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Abstract

Background—The nitric oxide-sensitive guanylyl cyclase (NO-GC)/cyclic guanosine-3’,5’-
monophosphate (cGMP)/cGMP-dependent protein kinase type I (cGKI)-signaling pathway can 
afford protection against the ischemia and reperfusion (I/R) injury that occurs during myocardial 
infarction (MI). Reportedly, voltage and Ca2+-activated K+ channels of the BK-type are 
stimulated by cGMP/cGKI and recent ex-vivo studies implicated that increased BK activity 
favors the survival of the myocardium at I/R. It remains unclear, however, whether the molecular 
events downstream of cGMP involve BK channels present in cardiomyocytes (CMs) or in other 
cardiac cell types. 
Methods—Gene-targeted mice with a CM- or smooth muscle (SM) cell-specific deletion of the 
BK were subjected to the open-chest model of MI. Infarct sizes of the conditional mutants were 
compared to litter-matched controls as well as to global BK knockout (BK-KO) and wildtype 
mice. Cardiac damage was assessed after mechanical conditioning or pharmacological 
stimulation of the cGMP pathway and by using direct modulators of BK. Long-term outcome 
was studied with respect to heart functions and cardiac fibrosis in a chronic MI model. 
Results—Global BK-KOs as well as CMBK-KOs, in contrast to SMBK-KOs, exhibited
significantly larger infarct sizes as compared to their respective controls. Ablation of CMBK 
resulted in higher serum levels of cardiac troponin I as well as elevated amounts of reactive 
oxygen species, lower p-ERK/p-AKT levels and an increase in myocardial apoptosis. Moreover, 
CMBK was required to allow beneficial effects of both NO-GC activation and inhibition of the 
cGMP-degrading phosphodiesterase-5 (PDE5) as well as ischemic pre- (iPre) and 
postconditioning (iPost) regimens. To this end, after 4 weeks of reperfusion fibrotic tissue
increased and myocardial strain echocardiography was significantly compromised in CMBK-
deficient mice.  
Conclusions—Lack of CMBK channels renders the heart more susceptible to I/R injury, 
whereas the pathologic events elicited by I/R do not involve BK in SM. BK seems to permit the 
protective effects triggered by cinaciguat, riociguat and different PDE5 inhibitors as well as
beneficial actions of iPre and iPost by a mechanism stemming primarily from CMs. In summary, 
this study establishes mitochondrial CMBK channels as a promising target for limiting acute 
cardiac damage as well as adverse long-term events that occur after MI. 

Key Words: infarct size; mitochondria; mouse mutant; cyclic nucleotide; potassium channels; 
Nitric oxide-sensitive guanylyl cyclase, voltage and Ca2+-activated potassium channel BK, 
ischemic preconditioning, ischemic postconditioning, cardiomyocyte 
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Clinical Perspective

What is new? 

CMBK channel deficiency renders the heart highly vulnerable to ischemia and

reperfusion injury.

Beneficial effects of cardioprotective agents that are known to target the NO-GC/cGMP

pathway require CMBKs.

Ischemic pre- and post-conditioning procedures against I/R injury signal via CM-specific

BK channels.

cGMP/cGKI increase the open probability of BK channels in isolated inner membrane

patches derived from CM mitochondria.

Lack of CMBKs is associated with compromised post-MI heart function and accelerated

fibrous tissue deposition.

Under physiological conditions CMBK channels modulate contractile and chronotropic

properties of the heart.

What are the clinical implications?

Activation of CMBK may represent a supportive strategy for limiting the cardiac damage

during reperfusion therapy in acute myocardial infarction (AMI).

By affecting cardiac contractility and infarct scar formation CMBK seems to be

important for long-term outcome after AMI.

Collectively, the in vivo data obtained should guide future clinical trials using either

approved or new drugs to target a CM-specific NO-GC/cGMP/BK pathway in ischemic

heart disease and its complications.

p p

fibrous tissue deposition.

Under physiological conditions CMBK channels modulate contractile and chronotropic

properties of the heart.

Whahahat are the lclinniccall iiimpmpmpliliicacacatiitiononons?s?s?

Activatitit onono oof CMCMBKKK may reprp esesent a susus pppoortititiveveve stststrarateegyy ffor limimitttinnng the cacacardrdiaac damamage

dududuririringngng rrepeperererfufusiiionon ththherererapapapyyy iiin ny acaccututute ee mymymyococo aara didialalal iiinfnfnfarararctctctioionn (A(A(AMMI).)
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Myocardial infarction (MI) is one of the leading causes of death worldwide.1 In addition to the 

acute damage, chronic heart failure may develop post-MI often severely limiting the patient’s 

life. Hence, novel strategies and ideas to improve the outcome after MI are highly desired.

Concepts aiming to reduce cardiomyocyte (CM) cell death during MI seem promising because 

the death of CMs represents a main cause of morbidity and mortality. Cell death during MI

develops in response to the ischemic injury and in addition to reperfusion injury, which refers to

the tissue damage caused when blood supply through the vessel is restored.2-4 Reperfusion injury 

contributes to up to 50% of the final infarct size although fast re-opening of the occluded vessel 

is currently our best clinical therapy available for patients with MI.5 Mechanical conditioning 

induced by short repetitive episodes of ischemia either before (iPre)6-10 or directly after the 

ischemic period (iPost)11, 12 proved an efficient method to reduce cell death, infarct size and 

thereby improve outcome in various animal models of MI; however, human trials have not 

translated these finding into clinical practise13-21.  

 Reportedly, activation of the nitric oxide-sensitive guanylyl cyclase (NO-GC) pathway 

signaling via cyclic guanosine-3’,5’-monophosphate (cGMP) and cGMP-dependent protein 

kinase type I (cGKI) exhibited substantial protection against cardiac ischemia and reperfusion 

(I/R) injury8, 11, 22, 23. For example, administration of the NO-GC activator cinaciguat11, 23 and the 

stimulator riociguat22 as well as inhibition of cGMP-degrading PDEs i.e. PDE5 by using either 

sildenafil11, 24-26, vardenafil27 or tadalafil28 showed beneficial effects in various models of I/R 

injury and MI. The pharmacological conditioning-like signaling events downstream of cGMP 

during I/R need, however, further clarification. It was proposed that cGMP/cGKI in CMs and in 

isolated CM mitochondria cause an opening of mitochondrial ATP-dependent potassium 

channels (mitoKATP)29, which have been shown to prevent the damaging effects of I/R in the 

nduced by short repetitive episodes of ischemia either before (iPre)6-10 or directly y afafafteteter r thththee e

schemic period (iPost)11, 12 proved an efficient method to reduce cell death, infarct size and 

hereby imprpp ove outcome in various animal models of MI; however, human trials have not 

rannnsllslated thesseee findndndinnng g ininintoto ccclililininin cccalalal praactc ise13-2122 . 

Reporteteedldd yy, acctiivatiooonn n of the nitrtric oxideded -sesensnsitititivivivee e guuaanyllyyl cyccllasesese (NO-GGGCC) ppathwayay 

ignaling via cyclici  guanosine-3’,5’-monophoh sphate (cGMP) and cGMP-depended nt protein 

 by guest on O
ctober 19, 2017

http://circ.ahajournals.org/
D

ow
nloaded from

 

http://circ.ahajournals.org/


10.1161/CIRCULATIONAHA.117.028723

5

heart upon activation24, 30-32. These findings attracted our interest because they suggest that 

cGMP may be an upstream component of a cardioprotective pathway that involves potassium 

channels in the inner mitochondrial membrane. In addition to mitoKATP potassium channels, 

several groups, including us, have reported evidence for Ca2+-activated K+ channels of the BK 

type (BK) in CM33, 34. The pore-forming -subunit of BK is encoded by a single gene 

(KCNMA1, SLO-1) and usually located at the plasma membrane of cells; however, in CMs, BK 

is exclusively present in the inner mitochondrial membrane (IMM).33, 34 By studying hearts 

obtained from mice with a global deletion of the BK channel (BK-KO) in an ex vivo Langendorff 

perfusion setup, we and others have confirmed that mechanical conditioning acts in favor of the 

myocardial survival by a BK-dependent effect on I/R12, 35, 36 via limiting accumulation of 

excessive reactive oxygen species (ROS).34 A burst of ROS occurring within the first minutes of 

reperfusion, when oxygen is re-introduced, seems to be a critical step for initiating a chain of 

detrimental events eventually leading to mitochondrial dysfunction and CM death.37 Moreover, 

BK channel openers like NS1619 and NS11021 have been shown to prevent cardiac damage 

when applied before ischemia and at the early onset of reperfusion in different ex vivo settings.33, 

38, 39 However, one report did not find evidence for an altered response of the myocardium to the 

protection afforded by volatile anesthetics in the absence of BK.40

Because canonical BK channels are directly stimulated by cGMP/cGKI41-43 we

hypothesized that the cardioprotection afforded by cGMP-elevating compounds may also require 

CMBK activity in order to prevent cell death during I/R in vivo. To study this, here we applied

an open chest in situ mouse model of MI and assessed infarct size in global BK-KO as well as in 

conditional BK mutants with a cardiomyocyte- or a smooth muscle cell-specific deletion of the 

BK channel (CMBK-KO or SMBK-KO, respectively) and compared the outcome to their litter-

myocardial survival by a BK-dependent effect on I/R12, 35, 36 via limiting accumulalatitiiononon ooof f f 

excessive reactive oxygen species (ROS).34 A burst of ROS occurring within the first minutes of 

eperfusioon,n,, when oxygen is re-introduced, seems to be a critical step for initiating a chain of 

detrrrimmimental evenenentss eeveentntntuauauallll y y y leleleadadadinining g toto mitocchohh ndndrialalal dddyssysfufufuncncn titiononon aandd CM M M dededeatatath.h.h.37 MMMorororeoeoeovevever, 

BKKK ccchahh nnel opepepeneers likike NSSS1611 19 andndn NNS11021212 havave e bebebeen shohownn to prreevenenent cardiaaacc c dadamage 

when applied before ischemia and at the early onset of reperfusion in different ex vivo settings.33

 by guest on O
ctober 19, 2017

http://circ.ahajournals.org/
D

ow
nloaded from

 

http://circ.ahajournals.org/


10.1161/CIRCULATIONAHA.117.028723

6

matched controls. To validate the role of endogenous CMBK channels for the usually 

cardioprotective NO-GC/cGMP/cGKI pathway, we further studied the effect of cGMP-elevating 

compounds over the course of the myocardial I/R injury in our gene-targeted BK models.  

To this end, we identified endogenous CMBK channels as infarct limiting factors. Opening of 

CMBK channels measured by patch-clamp method in ex vivo mitoplast preparations occurs in a 

cGMP/cGKI-dependent mode and seems to be essential in order to establish cardioprotection 

elicited either by mechanical pre- and postconditioning procedures or by pharmacological 

cGMP-elevation in vivo. 

Methods

The data, analytic methods and gene-targeted mouse models used will be made available to other 

researchers for purposes of reproducing the results or replicating the procedure. Further 

information in this regard will be made available by contacting the corresponding author. 

Animals

All animal experiments were performed with permission of the local authorities and conducted in 

accordance with the German legislation on the protection of animals. Mice were kept in cages 

with wooden-chip bedding on a standard 12-hour light/dark cycle with ad libitum access to food 

and water under temperature and humidity control. Global BK channel deficient mice (genotype:

BK-/-) and their wild-type littermates (genotype: BK+/+) on a mixed SV129/C57BL background 

were bred and maintained by at the Institute of Pharmacy, Department of Pharmacology, 

Toxicology and Clinical Pharmacy, University of Tuebingen as described before.44

By crossing transgenic mice that carry a Cre recombinase transgene under control of the 

genotype -CreTg/+) (Jackson Laboratory, 

Methods

The data, analytic methods and gene-targeted mouse models used will be made available to other

esearchers for purposes of reproducing the results or replicating the procedure. Further 

nfooormrmrmation inn ttthhih sss rerr gagag rdrdrd wwilllll l bebebe mmmada e e ava ailablblb e byby cononontatatactctctinining ththhe ee cocorrrrese pooondndndininng g g authhhororor..

Animimimals

All animal experiments were performed withh permisi sion of the local authorities and conducted d in

 by guest on O
ctober 19, 2017

http://circ.ahajournals.org/
D

ow
nloaded from

 

http://circ.ahajournals.org/


10.1161/CIRCULATIONAHA.117.028723

7

Stock No.: 011038)45 to mice heterozygous for the BK gene locus (genotype: BK-/+) we produced 

-CreTg/+; BK-/+ mice for subsequent breeding steps. In order to 

generate experimental subjects with a CM- -

CreTg/+; BK-/+ mice were mated to our widely introduced floxed BK (BKfl/fl) mouse line allowing 

conditional loss-of-function studies in vivo.46-48 From these crossings we established the CMBK-

KOs (genotype -CreTg/+; BK-/fl or CMBK-/fl) and respective control mice from the same 

litters CMBK-CTR (genotype -CreTg/+; BK+/fl or CMBK+/fl). By an analogous approach 

we generated smooth muscle cell-specific BK mice (SMBK-KO; genotype: SMMHC-

CreERT2Tg/+; BK-/fl or SMBK-/fl) and their respective controls (SMBK-CTR; genotype:

SMMHC-CreERT2Tg/+; BK+/fl or SMBK+/fl) with SMMHC-CreERT2Tg/+ representing a 

tamoxifen-inducible Cre recombinase under the control of the alpha myosin heavy chain 11 

promoter49. With regards to the floxed BK gene loci the SMBK-KO mice remained pre-mutant 

until Cre activation by tamoxifen (1 mg/d, i.p.) for 5 consecutive days. After seven days or later 

after the last tamoxifen administration SMBK-KO and tamoxifen-injected SMBK-CTRs were 

used for the acute or chronic I/R experiments.46 To study the infarct sizes in the acute I/R model

(Suppl. Fig. 1), data from global and conditional BK male and female mice were combined as 

the amount of infarction did not differ between sex (Suppl. Fig. 2). For the SMBK mouse study 

only male subjects could be analyzed for their response to the cardiac I/R injury because the 

CreERT2-transgene was located on the Y-chromosome. All animals were investigated at an age 

of 8-16 weeks without observing age-related differences (Suppl. Fig. 3).  

The specificity and efficiency of recombination in the -Cre transgenic model was 

assessed after crossing these mice to double fluorescent ROSA26-tomato reporter animals 

(genotype: ROSAmTG/+)50 obtained from Charles River (Jackson Laboratory, Stock No.: 007576). 

