [23]. To avoid some of these difficulties,
we explore directly identifying the nonlinear fading memory
component using a feedforward parametrizaton with univer-
sal approximation properties: the series interconnection of
Generalized Orthonormal Basis Functions (GOBFs) with a
static Artificial Neural Network (ANN) nonlinearity.

The contributions of the present paper are the following:
we show how the problem of neuronal system identification
can be cast in terms of a problem of identifying a fading
memory operator; we present a proof that the series inter-
connection of GOBFs with ANNs implements a universal
approximator; and we provide a heuristic for choosing GOBF
poles to identify neuronal systems, based on the input-output
property of ultrasensitivity [6], [9].

The paper is structured in the following way: In Section
II, we formulate the identification problem and argue that the
model class of Figure 1 encompasses most neuronal systems.
In Section III we prove that the proposed model structure is
a universal approximator of fading memory operators and
discuss how to choose the poles of the GOBFs for neuronal
systems. In Section IV, we illustrate how the model structure
can be used to identify a bursting neuronal model.

II. PROBLEM STATEMENT

In this section, we introduce the general problem of
neuronal system identification. We restrict the treatment in
this paper to single-input single-output systems. We write
Zy ={0,1,...} and N={1,2,...}. The set R(Z,) is the
set of real-valued sequences defined on Z,, and ¢, (Zy) is
the set of all real-valued bounded sequences defined on Z .

A. Neuronal systems

A neuronal system dictates the evolution of the cellular
membrane potential of a neuron, denoted by v € R. The
voltage v changes in time due to the flow of ionic currents
through the membrane, which can be reasonably represented
by a capacitor. Thus any discrete-time single-compartment
biophysical neuronal system has the form

Vg+1 — Uk

7 = —yYk + ik (D



where ¢ > 0 is the membrane capacitance, t; > 0 is a
sampling period, i; € R is an external applied current, and

Y = (Finc¥)k )

represents the aggregate internal ionic currents traversing the
neuronal membrane (we assume forward-Euler discretiza-
tion of the physical system). The time-invariant operator
Fit : lo(Zy) — R(Z.y) represents the dynamics of ion
channels embedded in the membrane, and it is the accurate
modeling of this operator which allows neuronal behavior to
be successfully reproduced in neurocomputational studies.

B. The internal current operator has fading memory

The operator Fj, is a mean-field model of complex molec-
ular events dictating the opening and closing of ion channels.
Ever since the pioneering work of Hodgkin and Huxley
[11], ion channel kinetics have been primarily modeled
using step response experiments implemented by means of
the so-called voltage-clamp technique. It is the design of
such experiments that led to the foundation of biophysical
modeling in neurophysiology. In an experimental setting, the
voltage output v is measured, and the experimenter has
full control over the current input ¢;. The voltage-clamp
experiment implements a high-gain output feedback law

ix = y(vk — 1) 3)

where 7, is a reference signal chosen by the experimenter,
and v > 0 is the feedback gain. When the voltage-clamp
experiment is carried out in a biological neuron, it is observed
that for any sufficiently high gain v > 0, the measured vy,
closely tracks the reference r;; furthermore, the tracking
error decreases as ~y is increased. This is in stark contrast
with the open-loop behavior of the neuron, as illustrated in
Figure 2. The behavior observed experimentally confirms the
basic capacitive modeling assumption behind (1): it is the
behavior of a system with relative degree one, whose inverse
(the system with input v; and output ¢;) can be obtained at
the limit of high gain v — oo.

Furthermore, the voltage-clamp experiment indicates that
the system inverse, and thus also Fj,, have fading memory,
in the following sense:

Definition 1 ([22], [3]). For arbitrary 5 > 0, con-
sider the class Us C f£oo(Zy) of sequences u such that
Supiez, [uk| < B. The system operator F' : {o(Z4) —
R(Z4) is said to have fading memory on Ug if there
exists a decreasing sequence w Zy — (0,1] with
limg_, oo wr = 0 such that given an ¢ > 0, there isa § > 0
such that max,,c(0,1,....k} [|Um — UmllccWr—m < 0 implies
|(Fu)i, — (F'a)y| < eforevery u, 4 € Ug and every k € Z.

