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Abstract

Key Words: phenotypic variation; predictability; personality; behavioural stress response; double 

hierarchical generalized linear model; heritability; quantitative genetics; within-individual variance.

Genetic factors underpinning phenotypic variation are required if natural selection is to result in adaptive 

evolution. However, evolutionary and behavioural ecologists typically focus on variation among 

individuals in their average trait values, and seek to characterise genetic contributions to this. As a result, 

less attention has been paid to if and how genes could contribute towards within-individual variance, or 

trait “predictability”. In fact, phenotypic ‘predictability’ can vary among individuals, and emerging 

evidence from livestock genetics suggests this can be due to genetic factors. Here we test this empirically 

using repeated measures of a behavioural stress response trait in a pedigreed population of wild-type 

guppies. We ask (1) whether individuals differ in behavioural predictability, and (2) whether this variation 

is heritable and so evolvable under selection. Using statistical methodology from the field of quantitative 

genetics, we find support for both hypotheses and also show evidence of a genetic correlation structure 

between the behavioural trait mean and individual predictability. We show that investigating sources of 

variability in trait predictability is statistically tractable, and can yield useful biological interpretation. We 

conclude that, if widespread, genetic variance for ‘predictability’ will have major implications for the 

evolutionary causes and consequences of phenotypic variation.  

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Introduction

Among-individual variation in behavioural traits is widely referred to as ‘animal personality’ when 

individuals display behaviours that are repeatable across time and context (Bell, Hankison, & Laskowski, 

2009; Gosling, 2001). Individual differences, which can sometimes account for a high proportion of the 

total observed behavioural variation in a population (Biro & Adriaenssens, 2013), are a prerequisite for 

natural selection on behaviour and there is now abundant evidence that personality traits can affect fitness. 

Since strong directional or stabilising selection is usually predicted to erode variation, it is widely 

hypothesized that personality variation within populations is maintained by fitness trade-offs (Dingemanse, 

Both, Drent, & Tinbergen, 2004; Godin & Davis, 1995; Réale & Festa-Bianchet, 2003; Shackleton, 

Jennions, & Hunt, 2005). Empirical investigations of this, and related hypotheses, have been facilitated by 

wide uptake of linear mixed effect models that allow partitioning of among-individual trait variation and 

estimation of behavioural repeatabilities (R) from data containing repeated observations of known 

individuals (Dingemanse & Dochtermann, 2013; Alastair J. Wilson, 2018) . Where pedigree or relatedness 

data are also available, among-individual variance can be further decomposed to estimate behavioural 

heritability (Alastair J. Wilson et al., 2010). While the residual, or within-individual, component of 

variance is normally treated as ‘noise’ arising from plasticity (Nussey, Wilson, & Brommer, 2007) and/or 

measurement error, some authors have argued that it deserves more attention as a source of biological 

insight (Westneat, Wright, & Dingemanse, 2015). Here we follow this suggestion in a study of stress-

related behaviour in wild-type guppies (Poecilia reticulata), and ask whether within-individual variance in 

behaviour should itself be viewed as a trait that can respond to selection.

A convenient, but rarely scrutinised assumption of typical statistical methods used to characterise 

personality is that within-individual (or residual) variation in behaviour is homogeneous across 

individuals. However, this need not be the case. In fact residual variation can itself differ among-

individuals (Stamps, Briffa, & Biro, 2012),  a phenomenon variously referred to as among-individual 

differences in  ‘within-individual behavioural variance’, ‘intra-individual variability’, or ‘consistency’ (Biro 

& Adriaenssens, 2013; Müller & Schrader, 2005; Stamps et al., 2012). Here we refer to this phenomenon as 

‘predictability’ following terminology used by Cleasby et al (2015) and Martin et al (2017). Predictability 

has been the focus of some studies in human psychology (Hoffman, 2007; MacDonald, Backman, & 

Nyberg, 2006) but, in recent years, has become a topic of interest in behavioural ecology (Stamps et al., 

2012; Westneat, Schofield, & Wright, 2013). For example, recent empirical studies have provided 

evidence of variation among individuals in predictability of anti-predatory behaviours (Briffa, 2013) and 

parental care (Westneat et al., 2013). It is perhaps easy to envisage fitness consequences of within-

individual variation (e.g., animals behaving less predictably when fleeing a predator could plausibly have a A
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higher escape probability), although empirical estimates of selection are scarce.  Specific hypotheses for 

the maintenance of among-individual differences in behavioural predictability are also lacking, though 

trade-offs among associated life history traits could offer adaptive explanations just as they do for 

maintenance of variation in behavioural means (Bridger, Bonner, & Briffa, 2015; Mulder, Gienapp, & 

Visser, 2016; Westneat et al., 2013). ‘Speed-accuracy’ trade-offs have been proposed where observed 

behavioural outcomes depend on cognitive decision making (Briffa, 2013) and predictability could also be 

condition-dependent. In the latter case if, for instance, canalising a behavioural response is costly then low 

predictability may represent phenotypic instability caused by poor individual condition. 