SMMHC-CreERT2Tg/+; BK+/fl or SMBK+/fl) with SMMHC-CreERT2Tg/+ represenntitingngng aa 

amoxifen-inducible Cre recombinase under the control of the alpha myosin heavy chain 11 

promoter49. With regards to the floxed BK gene loci the SMBK-KO mice remained pre-mutant 

untiiil CCrC e activavaatttiononn by y y tataamomom xixixifefefen nn (1(1(1 mg/g/d, i.p.)) forr 5 cooonsnsnsecececututu ivvee  dadad ysy .. AfA teeerr r seseseveveven nn daaaysysys ooor r lalalatett r 

afteeer r tht e last tamamamoxxiifeen admmminininistration SSMBKKK-KOKO andndnd tttamama oxxiifenn-iinjectcteddd SSSMBK---CTCTRRs werre

used for the acute or chhronic I/R experiments.464646 To study the infarct sizes in the acute I/R moddel
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The genotypes of the different mouse strains as well as the Cre-mediated somatic recombination 

events in cardiomyocytes and representative organs were determined by PCR amplification after 

DNA extraction using primer pairs that specifically identify the wildtype (+), knock-out (-) and 

floxed (fl) BK gene loci as previously described.44, 45, 49, 50  

Statistical analysis 

All data are presented as means ± SEM. Gaussian distribution was confirmed by Shapiro-Wilk 

test. The equality of group variances was tested using Levene’s test. Statistical analysis was 

performed on experimental data consisting of two groups using either an unpaired Student’s t-

test for normally distributed data or Mann-Whitney-U test as non-parametric test. Comparison of 

more than two groups was evaluated using two-way analysis of variance (ANOVA) followed by 

unpaired Student’s t tests with the Bonferroni correction for multiple comparison. For non-

Gaussian distributed variables (> 2 experimental groups) a Kruskal-Wallis test followed by 

Dunn’s test for multiple pairwise comparisons was performed. If Levene’s test confirmed 

unequal variance, groups were compared by Welch’s t-test. Mean arterial blood pressure 

measurement data were analyzed by repeated measures ANOVA followed by Bonferroni post-

hoc test. For patch-clamp experiments one-way ANOVA was used to compare means of three or 

more treatment conditions within a genotype. If not otherwise indicated, differences between 

genotypes or groups were not significant. For all tests, a p-value less than 0.05 was considered as 

significant (*/† p<0.05, **/§ p<0.01, ***/# p<0.001). Statistical analysis was performed using 

IBM SPSS statistic version 24. 

See the online-only Data Supplement for a detailed description of the methods. 

more than two groups was evaluated using two-way analysis of variance (ANOVVA)A)) fffololollololowewewed dd bybb  

unpaired Student’s t tests with the Bonferroni correction for multiple comparison. For non-

Gaussian distributed variables (> 2 experimental groups) a Kruskal-Wallis test followed by 
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Results

Infarct sizes are increased in mice globally lacking BK channels

We studied the vulnerability of global BK-KO (BK-/-) mice against ischemia/reperfusion (I/R) 

injury in an in vivo model of MI. After 30 min ischemia followed by 120 min reperfusion (Suppl. 

Fig. 1, ), area at risk (AAR in % of total heart area) neither differed across global BK-KO and 

litter-matched wild-type (BK-WT, BK+/+) groups nor between different experimental setups (Fig. 

1A, Suppl. Fig. 1). Cardiac damage was not observed in sham operated subjects of both 

genotypes (Fig. 1B, middle, Suppl. Fig. 1, ) supporting the high specificity and reproducibility 

of our in vivo I/R approach. Infarct size (as % of AAR) after I/R per se was significantly greater

in BK-KO (38.56 ± 1.65% (n=11)) as compared to BK-WT (22.39 ± 1.32% (n=8), Fig. 1B, left) 

mice, suggesting an important role for BK channels for cardiac cell survival regardless of gender 

or age of the experimental animals (Suppl. Fig. 2+3). To confirm the histological results we 

measured cardiac troponin I (cTnI) levels in blood serum as an independent biomarker of cardiac 

cell death due to MI. Levels of cTnI increased immediately after I/R in both genotypes, but again 

mice with a global ablation of the BK channel exhibited significantly higher cTnI values as 

compared to BK-WT mice (7.78 ± 1.48 ng/ml for BK+/+ (n=11), 20.47 ± 4.23 ng/ml for BK-/- 

(n=8), Fig. 1C). In the isolated and perfused heart model we have previously observed that iPre 

requires BK channels in order to afford cardioprotection.34 We now extended this finding to an 

established iPost procedure (Suppl. Fig. 1, ) and found that cardiac damage was prevented in a

BK-dependent mode (11.41 ± 0.89% for BK+/+ (n=8), 34.13 ± 1.29% for BK-/- (n=9), Fig. 1B, 

right). In support of recent studies that implicated BK-dependent protection against I/R-induced 

cell death was stemming from the CM itself, we first investigated the response to hypoxia of 

adult CMs obtained from global BK-KO hearts. Effects of oxygen-deprivation were evaluated by 

n BK-KO (38.56 ± 1.65% (n=11)) as compared to BK-WT (22.39 ± 1.32% (n=8),), FFFigigig. 1B1B1B, , , leleleffft) 

mice, suggesting an important role for BK channels for cardiac cell survival regardless of gender

or age of the experimental animals (Suppl. Fig. 2+3). To confirm the histological results we 

measasasuured cardididiaaca tttrorr popop nininin n n I (c(c(cTnTnTnI)I)I) lllevvelels in blolol odd serumumum aaas s s anaa iindndndepepennded ntntnt bbbioioiomamamarkerere  ofofof ccararardidd ac

cellll dddeath due tttoo o MIM . LeLevelsss ooof cTnIII iinncrreaseddd iimmmedddiaiaiatetet llyl aaffter I//R inn bbooto hh h genotytytypepep s, but aagain

mice with a global ablation of the BK channel exhibited significantly higher cTnI values as 
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light microscopy and by lactate dehydrogenase (LDH) release. In comparison to BK-WT CMs

the data showed a clear tendency towards more cell death (Fig. 1D+E); however, this difference 

in LDH release did not reach the level of statistical significance.  

CM-specific BK channel deficiency results in impaired heart functions in vivo

To clarify the cellular mechanisms whereby BK channels afford protection against I/R injury and 

in iPost signaling, we first generated gene-targeted mice lacking BK in CMs. In a first series of 

experiments, we assessed the recombination efficacy and specificity of the CM-restricted Cre 

recombinase45 using a two-color fluorescent reporter system.50 In the absence of -Cre 

activity we observed ubiquitous expression of the cell membrane-targeted red fluorescent 

Tomato (mT) protein in the heart and aorta, with the latter being used as control tissue (Fig. 2A, 

Suppl. Fig. 4, left column). As expected, -Cre-mediated excision of the loxP-flanked mT 

DNA sequence resulted in an almost complete switch (98.97%) to green fluorescent protein 

(mG) in cardiomyocytes (Fig. 2A right panels and 2B), whereas non-CMs such as coronary and 

aortic smooth muscle cells continued to express the mT protein (Suppl. Fig. 4 right column). 

Next, we applied a BK-specific primer set designed to identify the three different BK alleles i.e.

wild-type (+), floxed (fl) and knockout (-) within one sample of different tissues derived from 

Tg/+; BK+/fl mice. In line with the Cre-reporter study (Fig. 2A+B and Suppl. Fig. 4), the 

BK-specific PCR products confirmed efficient recombination of the endogenous BK gene locus 

in atrial and ventricular CMs (Fig. 2C). In contrast, conversion of the floxed BK allele was not 

observed in DNA purified from skeletal muscle, white adipose tissue (Fig. 2C), brain, liver or 

aorta (data not shown). In line with the conversion of the floxed BK DNA sequence to the 

respective (-) allele in CMs (Fig. 2C), immunoblots utilizing two different BK antibodies 

revealed a substantial decrease in BK channel protein levels from CMBK-KO mitochondria 

Tomato (mT) protein in the heart and aorta, with the latter being used as control ttisissususuee e (F(F(Figigig. 2A2A2A, 

Suppl. Fig. 4, left column). As expected, -Cre-mediated excision of the loxP-flanked mT 

DNA sequq ence resulted in an almost complete switch (98.97%) to green fluorescent protein 

mG)G)G) in cardiooomymymyocoo ytttesess (((FiF g.g.g. 222A A A riririghgg tt pap nels anaa dd 22B))), whwhwhererereaeae ss nononon-n-CMCMs sususuchchch aaasss cororor nananaryryry aaandnn  

aortrtticicc smooth mmmussccle cells cococontinued too expresssss thhee mTmTmT ppprrotet iin (SuSuppll. Figigig. 4 righhhtt cooluumn). 

Next, we applied a BKBK-specific priimer set designedd to identify the three different BK alleles i.e.
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purified from CMs (Fig. 2D+E). CMBK mutant mice did not develop any obvious phenotype 

and exhibit normal body and heart weights (Suppl. Tab. 1). Echocardiography, however,

uncovered a mild reduction in the cardiac ejection fraction (%EF, 64.63 ± 1.83 for CMBK+/fl

(n=8), 58.97 ± 1.56 for CMBK-/fl (n=9)), lower values for fractional shortening (%FS, 35.14 ± 

1.38 for CMBK+/fl, 30.99 ± 1.07 for CMBK-/fl) and heart rate (HR, 616 ± 7 for CMBK+/fl, 594 ± 5

for CMBK-/fl) in the absence of CM BK channels (Fig. 3A-C). To investigate whether these 

differences in cardiac functionality were related to changes in hemodynamic parameters,

telemetric blood pressure (BP) recordings were performed. Mean arterial pressure (MAP, Fig. 

3D) was reduced in CMBK-KO mice (100.93 ± 1.33 mmHg (n=10)) as compared to litter-

matched CMBK-CTRs (108.21 ± 2.62 mmHg (n=7)) with no effect on pulse pressure (Fig. 3E)

or activity (data not shown). Lower MAP was related to an effect on systolic and diastolic 

values, but only for the latter this difference reached the significance level (p<0.001; data not 

shown). 

CM-specific BK-KOs show a high susceptibility to the I/R damage 

As observed in the global BK-KO mice, I/R vulnerability of CM-specific BK channel mutants 

was higher as compared to the respective control mice (38.26 ± 1.55% for CMBK-/fl, 27.19 ± 

1.25% for CMBK+/fl (n=8 each), Fig. 4B left) with no apparent age or gender differences (Suppl. 

Fig. 2+3), whereas AAR among genotypes were similar irrespective of the experimental 

procedure (Fig. 4A, Suppl. Fig. 5A-C), and sham treatments did not evoke any significant 

cardiac damage (Fig. 4B right). Consistent with the histological data, cTnI levels in the blood 

serum measured directly after I/R procedure were significantly elevated in CMBK-KO mice 

(7.34 ± 1.82 ng/ml for CMBK+/fl versus 20.06 ± 3.45 ng/ml for CMBK-/fl (n=8 each), Fig. 4C).

To verify that the higher vulnerability of the CMBK-KO hearts to the I/R stimulus was not due 

matched CMBK-CTRs (108.21 ± 2.62 mmHg (n=7)) with no effect on pulse pressssururure ee (F(FFigigig. 3E3E3E)

or activity (data not shown). Lower MAP was related to an effect on systolic and diastolic 

values, but only for the latter this difference reached the significance level (p<0.001; data not

howowown). 

CMMM---spss ecific BBBKKK-KKOs showww a high suussceptibibib lityy to o o thththee e I//I/R RR damam gee 

As observed d in the globab l BK-KO mice, I/R vulnl erability of CMCM-speciffici  BK K channel l mutants
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to an unexpected hemodynamic response under anesthesia, BP was measured in unconscious 

mice. Anesthesia induced by pentobarbital-Na+ injection resulted in a comparable decrease in the 

MAP of CMBK-CTR and CMBK-KO mice (Suppl. Fig. 6A) suggesting that the differences in 

infarct size between both genotypes were unrelated to the hypotension observed after CMBK 

channel ablation (Fig. 3D). Moreover, we measured coronary flow (CF) during reperfusion after 

30 min ischemia in isolated Langendorff-perfused CMBK-KO and -CTR hearts with no apparent 

differences between genotypes (Suppl. Fig. 6B+C). To further exclude the possibility that 

vascular BK channels affect the cardiac I/R phenotype, we subjected gene-targeted mice carrying 

a smooth muscle cell-specific ablation of the BK channel (SMBK-KO, SMBK-/fl)46 to the I/R 

injury. After Cre-mediated conversion of the floxed BK locus specifically in smooth muscle cells 

(Suppl. Fig. 7A) tamoxifen-treated SMBK-KO and -CTR mice were examined for their response 

to the I/R procedure and iPost. SMBK-KO mice, in contrast to the CMBK-deficient mutants, 

exhibited infarct sizes that were similar to their respective litter-matched controls and AARs that 

did not differ between SMBK-deficient and proficient mice (Suppl. Fig. 7B+C). Together, the 

findings from different gene-targeted mouse models support the notion that CMBK but not 

SMBK channels are key elements of a cardioprotective pathway. 

CMBK ablation affects ROS formation, apoptosis and the reperfusion injury salvage 

kinase pathway at I/R 

We and others have previously presented in vitro evidence for a link between BK channels 

exclusively localized at the inner mitochondrial membrane of the CMs and ROS dynamics

during hypoxia.34 Because ROS is a major determinant of the myocardial damage at I/R in vivo

we herein investigated whether the enlarged infarct sizes in CMBK-KOs were due to an effect on 

the amount of cardiac ROS production. In vivo mitochondrial production of superoxide leading 

njury. After Cre-mediated conversion of the floxed BK locus specifically in smooooththh mmmususu clclcle e e cececells

Suppl. Fig. 7A) tamoxifen-treated SMBK-KO and -CTR mice were examined for their response

o the I/R ppprocedure and iPost. SMBK-KO mice, in contrast to the CMBK-deficient mutants, 

exhihih bbib ted infarcrcrcttt sisiizezz sss thththatatat weweererere sisisimimm larr to rr theiiirr resppecctititivevev  lililitttttterr-mamamatctcheed d cooontntntrororolslsls ana d d AAAAAARsRsRs ttthat

did d nonon t differ bbeeetweweenn SSMBKBKBK-deficienent and prrrooficcientntnt mmmicicice ((SSupppll. Figg.. 777BB+B C). ToToogegethher, thhe 

findings from diffferent gene-targeted mouse modells support theh  notion that CMC BK but not
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to hydrogen peroxide formation can be estimated by defining the ratio of MitoP to MitoB after a 

single MitoB bolus.51 At baseline we observed a mildly reduced MitoP/MitoB ratio in CMBK-

KOs, which was elevated after I/R (Suppl. Fig. 8A). Normalization of the values demonstrated a 

significant higher increase in hydrogen peroxide formation in I/R-exposed CMBK-deficient

hearts (Fig. 4D), an effect that was unrelated to the expression of ROS degrading enzymes such 

as CuZnSOD (SOD1) and MnSOD (SOD2) (Suppl. Fig. 8B-D). Furthermore, at normoxia 

mitochondria from BK-proficient and -deficient CMs displayed no defects in any of the 

bioenergetics variables studied (Suppl. Fig. 9A-C). Cell death by apoptotic mechanisms

represents a further indicator of outcome after MI.52 Apoptosis was determined by DNA strand 

breaks using the TUNEL method on eight equidistant regions between the cardiac apex and the 

ligation (Fig. 4E). Overall, the number of TUNEL-positive cells in CMBK mutant hearts (3.99 ± 

0.81%) was higher as compared to CMBK-CTR hearts (2.64 ± 0.52% (n=3 per genotype), Fig. 