In words, a system operator has fading memory if “two
inputs which are close in the recent past (but not necessarily
close in the remote past) yield outputs which are close in the
present” [3]. In particular, fading memory operators share
many properties with stable linear systems. An example of
this behavior can be seen in Figure 2 (left column): the
response of Fj, to a step input is reminiscent of that of

/§ 500 |
2 0 S 0t
& —500 | ®
= —65 (%44'%
/;ﬁ 500 |
> 0 < 0
& —500 _r_ =
= 65 P
= 500 |
T s 0
g —500 |
= —65 pA———————
725 A
6
3 —a5 | s 4
2
—65 f f f f f
0 10 20 30 0 50 100 150 200
kts [ms] kts [ms]

Fig. 2. Left column: Typical aggregate ionic current behavior in a biological
neuron under voltage-clamp. Three different experiments are shown in
which the reference 7y is stepped to —45, —35 and —25 mV at 10 ms.
Right column: Typical behavior of a neuron (without voltage-clamp) subject
to steps of different amplitudes at the input 75. Voltages are in [mV], and
currents are in [pA /cm?2].

a linear system, and its output tends to a unique steady-state
value whenever its input tends to a constant as k — oo.

While the fading memory of Fi,; can be assumed from em-
pirical evidence, it can also be derived from continuous-time
biophysical conductance-based neuronal models. In [5], it is
shown that all such models have an exponentially contracting
internal dynamics (as defined by [17]), and that choosing a
sufficiently small ¢4 preserves this property in the discretized
system. Ultimately, this implies that in conductance-based
models, the operator Fi,, has fading memory with an expo-
nentially fast fading rate.

C. Identification problem

We pose the following problem statement: Identify the
input-output behavior of the system (1)-(2), where the opera-
tor Fyy, has fading memory on Ug. In other words, we search
for a model that accurately reproduces the set of admissible
input-output trajectories (i,v) € R(Z )? of the system being
identified.

In this paper, we focus on the question of model structure
selection, and ignore the issue of noise. Noise plays an
important role in neuronal dynamics, and input current
(process) noise is particularly relevant [10]. However, as long
as measurement noise is kept low, the methods discussed in
the next section should not be significantly affected (see [5]
for related results where input noise is taken into account).

III. IDENTIFICATION METHOD

System operators that have fading memory can be uni-
formly approximated by simple classes of nonlinear sys-
tems, called universal approximators. The parametrization
of fading memory operators has a long history going back
to Volterra series with notable contributions by Boyd and
Chua in [3] and a specific link to neuroscience (though in a



different context from the present paper) by Maas and Sontag
[18]. To tackle the problem stated in Section II-C, we propose
to use the “direct approach” of closed-loop identification
[7] and directly identify Fj,; with a model structure based
on the series interconnection of Generalized Orthonormal
Basis Functions (GOBFs) [21] and static Artificial Neural
Networks (ANNSs). This structure was first proposed by [26].
In this section, we first define this structure and show that it
has universal approximation power; then, we discuss how it
can be tailored to identify neuronal models.

A. A model structure for identifying Fj,;
We define an ANN with logistic nonlinearities as follows:

Definition 2. Let L € N be the number of layers in the
network. For ¢ = 1,...,L, let M® & N be the number
of activation functions in the ¢t hldden layer, and M (©) and
M(E+1) the number of inputs and outputs of the network, re-
spectively. Given the weight matrices W) € RM“""xM®

and the bias vectors b € RM(H”, let
y O = wOuO 4 p0 4)
where / =0,1,..., L, and
ult) = (1 +exp( (6= 1))) B (5)
where ¢ = 1,...,L and a = 1,...,M®. We define an

artificial neural network nonlinearity 9 : u — y by setting
u® =y and y := y"), so that that M(®) = dim(u) and
MY = dim(y).

