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Abstract
In General Relativity in Hamiltonian form, change has seemed to be missing, 
defined only asymptotically, or otherwise obscured at best, because the Hamiltonian 
is a sum of first-class constraints and a boundary term and thus supposedly generates 
gauge transformations. By construing change as essential time dependence (lack of 
a time-like Killing vector field), one can find change locally in vacuum GR in the 
Hamiltonian formulation just where it should be. But what if spinors are present? 
This paper is motivated by the tendency in space-time philosophy tends to slight 
fermionic/spinorial matter, the tendency in Hamiltonian GR to misplace changes of 
time coordinate, and the tendency in treatments of the Einstein-Dirac equation to 
include a gratuitous local Lorentz gauge symmetry along with the physically signifi-
cant coordinate freedom. Spatial dependence is dropped in most of the paper, both 
restricting the physical situation and largely fixing the spatial coordinates. In the 
interest of including all and only the coordinate freedom, the Einstein-Dirac equa-
tion is investigated using the Schwinger time gauge and Kibble-Deser symmetric 
triad condition are employed as a 3 + 1 version of the DeWitt-Ogievetsky-Poluba-
rinov nonlinear group realization formalism that dispenses with a tetrad and local 
Lorentz gauge freedom. Change is the lack of a time-like stronger-than-Killing field 
for which the Lie derivative of the metric-spinor complex vanishes. An appropri-
ate 3 + 1-friendly form of the Rosenfeld-Anderson-Bergmann-Castellani gauge gen-
erator G, a tuned sum of first class-constraints, is shown to change the canonical 
Lagrangian by a total derivative, implying the preservation of Hamilton’s equations. 
Given the essential presence of second-class constraints with spinors and their lack 
of resemblance to a gauge theory (unlike, say, massive photons), it is useful to have 
an explicit physically interesting example. This gauge generator implements changes 
of time coordinate for solutions of the equations of motion, showing that the gauge 
generator makes sense even with spinors.
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1  Introduction

1.1 � Hamiltonian Change Seems Missing but Lagrangian Change is Not

It has been argued that General Relativity, at least in Hamiltonian form, lacks 
change, has change only asymptotically and hence only for certain topologies, or 
appears to lack change with no clear answer in sight (e.g., [1–6]). Such a conclu-
sion calls to mind earlier philosophical puzzles, whether ancient (the paradoxes 
of Zeno, whom James Anderson mentions [1, 7], and the views of Parmenides, 
whom Kuchař mentions [8]) or modern (the argument conclusion that real time 
requires something contradictory and hence is impossible by McTaggart [9], 
mentioned in a memorable philosophical exchange [4, 10]). Efforts to find deep 
philosophical lessons in the constrained Hamiltonian formalism [4, 11] have been 
resisted [10, 12], but without adequate diagnosis until recently [13–17]. How-
ever, if one defines change as essential time dependence, which comes to the lack 
of a time-like Killing vector field in vacuum GR [18, p. 355], then Hamiltonian 
GR has change exactly where non-Hamiltonian GR has change (restricting atten-
tion to space-times that admit a Hamiltonian treatment) [16]. These results build 
upon the c. 1980s+ Lagrangian-equivalent reforming literature that has sought 
to recover Hamiltonian-Lagrangian equivalence and the freedom to change time 
coordinates [13, 19–29]. The story of how such equivalence and temporal coordi-
nate freedom were lost in the 1950s–60s is starting to be written [30, 31].

Just as it was convenient to discard spatial dependence in order to simplify 
both the technical and conceptual aspects of the problem to uncover change and 
temporal coordinate freedom in vacuum GR [16], it is useful to impose a similar 
simplification in treating the Einstein–Dirac equation, GR coupled to spinorial 
matter. This problem is suggested as a step toward addressing several unhelpful 
tendencies in various literatures. First, conceptual reflection about space-time and 
GR (whether by physicists or by philosophers) often pays little attention to spinor 
fields, apart from global technical questions in certain quarters. While admittedly 
one does not encounter manifestly spinorial-behaving matter very readily, the 
fact that the great bulk of matter (electrons, quarks, neutrinos...) is represented 
in quantum field theory by (almost-anticommuting) spinor fields should suffice to 
make spinorial matter a prominent part of foundational reflection on space-time. 
This paper can be viewed as a step to that end, though the spinors are assumed 
here to commute if it matters.

Second, during the later 1950s–60s it became common in Hamiltonian GR 
to discard a spatio-temporal viewpoint that retained the freedom to change time 
coordinates [30–32], thus obscuring one of the most conceptually interesting 
features of GR; this bargain was viewed as an aid to quantization. This move 
contrasts with the spatio-temporal coordinate freedom in the earlier Hamilto-
nian work by Rosenfeld and by Anderson and Bergmann [33, 34]. Mathematical 
equivalence between the Hamiltonian and Lagrangian formalisms was discarded 
in favor of a supposed physical equivalence for “observables”—but the defini-
tion of observables was not successfully mathematically grounded. Since c. 1980 
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a reforming literature has aimed to recover spatio-temporal coordinate freedom 
in GR and mathematical equivalence between the Hamiltonian and Lagrangian 
formulations (e.g., [13, 19–29]). Recently it was shown how to bootstrap a defini-
tion of observables using equivalent formulations of massive theories, one with-
out gauge freedom (so everything is observable) and one with gauge freedom [17, 
35]. It turns out that observables are basically tensor fields (or more generally 
geometric objects [36–38] including connections or any set of components with a 
coordinate transformation rule) that are invariant under any internal gauge sym-
metries present [39]; thus observables are merely covariant, not invariant, under 
coordinate transformations. The space-time metric and its concomitants there-
fore qualify as observables, which are local and change, contrary to the view that 
observables are global and constants of the motion.

A third unhelpful tendency is the belief that coupling spinors to gravity in accord 
with GR requires an orthonormal basis and hence local Lorentz (O(3, 1)) freedom. 
Weyl and Cartan took themselves to have proven this claim in 1929 [40–42] or a 
bit later [43, p. 151]. But if one compares Weyl’s theorem with his gloss of it, one 
sees that the gloss is considerably stronger; it does not follow from the theorem 
without additional assumptions, assumptions which were identified by Ogievetsky 
and Polubarinov in the 1960s [44–46]. Weyl and Cartan assumed that the spinor 
should transform under general coordinate transformations by itself, not as part of 
a larger object, such as one including the metric or its conformal part. When this 
tacit assumption is denied, one indeed finds that the spinor-metric complex has a 
transformation law under arbitrary coordinate transformations, at least sufficiently 
close to the identity or without any restriction if the metric is positive-definite. The 
transformation rule for the spinor is thus metric-dependent and hence nonlinear, 
though it is linear in the spinor. This composite object leads to additional terms in 
Lie differentiation, the neglect of which explains the claim [47, 48] that spinors only 
have a coordinate transformation rule for conformal Killing vectors. The nonlinear 
group realization formalism gives a Lie derivative of the spinor-(conformal part of) 
metric complex along any vector field, as will appear below. Thus it is possible to 
include spinors as such in coordinates after all, albeit with some technical compli-
cation. This treatment contrasts with treating spinors as coordinate scalars and as 
spinors with respect to a new internal Lorentz group that acts on an orthonormal 
basis. Indeed a common back door to the nonlinear group realization formalism is 
the imposition of the very popular symmetric tetrad gauge condition in the context 
of the Einstein–Dirac equation (GR + spin 1

2
 ) or supergravity (GR + spin 3

2
 ) (exten-

sively cited in ([46]).
It turns out that the nonlinear group realization formalism was largely invented 

by Bryce Seligman DeWitt in his dissertation [49]. A related work was submitted to 
the Physical Review but, at 85 pages in typescript, was rejected. This work is now 
available online [50]. DeWitt seems not to have grasped the depth of his accom-
plishment, however. In the brief DeWitt & DeWitt paper [51] the formalism has 
shrunk to a mere footnote (no. 7) explaining how to use the binomial series to take 
a symmetric square root of the metric. In later years DeWitt would echo the conven-
tional Weylian wisdom as though he hadn’t constructively refuted it 15 years earlier 
[52, p. 115]. But inventing nonlinear group realizations is a great accomplishment 
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whether or not one fully realizes or remembers that one has done it, especially as 
a graduate student and in 1949. Likely it is not coincidental that DeWitt/Seligman 
and Ogievetsky and Polubarinov both used a perturbative expansion and both even 
used x4 = ict , though the latter is not essential and introduces some limitations that 
have been noticed more recently [46, 53, 54]. One does not normally expect to make 
fundamental conceptual innovations using a binomial series expansion, but this is an 
example [55]. The symmetric square root of the metric can appear in the Dirac equa-
tion and thus couple gravity to spinor fields.1

This paper, then, aims to think foundationally about spinors, to include freedom 
to change time coordinates and hence more of a spatio-temporal view point than 
much work in Hamiltonian GR, and to avoid gratuitous gauge symmetry from the 
tetrad by making use of nonlinear group realizations, thus including all the physi-
cally significant gauge freedom (including changes of time coordinates) and no 
physically insignificant gauge freedom (thus excluding/fixing every part of the tet-
rad that carries more information than the metric). Given a 3 + 1 split (which fits 
nicely with Dirac’s achievement in trivializing the primary constraints in GR [32]), 
it is natural to take not the symmetric square root of the space-time metric as many 
have [44, 46], but rather the Schwinger time gauge (in effect, locking the time-like 
tetrad leg to match the unit normal vector defined by the space-time metric and the 
time coordinate) and the Kibble-Deser symmetric square root of the spatial metric 
[56–58] along with the lapse function N and the shift vector � i (which roughly corre-
spond to the time-time and time-space components of the metric [59, Ch. 21]). Thus 
one gets a somewhat different nonlinear realization of the space-time coordinate 
freedom, because (if you like) one is effectively imposing a 3 + 1-friendly rather 
than Lorentz-covariant condition on the tetrad. If the time-space components of the 
metric (the ADM shift vector) disappear from the formalism altogether, as happens 
in the spatially homogeneous toy theory studied here, the distinction between the 
two nonlinear formalisms disappears.

