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Abstract: This paper studies a generalized version of multi-class cost-constrained random-coding
ensemble with multiple auxiliary costs for the transmission of N correlated sources over an N-user
multiple-access channel. For each user, the set of messages is partitioned into classes and codebooks
are generated according to a distribution depending on the class index of the source message and
under the constraint that the codewords satisfy a set of cost functions. Proper choices of the cost
functions recover different coding schemes including message-dependent and message-independent
versions of independent and identically distributed, independent conditionally distributed, constant-
composition and conditional constant composition ensembles. The transmissibility region of the
scheme is related to the Cover-El Gamal-Salehi region. A related family of correlated-source Gallager
source exponent functions is also studied. The achievable exponents are compared for correlated and
independent sources, both numerically and analytically.

Keywords: multiple access channel; correlated sources; random coding; error exponents

1. Introduction

In information theory, the fundamental problem of communication over a channel is
studied from two complementary perspectives. First, one characterizes the transmissibility
conditions, namely the circumstances under which the error probability asymptically
vanishes as the blocklength goes to infinity. Second, one describes by means of error
exponents the speed at which this error probability vanishes; the larger the exponent,
the faster the error probability tends to zero. Since finding an exact expression for error
probability is very difficult, a large body of work has investigated upper and lower bounds
on the average error probability, or equivalently lower and upper bounds for the error
exponent. In point-to-point, that is, single-user communication, using separate source-
channel random coding [1,2], possibly with expurgation [1] (Eq. 5.7.10), yields lower
bounds on the error exponent. In contrast, finding an upper bound to the error exponent
satisfied by every code is more challenging. Generally, the hypothesis-testing method [3] is
employed to derive upper bounds for the error exponent. Two well-known upper bounds
to the error exponent are the sphere-packing exponent [4] and the minimum-distance
exponent [5]. In fact, for rates greater than critical rate [1] (Sec. 5.6), the random-coding
and sphere-packing bounds coincide with each other, while the expurgated and minimum-
distance bounds coincide at rate zero.

For point-to-point communication, it was shown in ref. [1] (Prob. 5.16) that joint source-
channel coding leads in general to a larger exponent than separate source-channel coding.
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Additionally,using codewords with a composition dependent on the source message leads
to a larger exponent than the case where codewords are drawn according to a fixed product
distribution [6,7]. Moreover, a scheme where source messages are assigned to disjoint
classes and encoded by codes that depend on the class index, attains the sphere-packing
exponent in those cases where it is tight [8].

Many works have been devoted to studying the transmissibility and the error ex-
ponent for a two-user multiple-access channel (MAC) [9-11]. Separate source-channel
coding for the MAC with independent sources was studied in refs. [9,12]. In ref. [13],
a universal exponent for the MAC was derived by considering separate source-channel
coding. In ref. [14], a transmissible region is derived for the MAC under mismatched
decoding, where the decoding rule is fixed and possibly suboptimal. In ref. [15], it was
shown that using structure coding can improve the error exponent of the MAC. The
maximum-error-probability criterion and the impact of feedback for the MAC were studied
in ref. [16]. By considering separate source-channel coding, lower and upper bounds for
the error exponent of the MAC were respectively obtained in refs. [17,18]. For the MAC
with independent sources, the idea of exploting the dependency between messages and
codewords was studied in ref. [19]. In ref. [20], an achievable exponent for the MAC with
independent sources was given in the dual domain, that is, as a lower dimensional problem
over parameters in terms of Gallager functions. For the MAC with correlated sources, it
was shown in ref. [11] that considering statistical dependency between messages and code-
words for the MAC with correlated sources leads to a larger transmissible region. However,
an example presented in ref. [21] shows that one can reliably transmit information through
the MAC without satisfying the reliable transmission obtained in ref. [11]. In another line
of work, superposition coding with Gacs Kérner Witsenhausen (GKW) common part is
used in ref. [22] to to describe the sufficient conditions lossless recoverability.

In contrast to single-user communication, the problem of reliable transmission of two
correlated sources has not been solved yet and just the sufficient conditions of a reliable
transmission has been derived. In ref. [23], by applying coding techniques, a new set of
sufficient conditions were proposed. Moreover, in ref. [24] new sufficient conditions for the
three-user MAC with correlated sources were studied. In ref. [25], an achievable exponent
derived was presented in the primal domain, that is, as a multi-dimensional optimization
problem over distributions that is generally difficult to analyze.

In this paper, we examine how statistical dependency between the messages and
codewords improves the exponent, as well as its impact on the transmissibility region.
In view of refs. [1] (Ch. 7) and [26], we study a generalized message-dependent cost-
constrained random-coding ensemble with multiple cost functions. By choosing the proper
cost functions, the multi-class cost-constrained ensemble subsumes multiple ensembles
previously considered in the literature and recovers the transmissibility region in ref. [11].

The paper is organized as follows—in Section 2, we present the problem of transmis-
sion of N correlated sources over an N-input discrete memoryless multiple-access channel
and provide the key definitions of error probability, transmissibility, random-coding en-
semble, and achievable exponent. In Section 3, we review the existing random-coding
ensembles, define a novel generalized multi-class cost-constraint ensemble and characterize
its achievable exponent. In the discussion Section 4, we characterize the transmissibility
region for our error exponent, relate the exponent to standard Gallager source and channel
functions, and provide numerical results and formulas that allow us to rank the exponents
attained by the various standard random-coding ensembles.

2. Problem Formulation

We study the simultaneous transmission of N correlated, discrete, memoryless sources
over a channel; users are indexed by v € N' = {1,2,..., N}. The source messages u, of
user v have n symbols drawn from the alphabet If,. We denote by u, the ordered vector
of source messages for all users in a set o C oV ,1.e., a subset of the set of all user indices,
and similarly by U, the Cartesian product of the source alphabets in the set ¢. When
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o = N, uy and Uy denote the ordered vector of source messages for all users and the
Cartesian product of the all source alphabets respectively. The sources are memoryless and
are characterized by the joint probability distribution P s

Py (up) = [ [Pn(uns), 1)
t=1

and by the symbol joint probability distribution Pys. The source message and symbol
marginal distributions of user v € A are denoted by P, and P, respectively. Assuming that
the sources are independent, the marginal distributions induce new joint (mismatched)
probability distributions of sets of users ¢ C 2N, The induced independent-message and
-symbol probabilities, denoted by P and PiMd, are given by

Py (uy) = HPV(”V)r 2)

veo

and similarly for Pind,

Each user v has an encoder that maps, without cooperation with the other users, the
source message #, onto a codeword x, (u,) also of length n and with symbols drawn from
the alphabet ;. We denote the codebook of user v by C;,. We denote by x, € X the
vector of codewords for all users in a set ¢ C 2. Both terminals simultaneously send these
codewords over a discrete memoryless multiple access channel with output alphabet ).
The symbolwise transition probability is denoted by W, and the channel is characterized
by a conditional probability distribution

n

W(ylan) = [TW(ytlxw,), ®)
t=1

where y is the received sequence of length .
Based on y, a joint decoder estimates all transmitted source messages u s according to
the maximum a posteriori criterion:

ity = argmax P (upn )W (y [ xar(up)), @)
uy EUN,

where U}, denotes the set of all possible source messages u,s. An error occurs if the
decoded messages ity differ from the transmitted u/; we refer to @iy # upr as an error
event. The error probability for a given set of codebooks, P.(C2), is thus given by

P(C)) £ Pr{lly # Uy}, )

In our analysis, it will prove convenient to split the error event into 2V — 1 distinct types of
error events indexed by the non-empty subsets in the power set of the user indices M\ @,
for example, T € {{1},{2},{1,2}} for N = 2. More precisely, the error event of type T
corresponds to the conditions i, # u, forallv € T and i1, = u, for all v € 7¢, where 7° is
the complement of T in the power set of the user indices.

We are interested in the asymptotics of the error probability for sufficiently large n,
namely whether the error probability vanishes and how fast this probability tends to zero
as it vanishes. The sources U s are said to be transmissible over the channel if there exists
a sequence of codebooks CV such that limy, e, Pe(CY) = 0. To characterize the speed at
which the error probability vanishes, we use the notion of exponent. An exponent E is said
to be achievable if there exists a sequence of codebooks such that

liminf —% log Po(CY) > E. ©)

n—oo
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Source transmissibility and error-exponent achievability are typically studied by
means of random coding. With random coding, one generates and studies sequences
of ensembles of codebooks whose codewords are randomly drawn from a distribution
Qy (xy|uy) independently for each user; as indicated by the notation, this distribution may
possibly depend on the source message u,. The random-coding probability distribution for
the channel input Qs (xr|ux) combined for all users is given by

Qu(xnlun) = T Qulay|uy). )
veEN

The use of random coding allows us to study how the error probability averaged over the
ensemble, denoted by P, vanishes as n grows. More importantly, it shows the existence
of good codes in the ensemble such that their error probability vanishes. For the point-to-
point and the multiple-access channels, a number of such random-coding ensembles have
been studied in the literature, as reviewed in the following section, where we also present
a multi-class cost-constrained ensemble subsuming all these ensembles and characterize
the achievable exponent and transmissibility region of this ensemble.

2.1. Summary of Notation Used in the Paper

Sets are usually denoted by calligraphic upper case letter, e.g., X, and the n-Cartesian
product set of X is denoted by X™. The cardinality of a set such as X is denoted by | X'|.
The indicator function representing an error event or that an element x belongs to a set X’
is denoted by 1{x € X'}.

The number of users is denoted by N and user indices are typically represented by v.
The set of all users is denoted by V. The power set of all subsets of A is denoted by 2V
and the complement of a subset o C 2V is denoted by ¢¢; sets in the power set of users
are denoted that by Greek letters, for example, T and o. The number of source-message
classes and of cost functions for user v are respectively denoted by K, and L,; the sets of
such classes are functions are respectively denoted by X, and £,. Indices for source classes
and cost functions are typically denoted by i, and /¢, respectively.

Subscripts and superscripts in a quantity A may represent sets of user indices o.
Depending on the context, the quantity represents a list or a suitable product of variables
for all elements in the set o. For instance, for o = {1,2}, A7 = (A!, A?) or A, = (A1, A2).
If the quantity is a probability distribution, its value for o represents the probability
distribution of the sequence, for example, Qi (xy) = Tyee Q¥ (xy). If the quantity is a set,
its value for o is the Cartesian product, for example, U, = Uy x Uy for o = {1,2}. If 0 = Q,
then A, = A” = 0. If ¢ is a singleton, for example, ¢ = {2}, we simply write A, or A2, We
denote the operation that merges and sorts two lists A, and A,, with 01 N0y = @ into an
ordered list containing all users in the union o4 U 03 by [Ay,, Ao, |. For sets of user indices,
we denote such merging operation by 7, 03] and we have [0, 0] = V.