Sandberg et al. showed that single-layer time-delay neu-

ral networks constitute a universal approximator for fading
memory operators [24, Theorem 1] and [22, Proposition 1]:

Lemma 1. Consider a time-invariant causal operator F' :
loo(Zy) — R(Zy) with fading memory on Ug. For n € N,
let H™ : 0o (Z4) — R(Z4) ™V be given by

(H(")v)k = [Vks k=1, -, V] | (6)

and let 1) be a neural network with L =1, M(©) = n+1 and
M®) = 1. Then, there are n, M) > 0 and real parameters
WO WO O bM) such that for any € > 0,

(Fole— o(HMo)) <e,  keZ,
for all v € Ug.

To improve on the time-delay model structure above, we
follow [26] and replace (6) by a set of GOBFs:

Definition 3. (see [21]) Let {&o,&1,&2, ...} be a sequence
of (possibly complex) poles such that |§;| < 1 for all 7 €
Z . The set of Generalized Orthonormal Basis Functions is
defined by the causal transfer functions

aV 1= 6l

Go(z) =z P
e i (7
1_‘€z|2 11*'5 i =

Gi(z) = Py Hz_g] =1,2,...

7=0

withd=0ord=1.

Note that when d = 1 and all the poles in {&}icz,
are equal to zero, we recover the set of time-delay basis
functions. The utility of GOBFs comes from the fact that
poles are allowed to be distinct, and thus the choice of poles
may be adapted to the system which is being approximated.
The set of GOBFs may form a basis for various system
spaces. In particular, a simple condition ensures that it
is fundamental' in ¢1(Z, ), the space of causal discrete-
time LTI systems whose impulse responses are absolutely
integrable [2, Corollary 10]:

Lemma 2. The set (7), with d = 1, is fundamental in {1 (Z.)
if k=% = O(1 — [&]) for some 0 < a < 1.

The next result, which, as far as we know, has not been
previously published, generalizes Lemma 1:

Theorem 1. Consider a time-invariant causal operator F :
loo(Zy) — R(Z4) with fading memory on Ug. Let {&;}icz.,
be a sequence of poles satisfying the condition stated in
Lemma 2. For m € N, let G : (o (Zy) — R(Z, )"+
be defined by

(G ) = [(Gov)k, (G10)k, -, (Gv)k] T (8)

with the G; being the operators associated to (7) with d = 1.
Let 1 be a neural network with L > 1, MO = m+1
and MEHY) = 1. Then, there are m, MY > 0 and real
parameters WO b (¢ =1, ... L) such that for any ¢ > 0,

(Fo)k —v((G™o)) <e,  k€Zy (9
for all v € Ug.
Proof. See Appendix A. O

To obtain a model structure that satisfies Lemma 2 and
allows for a direct term from input to output, we fix a finite
sequence {A1, A2, ..., A, }, a number n.p € N, and set &, =
Oand &qjp = A, fori=1,...,nand j =0,...,ngp — 1.
Let,

G(Z) = [GO(Z), G1(2)7 ey Gnn,ﬂcp (Z)]T

where the SISO transfer functions G;(z) are given by (7),
with d = 1. Let ¢(-;0) be an ANN specified by L and M,
with the vector of parameters § encompassing the elements
of the matrices W) and the elements of the bias vectors
b(). Then the model structure is given by

9 (0) = ¥(G(g)vx; 0)

where q is the forward shift operator.

(10)

B. GOBF pole selection for neuronal identification

Since the choice of GOBF poles {¢;} in the model struc-
ture is arbitrary, we pose the question of how to choose them
in order to minimize the number of basis functions required
to approximate (2) to a given tolerance. If the operator Fjy

'A fundamental set in a normed space X is a subset M C X whose
span is dense in X [14].



were linear and finite dimensional, with a transfer function
Fin(s), then the obvious choice would be to place {;} as
close as possible to the poles of Fiy(s). However, since Fjy
is nonlinear and, in general, infinite-dimensional, it is not
immediately clear how to choose {{;}. With that in mind,
we now consider a heuristic for choosing the GOBF poles,
keeping the discussion at the conceptual level.

