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We developed an artificial neural network method for characterising crucial physical plasma parameters

(i.e., temperature, electron density, and abundance ratios of ionisation states) in a fast and precise

manner that mitigates common issues arising in evaluation of laser-induced breakdown spectra. The

neural network was trained on a set of laser-induced breakdown spectra of xenon, a particularly

physically and geochemically intriguing noble gas. The artificial neural network results were subsequently

compared to a standard local thermodynamic equilibrium model. Speciation analysis of Xe was

performed in a model atmosphere, mimicking gaseous systems relevant for tracing noble gases in

geochemistry. The results demonstrate a comprehensive method for geochemical analyses, particularly

a new concept of Xe detection in geochemical systems with an order-of-magnitude speed

enhancement and requiring minimal input information. The method can be used for determination of Xe

plasma physical parameters in industrial as well as scientific applications.
Introduction

Noble gases are a central archive of planetary processes in the
geo- and planetary-sciences. Their inert nature and quantity of
isotopes provide a clear ngerprint for passive tracing of
important volatile species such as CO2 and H2O, that are crucial
to planetary climate and habitability, and of all the major
volatile loss and gain processes that a celestial body experiences
over its existence.1,2 The abundances of noble gases are used as
key information when identifying parent bodies of meteorites,
thus providing an insight to the history of the whole Solar
System.3 Xe and its nine isotopes have long presented a wealth
of information, and generated conundrums in equal measure,
on the loss and gain of the atmospheres of Earth and Mars.4 In
particular, it is the strong mass-dependent fractionation of
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terrestrial and Martian Xe, higher than that of the lighter
isotopes of Kr, that presents a puzzle.5,6 One feature of Xe that
stands out, and perhaps explains its signicant isotopic frac-
tionation, is its low ionisation threshold, which is lower than
that of all other noble gases and than hydrogen.5 In this context,
it will be important in the future to investigate Xe physics in
meteor impact plasma and lightning in planetary atmospheres,
which may have contributed to Xe's ionization and subsequent
distinct loss history compared with the other noble gases.
Preferential Xe atmospheric depletion is driven by charge-
transfer processes, which strengthens the importance of
understanding such phenomena at the atomic level. Research
into the trace inert gas detection is also largely driven by the
industrial and environmental sectors with the detection of He,
Ar, and Xe.7–11
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The quantitative determination of noble gases can be achieved
by using laser-based spectroscopies such as laser absorption
spectroscopy (LAS)12 and laser-induced breakdown spectroscopy
(LIBS). The LAS technique is very sensitive and advantageous in
terms of limit of detection (LOD) compared to LIBS, however, the
experimental procedure is tedious and time-consuming. LIBS is
valuable in the scenarios of online in situmonitoring of noble gas
contents and also for determining the properties of plasma. The
established quantitative analyses using LIBS comprise (i) cali-
bration (univariate and multivariate), and (ii) calibration-free
methods. Regarding plasma diagnostics, one can determine the
properties of plasma using Saha–Boltzmann equations13 and
direct measurements using the Langmuir probe.14 The chosen
method for a given experiment should be robust even with the
inclusion of uctuations in the spectral data and noise.

Spectroscopic explorations towards noble gases are chal-
lenging due to their high ionisation energies. With increasing
laser energy, the continuum background also increases in the
recorded laser-induced break-down spectra. Thus, the optimi-
zation of experimental conditions represents a very complicated
task, frequently addressed by well-designed ad hoc campaigns.
For instance, Eseller et al. have concluded that non-gated
detection exhibits up to four times better performance by
using a simple calibration methodology9 and further intro-
duced the quantitative detection of He in H2 gas mixtures.10

Recently, Burger et al. demonstrated trace Xe detection in He
mixtures for monitoring nuclear fuel failure.11

The main objective of this work is to introduce a novel and
potentially routine method based on the Articial Neural
Network (ANN) for the estimation of physical parameters and
speciation analysis of noble gases-containing plasma relevant
in geochemistry and meteoritics. So far, the determination of
plasma parameters such as plasma temperature and electron
number density using joint plasma LTEmodel and ANNmodels
has only been reported for solid state materials such as tita-
nium15 or Ni–Cu alloys.16 Our method is suitable for remote
sensing (such as meteor plasma spectroscopy in planetary
atmospheres), probing techniques for planetary landers and
rovers as well as for laboratory purposes. This paper is organ-
ised as follows: rst, a concise summary of the classical LIBS
protocol is presented. Then, we present the proposed model
and numerical ANN approach and aer that, the experimental
setup, materials, and methods used for data acquisition are
described. Finally, we discuss the results achieved and offer
conclusions and outlines for further research.