Scalar random variables are denoted by capital letters, for example, X and lowercase
letters represent a particular realisation, for example, x € X. Capital bold letter denotes
random vectors or sequences, for example, X, while small bold letter x € X" denote
deterministic vectors or sequences. Probability distributions for vectors or sequences,
typically of length #, (resp. for symbols) are represented by text-style letters, for example, P,
Q, W (resp. math-style letters, for example, P, Q, W). Sequences symbols are usually affixed
a subscript to indicate a user index; the t-th symbol in the sequence x, is denoted by x, ;.

The source-symbol distribution for user v is denoted by P, (1, ). The joint distribution
for users ¢ is denoted by Py (1, ); the joint distribution, computed as if the sources were
independent, is denoted by Pi"d(u,). The conditional source distribution for users ¢ given
another set 07 is denoted by Py, |, (1c, |1, ). Vector or sequence distributions are defined
analogously with P replaced by P. Channel input distributions are denoted by Q,(xy),

W (xy), or Qy, (x), where iy, denotes the index of the class source message and Qy,y, (xy)
is a shorthand for the conditional distribution Q,(x,|u,). Cost functions are similarly
denoted by a,(x,), a¥(x,), or af}:uv(x,,). Vector or sequence distributions are defined
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analogously with Q or a respectively replaced by Q or a. The conditional distribution for
the channel output symbol (resp. sequence) is denoted by W (y|xr) (resp. W(y|xpr)).

3. Multi-Class Cost-Constrained Ensemble with Statistical Dependency
3.1. Review of Random-Coding Ensembles

The simplest and oldest random-coding ensemble is the independent, identically
distributed (iid) [1,12,17,27], where the symbols x,; in all codewords x, of a given user
v are generated independently according to the same input distributions Q, (xy ) for all
source messages #,. Throughout the paper, we shall identify ensembles by hyphenated
acronyms, where the first part indicates the possible dependence of the codeword on the
source message and the second part describes the generation of symbols in a codeword.
This first ensemble is thus the message-independent iid (mi-iid) ensemble, since codewords
have the same distribution for all source messages and symbols are independent of each
other and independent of the source message symbols too. For the mi-iid ensemble, the
random-coding distribution is given by

mi ud

T (g |uy) HQU Xu,t)- (8)

In the message-independent, independent-conditionally-distributed (imi-icd) ensemble,
the codewords x, of user v are generated identically for all source messages u,, indepen-
dently of the full message u,, and with symbols according to a set of |, | conditional
probability distributions Q,,, (x,) = Qu(xy|uy). To this end, let Z,, (u,) denote the set of
positions where the symbol u, € U appears in the sequence u,, namely

Tu,(wy) = {t € {1,2,...,n} s uyp = uy }. 9)

Within each subsequence of u, where u,; = u,, represented by u, (IuV (uv)), symbols are
drawn independently according to Qy,u, (xy). For this mi-icd ensemble, codewords are
generated according to

erjni-icd (xv | uv)

H 1__[ Qu,u, (xv,t) (10)

uy €Uy teTy, (uy)

= H Qv,uv/t<xv,t)- (11)
t=1

Compared to the mi-iid ensemble, the mi-icd ensemble can lead to a larger transmissible
region for the multiple-access channel with correlated sources [11,21]. An example of gener-
ation of three codewords xvl), xv2) and xv3) in the mi-icd ensemble is shown in Figure 1, for
a given source sequence u, = (&, 8, 8,7, B, v, v, &, B, &) with source alphabet i = {«, B, v}.
To generate each codeword x, with alphabet X = {a,c, e}, three subcodewords x, (Z, (1),
xy(Zg(uy) and xy(Zy (uy) are pairwise-independently generated with i.i. d. distributions
Qua =(1/3,1/3,1/3), Qup = (1/2,1/4,1/4) and Q,, = (1/3,2/3,0), respectively. Sym-
bols generated according to Qu 4, erﬁ and Q,, are respectively represented as green
circles, blue boxes and red diamonds in the figure. In the example, Z, (u,) = {1,8,10},
Zg(uy) = {2,3,5,9} and Z,(uy) = {4,6,7}. For instance, the subcodeword xsl) (Zy(uy)
has three smeols each generated independently from Q, ,, leading to the red-diamond
symbols xv (Iv(ul,) (a,a,a).
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the mi-ccc ensemble, for a given source sequence u,.

Next, we have the message-dependent iid (md-iid) ensemble [6,8,19,25,28], where
codewords for each user are generated with i.i. d. symbols according to different distri-
butions Q¥ (x,) that depend on the full source message through the class index i, of the
class the source message belongs to. More precisely, for user v = 1,2 with source marginal
distribution P, the i,-th class .Ai” ,wherei, € I, ={1,...,K,}, is defined as the set of all
source messages whose probability P, (u,) is within a given interval, that is,

All/ = {uv S un . r)/:;l,iy < Py(u]/) S r)/:'/l,iV71}, (12)

where the thresholds 7v,j are Ky + 1 non-negative numbers, ordered from higher to lower,
suchthat 0 = v, x, < 1y k,-1 < oo < 791 < Y0 = 1, and min,,, Py(uy) < Yv.x,—1 and
Yva < maxy, Py(u,). The md-iid random-coding distribution is given by

QUi (i, |u,,) HQ“ ) (xy4)- (13)

The exponent of this md-iid ensemble can be larger than that of the mi-iid ensemble for
joint source-channel coding [8,20,28].

In the message-dependent, independent conditional symbol distributions (md-icd)
ensemble, messages in the class i, for user v are encoded with codewords whose symbols
are generated independently according to the conditional input distribution Qf,”, u, (xv). The
random-coding distribution of the md-icd ensemble is thus given by

Qe (x, )y = TT T Q™ (xu)- (14)

uy €Uy teLy, (uy)

In the message-independent, constant-composition (mi-cc) ensemble [29,30], code-
words x, are drawn independently with an empirical distribution Q, (x,) close to a given
Qv (xy), independently of the source message u,. For each user, codewords x, are randomly
picked from 7, (Qy ), the set of all sequences whose empirical distribution has a variational
distance to Q, of at most 1/#, that is

7:/n(Qv) = {xv S XJI :rr;?x |Qv(xv> - Qv(xv)| < rll} (15)
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For this mi-cc ensemble, the random-coding distribution is given by

er/ni—CC(xduv) - 7—”(1Q1/)|1{xv € W(Qv)} (16)

While the mi-cc and mi-iid ensembles lead to identical transmissibility conditions, the
former may achieve strictly larger exponents for suboptimal input distributions already in
single-user settings [29].

The message-independent, conditional constant-composition (mi-ccc) ensemble com-
bines features of the mi-icd and mi-cc ensembles. For each subsequence u, (Iuv(uv)),
the corresponding subcodewords x, (Zy, (#,)) are drawn independently from the set
%\Lw uy)] (Qu,u, ) of subsequences with empirical distribution close to Q, 4, (xy), namely

7:/|IM(MV)|(QV,uV) = {xv € XJIM(W)‘ : max ’Qv(xv) = Quu, (xv)| < (17)

1
XvExy |Zu, ()| }
The random-coding distribution of the mi-ccc ensemble is given by

1
7:/\1—1“/ (uv)] (Qv " )

P ) = T

uy EUy

1{xu (Iuv(uv)) € ﬁIMV(uV)l(QV,uU)}- (18)

4) (5 (6)

An example of the generation of three codewords x, "/, x;7’ and x,, in the mi-ccc ensemble
is also shown in Figure 1 as a comparison to the md-iid ensemble, for the same source
sequence u,, source alphabet i/ = {«, B, v} and input alphabet X = {4, c,e}. Now, to gen-
erate each codeword x,, three subcodewords x, (Zy(uy)), xy (Iﬂ(uv)) and x,(Z,(uy,)) are
pairwise-independently, uniformly drawn in the type classes with empirical distributions
Qv,w Qv,ﬁ and QV,7 that are closest to Qy,«, Qs and Qy,y, respectively. Since in the exam-
ple |Z,(uy)| = 3, |Zg(uy)| = 4 and |Z,(u,)| = 3, it follows that Q,, = (1/3,1/3,1/3),
Qv,ﬁ =(1/2,1/4,1/4) and Qvﬂ = (1/3,2/3,0). Symbols generated according to O u,
Qv,ﬁ and Q,, are respectively represented as green doubled circles, blue doubled boxes
and red doubled diamonds in the figure. For instance, all subcodewords xsj ) (Z,(uy), for
j = 4,5,6, have three symbols jointly generated from the constant-composition type Qv .,
that is, exactly one 2 and two cs.

The message-dependent, constant-composition (md-cc) ensemble combines the fea-
tures of having different distributions for different messages with constant-composition
random coding. For messages in the class i, € {1,..., K, } for user v, codewords are drawn
from the set of sequences with empirical distribution close to Qf/” (xy). For this ensemble,
the random-coding distribution is given by

wl{xv e T/ ( 3(””)}. (19)

szl_cc(xv luy) = i
T (Qv

Finally, the message-dependent, conditional constant-composition (md-ccc) ensemble
combines several of the ensembles listed above. For a given message u, = (1,1, ..., Uy,n)
in the i,-th class, that is, u, € Aiv", the subsequence of u, having the same symbol u,, that
is, uy (L,V (uv)), is encoded with pairwise-independent codewords generated from the set
of codewords with empirical distribution very close to in, u, (xy). The random-coding
distribution of the md-ccc ensemble is thus given by

1
|7T/|Iuv (u)] ( iv(”v)) |

v, Uy

Py ) = T

uy €Uy

1 (T, (w) € V(@) ). (@0)
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3.2. Generalized Multi-Class Cost-Constrained Ensemble

Motivated by the ensembles listed in the previous section, and inspired by refs. [1] (Ch. 7)
and [26] (Sec. II), we study a generalized message-dependent multi-class cost-constrained
random-coding ensemble with multiple auxiliary costs.