4F) after I/R. In a central area covering heart regions 2-4, which relate to a pronounced part of 

the infarct according to the TTC staining, apoptosis rates between genotypes were significantly 

different with higher values for CMBK-KO hearts (Fig. 4G). Apparently, CMBK activity affects 

both forms of cell death that occur simultaneously during MI. Activation of the pro-survival 

kinases of the reperfusion injury salvage kinase (RISK) pathway ERK and Akt 53, 54 was assessed 

using phospho-specific antibodies. After I/R with 10 min reperfusion (I/R10) p-ERK/ERK and p-

Akt/Akt ratios showed a small but significant increase in CMBK-CTR heart lysates, which was 

less pronounced in the absence of CMBK channels (Fig. 4 H+I).  

breaks using the TUNEL method on eight equidistant regions between the cardiacc apapapexexex ananand dd thththe

igation (Fig. 4E). Overall, the number of TUNEL-positive cells in CMBK mutant hearts (3.99 ±

0.81%) was higher as compared to CMBK-CTR hearts (2.64 ± 0.52% (n=3 per genotype), Fig. 

4F) ) ) afafa ter I/R. InInIn a cccentrtrt alalal aaarer a a a cococoveveverirr ngg hheart rrrege ioonns 222-4-44,, whwhwhich h rererelalate tot  a ppprororonononounuu ceeed d papapartrtt ooof f

he inininfarct accooordrr ining toto the TTTT C stainingng, apopppttossiss raaatetetesss bebbetwtweenn genoottypepepes were ssigignin ficanttlyy 

different with higheh r values for CMBK-KO hearts (F( ig. 4G). ApA parently, CMMBK activi ity affef cts
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Mechanical conditioning procedures, pharmacological conditioning by cGMP-elevating 

compounds and direct activators of BK protect the heart via BK channels in CMs

As expected, mechanical conditioning either by iPost or by iPre procedures (Suppl. Fig. 1, 

+ ) efficiently protected CMBK-CTR hearts from I/R damage (iPost infarct size: 11.27 ± 

0.62%, iPre infarct size: 13.13 ± 1.05%). The beneficial effects of both mechanical interventions 

were largely attenuated in CMBK-KO mice (iPost infarct size: 28.26 ± 1.52%, iPre infarct size:

28.77 ± 0.58% (n=8 per genotype and setup), Fig. 5A). A direct comparison of infarct size at 

iPost (in % to I/R without stimulus) between CMBK positive and negative hearts revealed that 

CM-specific BK channels account for >50% of the protection afforded by iPost (Fig. 5B, left). In 

comparison to CMBK-KO hearts, the beneficial effects of the iPost procedure on global BK-KO

hearts were lower (Fig. 5B, right) suggesting either remaining traces of CMBK channel activity 

in the Cre-based model (see also Fig. 2D+E) or non-CMs BK channels as additional mediators of 

the signaling elicited by iPost. In order to test whether the acute targeting of the BK resembles

the cardiac I/R damage observed in the gene-targeted models we used paxilline an established 

BK blocker (Suppl. Fig. 1, ). With paxilline infarct size in CMBK-CTR mice (35.9 ± 6.2% 

(n=8)) increased to the levels seen in the respective CMBK-KOs (36.97 ± 1.69%, n=8) (Fig. 5C, 

left). Importantly, paxilline had no significant effect on the I/R damage that develops in response 

to I/R in CMBK-deficient hearts (compare Fig. 4B with 5C, left and Fig. 5D, left). Conversely, 

we used the BK channel opener NS11021 to test for cardioprotective effects of CMBK activation 

(Suppl. Fig. 1, ). A significant reduction in infarct size by 44.7 ± 5.6% was observed when

NS11021 (9.2 μg per kg) was administered to CMBK-CTR mice prior to the reperfusion 

(NS11021 infarct size: 15.05 ± 1.52% (n=8), Fig. 5C+D, right), whereas the protection elicited 

by NS11021 was significantly lower in CMBK-KO hearts (NS11021 infarct size: 32.66 ± 0.82% 

comparison to CMBK-KO hearts, the beneficial effects of the iPost procedure onn gglololobababalll BKBKBK-KOKK

hearts were lower (Fig. 5B, right) suggesting either remaining traces of CMBK channel activity 

n the Cre-based model (see also Fig. 2D+E) or non-CMs BK channels as additional mediators o
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(n=8), Fig. 5C, right). With 9.2 μg per kg NS11021 we did not observe any toxic side-effects; 

however, with higher dosage of the compound (i.e. 92 μg per kg) we observed that 37.5% of the 

experimental mice died during reperfusion irrespective of their genotype. Control experiments 

performed using the solvents used for paxilline or NS11021 showed that the solvents did not 

affect infarct size formation at I/R conditions (Suppl. Fig. 5D).

Because canonical BK channels usually present at the plasma membrane of various cell 

types are directly phosphorylated by cGMP/cGKI43, we studied whether the infarct limiting 

effects of pharmacological modulators that stimulate the NO-GC/cGMP/cGKI pathway involve 

CMBK channels.

 Importantly, neither the cardiac expression of cGKI nor its enzyme activity, which was

monitored by assessing the phosphorylation of the Ser239 residue in the vasodilator-stimulated 

phosphoprotein (VASP), was affected by the lack of CMBK channels (Suppl. Fig. 10). I/R10

resulted in a mild increase in pVASP level, but no apparent differences between both genotypes. 

Most noteworthy, in the presence of CMBK, both the NO-GC stimulator riociguat (Suppl. Fig. 1, 

) as well as the heme-independent NO-GC activator cinaciguat (Suppl. Fig. 1, ) reduced the 

infarct area by 42.5 ± 9.6% (RIO infarct size: 15.63 ± 2.60% (n=8), Fig. 6A+B, left) and by 50.5 

± 4.7% (CIN infarct size: 13.46 ± 1.28% (n=8), Fig. 6A+B, right), respectively. A direct 

comparison of the infarct sizes in the riociguat and cinaciguat groups to the I/R condition showed 

that the cardioprotection afforded by riociguat was strongly attenuated (RIO infarct size: 31.28 ± 

2.62% (n=10)) or completely abolished for the cinaciguat treatment (CIN infarct size: 38.20 ± 

1.69% (n=8)) in CMBK-KO mice suggesting that cardioprotection via NO-GC/cGMP requires 

functional CMBK. Using a FRET-based cGMP sensor we confirmed a small but continuous 

increase in CM-specific cGMP after cinaciguat administration in situ (Suppl. Fig. 11). 

Importantly, neither the cardiac expression of cGKI nor its enzyme activityty, whwhwhicicich hh wawawasss

monitored by assessing the phosphorylation of the Ser239 residue in the vasodilator-stimulated 

phosphopprotein (VASP), was affected by the lack of CMBK channels (Suppl. Fig. 10). I/R10
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Accordingly, the inhibition of cGMP-hydrolyzing PDEs by sildenafil and tadalafil (Suppl. Fig. 1, 

 and ) reduced the cardiac I/R injury in CMBK-CTR (SIL infarct size: 11.64 ± 0.91% 

(n=8), TAD infarct size: 14.38 ± 1.15% (n=9)) but not in CMBK-KO (SIL infarct size: 35.59 ± 

1.51% (n=8), TAD infarct size: 32.47 ± 2.43% (n=9), Fig. 6C+D) or global BK-KO mice (Suppl. 

Fig. 12). Again, the respective solvents did not influence the amount of infarction (Suppl. Fig. 

5E). As the cardioprotective effects of iPost and sildenafil were abolished by L-NAME co-

treatment (Fig. 6E+F), we conclude that endogenous NO signaling is involved in the CMBK-

dependent modulation of cardiac damage. In addition, L-NAME, which was given over 4-5 days 

prior to the I/R procedures (Suppl. Fig. 1, ), affected various hemodynamic parameters of the 

mice via a CMBK-independent mechanism (Suppl. Fig. 13A+B) whereas the inhibition of NO

synthesis per se did not modulate infarct sizes after I/R (compare Fig. 4B with Suppl. Fig. 13C). 

Mitochondrial BK channels in isolated membrane patches are directly activated by 

cGMP/cGKI

In our quest to understand how cGMP and mitochondrial BK channels in CMs are connected at a

molecular level, we made use of two different antibodies specifically recognizing common 

regions in the major cardiovascular cGMP effector protein cGKI. By studying total heart lysates 

and purified mitochondrial protein fractions derived from BK-deficient and -proficient CM

mitochondria we demonstrated that cGKI is present in the lysates as well as in the mitochondrial 

protein fraction, whereas cytosolic or plasma membrane bound proteins such as -tubulin- or 1-

adrenoreceptor were not observed in the mitochondrial protein fraction, respectively (Fig. 7A 

and Suppl. Fig. 14A-C). To test if cGMP/cGKI directly modulates mitochondrial BK activity, we 

performed patch-clamp experiments on isolated mitoplast membrane patches obtained from CM

mitochondria by osmotic swelling (Suppl. Fig. 15). Previously, three active mitoplast channels of 

mice via a CMBK-independent mechanism (Suppl. Fig. 13A+B) whereas the inhiibibiitititiononon ofofof NONONO

ynthesis per se did not modulate infarct sizes after I/R (compare Fig. 4B with Suppl. Fig. 13C). 

Mitochondrial BK channels in isolated membrane patches are directly activated by 

cGMPMM /cGKI
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370 pS, 120 pS and 60 pS as well as a BK-specific channel activity of 190 pS were detected in 

whole mitoplasts derived from BK-proficient CMs.34 All but the latter conductance were

observed in BK-deficient mitoplasts. In the present patch-clamp approach using inner 

mitochondrial membranes (IMM) we detect all of the previously identified channel

conductances; however, due to differences in ionic composition the corresponding conductance 

activities were 345 pS (not shown), 145 pS, 95 pS and 35 pS (not shown) (s. Fig. 7). Importantly, 

and in a good agreement with our previous report the 145 pS conductance was detected in 65% 

IMM patches from BK-WT (n=70) but not in BK-KO mitoplasts (n=33). Besides a slightly

smaller conductance this channel displayed a linear current-voltage relationship (Fig. 7B) and 

several other characteristics of the canonical BK channel usually present at the plasma 

membrane of cells (Fig 7C-D). As reported previously,34 the mitochondrial BK opened with rare 

bursts with short closed dwell times at negative voltages and at positive voltages with longer and 

more frequent openings (Fig 7C). Moreover, the open probability (Po) of the channel was 

sensitive to Ca2+ (Fig 7D, left panel), stimulated by NS11021 and inhibited by paxilline (Fig 7D, 

right panel), which allowed us to assign the 145 pS activity with high confidence to the 

mitochondrial BK channel. Importantly, a prevailing conductance of rather similar appearance 

(95 pS) was present in BK-WT and BK-KO IMM patches suggesting it constitutes a channel 

different from BK (Fig. 7F). To investigate whether cGMP/cGKI modulates the mitochondrial 

BK channel we measured IMM patches displaying BK in the presence of Mg2+/ATP, the cGMP 

analog 8-Br-cGMP and cGKI (Fig 7E+F). Consistent with previous observations the presence of 

Mg2+/ATP caused a significantly lower Po of the mitochondrial BK.55 Subsequent addition of 

cGMP and cGKI to the same patches dramatically increased the Po as a strong indicator for the 

positive regulation of mitochondrial BK occurring due to the 8-Br-cGMP/cGKI-dependent 

everal other characteristics of the canonical BK channel usually present at the plalasmsmmaa a

membrane of cells (Fig 7C-D). As reported previously,34 the mitochondrial BK opened with rare 

bursts with short closed dwell times at negative voltages and at positive voltages with longer and
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phosphorylation of the channel. Importantly, this stimulated channel activity was sensitive to 

paxilline and was found very frequently in mitoplasts derived from BK-WT CMs (n=7), whereas 

neither the 95 pS channel activity (n=5) nor the 345 pS channel activity (data not shown) in BK-

KO mitoplasts was modulated by cGMP/cGKI (Fig. 7F). Collectively, these electrophysiological 

experiments on IMM patches establish an evidence for a molecular connection between 

cGMP/cGKI and BK channel function at the IMM. 

Lack of CMBK channels aggravates cardiac dysfunctions post-MI 

So far our data support the notion that CMBK channels prevent acute I/R injury. To test for a 

potential role of BK for the long term outcome after I/R, we investigated a chronic mouse model 

of MI with 30 min ischemia followed by 4 weeks reperfusion (I/R4wks). Interestingly, overall 

survival of the CMBK-KO and -CTR mice as well as their post-MI heart weights (Suppl. Tab. 2) 

were not different. Longitudinal strain, which characterizes the endocardial shortening of the 

myocardial fibers during systole (Fig. 8A, diastole=0), represents one of the earliest and most 

sensitive markers of cardiac dysfunction.56, 57 We assessed the synchronicity of the longitudinal 

strain by echocardiography in six endocardial segments during systole and diastole in CMBK-

KO mice and observed mild alteration under basal conditions (Suppl. Fig. 16A+B) and a heavily 

disturbed synchronicity after I/R4wks (Suppl. Fig. 16C+D). In particular in the anterior apex (AA) 

region myocardial deformation was dramatically altered in the absence of CMBK. Quantification 

of the longitudinal strain (Fig. 8A) over all segments confirmed abnormal myocardial tissue 

deformation for CMBK-KO (-9.77 ± 0.76%) as compared to litter-matched control hearts (-12.38 

± 0.97% (n=13 per genotype), Fig. 8B) and for both genotypes a significantly impaired

deformation post-MI in comparison to basal levels (p<0.001, Fig. 8B and Suppl. Fig. 16E). 

Additional parameters such as the radial strain and the strain rate exhibited only minor changes

of MI with 30 min ischemia followed by 4 weeks reperfusion (I/R4wks). Interestinglgly,y,y, oooveveverarar lllll 

urvival of the CMBK-KO and -CTR mice as well as their post-r MI heart weights (Suppl. Tab. 2)
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between CMBK-KO and CMBK-CTR mice after I/R4wks (data not shown). Post-MI global 

ejection fraction was just not different between genotypes (Fig. 8C and Suppl. Fig. 16F) although 

by this time we observed a substantial increase in the amount of fibrosis as a pathological marker 

of the remodeling in CMBK-deficient hearts (15.63 ± 1.40% for CMBK+/fl, 22.49 ± 1.89% for 

CMBK-/fl (n=13 per genotype), Fig. 8D). Differences between genotypes were further 

highlighted by plotting the amount of cardiac fibrosis against the individual decline in EF at 28 

days post-MI (Suppl. Fig. 16G). By stratifying the post-MI EF as a long term outcome (Fig. 8C) 

for the initial means of the infarct sizes (Fig. 4B) we found significantly lower values for the 

CMBK-KO group suggesting an abnormal relationship between structural and functional 

properties of the BK-negative myocardium (Suppl. Fig. 16H).  

Discussion

At the moment, the best clinical therapy for the management of an acute MI represents the fast 

re-opening of the occluded coronary artery. In addition to the ischemic episode during MI, 

reperfusion damage of previously viable tissue is a major cause of CM death.2 Strategies to target 

reperfusion injury have been studied extensively but with little success in patients.21, 58 The 

modulation of the NO-GC/cGMP/cGKI pathway has attracted increasing attention because a 

number of studies suggested its infarct limiting capacities.11, 22-26, 28 However, little is known 

about the mechanisms and downstream targets of this cardioprotective pathway. In addition to 

mitochondrial K+ channels of the KATP-type, which reportedly oppose mitochondrial 

dysfunction, excessive ROS production and Ca2+ overload and hence the opening of the 

mitochondrial permeability transition pore (mPTP)24, 29, 30, 32, we assessed whether BK channels 

present in CM mitochondria are needed to allow the cardioprotective signaling elicited by iPre, 

properties of the BK-negative myocardium (Suppl. Fig. 16H).  

