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Abstract

This paper frames causal structure estimation as a machine learning task. The idea is to
treat indicators of causal relationships between variables as ‘labels’ and to exploit available
data on the variables of interest to provide features for the labelling task. Background
scientific knowledge or any available interventional data provide labels on some causal
relationships and the remainder are treated as unlabelled. To illustrate the key ideas,
we develop a distance-based approach (based on bivariate histograms) within a manifold
regularization framework. We present empirical results on three different biological data
sets (including examples where causal effects can be verified by experimental intervention),
that together demonstrate the efficacy and general nature of the approach as well as its
simplicity from a user’s point of view.

Keywords: causal learning, manifold regularization, semi-supervised learning, interven-
tional data, causal graphs

1. Introduction

Causal structure learning is concerned with learning causal relationships between variables.
Such relationships are often represented using directed graphs with nodes corresponding to
the variables of interest. Consider a set of p variables or nodes indexed by V = {1, . . . , p}.
The aspect we focus on in this paper is to determine, for each (ordered) pair (i, j) ∈ V×V ,
whether or not node i exerts a causal influence on node j. In particular, our focus is on the
binary ‘detection’ problem (of learning whether or not node i exerts a causal influence on
node j) rather than estimation of the magnitude of any causal effect.

Methods for learning causal structures can be usefully classified according to whether
the graph is intended to encode direct or total (ancestral) causal relationships. For example
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if variable A acts on B which in turn acts on C, A has an ancestral effect on C (via
B). Here, the graph of direct effects has edges A → B → C, while the graph of total
or ancestral effects has in addition the edge A → C. Methods based on (causal) directed
acyclic graphs (DAGs) are a natural and popular choice for causal discovery (Spirtes et al.,
2000; Pearl, 2009). The PC algorithm (Spirtes et al., 2000) is an important example of
such a method. Using a sequence of tests of conditional independence, the PC algorithm
estimates an underlying causal DAG. Due to the fact that the graph may not be identifiable,
the output is an equivalence class of DAGs (encoded as a completed partially directed
acyclic graph or CPDAG). Here the estimand is intended to encode direct influences. IDA
(Intervention calculus when the DAG is Absent; Maathuis et al., 2009) uses the PC output
to bound the quantitative total causal effect of any node i on any other node j. These
estimated effects can be thresholded to provide a set of edges. FCI (Fast Causal Inference;
Spirtes et al., 2000) and RFCI (Really Fast Causal Inference; Colombo et al., 2012) consider
a type of ancestral graph as estimand and allow for latent variables. Greedy Interventional
Equivalence Search (GIES; Hauser and Bühlmann, 2012) is a score-based approach that
allows for the inclusion of interventional data.

Methods for learning causal structures (such as those above) are often rooted in data-
generating causal models. In a quite different vein, there have been some interesting recent
efforts in the direction of labelling pairs of variables as causal or otherwise, such as in Lopez-
Paz et al. (2015) and Mooij et al. (2016). These approaches are ‘discriminative’ in spirit,
in the sense that they need not be rooted in an explicit data-generating model; rather the
emphasis is on learning how to tell causal and non-causal apart. Our work is in this latter
vein. We address a specific aspect of causal learning—that of estimating edges in a graph
encoding causal relationships between a defined set of vertices—but via a machine learning
approach that allows the inclusion of any available information concerning known cause-
effect relationships. The output of our method is a directed graph that need not be acyclic
(see Spirtes, 1995; Richardson, 1996; Hyttinen et al., 2012, for discussion of cyclic causality)
and whose edges may encode either direct or total/ancestral relationships, as discussed
below. The main differences between our work and previous work on labelling causal pairs
(Lopez-Paz et al., 2015; Mooij et al., 2016) are the specific methods and associated theory
that we put forward, the manifold regularization framework, and the empirical examples.

In general terms the idea is as follows: let D denote the available data and Φ denote any
available knowledge on causal relationships among the variables indexed in V (e.g., based
on background knowledge or experimental intervention). We view the causal learning task
in terms of constructing an estimator of the form Ĝ(D,Φ), where Ĝ is a directed graph with
vertex set V and edge set E(Ĝ), with (i, j)∈E(Ĝ) corresponding to the claim that variable i
has a causal influence on variable j. To put this another way: entries in a binary adjacency
matrix encoding causal relationships are treated as ‘labels’ in a machine learning sense.
From this point of view, the task of constructing the estimator Ĝ(D,Φ) is essentially one of
learning these labels from available data and from any a priori known labels (derived from
Φ). Thus, a key difference with respect to a number of existing methods is the nature of the
inputs needed: our approach requires causal background information Φ as an input while
several existing methods (such as PC) use only observational data. The casual background
information Φ need not be interventional data per se, but must encode knowledge on some
causal relationships in the system (we consider both scenarios in empirical examples below).
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Note also that in our approach the causal status of multiple pairs is coupled via the learning
scheme: loosely speaking (see below for technical details), it is the position of a test pair
on a classification manifold (relative to other pairs) that determines its status.