For each user, we partition the set of source messages into K, disjoint classes with
thresholds on the message probabilities as in Equation (12). Let the source message be in
the i,-th class, that is, i, (u,) = i,. Given the source message u, and the source symbol
u,, we consider the subsequence u, (Z,, (uy)), where 7, (u,) is defined in Equation (9),
and we denote the corresponding source subsequence and subcodeword by u, (Zy, (1))
and x, (Iuv (uy)) respectively. For each user v, class index i,, and source message symbol
uy, the subcodeword x, (Iuv (uv)) is drawn according to a symbolwise i. i. d. distribution

Qf)’,uv (xv) conditioned on a set of cost constraints being satisfied. We consider L, additive

cost functions af}’,;fvv (xy), by € L, = {1,...,L,}. The total cost aivlgf;’ xy (Zu, (uv))) of the

subcodeword x (Z, (u,)) is given by the sum of the symbol costs a;/ ;fvv, namely

4L’/£1’ P— ‘VIZV
alitr (% (T ) = Xl (). @1
jeIMv (ul/)
We assume that the average cost <p£v,;f; under the conditional distribution Qf)’,uv is zero:
‘VI[V —_— ‘l/ ‘1/781/ J—
11/,u1/ - Z Qi/,uv (xi/)ai/,u,/ (xV) =0. (22)
xy€Xy

Finally, fix some parameters 6, > 0 and let DY be the set of codewords for which the

average empirical cost of its constituent subcodewords maﬁ, ’fVV (xv (Zu, (u,,))) is close

to the statistical mean 4)3/"55 = 0 for all cost functions and source symbols, i.e.,

; 1 i 6
Dy, 2 {xv €Ay ‘ T (% (Za, (uu)))‘ < gy e €U € £V}. (23)

Codewords x, are the combination of subcodewords x, (Iu,, (uu)) with respective
positions in Z,,, (uy). For this multi-class cost-constrained ensemble, the random-coding
distribution is thus given by

1 . .
Qiost(xv‘ul/) = = H i/v,uv(xlf,t)l{xv € Dllxv,uv} (24)
=V uyely te,, (uy)
1 .n . .
B Qi}j,uw(xl//t)l{xl/ € Dll};uv}/ (25)
v b1

where &, is a normalizing constant and the class index is determined by the source message,
iy = iy (uy).

The multi-class cost-constrained ensemble subsumes all the ensembles described in
Section 3.1. First of all, the iid and icd ensembles are recovered by setting L, = 0 and
choosing the appropriate number of classes K;, and random-coding distributions Qy, Qu,u,,

v and Qy, . For all these cases, the set D}/, includes all generated codewords and the
normalizing constant is &, = 1.

To recover the constant-composition ensembles, for which constraints force the sub-
codewords to belong to some set 7,/(Q,) or ﬂlz"v “I(Ql,,), for each of the K, classes
for user v we set 6, < 1, L, = |X,| and bijectively map the channel input symbols to cost
function indices ¢, (x,) so that

i (x0) = 1{xy = 6} = Qlty, (4). (26)
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In case the ensemble does not depend on either i, or u,, these symbols are dropped from Equa-
tion (26). For example, for the md-cc ensemble, we have a'¥ [ =1{x, =0} — Q¥(
In addition, the codeword set D,l}uL in Equation (23) is snnphfled as

1 & :
- Zl{xv,t =x}—Qy(x)
=1

DLVul = {xv e xl:

<l ye xv}, 27)
n

which is the same as 7" (Q) given a version of Equation (15) where Q, may depend on i,.

Again, choosing the rlght number of classes K, and random-coding distributions Q,,
Quu,, Qi, and QY 4, Tecovers the various constant-composition ensembles. By construc-
tion, the set Df}/uv includes only the (sub)codewords with empirical distribution close to
respectively Qy, Quu,, Q) , and Qf},uv, and the normalizing constant =, is the probability of
the corresponding type set (or product thereof). As an example, for the md-ccc ensemble,
choosing the cost functions in Equation (26) as follows

ai/vuf:/ (xv (Iuv(uV))) = X Uxj=0} - Qu , (60) (28)

JE€Zuy (uv)

yields the following cost-constraint set, which is equivalent to Equation (17),

{xv eal: YieZu(u) Hxv,j = x} 1

'DL |Iu(u1/)| Qvul( ) |Iu(uv)

vy

,uel, xe XV}. (29)

3.3. Exponent for the Generalized Multi-Class Cost-Constrained Ensemble

Theorem 1. For the transmission of N correlated memorlyess sources with joint distribution
Py, where N' = {1,2...,N}, over a channel with input x,r over a memoryless channel with
transition probabilitiy W (y|xar), consider a random-coding multi-class cost-constrained ensemble
where source messages for each user v € N are allocated, depending on their probabilities, into K,
classes with thresholds {y,,0, vv1,---, Vv, }, as in Equation (12), and encoded onto codewords
randomly generated with a distribution Q! (xy |uy ) that depends on the source message according to
Equation (24) through symbol distributions Qf,”, u, that possibly depend on the source-message class
index i, and source symbol u,and L, cost functions u%;’, ¢, € {1,2,...,L,}. This random-coding
ensemble attains the following exponent E€st

min max max EX (p, A, rf\/}/uv) (30)

N i . 0<p<1 ,Lu ‘
Te2U\Q, iy ey O=P=L L 2O,r/(}{WeR

Ecost —

where the Gallager function EX (p, AH, rj\f}um) is given by
B o L) =

_ L
g ¥ (zPNow)%Amumgzuxxawm,<xN><Q;T:;M<xTc) <y|xm>>+> e

e, Xee,y \Ut,Xt
and the functions A¥ (uy) and Ri,, (x,) are respectively given by

Ag (ue) =TT (P”(u”))A£ (g(uﬁ)A (2)

ver N VYv,iy
Riv

g (xe) = [T T oot (), )

VET L, eL,

and implicitly depende on the set of optimization parameters (Aﬁfu rﬁ(fw)

Proof. This result is proved in Appendix A. O
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The random-coding exponent in Equation (30) depends on the partitioning of the
source-message set into classes, the channel input distributions, and the codeword cost-
constraint functions. The best possible generalized cost-constraint exponent is obtained by
optimizing over the multi-class partitioning, the cost constraints and the input distributions.
We briefly discuss the optimization w. . t. the thresholds of the source messages partitioning
in Appendix B. In the next section, we provide some numerical examples where we
compute the optimal exponents for either independent or correlated sources, and find that
the optimal number of classes is two. In ref. [31] (Sec. 3.2.1.1), we provide some indications
of why this optimality of only two classes is harder to establish in multi-user scenarios,
compared to the single-user case. In the next section, we use Equations (31) and (30) to
respectively obtain the source and channel Gallager functions of the various ensembles in
Section 3.1 and rank their achievable exponents and transmissibility regions.

4. Discussion
4.1. Gallager Functions for Correlated Sources

In this section, we evaluate the generalized Gallager function E/ i (o, )\ rﬁ(}fu ) of the
multi-class cost-constrained ensemble in Equation (31) for the various ensembles descrlbed
in Section 3.1. In the cases where it is possible, we relate this Gallager function to the
well-known [1] correlated-source and channel Gallager functions, respectively given by:

1 e
Eso (0, Pyv) = 1082<ZPN(“N)””> , (34)

” ’ 1+p
EO(pI Ql IOgZ<ZQ y|x 1+p> ’ (35)

where o € 2V, Using that [ug, tyc] = uys, the standard Gallager source function is given
by Es(p, Pxr) = Esar(p, Pyv), with N = {1,..., N} the set of user indices.

For the simple mi-iid ensemble, with only one source class and no cost constraints,
K, =1and L, = 0forallv € N, and A¥ (u,) = R, (x,) = 1forall ¢ € 2V. With no sta-
tistical dependency between messages and codewords, Q, 4, (xy) = QV(xV) Setting ins =1

and ALY o= ﬁ/}/u = 0 in Equation (31) gives the Gallager function E”(p, Pxr, Qar, W),

EF""" (0, Py, Qu, W)

) L 1+p
= —log Z (Z Py ”N)liQT(xT)(QTC(xTC) (y|xN))1+P> . (36)

Ure,Xzc, Y \Ut, X1

Isolating the summations over u and ., we can split the Gallager function as

E;ﬂi-iid(p, Py, Qu, W) = EO(P/ Q, QTCW) - Es,T(P/ P./\/)/ (37)

where QW is a shorthand for Q< (xc)W(y|x,), the transition probability of a channel
with input x; and output (x1c,y).

For the mi-icd ensemble, we have a similar set-up as for the mi-iid ensemble, where
Qu,u, (x,) now may depend on u,. In this case, the Gallager function E??(.) is given by
Equation (36) with Q,(xy) replaced by Qu 4, (xs), for o € {t,7°}:

EMHed (o, Par, Qarae, W)

L 1+p
= —log 2 (2 Py ”N)liQT,ur(xT) (Qrf,urc(xrc) ( |x/\/))1+f’> . (38)

Ure, Xz, \Ut,XT

As the summations over u,c and u, are not independent from the rest, the Gallager function
does not split into source and channel functions unless the sources are independent, in
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which case one can find an mi-iid ensemble with a tilted unconditional input distribution
and identical exponent. To this end, and for a given conditional input distribution Qy,., (xv),
let us define a tilted distribution QY (x,) as

1
Pv(uv)m

Qg (xv) = Z L Qu,u, (xv). 39)
Uy Zu by (1/[1/) 1
From this equation, we have the following equality:
—_ s
Qﬁ(xv>zpv(av I+ ZPU uv 1 VMU(xl/>' (40)
ity

Substituting this identity together with Py (1) = Pr(ut1)Pre(uirc) in Equation (38) and
rearranging the result, we obtain the following Gallager function for independent sources:

EMHied (0, Par, Qarae, W) = Eolp, QF, WQre) — Es(p, Pr) (41)
= ETHi (o, Py, [QF, Qee], W). (42)

For the md-iid and md-icd ensembles, there are K, source classes per user and no cost

constraints, i.e., L, = 0 and Rf}’uo(xg) = 1forv e Nando € 2V, Settting r =0in
Equation (31) gives the Gallager function E’”d lCd( ) for generic iy [31] (Eq. (4. 36))

d-icd /
EPdic (o, Prr, Q%0 W)

1+p
L ;o . .
=—log ) < Y Par(up) T AR (1, ) Q% i, (x7) (Q?{L,TE (X )W(ylxn)) ””) . (43)
Uge,Xec,Y \ Uz, Xr

The Gallager function E md’””l( ) for the md-iid ensemble is obtained by setting Qy ., (Xs)
Qo (xs), independent of u,, for o € {1,7°} in Equation (43). As the summations over
and u are now independent from the rest, the Gallager function splits as

EPiid (p, Prr, QR W) = Eolp, Qif, QW) — EX (0, Py), (44)

where we defined E;ﬁ(p, Pyr), a modified Gallager Es-function, as

) ' 1+p
(0, Py) logZ<ZPN up) A (w)) : (45)

The maximization w. r. t. A}“\'/U in Equation (30) only affects the second term in the r. h. s. of
Equation (44), since the function Al only appears in the source part of the exponent. In
Appendix C, we discuss the propertles of Equation (45) after the maximization w.r. t. AL Y
as a function of p, and establish some connections to the Gallager source function (34) and
to the source functions for the single-user md-iid ensemble in ref. [8].

