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Abstract
Aims/hypothesis Few studies have investigated the relationship
between predefined dietary patterns and type 2 diabetes
incidence; little is known about the generalisability of these
associations. We aimed to assess the association between
predefined dietary patterns and type 2 diabetes risk in European
populations.
Methods From among a case-cohort of 12,403 incident
diabetes cases and 16,154 subcohort members nested within
the prospective European Prospective Investigation into
Cancer and Nutrition study, we used data on 9,682 cases and
12,595 subcohort participants from seven countries. Habitual
dietary intake was assessed at baseline with country-specific
dietary questionnaires. Two diet-quality scores (alternative
Healthy Eating Index [aHEI], Dietary Approaches to Stop
Hypertension [DASH] score) and three reduced rank
regression (RRR)-derived dietary-pattern scores were
constructed. Country-specific HRs were calculated and
combined using a random-effects meta-analysis.
Results After multivariable adjustment, including body size,
the aHEI and DASH scores were not significantly associated
with diabetes, although for the aHEI there was a tendency
towards an inverse association in countries with higher mean
age. We observed inverse associations of the three RRR-
derived dietary-pattern scores with diabetes: HRs (95% CIs)
for a 1-SD difference were 0.91 (0.86, 0.96), 0.92 (0.84, 1.01)
and 0.87 (0.82, 0.92). Random-effects meta-analyses revealed

heterogeneity between countries that was explainable by
differences in the age of participants or the distribution of
dietary intake.
Conclusions/interpretation Adherence to specific RRR-
derived dietary patterns, commonly characterised by high
intake of fruits or vegetables and low intake of processed
meat, sugar-sweetened beverages and refined grains, may
lower type 2 diabetes risk.
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Abbreviations
aHEI Alternative Healthy Eating Index
CIE Change in estimate
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DASH Dietary Approaches to Stop Hypertension
EPIC European Prospective Investigation into Cancer and

Nutrition
HEI Healthy Eating Index
NHS Nurses' Health Study
ONQI Overall Nutritional Quality Index
RRR Reduced rank regression

Introduction

Dietary and lifestyle approaches have a high potential for the
primary prevention of type 2 diabetes [1]. In nutritional
epidemiology, dietary-pattern analysis has gained particular
interest because it reflects the complexity of dietary intake.
Two approaches are generally distinguished for defining dietary
patterns [2]. The hypothesis-oriented approach defines diet-
quality scores based on existing scientific evidence for chronic
diseases. Examples include the Healthy Eating Index (HEI) [3],
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the Diet-Quality Index [4] and the alternative Healthy Eating
Index (aHEI) [5]. In contrast, the exploratory approach uses the
dietary data at hand, applying statistical methods such as factor
analysis or cluster analysis to reveal major prevailing dietary
patterns in a study population. Reduced rank regression (RRR)
is a mixture of a hypothesis-oriented and an exploratory
approach and is aimed at identifying food group combinations
that explain a maximum of variation in (disease-related)
response variables [6]. Therefore, in addition to the
hypothesis-based definition of diet-quality scores, the RRR
method may be especially useful in identifying diabetes-
related dietary patterns.

One of the most extensively studied diet-quality scores is the
Mediterranean dietary-pattern score. Overall, studies suggest
that adherence to the Mediterranean dietary pattern is related
to lower diabetes risk [7–10]. Besides theMediterranean dietary
pattern, there are a limited number of studies on individual diet-
quality scores and diabetes incidence. The few available data
suggest that adherence to the aHEI [11], the Dietary Approaches
to Stop Hypertension (DASH) diet [12, 13], the HEI [11] and
the Overall Nutritional Quality Index (ONQI) [14] may lower
diabetes risk. No clear associations were observed for the
Recommended Food Score [12], the Diet-Quality Index [15]
and diet-quality scores, reflecting guidelines fromGermany [16]
and Australia [17]. Most of these studies were conducted in
American populations [11–15] and it has been suggested that
associations may differ between heterogeneous populations
such as different ethnic groups [13, 15]. Several RRR-derived
dietary patterns have been associatedwith diabetes risk [18–21],
but it is unknown whether these dietary patterns are related to
risk in different populations.

We reconstructed selected predefined diet-quality scores
(aHEI and DASH), as well as RRR-derived dietary patterns that
were originally derived in other populations, and evaluated their
associationwith diabetes incidence in themulti-centre European
Prospective Investigation into Cancer and Nutrition (EPIC)-
InterAct study. We also assessed the degree of heterogeneity
in the associations between countries involved in EPIC.

Methods

EPIC-InterAct study The EPIC-InterAct study is a case-
cohort study nested within the prospective EPIC study [22].
In brief, EPIC includes 521,448 adults aged 25–79 years who
were recruited between 1991 and 2000 at 23 centres in ten
European countries participating in EPIC [23–25]. In the
majority of the EPIC study centres, participants were recruited
from the general population, with some exceptions [24]: the
French cohort was based on members of a health insurance
scheme for teachers; the Italian and Spanish cohorts included
blood donors; participants from Utrecht (the Netherlands) and
Florence (Italy) were recruited via a breast cancer screening

programme; in Oxford (UK) half of the cohort were vegans,
lacto-ovo vegetarians or fish eaters, and in France, Norway,
Utrecht (the Netherlands) andNaples (Italy) only womenwere
recruited [24]. Each EPIC centre obtained individual written
informed consent and local ethics approval.

Within the InterAct project, incident cases of type 2
diabetes occurring in the EPIC cohort were ascertained and
verified. All EPIC countries except Norway and Greece
contributed to EPIC-InterAct (n =455,680). Individuals
without stored blood (n =109,625) or without information
on reported diabetes status (n =5,821) were excluded, leaving
340,234 participants eligible for inclusion in EPIC-InterAct
(corresponding to 3.99 million person-years follow-up).

Case-cohort construction and case ascertainment A centre-
stratified, random subcohort of 16,835 individuals was
selected. After exclusion of 548 individuals with prevalent
diabetes and 133 with uncertain diabetes status, the subcohort
included 16,154 individuals for analysis. Because of random
selection, this subcohort also included a random set of 778
individuals who had developed incident type 2 diabetes
during follow-up (Fig. 1).

