
Nested transition path sampling

Peter G. Bolhuis1 and Gábor Csányi2
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We introduce a novel transition path sampling scheme employing nested sampling. Analogous to
how nested sampling explores the entire configurational phase space for atomistic systems, nested
TPS samples the entire available trajectory space in one simulation. Thermodynamic and path
observables can be constructed a posteriori for all temperatures simultaneously. We exploit this to
compute the rate of rare processes at arbitrarily low temperature through the coupling to easily
accessible rates at high temperature. We illustrate the method on several model systems.

Rare events are ubiquitous in the physical sciences.
Examples are elementary chemical reactions, crystal nu-
cleation, protein conformational changes, surface rear-
rangements, thermally activated dislocation migration
and other diffusion processes in solids. Being compar-
atively infrequent, these events are notoriously difficult
to assess using straightforward molecular dynamics sim-
ulation techniques. Enhanced sampling can alleviate
this problem, but requires a priori knowledge of reac-
tion coordinates[1, 2]. Transition path sampling (TPS)
circumvents this requirement by sampling from the distri-
bution of trajectories that undergo the rare event[3, 4].
TPS results in a collection of unbiased reactive trajec-
tories that can be analyzed for mechanistic and kinetic
information. Since its development 20 years ago TPS
has been extended in many ways[5–9]. A drawback of
TPS, common to many techniques that rely on molecu-
lar dynamics to compute phase space averages, is that
it is difficult to obtain the temperature dependence of
observables[10]. The obvious solution, to perform multi-
ple TPS simulations at different temperatures and thus
compute the temperature dependence explicitly, is com-
putationally very expensive. Here we pursue a differ-
ent route, and use nested sampling (NS) to compute
the “density of states” of trajectory space, a temper-
ature independent quantity from which observables at
any temperate can be obtained. Nested sampling was
invented in 2004 by John Skilling, first and foremost to
allow efficient evaluation of evidence integrals in Bayesian
inference[11–13]. It is widely used in astronomical data
analysis[14]. The close correspondence between Bayesian
inference and statistical mechanics suggested a natural
application in the latter field. After an early demon-
stration on lattice models[15], it was adapted for materi-
als modelling and enables the determination of pressure-
temperature-composition phase diagrams in a single con-
sistent set of simulations, even without any prior knowl-
edge of the crystal structure of solid phases. Applications
to date have ranged from Lennard-Jones clusters[16–18]
and hard spheres[19] to embedded atom models of alu-
minium and alloys[20], water and polymers[21], protein
folding[22] and liquid-vapour phase transitions[23, 24].

The aim of this paper is to develop and test the nested
sampling algorithm for dynamical trajectories. This will
allow evaluating temperature dependent dynamical ob-
servables, such as mechanisms and rates, from path en-
sembles obtained in a single simulation and without
defining any reaction coordinate.

Briefly, nested sampling works by determining the den-
sity of states in configuration space corresponding to
a probability measure at a given value of probability
by generating K samples distributed uniformly in con-
figuration space with the one-sided hard constraint on
the corresponding probabilities all being above the given
probability, and looking at the distribution of the sam-
ples’ probabilities. In statistical mechanics, the log of
the probability corresponds to the energy. In practice
the density of states is determined iteratively, starting
with configurations that have the highest energies (lowest
probabilities), where MC moves decorrelate very quickly.
In each iteration, the sample with the highest energy is
removed from the pool, its energy is recorded, and it be-
comes the new energy threshold below which the uniform
sampling distribution is reconstructed. This is done by
cloning one of the existing samples (which are already
uniformly distributed), and then the copy is decorrelated
from its source by a Markov chain Monte Carlo or other
dynamical procedure, the only requirement being that
the process returns a new sample which is again uni-
formly distributed under the hard constraint. Since one
sample is removed in each iteration, the phase space vol-
ume enclosed by the energy level corresponding the hard
constraint reduces by a factor of α = K/(K + 1). The
iterations are repeated until all the samples in the pool
converge on a very small part of phase space. Through-
out this paper, we use “energy” to mean the total energy,
as opposed to just the potential energy, which is often the
controlling variable when NS is used to compute the con-
figurational partition function.