Behavioural predictability has also been postulated to have a genetic basis of variation among 

individuals (Martin et al., 2017). The implication is that if predictability both causes fitness variation and is 

heritable, it can itself be viewed as a trait that will evolve under natural selection. Though empirical tests of 

genetic variance for behavioural predictability are scarce more is known for non-behavioural phenotypes. 

In particular, quantitative genetic methods (Hill, 1984; Hill & Zhang, 2004; Rönnegård, Felleki, Fikse, 

Mulder, & Strandberg, 2010) have been increasingly applied to estimate genetic variation for predictability 

of production  traits in livestock, including milk yield (Rönnegård, Felleki, Fikse, Mulder, & Strandberg, 

2013), litter size (Sorensen & Waagepetersen, 2003) and body weight (Sonesson, Ødegård, & Rönnegård, 

2013). While increasing the mean of such production traits is a long-standing objective of artificial 

selection strategies, reducing the level of variation around the means also offers increased efficiency (and 

profitability) in livestock production and processing. Consequently, the reality that genetic variance ‘for 

variance’ occurs has prompted development of strategies to select more predictable genotypes, and thus 

reduce variation in target traits (Hill & Mulder, 2010).  

Evolutionary ecologists are now beginning to address the concept of predictability in relation to 

behavioural and life history traits with the goals of determining whether behavioural predictability 

consistently varies among-individuals, whether this variation has a genetic basis, and how (if at all) 

predictability maps to fitness. A hindrance addressing these questions stems from a lack of consensus on 

how best to quantify and analyse predictability. Most studies to date have taken a two-step approach by, for 

instance, fitting a linear model to a set of behavioural observations, then calculating an estimate of within-

individual variation using model residuals for each individual,  which are then used in a subsequent 

analysis (Biro & Adriaenssens, 2013; Highcock & Carter, 2014; Stamps et al., 2012). Though intuitive, this 

approach is statistically problematic for a number of reasons, not least of which is that uncertainty in the 

predictions of the first model is not accounted for, increasing the risk of type 1 errors and anticonservative 

hypothesis tests (Houslay & Wilson 2017). Fortunately, a more robust approach to model variation in 

behavioural predictability is provided by the double hierarchical generalized linear model (DHGLM) A
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developed by Lee and Nelder (2006). This model is an extension of the familiar ‘random intercept’ mixed 

model, however instead of only allowing random and fixed effects on the mean trait distribution, it also 

allows them on the residuals. In other words, it allows us to relax the assumption that residual variance is 

homogeneous, and ask whether it varies across levels of fixed (e.g. sex) or random (e.g. individual identity) 

effects (Cleasby et al. 2015; Lee & Nelder 2006). 

Applied to repeated measures behavioural data, double-hierarchical models therefore allow 

simultaneous estimation of 1) among-individual variation in (mean) trait expression (i.e. the normal target 

of personality studies), 2) variation in predictability of a trait (i.e. differences in within-individual variance) 

(Lee & Nelder 2006) and 3) the correlation between the mean and the predictability at the individual level. 

Furthermore, given pedigree data, the DHGLM approach can be combined with the quantitative genetic 

‘animal model’ (in a ‘double-hierarchical animal model’ DHAM), allowing among-individual variance to 

be further decomposed into genetic and non-genetic components. To date, only one study has used this 

approach to test for and estimate the genetic basis of behavioural predictability (Martin et al., 2017). Using 

a DHGLM, the authors of this study found evidence of among-individual variation in the predictability of 

docility (the reaction to being trapped and handled), as a repeatable behaviour in marmots (Marmota 

flaviventris). They also showed that individual marmots that were (on average) less docile were also less 

predictable. Using pedigree information, they went on to show that both (mean) behaviour and its 

predictability are heritable in this population, and so evolvable under selection.

Here we use a captive population of wild-derived Trinidadian guppies (Poecilia reticulata) to test 

for variation in behavioural predictability and ask whether, if present, it arises in part from genetic 

differences among individuals. We focus on a putatively stress-related context, specifically the way in 

which an individual behaves in reaction to isolation in a novel environment, such as an ‘Open Field Trial’ 

(OFT) arena. The OFT is a widely used paradigm for characterising personality differences related to 

exploration, activity, and ‘shy-bold’ type variation (Bell et al., 2009; Gosling, 2001). Previous work with P. 

reticulata has demonstrated that behaviours displayed during OFT are associated with exploration, but also 

risk-taking and stress response (White, Kells, & Wilson, 2016).  The fact that the OFT presents a mild 

stressor is notable because the widely used concept of ‘stress coping style’ predicts that individuals vary 

along a proactive/reactive continuum of variation (Coppens et al., 2010; Koolhaas et al., 1999; Sih, Bell, & 

Johnson 2004), with proactive individuals tending to express more ‘fight or flight’ behaviours on average, 

but also forming more rigid, stereotyped routines more rapidly (Koolhaas et al., 1999). In other words, the 

coping style verbal model suggests variation among individuals in not only mean behaviour and 

behavioural predictability, but also correlation structure between these.  A
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Previous studies of this guppy population have already shown that the behavioural responses to the 

OFT are repeatable, but also plastic with respect to experimentally-manipulated stressor severity 