Discussion
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iPost and cGMP-elevation in an in vivo model of I/R.31, 35, 36 We studied I/R in mice with a global 

deletion of the BK channel as well as conditional mutants lacking the BK channel exclusively in 

CMs and compared the outcome to the corresponding litter-matched controls, or to gene-targeted 

mutants lacking BK in smooth muscle cells. Interestingly, infarct size was significantly increased 

in global BK-KO mice (Fig. 1B), indicating that functional BK channels are important 

modulators of the myocardial response to the I/R injury an effect that was seen independently of 

the presence or absence of any cardioprotective stimuli. In contrast, global BK-KO hearts did not 

show evidence for a higher I/R vulnerability ex-vivo34 and infarct size per se was also not 

sensitive to the BK channel blocker paxilline applied to Langendorff-perfused wildtype-hearts.26

Apparently, the integration of the heart at the whole animal level is important in order to permit

anti-infarct effects via endogenous BK channels. Because these initial analyses of the global BK-

KOs did not allow us to conclude that the protection afforded was due to the BK in the CM or 

other cardiac cell types we assessed the amount of ischemic myocardium after I/R injury in two 

conditional mouse mutant lines that lack the BK channel either in CMs or in smooth muscle 

cells. Indeed, CMBK-KOs (Fig. 4B), but not SMBK-KO mice (Suppl. Fig. 7C), subjected to the 

I/R injury exhibited cardiac damages that amounted to the levels seen in global BK-KOs (Fig 

1B), a finding that was confirmed by the elevated cTnI levels in the serum of both global and 

CM-specific BK-KOs (Fig. 1C+4C). The significant increase in the I/R-induced apoptotic cell

death of CMBK-negative hearts (Fig. 4G) further supports the notion that CMBKs are the major 

BK channel population to protect CMs against the detrimental events elicited by I/R, an effect 

that was not related to changes in coronary flow (Suppl. Fig. 6B+C). Our approaches modulating

the activity of BK by pharmacological means are consistent with the I/R data from the tissue-

specific BK mouse models. Accordingly, the BK blocker paxilline (Fig. 5C) or the BK opener 

Apparently, the integration of the heart at the whole animal level is important in orordededer rr tototo pepepermrmrmit

anti-infarct effects via endogenous BK channels. Because these initial analyses of the global BK-

KOs did not allow us to conclude that the protection afforded was due to the BK in the CM or 
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NS11021 (Fig. 5C) aggravated or limited the infarcts of CMBK proficient animals, respectively.

By comparing these results to the response of the CMBK-deficient hearts to paxilline and 

NS11021, we recognized an inadequate level of CM-specific BK channel activity as a major 

determinant of I/R-induced cell death. NS11021 has previously been used with success in ex vivo

studies to induce cardioprotection38, 59, a finding that we extended to show the favorable impact 

of this compound on infarct size in vivo (Fig. 5C). In this regard, it is important to note that we 

also recognized a dose-dependent toxicity of NS11021 (data not shown). Yet, specific openers of 

this channel should be further investigated towards a potential improvement of cardioprotective 

therapies in patients with acute MI.

 Mitochondrial ROS i.e. superoxide that leads to the formation of hydrogen peroxide, can 

exert contrasting effects on the cardiac muscle during I/R. For example, a burst of ROS 

occurring at the early onset of reperfusion triggers the opening of the mPTP, which induces the 

collapse of the mitochondrial membrane potential, leading to ATP-depletion and cell death60,

whereas low amounts of ROS lead to cardioprotection.30 In the in vivo I/R model the elevated 

myocardial damage observed in the CMBK-deficient hearts correlated with a small but 

significant higher ROS increase after I/R compared to normoxic levels (Fig. 4D). Because

isolated mitochondria obtained from global BK-KO hearts produce a higher level of ROS after 

anoxia followed by reoxygenation,34 we conclude that functional BK channels regulate ROS 

homeostasis in oxidatively stressed CM mitochondria. Obviously, additional evidence is needed 

in order to establish the link between excessive mitochondrial ROS amounts and the dynamics of 

the K+ influx and efflux pathways (potentially involving e.g. Connexin 43) in the I/R-exposed 

inner mitochondrial membrane.61-65 Interestingly, a high mitochondrial matrix K+ content 

reportedly provoke a mild uncoupling of the ETC thereby leading to low amounts of ROS that 

Mitochondrial ROS i.e. superoxide that leads to the formation of hydrogenn pepeperoror xixixidedede, , , cacac n 

exert contrasting effects on the cardiac muscle during I/R. For example, a burst of a ROS 
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eventually activate PKC and the cardioprotective RISK pathway.30, 31 In addition to the link 

between mitochondrial K+ channels and ROS, BK activity may confer cardioprotection at 

reperfusion by opposing the Ca2+ overload that mediates MPTP opening and maintaining the 

membrane potential.33, 35, 36, 66, 67 The putative signaling mechanisms involving BK in the CM 

during I/R in vivo as well as mechanistic limitations of the present study are summarized in

Suppl. Fig. 17A+B.

Pro-survival protein kinases of the RISK pathway represent important signaling elements 

that confer cardioprotection at I/R in mice and rats, however, their activation has also been 

studied in larger animals with inconsistent results.25, 68-70 At the onset of reperfusion 

phosphorylation of ERK1/2 and Akt seems to limit mPTP opening and thereby myocardial 

infarct size through various downstream targets of the RISK pathway, which include GSK-3

and eNOS among others (Suppl. Fig. 17A+B).31, 54, 71 Interestingly, p-ERK1/2 and p-Akt levels 

were less increased after I/R10 in CM-specific BK-KO hearts (Fig. 4H) suggesting a proper 

recruitment of Akt- and ERK1/2-dependent pathways requires the opening of BK channels. The 

RISK pathway is activated in the setting of iPost and we demonstrate that mechanical 

conditioning by iPost (and iPre) involves CM-specific BK channels. About 50% of the protection 

elicited by iPost in control hearts was lost in the absence of CMBK (Fig. 5B). Residual 

protection by iPost in the CMBK-KO heart may be established through recruitment of KATP 

channels. Indeed, a large body of work suggests that mitochondrial KATP channel opening plays a

role in cardioprotection elicited by ischemic and pharmacological preconditioning and by iPost.72

Consistent with this concept, the infarct area in I/R-exposed hearts from mice globally lacking 

BK was approximately 10% smaller with iPost than due to the I/R injury per se (Fig. 5B). The 

differences in the response of the two gene-targeted BK mouse lines was expected because i.) yet 

phosphorylation of ERK1/2 and Akt seems to limit mPTP opening and thereby mymyocococarara dididialalal 

nfarct size through various downstream targets of the RISK pathway, which include GSK-3

and eNOS among others (Suppl. Fig. 17A+B).31, 54, 71 Interestingly, p-ERK1/2 and p-Akt levels 
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to be identified non-myocyte BK channels may also play at least a minor role for iPost to 

establish full cardioprotection and ii.) the depletion of the CM-specific BK protein in the 

conditional mouse model did not reach the level of the global BK-KOs (s. also Fig. 2D+E). 

The NO-GC/cGMP pathway has been intensively studied for its cardioprotective properties in 

mice and in other animal models of I/R injury. Mechanisms responsible for the protective actions 

i.e. the downstream effectors of the pathway remain to be fully elucidated. Independently a 

number of investigators observed that either pharmacological modulators of NO-GC11, 22, 23 or 

inhibitors of cGMP-degrading PDEs11, 25, 28 exert cardioprotection via cGKI in the CM.11 In

contrast to the high vulnerability of the CMBK-deficient myocardium, a loss of CM-specific 

cGKI activity per se did not render the heart more or less resistant to the I/R injury.11

Apparently, the pathophysiological reaction of the cardiac muscle is modulated by mitochondrial 

BK channels, whereas the significance of the NO-GC/cGMP/cGKI pathway in controlling infarct 

formation is best seen in mechanical and pharmacological conditioning-like settings. With 

regards to a link between NO-GC/cGMP and BK in the I/R exposed myocardium our findings 

suggest that the opening of CM-specific BK channels is an essential step in establishing 

protection by cGMP and cGMP elevating compounds. For example, either the stimulation of 

NO-GC by riociguat at the onset of reperfusion or by applying a preconditioning-like protocol 

using the NO-GC activator cinaciguat produced powerful cardioprotection when functional 

CMBK channels were present (Fig. 6A). Because cinaciguat resulted in a CM-specific increase 

in cGMP levels we suggest that the cGMP cascade was indeed stimulated under these 

experimental conditions (Suppl. Fig. 11). In addition to the infarct-limiting effects of NO-

GC/cGMP, cardioprotection induced by sildenafil seems to be through cardiac BK channel 

complexes. A knock-down of the accessory 1-subunit of the BK channel prior to I/R or co-

cGKI activity per se did not render the heart more or less resistant to the I/R injuryry.11111

Apparently, the pathophysiological reaction of the cardiac muscle is modulated by mitochondrial

BK channels, whereas the significance of the NO-GC/cGMP/cGKI pathway in controlling infarc
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administration of the BK channel blocker paxilline efficiently blocked the beneficial effects of 

sildenafil in the ex vivo Langendorff-perfused heart model.26, 73 In accordance with these studies 

we applied sildenafil at the onset of reperfusion (Fig. 6C+D) and at the concentration used its

cardioprotective potential was only observed in BK-proficient mice. By adopting a previously 

published preconditioning-like protocol28 we also used tadalafil as an alternative and more 

selective inhibitor of the cGMP-degrading PDE5. In agreement with the sildenafil treatment 

study, the favorable effects of tadalafil on infarct formation were abolished in the CMBK gene-

targeted mutants (Fig. 6C+D). Collectively, these findings point to the recruitment of a CM-

specific BK channel to a cardioprotective cGMP/PDE5 pathway following the I/R injury.

Because the presence of PDE5 in the CMs is a matter of ongoing debate74, it is important to 

consider non-CMs such as endothelial cells, immune cells and/or fibroblasts as the primary target 

of sildenafil and tadalafil. Taking all these considerations into account we belief it is possible 

that PDE5 inhibition during cardiac I/R involves the transfer of a protective signal from the non-

CMs to the CMs. Paracrine features that may orchestrate a CMBK-dependent pathway in CMs 

may involve e.g. the induction or suppression of cytokines and growth factors, the precise nature 

of the I/R triggered intercellular communication between the different cardiac cell types,

however, is still elusive and awaits further investigation.75  

 Our combined pharmacological and genetic strategy did not clarify how NO-GC/cGMP 

interact with the CMBK channel in vivo i.e. it remains unclear whereby the cytoplasmic cGMP 

signal was conferred to a potassium channel at the inner mitochondrial membrane. In addition to 

other lines of evidence provided by this study, the presence of the cGKI protein in mitochondrial 

fractions obtained from CMs further suggests that the protective signal is transduced via the 

cGMP/cGKI pathway (Fig. 7A). A notion that is also supported by the electrophysiological 
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measurements that demonstrated a direct molecular connection between cGMP/cGKI and BK

channel in purified IMM patches (Fig. 7E+F). Finally, our data also support the view that 

sildenafil, sildenafil-sensitive cGMP-PDEs as well as iPost act through a NO-GC-dependent 

cGMP pathway against cardiac damage as L-NAME abolished any favorable effect of sildenafil 

or iPost on infarct size (Fig. 6E).76

 In contrast to global BK-KO mice, CMBK mutants exhibited low blood pressure under 

physiological conditions.77 Mild hypotension was accompanied by a slight decreases in heart 

rate, fractional shortenings and ejection fractions (Fig. 3 and data not shown). Because 

renovascular, baro-receptor, and neuro-endocrine mechanisms that usually maintain blood 

pressure homeostasis should not be affected by the CM-specific ablation of the BK channel in 

CMBK mutant mice we suggest an intrinsic cardiac dysfunction as major cause for the blood 

pressure phenotype. Previously, we observed a reduction of oxidative phosphorylation 

(OXPHOS) capacity and thus a deficit in ATP-generation of isolated ventricular muscle fibers 

obtained from global BK-KO mice.34 However, mitochondrial bioenergetics, at least as measured 

in cell-free CM mitochondria, seem to be intact (Suppl. Fig. 9), together suggesting a more 

complex cross-talk between BK channel function and ATP-generation in mitochondria with 

putative upstream elements on the cytoplasmic side of the CM or muscle fiber. To this end, we 

speculate that the impaired cellular energy production by the mitochondrial OXPHOS system in 

vivo is linked to an abnormal resting heart rate and cardiac malfunctions in the CMBK-KO 

mouse model. 

 Based on the findings from the acute model, we studied the long-term outcome of 

CMBK-KO mice subjected to a chronic in vivo model of myocardial infarction. Although we did 

not observe differences in heart weight or ejection fraction between mice lacking the CMBK and 

pressure homeostasis should not be affected by the CM-specific ablation of the BBKK chchchanannneneel ll ininin 

CMBK mutant mice we suggest an intrinsic cardiac dysfunction as major cause for the blood r
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their litter-matched controls after ischemia followed by 4 weeks reperfusion, longitudinal strain 

as an early and sensitive marker for cardiac dysfunction56, 57 was significantly reduced in 

CMBK-KO (Fig. 8). This functional deterioration was related to an increase in fibrotic scar 

formation, indicating that the CMBK channels may turn out to be important classifiers for the 

long-term prognosis after MI, as well. 

 In summary, the presented data establish infarct-limiting effects for endogenous CM-

specific BK channels during I/R injury. Lack of CMBK resulted in mitochondrial ROS 

overproduction, an increase in CM apoptosis, and an improper activation of the pro-survival 

kinases ERK1/2 and Akt (summarized in Suppl. Fig. 17). Our supporting long-term study also

implied a role for CMBK in limiting post-MI cardiac dysfunctions due to the accumulation of 

fibrous tissue. Finally, cardioprotection elicited by mechanical methods which block coronary 

blood flow as well as pharmacological agents that stimulate the NO-GC/cGMP pathway 

collectively depended on the BK status of the CM and 8-Br-cGMP/cGKI activate BK channels 

present in IMM. Hence, the current work highlights CM-specific mitochondrial BK channels as a 

novel target in reperfusion therapy and cardiac remodeling occurring post-MI.
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Figure Legends

Figure 1. Hearts globally lacking BK are more vulnerable to ischemia and reperfusion 

injury and are not protected by ischemic postconditioning maneuvers

(A) Risk zones (shown as percentage of the respective total heart areas) did not differ between 

global BK-KO (BK-/-) and BK-WT (BK+/+) mice subjected to different experimental setups i.e.

after 30 min ischemia followed by 120 min reperfusion (I/R), sham-operation without ligation of 

the coronary artery (I/R sham) or a postconditioning (iPost) protocol consisting of six 

consecutive cycles of reperfusion and re-occlusion directly after the ischemic period (I/R + 

iPost) (Suppl. Fig. 1, - ). (B) Infarct size is expressed as percentage of the risk zone and was 

significantly increased in BK-/- (n=11) in comparison to litter-matched BK+/+ (n=8) mice after I/R

(left). As expected, sham-surgery did not cause myocardial infarction in both genotypes (middle,

n=6 per genotype). A significant reduction in infarct size was observed in BK+/+ hearts (n=8) 

subjected to iPost, whereas BK-/- hearts (n=9) did not respond to this cardioprotective maneuver

(right). Representative Evan’s Blue and TTC double-stained heart slices of the two genotypes 

subjected to different I/R setups are shown in the lower panel (blue: unaffected heart muscle; red

plus white: risk zone; white: infarcted tissue; note: some slices showed a central white spot 

reflecting the ventricular lumen). (C) Serum levels of cardiac Troponin I (cTnI) determined at 

the end of reperfusion correlate well with the infarct sizes (n=8 for BK+/+ (I/R); n=11 for BK-/-

(I/R) and n=6 for both genotypes (I/R sham)). (D) Cell rounding and blebbing as common 

characteristics of hypercontracted CM undergoing cell death in vitro (black arrowhead) were 

more often observed in BK-/- CMs after 90 min of hypoxia. (E) Under hypoxic conditions lactate 

dehydrogenase (LDH) release rates showed a clear tendency towards higher values in BK-/-

Post) (Suppl. Fig. 1, - ). (B) Infarct size is expressed as percentage of the risk k zozz nenene aaandndnd wwa

ignificantly increased in BK-/- (n=11) in comparison to litter-matched BK+/+ (n=8) mice fafter I/I/RR

left). As expected, sham-surgery did not cause myocardial infarction in both genotypes (middle,

n=6 6 pepeper genotytytyppep ).).)  A siggnificantnt rreduction in infaarcrct sizee  waw s obseservedd in BK+/+ hearts (n=88)))

ubjbjbjeece ted to iPPososost,, whwherreas BBKB -/- heartss (n=9) ddid nnot rererespspspononondd to thhis ccarrdidiioopo rotectttivvvee mmaneuvver
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compared to BK+/+ CM cultures (normoxia: n=19 for BK+/+ and n=17 for BK-/-; hypoxia: n=17 

for BK+/+ and n=18 for BK-/-).