The key facts that make NS efficient are (i) obtaining
uniformly distributed samples is easy at high energies,
and (ii) as the energy threshold is lowered, maintain-
ing the approximately uniform distribution of an existing
pool is easier than generating uniformly distributed sam-
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ples completely from scratch. These statements remain
approximately true even if the landscape is highly multi-
modal, since with enough samples in the pool, many
modes will be sampled simultaneously. The “magic” of
NS (shared with other density-of-states methods) hap-
pens in a posteriori analysis. Given the density of states
Ω(E), we define the cumulative density of states as

χ(E) =

∫ E

−∞
Ω(E′)dE′. (1)

Since each iteration in the NS procedure reduces the
phase space by a factor α, the total cumulative density
of states (volume of phase space) corresponding to the
energy level En at iteration n is χ(En) = αn, where the
total phase space volume of the system under the initial
energy constraint is normalized to 1 [25]. The first object
of interest is the partition function

Z(β) =

∫ ∞
−∞

Ω(E)e−βEdE. (2)

We approximate the density of states by the finite differ-
ence of successive values of χ(E) and the above integral
for the partition function by a discrete sum over the en-
ergy levels, giving

Z(β) ≈
∑
n

(αn − αn+1)e−βEn . (3)

Using this expression, all thermodynamics can be ex-
tracted from the list of successive energy levels {En}.
The expectation value of an observable A is given by

〈A(β)〉 ≈ 1

Z(β)

∑
n

A(xn)(αn − αn+1)e−βEn , (4)

where xn is the actual configuration with energy En re-
moved from the pool at iteration n. For example, one can
obtain the expected internal energy using the formula

U(β) =
1

Z(β)

∑
n

(αn − αn+1)Ene
−βEn , (5)

and also the heat capacity as

CV (β) = β2

[
1

Z(β)

∑
n

(αn − αn+1)E2
ne
−βEn − U(β)2

]
.

(6)
The key point is that all observables are estimated at all
temperatures using the density of states obtained in a
single NS simulation. The accuracy with which an ob-
servable is obtained depends partly on how well the den-
sity of states is resolved, and partly on how well the K
samples in the pool approximate the distribution of the
observable near a given energy level. Both of these er-
rors decrease with the usual 1/K1/2 scaling typical of
stochastic methods. Apart from K, the other param-
eter that influences the accuracy of NS is the memory

and length of the dynamical or Markovian process that
is used to decorrelate the cloned copy at each iteration,
however, in multimodal situations, convergence can only
be reached by increasing K.

Transition path sampling is an MC scheme in the
space of trajectories. One of the goals of TPS is to ob-
tain a collection of trajectories that connect two stable
states, A and B. Denoting a trajectory of length L by
x = {x0, x1, ...xL} with xi the configuration’s positions
and momenta, the path ensemble distribution is given
by PAB(x) = 1A(x0)P (x)1B(xL)/ZAB , with P (x) the
unbiased path probability (determined by the underly-
ing dynamics), and where the characteristic functions
1A,B(x) are unity when x is inside the state definition,
and zero otherwise. The path partition function is ZAB =∫
Dx1A(x0)P (x)1B(xL) The path probability P (x) ∼

e−βE(x0)
∏L
i p(xi → xi+1) is given by the underlying dy-

namics, where p(xi → xi+1) is the short-time Marko-
vian probability for a transition from xi to xi+1 step,
and the first Boltzmann factor accounts for the canoni-
cal distribution of the energy [5–7]. A particularly sim-
ple expression is obtained for deterministic dynamics in
the NVE ensemble, where these short time probabilities
are delta-functions, ZAB =

∫
Dx e−βE(x0)1A(x0)1B(xL).

Note that while the path ensemble is the canonical NVT
ensemble, the dynamics is NVE. This is unusual but not
a contradiction. For instance the coupling to the heat
bath can be so weak that the dynamics is essentially
micro-canonical on short time scales (that of the path)
and only relaxes to constant temperature in the stable
states, where dwell times are long. Other ensembles are
possible, and are treated elsewhere [5–7].

TPS samples the path ensemble using the “shooting”
MC move, which creates a trial trajectory by selecting
a random time slice, or configuration xi, and integrating
the equation of motion backwards and forwards in time.
This trial path is accepted if the path connects the stable
states [26]. Intuitively, the move will lead to a high ac-
ceptance if the starting time slice is near the saddle point
connecting the stable states. This move allows a lot of
freedom in implementation, and many versions exist [6].
Here we use flexible length shooting, which halts the in-
tegration when reaching a stable state. The path length
fluctuates, and to obey detailed balance a correction fac-
tor based on the path length is needed[7].

