
Supplementary Methods
Pseudo algorithm and workflow
In this section, we describe the sub-sampling procedure of Cell-Graphs from a mIHC image based on the following Algorithm 1
and Figure 1. The node number of the Cell-Graph was set to 100, corresponding to 100 cells that were included in a Cell-Graph.
In the magnification of the image scanning, each pixel represents 0.5 µm.

Algorithm 1: Algorithm of Cell-Graph generation
1: Read a CSV file of one mIHC image;
2: Set node number: node_num← 100;
3: Obtain the cell number: cell_num← len(data f rame);
4: Calculate the number of Cell-Graphs: graph_num← cell_num/node_num;
5: Calculate the node number of the last Cell-Graph;
6: for i = 1,2, . . .graph_num−1 do
7: Load the cell coordinates;
8: for j = 1,2, . . .node_num do
9: for k = j . . .node_num do

10: Calculate the link values of node pair of ( j,k) and (k, j) according to Eq. (2);
11: Attach the link values to the adjacent matrix;
12: Attach the node index and edge index;
13: Attach the node features;
14: end for
15: end for
16: end for
17: Calculate the node number of the last Cell-Graph: last_node_num← (cell_num%node_num);
18: Load the cell coordinates;
19: for j = 1,2, . . . last_node_num do
20: for k = j . . . last_node_num do
21: Calculate the link values of node pair of ( j,k) and (k, j) according to Eq. (2);
22: Attach the link values to the adjacent matrix;
23: Attach the node index and edge index;
24: Attach the node features;
25: end for
26: end for
27: Save all the Cell-Graphs.

GNN model architectures
When designing the GNN model architectures, we considered two different types of convolutional unit, including GCNConv
and GINConv. The major difference between GCNConv and GINConv is reflected by the different mechanism of the message
passing (i.e. node feature passing), as illustrated in Figure 2. More specifically, GCN1 is the graph convolutional network,
which calculates the node features by aggregating features of the node and its neighbors, as shown in Figure 2a. In contrast,
GIN2 is the graph isomorphism network, which adds an extra multilayer perceptron to generate the outputs, as shown in
Figure 2b. The graph convolution needs to be combined with pooling layers. We tested the performance of models with two
types of pooling layers: TopKPooling3–5 and SAGPooling5, 6. They provide an effective way to preserve the critical graph
features and structures by using two different ways of calculating the projection matrix of node scores. TopKPooling calculates
y = softmax(X p) with the trainable projection weight p, while SAGPooling uses a GNN to extract the ranking score for the
nodes by y = softmax(GNN(X ,A)).
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Supplementary Figure 1. An overview of the key procedures for multiplexed staining and image processing to generate
Cell-Graphs. A detailed description of each step can be seen in the corresponding panel of the figure.

Metrics for evaluating the model performance
The model performance was evaluated with the following commonly used metrics and measures, including Accuracy (ACC),
F1-score, Matthews Correlation Coefficient (MCC), and receiver-operating characteristic (ROC) curve with the corresponding
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Supplementary Figure 2. An illustration of message passing operation of GCN and GIN. Here shows the source node’s (Red)
calculation using the node attributes of its neighbor nodes (Blue) and source node itself. (a) shows the message passing of
GCN, while (b) displays the operation of GIN.

area under the ROC curve (AUROC). These performance metrics are defined by the following equations:

Recall =
T P

T P+FN

Precision =
T P

T P+FP

ACC =
T P+T N

T P+T N +FP+FN

F1-Score =
2×Recall×Precision

Recall +Precision

MCC =
(T P×T N)+(FP×FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
.

Here, TP represents true positive; TN, true negative; FP, false positive; FN, false negative. For all the measures defined above,
a higher value indicates a better performance of the model. The corresponding AUC values are calculated as the primary
performance metric to evaluate the performance of the trained models and compare between different methods.