Our approach differs in several ways from graphical model-based methods. In our ap-
proach, the same framework can be used to estimate either direct or ancestral causal rela-
tionships, depending on the precise input (we show real data examples of both tasks below).
This is because the classifier can be agnostic to the label semantics: provided the Bayes’ risk
for the label of interest is sufficiently low, these labels can in principle be learned. In con-
trast to much of the literature, our approach does not try to provide a full data-generating
model of the causal system but instead focuses on the specific problem of learning edges
encoding causal relationships. As we see in experiments below, this can lead to good em-
pirical performance, but the output is in a sense less rich than a full causal model (see the
Discussion). Our work is motivated by scientific problems where good performance with
respect to this narrower task can be useful in reducing the hypothesis space and targeting
future work.

The remainder of the paper is organized as follows. We first introduce some notation and
discuss in more detail how causal learning can be viewed as a semi-supervised task. We then
discuss a specific instantiation of the general approach, based on manifold regularization
using a simple bivariate featurization. Using this specific approach—which we call Manifold
Regularized Causal Learning (MRCL)—we present empirical results using three biological
data sets. The results cover a range of scenarios and include examples with explicitly
interventional data.

2. Methods

2.1. Notation

Let V = {1, . . . , p} index a set of variables whose mutual causal relationships are of interest.
Let G denote a directed graph with vertex set V and edge set E; where useful, we use
V (G), E(G) to denote its vertex and edge sets and A(G) to denote the corresponding p×p
binary adjacency matrix. To make the connection between causal relationships and machine
learning more transparent, we introduce linear indexing by [k] of the pairs (i, j) ∈ V×V .
Where needed, we make the correspondence explicit, denoting by (i[k], j[k]) the variable pair
corresponding to linear index [k] and by [k(i, j)] the linear index for pair (i, j). Suppose A
is the adjacency matrix of the unknown graph of interest. Let y[k] ∈{−1,+1} be a binary
variable (for convenience mapped onto {−1,+1}) corresponding to the entry (i[k], j[k]) in A;
these y[k]’s are the labels or outputs to be learned. Available data are denoted D. Available
a priori knowledge about causal relationships between the variables V is denoted Φ.

2.2. Causal Semantics

Given data D and background knowledge Φ we aim to construct an estimate Ĝ, the latter
being a directed graph that need not be acyclic. The information in Φ guides the learner.
Two main cases arise, both of which we consider in experiments below:

• Total or ancestral effects. Here, Φ contains information on total effects—for example
via interventional experiments as performed in biology—and the edges in the estimate
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Ĝ are intended to describe such effects. This means that an edge (i, j) ∈ E(Ĝ) is
interpreted to mean that node i is inferred to be a causal ancestor of node j.

• Direct effects. Here, Φ contains information on direct effects (relative to the variable
set V ) and the edges in the estimated graph Ĝ are intended to describe direct effects.
Then, an edge (i, j) ∈ E(Ĝ) is interpreted to mean that i is inferred to be a direct
cause of j (relative to the variable set V ).

Our immediate motivation comes from the experimental sciences and we focus in par-
ticular on causal influences that can, at least in principle, be experimentally verified (even
in the presence of latent variables) and where causal cycles are possible (as is often the case
in biology or economics, see e.g., Hyttinen et al., 2012). Accordingly, we do not demand
acyclicity. In our empirical work in biology, the nature of the underlying chemical/physical
systems means that there are many small magnitude causal effects that are essentially ir-
relevant in the scientific context and this is a characteristic of many problem settings in the
natural and social sciences. This motivates a pragmatic approach assuming that estimated
graphs are not very dense or fully connected nor necessarily transitive1.

2.3. Semi-Supervised Causal Learning

With the notation above, the task is to learn the y[k]’s using D and Φ. This is done
using a semi-supervised estimator ŷ[k](D,Φ) (we make the connection to semi-supervised
learning explicit shortly). For now assume availability of such an estimator (we discuss one
specific approach below). Then from the ŷ[k] we have an estimate of the graph of interest

as Ĝ(D,Φ) = (V,E(Ĝ(D,Φ))) (recall that the vertex set V is known) with the edge set
specified via the semi-supervised learner as

(i, j) ∈ E(Ĝ(D,Φ)) ⇐⇒ ŷ[k(i,j)](D,Φ) = 1. (1)

Background knowledge Φ could be based on relevant science or on available interven-
tional data. For example, in a given scientific setting, certain cause-effect information may
be known from previous work or theory. Alternatively, if some interventional data are avail-
able in the study at hand, this gives information on some causal relationships. Whatever the
source of the information, assume that it is known that certain pairs (i, j) are either causal
pairs (positive information) or not causal pairs (negative information). Using the notation
above, this amounts to knowing, for some pairs [k], the value of y[k]. In semi-supervised
learning terms, the pairs whose causal status is known correspond to the labelled objects
and the remaining pairs are the unlabelled objects.