Ascertainment of incident type 2 diabetes involved a review
of the existing EPIC datasets at each centre using multiple
sources of evidence including self-report, linkage to primary-
care registers, secondary-care registers, medication use (drug
registers), hospital admissions and mortality data. Information
from any follow-up visit or external evidence with a date later
than the baseline visit was used. Rather than self-report, cases in
Denmark and Sweden were identified via local and national
diabetes and pharmaceutical registers [26] (www.ssi.dk/
Sundhedsdataogit/Registre/Diabetesregisteret.aspx, accessed 11
October 2013) and hence all ascertained cases were considered
to be verified. Some cases in centres other than Denmark and
Sweden were based on only one source of information. To
increase the specificity of the definition for these cases, we
sought further evidence including review of individual medical
records in some centres. Follow-up was censored at the date of
diagnosis, 31 December 2007 or the date of death, whichever
occurred first. Altogether, 12,403 verified incident cases were
identified [22]. As stated earlier, 778 of these 12,403 incident
cases were also subcohort members, due to the random selection
of the subcohort. Thus, the EPIC-InterAct study involves 27,779
participants (16,154 subcohort members; 12,403 incident cases
including 778 cases within the subcohort; Fig. 1).

Study population for the present analysis Of these 27,779
participants, we excluded those from study centres in Italy
and Umeå (Sweden) (n =5,238) because these centres did not
obtain specific intake data on diet soft drinks, breakfast cereals
and dressing sauces (Italy) or diet soft drinks and cabbages
(Umeå), which are important dietary components of the
selected dietary-pattern scores. Specifically for analyses on
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DASH, the UK centres were excluded due to the unavailability
of intake data on vegetable oils (n =1,857).We further excluded
participants with missing data on diet or covariates (n =925),
resulting in a final study population of 21,616 (9,682 cases;
12,595 subcohort members with an overlap of 661 subcohort
members who had developed incident type 2 diabetes; Fig. 1).
The excluded participants were more likely to be slightly older,
women, slightly less overweight, less physically active, less
educated and a current or former smoker and they were less
likely to have a family history of diabetes. The proportion of
participants with HbA1c ≥6.5% (47.5 mmol/mol) was slightly
higher among excluded participants.

Dietary assessment and selection of dietary-pattern scores
Usual food intake during the past 12 months was assessed at
baseline with the use of quantitative or semi-quantitative
dietary questionnaires, which were developed and validated
locally [24, 27]. The reproducibility of these questionnaires
was generally good in the EPIC centres, while the relative
validity ranged from moderate to good as also observed in
other validity studies conducted by independent research
groups [28, 29]. Individual food items were classified into
food groups based on nutrient composition. Definitions and
contents of the food groups considered for the present analysis
are shown in electronic supplementary material (ESM)
Table 1. Intakes of specific nutrients and total energy were
derived with the standardised EPIC Nutrient Database [30].

Dietary patterns considered in this study were selected from
the literature. Criteria for selection were availability of the
necessary intake data to construct the dietary patterns in the
EPIC-InterAct study and presence of scientific evidence
indicating that the dietary pattern had a potential relevance for
diabetes risk. We have selected two widely used diet-quality
scores, the aHEI [5] and the DASH diet [31, 32]. The relation of
the Mediterranean dietary pattern to diabetes in EPIC-InterAct

has been specifically addressed previously [9] and hence not
investigated here.We could not evaluate the HEI and the ONQI
as it was not possible to appropriately reflect these indices with
the EPIC-InterAct dietary data. We selected three RRR-derived
dietary patterns: RRR1 was derived in the American Nurses'
Health Study (NHS) using six inflammatory markers as
responses [20]; RRR2 was identified in the German EPIC-
Potsdam study with HbA1c, HDL-cholesterol, C-reactive
protein (CRP) and adiponectin as responses [18]; RRR3 was
identified in the British Whitehall II study with the HOMA-IR
index as response [19]. An RRR dietary pattern derived with
BMI as response along with fasting glucose, triacylglycerols,
HDL-cholesterol and hypertension [21] was not considered
because we aimed to assess the association of dietary patterns
with diabetes independent of body size. Tables 1 and 2 show the
individual dietary components of the dietary-pattern scores
used in this study and their weighting in the calculation
of the scores, respectively. A detailed description of the
construction of the dietary-pattern scores in EPIC-
InterAct is given in ESM Methods.

Assessment of other covariates Standardised questionnaires
were used at baseline to collect information on sociode-
mographic characteristics and lifestyle including age, education
level, smoking status, occupational and leisure-time physical
activity and history of previous illness. Height, weight and
waist circumference of participants were obtained by trained
staff during the baseline examination using standardised
protocols [33]. However, for participants from France and some
participants from Oxford (UK), self-reported anthropometric
data were collected (4% of EPIC-InterAct study).

Statistical analysis All dietary-pattern scores were transformed
to z scores, based on subcohort distributions. Median dietary-
pattern scores by country were computed to quantify country-

EPIC participants 
eligible for inclusion 

in EPIC-InterAct: 
n=340,234

Random subcohort:
n=16,835

Exclusions: n=681
(Prevalent diabetes 

[n=548], uncertain diabetes 
status [n=133])

Ascertained T2D cases: 
n=17,928 

Subcohort:
n=16,154

Verified incident T2D 
cases: n=12,403

Exclusions: n=5,525
(Denmark [n=2,577], 
not diabetic [n=838], 

prevalent diabetes [n=421], 
uncertain diabetes status 

[n=1,689])

Verified incident T2D 
cases: n=9,682

Subcohort:
n=12,595

EPIC-InterAct Study

Study population for present analysis

Exclusions for present 
analysis: n=3,559 

(Italy and Umea [Sweden] 
[n=3,034], missing data for 
diet or covariates [n=525])