(specifically perceived predation risk) (Houslay et al., 2018). We also now know from pedigree-based 

analysis that (average) behaviours are heritable (White, Houslay, & Wilson, 2019; White & Wilson, 2019), 

and that there is genetic correlation structure between OFT behaviour and cortisol expression 

(strengthening the view that the OFT provides an assay of behavioural stress response; (Houslay et al., 

2019)).  Here we aim to build on these earlier studies by, firstly confirming the repeatability and heritability 

of mean behaviour in an independent sample; secondly, simultaneously estimating among-individual 

variation in mean behaviour and predictability using a DHGLM; and thirdly, asking whether - if present – 

variation in predictability is itself heritable using a DHAM. Finally, we test the prediction of the stress 

coping style model – at both among-individual and genetic levels – that there will be (co)variance between 

mean behaviour and predictability, with individuals (genotypes) displaying more ‘flight’ type behavioural 

stress responses also being more predictable. In the context of a DHGLM, we are thus predicting to have a 

positive covariance between a ‘flight’ type behavioural response and its variance at the individual 

(genotype) level. The ‘flight” type behavioural response here was a derived trait called relative area, where 

individuals that have a low relative area, i.e. displaying more flight type response, are expected to have a 

low within-individual variance (i.e. high predictability).
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Methods

Husbandry

Behavioural assays were carried out on wild-type guppies from a captive population with known 

pedigree structure housed at the fish laboratory at the University of Exeter’s Penryn campus. Data used 

here have not previously been published, but were collected as part of a larger study for which methods 

have already been extensively described elsewhere (Houslay et al., 2019; White et al., 2019, 2016; White & 

Wilson, 2019). In brief, all fish used were descended from wild guppies caught from the lower Aripo River, 

Trinidad in 2008. They were offspring of known parental crosses (as detailed in White & Wilson, 2018, for 

detailed breeding protocol), that had been raised in families before being tagged at maturity and then 

allocated to mixed family groups. Groups comprised 16-20 individuals (at 50:50 sex ratio) in 15 l tanks, 

with 24 tanks within each “stack” having a common sump and shared recirculating water supply.  Fish 

were maintained at 22–24°C on a 12:12 light/dark cycle, with weekly 25% water changes on each stack, 

and were fed to satiation twice daily on commercial flake food and live brine shrimp (Artemia salina).  

Note these fish were part of a larger pedigree structure containing 1,518 individual fish within a genetic 

pedigree structure comprised of maternal full-sibships nested within 169 paternal half-sibships (as 

described in (Houslay et al., 2019)). Here, we pruned the full pedigree using the prunePed function in the R 

package MCMCglmm (Hadfield, 2010) to just include the informative individuals. Our final data set 

contained phenotypic date for 330 individuals from a pedigree with 2113 maternal offspring links, 1654 

paternal offspring links, 218 sires and 344 dams, with a maximum depth of 4 generations. 

Behavioural data collection and trait definition

Behaviour was assayed using Open Field Trials (OFT), a standardised assay of risk-related 

behaviours that is widely used in rodent, fish and bird studies (Boulton, Grimmer, Rosenthal, Walling, & 

Wilson, 2014; White et al., 2019; White & Wilson, 2019). Our assay protocol closely followed that of 

Boulton et al. (2014) with repeat measures on related individuals providing the data structure needed to 

estimate among individual and genetic variance in personality and predictability. However, here we 

conducted more repeats per individual with a planned maximum of 10 times. In practice some mortality 

occurred over the course of the data collection period (which was five weeks for each fish). Thus, in total 

we conducted 2970 behavioural assays on 330 individuals (a mean of 9 per fish) from 23 groups. All 

experimental data was collected by the same technician, and carried out in two blocks for purely logistical 

reasons (Batch A; n = 176, Batch B; n= 154). For each block, fish were trialled over five weeks, with data 

collection occurring in weeks 1, 3 and 5 at not less than 48 hour intervals (weeks 2 and 4 providing 

‘breaks’). A
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Each OFT comprised a fish being netted from its home tank and placed into an ‘arena’ comprised 

of a 30 × 20 cm fish tank filled to 5 cm water depth and lit from below with a light box. (Three identical 

arena ‘set-ups’ A, B and C were used concurrently during data collection to facilitate high throughput 

phenotyping, with fish allocated haphazardly among them).  Following a 30 s acclimation period, 

individuals were tracked for 180 s from a Sunkwang C160 video camera fixed above each tank and the 

tracking software Viewer II (http://www.biobserve.com). Each fish was then returned to its home tank. 

Behavioural experiments were conducted under license from the Home Office (UK) and under the auspices 

of the Animal (Scientific Procedures) 1986 Act, and with local ethical approval from the University of 

Exeter. 