All data were assessed using two-way ANOVA followed by Bonferroni-corrected Student's t-

tests, except for (B+C) groups were compared by Welch’s t-test due to unequal variance and for 

(E) the Kruskal-Wallis test followed by Dunn’s test for multiple pairwise comparisons was 

performed with *p<0.05, ***p<0.001 for the comparison between BK-/- and BK+/+ groups; §: p 

<0.01, #: p<0.001 for the comparison to the respective I/R group. 

Figure 2. Cardiomyocyte-specific ablation of the BK channel using the MHC-CreTg/+ 

recombination system

(A) Crossbreeding of mice carrying the MHC-Cre recombinase -CreTg/+) with global 

double-fluorescent Cre reporter mice (ROSAmTG/+) established a high efficacy of target DNA 

recombination as indicated by the switch from cell membrane-localized red fluorescence (mT) to 

membrane-localized green fluorescence (mG) protein. In Cre- HC-Cre+/+)

ROSAmTG/+ mice all cardiac cells continued to express mT. DAPI was used as a nuclear 

counterstain. (B) CMs were -

CreTg/+; ROSAmTG/+ double-transgenic heart sections (n=1652 counted cells in total derived from 

n=4 mice) in order to quantify the recombination efficiency. (C) Genomic PCR analysis of the 

MHC-CreTg/+ -mediated recombination of the floxed BK gene locus in different tissues 

obtained from MHC-CreTg/+ ; CMBK+/fl mice. The PCR products were amplified by BK-

specific primers derived from the floxed (fl), wild type (+), or knock-out (-) allele. A somatic 

conversion of the floxed allele to the (-) allele was only observed in cardiac tissue. The size of 

the PCR amplicons were 577 bp, 466 bp and 132 bp for the (fl), (+) and (-) allele. The pore-

recombination system

A) Crossbreeding of mice carrying the MHC-Cre recombinase -CreTg/+) with global 

double-fluouorescent Cre reporter mice (ROSAmTG/+) ) established a d high efficacy of target DNA

ecooommbm ination aasa iiindnn iccatatatededed bby y y thththee e swswswitchch fromm ccelll mememembrbrb anananeee-lolocacacalilizezed d red d d flflfluououorererescss enncecece (((mTmTmT) )) to

membmbmbrane-locacacallil zzedd ggreen flflfluuou rescenene cce (mG) ) ) pprooteeinnn. InInIn CCCree-- HC-Crrre++/++)

ROSAmTG/+ mice all cardiac cells continued to express mT. DAPI was used as a nuclear 
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forming -subunit of the BK channel was identified in mitochondrial protein fractions obtained 

from CMBK-CTR (CMBK+/fl) CMs using either (D) costum-made or (E) commercial antibodies 

for the BK -subunit. 

Figure 3. CMBK mutant mice present with an impaired heart function and a decreased 

blood pressure

(A) Fractional shortening (FS, %), (B) ejection fraction (EF, %) and (C) heart rate were slightly

but significantly reduced in cardiomyocyte-specific BK knockout (CMBK-/fl, n=9) as compared 

to litter-matched control mice (CMBK+/fl, n=8). (D) Mean arterial blood pressure (MAP) 

measured for 48 hours was decreased in CMBK-/fl (n=10) versus CMBK+/fl mice (n=7). (E) No

difference was seen in pulse pressure between genotypes.  

Data of (A) - (C) and (E) were analyzed using the Student‘s t-test and significance levels in (D) 

were tested using repeated measures ANOVA followed by Bonferroni post-hoc test, all with 

*p<0.05, **p<0.01 for CMBK-/fl vs. CMBK+/fl. 

Figure 4. Cardiac damage due to apoptotic cell death and lower p-ERK/p-AKT levels may 

be responsible for larger infarct sizes of mice with a CM-specific deletion of the BK 

channel

(A) Risk zones were not different between CMBK-CTR (CMBK+/fl) and CMBK-KO (CMBK-/fl) 

mice. (B) Infarct sizes after I/R, expressed as percentage of the risk zone, were significantly 

increased in the absence of CMBK channels, whereas sham-surgery did not result in myocardial 

damage. Representative heart slices are shown below their respective genotype and treatment 

group. (C) Serum levels of cardiac Troponin I (cTnI) collected from CMBK-CTR (CMBK+/fl)

measured for 48 hours was decreased in CMBK-/fl (n=10) versus CMBK+/fl mice (n(n=7=7=7).). (((EEE))) NNNo

difference was seen in pulse pressure between genotypes.  

Data of f (A(AA))) - (C) anand (E) were analyzed using the  StSS udent‘s t-test and ssigi nificance levels in (D) 

wererere tested usinii g rerepeeatattededed mmmeaeaeasususurereres s s ANANOVA A A fof llloowededed bbbyyy BoBoB nfnferere rorronin ppost-t-t-hohohoccc tetetestss , alallll wiwiw ththth  

*p<0<0<0.0.. 5, **p<0<0<0.01 forr CMBKBKBK-/fl vs.s.s. CCMBM K+/ffl.
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and CMBK-KO (CMBK-/fl) mice directly after the I/R (n=8 for I/R and n=4 for I/R sham per 

genotype). (D) Baseline normalized ratio of MitoP/MitoB as a marker for ROS abundance after 

I/R in CMBK+/fl and CMBK-/fl (n=8 per genotype). (E) Overview of the 8 equidistant cardiac 

regions which were analyzed in-depth after ligation (black arrow). (F) Representative TUNEL 

images from region 3 of CMBK+/fl and CMBK-/fl hearts. (G) TUNEL quantification of the 8 

equidistant cardiac regions from CMBK+/fl and CMBK-/fl hearts after I/R (n=3 per genotype). 

Phosphorylation of the pro-survival kinases (H) ERK and (I) Akt was elevated in CMBK+/fl mice 

after 30 min ischemia followed by 10 min of reperfusion compared to CMBK-/fl mice (n=4 per 

genotype). Representative immunoblots for p-ERK/ERK and p-Akt/Akt are shown below the 

respective panels.

Data presented in (A), (B), (H) and (I) were analyzed using two-way ANOVA followed by 

Bonferroni-corrected Student's t-tests. Data in (C) were compared by Welch’s t-test for unequal 

variances and levels of significance in (D) were tested with the Mann-Whitney-U-test. In (G) a 

pairwise comparison was performed for each heart region using the Student‘s t-test. Significance 

levels are indicated with *p<0.05, **p<0.01, ***p<0.001 CMBK-/fl vs. CMBK+/fl and §: p<0.01 

#: p<0.001 to respective I/R group. 

Figure 5. Mechanical interventions and cardioprotective effects of pharmacological BK 

modulators during I/R require BK in CM

(A) Postconditioning (iPost) as well as preconditioning (iPre; Suppl. Fig. 1, + ) 

significantly reduced infarct size (shown as percentage of the risk zone) by I/R in CMBK-CTR

(CMBK+/fl) mice. The protective effect of both interventions was largely attenuated in CMBK-

KO mice (CMBK-/fl). (B) Comparison of the percentage reduction in infarct size after iPost 

espective panels.

Data presented in (A), (B), (H) and (I) were analyzed using two-way ANOVA followed by 

Bonferroni-corrected Student's t-tests. Data in (C) were compared by Welch’s t-test for unequal 

variiiananances and llld eeve elele s ss ofofo sssigigignin fifificacacancncncee e in ((D)D  werrre e teesstedd wwwititith h h thththe MaMaMannnn-WWhitntnneyeyey-U-U-U-testtt. InInIn ((G)G)G) a 

pairrrwwwise compapaparirr soson waw s peeerrfr ormed foor each hhheearrt regegegioioionn n ussinng ththe Stududenenentt‘s t-tesstst.. SSiggnificanance

evels are inddicated witi h *p<0.05, **p<00.01, **** p<0.001 CMBKB -/f// l vs. CCMBBK+/flflfl andd §§: p<0.010  
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between global and CM-specific BK knockout mutants and their corresponding litter-matched 

controls i.e. WT and CMBK+/fl mice. Values were calculated from the baseline I/R injury of the 

respective groups (see Fig. 1B+4B). (C) The BK channel blocker paxilline (PAX; Suppl. Fig. 1, 

) increased the I/R injury in CMBK+/fl mice to CMBK-/fl levels, whereas the BK channel 

opener NS11021 (Suppl. Fig. 1, ) opposed the cardiac damage by a CM-specific BK channel 

pathway. (D) Changes in infarct size displayed in percent of the I/R injury (see Fig. 4B) after 

administration of paxilline or NS11021. Representative heart slices of the respective genotype 

and setup are shown in the lower part of panel (A) and (C) with n=8 mice used per genotype and 

setup. 

All data were examined using two-way ANOVA followed by Bonferroni-corrected Student's t-

tests with ***p<0.001 CMBK-/fl vs. CMBK+/fl; †: p<0.05, #: p<0.001 to respective I/R group and 

†2: p<0.05, §1/2: p<0.01 to respective control treatment group (Suppl. Fig. 3D).  

Figure 6. Cardioprotective effects of NO-GC activators/stimulators and PDE5 inhibitors 

depend on CM-specific BKs 

(A) Infarction is expressed as percentage of the risk zone and was significantly reduced after 

injection of the NO-GC stimulator riociguat (RIO) or the NO-GC activator cinaciguat (CIN) in 

CMBK-CTR mice (CMBK+/fl, n=8 each). Cardioprotection afforded with riociguat was 

attenuated and abolished for cinaciguat in CMBK-KO mice (CMBK-/fl, RIO: n=10, CIN: n=8).

(B) Reduction (%) in infarct size after administration of riociguat and cinaciguat compared to 

baseline I/R injury (see Fig. 4B). (C) Injection of the PDE5 blockers sildenafil (SIL, n=8 per 

genotype) and tadalafil (TAD, n=9 per genotype) resulted in a significant reduction in infarct size 

in CMBK+/fl but not in CMBK-/fl mice. (D) Reduction (%) in infarct size after treatment with 

All data were examined using two-way ANOVA followed by Bonferroni-correcteedd d StStStudududenenent't't's s s tt-t

ests with ***p<0.001 CMBK-/fl vs. CMBK+/fl; †: p<0.05, #: p<0.001 to respective I/R group and

†2: p<0.05,,, §§1/2: p<0.01 to respective control treatment group (Suppl. Fig. 3D).  

Figuguurrer  6. Cardrdrdiiioprprotteectiveee effectsss oof f NNO-GC CC accttivavavatototorrs/s/stitimuulaatorrs andndnd PDE555 ininhhibitorrs 

depend on CM-specific BKs
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sildenafil and tadalafil compared to baseline I/R injury (Fig. 4B). (E) CMBK+/fl did not respond 

to the cardioprotective stimulus elicited by iPost or SIL after pretreatment with the NO synthase 

blocker N -nitro-L-arginine methyl ester (L-NAME) (n=8 per genotype and setup). (F)

Alterations in infarct size (in % of I/R (see Fig. 4B)) after L-NAME co-treatment in comparison 

to I/R + iPost (or SIL) without L-NAME administration (Fig. 5B+6D). Representative heart 

slices of the respective genotype and setup are shown in the lower panel of (A), (C) and (E). 

Pharmacological pre- and post-conditioning protocols (A-F) are summarized in Suppl. Fig. 1, 

+ ). All data were analyzed using two-way ANOVA followed by Bonferroni-corrected 

Student's t-tests with ***p<0.001 CMBK-/fl vs. CMBK+/fl; †: p<0.05, #: p<0.001 to respective I/R 

group and §4: p<0.01, #3: p<0.001 to respective control treatment group (Suppl. Fig. 3E).  

Figure 7. cGMP/cGKI directly modulate mitochondrial BK channels in isolated membrane 

patches

(A) The cGKI protein was detectable in purified cardiomyocyte mitochondria (CMM) protein 

extracts, whereas -tubulin used as control protein for the co-purified cytoplasmic supernatant 

was not detectable in the mitochondrial fraction. As compared to total heart lysates (HL) from 

BK-WT (BK+/+) and BK-KO (BK-/-) mice, heat shock protein 60 (hsp60) a chaperone specific to 

the mitochondria was significantly enriched in the protein lysates generated from CMM. Data are 

representative of three independent experiments. For further information consult Suppl. Fig. 14 

(B) Current-voltage (I-V) plot of the single channel activity shown in (C). The single channel 

conductance calculated from the slope equates 145 pS. (C) A typical BK channel activity in 

inside-out patches purified from BK-WT CMs. Recordings were performed in 20 mV steps from 

-60 to +60 mV of the inner mitochondrial membrane potential. (D) Electro-pharmacological

group and §4: p<0.01, #3: p<0.001 to respective control treatment group (Suppl. FiFig.g.g. 333E)E)E). . .  

Figure 7. cGMP/cGKI directly modulate mitochondrial BK channels in isolated membrane

patctct hheh s

A))) TTThe cGKI ppprooteteinn wwas dddeete ectabllle e inn purifiiedd cacardddioioiommmyoccyyte mim tochhononndrdrd ia (CMMMM)M)M pproteinn 
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profile of the mitochondrial BK at +60 mV displayed a moderate sensitivity to Ca2+. The average 

probability of opening (Po) declined from 0.54 to 0.28 in the presence of 100 μM Ca2+ (control) 

or 1 μM Ca2+ (low Ca2+), respectively (left panel). Addition of NS11201 (10 μM) resulted in an 

increase in BK channel Po from 0.54 (control) to 0.92, whereas the subsequent addition of 

paxilline (10 μM) reduced the Po to 0.04 (right panel). Open probabilities were calculated from

the channel activity observed in 3 or more independent patches. (E) A representative trace of BK 

activity in an IMM patch. After recording a channel activity under control conditions patches

were perfused with a solution containing 0.4 mM Mg2+/ATP, which resulted in a small but 

significant reduction of the channel activity. Subsequent perfusion with the same solution 

containing 8-Br-cGMP (10 μM) and cGKI (50 nM) substantially increased Po. Paxilline (PAX) 

almost completely blocked the respective BK channel activity. (F) Summary of experiments 

carried out according to the scheme shown in (E). 8-Br-cGMP/cGKI activated a channel of 145 

pS conductance ascribed to the mitochondrial BK in BK-WT (BK+/+; left panel) mitoplasts.