Exclusions for present 
analysis: n=2,721 

(Italy and Umea [Sweden] 
[n=2,302], missing data for 
diet or covariates [n=419])

n=778 verified incident T2D cases in subcohort

n=661 verified incident T2D cases in subcohort

Fig. 1 Construction of the EPIC-
InterAct case-cohort study and
the study population for the
present analysis. T2D, type 2
diabetes
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specific adherence to the dietary patterns. The UK cohorts
fromNorfolk (population-based) and Oxford (high proportion
of vegans, vegetarians and health-conscious individuals) were
considered separately. We performed Cox proportional
hazards analysis, weighted according to the Prentice method
[34], to study the association between the dietary-pattern
scores and the hazard of type 2 diabetes. Age was used as
underlying time scale. Four models were applied, all stratified
by study centre and integers of age (years), but with different
levels of adjustment. Model 1 was adjusted for sex. Model 2
included further adjustment for physical activity (classified
into ‘inactive’, ‘moderately inactive’, ‘moderately active’ and
‘active’ according to the validated Cambridge Physical
Activity Index [35]), smoking status (never, former, current),
educational level (none, primary, technical/professional,
secondary, university) and total energy intake (continuous).

We also applied additional adjustment for BMI (model 3) and
BMI and waist circumference (model 4, both continuous).

Heterogeneity among countries in the association of the
dietary-pattern scores with diabetes risk was studied by
computing country-specific risk estimates and pooling these
with random-effects meta-analyses. The two UK cohorts from
Norfolk and Oxford were considered separately in the meta-
analyses. As our aim was to verify associations of dietary
patterns with diabetes, which should be done in independent
cohorts, we did not use the Potsdam cohort in the meta-analysis
for RRR2 because this pattern was derived in this cohort [18].
To explore potential sources of heterogeneity, country-specific
mean age and BMI were related to the log-transformed HRs in
subsequent meta-regression analyses [36].

Several sensitivity analyses were performed. To minimise
reverse causality caused by a change in diet due to a prediabetic

Table 1 Individual dietary components of the aHEI and the DASH dietary patterns considered in the analysis, EPIC-InterAct study

Component of dietary pattern Range of points Criterion for lowest points Criterion for highest points

AHEIa

Vegetables 0–10 0 servings/dayb ≥5 servings/dayb

Fruits 0–10 0 servings/dayb ≥4 servings/dayb

Nuts 0–10 0 servings/dayb ≥1 serving/dayb

Ratio of white meat to red meat 0–10 0 ≥4
Cereal fibre 0–10 0 g/day ≥15 g/day

Ratio of PUFA to SFA 0–10 ≤0.1 ≥1
Alcohol

Men 0–10 0 or >3.5 drinks/dayb 1.5–2.5 drinks/dayb

Women 0–10 0 or >2.5 drinks/dayb 0.5–1.5 drinks/dayb

DASHc

Grains

Total grains 0–5 0 servings/dayb ≥6 servings/dayb

Fibre content of grains 0–5 No grain intake Quintile 5 of subcohort distribution

Vegetables 0–10 0 servings/dayb ≥4 servings/dayb

Fruits 0–10 0 servings/dayb ≥4 servings/dayb

Dairy products

Total dairy products 0–5 0 servings/dayb ≥2 servings/dayb

Fat content of dairy products 0–5 No dairy intake Quintile 1 of subcohort distribution

Meat, poultry, fish 0–10 ≥4 servings/dayb ≤1 serving/dayb

Nuts, seeds, legumes 0–10 0 servings/dayb ≥4 servings/dayb

Fats and oils 0–10 ≥6 servings/dayb ≤3 servings/dayb

Sweets 0–10 ≥10 servings/weekb ≤5 servings/weekb

A detailed description of the construction of the dietary-pattern scores is provided in the ESM Methods
a To create the aHEI score, points between 0 and 10 were assigned for each component according to the participant's intake and then summed.
Intermediate intakes were scored proportionately between 0 and 10
b Serving sizes are defined as follows: vegetables, fruits, 125 g; nuts, seeds, 30 g; grains, 50 g;milk, yoghurt, 150 g, cheese, 45 g; meat, poultry, fish, 30 g;
legumes, 100 g; fats, oils, 10 g; chocolate, 20 g; ice cream, 50 g; sugar-sweetened soft drinks, 150 g; alcoholic drink, drink containing 5 g pure ethanol
c To create the DASH score, points between 0 and 10 were assigned for each component according to the participant's intake and then summed. Intermediate
intakes were scored proportionately between 0 and 10. The grain and dairy components were separated into two items respectively, with one item scoring the
absolute intake amount and the other item scoring the fibre content of the consumed grains and the fat content of the consumed dairy products

PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids
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condition or chronic disease, we excluded participants with
baseline HbA1c ≥6.5% (47.5 mmol/mol; 1.5% of the study
population were missing values for HbA1c), incident cases
diagnosed with diabetes within the first 2 years of follow-up
and participants with baseline cardiovascular disease
(myocardial infarction, stroke) or self-reported hypertension
or hyperlipidaemia. To investigate potential effects of
misreporting, we excluded participants in the top or bottom
1% of the energy intake/energy requirement ratio. Possible
confounding by diabetes family history was addressed by
further adjusting for history of diabetes in a first-degree relative
(information not available in the Spanish centres, Oxford [UK]
or Heidelberg [Germany]).

We investigated the importance of individual components of
the dietary patterns for diabetes risk by sequentially subtracting
components from the score. The change in estimate (CIE) was
calculated as the difference between the HRs divided by the HR
for the original score and multiplied by 100 (%).

Statistical analyses were performed with SAS (Version 9.2,
Enterprise Guide 4.3; SAS Institute, Cary, NC, USA), except

for meta-analyses and meta-regressions, which were conducted
using Stata 12 (StataCorp, College Station, TX, USA).

Results

Median z -transformed dietary-pattern scores for each country
are shown in Table 3. Table 4 shows baseline participant
characteristics for the lowest and highest quintiles of the
dietary-pattern scores. High scores correspond to favourable
adherence. Most notably, high aHEI and DASH scores were
associated with being women and never smokers, while there
was no strong association with body size. High scores for all
three RRRs were associated with being older and women and
having a lower body size and higher educational level.
Furthermore, macronutrient composition and intake of
alcohol, fibre, meat, fruits/vegetables and coffee was clearly
associated with the dietary-pattern scores.