A number of specific variables assayed by OFT have been used to assay ‘risk-prone/risk-averse’, or 

‘shy-bold’ type personality variation in fishes including guppies (Sih, Bell, & Johnson, 2004; White & 

Wilson, 2019). Here we extracted two variables from the video - total track length swum (cm) and the area 

covered (percent of tank area explored, %). While both are expected a priori to be repeatable and heritable 

(Houslay et al., 2018; White et al., 2019; White & Wilson, 2019), previous work has failed to detect a 

strong positive (among-individual) correlation. This is notable since, if fish move randomly in the OFT 

arena, we expect area covered to increase as a monotonic function of track length. The lack of expected 

correlation actually arises from variation in how fish respond behaviourally to the stressor stimulus of the 

OFT. This variation is revealed by calculating the derived trait of relative area –defined as the difference 

between observed area covered and the predicted area covered given a ‘random swim’ of the track length 

actually observed (Houslay et al., 2019). To do this we (i) simulated ‘random swims’ in the arena across 

the full range of observed track lengths; (ii) estimated the ‘null’ relationship between simulated area and 

simulated track length using a fourth order polynomial regression (which captured 97.85% of the 

variation); and (iii) used the regression equation to predict area covered given a ‘random swim’ 

corresponding to each observed track length. Code and a full description of the simulation approach is 

provided in Houslay et al. (2019).

Biologically, high values of relative area arise from efficient exploration of the arena by a 

(putatively) less stressed individual (Fig 1 a). In contrast, low values of relative area arise from trials in 

which fish swim rapidly (yielding a high track length) but also display thigmotaxis (i.e. staying close to the 

tank wall resulting in a low area covered) (Fig 1 a). This scenario is commonly observed and is biologically 

interpretable as a ‘flight’-type stress response (i.e. the fish is seeking escape from the arena).
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Statistical analyses

First, we sought to confirm our expectations from previous work on this population that there would 

be among-individual variation for mean behaviour (relative area). We did this using a simple univariate 

linear mixed-effects model fit by REML (restricted maximum likelihood) using ASReml-R 3.0  (Butler  

2009; Gilmour et al. 2002) within R version 3.4.1 (R Core Team, 2017) in which relative area was 

modelled with random effects of individual identity and social housing group (Model 1). In addition to the 

mean, we included fixed effect factors of arena set-up and fish sex, as well as within-group trialling order 

(as a continuous variable to account for any cumulative disturbance effect of removing fish sequentially 

from the home tank). Conditional F-statistics were used to determine the significance of fixed effects 

although we note they were simply included to control statistically for sources of variance not directly 

relevant to our present goals. Random effects were tested using likelihood ratio tests (LRT), assuming 

twice the difference in log-likelihood between full and reduced models is distributed as a 50:50 mix of χ2
0 

and χ2
1 as recommended by Visscher (2006). We make the standard assumptions that random effects and 

residuals are normally distributed with means of zero and variances to be estimated. Importantly in the 

current context we also make the standard (but rarely stated) assumption that ‘residual’ variance is 

homogeneous across individuals (and fixed effect classes). We also calculated an estimate of the adjusted 

repeatability (conditional on fixed effects) as the intraclass correlation , where  is the among-𝑅 = 𝑉𝐼 𝑉𝑃 𝑉𝐼

individual variance and  is the total phenotypic variance.  is therefore calculated as , 𝑉𝑃 𝑉𝑃 𝑉𝐼 + 𝑉𝐺𝑅 + 𝑉𝑅

where  is the among-group variance (which accounts for environmental and social sources of variation 𝑉𝐺𝑅

among groups within home tanks) and   is the residual (within-individual) variance. The adjusted 𝑉𝑅

repeatability  is thus the proportion of phenotypic variance explained by among-individual differences in 𝑅

behavioural mean, after controlling for fixed effects (Nakagawa & Schielzeth, 2010). 

We then extended this model by including the individual genetic merit for (mean) behaviour as an 

extra random effect (Model 2). This becomes the standard repeated measures animal model of quantitative 

genetics (with additional fixed and random effects as described above), and allowed us to utilise the 

pedigree data to partition  into additive genetic  and non-genetic, permanent environment  𝑉𝐼 (𝑉𝐴) (𝑉𝑃𝐸)

components. We tested the significance of  by LRT (as described above) and estimated the narrow sense 𝑉𝐴

heritability (where = /  and  is the sum of the variance components and thus conditional on fixed ℎ2 ℎ2 𝑉𝐴 𝑉𝑃 𝑉𝑃

effects).

To estimate among-individual variation of predictability of the behaviour (relative area), we used a 

double hierarchical generalized linear effect model (DHGLM) (Cleasby et al., 2015; Lee & Nelder, 2006) 

of relative area (Model 3). The DHGLM allows for the simultaneous analysis of a mean level model and a A
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dispersion level model each including fixed and random effects. We estimated not only the among-

individual variation in residual variance (i.e. variation in predictability ( )) but also the correlation 𝑉𝐼𝑣

between the mean behaviour and its predictability at the individual level (Cleasby et al., 2015). To simplify 

slightly, we included as fixed effects in the mean model only those variables that were statistically 

significant in Model 1, while for the dispersion part of the model, we included a fixed effect of sex (i.e. 

males and females are permitted to differ in average predictability). We included group and individual 

identity as random effects in both the mean and the dispersion part of the model. We also modelled the 

covariance (at group and individual levels) between the random means and the predictabilities of relative 

area.