The heuristic involves choosing the GOBF poles so as to
ensure that the linearized model structure

O (u; 0)

09(0) = ou

G(q)dvg
u=G(1)v

(whose poles are {¢;}) is able to approximate well the small-
signal behavior of Fjy around a particular setpoint v € R.
This is the behavior of Fj, subject to an input vy = v +
Ok, k > 0, where || has a small amplitude. To identify
excitable neuronal systems, the choice of the setpoint ¥ can
be informed by the closed-loop nature of (1)-(2).

We argue that this setpoint ¥ should be a point of ultra-
sensitivity [9] of the system (1)-(2). To explain this feature
of neuronal behaviors, we consider a case in which the
fading memory operator Fi,; has a smooth finite-dimensional
realization. Since Fj, has fading memory, when it is subject
to a constant input vy = v, k > 0, its output converges to
a unique constant value i, € R, that is, (Finv)k — %o
as k — oo (see, e.g., [3]). Let dFiy(z;7) be the transfer
function associated to the linearized realization of Fj, at v.
Because v is also an equilibrium of the closed-loop system
(1)-(2) for i, = i+, we can write down the transfer function
of the linearized closed-loop system at v and i, as

ts
c(edwts — 1) 4 ts dFip(eI«ts; )

T (eI 7) = (11)
where w > 0 denotes the frequency variable. Neuronal
systems are characterized by the existence of at least one
point (&, v) where (11) is singular. At such a point, T'(z; D)
has a pole on the unit circle, which, in terms of state-
space dynamics, corresponds to an equilibrium bifurcation
at v (see [13] for a state-space perspective). For system
identification, the most relevant bifurcation occurs at the
equilibrium voltage ¥ = v* where the neuronal behavior
transitions from a constant-steady state to an oscillatory or
chaotic motion. We call v* a point of ultra-sensitivity [9].
Importantly, the point of ultra-sensitivity can be char-
acterized experimentally; this can be done, for instance,
by stepping the input i to different constant values, as
illustrated in Figure 2. The critical role that v* plays in
the dynamics of (1)-(2) suggests that we should place the
GOBF poles as close as possible to the (stable) poles of
dFin(z;v*), since those are the poles that shape the closed-
loop frequency-response (11) at a point of ultra-sensitivity.
This heuristic requires that the poles of dFj,(z;v*) be
identified prior to identifying Fj,,. But since small changes
in the current i; may cause large voltage deviations away
from v*, it is not immediately clear how to achieve that. The
answer lies in voltage-clamp: the output feedback law (3) can
be used to stabilize the system at the voltage v*, suppressing

any oscillations and allowing the use of a low-amplitude
input r; to probe the small-signal behavior of Fj, around v*.
If signal amplitudes are kept low, linear system identification
methods can be applied to the measurements obtained under
the output feedback law (3), leading to estimates for the poles
of dFy(z;v*); these are in turn used to define the GOBFs.

This heuristic leads to a systematic choice for the GOBF
poles that takes into account the ultra-sensitivity of neuronal
systems. Notice that, in principle, a finite-dimensional Fj is
not required. The heuristic is in line with the idea that a pre-
processing linear identification step should be implemented,
if possible, in order to make an informed choice on GOBF
poles for nonlinear system identification [27].

C. Parameter estimation and validation

In practice, given measurements of vy and the input iy,
the system (1)-(2) can be identified by solving

2
mmNZ(”’“*; ) i) a2)

where 7 is used to obtain an estimate of 1/c. Because
Jx(0) is a feed-forward ANN, the above problem can be
efficiently solved with backpropagation algorithms. Once this
is achieved, we can define

Vg1 = O + tn(—0(G(q) 0k 0) + ix)

to obtain a closed-loop identified neuronal model.