Table 5 shows HRs for the association of quintiles of the
dietary-pattern scores with diabetes in the pooled study
population.We observed linear inverse associations of the aHEI
and DASH scores with diabetes after correction for age, sex,
study centre, sociodemographic factors and lifestyle
characteristics (model 2). However, these associations lost
statistical significance after additional adjustment for BMI and
waist circumference (model 4). For the three RRR scores, we
observed relatively strong linear inverse associations with
diabetes in our model 2. After additional adjustment for BMI
and waist circumference, these linear inverse associations were
modestly attenuated but remained statistically significant.

We used continuous variables of the dietary-pattern scores
in a meta-analytical approach to investigate country
heterogeneity in the association with diabetes. Figure 2 shows
country-specific HRs (1-SD increment, model 4 adjustments)
and combined estimates obtained from random-effects meta-
analyses. The combined effect estimates did not indicate a
meaningful association of aHEI and DASH with diabetes. We
observed inverse associations of all three RRR scores with
diabetes, although the combined HR for RRR2 did not reach
statistical significance (combined HR [95% CI]: for RRR1
0.91 [0.86, 0.96]; RRR2 0.92 [0.84, 1.01]; RRR3 0.87 [0.82,
0.92]). There was moderate country heterogeneity for DASH
(I 2=39.4%), RRR1 (I 2=47.8%) and RRR3 (I 2=52.2%),
whereas higher I2 values were observed for aHEI and RRR2
(>70%). Omitting single countries from the meta-analysis
revealed that heterogeneity was mainly introduced by Spain
for RRR1 (I2 without Spain=22.4%), by the two UK centres,
Norfolk and Oxford, for RRR2 (I 2 without Norfolk and
Oxford=0%) and by Norfolk for RRR3 (I2 without
Norfolk= 22.4%). For the aHEI and DASH scores,
heterogeneity was not introduced by single countries.

In subsequent meta-regression analyses, we investigated
whether mean age and BMI were related to the country-

Table 2 Individual dietary components of the RRR dietary patterns
considered in the analysis, EPIC-InterAct study

RRR dietary pattern Positive weighting Negative weighting

RRR1 [20]a Wine Sugar-sweetened soft drinks

Coffee Refined grains

Cabbages Processed meat

Root vegetables Diet soft drinks

RRR2 [18]a Fruits Red meat

Beer

Poultry

Legumes

Sugar-sweetened soft drinks

Processed meat

White bread

RRR3 [19]a Breakfast cereals Diet soft drinks

Honey, jam, sugar Sugar-sweetened soft drinks

Dressing sauces Processed meat

Non-white bread Salty biscuits and crackers

White bread

A detailed description of the construction of the dietary-pattern scores is
provided in the ESM Methods
aTheRRRdietary-pattern scores were created as the sum of the standardised
intakes (z scores) of the individual components listed in the table. The
standardised intakes were assigned either the weight of ‘1’ (positive
weighting) or ‘−1’ (negative weighting). The RRR scores were originally
derived in other cohorts using the RRRmethod (see [18–20]). The following
responses were used for derivation of the RRR dietary patterns in the
original studies: 6 inflammatory markers (IL-6, CRP, soluble intracellular
cell adhesion molecule 1 [sICAM-1], soluble fractions of tumour necrosis
factor α receptor 2 [sTNFR2], E-selectin and soluble vascular cell adhesion
molecule 1 [sVCAM-1]) for RRR1, HbA1c, HDL-cholesterol, CRP and
adiponectin for RRR2 and the HOMA-IR index for RRR3
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specific HRs. We detected a significant inverse association
between mean age and the HR for the aHEI (p=0.0004, ESM
Fig. 1). There were no clear associations between mean age and
country-specific HRs for the DASH and RRR scores. Similarly,
there was no clear association between mean BMI and country-

specific HRs for any of the five dietary patterns. For the RRR
scores we observed that certain centres introduced heterogeneity
in the diabetes association and so we further explored the risk
contributions and intake distributions of single food components
in these centres. There was a clearly higher mean intake and

Table 3 Dietary-pattern scores by country in the subcohort of the EPIC-InterAct study

Country n aHEI DASH RRR1 ([20]) RRR2 ([18]) RRR3 ([19])

France 532 0.20 (−0.45, 0.72) 0.38 (−0.15, 0.97) −0.05 (−0.49, 0.47) 0.13 (−0.29, 0.66) 0.51 (−0.02, 1.12)
Spain 3,508 0.20 (−0.45, 0.98) 0.44 (−0.02, 0.97) −0.57 (−1.01, −0.16) −0.28 (−1.05, 0.34) −0.52 (−0.95, −0.14)
UKa

Norfolk 844 0.07 (−0.58, 0.98) – 0.89 (0.32, 1.53) 0.26 (−0.22, 0.70) 0.19 (−0.48, 0.71)
Oxford 239 0.98 (0.07, 1.76) – 0.83 (0.31, 1.39) 0.79 (0.31, 1.22) 0.49 (−0.15, 0.98)

Netherlands 1,396 −0.19 (−0.71, 0.33) 0.18 (−0.61, 0.84) 0.29 (−0.19, 0.67) 0.51 (0.004, 0.89) 0.14 (−0.32, 0.54)
Germany 2,041 −0.45 (−0.97, 0.07) −0.28 (−0.87, 0.38) 0.004 (−0.43, 0.36) 0.41 (−0.21, 0.79) 0.13 (−0.27, 0.55)
Sweden 1,917 −0.32 (−0.97, 0.20) −0.55 (−1.33, 0.18) 0.05 (−0.41, 0.52) 0.39 (−0.12, 0.77) 0.07 (−0.41, 0.57)
Denmark 2,118 −0.06 (−0.71, 0.59) −0.15 (−0.87, 0.51) 0.53 (−0.03, 1.03) 0.05 (−0.58, 0.54) 0.59 (0.003, 1.25)

Total 12,595 −0.06 (−0.71, 0.59) 0.05 (−0.68, 0.70) 0.01 (−0.56, 0.57) 0.18 (−0.48, 0.68) 0.01 (−0.54, 0.57)