Finally we extended Model 3 to include random genetic effects on both the mean and the predictability 

of the behaviour in a double hierarchical animal model (DHAM) (Rönnegård et al., 2010; SanCristobal-

Gaudy, Elsen, Bodin, & Chevalet, 2009). The DHAM thus allows us to partition among-individual 

(co)variance into genetic and non-genetic (permanent environment) components using the pedigree. This 

DHAM (Model 4) has the same fixed effect structure as Model 3 for both mean and dispersion parts of the 

model. For the random effects, we included a permanent environment, an additive genetic and a group 

effect on both the mean and the dispersion models. Thus the double hierarchical models (Model 3 and 4) 

relate to each other in the same way as the ‘normal’ mixed models with random effects on the mean 

behaviour only (Models 1 and 2). In both model 3 and 4, the residual variance is dependent on the fixed 

and random effects included in the dispersion part of the model. However, it is possible to estimate an 

average residual variance for DHGLMs, . Assuming fixed effects in the dispersion part of the model are 𝑉𝑅

centred, we can estimate the (average) residual variance in model 4 as follow:

𝑉𝑅 = 𝑒𝑥𝑝(𝜂 +
𝑉𝑃𝐸𝑣

2 +
𝑉𝐴𝑣

2 +
𝑉𝐺𝑅𝑣

2 )
where η is the intercept of the dispersion model and ,  and  are the variance components 𝑉𝑃𝐸𝑣 𝑉𝐴𝑣 𝑉𝐺𝑅𝑣

associated with the permanent environment, genetic and group random effects in the dispersion part of the 

model respectively.

Both DHGLM and DHAM were fitted in a Bayesian framework using Stan (Carpenter et al., 2017) 

within R version 3.4.1 (R Core Team, 2017) via the package RStan version 2.18.0 (Stan Development 

Team, 2018). In order to optimize model specification in Stan, the residual variance was modelled on the 

log-normal scale and the covariance matrices of random effects were estimated as standard deviations and 

correlation matrices. We used uninformative (or weak) priors on all parameters. For fixed effect priors we A
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used a normal distribution with mean of zero and a variance of 100. We used a half-cauchy distribution 

(cauchy(0,5)) for standard deviations and for the correlation matrices, we used a LKJ correlation 

distribution, parametrized in terms of its Cholesky factor (allowing for a uniform distribution between -1 

and 1 for the correlation). Model 3 was fitted using 5 Markov chains each including 6,000 iterations, 2,000 

burn-in iterations and a thinning interval of 10. Model 4 was fitted using 5 chains each with 43,000 

iterations, 3,000 burn-in iterations and a thinning interval of 100. Convergence was first assessed by 

visually inspecting the trace plots, which were also used to identify an appropriate number of burn-in 

iterations. We then checked that the Monte Carlo error was less than 1-5% of the posterior standard 

deviation, that the Brooks-Gelman-Rubin (BGR) diagnostic converged to 1 ± 0.2 and that the 

autocorrelation was below 0.05 for all parameters (Kass, Gilks, Richardson, & Spiegelhalter, 1997). The 

mode and 95% Highest Posterior Density Intervals (HPDI) were used to summarise the posterior 

distributions of the model parameters. For all calculated parameters (e.g., R, h2), the parameters are 

calculated at each iteration and we reported their posterior mode and HPDI. Consequently, their estimates 

might differ slightly from the calculation done directly on the posterior mode of their components.
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Results

Model 1 revealed significant among-individual variation in relative area, 

(Table 1). Under this model the (𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑤𝑖𝑡ℎ 𝑆𝐸),𝑅 = 0.288 (0.024),𝜒2
0,1 = 517.44,𝑃 < 0.001) 

social group effect was also significant (  though it only explained 3.7% ( 1.9%) of 𝜒2
0,1 = 10.63,𝑃 = 0.001

the total variance.  Comparison between model 1 and 2 provided strong evidence for significant additive 

genetic variance in mean behaviour , with the latter yielding an estimated (𝜒2
0,1 = 10.88,𝑃 < 0.001)

heritability for relative area of  conditional on fixed effects (Table 1). These results are ℎ2 = 0.110 (0.052),

consistent with previously reported estimates using independent data from the same population (ℎ2

 (Houslay et al., 2019), but note that both estimates are conditional on fixed effects that = 0.080 (0.003))

differ slightly. Fixed effects estimated from the current (and subsequent) models are presented in the 

Supplementary Material (Table S1 and S2) for completeness, although are not directly relevant to our 

hypotheses in this study.  

The mean part of model 3 yields very similar point estimates of individual and group level 

variances to model 1, although the posterior of the latter was not very clearly distinct from zero. The 

repeatability of (mean) behaviour under Model 3 is the same as that obtained in the standard repeat 

measures mixed model (Model 1) with  =0.288 (95% CrI , 0.248-0.348). More notably Model 3 provided 𝑅

evidence of among-individual variance in predictability, and also of a strong negative correlation between 

the individual mean and predictability of behaviour (Table 1). While frequentist-type P values are not 

applicable given the Bayesian inference, the 95% credible interval of the individual level variance in the 

dispersion part of the mode ( ) is clearly distinct from zero. Similarly, the credible interval of the 𝑉𝐼𝑣

individual mean-predictability correlation is narrow and does not span zero (from which we can conclude 

statistical ‘significance’).