The Gallager functions for the constant-composition ensembles differ from the ones
considered so far in the presence of L, = |X,| cost functions af,”,ff (xv), given in Equa-
tion (26), for each input distribution Qy,,, (x,). These cost functions appear in the Gallager
functions through the factors R, (x,), for ¢ € {T,7°} that multiply each appearance of
Qle 1, (Xo) in the function, and through their associated optimization parameters rf{}[ . The
expressions of the Gallager functions for these constant-composition ensembles can be
easily inferred from this obversation, so we focus on the factor R, (x¢) itself.
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For the mi-cc and md-cc ensembles, the cost functions aiﬂ ’fj (xy), factor Rff”, ey (xgl), and

associated optimization parameter rf% are independent of u,, we thus write ay (xy),
R¢ (x¢), and rﬁ”. The expressions in Equations (26) and (33) for £, = &, give
v (v ) — STrer, i (H{xm=t}—-Q (1))
Rl (x),) = e*tvedv . (46)

The exponent in Equation (46) can be evaluated as

Z ”ﬁv (l{xv = EV} - QB(KV)) =1 = Z rngf/V (v) (47)
lyeX, lyeXy
= ok, (xv), (48)

where we have defmed a function txlT‘V(xU) that depends on T and i, through the opti-
mization parameters ri. We can be easily verify that a%¥,, has zero mean, in other words,
Yo, 02, (x,)Qy (xy) = 0. At this point, the parameters 1’5 may be replaced by the equiv-
alent real-valued functlons ¥, (xy). We obtain the mi-cc Gallager function E?*(-) by
setting iy = 1 and ALY ~~ = 0in Equation (31),

EM(p, 0 nr, Par, Qnr, W)

L 1+p
= —log ) (ZPN )7 Qe () 1) ( Qe (e )W <y|xm>1+p) (49)

Ure, Xz, \Ut,XT

A\ e
= - 10g Z (Z QT(xT)elXT’N(xN) (QTC (x‘rf> (y|X/\/)) HP) - Es,T(P/ PN)/ (50)

Xze,Y

where we split the Gallager function into channel and source terms in analogy to Equation (37).

In ref. [31] (Eq. (4.49)), the md-cc ensemble was studied for N = 2 users in both the
primal and dual domains. The md-cc Gallager function E4<°(-) for N users is obtained by
combining the derivation of Equation (50) with that of Equation (44) to yield

_ 1+p
N (xrr L
E;”d'cc(p, 'r./\/’ Py, Q/\/” —log 2 (Z Qr(xr)e%t\;( ) (QTC (xze)W(y |xN)) N )
Xze, Y \ Xt
. 1+p
—log )’ (EPN up) T A (%v)) : (51)

As in previous cases, the exponent is obtained after maximization over « i TN

Concluding our list, the cost functions ai/;" (x, ), factors R, (x,), and parameters
rﬁ{, for the mi-ccc and md-ccc ensembles do depend on u,. In analogy to Equation (48), we
define a zero-mean function B, (xy) as

1‘(1/ Ay (xl/) = rvul, - Z Vﬁﬂv i/v,uv (gl/)/ (52)
lyeXy

and similarly for By, (xy) for the mi-ccc ensemble. The Gallager function for the mi-
ccc ensemble EF*°“(-) is obtained by combining the derivations of Equation (50) and of
Equation (38),

EPH(0, Be pupr PAr Quts W)

) 14p
= log Z ( Z PN(”/\/’)li QT,MT (xr)eﬁT"V’”N (xx) (QTf,u,c (ng) ( ‘XN)) Hp) . (53)

Ure,Xpe, Yy \ Ut Xt

Similarly, for the md-ccc ensemble, and in agreeement with the 2-user case studied in
ref. [31] (Eq. (4.45)), combining the derivations of Equations (50) and (43), yields
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Emd ccc

TN (p’lBTNuN’PN’QX\/f,U’W)

= —log Z

Urc,Xrc,Y

<

Ur,Xt

; 1+p
Y Parliaa) T AR (1, ) Qi ()P0 ) (@, (e Wy >)”> (54)
N (s N By )Rz u (Xt T e \ T N :

4.2. Transmissibility

We may obtain the transmissibility conditions from the achievable exponents de-
rived in Section 4.1, following the random-coding method described in ref. [1] (Th. 5.6.4).
The analysis extends the transmissibility condition for joint source-channel coding in
ref. [1] (Prob. 5.16), to account for statistical dependency of the codeword on the source
message in the multiuser set-up. As mentioned above, the source Uy, is transmissible
over the channel W if there exists a sequence of codes with vanishing error probability,
or equivalently, with strictly positive achievable error exponent E° in Equation (30). As
an example, we present the derivation for the mi-icd ensemble where the class and cost
functions in Equations (32) and (33) are inactive, namely Ay (u,) = Rl 1o (Xo) = 1 for all
ce2N , and leave the general case of K, > 1 classes and cost-constrained codewords as an
open problem.

For the mi-icd case, and similarly to Gallager’s Ep-function [1] (Th. 5.6.3), the Gallager
function E?°d(.) in Equation (38) is concave (N) with respect to p and satisfies E?(p =
0,-) = 0. For every T C 2V @, let P be the optimizer given by

pr = argmax E" (o, Pyr, Qpry, W). (55)
0<p<1

Therefore, the achievable exponent is strictly positive, namely E;”i'ic’i(ﬁf, ) >0, as far as
the slope of the E!"id(p, .) function is strictly positive at p = 0, that is

d ..
%Eﬁ”"“i (0P Quaes W)| > 0. (56)
Taking the derivative with respect to p at both sides of Equation (38), after some algebraic
manipulations, we find that (56) is equivalent to

ZPT‘ Uqe) Z Z T|7e (7 |1t7e) Qru, (¥7) Qe Uc (e )W (y[xpr) x
Uic Xc,Y U, Xt
PT‘TC (tr|ure) Qre e (Xe )W (] x7)

1 > 0. 57
o8 Y,z Pejee (e |1z ) Quin, (¥1) Qe e (X )W (y [, x7¢]) 57)

We next write the expression in the left hand-side of the inequality (57) in terms
of entropy and mutual information. We denote as H(P) the entropy of a source with
distribution P [32] (Eq. (2.1)) and by I(Q, W) the mutual information of a channel W with
input distribution Q [32] (Eq. (2.28)). For o C 2V, we define a channel input distribution
Qo that is conditioned to the source messages ., as

QT\U(XTWU) = Z pr\a(uTWU)Qr,ur (x7). (58)

ur€U<«

Therefore, the transmissibility condition (57) can be compactly expressed as
H(Prjee) < 1(Quees WIPreQpepre), T C2V\ @ (59)

As it is, Qqc|rc is “transparent”, as it cancels inside the fraction, and the channel law
may also be written as Qc|cW, removing the conditioning in the mutual information.
With ' = {1,2} in Equation (59), we recover the achievable Cover-El Gamal-Salehi
region [11] (Eq. (3)).
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4.3. Numerical Examples

In this section, we present two simple examples showing that the exponent of the
md-iid ensemble can be larger than that of the mi-iid ensemble with only two classes (and
associated input distributions) for each user. First, we consider two correlated discrete
memoryless sources, N = 2 and N' = {1,2}, with alphabet &/, = {0,1} for both users
v € N, and probability distribution Pyr(u1, u3) given in matrix form as

0.0005 0.0095
Pv = (0.0005 0.9895)' (60)

The sources are sent over a discrete memoryless multiple-access channel with input alpha-
bets X1 = X, = {1,2,3,4,5,6} and output alphabet Y = {1,2,3,4}. The channel transition
probabilites are given by a 36 x4 matrix W, such that W (y|x1, x2) is the row x1 + 6(xz — 1).
The transition matrix W is given by

Wy
W»
W3
Wy |7
Ws
We

(61)

where the 6 x 4 submatrices Wy, £ =1, ...,6 are given as follows. First, the submatrix W
corresponds to the point-to-point channel discussed in ref. [8] (Sec. IV.C), given by

13 Kk ky ky
K 1-3k K ky
ok K 1-3k K
Wi=1 K kK 1-3k |’ (62)
05—k 05—k ko ks
ks by 05—k 05—k

for k1 = 0.045 and k, = 0.01. Let the m-th row of matrix W is denoted by Wy (m). The
matrix W, (resp. W3) is a 6 x 4 matrix whose rows are all Wy (5) (resp. W1 (6)). The matrices
Wy, W5 and W are respectively given by

Wi(2) Wi(3) _
I
4 Wi (1 Wi (2

W=l | "= lwme) |- %= e | (63)
Wi (6) Wi (5) Wi (6)
Wi (5) Wi (6) Wi (5)

The optimal achievable exponent [8] (Sec. IV.C) for the single-user channel W; in
Equation (62) is related to two different distributions Q* and QY, given in vector form by

Q* = (0,0,0,0,1/2,1/2), (64)
Q' =(1/4,1/4,1/4,1/4,0,0). (65)

We let each user employ these distributions in the md-iid ensemble with input distribution
in Equation (13) according to the source message partitioning in Equation (12) with K, = 2
classes per user and thresholds ynr = (71, 72). Since we consider two input distributions
for each user, the channel Gallager function max,¢o 1] Eo(p, QF, WQlTTf) is not concave in
p [8]. To find the md-iid exponent E"*ii we optimize over the class thresholds following
the method in Appendix B with the Gallager function in Equation (44), exploit the proper-
ties of the source function in Equation (45) in Appendix C, and also find the optimal input
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distribution assignment of QY for each v € {1,2}. In our setting, we have four possible
assignments, namely

O QI =Q;=05 Q=0 =qQ", (66)
0 :Ql=QF=0" Qt=0;=0Q", (67)
03: Q=0;=0% Q=0 =Q", (68)
0: Q1=Q5=0Q% Q1 =0Q;=Q" (69)

We start our numerical discussion by assessing which of the possible four assignments
in Equations (66)—(69) leads to a higher error exponent. For each possible pair of thresholds
(71, 72), we numerically calculate the optimal assignment O*(7yxr) given by

O (yy) = arg max min min Ei{‘/('y/\/), (70)
Q; v T
and the corresponding achievable error exponent prmd-iid (vn) as
E®* (7) = maxminmin ¢ (77), (71)

Q] 1N

where the exponent function E (7) is given in Equation (A55). Figures 2 and 3 respec-
tively show Q*(7yxr) and ES!(+y ) for the valid range of ys. For most pair of thresholds
(71,72), assignments )7 and Q3 lead to the highest exponent among the possible assign-
ments, while assignments (), and ()4 are optimal only for a marginal region. Using this
information, and combined with the values of the achievable exponents in Figure 3, we
determine the message-dependent exponent

Emd—iid — n,;f[x Ecost (')/N) (72)

In this example, we obtained the achievable exponent E"#i¢ = 0.2611, corresponding
to the input distribution assignment (2; in Equation (66) and optimal source message
partitioning 77 = 0.8469 and ; = 0.6581. The optimal point 7}, is shown by a white
(black) bullet in Figure 2 (Figure 3).