Theory and computation

All recorded data were evaluated by several analytical
approaches and models. First, the ANN was trained on the data
set of pure Xe spectral lines. For the training part, line proles
were used as an input and physical plasma parameter estimated
from the corresponding Xe spectra by classical approaches as
output. Namely, the temperature was calculated by the classical
Boltzmann plot method of Xe II spectral intensities. The elec-
tron number density calculated from the emission line's
broadening using Start broadening parameters taken from ref.
J. Anal. At. Spectrom.
17. Alternatively, electron number density was also estimated
from the ratios of emission lines of different Xe ionisation
states calculated by Saha ionization equation. Then, we used
a blind data set, never employed during the training step,
without having any out-put projected on the model and we
predicted plasma parameters. Subsequently, the results were
veried numerically by LTE simulations.

Local thermodynamic equilibrium

The classical LIBS protocol18–21 is a powerful tool for describing
the physical state of optically thin LIBS plasma that satisfy local
thermodynamic equilibrium (LTE) conditions throughout the
temporal and spatial observation window.22,23 The observed
intensity, Iij, of a particular atomic emission line corresponding
to the transition i / j is therein expressed as24

Iij ¼ FNS

Aijgihvij

4pQSðTÞ exp

�
� Ei

kBT

�
: (1)

Here, F is an experimental factor related to the apparatus
optical collection efficiency and characteristic length of the
plasma, NS is the abundance of species S in a particular ion-
isation and excitation state, Aij is the Einstein A coefficient, gi is
the upper-state degeneracy, h is the Planck constant, and vij is
the transition frequency. T is the plasma temperature, under-
stood as a limit of the free electron translational temperature,
Te, and kB is the Boltzmann constant. The separate partition
function of the neutral or ionic species can be expressed as
follows:

QSðTÞ ¼
X
i

gi exp

�
� Ei

kBT

�
: (2)

Under the assumption of LTE, eqn (2) and Boltzmann
statistics fully describe the state of a LIBS plasma and its
spectroscopic properties. When the number densities of
different charged states are factored out from the Boltzmann
law, the Saha ionisation equation can be expressed as

NZþ1Ne

NZ
¼ ð2pmekBTeÞ

3
2

h3
2QZþ1ðTÞ
QZðTÞ exp

�
� EN

Z � DE

kBTe

�
: (3)

Ne is the electron number density, me the electron rest mass,
and ENZ is the ionisation energy of the Zth ionisation state
corrected by the energy DE. The latter term describes interac-
tions inside the plasma and in a collision-determined LTE
plasma equilibrated at the temperature, such that T¼ Te, it may
be reasonably neglected.

The electron number density of the plasma is related to the
Stark collisional broadening of spectral lines. The half-width g

of a Stark-broadened spectral line can be calculated by the
following expression:

g ¼ 2U

 
Ne

N*
e

!
þ 7UA

2

 
Ne

N*
e

!5
4

0
B@1� 3

4
N

�
1

3
D

1
CA; (4)
This journal is © The Royal Society of Chemistry 2022
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where U is the electron-impact parameter,17 A is the ion
broadening parameter, N*

e is a reference value obtained from
a database,25 and ND is the number of particles within the Debye
sphere.