These findings are mirrored at the genetic level. Thus Model 4 yields very similar estimates for the 

heritability of (mean) behaviour. However, the DHAM also shows that both the variation in individual 

predictability and the mean-predictability correlation estimated in Model 3 have a genetic basis (Table 1). 

More precisely, both the genetic and permanent environment correlations between the mean behaviour and 

the variation (i.e. predictability) are strongly negative with 95% CrI that do not overlap zero (Table 1, Fig 

2).  Thus, individuals - and genotypes – that are more explorative (express high mean relative area) are also 

more predictable (i.e. less variable) in their behavioural response to the OFT. Point estimates of the 

corresponding group level correlations are similarly strongly negative, though we reiterate that the amount 

of variance in mean behaviour explained by group is low.  Fixed effect estimates from all models are not 

discussed here but are reported in full in the Supplementary Information (Supp Information, Tables S1 and 

S2).A
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Table 1: Estimated variance components and derived parameters for mean and dispersion parts of the four 

models of relative area. Subscripts denote residual (R), group (GR), individual (I), permanent environment 

(PE) and additive genetic (A) components of variance and the corresponding mean-predictability 

correlations (r). We us the second subscripts (v) to denote variance in the dispersion part of the model 

(applicable to models 3 and 4 only). Also shown are the familiar measures of repeatability (R) and 

heritability (h2) of mean behaviour (estimated at an average residual variance in models 3 and 4). Values in 

parentheses indicate approximate standard errors for models 1 and 2,  and 95% credible intervals for 

models 3 and 4. 

ModelParameter 

1 (repeatability model) 2 (animal model) 3 (DHGLM) 4 (DHAM)

VR 0.640 (0.018) 0.640 (0.018) 0.643 (0.587, 0.716) 0.617 (0.563, 0.74)

Mean 

 𝑉𝐺𝑅 0.035 (0.019) 0.034 (0.018) 0.020 (0.004, 0.059) 0.021 (<0.001, 0.056)

 𝑉𝐼 0.273 (0.028) - 0.234 (0.191, 0.295) -

 𝑉𝑃𝐸 - 0.173 (0.044) - 0.138 (<0.001, 0.226)

 𝑉𝐴 - 0.105 (0.052) - 0.052 (0.004, 0.302)

R 0.288 (0.024) - 0.269 (0.221, 0.309) -

pe2 - 0.182 (0.047) - 0.165 (<0.001, 0.242)

h2 - 0.110 (0.052) - 0.092 (0.009, 0.306)

Predictability (dispersion)

 𝑉𝐺𝑅𝑣 - - <0.001 (<0.001, 0.038) <0.001 (<0.001, 0.038)

 𝑉𝐼𝑣 - - 0.328 (0.244, 0.421) -

 𝑉𝑃𝐸𝑣 - - - 0.157 (<0.001, 0.264)

 𝑉𝐴𝑣 - - - 0.146 (0.034, 0.420)

Mean-predictability correlation

rGR - - -0.482 (-0.922, 0.486) -0.603 (-0.951, 0.473)

rI - - -0.955 (-0.988, -0.858) -

rPE - - - -0.956 (-0.998, -0.199)

rA - - - -0.921 (-0.987, -0.623)A
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Discussion

Here, we show evidence of among-individual variation in stress-related behaviour in the guppy P. 

reticulata and show that variation arises partly through heritable differences among fish.  The present data 

thus provide confirmation of earlier results showing genetic variation for individual mean behaviours  

expressed during open field trials (Houslay et al., 2019, 2018; White et al., 2019; White & Wilson, 2019). 

However, while previous analyses were limited to individual means, we now also show that (i) fish differ 

in behavioural predictability of relative area; (ii) variation in predictability is underpinned by additive 

genetic effects, and (iii) individual mean behaviour is genetically correlated with predictability. Our results 

show that  the assumption of homogeneous residuals, which is typical to linear (mixed) models applied in 

personality research (Brommer, 2013; Dingemanse & Dochtermann, 2013), is violated. Fortunately, this 

will not generally bias measurement of among-individual or additive genetic variance in mean behaviours. 

However, it does highlight how standard analytical approaches will necessarily miss interesting and 

important components of variation among-individuals. In what follows we first discuss our findings in 

relation to the behavioural stress response in guppies. We then broaden our focus with the aim of 

highlighting several consequences of (genetic) variance in predictability. We argue that this phenomenon 

has interesting implications for the evolution of phenotypes under selection that are more general than the 

current behavioural context.

First, we found variation in (mean) risk-related behaviour in this population of guppies at both the 

individual and genetic level. This is consistent with our previous work on the same population (Houslay et 

al., 2019), other species of wild-type poeciliid (Boulton et al. 2018), and the growing empirical evidence of 

heritable ‘personality’ variation across taxa (Dochtermann et al. 2014). Second, and of greater novelty, is 

the finding that behavioural predictability differs among individuals. Furthermore, our analyses 

demonstrate correlations between mean and predictability such that individuals expressing low relative area 

(i.e. more flight-type behavioural responses) are also less predictable (i.e. more variation in response to the 

OFT). The presence of correlation structure between behavioural mean and predictability is consistent with 

findings at the phenotypic (among individual) level from several other recent studies (Mitchell, Fanson, 