Strategies to prevent overfitting
Due to the huge size of cancer histopathology images, segmentation of the images at the patch- or tile-levels prior to deep
learning-based model training is a common practice in digital pathology. To avoid the overfitting issue, in this study we applied
multiple strategies: 1) use of a strict early stopping strategy; 2) dynamic learning rate, and 3) use of pooling layers, to effectively
avoid the model overfitting. Moreover, the training and validation loss value changes also provide useful clues in regards to
whether or not the trained deep learning model was subjected to overfitting. Figures 10-19 show the detailed training and
validation loss value changes for binary- and ternary-classification model training on five-fold cross-validation. The position of
the early stopping was indicated with the red dash line in each figure. As can be observed in these figures, all the models was
stopped when the validation loss stopped further decreasing with the patience of 20 epochs. For most models, they required
training for 30 to 80 epochs to achieve the optimal. Due to the adopted multiple strategies and results, our models were unlikely
to get overfitted.
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Supplementary tables and figures

Supplementary Table 1. Clinical characteristics of the gastric cancer patient cohort used in this study. The patient numbers of
different gender, survival status, TNM stages, and their survival time interval are included. Two data-binning strategies were
applied to segment patients into binary- and ternary-class.

Variables Number of patients Remarks

Gender Male 124 1 unknownFemale 47

Status Deceased 113
Alive 59

TNM Stage (the AJCC 8th edition)

Stage I 14

8 unknownStage II 52
Stage III 95
Stage IV 3

Overall survival

≤ 1 yr 51
Ternary-class dataset>1 and ≤ 5 yrs 60

>5 yrs 61
≤ 2 yrs 82 Binary-class dataset≥ 4 yrs 70

Supplementary Table 2. Clinical characteristics of the holdout cohorts for independent test and survival analysis. The class
balance was considered in the data split, and the patient numbers of different gender, survival status, TNM stage, and their
survival time interval are shown in the table.

Binary-class testing cohort Ternary-class testing cohort
Variables Number of patients Variables Number of patients

Gender Male 40 Male 28
Female 12 Female 7

Status Deceased 38 Deceased 22
Alive 14 Alive 13

TNM Stage (the AJCC 8th edition)

Stage I 5 Stage I 3
Stage II 12 Stage II 14
Stage III 31 Stage III 16
Stage IV 0 Stage IV 1

Overall survival
≤ 2 yr 17 ≤ 1 yr 8
>2 and ≤ 4 yrs 20 >1 and ≤ 5 yrs 14
>4 yrs 14 >5 yrs 13
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Supplementary Table 3. Low-pass wavelet decomposition of short-term, medium-term, and long-term samples with features
of Pan-CK and Cell Area. The decomposition was conducted on one low-pass channel and two high-pass channels. In each
figure, the decomposition coefficients were visualized by gradient color from red to blue, where red represents the high-valued
coefficient and blue represents low-valued coefficient. The low-pass composition of features of Pan-CK and Cell Area is shown.
No significant differences of short-term, medium-term, and long-term patients can be observed from the following figures.
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Supplementary Table 4. Low-pass wavelet decomposition of short-term, medium-term, and long-term samples with features
of Cytoplasm Area and Nucleus Area. The decomposition was conducted on one low-pass channel and two high-pass channels.
In each figure, the decomposition coefficients were visualized by gradient color from red to blue, where red represents the
high coefficient and blue represents low coefficient. Here shows the low-pass composition on features of Cytoplasm Area and
Nucleus Area, no significant differences of short-term, medium-term, and long-term patients can be observed from the figures
in this table.
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Supplementary Table 5. Low-pass wavelet decomposition of short-term, medium-term, and long-term samples with features
of Nucleus Perimeter and Nucleus Roundness. The decomposition was conducted on one low-pass channel and two high-pass
channels. In each figure, the decomposition coefficients were visualized by gradient color from red to blue, where red represents
the high coefficient and blue represents low coefficient. Here shows the low-pass composition on features of Nucleus Perimeter
and Nucleus Roundness, no significant differences of short-term, medium-term, and long-term patients can be observed from
the following figures.