Under the experimental conditions considered here, ion
broadening parameters are typically an order-of-magnitude less
than U. Thus, the second term in eqn (4) attributable to ion
broadening can be neglected, giving an approximation

gx2U

�
Ne

N�
e

�
(5)

With this simplication, eqn (5) is just attributed to the
broadening due to electron collisions, allowing us to calculate
the electron number density from the Stark broadening of well-
dened spectral lines adopting a Lorentzian line shape
function.25–30

Then, the validity of the LTE approximation can be expressed
by the McWhirter criterion:23

Ne $ 1:6� 1012
�
cm�3 eV�7=2�� T

1
2DE3 (6)

where DE (eV) is the largest energy gap between two distinct
energy levels. The minimum electron number density of a warm
laser-induced plasma in LTE is then of the order of 1015 cm�3

for large laser sparks or 1016 cm�3 for plasma's yielded by
smaller laboratory laser equipment (see the Experimental
section).
Articial neural network analysis

An Articial Neural Network is inspired by network of neurons
in animal brains. It is a computational model designed to
simulate the way the animal brain visualizes and processes
information.31 Generally, ANNs are constructed from several
processing units and connections between these units (synaptic
weights). These networks use several computational units
arranged in different layers. There are many different types of
these networks. One of the most useful and popular types of
ANNs are multi-layer perceptron (MLP) networks constructed by
one input layer, one output layer, and at least one computa-
tional intermediate layer between them (see Fig. 1). These
Fig. 1 Schematic of the artificial neural network (top) and numerical sim

This journal is © The Royal Society of Chemistry 2022
intermediate layers are known as hidden layers.32 The MLPs
need a supervised learning algorithm to nd the best t
between their calculated output and target. The algorithm
consists of three steps: training, validation, and testing. In the
training step, the inputs and targets of training datasets are
presented to the network and weights and biases are adjusted
between all perceptrons to nd the best t between the
network's outputs and desired outputs from the data provided.
In the validation step, the validation data-set is used to evaluate
the model obtained aer the training step. Validation is used to
optimise the model's architecture. Finally, in the testing step,
the trained model (congured with validation set) is evaluated
using the test data-set, which was not present to the model
during the training or validation. Generally, the division of the
data comprises 65% for training, 20% for validation, and 15%
for testing. The ANN's performance can be evaluated using
countless metrics. Since the prediction of the plasma temper-
ature is a regression problem, here we use the mean square
error (MSE) and correlation coefficient (R2) metrics. The
network was trained using several variations of gradient descent
(GD) with back-propagation (BP). In summary, the output set of
MLP is compared with the desired output set to nd the error
function of the network, e, as follows:33

e ¼ 1

2

Xp
i¼1

ðoi � tiÞ2; (7)

where p stands for the number of data points in training set, oi
is the output of the network, and ti is desired output of the
network. This error function is propagated backwards through
in the network to modify the synaptic weights and biases. The
modied synaptic weights should then minimise e by an itera-
tive gradient descent approach:

DW ¼ �G ve

vwi

; (8)

where wi stands for one synaptic weights and G is the learning
rate. Several modied versions of the GD algorithm have been
proposed to overcome the tting performance issues. More
details about the used GD algorithm can be found in the
supplementary part.
ulation approaches (bottom) for the calculation of plasma parameters.

J. Anal. At. Spectrom.
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Numerical simulation

A complete analysis of Xe gas emission spectra is challenging
due to a number of instrumental and experimental limitations.
For instance, the effective wavelength range of UV-Vis spec-
trometers conventionally used does not allow the detection of
most emission lines of neutral Xe and we must therefore rely on
analysing its ionised states. However, high laser energies and
high pressure of the buffer gas need to be applied in such cases
due to remarkable ionisation energies of rare gas atoms.34 This
in turn introduces increased continuum background and noise
levels, which corrupts the precision of routinely used Boltz-
mann plot or related linearisation methods. Another compu-
tational approach was hence needed for this study.

Our computation comprised numerical optimisation of
intensive plasma properties (i.e., T, Ne, and elemental abun-
dances) onto line intensity proles and integral values obtained
by an experiment (see Fig. 2). First, electron density values were
guessed by tting the detector instrumental function enhanced
by Stark broadening eqn (5) onto well-dened spectral line
proles. An initial estimate of remaining plasma parameters
was then provided by the diagrammatic solution to eqn (1)
estimating the unknown temperature and number density of
Fig. 2 Block diagram for the simulation of xenon gas spectra.

J. Anal. At. Spectrom.
a given species via the Boltzmann plot19 method. The set of
guessed values served as an initial estimate for global line
intensity optimisation, which resulted in estimating plasma
temperature, electron density, and abundances values relevant
to the whole spectral sample. Finally, a synthetic spectrum
governed by the resultant properties was depicted and
compared to the experiment. If necessary, numerical results
were employed as an initial estimate for another iteration until
a reasonable (i.e., R2 > 0.98) agreement was reached. All details
of this procedure and developed model can be found in the
supplementary part.