Beckmann, & Biro, 2016; Stamps et al., 2012). For example, a negative phenotypic correlation between 

mean activity rates and within-individual variation was previously estimated in guppies, where individuals 

that were more active, were also more predictable (Mitchell et al., 2016). Here, by using pedigree analysis 

we are also able to show that these individual-level patterns are underpinned by correlated genetic effects 

on behavioural means and predictabilities. To our knowledge only one previous study has attempted to 

measure a genetic correlation between mean behaviour and predictability (Martin et al., 2017). This study 

of docility in marmots estimated a negative correlation between mean behaviour and predictability, though 

the genetic correlation was not statistically significant.  A
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Although the stress coping style (SCS) model does propose a relationship between average behavioural 

response to a stressor stimulus, and the predictability of behaviour, our results do not fully align with its 

specific predictions. This is because the structural pattern of observed variation in relative area found is not 

consistent with the proactive-reactive model of SCS (Coppens et al., 2010; Koolhaas et al., 1999; Sih, Bell, 

& Johnson, 2004) in which proactive individuals are expected to express more ‘fight or flight’ stress 

responses on average, but are also expected to be ‘bolder’ and/or more exploratory than reactive types. In 

fact, variation in relative area is orthogonal to this expectation, because it discriminates between a 

(putatively stressed) ‘flight’ response to the OFT (low relative area) and a (putatively less stressed) 

exploratory response (high relative area).  In other words, relative area is probably better interpreted as 

measuring the magnitude, rather than ‘style’ of the behavioural stress response. Thus, while SCS predicts 

that high (mean) ‘flight’ behaviour will be linked to high predictability within the proactive coping style, 

we find it is linked to low predictability instead and likely reflects a high magnitude of stress 

responsiveness. While this means the stress coping model does not provide a good description of guppy 

responses to the OFT (Houslay et al., 2019), we nevertheless argue that it provides a useful heuristic 

framework precisely because it emphasises the need to evaluate integration among stress-response 

components in a multivariate empirical framework. Here we show links between mean behaviour and 

predictability, but there is also evidence of genetic integration between (mean) behaviour and 

glucocorticoid (GC) physiology (flight type behaviours being associated with higher GC levels; Houslay et 

al. 2019). It therefore seems likely that predictability will also be genetically correlated with GC responses 

and their rates of habituation to repeated or chronic stressor exposure (Houslay et al., 2019) though this 

remains to be confirmed. 

Before considering the evolutionary implications of this genetic covariance structure further, it is 

perhaps worth noting that mean-variance (or predictability) relationships may sometimes be inevitable 

given trait definitions and distributions (Tatliyer, Cervantes, Formoso-Rafferty, & Gutiérrez, 2019).  Here 

we derived the trait of relative area as a biologically relevant measure of behavioural stress response using 

observed data on the actual area covered and the distance swum. Specifically, relative area is defined as the 

difference between observed area covered and the predicted area covered given a ‘random swim’ as long as 

the observed track length. It is inevitable that the possible range of observed area covered is restricted for 

trials of low track lengths (i.e. a fish cannot cover 100% of the area with a very short track length) and, thus 

it is possible that (genetic) variance in predictability of relative area arises in part from (genetic) variance in 

mean track length. Although such dependencies might in principle also drive the (genetic) correlation 

between mean and predictability of relative area, this would lead in the present case to a positive 

correlation (Tatliyer et al., 2019), not a negative one as estimated here. However, to explore this further we 

fitted a post hoc DHAM model of the observed area covered (Supp Information, Table S3). We found the A
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same pattern as reported above with respect to relative area; negative correlations were present between the 

mean behaviour and predictability at the individual and genetic levels. Thus, while it is necessarily true that 

our quantitative results for relative area depend on track length, we do not think there is any sense in which 

our qualitative conclusions are driven by mathematical artefacts of trait definition.  For completeness, we 

also ran a further DHAM for track length (another biologically relevant trait often used to investigate 

personality traits such as boldness or activity) (Burns & Rodd, 2008; White & Wilson, 2019) (Supp 

Information, Table S4). We found among-individual differences in the trait mean and within-individual 

variance, which was in part due to additive genetic effects. This further suggests that the presence of 

genetic variance in predictability is not a particularly trait-limited phenomenon. 

Our results add to the small but emerging set of studies evidencing among-individual and genetic 

variance for predictability (or intra-individual variation). If widespread, this could have major implications 

beyond the present focus on stress response and coping strategies. Variance among individuals means that 

behavioural predictability could be a direct target of selection, and if this does occur, the fact that it is 

heritable means it could evolve under selection. Furthermore, genetic correlation between the individual 

mean and the variation around it will allow correlated evolution of predictability in response to selection on 

‘personality’ (individual average behaviour) and vice versa. Clearly our study tells us nothing about the 

fitness consequences of behavioural predictability in wild guppies. Nonetheless, low predictability can 

sometimes be selectively advantageous for prey species under specific predation threats (Briffa, 2013; 

Chang, Teo, Norma-Rashid, & Li, 2017). For instance, in the jumping spider (Cosmophasis umbratical) 

low predictability is advantageous when faced with aggressive predators (Chang et al., 2017).  There is also 

some evidence for predictability-fitness associations in the pill bug (Armadillidium vulgare), where 

individuals become less predictable in risk-taking behaviour in unfamiliar, rather than familiar 

environments (Horváth et al., 2019) (but see Richardson et al. 2018 for a counter-example). Predator-

mediated direct selection on predictability thus seems at least a plausible hypothesis in guppies (though 

indirect selection arising from causal effects of the genetically correlated mean behaviour could be more 

important). 