Nucleus Perimeter Nucleus Roundness

Sh
or

t-
Te

rm
M

ed
iu

m
-T

er
m

L
on

g-
Te

rm

7 / 31



Supplementary Table 6. High-pass (channel 1) wavelet decomposition of short-term, medium-term, and long-term samples
with features of Pan-CK and Cell Area. The decomposition was conducted on one low-pass channel and two high-pass channels.
In each figure, the decomposition coefficients were visualized by gradient color from red to blue, where red represents the high
coefficient and blue represents low coefficient. The figures below show the high-pass (channel 1) composition of features of
Pan-CK and Cell Area. Major color differences of short-term (dominated by red color), medium-term (red and blue mixed),
and long-term (dominated by blue) patients can be observed from the figures in the Table.
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Supplementary Table 7. High-pass (channel 1) wavelet decomposition of short-term, medium-term, and long-term samples
with features of Cytoplasm Area and Nucleus Area. The decomposition was conducted on one low-pass channel and two
high-pass channels. In each figure, the decomposition coefficients were visualized by gradient color from red to blue, where
red represents the high coefficient and blue represents low coefficient. Here shows the high-pass (channel 1) composition on
features of Cytoplasm Area and Nucleus Area, major color differences of medium-term (mixed color of red and green) from
short- and long-term (dominated by single color of red or blue) patients can be observed from the following figures.
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Supplementary Figure 3. Model performance on ten repetitions of five-fold cross-validation on binary classification using
GINTopK. To further confirm the stability of the proposed model architecture, the ten repetitions of five-fold cross-validation
were conducted with randomly initialized weights for each training. According to the figure, the median values of both Accuracy
and F1-score were within the range of 0.90-0.93 (MCC values ranged from 0.80 to 0.86), thereby suggesting the stability of our
proposed GINTopK model.
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Supplementary Figure 4. Kaplan-Meier survival analysis of patient overall survival based on the TNM-2 on binary testing
cohort. As can be observed, Kaplan-Meier survival analysis shows that the TNM-2 (I, II vs. III) can stratify the patients into
groups of low- and high-risk with C-Index (0.659 (95% CI: 0.577 − 0.740)), Hazard Ratio (5.276 (95% CI: 2.147 − 12.966)),
and the P-value < 0.0001.
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Supplementary Figure 5. Kaplan-Meier survival analysis of patient overall survival based on the TNM-6 on binary testing
cohort. As can be observed, Kaplan-Meier survival analysis shows that the TNM-6 (I vs. IIA vs. IIB vs. IIIA vs. IIIB vs. IIIC)
can stratify the patients into six groups of different prognosis with C-Index (0.714 (95% CI: 0.623 − 0.805)), Hazard Ratio
(1.873 (95% CI: 1.388 − 2.529)), and the P-value = 0.00081.
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Supplementary Figure 6. Kaplan-Meier survival analysis of patient overall survival based on the combination of CGSignature
and TNM-2 on binary testing cohort. As can be seen from the figure, Kaplan-Meier survival analysis shows that the combination
of CGSignature and TNM-2 can stratify the patients into four groups of different prognosis with C-Index (0.740 (95% CI: 0.661
− 0.819)), Hazard Ratio (2.412 (95% CI: 1.650 − 3.525)), and the P-value < 0.0001.
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Supplementary Figure 7. Kaplan-Meier survival analysis of patient overall survival based on the TNM-2 on ternary testing
cohort. As can be seen from the figure, Kaplan-Meier survival analysis shows that the TNM-2 (I, II vs. III) can stratify the
patients into groups of low- and high-risk with C-Index (0.613 (95% CI: 0.491 − 0.735)), Hazard Ratio (3.345 (95% CI: 1.278
− 8.757)), and the P-value = 0.0084.
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Supplementary Figure 8. Kaplan-Meier survival analysis of patient overall survival based on the TNM-3 on ternary testing
cohort. As can be seen from the figure, Kaplan-Meier survival analysis shows that the TNM-3 (I vs. II vs. III) can stratify the
patients into groups of low-, medium-, and high-risk with C-Index (0.632 (95% CI: 0.510 − 0.753)), Hazard Ratio (3.169 (95%
CI: 1.335 − 7.522)), and the P-value = 0.019.
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Supplementary Figure 9. Kaplan-Meier survival analysis of patient overall survival based on the TNM-6 on ternary testing
cohort. As can be seen from the figure, Kaplan-Meier survival analysis shows that the TNM-6 (I vs. IIA vs. IIB vs. IIIA vs. IIIB
vs. IIIC) can stratify the patients into six groups of different prognosis with C-Index (0.681 (95% CI: 0.535 − 0.827)), Hazard
Ratio (1.708 (95% CI: 1.212 − 2.407)), and the P-value = 0.028.