Qy Q

1 ¥
08} .
0.6 [ N
04| 1
02} .

0 ‘ : ‘ 098 .

0 0.2 0.4 0.6 08 1 870 08 o081

m m

Figure 2. Correlated-sources optimal assignment Q* (v s) in Equation (70) for all pairs of thresholds
(')/1 ’ 72) :



Entropy 2021, 23, 569

16 of 32

1
102 L 9.10-2 — \«'\y

11— 0.11 0.11 9. 102
9102
.13 —10.13 0.13 017 //—
0.8 H6-0.16 0.16 0413/—
0.16
021 0.21 -
0.23 023 g on————
o PN
0.6 B o |
: N
(e}
o
?\
04| S )

€0
0.26 ——920

(e}
N
I
\ .
0 120
—92C0

0 0.2 0.4 0.6 0.8 1
T

Figure 3. Correlated-sources error exponent E*!(« ) in Equation (71) for all pairs of thresholds
(71,72)-

Alternatively, we may first optimize over s and then over the assignments (};. To
do so, we solve the system of Equation (A58) in Appendix B to numerically determine the
optimal thresholds 7}, and compute the exponent E<*(();) as

‘ B . . i
Fcos (Q]) — 1'111A1[n ml}n ETN('Yj\/)/ (73)

where the exponent function E7" (7,) is given in Equation (A55). We provide in Table 1
the values of the optimal thresholds 7}, and exponents E¥(7},) under the different
assignment (), for the three types of error 7 and the four possible user classes i)r. For each
assignment, the minimum over i and T as in Equation (73) is highlighted in gray, leading
to the exponent E“*!(Q);). The message-dependent exponent is then

Emd -iid m]ax Ecost(Q])’ (74)

recovering the error exponent E"44 = 0.2611 for input distribution assignment Q; ob-
tained using the previous method in Equation (71).

In the second example, we consider the transmission of two independent discrete
memoryless sources with identical source alphabets U, = {0,1} with distributions induced
by the marginals of Equation (60), given by P;(0) = 0.01 and P>(0) = 0.001. These sources
are transmitted over the multiple-access channel with transition probability given by
Equation (61), and are encoded using the md-iid ensemble with the input distribution
assignments (); in Equations (66)—(69). Followmg the footsteps of the correlated sources
case, in Table 2 we calculate optimal thresholds 7, and exponents E/ Y (7)) for the possible
input distribution assignments and determine the exponent of the md-iid ensemble using
Equations (73) and (74). In this case, the optimal assignment is again ()1, with optimal
source message partitioning specified by the thresholds 77 = 0.8779 and 75 = 0.6933,
achieving an exponent of E"#iid = (2458, slightly smaller than that of correlated sources.
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Table 1. Correlated-sources optimal thresholds v}, and exponents E%V ('y/*\/) in Equation (73) for as-

signments ); in Equations (66)-(69). For each assignment, the minimum over iy and 7 is highlighted

in gray.
Assignment ()¢ Assignment (),
'yf = 0.8469 'y; = 0.6581 'yf =1 'y; =1
(i], 12) (11 1) (11 2) (211) (212) (111) (11 2) (2/1) (212)
T= {1} 0.3131 0.2735 0.3120 0.2611 0.0642 0.3268 0.1005 0.3604
T={2} 03986 04369 0.2611 0.4119 0.3959 0.3986 0.4323 0.3110
t={1,2} 02611 0.2972 0.2630 0.2883 0.2108 0.2108 0.2360 0.2637
Assignment ()3 Assignment ()4
'yf = 0.5605 'y; = 0.6709 'yf = 0.6985 'y; = 0.9033
(i], 12) (11 1) (11 2) (211) (212) (1/1) (11 2) (2/1) (212)

0.2763  0.2897

0.0879 0.3605 0.0879 0.3112

T={1} 03120 02503
v={2} 02503 03898 05675 0.5731
t={1,2} 02630 02816 02503 0.3012

03664 0.2503 0.4720 0.4684
0.2360 0.2632 0.2097 0.2097

Table 2. Independent-sources md-iid optimal thresholds 7 and exponents EIT/‘ (7)) in Equation (73)

for assignments (); in Equations (66)~(69). For each assignment, the minimum over iy and 7 is
highlighted in gray.

Assignment (01 Assignment (2,
¥7 = 0.8779 3 = 0.6933 v7 =0.8776 13 =1

(i) (L1)  (1L,2) (1) (22) 1,1) (L2 (21 (22
T={1} 0.3343  0.2458 0.3089  0.2458 0.0913 0.3341 0.0913 0.3089
T={2} 0.3850 0.3987 0.2458 0.3788 0.4555 0.3850 0.4357 0.2459

T={1,2} 02730 02870 02685 02863 03430 02728 02956 0.2685

Assignment ()3 Assignment ()4
v7 = 0.61 75 = 0.7043 ¥7 =0.7092 93 =1
(i) (L) (L2 (1) (22 1) 12 21 (22
T={1} 0308 02367 02681 0.3078 0.0913 0.3117 0.0913 0.2648

T={2} 0.2367 0.3672 0.5425 0.5538 0.4269 0.2367 0.5393 0.4683
T={1,2} 02685 0.2811 0.2367 0.3133 0.3006 0.2685 0.2740 0.2164

For the sake of completeness and purpose of comparison, we also calculate the ex-
ponent for the mi-iid ensemble described in Equation (8). In the absence of message
dependence, for a given assignment ();, the mi-iid exponent is given by

Eno—cost(Qj) = mTin E-, (75)

where the exponent function E; is given by Er = max, E?i'iid(p, Ppnr, Qpr, W) and E’T”i'iid
is the Gallager function in Equation (37), described in the previous subsection. For both
the correlated and independent sources described above, Table 3 presents the achievable
exponents E; for each type of error T and input distribution assignment (Q1, Q»), where
Q; and Q; are either of Q* and Q' in Equations (64) and (65). In our numerical example for
correlated sources, the assignment with highest exponent is (Q1, Q2) = (Qf, Q*), giving an
exponent of E"# = (02503, slightly smaller than that of the md-iid ensemble. In contrast,
the mi-iid exponent for independent sources, according to the second part of Table 3 is
found to be ™4 = 0.2367 with input distribution (Q1, Q2) = (Q*, Q'). In this case, the
md-iid exponent "4 is around 4% larger that the mi-iid; this situation is in contrast with
to-point communication, where the gain in exponent achieved by an ensemble with two
distributions is typically smaller, for example, 1% in ref. [8]. Hence, message-dependent
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random coding with two class distributions, compared to iid random coding, may lead to
a higher error exponent gain in the MAC than in point-to-point communication.

Table 3. Mi-iid exponents E; in Equation (75) for two correlated and two independent sources
vs several input distribution assigments (Q1, Q2). For each assignment, the minimum over T is

highlighted in gray.
Correlated Sources
(er QZ) (Q*r Q*) (Q*/ Q+) (Q+r Q*) (Q+r Q+)
T={1} 0.2682 0.0642 0.3120 0.0879
T={2} 0.3986 0.3986 0.2503 0.3696
T=1{1,2} 0.2097 0.2097 0.2630 0.2360
Independent Sources

(er QZ) (Q*r Q*) (Q*r Q+) (Q+r Q*) (Q+r Q+)
T ={1} 0.2648 0.3089 0.0627 0.0865
T={2} 0.3850 0.2367 0.3850 0.3559
T=1{1,2} 0.2164 0.2685 0.2164 0.2421

4.4. Comparison of the Random-Coding Achievable Error Exponents

From the numerical results presented in Section 4.3, as well as from refs. [8,20,28,31],
the message-dependent ensembles attain in general a larger exponent than their message-
independent counterparts. We now compare the random-coding exponents for the ensembles
presented in Section 3.1, whose Gallager functions were obtained in Section 4.1.

For independent sources, we found in Equation (42) that for a given conditional input
distribution Qy,4, (xy) and p, there exists an iiid distribution Q, , given by Equation (39)
with identical Gallager function. Thus, the mi-iid and mi-icd ensembles attains the same
exponent, after maximization over the input distributions. Similarly, we conclude that
md-iid and md-icd-ensembles attain the same exponent.

In ref. [31] (Prop. 2.9), it was proved that for point-to-point communication, the
exponent of the mi-ccc ensemble may be lower than that of the mi-cc ensemble. The same
steps actually prove the same result for the MAC with independent sources. Thus, for the
MAC with independent sources we have

Emi-ccc < Emi-cc < Emd-cc, Emd-ccc < Emd-cc, (76)
Emi-iid < Emi—cc < Emd—cc’ Emd—iid < Emd—cc, (77)

and E"%¢ is thus largest among the ensembles in Section 3.1 for an arbitrary input distri-
bution. As discussed in ref. [29] (Th. 4), for optimal input distributions both E"#*¢ and
E"iid may coincide.

Concerning the optimal partitioning into message classes, for point-to-point commu-
nication it is known that partitioning the source-message set into two classes is sufficient to
attain the optimal error exponent [8,31] (Prop. 2.7). However, the proof of ref. [31] (Prop. 2.7)
cannot be easily generalized to the MAC with independent sources. At the same time, we
could not find an example showing that assigning more than two input distributions leads
to a larger exponent. Hence, finding the sufficient number of input distributions is for the
message-dependent exponent is an open problem.

The comparisons in Equations (76) and (77) for correlated sources require, in gen-
eral, a more sophisticated machinery and we consider here two simple cases. For the
message-dependent md-icd and md-ccc ensembles, we observe that compared to E'T’f?'fc’i in
Equation (43) the ET?N“C exponent in Equation (54) contains an additional term ﬁlT/\;v iy (xp)
to guarantee the constant-composition distribution as in Equation (52). This allows to re-
cover E;’f?/:/CCC by setting ﬁl‘th/N,MN (xN) =0in E?,?_ljm and to prove that Emri-icd < Emd—ccc after
maximizing w. r. t. ,BITNN uy (XA7)- Similarly for the ensembles with statistical independence
between messages and codewords, we observe that the constant-composition exponent
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ET?ACC in Equatiqp (51) also contains the additiopal term txi’ ‘v (A7) compared to its iid
counterpart Ef?j;f’d in Equation (44), yielding E"-iid < Ed-cc. put together, for correlated

sources it holds that
Emd—icd < Emd-ccc, Emd—iid < Emd—ccl (78)

suggesting that, as in the case of single-user communication, the use of constant-
composition input distributions may lead to higher exponents than the symbol-wise
independent distributions when transmitting correlated sources over the MAC.