We also note that, while advantages of low predictability do occur in a behavioural context (Briffa, 

2013), it seems likely that high within-individual variation may more often be costly. For instance, given a 

single (constant) phenotypic optimum, an individual predictably expressing this value across multiple 

selective events will have higher fitness than a less predictable individual with the same mean phenotype. 

Where canalisation of some continuously distributed trait around the optimum is itself ‘expensive’, 

individuals of lower ‘quality’ or ‘condition’ may also be less predictable in trait expression and incur costs 

as a result (Westneat et al., 2015). In other words, low predictability can be a symptom of inability to buffer 

trait expression against environmental effects. A complementary perspective at the genetic level is gained A
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by recognising that heritable differences in predictability  can equally be viewed as ‘genetic heterogeneity 

of environmental variance’ (Mulder, Bijma, & Hill, 2007). Thus, this phenomenon is a manifestation of 

genotype x environment (GxE) interaction, in which the genotype-phenotype map is sensitive to one or 

more environmental parameters (Nussey et al., 2007). Although GxE are normally investigated across 

gradients of some environmental parameter defined a priori, our results show that some guppy genotypes 

are more phenotypically plastic (i.e. less predictable) than others in respect to unknown (and uncontrolled) 

environmental variables. This shows that application of DHAM could be a useful strategy for 

characterising the potential importance of GxE in scenarios where the most relevant or appropriate 

descriptor of environmental variation is itself unclear (e.g. wild populations experiencing complex 

multivariate changes in environmental state). It is notable, for instance, that (linear) reaction norm models 

applied to wild vertebrates in naturally variable environments have generally detected limited support for 

GxE (e.g. Hayward et al. 2018), while evidence from experimental studies that manipulate environment 

conditions is compelling (Des Marais, Hernandez, & Juenger, 2013; Ingleby, Hunt, & Hosken, 2010; 

Pigliucci, Whitton, & Schlichting, 1995). One explanation for this might be the (univariate) environmental 

descriptors used in the former, and/or the assumption that reaction norms are linear, have been inadequate 

or inappropriate choices. Typically ‘extrinsic’ variables (e.g. measures of climate) have been used, though 

some studies used environment specific trait means (Ramakers, Culina, Visser, & Gienapp, 2018) or other 

measures of average ‘performance’ (e.g., annual mortality; Wilson et al., 2006) as proxies for overall 

environmental quality. This approach is common in plant studies (following Finlay & Wilkinson, 1963) 

and may well have wider utility in evolutionary ecology. Regardless, demonstrating the presence of genetic 

variance for ‘predictability’ in behaviours or other traits could be a useful starting point for more targeted 

investigation of which specific environmental factors genotypes are responding to, and of what functional 

form those responses take.

In conclusion, here we build on previous studies highlighting genetic variation in mean behavioural 

stress response traits, to show that variance is also present in predictability of behaviour. This variation 

among individuals is itself underpinned by additive genetic effects, meaning behavioural predictability can 

be viewed as trait with adaptive potential under selection. Furthermore, this is one of the first studies to 

estimate a genetic correlation between mean behaviour and predictability (i.e. within-individual variation), 

and so highlights the expectation that these aspects of phenotype will coevolve under selection. We 

recommend wider application of double hierarchical models, including the DHAM used here, to investigate 

the presence and causes of among-individual heterogeneity in environmental sensitivity of phenotypes 

generally (including but not limited to behaviours). By doing this we will gain a more complete picture of 

how variation is structured within and across hierarchical levels, and consequently a deeper understanding 

of the evolutionary ecology of labile traits in general.A
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Figure 1. (a) Illustration of contrasting Open Field Trials (OFT), showing a) tracks swum by two individual 

fish (1, 2) as blue lines, and b) the resulting trait data. Here both fish swim a very similar track length, but 

individual 1 also covers a high percentage of the tank (Area covered = 65.7%) and displays an exploratory 

phenotype. By comparison Individual 2 covers much less area and is exhibiting a characteristic stress 

response of fast swimming along the tank walls. This results in very different values of relative area (𝑅𝐴) 

(where RA = 𝐴𝐶− 𝐴𝐶̂𝑇𝐿, 𝐴𝐶 = area covered,  = track length, and 𝐴𝐶̂𝑇𝐿 is the expected area covered in a 

random swim of observed TL, predicted by a fourth order polynomial regression fitted to simulated data; 

see Houslay et al 2019 for further details).

1

2
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Figure 2. Estimated genetic matrix of relative area mean and trait predictability. The black line captures 

95% of variance in the genetic correlation between mean and predictability in relative area. The grey 

ellipses are bootstrapped replicates from model 4, showing uncertainty around the estimated matrix. 

Individual points are best linear unbiased predictions (BLUPs) of genetic values from individuals in our 

data set.
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