Importantly, a rather frequently observed conductance of 95 pS in the BK-KO (BK-/-, right 

panel) mitoplast patches did not respond to any of the shown treatments. The mean ±SEM from 

5 or 3 independent recordings in symmetrical 150mM KCl, 0.1 mM CaCl2, 10 mM HEPES, 

pH=7.2 is shown (unless indicated otherwise) for the 145 pS channel and the 95 pS channel 

activities, respectively. Data in (D) and (F) were examined using one-way ANOVA with 

*p<0.05 and ***p<0.001. In the interest of clarity, statistical significances between the paxilline 

groups in (D, right) and (F, left) and the other recording conditions were not indicated in the 

respective panels (***p<0.001 for PAX compared to control, NS11201, Mg2+/ATP, and 

Mg2+/ATP/8-Br-cGMP/cGKI).

containing 8-Br-cGMP (10 μM) and cGKI (50 nM) substantially increased Po. Paxaxaxililillilil nenene (P(P(PAXAXAX) 

almost completely blocked the respective BK channel activity. (F) Summary of experiments

carried out according to the scheme shown in (E). 8-Br-cGMP/cGKI activated a channel of 145 

pS cccooonductancecec  assscrcc ibbbededd tttoo thehehe mmmitititocoo hoondn rial BBKK iin BBBKKK-WTWTWT (BKBKK+/+/+; leleftf ppanananelelel) ) ) mimm toplplplasasaststst ...

mpopoportantly, a raaathheer ffreequenenentttly observeved conddduucttancncee e ofofof 999555 ppS inn the BKBKK-KKOK  (BKKK--/-, riight 
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Figure 8. Compromised heart function 4 weeks after myocardial infarction in CMBK-KO 

mice

(A) Alterations in the longitudinal strain (%) represent an early marker for cardiac dysfunction 

after myocardial infarction;56, 57 abbreviations used: syst: systole, diast: diastole. (B) Average 

longitudinal strain was significantly impaired after 30 min ischemia followed by 4 weeks 

reperfusion (I/R4wk) in CMBK-KO (CMBK-/fl) compared to their litter-matched controls 

(CMBK+/fl) (n=13 per genotype). Compared to basal levels both genotypes showed a decreased 

deformation capacity (#: p<0.001, Suppl. Fig. 16E). Because the end diastolic value was set to 

zero, negative values of the longitudinal strain indicated a superior systolic contraction of the 

heart muscle. Typical echocardiographic recordings for the longitudinal strain are shown in 

Suppl. Fig. 16A-D. (C) Ejection fraction (EF, %) was reduced 4 weeks post-MI compared to 

basal heart function (#:p<0.001, Suppl. Fig. 16F) without apparent differences between CMBK-/fl

(n=12) and CMBK+/fl (n=11). (D) Fibrosis (%) was significantly elevated in CMBK-/fl (n=13) 

compared to control mice (n=12). Representative micrographs of Sirius red stained heart slices 

(right) after I/R4wks showing the amount of scar formation in both genotypes.  

Bars show means ± SEM; data in (B) and (C) were assessed using Student‘s t-test and (D) was 

analyzed using the Mann-Whitney-U-test, all with *p<0.05, **p<0.01 CMBK-/fl vs. CMBK+/fl. 

heart muscle. Typical echocardiographic recordings for the longitudinal strain are e shshhowowown n n ininin

Suppl. Fig. 16A-D. (C) Ejection fraction (EF, %) was reduced 4 weeks post-MI compared to

basal heart function (#:p<0.001, Suppl. Fig. 16F) without apparent differences between CMBK-/f

n=1=122)2  and CMMMBKBKBK+/fl ((n=n=n=11111 ).).). (((DDD))) FiFiF brososis (%))) wasas sigggnininififificacacantnn lyy elelel vav teted innn CMCMCMBKBB -/ffflll (n(n(n=1=1= 3)3)3) 
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right) after I/R4wks shoh wing the amount of scar formation in both genotypes.  
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SUPPLEMENTAL MATERIAL 

 

SUPPLEMENTAL METHODS 

Acute open-chest model of ischemia and reperfusion injury 

For studying I/R injury an open-chest, in situ model was applied as previously described.1-3 In 

brief, mice were anesthetized with pentobarbital-Na+ (70 mg/kg, i.p.). When required, 

additional anesthetic agent was administered as the adequate depth of anesthesia was 

controlled throughout the surgery. Body temperature was maintained at 37 ± 0.5°C. The 

animals were ventilated with oxygen by using a mechanical ventilator with a pressure-

controlled ventilation mode (peak inspiratory pressure of 10 mbar, positive end-expiratory 

pressure of 3 mbar). The ventilation frequency was set to 110 breaths/min with a tidal volume 

of 200-250 µl. The exposure of the heart and thereby of the left coronary artery (LCA) was 

performed by a left anterior thoracotomy. For induction of ischemia the LCA was surrounded 

and occluded with a 7-0 polypropylene suture. Successful occlusion was confirmed by an 

immediate color change of the vessel and cardiac tissue distal to the ligature from red to 

white. All hearts were subjected to 30 min ischemia followed by 2 hours of reperfusion (I/R; 

Suppl. Fig. 1, ❶). Suppl. Fig. 1 summarizes the details regarding the different treatment 

protocols applied. Briefly, sham operations were performed as described for the I/R 

procedure but without occlusion of the LCA (Suppl. Fig. 1, ❷). Ischemic postconditioning 

(iPost; Suppl. Fig. 1, ❸) was performed by six consecutive cycles of 10 s reperfusion and 10 

s re-occlusion directly after the prolonged index ischemia.1 For ischemic preconditioning 

(iPre; Suppl. Fig. 1, ❹) 5 min of ischemia followed by 10 min of reperfusion were applied 

prior to the I/R episode.2 The BK channel blocker paxilline (PAX, 8 mg/kg in 10% DMSO in 

H2O; Suppl. Fig. 1, ❺) was administered by i.p. injection 5 min after the time of ischemia 

onset.4, 5 The BK channel opener NS11021 (9.2 µg/kg in 0.07% DMSO in 0.9% saline, intra-

atrial; Suppl. Fig. 1, ❻) and riociguat (RIO, 50 ng, i.v.; Suppl. Fig. 1, ❼)6 were given 5 min 

before reperfusion. Cinaciguat (CIN, 10 µg/kg in 0.25% DMSO/0.9% saline; Suppl. Fig. 1, 

❽) was injected i.p. 30 min before ischemia.7 Sildenafil (SIL, 2 µg/kg in 0.9% saline; Suppl. 

Fig. 1, ❾) was administered 5 min before reperfusion into the left atrium.1 Tadalafil (TAD, 1 

mg/kg in 40% DMSO/H2O; Suppl. Fig. 1, ❿) was given i.p. 60 min prior to ischemia.8 Nω-

nitro-L-arginine methyl ester (L-NAME, 5 mg/ml, Suppl. Fig. 1, ⓫) was provided in the 

drinking water for 4-5 days before the I/R procedure.  

For determination of infarct size a double staining technique with Evans blue and 

triphenyltetrazolium chloride (TTC) was used.2 First, the area at risk (AAR) that refers to the 

tissue, which was affected by the occlusion of the LCA, was determined by retrograde 

injection of 1% Evans blue dye into the aorta after re-occlusion of the LCA. The heart was 

then excised and immediately frozen at -20°C. After 20 min the heart was cut into 1-mm 

slices, which were incubated in 1% TTC solution at 37°C for 20 min. TTC stains the affected 

but still viable myocardial tissue in red indicating the presence of dehydrogenase enzymes, 

whereas necrotic tissue that does not contain active oxidation enzymes remains unstained. 

Heart slices were fixed with 10% formaldehyde for 24 hours. The total area, the AAR and the 

area of infarction were determined by planimetric measurements. AAR was calculated as a 

percentage of the entire ventricular area, myocardial damage is defined as infarct size and 

was expressed as percentage of the risk zone. 
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Chronic closed-chest model of myocardial infarction 

In the chronic I/R model the duration of reperfusion time was extended to 4 weeks, hence the 

intubated and ventilated mice were allowed to wake up from the anesthesia after the index 

ischemia was released.6 In general, the procedure and the surgical interventions were 

comparable with the open-chest model, though minor changes are described as follows: For 

induction of the anesthesia a combination of ketamine (100 mg per kg) and xylazine (5 mg 

per kg) was injected i.p.. General anesthesia was maintained with gaseous isoflurane (0.5-

2% in oxygen) after endotracheal intubation. The ventilation frequency was adjusted to 140 

breaths/min. A small thoracotomy was executed at the third intercostal space without injuring 

the ribs. Through the small hole in the chest the LCA was occluded for 30 min to induce 

myocardial infarction. Afterwards the suture was removed and the thoracic incision was 

closed thoroughly. Mice were monitored until recovery and buprenorphine (0.05 mg/kg) was 

given subcutaneously prior to the end of surgery and during recovery when necessary. 

 

FRET-based CM-specific cGMP measurements in the open chest model 

Transgenic cGMP sensor mice for the measurement of CM-specific cGMP signals by FRET 

were described earlier.9 Imaging was performed in red cGES-DE5 transgenic animals 

subjected to the open-chest model (without I/R). Cinaciguat (CIN, 10 µg/kg in 0.25% 

DMSO/0.9% saline, i.p.; Suppl. Fig. 1) was used to induce CM-specific cGMP signals. For 

FRET measurement, a self-built imaging system around Leica M165FC (Leica Microsystems 

GmbH, Wetzlar, Germany) stereomicroscope was used. cGMP sensor was excited with 400 

nm LED (pE-100, CoolLED, Andover, UK). Emission light was split into donor and acceptor 

channels using the DV2 DualView equipped with the 565 dcxr dichroic mirror and D520/30 

and D630/50 emission filters (Photometrics, Tucson, AZ, USA). Images were taken using an 

optiMOS camera (QImaging, Surrey, BC, Canada) with MicroManager 1.4 open source 

imaging software and analysed by Image J (NIH, USA). Raw data were corrected offline for 

the bleed-through factor of the donor into the acceptor channel. 

 

Blood pressure measurement 

Mean arterial blood pressure (MAP) and heart rate were measured via a telemetry system as 

previously described (DSI, catheter model TA11PA-C10).10 For catheterization, mice were 

anesthetized with isoflurane (0.5-2% in oxygen). Isoflurane levels were adjusted to make 

surgery tolerable by frequently monitoring the corneal and withdraw reflexes. A ventral 

midline incision was performed and the left arteria carotis communis was carefully dissected. 

For the ligation two sutures (7-0 resorba silk) were placed about 8 mm apart under the 

vessel. With the suture proximal to the bifurcation of the left carotid artery the vessel was 

permanently occluded. The distal suture was used to stretch the vessel in the direction of the 

aortic arch in order to allow the insertion of the catheter via a tiny incision which was 

introduced by using a cannula with a right-angle tip. The inserted catheter tip was advanced 

to the catheter´s diminution towards the origin of the carotid artery at the aortic arch and was 

then permanently fixed by the distal suture and an additional suture placed around the 

catheterized vessel. The transmitter was positioned in a subcutaneous pocket along the right 

flank of the animal and then all wounds were closed with 5-0 silk. Measurements were 

started at day 7 after surgery when mice had fully recovered. Drugs were administered as 

described in Suppl. Fig. 1. Radiotelemetric signals were recorded for 60 s every 15 min at 

baseline (48 h) and on day 3 to 5 after starting the L-NAME treatment. For blood pressure 

(BP) measurements in anesthetized mice, animals were directly placed on a heating plate 
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after induction of anesthesia by the injection of pentobarbital-Na+. Recordings were started 

15 min after the respective injection for 10 s every 30 s for a total time of 15 min. 

 

Echocardiographic measurements 

Transthoracic echocardiography was performed using an existing protocol with minor 

variations.11 In brief, high-resolution images were acquired by the use of an imaging system 

equipped with a 30-MHz probe (Vevo2100; VisualSonics, Toronto, ON, Canada). Mice were 

anesthetized with isoflurane (0.5-2% in oxygen) and placed on a heating plate in a supine 

position. The chest was gently shaved and cleaned with alcohol to minimize ultrasound 

reduction. Continual ECG monitoring was obtained via limb electrodes. Two-dimensional 

echocardiographic study was performed in the parasternal long-axis in three different 

positions. For determination of heart function under basal conditions, fractional shortening 

(FS) and ejection fraction (EF) were calculated in M-mode recordings from end-systole and 

end-diastole measurements in three repeated cardiac cycles of each position permitting us to 

calculate the mean of 9 values for each parameter.  

After myocardial infarction (I30/R4wks) speckle-tracking based strain analysis of two-

dimensional echocardiographic images acquired from the B-mode in parasternal long-axis 

view was quantified in the longitudinal and radial axes. Strain analysis were conducted by the 

same trained investigator on all animals according to a previously published protocol12 using 

a speckle-tracking algorithm provided by VisualSonics (VevoStrain 2100, VisualSonics). 

Three consecutive cardiac cycles in the B-mode were selected for analysis based on image 

quality. Semi-automated tracing of the endocardium and epicardium was performed and 

corrected as needed. Strain measures were averaged over the obtained cardiac cycles 

resulting in curvilinear data of strain, strain rate and velocity. Each parameter was divided 

into 6 segments along the long-axis of the left ventricle (AB: anterior base, AM: anterior mid, 

AA: anterior apex, PB: posterior base, PM: posterior mid, PA: posterior apex; Suppl. Fig. 10). 

Peak values were recorded from each of the 6 segments. For global values, measurements 

were averaged across all 6 segments. 

 

Coronary flow measurements in the Langendorff mouse heart model of I/R 

Animals were deeply anesthetized with isoflurane and anticoagulated by intraperitoneal 

injection of heparin (1,000 IE/kg). After cervical dislocation, hearts were excised and placed 

on ice-cold modified Krebs-Henseleit solution (in mmol/L): NaCl (118.0), KCl (4.7), CaCl2 

(2.5), KH2PO4 (1.2), Mg2SO4 (1.2), Na-pyruvate (2.0), NaHCO3 (25.0), and glucose (11.0) at 

pH 7.4 – 7.5. The aorta was cannulated, quickly attached to the perfusion system (Hugo 

Sachs Elektronik/Harvard Aparatus, Germany) and retrograde perfusion was started at a 

constant pressure of 80 mmHg with continuously warmed (37°C) and aerated (95% O2/5% 

CO2) modified Krebs-Henseleit solution. A 2F octapolar electrophysiology catheter with 0.5 

mm electrode spacing (CIB´ER Mouse, NuMed Inc., Hopkinton, NY, USA) was inserted into 

the right atrium and right ventricle for recording of intracardiac electrograms via an ECG 

amplifier (F104, ADInstruments). Perfusion rate, coronary flow (CF, in milliliters blood per 

minute per gram myocardium) and heart rate were continuously recorded using a digital data 

acquisition system and corresponding software (Powerlab8/30 & Labchart, ADInsturments). 