Nested path sampling can now be constructed analo-
gously to regular NS, making the identification

ZAB =

∫
dE

∫
Dxe−βE(x0)1A(x0)1B(xL)δ(E − E(x0))

≡
∫
dEe−βEΩAB(E) (7)

which defines the path density of states as ΩAB(E) =∫
Dx1A(x0)1B(xL)δ(E − E(x0)). Now we proceed as

outlined above. The nested TPS algorithm uses a pool of
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FIG. 1. a) Double well potential with two transition channels. Three example paths are shown: a very high energy path
(black) and two lower energy paths trough the lower (gray) and upper (white) channels. b)Nested transition path sampling of
the double well potential. The brightness of the path indicates the NS iteration, with black corresponding to high energies and
white paths to low energy paths. The green circles delimit the two states. c) The y value at the path midpoint, as a function
of NTPS iteration.

K paths that randomly populate trajectory space, under
the extra condition that paths connect A and B. Just as
in ordinary NS the trajectory space is reduced by a factor
α = K/(K+1) when removing the path with the highest
energy En at iteration n.

In addition to the usual thermodynamic quantities, it
is easy to extract path observables, such as transforma-
tion mechanisms. For instance, the fraction of pathways
traversing via a mechanism m is given by

fmAB(β) =
1

Z(β)

∑
n

(αn − αn+1)e−βEnδmn (8)

where δmn = 1 when path n follows mechanism m and
zero otherwise. Any path observable can be evaluated in
this way.

Of special interest are the rate constants, which are
difficult to obtain for a rare event using brute force dy-
namics. TPS has a special procedure to compute rate
constants, using integration along an order parameter[5].
Here we take a different route and link the rate at any
temperature β to any other temperature β0 via

ln k(β)− ln k(β0) =

∫ β

β0

dβ′
∂ ln k(β′)

∂β′
(9)

In TPS the rate constant is the time derivative of a cor-
relation function C(t) = 〈1A(x0)1B(xL)〉/〈1A(x0)〉:

k =
dC(t)

dt
=
〈1A(x0)1̇B(xL)〉
〈1A(x0)〉

(10)

Taking logarithms and the derivative w.r.t. β gives

∂ ln k(β)

∂β
=
∂ ln〈1A(x0)1̇B(xL)〉AB

∂β
− ∂ ln〈1A(x0)〉

∂β
(11)

Carrying out the derivative yields, after rearranging,

∂ ln k(β)

∂β
= −〈E〉AB + 〈E〉A, (12)

where the subscript AB denotes a path average over tra-
jectories connecting A and B, and the subscript A de-
notes an average over trajectories starting in A, both of
course at a given temperature setting. As stated above,
all these ensemble averages are straightforward to eval-
uate after the NS run. In contrast, this approach using
ordinary TPS would necessitate a separate simulation for
each temperature on a fine grid of values.[10]

In order to help understanding and build intuition, we
first illustrate NTPS on a double-well potential in two di-
mension with two different transition channels. We chose
the following potential form[27]

V (x, y) = 4(x2 + y2 − 1)2y2 − e−4((x−1)
2+y2)+

− e−4((x+1)2+y2) + e8(x−1.5) + e−8(x+1.5)+

+ eα(y+0.25) + 0.2e−8x
2

,

with α = −4 that makes the height of the two saddles
unequal (approximately 1.1 and 0.9 above the minima).
We initialized the ensemble of 50 path samples by start-
ing from the linear path and deforming each by 10000
shooting moves and the very high energy limit of 20.
The paths were discretised to allow 200 time steps of size
0.05, and the number of shooting moves used to decorre-
late the cloned path in each subsequent NTPS iteration
was 1000. Figure 1 shows the potential as a heat map,
as well as the paths generated during the NTPS run. At
early iterations (black lines), the path energy is high, and
many kinds of paths are sampled, with transitions be-
tween the two channels easily made. During the middle of
the run (light gray lines), paths are confined to the chan-
nels, with very few switches between the two. Towards
the end of the run (white lines), paths are confined to the
top channel which has a lower barrier (even though it is
significantly longer in terms of path length between the
minima). Figure 1c shows a trivial order parameter (the
y value at the midpoint of the path) that distinguishes
the two channels, as a function of NTPS iteration. In the
first 300 iterations, paths are not confined to the chan-
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nels, and any many different values are present. Between
iterations 300 and 480, paths are mostly confined to the
two channels, with just a couple of paths across the local
maximum in between them, and after iteration 480, all
paths follow the top channel.

The second illustration of NTPS is on a 2D Lennard-
Jones cluster of 7 particles. This simple system was used
as a testbed for the development of the TPS algorithm
[4, 28]. At low temperature the cluster has 4 meta-stable
states (ignoring permutations) between which transfor-
mations can occur[29]. TPS can sample all transitions
but here we focus on the transitions out of the ground
state into any of the remaining three states.