For each pair [k], some of the data, or some transformation thereof will be used as
predictors or inputs, denote these generically as g[k](D). That is, g[k] is a featurization of
the data, with the featurization specific to variables (i[k], j[k]). Let K be the set of linear
indices (i.e., [k] ∈ K is a variable pair), L ⊂ K be the variable pairs with labels available

1. We emphasize that these are pragmatic assumptions motivated by the nature of experimental data and
scientific applications, and not intended to be fundamental statements about causality. For example,
Hyttinen et al. (2012) make the point that cycles can be removed by considering time-varying data on
a suitable time scale, but that nevertheless cycles are common in causal scientific models in economics,
engineering and biology due to the fact that measurements are usually taken at wider intervals.
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(via Φ) and U = K \L be the set of unlabelled pairs. Let yL be a binary vector comprising
the mL = |L| available labels and yU be an unknown binary vector of length mU = |U|. The
available labels are determined by the background information Φ and we can write yL(Φ)
to make this explicit. A semi-supervised learner gives estimates for the unlabelled objects,
given the data and available labels. That is, an estimate of the form ŷU (g(D),yL(Φ)). With
these in hand we have estimates for all labels and therefore for all edges via (1).

Formulated in this way, it is clear that essentially any combination of featurization g
and semi-supervised learner could be used in this setting. Below, as a practical example,
we explore graph-based manifold learning (following Belkin et al., 2006) combined with a
simple bivariate featurization.

2.4. A Bivariate Featurization

For distance-based learning, we require a distance measure between objects (here, variable
pairs) [k], [k′] ∈ K. The simplest candidate distance between variable pairs [k], [k′] is based
only on the bivariate distribution for the variables comprising the pairs (we make this notion
precise below). Proofs of propositions appearing in this Section are provided in Appendix
A.

2.4.1. Distance between variable pairs

Let Z denote the p-dimensional random variable whose n realizations z(l), l = 1, . . . , n,
comprise the data set D. Assume Z ∈ Zp = [zmin, zmax]p and that Zp is endowed with
the Borel σ-algebra Bp = B(Zp). Let P be the set of all twice continuously differentiable
probability density functions, generically denoted π, with respect to Lebesgue measure Λ2

on (Z2,B2). Let Π[k] be the bivariate (marginal) distribution for components i[k], j[k] ∈ V
of Z.

Assumption 1 Each Π[k] admits a density function π[k] ∈ P.

If available, the densities π[k], π[k′] could be used to define a distance between the pairs
[k], [k′]. Let dP : P × P → [0,∞) denote a pseudo-metric2 on P. Since we do not have
access to the underlying probability density functions, we construct an analogue using the
available data D. Let Sn := [zmin, zmax]2n denote the space of possible bivariate samples
(the sample size is n) and S[k] ∈ Sn denote the subset of the data for the variable pair [k].

That is, S[k] = {(z(l)
i[k], z

(l)
j[k])}l=1,...,n ⊂ Z2.

Let κ : Sn → P be a density estimator (DE). We consider sample quantities of the
form dS = dP ◦ (κ × κ). That is, given data S[k], S[k′] ∈ Sn on two pairs [k], [k′], the DE
is applied separately to produce density estimates κ(S[k]) and κ(S[k′]), that are compared
using dP to give dS(S[k], S[k′]) = dP(κ(S[k]), κ(S[k′])). This construction ensures that dS is
a pseudo-metric without assumptions on the DE κ:

Proposition 1 Assume that dP is a pseudo-metric on P. Then dS is a pseudo-metric on
Sn. If, in addition, κ is injective and dP is a metric on P, then dS is a metric on Sn.

2. Recall that a pseudo-metric d satisfies all of the properties of a metric with the exception that d(x, y) =
0 6=⇒ x = y.
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2.4.2. Choice of distance

For semi-supervised learning we need a notion of distance under which causal pairs are
relatively ‘close’ to each other. For a measurable space X equipped with a measure ρ we

let ‖f‖Lq(ρ) :=
(∫
X |f |

qdρ
) 1
q <∞. The notion of distance that we consider is

dP(π, π̃) := ‖π − π̃‖L2(Λ2).

The right hand side exists since the integrand is continuous on a compact set and thus
bounded. This can be contrasted with the kernel embedding that was proposed for super-
vised causal learning in Lopez-Paz et al. (2015).

Proposition 2 dP is a metric on P.

The main requirement that we have of the DE is that it provides consistent estimation in
the ‖ · ‖L2(Λ2) norm when π ∈ P. Specifically, consider a sequence S(n) in Sn indexed by the

number n of data points. In particular, suppose that S(n) is built from n independent data

points whose distribution is Π (the shorthand notation S(n) i.i.d.∼ Π will be used). Let π be
the density function for Π. Then κ is said to be “consistent” if ‖π−κ(S(n))‖L2(Λ2) = oP (1)

holds for S(n) i.i.d.∼ Π whenever π ∈ P.

Proposition 3 Suppose κ is consistent and that Π, Π̃ admit densities π, π̃ ∈ P. Then, for

S(n) i.i.d.∼ Π, S̃(n) i.i.d.∼ Π̃, where S(n) and S̃(n) are not necessarily independent, we have that
dS(S(n), S̃(n)) = dP(π, π̃) + oP (1).