Data are medians (interquartile ranges)
a UK centres were split up due to differences in the recruitment scheme (high proportion of vegans, vegetarian and other health-conscious people in
Oxford cohort, see Methods section for more details)

Table 4 Baseline characteristics for extreme quintiles of the dietary-pattern scores in the subcohort of the EPIC-InterAct study (n =12,595)

Characteristic Total aHEI DASH RRR 1 ([20]) RRR 2 ([18]) RRR 3 ([19])

Q1 Q5 Q1 Q5 Q1 Q5 Q1 Q5 Q1 Q5

Age (years) 53.3 53.6 52.9* 53.5 53.4 50.0 55.8* 51.5 54.9* 50.6 55.8*

Men (%) 37.8 45.1 35.5* 59.4 23.3* 47.8 35.7* 72.2 13.4* 52.3 40.7*

BMI (kg/m2) 25.7 25.8 25.8 25.6 25.8* 26.9 24.9* 26.9 24.7* 27.1 24.4*

WC (cm)

Men 95.0 95.8 95.0 94.0 96.0* 97.0 94.0* 97.0 92.0* 97.0 92.0*

Women 80.0 80.0 80.0 78.0 81.0* 84.0 77.3* 83.5 78.0* 83.5 76.0*

Physically active (%) 21.1 17.8 22.7* 23.2 21.6* 18.0 26.5* 23.4 22.9 19.5 26.0*

Never smoking (%) 46.2 34.9 53.3* 33.7 57.4* 48.1 39.7* 34.6 55.1* 41.9 47.6*

Post-secondary education (%) 21.7 20.0 22.5* 22.0 21.5* 13.9 23.7* 16.4 25.7* 15.3 29.9*

Dietary intake

Total energy (kJ/day) 8,581 8,017 9,343* 9,958 8,079* 9,899 8,372* 11,125 7,255* 9,996 9,025*

Fat (% energy) 35.1 35.6 34.0* 37.7 32.3* 36.1 33.2* 35.3 33.3* 35.8 33.5*

Carbohydrates (% energy) 43.3 40.1 45.0* 41.7 45.5* 43.3 43.4 39.5 47.5* 41.6 46.1*

Protein (% energy) 17.0 16.2 17.8* 15.3 17.9* 17.9 17.0* 17.9 16.0* 17.7 16.3*

Alcohol (g/day) 7.1 10.7 7.6* 11.3 3.7* 3.8 11.4* 20.0 3.3* 9.9 7.9*

Fibre (g/day) 22.1 15.8 29.4* 19.9 26.4* 23.9 23.4* 24.8 22.6* 23.7 26.2*

Red and processed meat (g/day) 78.9 88.4 59.7* 108.1 50.8* 100.9 70.4* 131.8 40.7* 104.9 70.6*

Fruits and vegetables (g/day) 362 200 623* 227 587* 386 431* 335 450* 400 383

Coffee (g/day) 300 400 192* 500 188* 130 556* 205 362* 162 500*

Data are medians or percentages (%)

*p <0.05 vs the respective quintile 1 (Wilcoxon rank sum test or χ2 test)

Q, quintile; WC, waist circumference
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wider distribution of reported wine consumption in Spain (mean
136 g/day, SD 239 g/day) compared with the overall EPIC-
InterAct study population (mean 82 g/day, SD 160 g/day).

When subtracting wine from the RRR1 score, the HR for Spain
(0.95 [95% CI 0.87, 1.05]) was more comparable with that of
the other EPIC countries. For RRR2, subtracting fruits resulted

Table 5 HRs for developing type 2 diabetes according to quintiles of the dietary-pattern scores, EPIC-InterAct study (n=21,616)

Dietary pattern Quintile p for trenda

1 2 3 4 5

aHEI

Score <−0.96 −0.96 to −0.44 −0.43 to 0.08 0.09 to 0.73 >0.74

n cases 2,088 1,996 2,015 1,845 1,738

Model 1b 1.00 (ref) 0.88 (0.81, 0.97) 0.81 (0.74, 0.88) 0.78 (0.72, 0.86) 0.73 (0.67, 0.80) <0.0001

Model 2c 1.00 (ref) 0.93 (0.85, 1.02) 0.88 (0.80, 0.96) 0.88 (0.80, 0.96) 0.83 (0.75, 0.92) 0.0001

Model 3d 1.00 (ref) 0.90 (0.82, 1.00) 0.91 (0.83, 1.01) 0.90 (0.81, 1.00) 0.89 (0.80, 1.00) 0.07

Model 4e 1.00 (ref) 0.92 (0.82, 1.02) 0.95 (0.86, 1.06) 0.95 (0.85, 1.05) 0.96 (0.86, 1.07) 0.65

DASH

Score <−0.87 −0.87 to −0.28 −0.27 to 0.24 0.25 to 0.77 >0.77

n cases 2,165 1,666 1,772 1,677 1,603

Model 1b 1.00 (ref) 0.86 (0.79, 0.95) 0.89 (0.81, 0.98) 0.84 (0.76, 0.92) 0.75 (0.68, 0.83) <0.0001

Model 2c 1.00 (ref) 0.87 (0.79, 0.95) 0.88 (0.80, 0.97) 0.85 (0.77, 0.94) 0.78 (0.71, 0.87) 0.006

Model 3d 1.00 (ref) 0.95 (0.86, 1.06) 0.94 (0.84, 1.04) 0.90 (0.81, 1.01) 0.91 (0.81, 1.02) 0.07

Model 4e 1.00 (ref) 0.96 (0.86, 1.07) 0.94 (0.84, 1.05) 0.93 (0.83, 1.04) 0.95 (0.84, 1.07) 0.24

RRR1 ([20])

Score <−0.71 −0.71 to −0.20 −0.20 to 0.22 0.22 to 0.73 >0.73

n cases 2,296 1,999 1,979 1,739 1,669

Model 1b 1.00 (ref) 0.83 (0.76, 0.91) 0.75 (0.69, 0.82) 0.64 (0.59, 0.71) 0.57 (0.52, 0.63) <0.0001