Summarizing, proper choices of the cost functions recover the different coding schemes
considered in Section 3.1, including message-dependent and message-independent ver-
sions of iid, independent conditionally distributed, constant-composition, and conditional
constant composition ensembles. Thanks to the flexibility of the generalized cost-constraint
random-coding ensemble, the achievable exponents of the various ensembles can be com-
pared and ranked, both numerically and analytically.
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Appendix A. Proof of Theorem 1

We start by bounding the average error probability over the generalized cost-constraint
ensemble, P.. Counting ties as errors, the random coding union bound [2] (Th. 16) for joint
source-channel is

Pe< ) Pa(un)Qu(xalun)W(ylxn) min{lﬁ ; 'Pr{l;x((ix))‘yvg'éﬁ)) > 1}} (A1)

pr =

e

Y. Pa(un)Qu (xarlun ) W(ylxp) ming 1, )
UN XN Y

where Q/(xpr|uy) is given by Equation (7), with every user using the generalized cost-
constrained input distribution Q, (x,|u, ) as in Equation (24), and % has the same distribu-
tion as x s but conditioned on i s rather than u,/, i.e., Qur(xpr|fipr). The summation over
i\ # uy can be split into 2V — 1 distinct types of error events indexed by the non-empty
subsets in the power set of the user indices 2V \ @, e.g., T € {{1},{2},{1,2}} for N = 2,
such that ft;c = uc and @1, # u,, forallv € 1.

Since min{1,a + b} < min{1,4} + min{1,b}, we bound P, as

Te2N\@

where P? is in turn given by

b {Pmamwwuxﬂ,x]) . 1} , (A3)

ﬁNZﬁTc:uTC, PN(uN)W(y|xN)
iy Fuy,VET

where the inner probability is computed according to the distribution Q (x|u), including
only users u; in the set T as &7 = xc. We recall that [xc, XT] is the sorted merger of the
channel inputs for users in the sets T and 7, in this case x< and X respectively.
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Next, we split the summation over u s in Equation (A3) into classes inr € K s defined
by Equation (12), summing then over the messages belonging to the Cartesian product
of the sets A}f. We note that codewords are generated according to distributions that
depend on the class index of the sources. Let Dy N W, De the Cartesian product of the sets of
codewords Df} 'y, in Equation (23) forv =1,2,..., N, and define

Q (xpr|up) = HQ (xy|my), (A4)
veN

where Q' (xv|uy) is given by either Equation (24) or Equation (25). Then, the double outer
summation of Equation (A3) over u,s and xs can be written as

Y Pan)Qulanlun) = ), ), Pa(un)QR (xarlun) (A5)
UN XN iNEXN UnE A[ N
XN ED,\ TG
= Z Z PTC(”TC)QZTTCE (e |ure) Z Z Pr\rf(ur‘uff)Qirr(xTWT)/ (A6)
i €K e GAiTC ireKr uTGA?
X C€D xTe’D‘l;uT

Tfuc

where we split the summations over u, and x,/ into separate summations over #.c and
ur, similarly with x;c and x; with the corresponding rearrangements in the probabilities,
and written the term Q% (¥¢|urc) in a similar way to Equation (A4). The inner summation
of Equation (A3) can be split in an analogous manner based on the classes to which i,
belongs, now indexed by the variable jr € K;. Applying this fact together with Markov’s
inequality

Pr{A>1} < m>1(r)1 E[A?] (A7)

to upper bound the probability with a parameter s > 0 that implicitly depends on the error-
event type T and indices i, i, and jr. We bound the inner summation of Equation (A3) as

Z Pr{PN(ﬁN)W(nyTC/XTD > 1} <

P (unr )W(ylxn)

ﬁN : ﬁTc =Urc,
iy #Auy VET

< Z min Z QI;(JACTWT)(PTTc<ﬁT|uT€)W(y|[xrc,&TD) . (A8)

jrek, 520 ceAl PT\TC(uT|uTC)W(y|[xTC/xTD
xTEDJT it
where we also used that Pyr(ftyr) = Pre(fire)Prjpe(fir|fize) = Pre(thre)Prjpe (fir|tire) to
rewrite the message probabilities in Equation (A8) and we expressed the codeword x as
[x7c, x7].
Inserting Equations (A6) and (A8) into Equation (A3) and using the following inequal-
ity for A > 0,

min{1, A} < min AP, (A9)
p<l01]

where p € [0,1], we further bound P as

Pr < min min P/ A10
DD IS min min P (A10)
[ EICTC i€kt ]TEICT

where after some minor rearrangements Pe ;] ", 1s in turn given by
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_eT'i]TEiT = Z Pre(arc) ;Tf(xrc|uTc) Z Z PT‘TC(uT|uTC)Q£l}' (xT|uT)W(y|[xTc,xT])
- Uc EAiTC yey" uTe-AErT
X ED,(C e xTGD;}:uT

. . =T,]
min min P77

>0 pel0,1]

e,iTc iT -

: il

Note that, for some conveniently chosen variables zy and z;_, sets Zpand Z;_, as well as
functions fo(zo) and f; (zo, z;, ), with iz € Kr, we can express P as

e, i cl
<Zi-r

T|7° (e e )W(y| [xze, ir])
T|T¢ (uT |uT”)W(y| [xTC/ xT])

Y QF(&elitc)
uTEAjT

xTGD]

T

(A11)

1 —Sir,jr Pir,jr

f:

It

_T/j‘l'
eicir

= Y fo(zo)

Z0E€Z)

L

EZ,‘T

L

(zo, Zg)) (
ZfTEZfT

In Equation (A12), the variable zy stands for the triplet (u.c,x7c,y), the alphabet
2y for the Cartesian product A7 x DTTfu . xY" and the function fo(zo) is given
by Pre(t7¢)QX (xc|urc). The variable Zi, ‘stands for the pair (ur,x7), the alphabet
Z;_ for the Cartesian product Al x

T|TC(uT|uTC)SQ (xc|ur)W (nyTf xr]) .
The optimization parameters s and p in Equation (A10) implictly depend on the

pl-r]'r
f]T/r Jt (ZO/Z]T)> . (A12)

D?u and the function f; (z0,z;,) is given by

error-event type T and the indices i, i, and j;. For new parameters g, € [0,1], £z € K¢,
setting
1

Sivjr = 7 A7 (A13)

T 1+pj,

pir(1+pj.)

Pivje = 7 s ke, (A14)

It

In Equation (A12), we obtain the following partial upper bound in Equation (A10) as
Pir (1407)

T+5;,
ZO/ Z]T)

Here, we have kept implicit the dependence on T and i;c of the optimization parameter g,_.
Now, applying Holder’s inequality [33] (Th. 13) in the form

min
p(r € [Orl}KT

e
Z f p’T ZO’ZIT

it €2ir

Y. folzo)

z0€ 2y

)3 f

]elT

(A15)

1 r=1
v P\ P
Y wiaib; < <Zaz~af ) (Zw“) , forpe[l,e0), (A16)
iek iek iek
to the expression in Equation (A15) with p; ;. =1+ p; > 1, we obtain
_ 1
1 1+pir \ i,
s 1+p;
min min 7", < min Yo folzo)| Y. £ (z0,2i)
520 pel0,1] excir ﬁ[TE[O,l]KT 20€Z2y zi €2, i
a Pig
L 1+ \ THpi,
5
Y. folzo ( Z fi. 7 (=0, ]T)> . (A17)
ZpE€ 2y Zjr €z i
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ST N
Pe,i.(c i-r - Z )

lrc
T
U GATC
ic
-
x.c€D
€ e

Next, putting Equation (A17) back in Equation (A10) and using the following inequal-
ity, proved in Appendix A.1, for A; > 0and 0 <s; <1

Y AS’Al <2kl Y A (A18)
ijek iek

in the double summation over ir and j; in Equation (A10), the following upper bound holds

Tr]T : DT
min min P < 2K min P!. ., (A19)
ngcrjfeicr 20 pefo] e Tz'T;cTPE[OJ] olectt

where we have moved the optimization over p,_inside the summation over i; and renamed
¢, as p, with the dependence on the index i; kept implicit. Moreover, the expression for

Py, icip 1810 fact given by PeT IJTC ;. in Equation (A1l) after setting iz = jr, s = m and
rearranging terms, that is,
1+p
. & L
Pre(uee)QE (weelure) 3o | Yo Prpee(te|ure) 0 Qy (e |u)W(ylaen) ™7 | (A20)
yeVr | 4 EAIT
x:€DF.

It remains to factorize Equation (A20) into a product of symbol distributions in order
to obtain a single-letter expression for the exponent. We start by upper bounding the
summations over the input messages u.c and u.. For a list of users ¢ with corresponding
messages U, list of class indices iy and some function p (1), we have that

Yo pe(ue) =Y pl(us)l{us € A¥}, (A21)

Wy =

where we used the definition of the message sets A% in Equation (12) and the identity

Y fi=) fit{ieky. (A22)

iek ieN
Using the upper bound
N\ e\
1{a<b<c}< /\Ln/'\%n>0<> (b) (A23)

fora,b,c > 0 with AL, AU >0, together with the fact that the source-message classes are
defined separately for each user to express the source message probabilities in terms
of PMd(y,) = [T,co Pu(uy) similarly to Equation (2), we upper bound the r. h. s. of
Equation (A21) as

i Pind () A Vo iy—1 Ao
£ e g, £ roo(£02) (). o

LU )
uyc Al Ag™ 20y, elq Oig

where we jointly wrote A and AY as ALY Definining

At — (pi;*d(um)”;( 7(,,1'[,71) )A? a25)

Yois pind (uo
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and taking into account that the sources are memoryless, we obtain that the summations
w.r. t. the source messages u; and u,c in Equation (A20) are upper bounded as

n .
) plic (uy) < mm ) p"”" (uo) [ T AY (uos). (A26)
=1

MUGAW (7 u[,eun

respecively for o = T and o = 7°.