16 / 31



Supplementary Table 8. High-pass (channel 1) wavelet decomposition of short-term, medium-term, and long-term samples
with features of Nucleus Perimeter and Nucleus Roundness. The decomposition was conducted on one low-pass channel and
two high-pass channels. In each figure, the decomposition coefficients were visualized by gradient color from red to blue,
where red represents the high coefficient and blue represents low coefficient. Here shows the high-pass (channel 1) composition
on features of Nucleus Perimeter and Nucleus Roundness. For feature Nucleus Perimeter, major color differences of short-
(dominated by blue color), medium- (mixed color of red and green) and long-term (dominated by red color) patients can be
observed, while only differences of medium-term (mixed color of red and green) from the patients of the other two classes
(dominated by red color) can be seen on the decomposition of Nucleus Roundness.

Nucleus Perimeter Nucleus Roundness

Sh
or

t-
Te

rm
M

ed
iu

m
-T

er
m

L
on

g-
Te

rm

17 / 31



Supplementary Table 9. High-pass (channel 2) wavelet decomposition of short-term, medium-term, and long-term samples
with features of Pan-CK and Cell Area. The decomposition was conducted on one low-pass channel and two high-pass channels.
In each figure, the decomposition coefficients were visualized by gradient color from red to blue, where red represents the high
coefficient and blue represents low coefficient. Here shows the high-pass (channel 2) composition on features of Pan-CK and
Cell Area, major color differences of short-term (dominated by single color of red or blue), medium-term (mixed color from
red to blue), and long-term (dominated by single color of blue or red) patients can be observed from the figures.
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Supplementary Table 10. High-pass (channel 2) wavelet decomposition of short-term, medium-term, and long-term samples
with features of Cytoplasm Area and Nucleus Area. The decomposition was conducted on one low-pass channel and two
high-pass channels. In each figure, the decomposition coefficients were visualized by gradient color from red to blue, where
red represents the high coefficient and blue represents low coefficient. Here shows the high-pass (channel 2) composition on
features of Cytoplasm Area and Nucleus Area, major color differences of medium-term (mixed color of red and green) patient
from short- and long-term (dominated by single color of red or blue) patients can be observed from following figures.
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Supplementary Table 11. High-pass (channel 2) wavelet decomposition of short-term, medium-term, and long-term samples
with features of Nucleus Perimeter and Nucleus Roundness. The decomposition was conducted on one low-pass channel and
two high-pass channels. In each figure, the decomposition coefficients were visualized by gradient color from red to blue,
where red represents the high coefficient and blue represents low coefficient. Here shows the high-pass (channel 2) composition
on features of Nucleus Perimeter and Nucleus Roundness. For feature Nucleus Perimeter, major color differences of short-
(dominated by blue color), medium- (mixed color of red and green) and long-term (dominated by red color) patients can be
observed, while only differences of medium-term (mixed color of red and blue) from the patients of the other two classes
(dominated by red color) can be seen on the decomposition of Nucleus Roundness.
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Supplementary Table 12. Information of antibodies used in this study.

Primary Ab Dilution Company Catalogue number Secondary Ab Dyes

CD68 1:1200 Panovue PPA101A200025 HRP 540
CD8a 1:300 CST 78701T HRP 620
Pan-Keratin 1:200 CST 4545 HRP 690
Foxp3 (D2W8E™) 1:100 CST 98377S HRP 570
CD163 1:100 Panovue PPA102A20025 HRP 650
PD-L1 1:500 CST 78701T HRP 520

Supplementary Figure 10. Training and validation loss value changing along with the binary-class model training on Fold-0
subset. The position marked by the red dash line is the checkpoint of the final optimal model.

21 / 31



Supplementary Figure 11. Training and validation loss value changing along with the binary-class model training on Fold-1
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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Supplementary Figure 12. Training and validation loss value changing along with the binary-class model training on Fold-2
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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Supplementary Figure 13. Training and validation loss value changing along with the binary-class model training on Fold-3
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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Supplementary Figure 14. Training and validation loss value changing along with the binary-class model training on Fold-4
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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Supplementary Figure 15. Training and validation loss value changing along with the ternary-class model training on Fold-0
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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Supplementary Figure 16. Training and validation loss value changing along with the ternary-class model training on Fold-1
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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Supplementary Figure 17. Training and validation loss value changing along with the ternary-class model training on Fold-2
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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Supplementary Figure 18. Training and validation loss value changing along with the ternary-class model training on Fold-3
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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Supplementary Figure 19. Training and validation loss value changing along with the ternary-class model training on Fold-4
subset. The position marked by the red dash line is the checkpoint of the final optimal model.
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