Model 2c 1.00 (ref) 0.84 (0.77, 0.92) 0.77 (0.70, 0.85) 0.66 (0.60, 0.73) 0.58 (0.52, 0.65) <0.0001

Model 3d 1.00 (ref) 0.91 (0.82, 1.01) 0.88 (0.79, 0.98) 0.80 (0.71, 0.90) 0.73 (0.65, 0.83) <0.0001

Model 4e 1.00 (ref) 0.92 (0.83, 1.02) 0.91 (0.82, 1.02) 0.81 (0.72, 0.91) 0.76 (0.67, 0.86) <0.0001

RRR2 ([18])

Score <−0.68 −0.68 to −0.06 −0.06 to 0.39 0.39 to 0.78 >0.78

n cases 2,454 2,115 1,982 1,721 1,410

Model 1b 1.00 (ref) 0.87 (0.80, 0.95) 0.84 (0.77, 0.92) 0.74 (0.67, 0.82) 0.61 (0.55, 0.68) <0.0001

Model 2c 1.00 (ref) 0.88 (0.81, 0.96) 0.85 (0.77, 0.93) 0.76 (0.68, 0.84) 0.65 (0.58, 0.73) <0.0001

Model 3d 1.00 (ref) 0.96 (0.87, 1.07) 0.94 (0.84, 1.05) 0.87 (0.78, 0.98) 0.81 (0.71, 0.91) 0.001

Model 4e 1.00 (ref) 0.98 (0.89, 1.09) 0.95 (0.85, 1.06) 0.90 (0.79, 1.01) 0.85 (0.75, 0.97) 0.02

RRR3 ([19])

Score <−0.68 −0.68 to −0.20 −0.20 to 0.21 0.21 to 0.72 >0.72

n cases 2,493 2,009 1,945 1,814 1,421

Model 1b 1.00 (ref) 0.81 (0.74, 0.88) 0.73 (0.66, 0.79) 0.63 (0.58, 0.70) 0.42 (0.38, 0.47) <0.0001

Model 2c 1.00 (ref) 0.80 (0.73, 0.87) 0.72 (0.66, 0.79) 0.65 (0.59, 0.72) 0.46 (0.42, 0.51) <0.0001

Model 3d 1.00 (ref) 0.84 (0.76, 0.93) 0.83 (0.74, 0.92) 0.80 (0.72, 0.89) 0.62 (0.56, 0.70) <0.0001

Model 4e 1.00 (ref) 0.84 (0.76, 0.93) 0.84 (0.76, 0.94) 0.82 (0.73, 0.91) 0.65 (0.58, 0.73) <0.0001

Data are HRs (95% CI)
a The significance of linear trends across quintiles was tested by assigning the median value within quintiles (based on subcohort distribution) and
modelling this value as a continuous variable
bModel 1 is stratified by age and study centre and adjusted for sex
cModel 2 is further adjusted for physical activity, smoking status, education and total energy intake
dModel 3 is further adjusted for BMI
eModel 4 is further adjusted for waist circumference

Ref, reference value
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Country  

AHEI DASH

RRR1

RRR3

RRR2

a b

c

e

d

HR (95% CI)

France 0.85 (0.69, 1.05)

Spain 1.04 (0.98, 1.10)

UK-Norfolk 0.78 (0.68, 0.89)

UK-Oxford 1.29 (1.02, 1.62)

The Netherlands  1.06 (0.92, 1.22)

Germany 0.93 (0.84, 1.03)

Sweden 0.97 (0.88, 1.07)

Denmark 0.92 (0.85, 1.00)

Overall (I 
2 74.0%)  

Overall (I 
2 39.4%)  

0.96 (0.89, 1.04)

0.5 1.0 2.0

HR

Country  HR (95% CI)

France 0.84 (0.67, 1.07)

Spain 1.01 (0.93, 1.10)

The Netherlands 1.06 (0.94, 1.20)

Germany 0.90 (0.81, 1.00)

Sweden 0.98 (0.90, 1.07)

Denmark 0.92 (0.85, 0.99)

0.96 (0.91, 1.01)

0.5 1.0 2.0

HR

Country  HR (95% CI)

France 1.04 (0.85, 1.27) 

Spain 1.00 (0.92, 1.08)

UK-Norfolk 0.83 (0.74, 0.93)

UK-Oxford 0.87 (0.66, 1.13)

The Netherlands 0.86 (0.73, 1.01)

Germany 0.85 (0.78, 0.92)

Sweden 0.94 (0.85, 1.04)

Denmark 0.92 (0.86, 0.98)

Overall (I 
2 47.8%)  0.91 (0.86, 0.96)

HR

Country  HR (95% CI)

France 0.93 (0.71, 1.22) 

Spain 0.96 (0.89, 1.03)

UK-Norfolk 0.67 (0.57, 0.79)

UK-Oxford 1.38 (1.00, 1.91)

The Netherlands 1.01 (0.84, 1.22)

Heidelberg 0.85 (0.75, 0.96)

Sweden 0.95 (0.84, 1.08)

Denmark 0.96 (0.87, 1.05)

Overall (I 
2 71.8%)  0.92 (0.84, 1.01)

HR

Country  HR (95% CI)

France 0.89 (0.73, 1.09) 

Spain 0.90 (0.82, 0.98)

UK-Norfolk 0.75 (0.68, 0.84)

UK-Oxford 0.84 (0.60, 1.18)

The Netherlands 1.03 (0.89, 1.20)

Germany 0.82 (0.76, 0.89)

Sweden 0.89 (0.81, 0.97)

Denmark 0.88 (0.83, 0.94)

Overall (I 
2 52.2%)  0.87 (0.82, 0.92)

0.5 1.0 2.0 0.5 1.0 2.0

0.5 1.0 2.0
HR

Fig. 2 HRs (95% CIs) for developing type 2 diabetes for a 1-SD
increment in the dietary-pattern scores (a , AHEI; b , DASH; c , RRR1;
d , RRR2; e , RRR3) stratified by country and meta-analysed using a
random-effects model, EPIC-InterAct study (n =21,616). Note that the
scale of the x-axis is non-linear. Model 4 adjustments were applied

(stratified by age and study centre [applicable for country-specific
analyses only] and adjusted for sex, physical activity, smoking status,
education, total energy intake, BMI and waist circumference). In (d) the
German study population is labelled ‘Heidelberg’ because Potsdam was
excluded since it was used in the derivation of RRR2
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in more similar HRs for the UK centres (Norfolk 0.82 [95%
CI 0.70, 0.97], Oxford 1.06 [95%CI 0.74, 1.53]) comparedwith
other countries. For RRR3, the stronger association for
Norfolk than for the other centres was not explainable
by any single food component.