Thus dS approximates the idealized metric dP in the limit of draws from Π and Π̃. Note
that, in our intended use case, the S(n) and S̃(n) will correspond to bivariate scatter plots
S[k], S[k′] generated from the same underlying z(l), l = 1, . . . , n, and hence S(n) and S̃(n)

will not be independent.
For the experiments in this paper, motivated by computational ease, we used a simple

bivariate histogram as the DE κ. To this end, partition Z2 into an M ×M regular grid
whose (m1,m2)th element is denoted Bm1,m2 . The standard bandwidth notation h = M−1

will also be used. For a scatter plot S ∈ Sn, let xm1,m2 denote the number of elements that
belong to the set Bm1,m2 . Then the histogram estimator is

κ(S)(z′) =
M∑

m1,m2=1

xm1,m2

n

1

h2
I[z′ ∈ Bm1,m2 ], z′ ∈ Z2. (2)

This DE is consistent in the sense of Proposition 3. Indeed:

Proposition 4 Let the bandwidth parameter h of the histogram estimator κ be chosen such
that nh2 → ∞. Then κ is consistent. Moreover, an optimal choice of h � n−1/4 leads to

‖π − κ(S(n))‖L2(Λ2) = OP (n−1/4) whenever S(n) i.i.d.∼ Π and π ∈ P.

We note that this histogram DE is not rate optimal for the class P (for comparison, ker-
nel DEs attain a rate of OP (n−2/3) over the same class P of twice continuously differentiable
bivariate densities considered here, see Wand and Jones, 1994). However, an important ad-
vantage of the histogram DE is that the subsequent evaluation of κ(S) is O(1), compared
with O(n) for the kernel DE.
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2.4.3. Implementation of the DE

The above arguments support the use of a bivariate histogram to provide a simple featur-
ization for variable pairs. In practice, for all examples below, the data were standardized,
then truncated to [−3, 3]2, following which a bivariate histogram with bins of fixed width
0.2 was used. The dimension of the resulting feature matrix was then reduced (to 100)
using PCA.

2.5. Manifold Regularization

Recall that the goal is to estimate binary labels yU for a subset U ⊂ K of variable pairs
given available data D and known labels yL(Φ) for a subset L = K \ U (these are taken to
be obtained from available interventional experiments and/or background knowledge). For
any two pairs [k], [k′] ∈ K, we also have available a distance dS(S[k], S[k′]). This is a task in
semi-supervised learning (see e.g., Belkin et al., 2006; Fergus et al., 2009) and a number of
formulations and methods could be used for estimation in this setting. Here we describe a
specific approach in detail, using manifold regularization methods discussed in Belkin et al.
(2006).

Let x[k] denote a vector whose entries are the bin-counts xi,j , 1 ≤ i, j ≤ M , appearing
in (2), for scatter plot S[k]. Let X =×1≤i,j≤M [0, n] and note that x[k] ∈ X . Then we make
the observation that, for the histogram estimator,

dS(S[k], S[k′]) ∝ ‖x[k] − x[k′]‖2 .

This perspective emphasizes that g[k](D) = x[k] is the featurization that underpins this work,
and that the classification task can be considered as the construction of a map c : X →
{−1,+1}. To develop an approach to semi-supervised classification in the manner of Belkin
et al. (2006), let ρX be a reference measure on X and let K : X ×X → R be a Mercer kernel;
i.e., continuous, symmetric and positive semi-definite. The reproducing kernel Hilbert space,
HK , associated to K can be defined via the integral operator ΣK : L2(ρX )→ L2(ρX ) where

ΣKf(x) =

∫
K(x, x̃)f(x̃)dρX(x̃).

From the fact that K is a Mercer kernel it follows that ΣK is self-adjoint, positive semi-
definite and compact. In particular, Σα

K is well-defined for α ∈ (0,∞). The reproducing

kernel Hilbert space is defined as HK = Σ
1
2
KL

2(ρX ) and its norm is ‖f‖HK := ‖Σ−
1
2

K f‖L2(ρX );
c.f. Corollary 4.13 in Cucker and Zhou (2007).

Recall that mL = |L| is the number of available labels and mU = |U| the number of
unlabelled pairs. Let m = mU+mL (= |K|) be the total number of pairs. Using the distance
function dS we first define an m×m similarity matrix W with entries

W[k],[k′] = exp

(
− 1

2σ2
1

‖x[k] − x[k′]‖22
)

(3)

where σ1 > 0 must be specified. The squared-exponential form is motivated by an ana-
lytic connection between the heat kernel and the Laplace-Beltrami operator, which will be
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exploited in Section 2.5.1. We will use a partition of the matrix corresponding to the sets
U ,L as follows

W =

[
WLL WLU

WUL WUU

]
where we have assumed, without loss of generality, that the variable pairs are ordered so that
the labelled pairs appear in the first mL places, followed by the mU = m −mL unlabelled
pairs. Correspondingly let

y =

[
yL

yU

]
∈ {−1,+1}m

denote a label matrix, where +1 indicate those pairs [k] for which y[k] = 1. The vector yU

is unknown and is the object of estimation.

Let D be the m ×m diagonal matrix with diagonal entries D[k],[k] =
∑

[k′]∈KW[k],[k′].

Define L = D−W (i.e., the un-normalized graph Laplacian; all matrices with O(m2) entries
are denoted as bold capitals to emphasize the potential bottleneck that is associated with
storage and manipulation of these matrices). Let

f =

[
fL

fU

]
∈ Rm

be a vector corresponding to a classification function f : X → R evaluated at the m variable
pairs K, with the superscripts indicating correspondence with the labelled and unlabelled
pairs. Intuitively, we want the sign of f to agree with the known labels yL and also to take
account of the manifold structure encoded in L.