During the experiments, hearts were kept in an enclosed water-jacketed chamber with 

ambient temperature maintained at 37°C and were allowed to beat spontaneously. 

Control hearts were subjected to 40 min of equilibration, followed by 30 min global zero-flow 

ischemia and 60 min reperfusion and CF was continuously recorded. An iPre protocol that 

afforded cardioprotection in the open-chest model of I/R (Suppl. Fig. 1) was applied to hearts 
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in the Langendorff-perfused iPre group for assessing CF. In detail, iPre hearts were 

subjected to a 25 min equilibration period, then one cycle of 5 min global zero-flow ischemia 

and 10 min reperfusion, followed by 30 min global zero-flow ischemia and 60 min 

reperfusion.  

 

Cardiac troponin I enzyme measurement 

Cardiac troponin I (cTnI) was measured in blood serum of mice at the end of reperfusion. 

Blood was obtained from the portal vein. After 30 min at 4°C blood samples were centrifuged 

for 15 min at 4000 rpm at 4°C. cTnI was determined in serum supernatants according to the 

manufacturer´s recommendation of the high sensitivity mouse cTnI ELISA kit (2010-1-HS, 

Life diagnostics).  

 

Isolation of adult cardiomyocytes 

Adult CMs were isolated as described previously by a modified protocol of the Alliance for 

Cellular Signaling (AfCS procedure protocol PP00000125).10, 11, 13 After retrograde enzyme 

perfusions via the aorta, isolated hearts were minced and cardiomyocytes were liberated by 

gently applying mechanical turbulence. Quality and purity of the purification was checked 

visually under the microscope. For hypoxia experiments, Lactate dehydrogenase (LDH) 

measurements and DNA extraction we used cardiomyocyte cultures with an initial vitality of 

≥90%.  

 

Hypoxia treatment of adult cardiomyocytes 

Freshly isolated CMs were resuspended in HEPES-buffered medium (113 mmol/l NaCl, 4.7 

mmol/l KCl 4.7, 10 mmol/l HEPES, 1.2 mmol/l MgSO4, 30 mmol/l taurine, 1 mmol/l CaCl2, 5% 

bovine calf serum, 5.5 mmol/l glucose, pH 7.4 and 37°C) supplemented with BDM (500 

mmol/l). After equilibration, the culture medium was immediately changed and CMs were 

divided into two groups. For hypoxia, cells were incubated with oxygen-, glucose-, and 

serum-depleted hypoxia buffer (113 mmol/l NaCl, 4.7 mmol/l KCl 4.7, 10 mmol/l HEPES, 1.2 

mmol/l MgSO4, 30 mmol/l taurine, 1 mmol/l CaCl2, pH 7.4 and 37°C) in an O2/CO2 incubator 

with an atmosphere of 5%CO2/95%N2 at 37°C for 90 min. For control conditions cells were 

incubated in normal HEPES-buffered medium in an atmosphere of 21% O2 and 5% CO2 at 

37°C for 90 min. 

 

Lactate dehydrogenase measurements in CM cultures 

LDH activity was detected using CytoTox 96 NonRadioactive Cytotoxicity kit (Promega, 

G1780). After normoxia/hypoxia, the medium was collected by centrifugation and LDH 

release was measured according to the manufacturer´s instructions. Protein content was 

determined by Bradford method for normalizing the LDH data.  

 

Purification of cardiomyocyte mitochondria  

Mitochondria from adult cardiomyocytes were isolated according to a protocol published by 

Frezza and co-workers.14 In brief, after perfusion of the heart and mechanically liberation of 

cells, CMs were centrifuged and homogenized using a glass-teflon potter in IBm1 buffer (50 

mmol/l Tris-HCl, 10mmol/l EDTA/Tris, 67 mmol/l sucrose, 50 mM KCl, 0,2% BSA, pH 7.4) at 

4°C. Subsequently, the mitochondrial fraction was separated by three centrifugation steps at 

700 g and 8000 g at 4°C for 10 min each. The resulting cell pellet was finally resuspended in 

IBm2 buffer (10 mmol/l Tris-HCl, 250 mmol/l sucrose, 3 mmol/l EGTA, pH 7.4), centrifuged 

again at 8000 g at 4°C for 10 min and then resuspended in a final volume of 30 µl SDS 
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protein lysis buffer. The postmitochondrial supernatant served as the source for the cytosolic 

fraction, which was further centrifuged at 100,000 g for 1 h in a ultracentrifuge to ensure 

complete clearance of mitochondrial fragments. The cytosolic proteins were precipitated by 

adding 1/10 volume of 100% TCA, and the proteins were collected by centrifugation at 

14,000 rpm at 4°C for 10 min. After washing three times with ice-cold 80% acetone, the pellet 

was suspended in SDS protein lysis buffer. Western Blot analyses were performed only with 

fresh isolated mitochondria or cytosolic fractions directly after the purification as described 

below.  

 

Measurement of mitochondrial respiration 

Oxygen consumption of cardiomyocyte mitochondria was measured polarographically at 

37°C using a Clark-type electrode in a medium containing 250 mM sucrose, 10 mM Tris-HCl, 

5 mM MgCl2, 2 mM KH2PO4, and 20 µM EGTA, pH 7.4. Mitochondria (0.3 mg/ml as protein) 

were suspended in 1 ml of the respiration medium. After a stable baseline, state 2 respiration 

was initiated by addition of 5 mM glutamate/ 2.5 mM malate or 5 mM succinate. State 3 

respiration was initiated by addition of 100 µM ADP. State 4 refers to the respiration when all 

the added ADP is converted to ATP. 

 

Patch-clamp experiments on isolated cardiomyocyte mitoplasts 

Patch-clamp experiments using mitoplasts were performed as described previously.15, 16 

Briefly, mitoplasts were prepared from BK+/+ and BK-/- cardiomyocyte mitochondria placed in 

a hypotonic solution (5 mM HEPES, 100 M CaCl2, pH 7.2) for approximately 5 min to induce 

swelling and breakage of the outer membrane. To restore the isotonicity, a hypertonic 

solution (750 mM KCl, 30 mM HEPES, 100 M CaCl2, pH 7.2) was added to the medium. 

The patch-clamp pipette was filled with an isotonic solution containing 150 mM KCl, 10 mM 

HEPES, and 100 M CaCl2 at pH 7.2. Mitoplasts were easily distinguished from other cellular 

debris by their size, round shape, transparency, and the presence of a “cap” structure. An 

isotonic solution containing 100 M CaCl2 was used as the control solution for all 

experiments. The low calcium solution (1 M CaCl2) contained 150 mM KCl, 10 mM HEPES, 

1 mM EGTA and 0.752 mM CaCl2 at pH = 7.2. All test compounds were added to the isotonic 

solution containing 100 M CaCl2 by applying a perfusion system containing a custom-made 

holder with a glass tube, a peristaltic pump, and Teflon tubing. The mitoplast membranes at 

the tip of the measuring pipette were transferred into the opening of the multibarrel “sewer 

pipe” system where they were rinsed with the test solutions (inside-out configuration) (see 

Suppl. Fig. 15 for further details). Reported voltages are those applied to the patch-clamp 

pipette interior. Hence, positive potentials represent the physiological polarization of the inner 

mitochondrial membrane (outside positive). The electrical connection was made using 

Ag/AgCl electrodes and an agar salt bridge (3 M KCl) as the ground electrode. Current was 

recorded using a patch-clamp amplifier (Axopatch 200B, Molecular Devices Corporation, 

USA). The pipettes, made of borosilicate glass, had a resistance of 10-20 M and were 

pulled using a Narashige P-10 puller. 

The currents were low-pass filtered at 1 kHz and sampled at a frequency of 100 kHz. The 

traces of the experiments were recorded in single-channel mode. The illustrated channel 

recordings are representative of the most frequently observed conductance for the given 

condition. The conductance of the channel was calculated from the current-voltage 

relationship (Fig. 7B). The probability of channel opening (Po, open probability) was 

determined using the single-channel search mode of the Clampfit 10.7 software.  
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Measurement of mitochondrial hydrogen peroxide in vivo 

Mitochondrial hydrogen peroxide was determined in vivo using the MitoB mass spectrometric 

probe.17, 18 MitoB (50 µl/0.5 mM) was administered by tail-vein injection 60 min prior to I/R. 

After 30 min ischemia, followed by 120 min reperfusion 53.0 ± 2.0 mg of the suspected 

ischemic heart area was visually identified, dissected, frozen on liquid nitrogen and stored at 

-80°C. Accordingly, normoxic tissue was collected from sham-operated mice injected with 

MitoB. For analysis, the homogenized tissue was spiked with deuterated internal standard. 

MitoB and its product MitoP (from the reaction with hydrogen peroxide) were extracted and 

the amounts MitoB and MitoP in the ischemic tissue were determined by liquid 

chromatography and tandem mass spectrometry as previously described.17  

 

Preparation of cryosections 

Hearts, and for particular tests aorta, were excised from experimental mice and directly fixed 

in 4% paraformaldehyde. Using a sucrose gradient, tissues were dehydrated and preserved 

in embedding medium for storage at -80°C. Cryosections of 10 µm were prepared using a 

Microm HM microtome (Thermo Scientific). Each heart was separated into 8 equidistant 

regions from the apex to the ligation and for each region 3 consecutive 10-µm sections were 

analyzed by TUNEL and hematoxylin & eosin (H&E) staining (Fig. 4E).  

 

TUNEL, H&E, Sirius red and PermaFluor/Hoechst stainings 

Myocardial cell death by apoptosis was detected in cryosections using a commercial TUNEL 

kit according to the manufacturer’s recommendations (Merck Millipore, S7101).  

To visualize histological structures, cardiac sections from different regions distal to the 

ligature were rehydrated and then stained using hematoxylin and eosin (H&E). Sections were 

incubated for 5 s in hematoxylin solution after Harris, followed by 2 washings steps and 

differentiation of the blue color in 0.1% ammonia solution before acidic eosin Y solution was 

added as a cytoplasmic counterstain for 10 min. For color differentiation cardiac sections 

were incubated in ethanol (80-100%) followed by a dehydration using toluol.  

To study the amount of fibrosis after myocardial infarction, hearts from CMBK-KO and -CTR 

mice which were subjected to the chronic model of MI were dissected, cut into 8 equidistant 

regions and cryosectioned. Before adding Sirius red staining solution (0.1% Direct Red 80 

dissolved in aqueous saturated picric acid) for 1 h representative 10-µm sections from each 

heart region were fixed in Bouin solution (HT101126, Sigma-Aldrich) for 24 h at room 

temperature. After several washing steps to remove excess dye in 0.01 N HCl, the samples 

were dehydrated using a gradient of ethanol (50% to 100% in steps of 10%) and xylol 

(100%). H&E and Sirius red sections were finally mounted in in DePeX and analyzed using 

an Axiovert 200M microscope (Zeiss).  

Nuclei in cryosections of hearts and aortas from αMHC-Cre transgenic ROSA26-tomato 

reporter mice were visualized by 0.1% Hoechst in PermaFluor aqueous mounting media (TA-

030-FM, Thermo Fisher Scientific) using a fluorescent ApoTome microscope (Zeiss). 

Recombination efficacy was assessed by quantifying the switch from cell membrane-

localized red fluorescence (mT) to membrane-localized green fluorescence (mG) protein. 
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Western blot analysis 

Hearts obtained from CMBK-KO and -CTR mice were excised under basal conditions or after 

30 min of ischemia followed by either 10 min (I30/R10) or 120 min (I/R) of reperfusion. The 

ischemic part distal to the ligation was immediately homogenized in 400 µl SDS lysis buffer 

(2.1% Tris-HCl (1 M), pH 8.3; 0.67% SDS; 1.7% β-mercaptoethanol; 0.2% 

phenylmethylsulfonyl fluoride; 1% phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich) in 

dH2O) using a homogenisator for 90 s followed by 1 min centrifugation at 1500 rpm. 

Supernatants were denaturated for 10 min at 95°C and stored at -80°C until further analysis. 

After protein quantification gels were loaded with 75 µg total protein or 4 µl of a molecular-

weight size marker (prestained protein marker IV, Peqlab) in 16 µl dH2O per line. Separation 

of proteins by molecular weight was done by SDS-Polyacrylamide gel electrophoresis 

(PAGE). Transfer of proteins that have been separated by SDS-PAGE to a polyvinylidene 

difluoride (PVDF) membrane was carried out by using a semi-dry transfer system. For 

immunodetection primary BK(674-1115) (1:500 dilution, custom-made)19, 20, BK(690-1196) 

(1:1000 dilution, NeuroMab clone L6/60), cGKIα/β (1:500 dilution, generous gift from Prof. 

Franz Hofmann, TU München), cGKICST (1:1000 dilution, Cell Signaling Technology, #3248), 

manganese superoxide dismutase (MnSOD, 1:2000 dilution, Enzo Life Science, 

ADISOD110J), copper-zinc superoxide dismutase (CuZnSOD, 1:2000 dilution, Enzo Life 

Science, ADISOD101J), TOM20 (1:100 dilution, Santa Cruz, sc-17764), hsp60 (1:200 

dilution, Santa Cruz, sc13966), cytochrome C (Cyt C, 1:1000 dilution, Cell Signaling 

Technology, #11940), Complex I (1:1000 dilution, proteintech, 12444-1-AP), 1-AR (1:200 

dilution, Santa Cruz, sc-568), COX IV (1:1000 dilution, Cell Signaling Technology, #4844), 

GAPDH (1:1000 dilution, Cell Signaling Technology, #2118), -tubulin (1:1000 dilution, Cell 

Signaling Technology, #3873),  p44/42 MAPK (ERK, 1:1000 dilution, Cell Signaling, #9102), 

phospho-p44/42 MAPK (p-ERK, 1:1000 dilution, Cell Signaling, #9101), Akt (1:1000 dilution, 

Cell Signaling, #9272), phospho-Akt (1:1000 dilution, Cell Signaling, #4060), vasodilator-

stimulated phosphoprotein (VASP, 1:1000 dilution, Cell Signaling, #3132), and phospho-

VASP (1:500 dilution, Enzo Life Science, ALX804240C100) antibodies were used. Anti-

mouse secondary antibodies coupled to Cy3 (PA43009) or anti-rabbit secondary antibodies 

coupled to Cy5 (PA40511) were used in a 1:2500 dilution (GE Healthcare) to detect the 

formation of primary antibody-antigen complexes. To quantify the amount of fluorescence an 

Ettan DIGE Imager or Amersham Imager 600 system (GE Healthcare) was used to produce 

multichannel images of the Western Blots. 
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SUPPLEMENTAL TABLES 

Suppl. Tab. 1 Baseline characteristics of CMBK-CTR and -KO mice 

Lack of CM-specific BK channels did neither affect heart weight (HW), body weight (BW) or 

tibia length (TL), nor the respective HW/BW and HW/TL ratios calculated from these values. 
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Suppl. Tab. 2 Significant increase in heart weight parameters after I/R4wks  