None of the sensitivity analyses resulted in a material
change of the effect estimates. Also, undertaking analyses
separately for men and women did not reveal appreciable
differences (results not shown).

We sequentially subtracted components from the RRR
scores to analyse their importance for diabetes (Table 6).

The subtraction of coffee (CIE 3.3%), and also of processed
meat (CIE 2.2%) and sugar-sweetened soft drinks (CIE 1.1%),
weakened the observed association for the RRR1 score.
Similarly, excluding sugar-sweetened soft drinks and
processed meat (CIE 3.3%, respectively), but also fruits
(CIE 4.3%), red meat (CIE 2.2%), legumes (CIE 1.1%) and
white bread (CIE 1.1%) from the RRR2 score resulted in
attenuated HRs. For RRR3, we observed slight attenuations
in the HR after excluding honey/jam/sugar, processed meat,
white bread and dressing sauces (CIE 1.1–3.4%). The results
were materially the same when we repeated these analyses
with adjustment for the subtracted component, respectively.

Discussion

In this large European case-cohort study, the adherence to
several RRR-derived dietary patterns was related to a lower
risk of type 2 diabetes. There was no significant association
between the aHEI or DASH dietary pattern and risk,
independent of body size.

Our observation of a stronger relevance of the RRR dietary
patterns for diabetes compared with the diet-quality scores
aHEI and DASH is probably due to the fact that the RRR
patterns were specifically derived to explain variation in
diabetes-relevant biomarkers. The aHEI was originally
created to predict chronic disease risk with a focus on
cardiovascular disease and cancer [5], whereas the DASH diet
was designed to lower blood pressure [31]. Still, some
previous studies detected a significant inverse relation of these
diet-quality scores to diabetes risk [11–13]. It appears
plausible that the RRR3 score showed the strongest risk
relationship among the RRR dietary patterns because it was
originally derived to explain variation in the HOMA-IR.
Insulin sensitivity may be more closely linked to diabetes risk
than inflammation or dyslipidaemia, which were the
responses used to derive the other two RRR dietary patterns.

We observed important similarities between the three RRR
dietary patterns with regard to their dietary components. Most
notably, processed meat and sugar-sweetened soft drinks
loaded negatively on all three patterns. In addition, excluding
these components from the scores led to an attenuation of the
HRs. These findings are supported by recent meta-analyses
that showed that higher consumption of processed meat [37]
and sugar-sweetened beverages [38] is associated with
development of type 2 diabetes. Furthermore, white bread or
refined grains constituted important components of all three
diabetes-related dietary patterns in our study. Notably, the
RRR patterns also showed differences in their composition,
which resulted from the use of different responses, reflecting
different pathomechanisms. Despite these differences, an
association of all three RRR patterns with diabetes appears
plausible given that distinct metabolic pathways are involved.

Table 6 Pooled HRs (95% CIs) for developing type 2 diabetes for a 1-
SD increment in the RRR dietary-pattern scores and after alternate
subtraction of each of its components; EPIC-InterAct study (n=21,616)a

Dietary variable HR (95% CI) CIE
(%)

RRR1 ([20])

Original RRR1 score 0.91 (0.86, 0.96)

RRR1 without sugar-sweetened soft drinks 0.92 (0.87, 0.96) +1.1

RRR1 without refined grains 0.91 (0.86, 0.96) 0

RRR1 without processed meat 0.93 (0.88, 0.98) +2.2

RRR1 without diet soft drinks 0.90 (0.85, 0.96) −1.1
RRR1 without wine 0.91 (0.87, 0.94) 0

RRR1 without coffee 0.94 (0.88, 0.99) +3.3

RRR1 without cabbages 0.89 (0.84, 0.95) −2.2
RRR1 without root vegetables 0.91 (0.86, 0.97) 0

RRR2 ([18])

Original RRR2 score 0.92 (0.84, 1.01)

RRR2 without fruits 0.96 (0.91, 1.00) +4.3

RRR2 without red meat 0.94 (0.87, 1.02) +2.2

RRR2 without beer 0.90 (0.84, 0.97) −2.2
RRR2 without poultry 0.92 (0.84, 1.02) 0

RRR2 without legumes 0.93 (0.86, 1.01) +1.1

RRR2 without sugar-sweetened soft drinks 0.95 (0.85, 1.05) +3.3

RRR2 without processed meat 0.95 (0.88, 1.03) +3.3

RRR2 without white bread 0.93 (0.86, 1.01) +1.1

RRR3 ([19])

Original RRR3 score 0.87 (0.82, 0.92)

RRR3 without diet soft drinks 0.86 (0.81, 0.91) −1.1
RRR3 without sugar-sweetened soft drinks 0.87 (0.83, 0.91) 0