In this work we consider a classifier of the form ĉ(x) = sign(f̂(x)) where f̂ arises from
the Laplacian-regularized least squares method

f̂ = arg inf
f∈HK

‖yL − fL‖22
mL

+ λ1
f>Lf

m
+ λ2‖f‖2HK , (4)

following Section 4.2 of Belkin et al. (2006). Here the first term relates the known labels to
the values of the function f . The second term imposes ‘smoothness’ on the label assignment
in the sense of encouraging solutions where the labels do not change quickly with respect
to the distance metric. The third term is principally to ensure that the infimum remains
well-defined and unique in the situation where there is insufficient data for the first penalty
alone to be sufficient (see Remark 2 in Belkin et al., 2006).

Remark 5 (Choice of loss) It is important to comment on our choice of a squared-error
loss function in (4), which differs from the more natural approach of using hinge loss for
a binary classification task. Our motivation here is principally computational expedience;
the computational burden associated with the m = O(p2) different scatter plots requires that
a light-weight estimation procedure is used. However, we note that we are not the first to
propose the use of squared-error loss in the classification context; it is in fact a standard
approach to classification in the situation when the number of classes is > 2 (e.g., Wang
et al., 2008).
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2.5.1. Consistency of the Classifier

As explained in Remark 5, the use of a squared-error loss function in a classification context
is somewhat unnatural. It is therefore incumbent on us to establish consistency of the
proposed method.

To this end, we exploit the specific form of the similarity matrix used in (3). Indeed, if
we re-write

f>Lf

m
=

1

2m

∑
[k],[k′]∈K

(f(x[k])− f(x[k′]))
2W[k],[k′] (5)

then it can be established (under certain regularity conditions) that, if input data x are
independently drawn from ρX , then (5) converges to the quantity

∫
f(x)∆Mf(x)dρ2

X (x)
(up to proportionality), a smoothness penalty based on weighted Laplace-Beltrami operator
∆M on the manifold M induced by ρX (Grigor’yan, 2006). The convergence occurs as
m,σ2

1m
d+2 →∞ (Theorem 3.1 of Belkin and Niyogi, 2008).

This convergence of the graph Laplacian to the Laplace-Beltrami operator underlies
existing consistency results for semi-supervised regression (e.g., Cao and Chen, 2012) and
is exploited again to establish the consistency of our classifier ĉ(x) = sign(f̂(x)) in Ap-
pendix B. In summary, the ability to assign the correct label to an unlabelled pair [k] ∈ L
depends on both the intrinsic predictability of the label as a function of the scatter plot S[k],
as quantified by the Bayes risk, and the smoothness of the Bayes classifier fρ as quantified

by the largest value α ∈ (0, 1] such that Σ
−α

2
K fρ ∈ L2(ρX ); see Corollary 9 in Appendix B

for full detail.

2.5.2. Implementation of the Classifier

Given training labels yL, label estimates ŷU = sign(f̂U ) are obtained by minimizing the
objective function described above, as explained in Equation 8 in Belkin et al. (2006). This
gives

f̂U = KU ,K

([
ImL 0
0 0

]
KK,K + λ2mLIm +

λ1mL
m2

LKK,K

)−1 [
yL

0

]
(6)

where KU ,K is the mU ×m kernel matrix based on the unlabeled U and total K data, KK,K
is the m ×m kernel matrix based on the total data K and Im denotes an m-dimensional
identity matrix.

Here ŷU provides a point estimate for the unknown labels while f̂U is real-valued and
can be used to rank candidate pairs if required. The linear system in (6) can be solved at a
naive computational cost of O(m3). Computation for large-scale semi-supervised learning
has been studied in the literature (see e.g., Fergus et al., 2009) and a number of approaches
could be used to scale up to larger problems, but were not pursued in this work.

For experiments reported below we employed a similarity matrix (with length scale σ1

as in (3)) and a kernel

K(x,x′) = exp

(
− 1

2σ2
2

‖x− x′‖22
)
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whose length-scale parameter σ2 was set equal to σ1 in the absence of prior knowledge about
the manifold M. The scale σ1 was set to the average distance to the nearest 50 points in
the feature space (in practice estimated via a subsample).

The two penalty parameters in (4) were set to small positive values (λ1 = λ2 = 0.001;
we found results were broadly insensitive to this choice). Following common practice we

worked with the normalized graph Laplacian L̃ := D−
1
2 LD−

1
2 in place of L (see Remark 3

of Belkin et al., 2006).

3. Empirical Results

We tested our approach using three data sets with different characteristics. The key features
of each data set are outlined below, with a full description of each data set appearing
in the respective subsection. In all cases performance was assessed using either held-out
interventional data or scientific knowledge.

• D1: Yeast knockout data. Here, we used a data set due to Kemmeren et al.
(2014), previously considered for causal learning in Peters et al. (2016); Meinshausen
et al. (2016). The data consist of a large number of gene deletion experiments with
corresponding gene expression measurements.

• D2: Kinase intervention data from human cancer cell lines. These data, due
to Hill et al. (2017), involve a small number of interventions on human cells, with
corresponding protein measurements over time.