Experimental
Apparatus

Gas phase laser-induced dielectric breakdown emission spec-
troscopy was performed using two different laser systems. Pure
Xe laser sparks were generated by a table top Nd:YAG laser (see
Fig. S1†). Then, the Prague Asterix Laser System (PALS) facility,
introduced by Jungwirth et al.35 and briey described below, was
employed for igniting high energy-density plasma in the
gaseous mixtures selected. Certied gas samples, i.e., 5.0 Linde
Gas Xe, 3.6 Messer N2, 3.0 Linde Gas CO, and 3.0 Linde Gas CH4

were used in the experiment. Water vapour was supplied with
freshly distilled water which was let freely vaporise from
a closed round ask connected to the gas collecting cell with
a PVA pipe. The total pressure was controlled with a pressure
gauge to reach the desired partial pressures.

In both setups, the radiation emitted by the gas phase laser
induced breakdown plasma was analysed by high resolution
ESA 4000 Echelle spectrograph (LLA Instruments GmbH, Ger-
many). The effective wavelength range of the detector reaches
from 200 to 780 nm with spectral resolution ranging from
0.005 nm (200 nm) to 0.019 nm (780 nm) and the aperture of
1 : 10. Emission from the plasma was coupled to the spec-
trometer through a breoptic cable without additional light-
collecting optics employed. The time delay between initiation
and observation of the laser-induced plasma was controlled
with the ESAWIN soware version 14.3.0.

Nd:YAG laser

Laboratory LIBS system (Fig. S1 in the ESI†) comprises a rst
harmonic pulsed Nd:YAG laser operating with 10 Hz repetition
rate, delivering maximum pulse energy of 850 mJ at the uence
of 15 J cm�2. The laser pulse is focused in the centre of
a cylindrical glass sample cell equipped with three windows by
using a plano-convex lens of 15 mm diameter and a focal length
of 105 mm. A vacuum pump and pressure gauge (Pfeiffer
Vacuum Austria GmbH) regulated the ow of gases and cell
pressure.

PALS laser

PALS (Prague Asterix Laser System35) terawatt-class facility is
operated on a highly exergonic 2P1/2 / 2P3/2 de-excitation of
iodine atoms generated by homolytic ssion of per-
uoroisopropyl iodide, C3F7I. The radiation intensity generated
This journal is © The Royal Society of Chemistry 2022
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by each 100 to 600 J laser pulse is of the order of magnitude
1013 W m�2 with the uence of 30 J cm�2 and the system
delivers one pulse approximately every 30 minutes. The main
difference between the PALS LIBS system and the Nd:YAG setup
is the density of energy per pulse, increased nearly by 3 orders of
magnitude, and resulting in enhanced degrees of atomic exci-
tation and ionisation. PALS laser sparks are hence an ideal
example of complex systems enabling more signicant ionisa-
tion of noble gases thanks to the high energy density delivered.
While higher ionisation degrees are advantageous for our
analyses, the corresponding laser spark spectra are, on the other
hand, more complex to evaluate due to the issues mentioned
above. This in turn makes PALS laser sparks a matching case
study for testing the viability and robustness of novel neural
network algorithm.
Data acquisition and initial conditions

About 275 LIBS spectra, collected across both laser systems,
were recorded in wavelength range between 200 to 750 nm. In
order to investigate the time evolution of the pure gas systems
in Nd:YAG laser sparks, the spectra were measured for different
t gate delays at 10 500 ns, and then from 1000 to 3000 ns with
a time-step of 1000 ns. High-pressure (120, 709 Torr) and low-
pressure (39, 72 Torr) Nd:YAG laser sparks were examined for
the determination plasma parameters and abundances.