1.2 � Relation to Some Other Projects in Quantum Gravity

Given that change really does exist in GR, there are many ways to find it. This work 
being a part of the Lagrangian-equivalent reforming literature (much of which is 
cited above), it is not necessary to discuss connections to the rest of that literature 
here. I have previously discussed in some detail the relations between this project 
and various other projects in both the physics and philosophy literatures [16]. I sum-
marize a few parts of that discussion here. It would be interesting to combine the 
approach to conditional probabilities taken by Gambini et al. [60] with the idea that 
observables are covariant under coordinate transformations rather than invariant 
under first-class transformations.

Rovelli’s advice to “Forget Time” [61] is, at least in part, an exhortation to 
remember space-time and to maintain equivalence to Lagrangian GR (Einstein’s 

1  I thank Alex Blum for help with the dissertation and the now-available preprint and Dean Rickles for 
insights into the refereeing process leading to the paper’s rejection.
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equations) in the face of entrenched habits of violating it. Since c. 1960, much work 
in canonical quantum gravity has made little effort to retain a space-time viewpoint 
or exhibit mathematically the freedom to change space-time coordinates [31], a free-
dom so striking and characteristic of GR. Instead there has been heavy reliance on 
a space-over-time split to the point of largely discarding space-time in favor of mere 
space. If forgetting time means remembering space-time and devising a mathemati-
cal formalism that implements it—which requires, for example, using not phase 
space but phase space-time to accommodate velocity-dependent gauge transforma-
tions [27, 29, 62, 63]—then Hamiltonian-Lagrangian equivalence and Rovelli’s pro-
ject overlap significantly. Rovelli’s “partial observables” bear a strong resemblance 
to what observables always should have been in Hamiltonian GR, and what they 
implicitly were in Lagrangian GR, covariant under coordinate transformations (ten-
sors, etc.) rather than invariant [17]. Rovelli’s physical/relational point individuation, 
as opposed to the primitive individuation introduced in modern-style differential 
geometry [64, 65], is also implemented by using passive coordinate transformations 
rather than active diffeomorphisms.2

Kuchǎr’s doubts that observables need to commute with the Hamiltonian con-
straint [8] and introduction of common-sensical standards motivated rethinking the 
role of all 4 secondary constraints in relation to gauge transformations [16]. Bar-
bour and Foster’s doubts that primary first-class constraints typically generate gauge 
transformations are also congenial [14–16]. I have expressed caution about eliminat-
ing the lapse function N from the action as Barbour has proposed [67, 68], however; 
such a technique is not available approximately in approximations of GR.

Related ideas contribute to E. Anderson’s masterful work taking relationism as 
a premise and finding change [69]. Anderson takes there to be a problem of time 
already in classical GR, however, whereas I take the problem to arise (after unjusti-
fied postulates have been excluded) in quantization.

Given the velocity-dependent character of foliation-changing coordinate transfor-
mations, one can agree with Thébault that it is not very obvious what it would be be 
to construct a reduced phase space for GR [70] and that traditional descriptions [3] 
merit reconsideration.3 Gryb and Thébault find that “time remains” and propose an 
alternative means of quantization which gives the Hamiltonian constraint a distinc-
tive role [72, 73].

1.3 � Lagrangian, Notations and Conventions

The current paper aims to understand the Lagrangian-equivalent approach to 
Hamiltonian GR with a case rarely considered, GR with spinors, while mak-
ing full contact with the under-recognized nonlinear ‘group’ realization formal-
ism for spinors in curved space-time. Many of the notations and conventions 

2  Weatherall’s recent work on the hole argument also finds that passive coordinate transformations better 
reflect reality than do active diffeomorphisms [66].
3  For a detailed discussion of mathematical presuppositions in Belot’s account [71], the reader can see 
the earlier discussion [16].
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follow Nelson and Teitelboim [74], including − + ++ signature, and Majorana 
spinors with real Dirac numerical � matrices with anticommutation relations 
{�A, �B} = 2�AB. Consequently 𝜓̄ = 𝜓†𝛾

0
 and �

0
= −�0. Taking the real and imagi-

nary parts of a complex 4-spinor � yields two real spinors � (the real part of � ) 
and � (the imaginary part). Some ways that this paper differs from ([74]) include 
‘fixing the tetrad gauge’ as soon as possible (because the tetrad was never really 
there in the first place given the nonlinear realization) and employing a spatially 
densitized spinor as soon as possible. I also avoid notions of an extended Hamil-
tonian and the idea that individual first-class constraints typically generate gauge 
transformations, ideas that violate Hamiltonian-Lagrangian equivalence [15, 16]. 
A sign difference will also appear in the definition of the spin connection. Some 
other relevant works include ([25, 75–79]).

Some further conventions involve the tetrad and its inverse. I write the tetrad e�
A
 

such that g�� = e
�

A
�ABe�

B
. The cotetrad f A

�
 is the inverse of e�

A
 on either kind of index 

and satisfies g�� = f A
�
�ABf B

�
. Greek are world indices, 0 to 3. Capital Latin indices 

A,B,M,N… are local Lorentz indices running from 0 to 3. Lower-case Latin indi-
ces run from 0 to 3 and can be the spatial part of either Greek or Latin indices. 
Given that the tetrad gauge conditions destroy the distinction between world and 
local Lorentz indices [56] and that the − + ++ signature implies that spatial indices 
suffer no sign changes when moved, there should be no confusion. Indices are rarely 
moved, but on occasion Greek indices are moved with the space-time metric g�� or 
its inverse, local Lorentz indices are more often moved with the Minkowski matrix 
diag(−1, 1, 1, 1). Occasionally lower-case Latin indices a,m… derived from upper-
case Latin indices A,M… are moved with the spatial Kronecker �i

j
 when there is no 

ambiguity. For the ADM shift vector �n relating constant coordinate location with 
orthogonality to the time hypersurface, indices are moved with the spatial metric 
hij = gij. The inverse spatial metric hij is not equal to the spatial part of the inverse 
space-time metric [59, ch. 21] due to time-space cross-terms involving the shift vec-
tor, but the shift vector disappears from the spatially homogeneous case considered 
here. The role of the tetrad is largely heuristic: the formalism is familiar and makes 
coordinate covariance manifest, whereas nonlinear group realization formalisms, 
whether Lorentz-covariant or 3 + 1-friendly, are still not so familiar and make coor-
dinate covariance not so obvious. One should not take the initial use of the tetrad 
formalism as a guide to what actually exists according to the theory in question or to 
what topological restrictions are implied.

Using a geometrically rather than physically motivated normalization for the 
Lagrangian, I take the Lagrangian density to be [74]

The operator D� takes the local Lorentz-covariant derivative of the spinor

where

(1)L =
√
−gR + div +

i

2

√
−g(e

𝜇

A
𝜓̄𝛾AD𝜇𝜓 − (D𝜇𝜓̄)𝛾Ae

𝜇

A
𝜓) − im

√
−g𝜓̄𝜓 .

(2)
D𝜇𝜓 =𝜓 ,𝜇 +B𝜇𝜓 ,

D𝜇𝜓̄ =𝜓̄ ,𝜇 −𝜓̄B𝜇,
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While I follow many conventions of Nelson and Teitelboim, this definition uses 
the opposite sign for the coefficient of B� in the covariant derivatives; thus I find 
that all undesirable terms indeed cancel. Here Γ�

��
 is the usual Levi-Civita connec-

tion (Christoffel symbols) of General Relativity and [�A, �B] is the matrix commuta-
tor �A�B − �B�A, not to be confused with the strength-1 antisymmetric part of the 
product, �[A�B] =

1

2
(�A�B − �B�A). Notwithstanding the factors of i, this Lagrangian 

is real, thanks to the services of �
0
. B� is proportional to the Levi-Civita covariant 

derivative (giving no attention to local Lorentz freedom) of the cotetrad f A
�
, which I 

write as f A
�
;� . That result makes sense if one envisages fixing the spin connection by 

requiring a combined Levi-Civita+spin covariant derivative to annihilate the (co)tet-
rad. The relation of the signs of a spinor transformation � � = D(Λ)� to the transfor-
mation of the tetrad indices follows from requiring the covariance of the Dirac equa-
tion, yielding D(Λ)−1�ND(Λ) = �PΛN

.P
. The cotetrad f A

�
, a collection of covariant 

vector fields under coordinate transformations of the index �, is a set of contravari-
ant vector fields under local Lorentz transformations: f A

�
→ f A

�
+ ΩA

.B
f B
�
, where ΩA

.B
 

is infinitesimal and is antisymmetric when an index is moved with diag(−1, 1, 1, 1). 
Likewise the tetrad, composed of contravariant world vectors, is composed of local 
Lorentz covectors: e�

A
→ e

�

A
− ΩB

.A
e
�

B
. Then � → (I +

1

4
�[A�B])� .