• D3: Protein data from cancer patient samples. These data arise from The
Cancer Genome Atlas (TCGA) and are presented in Akbani et al. (2014). There are
no interventional data, but the data pertain to relatively well-understood biological
processes allowing inferences to be checked against causal scientific knowledge.

An appealing feature of MRCL is the simplicity with which it can be applied to diverse
problems. In each case below, we simply concatenate available data to form the data set
D and available knowledge/interventions to form Φ, then directly apply the methods as
described.

3.1. General Problem Set-Up

The basic idea in all three problems was as follows: given data on a set of variables, for each
(ordered) pair (i, j) of variables we sought to determine whether or not i has a causal effect
on j. In the case of data sets D1 and D2 the results were assessed against the outcome of
experiments involving explicit interventions. As discussed above, such experiments reveal
ancestral relationships (that need not be direct) and the goal in these examples was to
learn such relationships. The availability of a large number of interventions in D1 allowed
a wider range of experiments, whereas D2 is a smaller data set (but from human cells),
allowing only a relatively limited assessment. In the case of D3, where interventional data
(i.e., interventions on the same biological material that give rise to the training data) were
not available but the relevant biological mechanisms are relatively well understood, we
compared results to a reference mechanistic graph derived from the domain literature. The
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literature itself is in effect an encoding of extensive interventional experiments combined
with biochemical and biophysical knowledge. This gives information on direct edges and
here the edges learned are intended to represent direct causes (relative to the set of observed
variables). Within the semi-supervised set-up, a subset of pairs were labelled at the outset
and the remaining pairs were unlabelled. All empirical results below are for unlabelled
pairs; that is, in all cases assessment is carried out with respect to causal (and non-causal)
relationships that were not used to train the models.

3.2. Data Set D1: Yeast Gene Expression

Data. The data consisted of gene expression levels (log ratios) for a total of ptotal = 6170
genes. Some of the data samples were measurements after knocking out a specific gene (in-
terventional data) and the other samples were without any such intervention (observational
data), with sample sizes of nint = 1479 and nobs = 153 respectively. Each of the genes
intervened on was one of the ptotal genes. Let t(l) be the index of the gene targeted by the
lth intervention. That is, the lth interventional sample was an experiment in which gene t(l)
was knocked out. Let T = {t(1), . . . , t(nint)} be the subset of genes that were the target of
an interventional experiment.

Problem set-up. Our problem set-up was as follows. We sampled a subset C ⊂ T of
the genes that were intervened upon, with |C| = 50, and treated this as the vertex set of
interest (i.e., setting V = C and p = |C| = 50). The goal was to uncover causal relationships
between these p variables.

Since by design interventional data were available for all variables j∈C, we used these
data to define an interventional ‘gold standard’. To this end we used a robust z-score that
considered the change in a variable of interest under intervention, relative to its observational
variation. Let Z int

ij denote the expression level of gene j following intervention on gene i.
For any pair of genes i, j ∈C we say that gene i has a causal effect on gene j if and only
if ζij = |Z int

ij −Mobs
j |/IQRobs

j > τ , where Mobs
j is the median level of gene j (calculated

using half of the observational data samples; the remaining samples were used as training
data—see below), IQRobs

j the corresponding inter-quartile range and τ = 5 was a fixed
threshold. That is, we say there is an (experimentally verified) causal relationship between
gene i and gene j if and only if ζij>τ . An absence of causal effects precludes estimation of
true positive rates; hence we sampled C subject to a sparsity condition (that at least 2.5%
of gene pairs show an effect).

Let A(C) be a p×p binary matrix encoding the causal effects as described in the foregoing
(i.e., A(C)ij = 1 indicates that i has an experimentally verified causal effect on j). Then,
given data on genes C, we set up the learning problem as follows. We treated a fraction ρ
of the entries in A(C) as the available labels Φ. Thus, here m = p2 = 2500, mL = bρmc
and mU = m − mL. Using these labels and data on the variables C, we learned causal
edges as described. This gave estimates for the remaining (unseen) entries in A(C), which
we compared against the corresponding true values. The data set D comprised expression
measurements for the genes in C for nobs

train = 76 observational data samples (those samples
not used to calculate the robust z-scores), plus nint

train interventional data samples where
genes outside the set of interest were intervened upon; that is, a subset of the 1429 genes in
T \C. This set-up ensured that D include neither any of the interventional nor observational
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data that was used to obtain the ground-truth matrix A(C). The total amount of training
data is denoted by ntrain = nobs

train + nint
train. We considered ntrain = 200, 500 and 1000

(corresponding to nint
train = 124, 424 and 924 respectively, sampled at random).

Results. We compared the proposed Manifold Regularized Causal Learning (MRCL) ap-
proach with the following approaches:

• Penalized regression with an `1 penalty (Lasso; Tibshirani, 1996). Each variable j ∈ C
was regressed on all other variables i ∈ C, i 6= j to obtain regression coefficients. This
is not a causal approach as such, but is included as a simple multivariate baseline.

• Intervention-calculus when the DAG is absent (IDA; Maathuis et al., 2009, 2010). A
lower bound for the total causal effect of variable i on variable j was estimated for
each pair i, j ∈ C, i 6= j.