Due to the frequent bifurcations happening in a neuronal
model, different metrics are used for validating the subthresh-
old and the superthreshold (i.e., spiking) dynamics of the
model [10, Section 10.3]. Here, we will focus on validating
the latter. This can be done by comparing the spike timings of
the identified model, denoted by ks, with the spike timings of
the validation dataset, denoted by k4 (we assume the timing
of a spike is given by the location of its maximum). Spike
timings define impulse trains (called spike trains) given by
Sk =Dy Ok, and 8 = Zk Oyj,.» where 6;; =1 for i =j
and J;; = 0 otherwise. A measure of spike coincidence can
be defined using the inner product of smoothed spike trains,

13)

N

(5,8) = D (w=s)(k)(w = &) (k),

k=0

where wy, is a smoothing kernel. Here we will use a Gaus-
sian kernel wy = exp(—k2/(2p?))/\/27p?. The angular
separation between the smoothed spike trains, measured by

N
(s,8)4/(8,8)

is a good measure of spike coincidence: A, approaches 1
for very similar spike trains, and O for very different ones.

(14)

1V. EXAMPLE

The purpose of this section is to illustrate the impact
of the choice of basis functions (7) on the identification
of a single-compartment neuron. For this illustration, we
use a neuronal model from the crab stomatogastric ganglion



(STG), a system responsible for producing rhythmic muscu-
lar activity in the crab’s stomach [20]. Neurons in the STG
are capable of bursting autonomously, and, to our knowledge,
they have never been successfully identified using a generic
model structure. To generate data for parameter estimation,
we use a forward-Euler discretization of the conductance-
based STG neuron model described in [8, Figure 1.A.a]; see
also [15, pp. 2318-2319] for the model’s ion channel kinetics.
The model in question is a state-space model with 12 states
representing the membrane voltage and six different types of
ionic currents. It contains over a hundred parameters, which
were originally determined by first using ad-hoc methods
for fitting individual ionic currents, and then hand tuning the
parameters to match the observed neuronal behavior.

We compare the validation performance of the closed-
loop model (13) in two cases: when the basis functions
used to define G(z) are given by time-delays, and when
they are given by GOBFs with poles chosen in accordance
with Section III-B. We denote the basis function vector in
each of these cases by G4 (z) and G&°"(2), respectively. In
both cases, we use the same two-layer ANN parametrization,
with M) = 15 and M@ = 12. Letting nyq be a maxi-
mum time delay, we set G*(z) = [1,271, ...z~ (ma=D]T,
To choose the GOBF poles used to define G&°"(z), for
brevity, we assume knowledge of the local dynamics of
the continuous-time STG model®. It is known that the STG
model starts bursting due to a saddle-node bifurcation close
t0 200 = —0.25 and v = —49 mV. At this equilibrium, the
linearized Fi has poles given by {&5*}—1 11 = {—7.716,
—0.560, —0.179,—0.156, —0.112, —0.074, —0.050, —0.037,
—0.019,—0.018, —0.004}. We define twelve GOBFs (d = 1)
by setting discrete-time poles at o = 0 and &; = 1 4 £,£5°,
with ¢, the sampling time (we use Ny, = 1).

Using t; = 0.0075, we indentify the excitability of the
discretized STG model based on its response vy to the input

1 = —0.5+ ¢, (15)

where ¢}, is a Gaussian white-noise signal such that o] =
20 pA/cm?. We obtain a training and a validation dataset,
both of length Nt; ~ 10s, using two different realizations
of (15). After training® each of the models defined with G*
and G&°P, we simulated the resulting system (13) with the
validation input, obtaining %¢¢ and f}%‘)b , respectively.
Figure 3 shows the validation voltage v, and the simulated
voltages 9t and ﬁ%Obf during; we have used nyq = 12 so that
both models have the same number of basis functions. The
spike coincidence metric (14), computed with p = 3 using
the full validation dataset*, was A3z = 0.42 for the model
with time-delays, and A3 = 0.73 for the model with GOBFs.

2For numerical simulations where the poles of dFjy(z;v) are identified
using output feedback and linear identification methods, see [4, Section 4.6].

3We trained the ANNs of the two model structures by solving (12)
with the Levenberg- Marquadt backpropagation algorithm. The models were
trained with ten different sets of randomly selected initial parameters, and
the best fitted models were used in the results. To eliminate transient effects,
we discarded 1s of data from the training dataset.