We proceed in a similar manner for the summations w. r.t. the codewords x; and x
in Equation (A20). For a list of users ¢ and some function qf,” (us, %) implicitly defined, the
summation over channel codewords x, € Df,", u, can be upper bounded as:

2 q?(ua,xa) = 2 qy(ua/xﬂ)l{xﬁf GD‘I'{MU} (A27)
Xo EDf.,‘Tu - Yo €AY
= L atwoso TN T TT et e@mmon| <o} 429
XpEAN VEOT v, €Uy £y ELy
< min Y gir(ug,xe) T [ o o ol i) orf b, (A29)
T T % €AY vo &l Lo €L

where we used Equation (A22) in Equation (A27), the fact that the codeword ensembles
are defined separately for each user together with the definition of the ensemble cost
constraints in Equation (23) and subcodewords x,(Z,, (#,)) in Equation (A28), and a
variant of Equation (A23) proved in Appendix A.2,

1{[a] <6} < mine™H7 (A30)

forr € Rand 7 > 0, in Equation (A29) for each indicator function of Equation (A28) and
combined the product of exponentials over ¢ as a single exponential using the list notation.
We continue by rewriting the double product over v, and ¢, in Equation (A29) as follows

[T I oo A8 (X (Tug (40))) 4785, 80 — 1 II 7% 0o I1 oo 0808 (%ot (Tug (ug))) (A31)
Ve €Uy by €Ly te€Zy, (u0)
n .
= Bo H RlUT,uT,f (xz,t), (A32)
t=1

where in Equation (A31) we wrote the cost function in terms of the symbol costs and
in Equat1on (A32) we rearranged terms and introduced a factor B that depends on the
list {rmg} and a function R, (x,) that depends on the list {rwa} and are respectively
given by

o

Bo= 1 II €%, (A33)
Ve€EUs Lo €Ly

Ryug H effr‘ﬂgﬂmff Xo) (A34)

lo€Ly

Replacing Equation (A32) back into Equation (A29), we obtain that the summations over
the codewords are upper bounded as

n

Z qu (um xa) < gmh} Z qu (utTf xtT)ﬁtT H R:;’/uv,t (xT't)‘ (A35)

‘ o Flo n _
xJGDtlgug Toug Houg Xg €XY t=1

for both user lists 0 = T and o = 7°.
We now combine Equations (A26) and (A35) for o = 7 to bound the summation inside
the parenthesis in Equation (A20) as
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L
T+

Y P (e b TPQI (e 1) Wy 0p) T

uTEAIT
x: €D,
1 . Br & i ~
< Y Prpeclucluee) 7 min ECTT AR () Qe ()Rl (v Wy i) 70 (A36)
ur €U} AT T =1
x€X! rfuT,?.i'f,T

where we expressed the distribution Q? (x¢, ur) in terms of the symbol-wise iid distribution
Zu, (x) as in Equation (25). Since both source and channel are memoryless, we may now
factorize and rearrange the expression in Equation (A36) into single-letter, symbolwise

factors as

n

. o ,
Y Pope (e fuee) TRQE (el W(ylaon) 7 < min BT T g8 (s w0, (A37)
uTGAlT X T ; =T =1
Xt EDQTMT 7?57 férﬁT

where, for a list of users o, the function g 7 (Uge, Xge,y) is defined as

. 1
i a

gt (tge, %o, 9) = Y Pojoe (ttelitge) 79 A (1) Ql, (x0)Ri, (xe) W (ylxn) 7. (A38)

us €Uy
Xo€EXy

Although not explicitly, the function g? (447, X¢c,y) in Equation (A37) depends on several
optimization parameters, namely p, /\T’U, rﬁ{lr, 7"’%1, which depend in turn on the error-event
type T and class indices i; and ic.

Again, we use Equations (A26) and (A35) for ¢ = t° and the fact that the source is
memoryless to upper bound the summation outside the parenthesis in Equation (A20) as

Z. Pre (uTC)Q;TcC (xTC|uTC) <

T
Urc EATC

. c
< min Y B TPl )A (ne)QE, L (veed)RE, | (x0s). (A39)
ALY uc €Ul Ere t=1
rf.gc ,V[EC TCEXH
TCurc” U e

Substituting Equations (A37) and (A39) in Equation (A20), the resulting expression back
into Equation (A19) and then into Equation (A10), we get

_ . c
Pg < ZKT Z mir[\J Z :BT <H PTC Urc t)ATC (L[T t)Q;c u Ct(xT t)RTC u Ct(XT t))
(S o p//\-r’c Urc eun HT t=1

irelr /TC 1—/75 b EX
TCuTC’ T’:u.rc

e\
)y (~T> rrygl Hgf (e, Xee b, y1) P ). (A40)
yeyr \ 7

r'ru-r rVTuT

Let us define now the function /7" of the user set o and the class indices i, and i, as

htl;’lac = Z PU(”U)A;‘T(uv)Qf{ug(xa)ngug(xa> g:fcc (te, xmep- (A41)
Ug €Uy, xr EX yEY



Entropy 2021, 23, 569 25 of 32

With this definition, we can rewrite Equation (A40) in a compact manner as

B ﬁ . ﬁ 1+0 »n
Pf<2K; ). min £ <j) Hh s (A42)
iveky p WY Ay Fa s e
NEAN L N INupe” Nuyy
where we have also comblned the complementary sets i;c and i into ixs, and similarly for
AL AU ./\/u ., and 7 /\/ . Finally, substituting Equation (A42) into Equation (A10) and
then back mto Equation (AZ) taking (minus) the logarithm of the bound on P, dividing
the result by 1, and the limit as n — oo, we obtain a lower bound E{ to the exponent of
the generalized cost-constrained ensemble E%%, namely

B! =min max {—logh""}, (A43)
TN /\LU 9
0 r/\/'uN

where we have used that as n — oo, the quantities 2K, éfz ,and (é—:) 4P are subexponential
in the blocklength 1 and do not contribute to the exponent, accordingly removed ?fﬂcu . and
1"%1 from the optimization parameter list, and finally used that the exponential decay of
the error probability in Equation (A2) will be dominated by the worst error type T and the
worst classes assignment iy/. It w1ll grove convenient to the express the exponent in terms
of a Gallager function E%" (p, )\ L Nu ), defined as
LU [( ize,it

EiV (0, Ay rj\/}; ) = —loghk o3 (A44)
Substituted the expression for K% fedt in Equation (A40), where Al (uT) and RV% (xy) are
respectively given by Equations (A25) and (A34), we may express EZ (p, ALk Nt NuN) as

oA ) =

—log< Y Pee(uee) A () QU (o) R (300)

Urc,Xrc,Y

1 . 1 1+P
(Z Prje (t 1aee ) 70 A (100) Q7 (xR, (1) W (V|XN)+> , (A45)

U, Xt

or equivalently in the alternative form

EY (o, AP i, ) =

N TNy
1 1 1+P
~log Y (2PN p) T AR () Qi (4 )R, (i) ( QL (e )W (ylx/v)1> : (Ad6)
Urc,Xzc,if \Ut,XT

where in Equation (A46) we have moved the product

Pre (Lch )AEL'TEC (uTC ) QITTCC,uTc (XT )RTTCC,uTc (xTC)

inside the parenthesis and merged terms in T and ¢ as done above, as well as redefined
e
L L 1

T u
and 1+;3C as ATC, )\ITJC, and rTCu .

Ale
the optimization parameters

Tipr T+ p, respectively.
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Appendix A.1. Proof of Equation (A18)
A sketch of the proof of the inequality in Equation (A18) proceeds as follows:

2 A?’.A}is’. < Z (Sl'Ai +(1- Si)Aj) (A47)
i,jek ijek
i,jek

=2|K] ) A; (A49)

ek

where Equation (A47) follows from the inequality between arithmetic and geometric means
and in Equation (A48) we used that 0 <s < 1.

Appendix A.2. Proof of Equation (A30)

We have the following
1{la] <5} =1{~0 < a}1{a < 5} (A50)
=1{e7 <e"}1{e" <™} (A51)
S e}'_ (ﬂ+ts) er+ ((57&2) (A52)
_ eraJritS (A53)

forr_,ry > Oor equivalently r = r_ —ry € Rand 7 = r— +r1 > 0. The bound in
Equation (A53) can be optimized w.r.t. r and 7.

Appendix B. Computation of the Optimum Multi-Class Thresholds

In this section we find some conditions describing the optimum partitioning of the
source-message set into classes for the optimization of the exponent in Equation (30). For
simplicity, let each user v € A have two classes, K, = 2.

From the class definition in Equation (12) with K, = 2, we have that v, = 0 and
Yv,0 = 1, so we need find just one optimum 7, ; for each user, which redefine as 7,.
Optimizing the exponent in Equation (30) over y s gives

max E®' = max minmin max E¥ (p, )\}“\’/U, ”f(}[u/v)' (A54)
0<y <1 0<yn<t iy T pAy 'r/\//\’/‘N

where one of the parameters A% or A}\J/ is zero for each iys, as the corresponding constraint
is absent. For each 7,, we have a minimization over 2N assignments i5;. Following the
same steps as in refs. [31] (Sec. 4.1.2) and [31] (Lemma 4.3), we find that E?" (/) defined,
with some abuse of notation, as

] ] LU (¢
EX () = max EX (0, AR T3 ) (A55)
P’/\/V/’ ’r/\fu/\/
is a non-decreasing (resp. non-increasing) function with respect to v, for iy = [iy, iyc]

with i, = 1 (resp. iy = 2), irrespective of the values of i,c and of v. For the sake of
completeness, we present an independent proof of this fact here. Let i, = 1 and TLbe
arbitrary. Using Equation (31), the function E¥" (7,7, p) has the form — log (¥, f1(z)/ 7 )
for some function f1(z), as all 7y are independent from each other, regardless the value
of iye. Since AL > 0, the function E?V (7, p) in Equation (A55) is non-decreasing with
respect to 7y,. When i, = 2, this function E" (7, p) has the form — log (¥, fz(z)’y,))” )) for
some f(z), and is therefore non-increasing. This behavior will not change after taking
maximization over p. As the minimum of monotonic functions is monotonic, the function

E%V('y ) is non-decreasing (non-increasing) with respect to v, when i, = 1 (i, = 2).
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For any v and fixed y,¢, we may write the optimization problem in Equation (A54) as

max max min min min Elivive] ([vv, 7oe]). (A56)
Te Yooy e

The optimization problem max,, min;, min; . minr E[Ti”’ivc]([%,%c]) satisfies the fol-
lowing lemma, proved in Appendix B.1, with v = v, i = i, and
k() = min;, mine Ee) (70, 72])-

Lemma A1. Let kq(7y) and k(7y) be respectively continuous non-decreasing and non-increasing
functions with respect to v € [0,1]. The optimal * maximizing min;_q 5 k;(7y) satisfies the
following equation

ki (7") = ka(7"). (A57)

When Equation (A57) does not have any solution, we have v* = 0 if k1(0) > k2(0), and v* =1
otherwise.