• The PC algorithm (PC; Spirtes et al., 2000). This provides a CPDAG estimate for
the variables C.

• GIES (GIES; Hauser and Bühlmann, 2012). This provides an essential graph estimate
for the variables C, and allows inclusion of interventional data in a principled manner.

As simple baselines, we also included Pearson and Kendall correlation coefficients (Pear-
son and Kendall) and, following a suggestion from a referee, a simple k-nearest neighbor
approach based on the featurization introduced above (k-NN).

We note that the causal methods compared against here differ in various ways from
MRCL in the nature of their inputs and outputs and should not be regarded as direct
competitors. Rather, the aim of the experiments is to investigate how MRCL performs on
real data, whilst providing a set of baselines corresponding to well-known causal tools and
standard correlation measures.

For the methods resulting in a score sij for all pairs i, j ∈ C, i 6= j (i.e., correlation

or regression coefficients, total causal effects, or, for MRCL, the real-valued f̂ in (6)), the
scores were thresholded and pairs (i, j) whose absolute values of the score fell above the
threshold were labelled as ‘causal’. Varying the threshold and calculating true positives and
false positives with respect to the binary unseen entries in the matrix A(C) resulted in a
receiver operating characteristic (ROC) curve.

Figure 1 shows the area under the ROC curve (AUC) as a function of the proportion
ρ of entries in A(C) that were observed, for the three sample sizes. Results were averaged
over 25 iterations. MRCL showed good performance relative to the other approaches for all
12 considered combinations of ntrain and ρ (for the other methods shown in Figure 1, any
variation in performance with ρ was solely due to the changing test set as these methods
do not use the background knowledge Φ). Results for PC, which provides a point estimate
of a graphical object, are shown as points on the ROC plane for the 12 different regimes
in Appendix C (Fig. 6). We considered also the transitive closure (motivated by the na-
ture of the experimental data) and exploiting the background information Φ via additional
constraints. MRCL performs well relative to the other methods in all regimes (see also the
Discussion).

In the above results the pairs whose causal relationship was to be predicted were chosen
at random (i.e., the set of unlabelled pairs was a random subset of the set of all pairs). In
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Figure 1: Results for data set D1 (yeast data), random sampling. Area under the ROC
curve (AUC; with respect to causal relationships determined from unseen in-
terventional data), as a function of the fraction ρ of labels available (labels were
sampled at random). Results are shown for three training data sample sizes ntrain.
Results are mean values over 25 iterations and error bars indicate standard error
of the mean. Additional results for the PC algorithm appear in Appendix C (see
text for details).

contrast, in some settings it may be relevant to predict the effect of intervening on variable
i, without knowing the effect of intervening on i on any other variable. For this setting, the
unlabelled set should comprise entire rows of the causal adjacency matrix A(C). Figure 2
considers this case. To ensure a sufficient number of rows were non-empty, we imposed
the additional restriction on the gene subset C that at least half of the rows had at least
one causal effect. Results for PC are shown in Appendix C (Fig. 7) as points on the ROC
plane. As for the random sampling case above, MRCL offers an improvement over the other
methods. k-NN also performs well relative to the other approaches here.

We additionally compared MRCL with GIES. GIES and MRCL differ in terms of their
required inputs: In addition to data D, MRCL requires binary labels on causal relation-
ships via background information Φ, while GIES requires the interventional data itself and
metadata specifying the intervention targets. For row-wise sampling, to allow for a rea-
sonable comparison, we ran GIES providing the interventional data corresponding to the
rows whose labels are provided to MRCL. The same data was also provided as input to the
other approaches, including in data set D for MRCL. This means the data matrices differ
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Figure 2: Results for data set D1 (yeast data), row-wise sampling. As Figure 1, except
the subset of labels available to the learner were obtained by sampling entire
rows of the causal adjacency matrix. As before, a proportion ρ were sampled.
The remaining rows were then used as test data. Additional results for the PC
algorithm appear in Appendix C (see text for details).

from those above, with sample size dependent on ρ, and for MRCL, D now includes data
that was used to obtain background information Φ (train/test validity is preserved since
it remains the case that all testing is done with respect to entirely unseen interventions).
Results appear in Figure 3, with PC and GIES shown as a points on the ROC plane. MRCL
appears to offer an improvement relative to the other methods (see also the Discussion).
Note that GIES is not directly applicable to the random sampling setting above since it
requires the interventional data with respect to all other variables (and not just a subset
thereof).

3.3. Data Set D2: Protein Time-Course Data

Data. The data consisted of protein measurements for p = 35 proteins measured at seven
time points in four different ‘cell lines’ (BT20, BT549, MCF7 and UACC812; these are
laboratory models of human cancer) and under eight growth conditions. The proteins under
study act as kinases (i.e., catalysts for a biochemical process known as phosphorylation)
and interventions were carried out using kinase inhibitors that block the kinase activity of
specific proteins. A total of four intervention regimes were considered, plus a control regime
with no interventions. The data used here were a subset of the complete data set reported
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Figure 3: Results for data set D1 (yeast data), comparison including GIES, row-wise sam-
pling. ROC curves are shown with respect to causal relationships determined
from unseen interventional data. “TC” indicates use of a transitive closure oper-
ation and “cnstrnts” indicates that the background information Φ was included
via input constraints. Results for PC and GIES are shown as points on the ROC
plane. Note that due to the nature of input required by GIES the data matrices
in this example differ from the row-wise sampling example in Figure 2 (see text
for details). Results are averages over 25 iterations.

in detail in Hill et al. (2017) and were also previously used in a Dialogue for Reverse
Engineering Assessments and Methods (DREAM) challenge on learning causal networks
(Hill et al., 2016).