One step in simplifying the Lagrangian is the imposition of the Schwinger time 
gauge [56], which locks the time-like leg of the tetrad e�

0
 to match the future-point-

ing unit normal vector n� defined by the space-time metric and the time coordinate’s 
gradient. Thus the time-like leg of the cotetrad f 0

�
 matches the (negative) covari-

ant unit normal vector −n� , which in terms of the ADM lapse function N and shift 
vector � satisfies n� = (

1

N
,−

�m

N
) [59, p. 508]. While the covariant unit normal n� is 

closer to fundamental than the contravariant one n� due to the former’s using the 
metric only to rescale the gradient of the time coordinate, not also moving an index, 
a minus sign has to go somewhere (given − + ++ signature, which choice is crucial 
once the distinction between covariant and contravariant spatial indices disappears 
below). The fact that contravariant vectors more straightforwardly point in a direc-
tion is perhaps sufficient grounds for setting e�

0
= n� with no sign-flip. The covec-

tor unit normal, in terms of the lapse function N, is n� = (−N, 0, 0, 0). The relation 
f 0
�
= −n� implies f 0

m
= 0 [59, p. 508]: the spatial components of the time-like co-leg 

vanish. The orthogonality of the space-like triad of legs e�
a
 to the normal covector n� 

implies e0
a
= 0 : the time components of the spatial triad vanish. One can also show 

that f a
0
f a
n
= �n, f 00 = N, and f a

m
f a
n
= hmn. Quite apart from talk of tetrads one has the 

relation between spatio-temporal and spatial volume elements 
√
−g = N

√
h.

Another step that I will take is a fairly naive imposition of spatial homoge-
neity by simply dropping all spatial derivatives [16]. This is, of course, both a 
strong restriction of the physics and a substantial fixation of the spatial coordi-
nate freedom. (For more careful treatments of the spatial coordinate freedom, 
see [25, 77, 80].) My interest is in doing justice to the temporal coordinate free-
dom, something rarely attempted and best accomplished by keeping the spatial 
metric look as much like it does in full GR as possible, rather than keeping track 

(3)B� =
1

8
e�
C
�AC(f B

�
,� −Γ

�
��
f B
�
)[�A, �B].
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of the remnant of spatial coordinate freedom that one would have by interpreting 
the Lagrangian as derived from GR. One can assume instead that one is simply 
handed the Lagrangian that results from the naive spatial truncation. This proce-
dure will indicate more spatial degrees of freedom than one should inherit from 
GR, but that is not important for the task at hand. One could impose the initial 
vanishing of such extra degrees of freedom to recover a closer match to GR in 
that respect if one wished; such a condition would be dynamically preserved.

After expanding out the covariant derivative of the spinors into partial deriva-
tive and connection terms, one can give the spinors a spatial density weight of 
1

2
 [56, 74, 77], thereby removing some interaction terms between the spinor and 

gravity. This densitization will be denoted by a ∼ over spinors � , 𝜓̄ , �, � , etc. 
(Note that one cannot readily write half a ∼ ; the notion of expressing the weight 
of a density by the number of tildes was never going to be viable for densities 
other than ±1 and maybe ±2 ; fractional and irrational weights, though perfectly 
well defined [37, 38] and sometimes useful [44, 46, 81–84], were never going to 
be accommodated in detail typographically.) The Lagrangian density then takes 
the form

One can define canonical momenta for the real spinors with the usual definition:

Imposing the Schwinger time gauge gives a considerable simplification because the 
time components of the spatial legs vanish: e0

a
= 0 . One also has e0

0
=

1

N
. Using the 

relation �
0
�
0
= −I, the canonical momenta simplify to

Clearly none of these relations can be solved for the velocities. Hence we have 8 
primary constraints 𝜋𝜙 −

∼
𝜒
⊤

, �� +
∼
� , quantities that involve canonical momenta and 

vanish due to the impossibility of the Legendre transformation from velocities to 
momenta.

(4)
L =

√
−gR + div − 2mN

∼
𝜒
⊤

𝛾
0

∼

𝜙 − Ne
𝜇

A

∼
𝜒 ,⊤

𝜇
𝛾
0
𝛾A

∼

𝜙 + Ne
𝜇

A

∼
𝜒
⊤

𝛾
0
𝛾A

∼

𝜙,𝜇

+ 2Ne
𝜇

A

∼
𝜒
⊤

𝛾
0
B𝜇𝛾

A
∼

𝜙 + N
∼
𝜒
⊤

𝛾
0
𝛾Bg

𝜇𝜈 f B
𝜈;𝜇

∼

𝜙.

(5)

𝜋𝜙 =
𝜕L

𝜕
∼̇

𝜙

= Ne
𝜇

A

∼
𝜒
⊤

𝛾
0
𝛾A𝛿0

𝜇
= Ne0

A

∼
𝜒
⊤

𝛾
0
𝛾A,

𝜋𝜒 =
𝜕L

𝜕
∼̇
𝜒

= −Ne
𝜇

A
𝛾
0
𝛾A𝛿0

𝜇

∼

𝜙 = −Ne0
A
𝛾
0
𝛾A

∼

𝜙.

(6)𝜋𝜙 =
∼
𝜒
⊤

,

(7)�� = −
∼

�.



1 3

Foundations of Physics (2021) 51:109	 Page 9 of 30  109

2 � Constrained Dynamics of Spinors Without Gravity

The assumptions made so far (the time gauge and the spatial weight 1
2
 definition of 

the spinors) have led to a simple Lagrangian for the spinor fields, but spinor fields 
behave in a sufficiently unfamiliar fashion in constrained Hamiltonian dynamics to jus-
tify forgetting about gravity altogether for the moment. Forgetting about gravity can 
be effected by setting (temporarily) f A

�
 to the Kronecker delta (identity matrix). The 

canonical Hamiltonian is defined with the usual sum over momenta times velocities, 
including the constrained quantities, but then the primary constraints are used to try 
to simplify the result [85]. In contrast to cases where the Lagrangian is quadratic in 
a velocity (permitting the replacement of the velocity by a momentum) or independ-
ent of a velocity (as occurs for the electrostatic scalar potential in electromagnetism 
and for the lapse function and shift vector in GR and so yielding vanishing canonical 
momenta), the Lagrangian here is linear in the velocity. Thus the momenta are nonzero 
but independent of the velocity in question, the worst of both worlds. Pressing on, one 
finds that

The densitization has been dropped with the neglect of gravity and consequent 
specialization to Cartesian coordinates, so no ∼ symbols are needed. Note that 
the momenta are absent from the canonical Hamiltonian. The quantity that gives 
Lagrangian-equivalent Hamilton’s equations, however, is the total Hamiltonian [85], 
which includes terms involving the primary constraints multiplied by either the cor-
responding velocities or some arbitrary functions that turn out a posteriori to equal 
the velocities in question:

The Hamiltonian equations for � are

which is true, though not informative, and

We did not need to commit much to the meaning of a Poisson bracket of a velocity 
because every such term was multiplied by a primary constraint. If we allow our-
selves already to use the time derivative of a primary constraint, then this Hamilto-
nian equation is seen to be equivalent to the Dirac equation for 𝜒⊤ (or 𝜒̄)—not for �. 
Hamilton’s equations for � are analogous: {𝜒⊤

,Hp} is the empty relation 𝜒̇⊤ = 𝜒̇⊤
, 

(8)Hc =(𝜋𝜙

∼̇

𝜙 + 𝜋𝜒

∼̇
𝜒 − L)|primaries

=2m𝜒⊤𝛾
0
𝜙 + 𝜒⊤

,i 𝛾0𝛾
i𝜙 − 𝜒⊤𝛾

0
𝛾 i𝜙,i .

(9)Hp = Hc + (𝜋𝜙 − 𝜒⊤)𝜙̇ + 𝜒̇⊤(𝜋𝜒 + 𝜙).

(10)𝜙̇ = {𝜙,Hp} = {𝜙,Hc} + 𝜙̇ + 0 = 𝜙̇,

(11)

̇𝜋𝜙 ={𝜋𝜙,Hp} = −

(
𝜕Hc

𝜕𝜙
−

𝜕

𝜕xi

𝜕Hc

𝜕𝜙,i

)
+ {𝜋𝜙, (𝜋𝜙 − 𝜒⊤)𝜙̇} + 𝜒̇⊤{𝜋𝜙,𝜋𝜒 + 𝜙}

= − 2𝜒⊤
,i 𝛾0𝛾

i − 2m𝜒⊤𝛾
0
− 𝜒̇⊤

.
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while {�� ,Hp} gives a relation that (adding in the time derivative of a primary con-
straint) is the Dirac equation for �.