Therefore, the optimal 7} satisfies

. . "VC _ . . 2,‘1/.:
minmin ¢! ([77, 7.¢]) = minmin B2 ({37, 7)), (A58)
if  Equation (A58) has a solution. If not, the inequality

min; , min; ] ([0, 7v¢]) > min; . min, Eilhe ([0, 74¢]) is satisfied, we have 7} = 0 or

v, = 1 otherwise. Since Equation (A58) holds for any v, evaluating it for each v gives a
system of equations for the computation of the optimal thresholds.

In ref. [31] (Sec. 3.2.1.1), we give a graphical interpretation of the solutions to
Equation (A58) and outline the relevant differences with the single-user case. We ob-
serve a strong coupling between the exponent and the thresholds that prevents to find the
optimal number of classes, suggesting that, unlike the single-user case, two classes might
not be sufficient.

Appendix B.1. Proof of Lemma Al

The relative behaviour of a non-decreasing function with a non-increasing function
can be categorized in three cases.

1. Ifk1(0) < kp(0) and kq(1) > kp(1), there exists a v* such that k1(7*) = ka(7*). In
this case, the function min; k;(y) is non-decreasing from [0, 7*), and non-increasing
from (9*,1]. Thus, the maximum over -y of min; k;(vy) occurs at ¢ = v*.

2. Ifk1(0) < kp(0) and k1(1) < k2(1), k1 (7y) and ka(7y) do not cross in 7y € [0, 1]. Hence,
we have min; k;(y) = k1 (7) and obviously since it is an non-decreasing function the
maximum over y occurs at y = y* = 1.

3. Whenk;(0) > k(0), we have min; k;(y) = k2(7y) and hence v* = 0.

Appendix C. Properties of the Modified Gallager Source Function

In this appendix, we study the modified Gallager source function E¢Y in Equation (45)
involved in the achievable exponent for the md-iid ensemble. For the sake of simplicity,
we consider the rather illustrative case of N = 2 users, each having a K, = 2-class partition
of the source messages with thresholds iy where N' = {1,2}. From the definition of the
sets A} in Equation (12) with 7,0 = 1, 7,1 = v and 7,5 = 0, the two message sets

-All/(')’v) = {uv eu,) : Py(uy) > ')’11}}/ (A59)
Alz/(')’v) = {uv el : Py(uy) < ')’:/l}/ (A60)
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are specified using a single threshold 7, for each user v € {1,2}. With some abuse of
notation, we include the optimization w. r. t. )\ Yand make explicit the dependence on the
thresholds 7/ in the expression of the source function E¢Y¥ in Equation (45), namely

1+p

. L

Eé%(p,PN,m=Ammolog2<ZPN ) AR (u N)) : (A61)
N u Ur

For i, = 1, the set A (7,) in Equation (A59) has no upper threshold, hence we find that
the optimal parameter AY in this case is AY = 0. Similarly for i, = 2, we obtain that
AL = 0. As a consequence and without any loss of generality, we define A, = AL for
iy, =1,and A, = /\5J for iy, = 2, and further simplify Equation (A61) to the following
optimization problem

1+p

il m N e L
(0, Py, yv) = min IOgZ Y Pr(up) TP ( ) ( >) , (A62)

N0 Py (uy) Py (up

U \ Ur

where we also used the definition of the functions A%¥ in Equation (32) with 0 = {1,2}. We
recall that P; and P, are the marginal distributions for users v = 1 and v = 2, respectively,
and the indices i, € {1,2} indicate that user v transmits a source message selected from
the class .Af}/ (7v) in Equations (A59) and (A60). It can be shown that the objective function
in the r. h. s. of Equation (A62) is convex w. . t. both A; and A,. Hence, the minimizers A;
and )tz in the source function E¢% (p, Py, v7) are respectively given by A; = max{A},0}
and A, = max{A3,0}, where /\* and A} are the unique solution after setting the partial
derivatives of the r. h. s. of Equation (A62) to zero. Two special cases can be obtained from
Equation (A62).

The first case is when 7, = 1 for v € {1,2}, implying that no message partition
happens whatsoever. In such a case, we have that A; = A, = 0 and Equation (A62) reduces
to the joint source-channel coding source function for correlated-sources in Equation (34), i.e.,

1+p

1

Es(p,Py) =log )’ (Z Py (up) TP ) ) (A63)
uTc Ur

The second one is the case of independent sources. Substituting Pys = Pi P, in
Equation (A62), after some algebra, we obtain that ESNT (p, Prr, vAr) can be split into two
terms as

Eé/,\é(P; Py, ')’N') = EéT (P/ P, 'YT) + E;TC (O, Pre, ’YTC)/ (A64)

where we defined the function E.(p, P, ) as

‘ o ”y (=1)i 1+p
Es(p,P,7) = minlog (; P(u)™e <P(u) ) ) (A65)

for arbitrary class index i € {1,2}, source distribution P and threshold +y. First, we find
that the unique solution after setting the derivative of the r. h. s. of Equation (A65) to zero,
denoted as A*, is implicitly given by

¥, P(1) T+ log P(u)
¥, P(u) T

= log(7), (A66)
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where we made the convenient change of variable
1 1 ;
— = —— —(=1)'A". A67
14 a* 1+4+p (=1) ( )

Although not made explicit, A* depends on the triplet (i, P, p,y). When A* < 0, or equiva-

lently when
1 1
— 1 p—
(-1) <1+p 1+tx*><0 (A68)
we have that A = max(0,A*) = 0, implying that Equation (A65) simplifies to
EL(p,P,v) = Es(p, P), (A69)

where E;(p, P) is the Gallager source function

L\ e
Es(p, P) = log <Z P(u)l+ﬂ> : (A70)

Otherwise, when A = A* > 0, a regime given by the following inequality

1 1
-] > A71
we may substitute A = A* in the objective function in Equation (A65) to obtain
; 1 a*—p
Ei(p,P,y) = (1+p)log ( Y P(u)ts | + e log(7), (A72)
u

where we wrote the expression in terms of a*. Using Equation (A66) into Equation (A72)
to replace log(y), we get

i L) @ = p T, P(u) T log P(u)
Ei(o,P,v) = (1+p)1 ( P(u W)Jr“ d ! . (A73)
(pP,7) = (1+p)log ( L P(w) T

After some algebra, we are able to express the former equation in terms of the derivative of
the Es-function in Equation (A70), given by

1
ﬁ
El(p,P) = 1og(2p(u)1]+p> _ 1 R P IO?P(”), (A74)
z Lre oy, paym
and the Es-function itself, as
Ei(p, P, ) = Es(a*, P) + (0 — a*) E¢(a*, P). (A75)

We may finally combine Equations (A69) and (A75), with the respective ranges in
Equations (A68) and (A71) to write the EX(p, P, y) function in Equation (A65) piecewise as

Es(p, P) T 2 T
El(o,P,y) = N - oot o (A76)
Es(lx /P)"'Es(‘x )(P—“ ) m< T+a*”
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and

1
Es(p, P) THp < THa*/

Es(a*,P) + EL(a*) (0 — &%) = > 1 (A77)
s\&”, s P Trp < T4ar"

EX(p,P,7) = {

where a* is the solution to the implicit Equation (A66), hence recovering the source error
exponent functions of the md-iid ensemle described in ref. [8] (Lemma 1). The source
functions E!(p, P,~) and E2(p, P, ) follow the Gallager function in Equation (A70) for a
certain interval of p, and are the straight-line tangent beyond that interval. The tangent
point a* is a function of the distribution P and of the multi-class threshold .

Once EL(p, P, ) in Equation (A65) is fully characterized, we may now discuss the
correlated-sources error function E¢¥ (p, Py, var) in Equation (A64) in terms of the error
type 7. We start with the third error type T = {1,2}, for which since 7° = @, we have that

E;{V‘Lr'(p/ PN/ f}//\/) = Eél (pr Pl/ '71) + Eéz (p/ PZ/ ,YZ)/ (A78)

namely the superposition of two E! functions as the ones in Equations (A76) and (A77),
one for each user. For the remaining of this appendix, we consider the more informative
error types T = {1} and T = {2} for the four possible pairs of class indices 7y and i in
Equations (A59) and (A60), since in this case E % in Equation (A64) is either directly an
Es(p, Pr) function or the straight-line tangent to 1t in both cases shifted by a constant term
given by E (0, Pre, y1e).

Figure A1 shows the family of EX source functions respectively for independent and
correlated sources, as a function of p where Py given by Equation (60) and 7 = {1}. For
independent sources, we observe that the source functions E;’% and Eé’% follow the solid
blue line depicting Es(p, Pr) as in Equation (A70) for a certain interval of p, and then take
the tangent line beyond. A similar behavior is observed for the sources functions ES 7 and
Eg%, which in this case follow or are tangent to the solid black line, the solid blue Gallager’s
source function shifted by the constant function E¢” (0, Prc, y7c) as in Equation (A64).

For correlated sources, the source functions Eg% and 155% follow the generalized
Gallager’s source function given by Equation (A63) for a certain interval, but unlike
independent sources they are not straight lines but a curve tangent to Es ; beyond that
interval. Some intuition about this fact can be gained from the primal form of the source
function ES/‘Q Consider, for instance, the source function ES ¢ in Figure A1 for correlated
sources, for which iy = 2 and i = 1. The primal form of this source function ES - can be
obtained as a constrained optimization problem w.r. t. some auxiliary joint distribution
Py. The interval in p where Eg:% does not follow Es ; in the dual form (approximately for
p < 0.51n the figure) corresponds to the case where only one of the two constraints on the

auxiliary distribution Py is actually active in the primal form, where the constraint is given
by ¥, Py (upr) log P, (uy) = log(7yy). This implies that, unlike the case of independent
sources where each source has its auxiliary distribution Py and P, constrained, for correlated
sources the joint auxiliary distribution Py is not fully constrained but is the union of joint
distributions with one constrained marginal distribution. This partial constraint manifests
as a curve in p, rather than a straight line, in the dual form. A similar behavior is observed
for Ei% and Eé’%, which instead of following the source function for joint source-channel
coding in Equation (A63) for some intervals of p, they follow the curve

P, () ,(—mm 14+p
min log ) (ZPN u/\/)”ﬁ (m) ) , (A79)

Ay>0 =\ Y

corresponding to Equation (A62) when the constraint for one source is not active,
ie., Ay = 0.
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Figure A1. Example of the source functions Eéj‘q’} in Equation (A62) for independent and correlated
sources and error type T € {{1},{2}}.
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