RRR3 without processed meat 0.88 (0.84, 0.93) +1.1

RRR3 without salty biscuits 0.87 (0.82, 0.91) 0

RRR3 without white bread 0.88 (0.84, 0.92) +1.1

RRR3 without breakfast cereals 0.87 (0.81, 0.92) 0

RRR3 without honey/jam/sugar 0.90 (0.84, 0.96) +3.4

RRR3 without dressing sauces 0.88 (0.83, 0.93) +1.1

RRR3 without non-white bread 0.87 (0.82, 0.92) 0

a HRs and 95% CIs are based on random-effects meta-analyses. Model 4
adjustments were applied (stratified by age and study centre and adjusted
for sex, physical activity, smoking status, education, total energy intake,
BMI and waist circumference)
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The RRR3 dietary pattern is also characterised by high
intakes of dressing sauces and honey/jam/sugar, which might
seem surprising. These foods may not be causally related to
diabetes risk but may rather represent markers of other foods
with which they are consumed [19]. McNaughton et al
emphasised correlations of salad dressings with salad
vegetable intake and of jam consumption with wholegrain
bread in the British Whitehall II study [19]. Similarly, we
observed a correlation between intake of dressings and
vegetables in EPIC-InterAct (r =0.23). The unavailability of
specific intake data for wholegrain bread in the individual
EPIC countries precluded us from further evaluating whether
jam/honey may be a marker of this food in our study. Using
non-white bread as an alternative revealed correlations in
specific countries (Denmark, Netherlands, UK; r =0.11–0.23).
Furthermore, it may appear counterintuitive that legumes score
negatively on the EPIC-Potsdam-derived RRR2 pattern. A
possible explanation, in this German population, is that
legumes were mostly consumed in the form of stew, often
accompanied by processed meat [18].

Our study did not confirm earlier findings of significant
inverse associations of the aHEI [11, 12, 39] and the DASH
score [12, 13] with diabetes risk after adjustments including
body size. Of note, these earlier studies were all performed in
American settings. Liese et al observed different risk relations
for the DASH score between white and black/Hispanic
populations [13]. Therefore, it can be speculated that relations
between certain dietary-pattern scores and diabetes risk are
somewhat population-specific, possibly because of different
distributions in dietary intakes. Furthermore, the scores were
not created identically across the studies. Our aHEI score did
not consider trans -fatty-acid intake or multivitamin
supplement use. However, this should not explain our null
finding because recent studies on trans -fatty-acid biomarkers
do not support a direct association with diabetes risk [40–43]
and including multivitamin supplement use in the aHEI did
not materially change our results (data not shown). Still, our
findings do not exclude the possibility that adherence to the
aHEI and DASH diet lowers diabetes risk, at least in some
individuals. As we had to rely on self-reported dietary
intakes, measurement error may have attenuated the
observed statistical associations [44]. Furthermore, a
recent meta-analysis of intervention studies suggests that
the DASH diet can improve insulin sensitivity independent of
weight loss [45].

We detected some degree of heterogeneity between EPIC
countries in the association of the dietary patterns with diabetes.
Reasons for this heterogeneity may include differences in
dietary assessment tools, distributions of dietary intake and
confounders as well as general cohort characteristics. This
may explain the somewhat divergent results for the Oxford
cohort, which includes many vegans, lacto-ovo vegetarians
and other health-conscious people.

We aimed to explore sources for this heterogeneity between
countries. Meta-regression analyses revealed an inverse
association of country-specific mean age with the country-
specific HRs for the aHEI. A similar observation was also made
for the Mediterranean dietary pattern in EPIC-InterAct [9].

For the three RRR dietary patterns, single centres were
responsible for heterogeneity in the association with diabetes
risk. Descriptive analyses revealed a clearly higher mean
intake and wider distribution of reported intake of wine in
Spain, which probably explained the absence of an inverse
risk relation of the RRR1 dietary-pattern score for Spain.
Because a lower risk for diabetes has especially been observed
in the moderate range of alcohol intake [46], a high wine
intake at the population level may exert a detrimental rather
than a beneficial effect on risk. Indeed, when subtracting wine
from the RRR1 score, the effect estimate for Spain was more
comparable with the other EPIC countries. For RRR2,
heterogeneity was mainly introduced by the two UK centres.
When investigating single RRR2 components, we found that
subtracting fruits from the RRR2 score resulted in more
similar effect estimates for the UK centres compared with
the other countries. This agrees with an earlier investigation
of EPIC-InterAct, which reported a significant inverse
association of fruits intake with diabetes only for the UK
[47]. For RRR3, which was originally derived in the British
Whitehall II study, we observed a clearly stronger association
in the British Norfolk cohort compared with the other EPIC
countries. Similarly, RRR2, which was derived in the German
EPIC-Potsdam cohort, showed the strongest association in the
German EPIC-Heidelberg cohort in our study. It appears
plausible that associations between specific dietary patterns
and disease may be better generalisable to populations with
comparable dietary habits and intake distributions. Consistent
with this, an investigation of the American Framingham
Offspring Study on the generalisability of RRR dietary
patterns associated with diabetes risk found relatively good
generalisability for the American NHS-derived RRR1 dietary
pattern, whereas the risk association for the European-derived
RRR2 and RRR3 dietary patterns was much weaker [21].
However, such comparisons of studies are complicated by
the application of different dietary questionnaires that are
specific to the regional dietary habits and the use of different
food groupings. In our study, we observed overall relatively
good reproducibility of inverse associations between RRR-
derived dietary patterns and diabetes risk, even for the
American NHS-derived RRR1 dietary pattern.

Major strengths of our study include the prospective design
and the large number of incident cases of type 2 diabetes. The
EPIC study was designed to include countries from various
areas in Europe, which enabled us to study heterogeneous
populations with wide variations in dietary habits, as also
reflected by the country differences in adherence to the dietary
patterns. A major limitation is that dietary intake was assessed
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with self-reported questionnaires. Imprecision in the estimated
dietary intakes may have led to an attenuation of the
association between dietary patterns and diabetes [44].
Further, although our dietary questionnaires showed
reasonable validity [28, 29], differential misreporting
(a common problem in nutritional epidemiologic studies)
may have distorted our findings. However, there was no
apparent change in our results when we excluded participants
in the top or bottom 1% of the energy intake/energy
requirement ratio.

In conclusion, this study on the verification of relations of
predefined dietary patterns to diabetes risk suggests that diet
quality is of high relevance for primary prevention of type 2
diabetes. We were able to confirm findings from earlier
prospective studies showing that adherence to specific RRR-
derived dietary patterns, commonly characterised by high
intake of fruits or vegetables and low intake of processed
meat, sugar-sweetened beverages and refined grains, may
lower risk of type 2 diabetes. However, our results do not
support existing scientific evidence proposing protective
effects of adherence to the aHEI and DASH diet on
diabetes risk independent of body size.
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