In the interest of distinguishing first-class constraints (which relate to gauge free-
dom) from second-class constraints (which do not), a process that can require taking 
linear combinations of constraints in order to find the appropriate number of first-
class constraints, one wants to ensure that the primary constraints, if true initially, 
are preserved by the dynamics. Preservation of 𝜋𝜙 − 𝜒⊤ ’s vanishing yields the Dirac 
equation for 𝜒⊤

, which, containing 𝜒̇⊤
, is not a constraint. Analogously, preserv-

ing �� + � ’s vanishing yields the Dirac equation for �, which is not a constraint. 
Thus there are no secondary constraints for the pure spinor system without gravity. 
The previously undetermined velocities are, however, fixed in terms of phase space 
quantities, as one expects for second-class constraints. If one wants the 8 × 8 matrix 
(at each spatial point) of the Poisson brackets of all the constraints among them-
selves, the nonzero contributions come from the two copies of the 4 × 4 relation

3 � Gravity and Spinors Without Spatial Dependence

Having now an idea of how the spinor matter behaves, let us restore gravity but dis-
card all spatial derivatives in order to focus attention on temporal coordinate free-
dom and change with as little technical complication as possible. The Schwinger 
time gauge is employed. The Lagrangian can be taken as above. Discarding some 
obviously vanishing terms such as the spatial Ricci scalar but taking more time to 
pare down the partial derivative of the cotetrad (which will be the source of the 
surviving term involving the rotation in spinor space) and Christoffel symbol term 
(which cancels some undesirable terms from the partial derivative of the cotetrad), 
making use of the anticommutation relations of the � matrices and the usual tricks of 
tensor calculus, after a page or two of algebra one obtains

Reassuringly, this expression does not contain Ṅ or 𝛽̇ i and contains N and � i at most 
linearly, as one expected from the coupling of more familiar matter in GR. Given 
the spatial homogeneity, one is not surprised that � i is absent. The last term, which 
involves a rotation in spinor space, seems not to be removable using a field redefini-
tion. It does, however, depend merely on the conformal part ĥij of the spatial metric 
hij . One could see that, for example, by factoring the triad (and inversely the cotriad) 
into a unimodular part (unit determinant) and the appropriate power of the volume 
element and then notice how the volume element terms yield a �ab that cancels when 
contracted with the antisymmetric term in the � matrices.

One straightforwardly verifies that this Lagrangian is invariant under ‘local’ (that 
is, time-dependent) rotations: the original local Lorentz invariance described by 

{𝜋⊤
𝜙
(x) − 𝜒(x),𝜋𝜒 (y) + 𝜙⊤(y)} = −2I𝛿(x, y).

(12)
L = N

√
h(KijK

ij − K2) − 2mN
∼
𝜒
⊤

𝛾
0

∼

𝜙 −
∼
𝜒 ,⊤

0

∼

𝜙 +
∼

𝜙
⊤∼

𝜙,
0
+
1

2

∼
𝜒
⊤

en
a
fnb,0 𝛾[a𝛾b]

∼

𝜙.
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ΩA
.B
(t, x, y, z) has been whittled down to Ωa

.b
(t), under which the Lagrangian is invari-

ant. The period serves as a placeholder to distinguish the indices of ΩA
.B
(t, x, y, z), 

which is antisymmetric when the indices are at the same level.
The presence of the velocity of the spatial metric implies that the canonical 

momenta for gravity are altered by the presence of spinors. The use of the Schwinger 
time gauge and the weight 1

2
 densitization gets rid of many inconvenient terms [74]. 

The Kibble-Deser symmetric triad condition gives further leanness. Given that my 
goal ultimately is to understand time coordinate freedom in GR, not in this toy the-
ory, it would be unhelpful to try to remove 3 degrees of freedom per spatial point 
using the remnant of the spatial coordinate freedom. At this point plausibly all the 
fat has been removed, leaving only muscle and bone (unless one is prepared to seek 
the unconstrained true degrees of freedom at the expense of locality). So plausi-
bly this use of gauge conditions and field redefinitions has put the Lagrangian in as 
convenient a form as possible. One has to decide what variables to use as canonical 
coordinates. An attractive choice native to spinors would be to use the symmetric 
cotriad fai or possibly its inverse eai. While such a treatment would be a worthwhile 
project, certain inversions would become complicated. In the interest of familiar-
ity, let us use the usual geometrodynamic quantity hij = gij, the spatial metric tensor. 
This choice will leave some square roots that are not so readily simplified, but they 
will not cause trouble.

While the canonical momenta for the spinor fields are as given above in the 
absence of gravity, the canonical momenta for gravity undergo some modification. 
While 𝜋N =

𝜕L

𝜕Ṅ
= 0 as usual in GR, the spatial metric’s canonical momenta acquire 

a contribution from the spinor fields.

The trace � = �ijhij of these canonical momenta receives no contribution from the 
spinor term, as one can see either from the presence of only the conformal part of 
the metric ĥij or from the antisymmetrization of the indices of the � matrices. Solv-
ing for the velocities of the spatial metric gives

The canonical Hamiltonian is

(13)𝜋ij =
𝜕LGR

𝜕ḣij
+

𝜕

𝜕ḣij

∼

𝜒⊤

2

√
ĥna

�
ĥnb,0 𝛾[a𝛾b]

∼

𝜙.

(14)ḣcd =
2N√
h
(𝜋cd −

hcd

2
𝜋 − hichdj

𝜒

2

√
hna

𝜕
√
hnb

𝜕hij
𝛾[a𝛾b]

∼

𝜙).
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where the last relation is a definition of what will turn out to be the Hamiltonian 
constraint; I have felt free to include the matter contribution within the symbol H

0
 

for brevity because I will not make separate use of the gravitational and material 
pieces. Clearly this system is reparametrization-invariant because the entire expres-
sion involves the lapse linearly. Hence as much temporal general covariance as a 
spatially homogeneous system could have is evident.

The primary Hamiltonian [85] adds to the canonical Hamiltonian terms involving 
the primary constraints multiplying the corresponding velocities so as to yield Ham-
ilton’s equations that are mathematically equivalent to the Euler-Lagrange equations. 
One has

This system has 9 primary constraints, including �N inherited from GR and 8 pri-
mary constraints from the spinors. The dynamics needs to preserve the primary con-
straints. For �N one has

showing that (minus) H
0
 is indeed a constraint. The term 𝜋NṄ yields nothing using 

the primary constraint or employing the sometimes-needed Anderson-Bergmann 
velocity Poisson bracket [17, 34]. Preservation of the primary constraint 𝜋𝜙 −

∼
𝜒
⊤

 
yields

This equation involves a velocity and so, rather than yielding a new constraint, fixes 
the velocity for 

∼
� , as one expects given the second-class character of the constraint 

(15)

Hc =N𝜋N + 𝜋cdḣcd + 𝜋𝜙

∼̇

𝜙 +
∼̇
𝜒
⊤

𝜋𝜒 − L

=0 + 𝜋cd
⋅

2N√
h
(𝜋cd −

hcd

2
𝜋 − hichdj

𝜒

2

√
hna

𝜕
√
hnb

𝜕hij
𝛾[a𝛾b]

∼

𝜙) +
∼
𝜒
⊤ ∼̇

𝜙 +
∼̇
𝜒
⊤

⋅ −
∼

𝜙

− (N
√
hKijKij − N

√
hK2 − 2mN

∼
𝜒
⊤

𝛾
0

∼

𝜙 −
∼
𝜒
⊤

,
0

∼

𝜙 +
∼
𝜒

∼

𝜙,
0

+

∼
𝜒
⊤

2

√
hna

√
hnb,0 𝛾[a𝛾b]

∼

𝜙)

=
N√
h
𝜋cd𝜋cd −

N

2

√
h
𝜋2 −

N√
h
𝜋ij

∼
𝜒
⊤

2

√
hna

𝜕
√
hnb

𝜕hij
𝛾[a𝛾b]

∼

𝜙 + 2mN
∼
𝜒
⊤

𝛾
0

∼

𝜙

+
N

2

√
h

∼
𝜒
⊤

𝛾[a𝛾b]

∼

𝜙

∼
𝜒
⊤

2
𝛾[e𝛾f ]

∼

𝜙hichjd

√
hna

𝜕
√
hnb

𝜕hij

√
hme

𝜕
√
hmf

𝜕hcd
= NH

0
,

(16)Hp = NH
0
+ 𝜋NṄ + (𝜋𝜙 −

∼
𝜒
⊤

)
∼̇

𝜙 +
∼̇
𝜒
⊤

(𝜋𝜒 +
∼

𝜙).