PALS laser sparks were delivered to approximately equimolar
mixtures of CO, CH4, and N2 lled with a small addition of water
vapor. This composition was chosen in order to elaborate our
previous investigations on a mimicked early Earth or Titan
atmosphere,37 this time diluted with an inert gas. Furthermore,
the choice of model mixtures coincides with recent studies
(Mahajan et al.38 and references therein) tracing Xe and other
noble gases in meteorites by pyrolytic analyses. Therefore, it
proves the concept of detecting noble gases in geochemically
relevant systems and suggests a possible way of employing our
protocol in related settings of laboratory astrophysics.39–42

The mixtures prepared were diluted with xenon (1 : 2) up to
two different pressures, as indicated in Table 1. Both mixtures
were scanned at gate delay times of 100, 2000, 3000, 4500, and
6500 ns. The criteria for selecting these delay times are purely
experimental to nd the optimal signal/noise ratio. Moreover,
the latter gate delay times extended our observation to the
aerglow period of the large laser sparks ignited. Aer each
experiment, gaseous products were carefully washed out with
an excess of Xe and the sample cell was relled using pressure
gauges.
Table 1 Identification of mixture samples comprising their net pres-
sure, molar composition, and the pressure of diluting Xe

Sample no.

mol%

p (Torr) pXe (Torr)H2O CO CH4 N2

1 1.8 32.8 32.5 32.9 15 30
2 1.8 32.9 32.4 32.9 10 20

This journal is © The Royal Society of Chemistry 2022
Soware and computing

Most of the data analysis was performed using the MATLAB
neural network toolbox.43,44 The code is developed based on
local thermodynamic equilibrium theory. Spectral line selec-
tion, electron and heavy particle number density tting, and
numerical simulations of emission spectra were automated by
using in-house programmed scripts (custom-code which pro-
grammed by the Spectroscopy research team, J. Heyrovský
Institute of Physical Chemistry of the Czech Academy of
Sciences). The latter were covered by PYTHONmodules NUMPY
and SCIPY. The choice of modules, namely SCIPY, helps to
overcome the computational time costs resulting from the non-
typed character of PYTHON language. According to the proce-
dure of Gornushkin et al.,45 the sensitivity of our procedure to
noise level, line overlap, and self-absorption related
phenomena was tested before simulation. Self-absorption of
investigated spectral lines is corrected by simpler means of self-
absorption coefficients46–49(see the ESI† part for details).
Results and discussion

In the present work, the ANN approach along with a compre-
hensive experimental analysis of xenon plasma exposed to the
laser spark was reported. To verify our experimental observa-
tions and computations, an LTE model was used for simulating
the plasma systems under experimental conditions. Plasma
temperature was recorded in the range of 14 000–26 000 K, and
electron densities of 1016�1017 cm�3. While the plasma
temperatures are rather large, they agree with both the
McWhirter criterion and the assumptions mentioned above. If
a high ionisation potential of rare gas atoms is to be crossed, it
is necessary that the plasma should be equilibrated to high
temperatures, even to those repeatedly observed in our data.

Our ANN analysis of aforementioned LIBS data conrms the
stability and robustness the proposed approach. The details are
provided in the following sections, specically describing the
amelioration of obstacles arising from high ionization energy of
Xe, range of the spectrometer.
Spectral lines selection and plasma diagnostics

A typical experimental LIBS spectrum of pure gas-phase Xe is
shown in Fig. 3. The recorded Xe II emission lines are sum-
marised in Table 2. From the experimental point of view, Xe
spectroscopy performed by standard Echelle UV-Vis apparatus
is harder due to the effective operational wavelength range of
conventional high resolution spectrometers being within 200–
800 nm, which is problematic since the most intense lines of Xe
I appear in the range of 800-850 nm.11 Our comparison of
numerical simulations to experimental data identies the only
Xe I line at 476.123 nm. The lines related to Xe III state were not
assigned either, since no theoretical data of Xe III lines appear
in NIST database36 or other resource.50–53 Unfortunately, missing
evidence of other ionisation states than Xe II corrupts the
conventional LIBS protocol and prevents it from robust usage.
However, this can be overcome by using the ANN approach to
analyse solely the Xe II emission lines of good signal-to-noise
J. Anal. At. Spectrom.
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Fig. 3 Example of the experimental Xe spectra. Triangle and circle symbols, respectively, represent the assigned (ref. 36) and observed
wavelengths for Xe II. Moreover, the red arrow shows the single Xe I line observed.