Heart weight was increased after 30 min ischemia followed by 4 weeks reperfusion (I/R4wks) 

independent of the presence or absence of BK in CMs. Data were analyzed using the 

Student‘s t-test with *p<0.05, **p<0.01 basal vs. I/R4wks of respective genotype. 
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SUPPLEMENTAL FIGURES AND FIGURE LEGENDS 

 

Suppl. Fig. 1: Pharmacological treatments and ischemic conditioning procedures in the 

acute model of myocardial infarction 

I/R: 30 min ischemia followed by 120 min reperfusion; sham: sham-operated; iPost: 

postconditioning; iPre: preconditioning; PAX: paxilline; NS: NS11021; RIO: riociguat; CIN: 

cinaciguat; SIL: sildenafil; TAD: tadalafil; L-NAME: Nω-nitro-L-arginine methyl ester 
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Suppl. Fig. 2: Sex differences do not influence infarct size 

Overall no gender-specific effects on the infarct size after I/R ( different cGMP-elevating 

compounds or conditioning protocols) were observed in (A) global BK-WT (BK+/+), (B) global 

BK-KO (BK-/-), (C) CMBK-CTR (CMBK+/fl) or (D) CMBK-KO (CMBK-/fl) mice. In the I/R + CIN 

treatment group the data just meet the significance criterion (p=0.044). iPost: 

postconditioning; iPre: preconditioning; PAX: paxilline; NS: NS11021; RIO: riociguat; CIN: 

cinaciguat; SIL: sildenafil; TAD: tadalafil; L-NAME: Nω-nitro-L-arginine methyl ester. Data 

were examined using the Student‘s t-test with *p<0.05 male vs. female for each setup. 
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Suppl. Fig. 3: Infarct size did not depend on age  

Infarct sizes of (A) global BK-WT (BK+/+), (B) global BK-KO (BK-/-), (C) CMBK-CTR (CMBK+/fl) 

or (D) CMBK-KO (CMBK-/fl) did not differ between mice aged 8 to 11 or 12 to 16 weeks. For 

the comparison of the MI outcome between KO and control mice littermates or animals at the 

same age were routinely subjected to one specific I/R setup. iPost: postconditioning; iPre: 

preconditioning; PAX: paxilline; NS: NS11021; RIO: riociguat; CIN: cinaciguat; SIL: sildenafil; 

TAD: tadalafil; L-NAME: Nω-nitro-L-arginine methyl ester. Data were examined using the 

Student‘s t-test with *p<0.05 <12 weeks vs. ≥12 weeks for each setup. 
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Suppl. Fig. 4: MHC-Cre activity is not detectable in aortic smooth muscle cells 

Cell membrane-localized red fluorescence (mT) and membrane-localized green fluorescence 

(mG) protein were visualized in MHC-Cre recombinase positive (MHC-CreTg/+) and Cre-

negative (MHC-Cre+/+) mice that were transgenic for a global double-fluorescent Cre 

reporter (ROSAmTG/+). As expected, mT (red) was expressed in the MHC-Cre+/+; ROSAmTG/+ 

aorta, whereas mG (green) was not detectable. Similarly, no Cre-mediated conversion of the 

floxed mT to the mG reporter was observed in aortic smooth muscle cells of MHC-CreTg/+; 

ROSAmTG/+ mice. DAPI was used as a nuclear counterstain.  
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Suppl. Fig. 5: Risk zones do not differ between CMBK-CTR and -KO mice and setups 

(A) No differences in the area at risk (in %) were observed between the different mechanical 

interventions and pharmacological treatment regimens that directly modulate BK. (B) Risk 

zones were comparable between all genotypes and setups using (B) different cGMP-

elevating compounds (C) in addition to the NOS-inhibitor L-NAME. (D+E). Administration of a 

number of solvents did not influence infarct size as compared to I/R. Representative heart 

slices of the respective genotype and setup (blue: unaffected heart muscle; red plus white: 

risk zone; white: infarcted tissue) are shown in the lower panel. iPost: postconditioning; iPre: 

preconditioning; PAX: paxilline; NS: NS11021; RIO: riociguat; CIN: cinaciguat; SIL: sildenafil; 

TAD: tadalafil; L-NAME: Nω-nitro-L-arginine methyl ester; ctr1 (PAX): 10% DMSO/H2O; ctr2 
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(NS): 0.07% DMSO/0.9% saline; ctr3 (SIL): 0.9% saline; ctr4 (TAD): 40% DMSO/H2O. Data 

were examined using two-way ANOVA followed by Bonferroni-corrected Student's t-tests 

with *p<0.05, **p<0.01 CMBK-/fl vs. CMBK+/fl. 
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Suppl. Fig. 6: Blood pressure during anesthesia and coronary flow are independent of 

CMBK 

(A) Blood pressure drop by anesthesia induced using pentobarbital-Na+. Data are means ± 

SEM with n=5 for CMBK+/fl and n=6 for CMBK-/fl. (B) Representative traces of coronary flow 

determined ex vivo in Langendorff-perfused heart preparations during I/R with (right panel) 

and without (left and middle panel) iPre stimulation. (C) Neither the CM-specific deletion of 

BK nor a preconditioning protocol affording cardioprotection in vivo (s. Fig. 5A right panel) 

significantly affected the coronary flow (CF) at reperfusion (n=5 for each data point). Data 

analysis using Student‘s t-test (A) or repeated measures ANOVA (C) did not show statistical 

significances.  
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Suppl. Fig. 7: Smooth muscle cell-specific BK-deficiency does not affect I/R-induced infarct 

formation 

(A) Genomic PCR analysis of various tissues derived from SMMHC-CreERT2Tg/+; BK+/fl 

(SMBK+/fl) mice revealed selective recombination of the floxed (fl) BK allele to the BK knock-

out (-) allele in smooth muscle tissues. The PCR products were amplified by BK-specific 

primers which allowed co-identification of the (fl), (-) and wild-type (+) allels. (B) Risk zones 

expressed as percentage of the total heart area after I/R and I/R + iPost in smooth muscle 

cell-specific BK channel mutants (SMBK-/fl) and their litter-matched controls (SMBK+/fl). (C) 

Infarction did not differ between SMBK-deficient and SMBK-proficient mice (n=6 per 

genotype and setup). Representative heart slices of the respective genotype and setup are 

shown in the lower panel. All data were assessed using two-way ANOVA followed by 

Bonferroni-corrected Student's t-tests with #: p<0.001 to respective I/R group. 
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Suppl. Fig. 8: Superoxide dismutase expression levels are not modulated by BK during 

myocardial infarction 

(A) The MitoP/MitoB ratio was used as a marker for hydrogen peroxide formation in CMBK-

KO (CMBK-/fl) and -CTR (CMBK+/fl) hearts at baseline (n=6 per genotype) and after I/R (n=8 

per genotype). Mean values at baseline and I/R between genotypes trended towards being 

different, but this trend did not reach statistical significance. (B) Representative immunoblots 

showing comparable expression of manganese-dependent superoxide dismutase (MnSOD) 

and copper/zinc superoxide dismutase (CuZnSOD) at baseline and during myocardial 

infarction (30 min ischemia / 10 min reperfusion (I/R10) and 30 min ischemia / 120 min 

reperfusion (I/R)) in CMBK-KO (CMBK-/fl) and -CTR (CMBK+/fl) hearts. Heat shock protein 60 

(hsp60) was co-identified in the protein samples as a loading control. Western blot analysis 

of the expression of (C) MnSOD and (D) CuZnSOD with n=6 per genotype. Data in (A), (C) 

and (D) are means ± SEM. Data were analyzed using two-way ANOVA followed by 

Bonferroni-corrected Student's t-tests with **p<0.01 basal vs. I/R. 
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Suppl. Fig. 9: Respiration of cardiomyocyte mitochondria at normoxia 

(A) Traces of mitochondrial respiration from BK-WT (BK+/+) and BK-KO (BK-/-) cardiomyocyte 

mitochondria (CMM). After addition of mitochondria (a) state 2 respiration was initiated by 

addition of glutamate/malate or succinate (b). State 3 respiration (c) was initiated by addition 

of ADP. (B) Ratios of respiration in the different states did not differ between the two 

genotypes. (C) Respiratory control ratio (RCR) also showed no differences between BK-WT 

and BK-KO CMM. Data are mean ± SEM with BK+/+ n=12 for glutamate/malate and n=10 for 

succinate and BK-/- n=11 for glutamate/malate and n=9 for succinate. 
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Suppl. Fig. 10: Expression of cGKI in CM-specific BK mutant hearts is not altered by 

myocardial infarction 

(A) Representative immunoblots and (B) quantification of the cGKI protein in CMBK-KO 

(CMBK-/fl) and -CTR (CMBK+/fl) heart samples at baseline and during myocardial infarction 

(30 min ischemia / 10 min reperfusion (I/R10)). Heat shock protein 60 (hsp60) was used as 

loading control. (C) Representative blots and (D) quantification of the vasodilator-stimulated 

phosphoprotein (VASP) and VASP phosphorylation (p-VASP) at Ser239. Data are means ± 

SEM with n=4 per genotype. Data in (B) were assessed using the Kruskal-Wallis-test. For (D) 

levels of significance were tested using two-way ANOVA followed by Bonferroni-corrected 

Student's t-tests with *p<0.05 basal vs. I/R10. 
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Suppl. Fig. 11: Cinaciguat causes an increase in CM cGMP in vivo 

CM-specific cGMP levels were measured in red-cGES-DE5 FRET sensor mice (s. 

supplemental methods for further details) in the in situ open-chest model. (A) Representative 

trace showing a decrease in the CM-specific FRET signal indicating an increase in cGMP by 

cinaciguat (CIN). (B) Overall change in FRET signal 30 min after the cinaciguat challenge. 

Dots are individual experiments while the bar represents mean ± SEM (n=4). 
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Suppl. Fig. 12: Cardioprotection by sildenafil requires the BK channel 

(A) Risk zones and (B) infarct size of global BK-KO (BK-/-) hearts ± sildenafil. Mice globally 

lacking BK did not respond to the cardioprotection stimulated by sildenafil. Infarction is 

expressed as percentage of the risk zone with n=8 per genotype. Representative heart slices 

of the respective genotype are shown in the lower panel. Data were examined using the 

Student‘s t-test with ***p<0.001 BK-/- vs. BK+/+; #: p<0.001 to respective I/R group.   
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Suppl. Fig. 13: Effects of L-NAME on blood pressure in CMBK-CTR and CMBK-KO mice 

Administration of the NO synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 5 

mg/ml in the drinking water) caused an increase in (A) mean arterial blood pressure (MAP) 

and (B) a concomitant decrease in heart rate in both genotypes (n=5 per genotype). (C) L-

NAME did not affect the infarct size of CMBK-CTR mice (CMBK+/fl, n=3) subjected to the I/R 

injury (compared to the respective values shown in Fig. 4B). Infarction is expressed as 

percentage of the risk zone. (A-B) Student‘s t-test did not reveal significant differences 

between genotypes (p<0.05).   
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Suppl. Fig. 14: cGKI is detectable in the mitochondrial protein fraction purified from BK+/+ 

and BK-/-cardiomyocytes  

(A) Representative immunoblot showing expression of cGKI protein in cardiomyocyte 

mitochondria (CMM) and whole heart lysates (HL) from BK-WT (BK+/+) and BK-KO (BK-/-) 

mice using a costum-made antibody. By co-detection of -tubulin and hsp60 the purity of the 

mitochondrial protein fraction as well as the enrichment of the matrix protein in the 

mitochondrial fraction were verified. (B) Purity of isolated mitochondria was further confirmed 

using antibodies that specifically identified mitochondrial proteins (NADH-ubiquinone 

oxidoreductase subunit of complex I and cytochrome c oxidase (COX IV)) in the 

mitochondrial protein fraction obtained from cardiomyocyte mitochondria, whereas cytosolic 

proteins such as α-tubulin and GAPDH or the β1-adrenoreceptor (β1-AR) that was used a 

plasma membrane marker could not be detected in the respective fraction. Apparently, 

complex I and COX IV proteins were enriched in the mitochondrial protein fraction from  

isolated CMs while β1 -AR and α-tubulin could only be detected in whole HL. (C) Vice versa, 

the cytosolic protein fractions contained GAPDH but not complex I proteins from the inner 

membrane of mitochondria. 
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Suppl. Fig. 15: Flowchart of the patch-clamp experiments (see Supplemental Methods for 

further details). 
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Suppl. Fig. 16: Abnormal strain curves of CMBK-KO hearts following myocardial infarction 

Representative echocardiographic recordings of the longitudinal strain (%) of (A) CMBK-CTR 

(CMBK+/fl) and (B) CMBK-KO mice (CMBK-/fl) under basal conditions and after 30 min 

ischemia followed by 4 weeks of reperfusion (I/R4wks) in (C) CMBK+/fl and (D) CMBK-/fl mice. 

(E) Average longitudinal strain was slightly reduced in CMBK-/fl compared to littermatched 

controls under basal conditions (n=8 per genotype). (F) Vevo Strain analysis displayed a 

reduced ejection fraction (EF, %) in CMBK-/fl hearts under basal conditions (n=8 per 
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genotype), which is in agreement with the conventional examination (Fig. 3B). (G) Amount of 

fibrosis (%) plotted against the ejection fraction (EF, %) in CMBK+/fl and CMBK-/fl mice 28 

days after MI. (H) The ratio between the post-MI EF and the acute infarct size was 

significantly decreased in CMBK-/fl (n=12) as compared to CMBK+/fl (n=11) mice. Data in (E), 

(F) and (H) were analyzed using the Student‘s t-test and presented as means ± SEM with 

***p<0.001. 
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A Cardioprotective signaling during I/R involving mitochondrial BK channels in the 

cardiomyocyte 

 

B Open questions of the present study 

1. The K+ influx via mBK at I/R may oppose the mitochondrial overload with Ca2+ as well 

as ROS production.13, 21, 22  

2. Opening of mBK may lead to a mild uncoupling of the ETC as a possible 

downregulator of ROS production. In addition there may also be cardioprotection via 

PKC.23-25 PKC, by recruting additional pro-survival kinases such as ERK and Akt of 

the RISK pathway and phosphorylation of GSK3β, may inhibit the opening of the 

mPTP.23, 26-28 

3. mBK channels were implicated in mitochondrial volume control and in altering the 

proton electrochemical potential gradient across the mitochondrial inner membrane to 

confer cardioprotection.13, 29 

 

Suppl. Fig. 17: Putative signaling mechanisms during ischemia and reperfusion involving the 

second messenger cGMP and mitochondrial BK channels 

(A) Pharmacological activation of the cGMP/cGKI pathway affords cardioprotection via 

mitochondrial BK channels (mBK) located at the inner mitochondrial membrane of CMs. (B) 

Putative downstream signaling mechanisms leading to cardioprotection. Abbreviations used: 

NOS: nitric oxide synthase; NO: nitric oxide; NO-GC: soluble guanylyl cyclase; PDEs: 

phosphodiesterases; cGMP: cyclic guanosine 3′,5′-monophosphate; cGKI: cGMP-dependent 

protein kinase type I; mBK: mitochondrial BK channel; ROS: reactive oxygen species; ETC: 

electron transport chain; PKC: protein kinase C; GSK3β: glycogen synthase kinase 3 beta; 

mPTP: mitochondrial permeability transition pore. 
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