(17){𝜋N ,Hp} = {𝜋N ,NH0
+ 𝜋NṄ + (𝜋𝜙 −

∼
𝜒
⊤

)
∼̇

𝜙 +
∼̇
𝜒
⊤

(𝜋𝜒 +
∼

𝜙} = −H
0

!
=0,

(18){𝜋𝜙 −
∼
𝜒
⊤

,Hp} = −N
𝜕H

0

𝜕
∼

𝜙

− 2

∼̇
𝜒
⊤

!
=0.
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in the absence of gravity. Apart from certain signs, the same story applies for 
�� +

∼

� ∶

4 � First‑Class and Second‑Class Constraints

One can take Poisson brackets among each pair of constraints and ascertain which con-
straints are first-class or second-class. If one is lucky, then the distinction will be clean 
using the original constraints. More generally, one might need to take linear combina-
tions of constraints in order to find the expected number of first-class constraints. This 
expected number, though strongly suggested by the component theories (here GR and 
spinors satisfying the Dirac equation), follows from the extent by which the matrix rank 
(the total number of nonvanishing eigenvalues) of the matrix of Poisson brackets falls 
short of the dimension of the square matrix in question, in this case 10. One easily sees 
that �N has vanishing Poisson brackets with all the constraints, hence remaining first-
class. One also sees that the brackets among the spinor constraints are unchanged by 
the introduction of gravity, though of course the spatial Dirac �(x, y) functions disap-
pear when one discards spatial dependence. The more significant results, however, are

so the original Hamiltonian constraint is no longer first-class. This of course does 
not mean that the gauge freedom to change time coordinates has disappeared. Thus 
the matrix of Poisson brackets of the constraints, ordered as �N , 𝜋𝜙 −

∼
𝜒
⊤

, 𝜋𝜒 +
∼

𝜙
⊤

, 
H

0
, is

(19){𝜋𝜒 +
∼

𝜙,Hp} = −N
𝜕H

0

𝜕
∼
𝜒
⊤
+ 2

∼̇

𝜙
!
=0.

(20){��,H0
} = −

�H
0

�
∼

�

,

(21){�� ,H0
} = −

�H
0

�
∼
�

,
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The failure of the last column and the last row to vanish displays how the original 
Hamiltonian constraint is no longer first-class. The facts that �N is first-class and 
that second-class constraints have to come in even numbers given a finite number of 
degrees of freedom [85, p. 80] assure us that there must be some combination of H

0
 

and the spinor constraints that is first-class.
It is not difficult to find the modified Hamiltonian constraint H̄

0
 that, by incorporat-

ing contributions from the second-class spinor primary constraints, is first-class. An 
easy way to find it is to devise largely arbitrary combination 
H̄

0
= H

0
+ A(𝜋⊤

𝜙
−

∼
𝜒) + B(𝜋⊤

𝜒
+

∼

𝜙), where A and B are potentially phase space-
dependent row matrices; their Poisson bracket contributions are rendered unimportant 
due to multiplication by the second-class primary constraints. Demanding that this H̄

0
 

have vanishing Poisson brackets with both of the spinor constraints implies that

By antisymmetry the bracket with H̄
0
 with itself of course vanishes. The independ-

ence of H̄
0
 from the lapse implies the one remaining vanishing bracket. We can now 

use a redefined set of constraints, �N , 𝜋𝜙 −
∼
𝜒
⊤

, 𝜋𝜒 +
∼

𝜙
⊤

, H̄
0
, thereby making the 

inconvenient last column and last row vanish.
One can define a Dirac bracket {, }∗ using the 8 second-class spinor primary con-

straints using the invertible 8 × 8 matrix of Poisson brackets, which is the same given 
the use of H̄

0
 as for H

0
:

(22)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

{𝜋N ,𝜋N} {𝜋N ,𝜋𝜙 −
∼
𝜒
⊤

} {𝜋N ,𝜋𝜒 +
∼

𝜙
⊤

} {𝜋N ,H0
}

{𝜋⊤
𝜙
−

∼
𝜒 ,𝜋N} {𝜋⊤

𝜙
−

∼
𝜒 ,𝜋𝜙 −

∼
𝜒
⊤

} {𝜋⊤
𝜙
−

∼
𝜒 ,𝜋𝜒 +

∼

𝜙
⊤

} {𝜋⊤
𝜙
−

∼
𝜒 ,H

0
}

{𝜋⊤
𝜒
+

∼

𝜙,𝜋N} {𝜋⊤
𝜒
+

∼

𝜙,𝜋𝜒 +
∼

𝜙
⊤

} {𝜋⊤
𝜒
+

∼

𝜙,𝜋𝜒 +
∼

𝜙
⊤

} {𝜋⊤
𝜙
+

∼
𝜒 ,H

0
}

{H
0
,𝜋N} {H

0
,𝜋𝜒 +

∼

𝜙
⊤

} {H
0
,𝜋𝜒 +

∼

𝜙
⊤

} {H
0
,H

0
}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0
1×4 0

1×4 0

0
4×1 0

4×4 − 2I
4×4 −

𝜕H⊤
0

𝜕
∼

𝜙

0
4×1 2I

4×4 0
4×4 −

𝜕H⊤
0

𝜕
∼
𝜒

0
𝜕H⊤

0

𝜕
∼

𝜙

𝜕H⊤
0

𝜕
∼
𝜒

0

⎤⎥⎥⎥⎥⎥⎥⎦

.

(23)

A =
1

2

�H
0

�
∼
�

,

B = −
1

2

�H
0

�
∼

�

.
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with inverse

With this Dirac bracket in hand, one can take the second-class spinor constraints 
𝜋⊤
𝜙
−

∼
𝜒 and 𝜋⊤

𝜒
+

∼

𝜙 as identities, eliminating �� and either 
∼
� or alternatively �� (the 

two being equal). As a consequence one finds that {
∼

�,��}
∗ = I

4×4 −
1

2
I
4×4 =

1

2
I
4×4 : 

these brackets will be only half as large as a standard canonical pair.

5 � Gauge Generator for Changes of Time Coordinate

Contrary to the common belief that one cannot implement changes in time coordi-
nates and to the simple neglect of the question in some standard GR texts that offer a 
version of a Hamiltonian formulation [59, ch. 21] [86, Appendix E], one can imple-
ment changes of time coordinate using a Hamiltonian formalism. One encounters 
the quirk, harmless at the classical level, that one needs to use Hamilton’s equa-
tions more often than one might have expected [87, 88]. While there are procedures 
to find the gauge generator by iterating beginning with the primary constraints, 
another approach4 is simply to add all the constraints together with arbitrary (poten-
tially field-dependent) coefficients and require that the resulting quantity change the 
canonical action ∫ dtd3x(pq̇ −Hp) by at most a boundary term, where pq̇ is a ‘large’ 
sum over all the canonical coordinates (including those related for which the veloci-
ties yield primary constraints) and the relevant Hamiltonian is the primary Hamilto-
nian. Such a criterion will preserve the Euler-Lagrange equations for the canonical 

(24)
C8

AB
=

⎡⎢⎢⎣
{𝜋⊤

𝜙
−

∼
𝜒 ,𝜋𝜙 −

∼
𝜒
⊤

} {𝜋⊤
𝜙
−

∼
𝜒 ,𝜋𝜒 +

∼

𝜙
⊤

}

{𝜋⊤
𝜒
+

∼

𝜙,𝜋𝜒 +
∼

𝜙
⊤

} {𝜋⊤
𝜒
+

∼

𝜙,𝜋𝜒 +
∼

𝜙
⊤

}

⎤⎥⎥⎦
=

�
0
4×4 − 2I

4×4

2I
4×4 0

4×4

�

(25)CAB
8

=

[
0
4×4

1

2
I
4×4

−
1

2
I
4×4 0

4×4

]

.

4  I observe that certain minor differences in the treatment of velocities make it appropriate to be some-
what exploratory regarding the gauge generator(s) despite the substantial amount of work (e.g., [13, 19, 
20]) done on the subject. Mukunda’s work, following the book with Sudarshan [89], retains the unsolved-
for velocities (here Ṅ ) along with the momenta unrestricted by primary constraints in order to get a com-
plete collection of variables with as much information as the velocities in the Lagrangian formalism. 
Other authors avoid those velocities in favor of arbitrary functions. Mukunda’s inclusion of velocities 
(followed by Castellani [88]) does not, however, give velocities any contribution to Poisson brackets, 
such as the Anderson-Bergmann velocity Poisson bracket does. Much of that work is implemented/
obviated by defining the variation of a velocity to be the velocity of a variation [13], while many other 
appearances of velocities are multiplied by constraints and thus make no difference in most contexts. The 
approach followed in this paper retains the unsolved velocities and uses the Anderson-Bergmann velocity 
Poisson bracket. One needs to attend to such matters before carrying over a derivation that makes differ-
ent choices on this point of fine detail.



	 Foundations of Physics (2021) 51:109

1 3

109  Page 16 of 30

action; because those equations are just Hamilton’s equations, Hamilton’s equations 
are preserved. An advantage of using the canonical action is that it shows that the 
Hamiltonian formalism is a special case of the Lagrangian formalism and hence has 
neither need nor room for radical conceptual innovations or independent postulates. 
The spatial integral is of course redundant for the spatially homogeneous example 
at hand. The temporal integral provides another way to handle, or rather avoid, the 
Poisson bracket with a velocity. The canonical action is thus, after some cancella-
tions, the integral of

It is convenient at this stage to find the Poisson brackets of all 4 sets of constraints 
�N , 𝜋𝜙 −

∼
𝜒
⊤

, 𝜋𝜒 +
∼

𝜙
⊤

, and H
0
 (discarding the sign in the last case), having respec-

tively 1,  4, 4 and 1 constraint; these are the original constraints rather than the rede-
fined ones, but that should not matter because any special first-class linear combina-
tions ought to reassert themselves. Using an arbitrary smearing function �(t), one 
has

Using a column matrix of smearing functions �
1
(t) with 𝜋𝜙 −

∼
𝜒
⊤

, one obtains

using the Anderson-Bergmann velocity Poisson bracket with its surprising property 
{q̇,F} =

𝜕

𝜕t
{q,F} [34], which supersedes the Poisson bracket product rule when the 

velocity is isolated [17]. Analogously using a row matrix of smearing functions �
2
(t) 

one has

Finally, the smeared Hamiltonian constraint gives

One can evaluate this expression either by integrating over time and integrating by 
parts, or using the Anderson–Bergmann velocity Poisson bracket. Either way, one 
finds the result5

(26)Lc = 𝜋ijḣij +
∼
𝜒
⊤ ∼̇

𝜙 −
∼̇
𝜒
⊤∼

𝜙 − NH
0
.