We initialize the ensemble of K = 1000 paths, perform-
ing l shooting moves between each sample. In each shoot-
ing move the velocities were changed with dvmax = 0.1.
To conserve the linear and angular momentum we ap-
plied a relative velocity change along a particle pair
vector[30]. Paths connecting the ground state with any
other metastable state are accepted. We restrict the en-
ergy of the NVE paths to a maximum of E = −8.5,
as the acceptance probability vanishes at high energy,
where the stable states are no longer basins of attrac-
tion. We obtained sufficiently decorrelated trajectories
after l = 1000 shootings [31]. After the decorrelation
phase, we apply the iterative nested sampling algorithm,
using again l = 1000 shooting trials. This took around
24 hours on a single Intel CPU core. The cumulative
density of states function in Fig. 2a shows that trajec-
tory space is reduced by around 24 orders of magnitude
during the nested sampling. From this data we construct
the energy U via Eq.5, shown in Fig. 2b. As expected
U decreases as function of inverse temperature β, even-
tually reaching the saddle point energy for β →∞. The
heat capacity, which measures fluctuations in the path
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FIG. 2. NTPS of 2D LJ cluster transitions: a) cumulative tra-
jectory phase space volume χ(E), b) internal energy, c) heat
capacity and d) fraction of paths following a given mechanism,
all as functions of inverse temperature, β (solid curve). Frac-
tion estimated from Boltzmann factor of saddle-point energy
Es = −10.8 (green dashed) and Es = −11.04 (black dashed).

energy, is plotted in Fig. 2c. CV increases initially, indi-
cating a rapid change in available path space, and settles
to a constant value around β ≈ 20, where the path en-
ergy fluctuations are completely determined by the sad-
dle points. Fig. 2d shows the probability of the observed
mechanisms. Clearly, the transition to the higher lying
metastable state becomes improbable at lower temper-
ature, while the two other metastable states are about
equally probable, which is reasonable considering the two
saddle points are almost equal. At low β, these fractions
differ from the simple prediction based on the Boltzmann
factors of the barrier heights (dashed curves), indicating
that entropy plays a role.

While we do not study the convergence with K here,
we note that when NS is used to obtain the configura-
tional partition function, K does not scale with system
size directly, but with the number of relevant (symme-
try reduced) energy basins that need separate sampling.
The analog of that for NTPS is the number of different
relevant transition mechanisms.

Next, we computed the derivative in Eq. 12 from the
path observables. The unconstrained variable 〈E〉A was
computed by carrying out a NTPS simulation of a path
ensemble in which only the first slice was constrained
to A. We integrate this derivative d ln k/dβ (see inset of
Fig. 3) using a known rate at high temperature β0. Fig. 3
shows the integrated NTPS rate for β0 = 10. This known
rate has to be computed directly at this high tempera-
ture, for instance using brute force MD. Fig.3 also shows
computed rate constants at several other temperatures,
including those from Refs.[28, 29] for β = 20, indicat-
ing the NTPS prediction is excellent at low temperature.
The direct computation becomes extremely slow around
β = 15, while NTPS can easily assess rates up to β = 50.
For β < 6 the direct MD rates deviate from the NTPS
prediction, because of the imposed hard upper limit in
energy. The NTPS estimate is only valid up to tempera-
tures where the probability to observe this upper energy
limit is negligible. The rate clearly shows Arrhenius be-
havior at high β, with the negative slope of the curve
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FIG. 3. Logarithm of rate constant of 2D LJ cluster transi-
tions obtained by direct NVT MD (red circles), and by NTPS
(black curve), integrated from the derivative shown in inset,
with a reference temperature β0 = 10. The blue square in-
dicates rate constants for β = 20 taken from Refs.[28, 29]
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equal to the activation barrier, Ea = −d ln k/dβ = 1.5
(see inset Fig. 3), which is indeed the barrier height[29].

In the above examples the effect of entropy is very lim-
ited, and in both cases Arrhenius behavior is observed.
To show that NTPS also can handle barriers dominated
by entropy, we provide a third example, a condensa-
tion transition in a small LJ system (see Supplemen-
tal Material[32]). This example clearly shows that when
sampling the path density of states properly NTPS can
correctly treat both energy as wells entropy dominated
barriers.

In summary, we have introduced a novel path sam-
pling method that uses the nested sampling algorithm
to walk through trajectory space. We showed that rates
can be obtained without reaction coordinate. The nested
transition path sampling method can be of interest when
temperature dependence is required, which is difficult in
ordinary TPS simulations. Finally, we note that the con-
cept of nested sampling of path space is generally appli-
cable to any thermal path integral, including quantum
mechanical ones.
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