4The choice of p = 3ms for the smoothing kernel standard deviation
was based on the mean width of the observed spikes, which was of 6 ms.

(mV]

~gobf
k

Vg,V

vk, O} [mV]

kts [ms]

Fig. 3. Top: validation vy, of the true STG model (blue, solid) and output
ﬁ%‘)bf of the model defined with twelve GOBFs (red, dashed). Bottom:

validation vy of the true STG model (blue, solid) and output v,zd of the
model defined with nyq = 12 time delays (red, dashed).

Thus it can be said regarding the model structure (10) that
using GOBFs with judiciously chosen poles leads to better
results than using time delay basis functions. In particular,
the model obtained with a maximum delay of nyg = 12
samples can spike, but it cannot burst. This highlights the
importance of long timescales in bursting models.

V. CONCLUSION

In this paper, we have shown that GOBFs and static ANNs
can be used to efficiently solve the problem of identifying
biophysical neuronal systems. One of the main advantages
of the method is its simplicity: the estimation of model
parameters can be done with off-the-shelf backpropagation
algorithms. In addition, the method does not rely on mea-
surements of internal states of the neuron — something which
is, in practice, impossible to obtain.

The method also dispenses entirely with the conductance-
based formalism, in which optimization of all model param-
eters may become an intractable problem. This comes, of
course, at the cost of biophysical interpretability. In fact,
further work on this topic should aim to understand how
much the model structure discussed here can be improved
so as to provide more interpretability while retaining its
capabilities as a universal approximator.

Finally, we point out that while the use of feedforward
ANN:Ss for the identification of nonlinear systems is classical,
such networks can only be guaranteed to approximate fading
memory operators, de facto excluding the excitable nature
of neuronal systems. Our approach shows that by retaining
the biophysical feedback structure of the model in the
identification step, such a limitation can be overcome.

APPENDIX

A. Proof of Theorem 1

We first prove the result for a single-layer ANN (L = 1)
by modifying the input weights of the ANN obtained from
Lemma 1. Let ¢ > 0 be given. By Lemma 1, there is a



number n = n(e) > 0, and parameters M) > 0 and
Wff? ) e RMWx(nt1), defining an artificial neural network
¢ : ROTD 5 R such that

|(Fo)r = w((H™w)i)| < eo,

for all v € Ug. Let W(f,?f) c RM mX(mH), and consider the
vector of transfer functions

QU (2)

By Lemma 2, for every n and every €; > 0, there exists an
m =m(n, e ) > 0, and a certain W(bf) such that

keZy

— WO H™ (2) - WG (2)

Hqgn,m)ne1 Z| (n, m) | <e, i = 1,...,M(1),
where qfn’m) is the impulse response of the i element

of Q™ (z). Now, let RM™ 5 R be defined by
w(WfErO )u) = 1(u). Since the activation functions (5) are
globally Lipschitz, there exists a constant [y such that
n 0 m
[P (H0)i) = G(Wed (G0))|
< o[ Wi (H ™ v), — Wi (G
= bl Q"™ v)illos

< lomax g™ e,

0)klloo

< lyelB

for all £k € Z,. Here, we have used the fact that, for an
arbitrary LTI system Q : £, — ¢, max;—1, . ||¢lle, is
the induced system gain [29], and that the elements of Uz
are bounded by (. From the above inequalities, we obtain

[(Fo)i — DWW (G 0))] < [(Fo)y — w((H ™))
HO((H™v)) — WG o))
<e€ +lyperp

for all k € Z and all v € Ug. Thus given € > 0, we can
choose €9 < €/2 and €, < €/(2lo/3), and there exists a large
enough m such that the ANN (W, ogf) ) satisfies (9).

This proves the result for L = 1. The fact that the result
also holds for a multi-layer ANN (L > 1) follows from
the fact that multi-layer ANNs with continuous activation
functions are capable of arbitrarily accurate approximation
(in the uniform norm) to any continuous function over a
compact set [12, Theorem 2.1]. A multi-layer ANN can thus
be used to approximate the single-layer network obtained
above to arbitrary precision, concluding the proof.

[vllew
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