(27){𝜉(t)𝜋N , pq̇ −Hp} = 𝜉H
0
.

(28){(𝜋𝜙 −
∼
𝜒
⊤

)𝜖
1
, pq̇ −Hp} = −

∼
𝜒
⊤

𝜖̇
1
+

∼̇
𝜒
⊤

𝜖
1
+ N

𝜕H
0

𝜕
∼

𝜙

𝜖
1

(29){𝜖
2
(𝜋⊤

𝜒
+

∼

𝜙), pq̇ −Hp} = −𝜖
2

∼̇

𝜙 + 𝜖̇
2

∼

𝜙 + 𝜖
2
N
𝜕H

0

𝜕
∼
𝜒
⊤
.

(30)
{𝜖H

0
,𝜋ijḣij +

∼
𝜒
⊤ ∼̇

𝜙 −
∼̇
𝜒
⊤∼

𝜙 − NH
0
}

= {𝜖H
0
,𝜋ijḣij}

= {𝜖H
0
,𝜋ij}ḣij + {𝜖H

0
, ḣij}𝜋

ij
.

5  Previously I used a partial time derivative notation [16], as did Anderson and Bergmann [34]. But 
looking at what the Anderson–Bergmann Poisson bracket (alas, still poorly understood it seems) needs 
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Plausibly the constraints inherited from vacuum GR, namely �N and H
0
, contribute 

to the gauge generator G in the same way as in GR:

where the ellipsis stands for possible spinor terms. Checking how just the old terms 
from GR change the canonical action can provide clues about possible new spinor 
terms. One has

Thus there are some terms apt for cancellation by mixing in the primary (second-
class) constraints from the spinors. We have already seen that H

0
 is not first-class 

and required contributions from the spinor constraints to give a first-class constraint 
H̄

0
.
Adding in the spinor primary constraints with arbitrary phase space-independent 

coefficients gives

Cancelling the unwanted terms requires setting 𝜖
1
=

𝜖
∼̇

𝜙

N
 and 𝜖

2
=

𝜖
∼̇
𝜒

N
. Thus one 

arrives at a change in the canonical Lagrangian that is just a total derivative, thus 
preserving Hamilton’s equations:

This expression apparently results from the Poisson bracket with the following 
expression as the gauge generator G:

(31){𝜖(t)H
0
,𝜋ijḣij − NH

0
} = 𝜖Ḣ

0
−

d

dt

(
𝜖𝜋ij

𝜕H
0

𝜕𝜋ij

)
.

(32)G[𝜖, 𝜖̇] = 𝜖̇𝜋N + 𝜖H
0
+… ,

(33){𝜖̇𝜋N + 𝜖H
0
,Lc} =

d

dt

(
𝜖H

0
− 𝜖𝜋ij

𝜕H
0

𝜕𝜋ij

)
− 𝜖

∼̇
𝜒
⊤ 𝜕H

0

𝜕
∼
𝜒

− 𝜖
𝜕H

0

𝜕
∼

𝜙

∼̇

𝜙.

(34)

{𝜖̇𝜋N + 𝜖H
0
+ (𝜋𝜙 −

∼
𝜒
⊤

)𝜖
1
+ 𝜖

2
(𝜋𝜒 +

∼

𝜙),Lc}

=
d

dt

(
𝜖H

0
− 𝜖𝜋ij

𝜕H
0

𝜕𝜋ij

)
− 𝜖

∼̇
𝜒
⊤ 𝜕H

0

𝜕
∼
𝜒

− 𝜖
∼̇

𝜙

⊤
𝜕H

0

𝜕
∼

𝜙

− 𝜖̇
1

∼
𝜒
⊤

+ 𝜖
1

∼̇
𝜒
⊤

+ N𝜖
1

𝜕H
0

𝜕
∼

𝜙

− 𝜖
2

∼̇

𝜙 + 𝜖̇
2

∼

𝜙 + N𝜖
2

𝜕H
0

𝜕
∼
𝜒
⊤
.

(35)
d

dt

(
𝜖H

0
− 𝜖𝜋ij

𝜕H
0

𝜕𝜋ij

)
+

d

dt

[
𝜖

N
(
∼̇
𝜒
⊤∼

𝜙 −
∼
𝜒

∼̇

𝜙)

]

.

to mean to give correct answers rather than nonsense, a total derivative, recognizing both explicit time 
dependence through � and implicit time dependence through phase space variables, is needed.

Footnote 5 (continued)
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Clearly it is peculiar that the gauge generator contains velocities of the canonical 
variables. This peculiarity is shared by the original Anderson–Bergmann gauge gen-
erator for GR [34] and closely related to a matter that Bergmann found deeply prob-
lematic until he took Dirac to have resolved it [30, 31, 90–92]. But spinors, espe-
cially due to being linear rather than quadratic in derivatives in their field equations, 
have many peculiarities, so this one might be tolerable. One would want to reflect on 
how this result bears on the quest for gauge transformations that are projectable to 
phase space in the sense of lacking velocities of the lapse, shift vector, electrostatic 
scalar potential and its Yang-Mills analogs, etc. [93]. The alternative gauge genera-
tor Ḡ found below is more suited to phase space.

There is a gap, however, in this derivation: initially the smearing functions were 
all assumed to be independent of the phase space quantities, but ultimately the 
smearing functions were made to depend on phase space variables after all. So one 

must revisit the derivation using the final forms 𝜖
1
=

𝜖
∼̇

𝜙

N
 and 𝜖

2
=

𝜖
∼̇
𝜒

N
, which have 

some nonzero Poisson brackets. Fortunately the only nonzero brackets are with the 
canonical momenta associated with the lapse and the spinors, canonical momenta 
that in fact are absent from the canonical action. Hence the extra terms vanish after 
all. Thus the candidate for the gauge generator G is vindicated: its Poisson bracket 
with the canonical Lagrangian really does change the canonical Lagrangian by only 
a total derivative, thus preserving the Euler-Lagrange equations, that is, Hamilton’s 
equations. The arbitrary (nonvanishing) function �(t) describes infinitesimal coor-
dinate transformations for solutions of the spatially homogenized Einstein-Dirac 
equations.

6 � Role of Second‑Class Constraints in Gauge Generator G?

This example might be a useful one to examine in the context of the 1990s contro-
versy about what role second-class constraints might play in the gauge generator. 
One strategy, suggested by Castellani in the 1980s, is simply to eliminate second-
class constraints using Dirac brackets.

Notice that the whole game is insensitive to the presence of second-class con-
straints. Their effect is really to reduce the phase-space of the theory, not to 
generate any symmetry. In any case, they can be eliminated by using Dirac 
brackets [1]. [88]

Supposing that we do not employ Castellani’s proposal for the moment, the question 
returns: what role, if any, do second-class constraints play in the gauge generator G 

(36)
G =𝜖̇𝜋N + 𝜖H

0
+ (𝜋𝜙 −

∼
𝜒
⊤

)
𝜖
∼̇

𝜙

N
+

𝜖
∼̇
𝜒

N
(𝜋𝜒 −

∼

𝜙)

=𝜖̇𝜋N + 𝜖[H
0
+ (𝜋𝜙 −

∼
𝜒
⊤

)

∼̇

𝜙

N
+

∼̇
𝜒

N
(𝜋𝜒 −

∼

𝜙)].
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in “mixed” systems, those with both first-class and second-class constraints? Sugano 
and Kimura

...propose a method to construct the generator G of the infinitesimal gauge 
transformation leaving the action

quasi-invariant. G for special Lagrangians was first obtained by Anderson and 
Bergmann. For the dynamical system having FCC’s alone, G can be given by 
a linear combination of the FCC’s (Refs. 3, 4, 8, and 9). For the system con-
taining FCC’s and SCC’s, we can also analogously construct G, though the 
method is rather complicated. In such a case, G turns out in general to be a 
linear combination of the FCC’s and SCC’s. [94]

Our experience with the spinor example in this paper seems to align nicely with this 
description. In particular instances some simplification is possible. “If the first-class 
constraints and the Hamiltonian are in involution, the generator of pure gauge trans-
formations can be obtained using only the first-class constraints.” [94]

But Chitaia et al. deny that second-class constraints ever play a role.

In papers [4–9] it is queried, and in Refs. [17–19] it is even asserted that sec-
ond-class constraints also contribute to a generator of gauge transformations 
which become global in the absence of first-class constraints [17]. The gener-
alized Hamiltonian dynamics of systems with constraints of first and second 
class has been studied relatively weakly up to now. [95]

One should be able to decide the matter by calculation.