Table 2 The reference data of Xe II emission lines utilised in this work

Species
Wavelength
(nm)

Upper level
energy (cm�1) Aij (10

8 s�1) gi Ref

Xe II 441.482 132 207.76 1.00 6 54
Xe II 460.304 116 783.09 0.82 4 54
Xe II 484.432 113 705.40 1.10 8 54
Xe II 487.649 130 063.96 0.63 8 54
Xe II 529.221 111 958.89 0.89 6 54
Xe II 541.914 113 512.36 0.62 6 54
Xe II 547.261 113 705.40 0.09 8 54
Xe II 571.960 113 512.36 0.06 6 54
Xe II 597.642 111 792.17 0.28 4 54
Xe II 603.619 111 958.89 0.07 6 54
Xe II 605.115 111 958.89 0.17 6 54
Xe II 627.086 128 867.20 0.18 6 54
Xe II 627.754 111 958.89 0.03 6 54
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ratio acquisitions. Details of the ANN procedure are summar-
ised below.
Plasma diagnostics using ANN

For real-time plasma diagnostics, ANN was implemented and
trained with pure Xe LIBS data.

In the ANN approach, only experimental LIBS data were
considered. No theoretical parameters or instrumental aspects,
such as pressure and gate delay, were taken into account. The
pixels describing line emission proles of listed Xe II in Table 2
were considered as an input to the ANN model and the plasma
parameters calculated using LTE model were considered as
output. The input data resulted from time-resolved experiments
of different gas pressures. The model error was adjusted using
validation data and the performance was tested using test data
set. We adopted Bayesian regularization (BR) method, which
has the best performance in our past ndings.55–58 To under-
stand the efficacy of the different types of GD algorithm, we
tested the performance of them, detailed can be found in the
supplementary.

In the rst step, Xe II lines listed in Table 2 were extracted
from the recorded spectra as input, while other parameters such
as electron density, composition, and the temperature were
J. Anal. At. Spectrom.
utilised as output for the model. To solve the over-tting
problem that usually happens for the smaller size data-sets
like ours, a Bayesian regularization modication has been
proposed. The results of these algorithms were compared to
nd the best algorithm for our data-set. The electron density,
plasma temperature, and abundance ratios calculated from eqn
(1), (3) and (4) were considered as ANN targets and resulting
predictions are shown in Fig. 4(a), (b), and (c) respectively. All
the pixels within the Lorentzian prole of the Xe II at 484.3 nm
were considered for the electron density calculations, while
integrated intensities of emission lines of Xe II provided in
Table 2 are considered for remaining estimations. As
mentioned earlier, all input data were divided into three parts
with automatic stratied data division algorithm. The R2

prediction of all the test data sets superior than 0.9. The root
mean square error of prediction (RMSEP) values are less than
4%, and as a result, the error bars are difficult to be differen-
tiated in the gures.

Aer appropriate training of the ANN with basic physical
relations between experimentally measured line intensities
and the plasma parameters of pure Xe samples, the ANN can
be used for the prediction of the plasma parameter of the
unknown samples. To simplify the initial idea about the
trapped noble gas in meteorites, xenon gas was examined in
presence of a model atmosphere, and the trained ANN was
used to predict its plasma parameters. It is clear from the
green dots in Fig. 4 that, the ANN is able to predict promising
plasma parameters independently of sample composition (i.e.,
of molar fractions of H2O, CO, CH4, N2, and Xe). This is the
proof of concept that we will be able to detect noble gas in such
atmospheres. The future idea of this work is to test the
developed ANN on the LIBS scanning of stepwise meteorite
pyrolysis.7,59,60 In such applications, ANN can be a very
affordable approach which avoids time-consuming LIBS
simulations and analyses. Moreover, if certain theoretical
values (e.g., transition probabilities of certain species) needed
for plasma parameter calculation are lacked, the neural
network approach can be used nonetheless. Once the ANN
models is prepared, the extraction of plasma parameters from
spectral data is possible within a couple of seconds, while
This journal is © The Royal Society of Chemistry 2022
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Fig. 4 ANN-predicted vs. LTE model-based results for (a) electron number density, (b) temperature, and (c) abundance ratios of xenon states.
The regression coefficients are also reported. Gray and red dots mark are related to the training and validation data, respectively. Blue triangles
show test data sets results of the pure xenon from the Nd:YAG laser. Light-green dots represent the predicted results for xenon in the model
atmosphere irradiated by the PALS laser.
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a common desktop PC must devote up to 5 hours to a single
simulation below. To our knowledge, such speed and effec-
tiveness in real-time determination of gaseous plasma
parameters is rst reported in this publication.
Plasma diagnostics using numerical simulation