To elucidate the role of second-class constraints in local-symmetry transfor-
mations, we consider first- and second-class constraints on the same basis in 
the hypothetical generator of these transformations. We prove that the second-
class constraints do not contribute to the local-symmetry transformation law 
and, thus, the transformation generator is a linear combination of only the first-
class constraints. [95]

Commendably they employ physically interesting examples including Chern-
Simons theory and spinor electrodynamics. Having noted the relevance of the spa-
tially homogenized Einstein-Dirac system for this debate, I leave further study of it 
for another time.

What if we try to take Castellani’s advice and use the Dirac brackets to eliminate 
the second-class constraints? Let us conjecture that the resulting gauge generator Ḡ 
will be built out of the first-class constraints from the redefined set in the same way 
that the gauge generator for vacuum GR:

S = ∫ dtL(q, q̇, t) (3.1)

(37)Ḡ = 𝜖H̄
0
+ 𝜖̇𝜋N .
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With the second-class constraints taken as identities, the new terms in H̄ disappear, 
while 𝜒⊤ is now canonically conjugate to 𝜙̃ up to a factor of 2. Let the resulting 
expression for the Hamiltonian constraint be called H

0
|, where the | indicates that 

one identifies 𝜒⊤ and ��. Let us ascertain what this new candidate gauge generator Ḡ 
does to the canonical Lagrangian:

where use has been made of the Anderson–Bergmann velocity Poisson bracket 
and also of the Dirac bracket {

∼

�,��}
∗ =

1

2
I
4×4 . As usual, the key point is that the 

resulting expression is a total derivative. Thus Castellani’s briefly suggested proce-
dure has worked: eliminating the second-class constraints using Dirac brackets has 
yielded a gauge generator Ḡ composed entirely of first-class constraints and taking 
the same form as in vacuum GR. If one wants gauge transformations to be project-
able to phase space, that is, to lack velocities that cannot be replaced by canonical 
momenta, then one is further pleased that this gauge generator Ḡ lacks velocities: 
the velocities were in the coefficients of the second-class primary spinor constraints, 
terms which disappeared when those constraints were taken as identities. Thus at 
least in this case one can make changes of time coordinate much more phase space-
friendly by eliminating the second-class constraints.

7 � Change in Einstein–Dirac Theory

In the literature on exact solutions of Einstein’s equations [96, p. 275] one calls a 
solution “stationary” if (and where-when) has a time-like Killing vector field. A 
Killing vector field is a vector field such that the Lie derivative of the metric van-
ishes. In that case one can adapt coordinates to that vector field so that the metric 
is independent of the coordinate x for which the Killing vector field �� is �

�x
 [96, p. 

99]. If the Killing vector field is time-like, then it is plausible to use that coordinate 
as time. Hence stationarity means that there exists a time coordinate such that the 
metric is independent of it. While one can introduce apparent time-dependence by 
using some other time coordinate that wiggles in comparison to this one, the time-
like Killing vector field shows that such apparent time dependence is phony. Hence 
“stationary” and “unchanging” are synonyms for vacuum GR, when the metric is the 
only thing that exists and hence the only possible locus of change. Thus an earlier 
paper spoke of change from the lack of a time-like Killing vector field, deploying in 
a Hamiltonian context standard conceptions from the exact solutions literature [16]. 
For a spatially homogeneous theory, one still has the freedom to bunch up or spread 
out the slices relative to physical (proper) time: reparametrization invariance. That 
paper went on to consider the introduction of a real scalar field for matter, an exam-
ple that, having no additional gauge freedom, adds no conceptual complications in 
the way that, say, Maxwell’s electromagnetism does.

(38){Ḡ,Lc}
∗ =

d

dt

⎛
⎜⎜⎝
𝜖H

0
� − 𝜖𝜋ij

𝜕H
0
�

𝜕𝜋ij
−

𝜖

2

∼

𝜙
𝜕H

0
�

𝜕
∼

𝜙

−
𝜖

2
𝜋𝜙

𝜕H
0
�

𝜕𝜋𝜙

⎞
⎟⎟⎠
,
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As discussed above, whereas the typical orthonormal tetrad formalism for the 
Einstein-Dirac equation introduces additional gauge freedom and thus adds con-
ceptual complications regarding symmetries [97], eliminating that gauge freedom 
using a nonlinear group realization formalism removes those complications. That 
is true whether one uses the symmetric tetrad condition developed by Ogievet-
sky and Polubarinov consciously into an alternative formalism, or one uses the 
Schwinger time gauge to fix the local boosts and the Kibble-Deser symmetric 
triad condition to fix the local rotations.

In the case of spatial homogeneity considered in this paper, in which the shift 
vector plays no role and hence may be taken to vanish, those two nonlinear group 
realizations coincide. Consequently one may borrow results from one to the 
other. The Lie derivative of a spinor has been defined using the symmetric tetrad 
[44]. It involves a new term that vanishes when the metric tensor commutes (as a 
matrix) with the symmetric part of the gradient of the vector field describing the 
coordinate transformation. For the example at hand, only the time component of 
that vector field is nonzero and it depends only on time, making the gradient of 
the descriptor vector field have only a 00 component. The vanishing shift vec-
tor implies that the metric has no time-space components, so only the time-time 
component contributes. Consequently the metric and the symmetrized gradient of 
the transformation do commute, annihilating the extra term. Thus in our exam-
ple the Lie derivative of the spinor is just the Lie derivative of a scalar. That 
result harmonizes with the gauge generator G’s acting on the spinor fields just as 
it would on a scalar, as shown above.

How, if at all, can one generalize the vacuum GR definition of change as the 
lack of a time-like Killing vector field? In the Einstein-Dirac system, real change, 
that is, ineliminable time dependence, could appear in the metric, in the spinor, 
in both, or just maybe in the relation between the two (supposing that one could 
eliminate change from the metric in one coordinate system and from the spinor 
in a different coordinate system, but there was no coordinate system eliminating 
change from both the metric and the spinor). It turns out to be easier to define 
the absence of change, and then to define change as its negation. For there to be 
no change, it suffices that there exist a vector field such that the Lie derivative 
of the pair ⟨g�� ,�⟩ vanishes. This pair very nearly comprises a nonlinear geo-
metric object [16] in the classical sense [98–101] of a set of components and 
a transformation law. For nonlinear geometric objects, the Lie derivative is not 
itself a geometric object in general, but the Lie derivative along with the object 
itself is a geometric object. The pair ⟨g�� ,�⟩ is not quite a geometric object due 
to spinor double-valuedness and due to the inadmissibility of coordinate systems 
that give negative eigenvalues to the matrix g����� (where ��� = diag(−1, 1, 1, 1) ) 
[46, 53, 102, 103], but neither limitation is relevant to transformations near the 
identity, which the Lie derivative uses. Hence ⟨g�� ,�⟩ is close enough to a non-
linear geometric object, and ⟨g�� ,� , £�g�� , £��⟩ is close enough to a nonlinear 
geometric object as well. It is unusual, however, in that it has a part that is itself 
a geometric object, indeed a linear geometric object, namely the metric (or some 
equivalent entity or, if one strips away unnecessary elements, the conformal part 
of the metric); the Lie derivative of the metric is also a linear geometric by itself. 
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Importantly for present purposes, the transformation rule for this 4-piece spino-
rial almost-geometric object is strictly linear in the spinor field, making 0 spinor 
an invariant notion.

One can in fact define change for GR with any matter fields that have no gauge 
‘group’ besides spatio-temporal coordinate transformations. For convenience I 
restrict matter fields to those having coordinate transformations depending only 
on the first derivatives of the coordinates: �x

�′

�x�
 but not x� or �2x�

′

�x��x�
 . This assump-

tion includes almost every physically interesting theory; even many theories with 
an independent connection (hence with second derivatives in the transformation 
law) can be reformulated using the difference between that independent connec-
tion and the Levi-Civita connection, which is a tensor. Hence though the assump-
tion could be lifted in Tashiro’s formalism, it is not very restrictive and leads to 
considerable simplification. I hope to include internal gauge groups on another 
occasion; but this paper shows that spinors can be treated already due to the non-
linear formalism.

Following Tashiro [100], one can define the Lie derivative for the complex ΩA
, 

which I will specialize as ⟨g�� ,�⟩ on occasion. (Whereas spinors were treated as col-
umn matrices ( 

∼

� and 
∼
� ) or row matrices above, now they are subsumed into index 

notation for the purpose of differential geometry.) This argument works for any col-
lection of tensors, tensor densities, or whatever else has a transformation rule involv-
ing at most the first derivative of the coordinates (and not involving the coordinates 
themselves) that has no additional gauge freedom—which even includes spinors if 
one uses a nonlinear group realization formalism. (In fact the restriction to avoid-
ing second derivatives in the transformation rule is not necessary, but it covers most 
interesting cases and streamlines the exposition.) ΩA is a (potentially) nonlinear geo-
metric object, or at least behaves like one for coordinate transformations that are not 
too large (such as swapping t and x or rotating by 2� , for example). Gathering all the 
fields into an ordered n-tuple ΩA

, under a coordinate transformation one has

FA
M

 of course includes �A matrices, but these, being numerical, do not need to be 
listed explicitly. The Lie derivative is defined involving a term differentiating FA 
with respect to �x

�′

�x�
 :

The Lie derivative is then

It is straightforward to show that this formula, a special case of Tashiro’s, gives the 
usual formulas for vectors, covectors, tensors, etc. The Lie derivative has the coordi-
nate transformation rule

(39)ΩA� = FA

�
ΩM

,
�x��

�x�

�
= ⟨g�� �x

�

�x��
�x�

�x��
,FA

M

�
�x��

�x�
, g��

�
�M⟩.

(40)FA�
�

=
�FA

�
�x��

�x�

||||||
�x��

�x�
→ ��

�
.

(41)£�Ω
A = ��ΩA

,� −�
�
,� F

A�
�
(Ω).
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For a strictly linear or affine (linear inhomogeneous) geometric object, the Lie 
derivative itself is a geometric object, one of the same type as ΩA or in some cases 
a bit nicer (such as strictly linear instead of affine). Applying this technology to 
ΩA = ⟨g�� ,�⟩ , one finds that the Lie derivative includes two pieces, the Lie deriva-
tive of the metric (which is a rank 2 covariant tensor as usual) and the Lie derivative 
of the spinor, which is not a geometric object; it does not even have the same trans-
formation properties as the spinor � . The transformation rule of the Lie derivative 
of the spinor field involves both that Lie derivative itself and the Lie derivative of 
the metric (or, if one is more frugal and judicious in choosing density weights, the 
Lie derivative of the conformal part of the metric [46, 103], making conformal/Weyl 
invariance manifest by omitting any volume element). This fact explains the com-
mon belief that the Lie derivative of a spinor only makes sense for Killing vectors 
[47] or for conformal Killing vectors [48, p. 101]: the transformed Lie derivative of 
the spinor is only proportional to the original Lie derivative of the spinor when the 
Lie derivative of the (conformal part of the) metric vanishes.

One is now in a position to define change for physical theories including any 
number of fields with coordinate transformation rules involving only first deriva-
tives (of the coordinates with respect to other coordinates) and no additional gauge 
freedom. There is no change just in case there exists a time-like6 vector field �� such 
that £�ΩA = 0. Assuming that ΩA contains a space-time metric, this condition is 
logically stronger than being a Killing vector field, because the field needs to be 
‘Killing’ (so to speak) for all the other fields as well. Given that ⟨ΩA

, £�Ω
A⟩ has 

the transformation rule shown above, £�ΩA = 0 is a coordinate-invariant condition. 
Given that this condition holds in any coordinate system, it holds in particular in a 
coordinate system in which in a neighborhood �� = (1, 0, 0, 0) . Such a coordinate 
system exists locally for any (sufficiently smooth...) vector field [104]; if the coor-
dinate is time-like relative to a metric, then it is reasonable to call that coordinate 
“time.” In such a coordinate system £𝜉ΩA = Ω̇A = 0 . Hence the existence of this 
stronger-than-Killing vector field �� implies that there exists a coordinate system in 
which ΩA is independent of the coordinate adapted to �� and vice versa. The exist-
ence of such a vector field that is also time-like is thus the criterion for the absence 
of change. Consequently change is the non-existence of a time-like stronger-than-
Killing vector field such that £�ΩA = 0 . This definition works for quite a variety 
of physical theories, albeit excluding Maxwell’s electromagnetism and Yang-Mills 
due to their internal gauge groups. For electromagnetism, it might be satisfactory 
to use F�� and avoid addressing the gauge freedom, but this option would not work 
with local fields for Yang-Mills. Using nonlinear group realizations, however, spinor 

(42)£�Ω
A =

�FA�

�ΩB
£�Ω

B
.

6  If a theory either lacks the resources to call a vector field time-like or yields an ambiguous verdict due 
to a multiplicity of such resources (such as having two metrics that are not conformally related) that are 
considered equally relevant, then change is either meaningless or ambiguous, respectively; that is no flaw 
in the definition.
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fields are included in the collection of theories with no additional internal gauge 
symmetry. Thus one can understands change in the Einstein-Dirac system already.

8 � Change from G in Spatially Homogeneous Einstein–Dirac

Dropping all dependence on space once more, one can calculate what the gauge gen-
erator G generates when acting on the various quantities in phase space. One finds 
the following, feeling free to use Hamiltonian equations of motion as needed (“on 
shell”) in some cases:

These results look promising in terms of equivalence (for solutions) to the 4-dimen-
sional Lie derivative, which arises from infinitesimal coordinate transformations. 
One can calculate that

showing agreement when one recalls that g
00

= −N2 (in the absence of the shift vec-
tor) and that � = −n��

� = N�0. One can also see that

Hence G changes the space-time metric in accord with the Lie derivative for solu-
tions. Above it was found that the Ogievetsky-Polubarinov Lie derivative of a spinor 
is exactly the Lie derivative required for the spatially homogeneous toy theory 
and that the Lie derivative of the spinor takes the same form as the Lie derivative 
of a scalar. As we have just seen, G also generates a change of the spinors in the 

(43)

{G,
∼
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∼̇
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⊤
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𝜒
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∼

𝜙
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∼̇
𝜒
⊤
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N
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{G,𝜋𝜒} =𝜖
𝜕H
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𝜕
∼

𝜙
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𝜒

𝜖

N2
(𝜋𝜒 +

∼
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same form as on scalar. (One should not confuse the spatial density weight 1
2
 of 

the spinors with their transformation properties under change of time coordinate, 
a largely separate one-dimensional tensor calculus.) Hence the gauge generator G 
generates changes of the phase space variables that are equivalent to temporal coor-
dinate transformations for solutions in the toy theory.

9 � Observables in Einstein–Dirac Theory

If one imposes the condition of vanishing Poisson bracket with G, that is a condi-
tion not of appropriate behavior under a gauge transformation or of being an observ-
able, but of being stationary, changeless, having a time-like stronger-than-Killing 
vector field. Hence the reason that change has been missing in Hamiltonian GR is 
that a condition of changelessness has been imposed and mistaken for a condition of 
appropriate behavior for an observable. But observables should be only covariant, 
not invariant, under coordinate transformations, in the sense of changing by a Lie 
derivative that has a group property, not of having vanishing Lie derivative [16, 17]. 
The condition of vanishing Lie derivative (or a forterioi vanishing Poisson bracket 
with all 8 first-class constraints involved in the spatial and temporal gauge genera-
tors [88]) requires that observables be the same at different space-time points with 
the same coordinate value in different coordinate systems, akin to 1a.m. standard 
time vs. 1 a.m. daylight savings time, a condition that obviously implies change-
lessness and has nothing to do with observability. Given some of the roots of Berg-
mann’s concept of observables, one should not expect a close connection between 
them and observables in the ordinary sense of phenomena that can be observed, 
Kiefer has noted [105, pp. 105, 143].

Using the principle that equivalent theories (or theory formulations) should have 
equivalent observables, I argued that observables in GR should be invariant under 
internal gauge symmetries (which is not novel) but only covariant under coordinate 
transformations, so observables are basically geometric objects, or tensor calculus 
all over again, such as g�� and its concomitants [17, 35, 39]. The nonlinear group 
realization formalism comes very close to including spinors as part of a geometric 
object along with the metric (or its conformal part). Does it follow the spinors are 
observables or rather that ⟨g�� ,�⟩ is an observable? That cannot be true for the usual 
reason from particle physics: spinors change sign under a rotation by 2�. Nothing 
observable (in the ordinary sense) would do that. Hence the particle physics quali-
fication on observing spinors will of course apply in Hamiltonian GR: observables 
should instead be suitable bilinear expressions in the spinor(s), expressions which 
are unchanged under rotation by 2�. Ogievetsky and Polubarinov exhibit various 
bilinear expressions in the symmetric tetrad nonlinear group realization formalism 
[44]. In this present paper’s toy theory with vanishing shift and no spatial depend-
ence, that formalism is the same as the one using the Schwinger time gauge and the 
Kibble-Deser symmetric triad, conditions that one might reasonably regard as the 
Arnowitt–Deser–Misner split of the symmetric square root of the metric.
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10 � Conclusion

Using a nonlinear realization of the ‘group’ (roughly speaking) of space-time coor-
dinate transformations, one can express the Einstein-Dirac equation with spinors 
almost fitting into the realm of classical geometrical objects, thus having a classical 
Lie derivative along any vector field with no extra gauge group. Such a formulation 
is here simplified by the imposition of the simplest form of spatial homogeneity in 
order to focus attention on changes of time coordinate, a matter often neglected in 
Hamiltonian formalisms. A gauge generator (or two) for change of time coordinate 
that changes the canonical Lagrangian by at most a total derivative, thus preserving 
the Euler–Lagrange (Hamiltonian) equations was found. Change was found to be the 
absence of a stronger-than-Killing vector for which the Lie derivative of the met-
ric and of the spinor together vanishes. For observables one expects spinor fields to 
require bilinearity to avoid a change of sign under 2� rotations. At least apart from 
quantization, change is not missing or paradoxical in GR even with (commuting) 
spinorial matter.
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