The performance and results of the above ANN protocol were
conrmed by a simpler LTE-based plasma simulation under the
same experimental conditions, as outlined in the Numerical
simulation section. Fig. 5(a) shows the simulated LIBS spectrum
of Xe gas in the wavelength range from 523 to 532 nm. The
spectrum was simulated for the entire wavelength region, but
this specic part was selected because it included all intense
atomic and ionic lines. Xe II 529.221 nm emission line was
observed with a high signal-to-nose ratio, which is in agreement
with experimental observations. The atomic and higher ionic
lines are very weak in our experimental conditions, and it is very
difficult to distinguish them from the noise level.

Fig. 5(b) shows the time evolution of electron density (red
cubes) and plasma temperature (blue points) for a represen-
tative series of Nd:YAG measurements (p ¼ 120 Torr).
Fig. 5 Example results of numerical simulations. (a) Comparison of Nd:Y
line) and simulation results (red line). Green, blue, and purple vertical lines
from the NIST database. The leftmost Xe III emission line is marked in it
transition probabilities thereof are currently available. The noise level reac
Simulated plasma physical diagnostics for Nd:YAG laser induced plasma o
lines show the best exponential and linear fit of simulation data, respective
as a function of temperature at the total pressure of 120 Torr. Solid line

This journal is © The Royal Society of Chemistry 2022
Electron density exponentially decreases with gate delay
observation time. This can be ascribed to the exponential
decay of plasma spark pressure, as investigated e.g., by
Tholin et al.61 Additionally, the linear decrease of plasma
temperature can be ascribed to a Newtonian cooling model,
addressed in the supplementary part. This model suggests
that the general temperature decay should be exponential
and should limit to a linear decrease for high temperatures or
small temperature differences found. Our ndings are in
a good agreement with the results of Mal et al.62 Finally,
Fig. 5(c) shows the evolution of Xe excited and ionized states
abundances expressed as molar fractions against plasma
temperature. Abundances of Xe I and Xe II were extracted
from synthetic spectra and used to extrapolate the Xe III
abundance by eqn (3). Both experimental results and trend t
obtained from the Saha equation converge to the coincidence
of ionization states abundances at z20 000 K. Since all
aforementioned results conrm the neural network predic-
tions, the above ANN protocol appeals as a fast, compre-
hensive, and precise method for analysing noble gases
spectra.
AG experimental Xe spectra at p ¼ 120 Torr and GD ¼ 1500 ns (black
respectively indicate the positions of Xe I, Xe II, and Xe III lines extracted
s hypothetical position, but to the best knowledge of the authors, no
hes a mean value of 0.015 a.u. with the standard deviation of 10�2. (b)
f a representative series with total pressure 120 Torr. The red and blue
ly. (c) State diagram representing the abundance of particular Xe states

s show the simulated fit.
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Conclusions

The characterization of LIBS spectra with simple ANN protocols
and numerical simulations was performed for xenon, selected for
its high geochemical relevancy. Important plasma parameters for
LIBS, temperature and electron, are correlated with Xe abun-
dances using an LTEmodel and a pre-trained network performed
similar speciation analyses in gaseous mixtures. Our newly
developed and optimised analyses can be performed in seconds
and the achieved results are rmly conrmed by an independent
numerical simulation. Best-performing algorithms achieve >99%
prediction accuracy and >90% correlation with the simulation
results. The latter was performed with high precision, with rela-
tive uncertainties #3%. However, these results have been ach-
ieved in order-of-magnitude longer timescales.

The newly developed method has a great application
potential in the eld of geochemistry and astronomy. In
particular, the case study demonstrates the method suitable for
the detection of Xe in a gaseous atmosphere relevant to the
geochemical environment of terrestrial planets and it is
conceptually similar to gas mixtures analysed aer pyrolysis of
meteorite samples. ANN-LIBS is capable of fast and direct
linking the properties of inspected plasma to its elemental
analysis. Moreover, our method is very fast, and therefore
suitable for real time in situ analysis.
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