Problem set-up. Treating each cell line as a separate, independent problem, the inter-
vention regimes were used to define an interventional ‘gold standard’, in a similar vein as
for data set D1. This followed the procedure described in detail in Hill et al. (2016) with
an additional step of taking a majority vote across growth conditions to give a causal gold
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Figure 4: Results for data set D2 (protein time course data). Each panel is a different cell
line, with its own training and (interventional) test data. AUC is with respect to
an entirely held-out intervention. See text for details.

standard for each cell line c. For each cell line c, we formed a data matrix Zc consisting
of all available data for the p = 35 proteins except for one of the intervention regimes.
The intervention regime not included was a kinase inhibitor targeting the protein mTOR.
This intervention was entirely held out and used to provide the test labels. As background
knowledge Φc we took as training labels causal effects under the other interventions. With
this set-up, the task was to determine the (ancestral) causal effects of the entirely unseen
intervention. Note that each cell line c was treated as an entirely different data set and
task, with its own data matrix, background knowledge and interventional test data.

Results. Figure 4 shows AUCs (with respect to changes seen under the test intervention)
for each of the four cell lines and each of the methods. There was no single method that
outperformed all others across all four cell lines. MRCL performed particularly well relative
to the other methods for cell lines BT549 and MCF7 (k-NN also performed well for BT549),
was competitive for cell line UACC812, but performed less well for cell line BT20. We note
also that, for cell lines BT549 and MCF7, the performance of MRCL was competitive
with the best performers in the DREAM challenge and with an analysis reported in Hill
et al. (2017). The latter involved a Bayesian model specifically designed for such data.
In contrast, MRCL was applied directly to a data matrix comprising all training samples
simply collected together.
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3.4. Data Set D3: Human Cancer Data

Data. The data consisted of protein measurements for p = 35 proteins measured in n = 820
human breast cancer samples (from biopsies). The data originate from The Cancer Genome
Atlas (TCGA) Project, are described in Akbani et al. (2014) and were retrieved from The
Cancer Proteome Atlas (TCPA) data portal (Li et al., 2013, https://tcpaportal.org;
data release version 4.0; Pan-Can 19 Level 4 data). Data for many cancer types are available,
but here we focus on a single type (breast cancer) to minimize the potential for confounding
by cancer type. It is at present difficult to carry out interventions in biopsy samples of this
kind. However, we focused on the same 35 proteins as in data set D2, whose mutual causal
relationships are relatively well-understood, and used a reference causal graph for these
proteins based on the biochemical literature (as reported in Hill et al., 2017).

Problem set-up. We formed a data set D consisting of measurements for the p = 35
proteins for three different sample sizes: (i) ntrain = 200, (ii) ntrain = 500 or (iii) all
ntrain = 820 patient samples. For (i) and (ii) patient samples were selected at random.
We then used a random fraction ρ of the reference graph as background knowledge, testing
output on the (unseen) remainder.

Results. Figure 5 shows AUCs (with respect to the held-out causal labels) as a function
of the proportion ρ of causal labels that were observed, for each of the methods and for the
three sample sizes. Results were averaged over 25 iterations. MRCL performed well relative
to the other methods, with performance improving with ρ. Results were qualitatively similar
for the three sample sizes, with increases in AUC for ntrain = 820 and ntrain = 500 relative
to ntrain = 250. Results for PC are shown in Appendix C (Fig. 8) as points on the ROC
plane.

4. Discussion

In this paper, we showed how a key aspect of causal structure learning can be framed as
a machine learning task. Although many available approaches, including those based on
DAGs and related graphical models, offer a well-studied framework, we think it may be
fruitful to revisit some questions in causality using machine learning tools.

In our experiments, based on three real data sets, we found that MRCL performed well
relative to a range of graphical model-based approaches. However, two points should be
noted regarding these comparative results. First, the various methods differ with respect to
their required inputs and the nature of their outputs. This means that in some cases specific
methods may not be an ideal fit to the context of the specific data/task (as detailed when
presenting the empirical results above). Second, the biological systems underlying these
data sets are likely to have features (such as causal insufficiency and cycles) that violate
one or more of the assumptions of some of these methods. That said, we think biological
data sets of the kind we focused on here offer perhaps the best opportunity at present
to empirically study causal learning methods and that causal learning tasks of the kind
addressed here are highly relevant in many applications, in biology and beyond. Hence, we
think that pursuing empirical work on such data is valuable both from methodological and
applied points of view. As more interventional data become available in the future, it will
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Figure 5: Results for data set D3 (human cancer data). Data are protein measurements
from breast cancer patient samples from The Cancer Genome Atlas (TCGA).
AUC is with respect to a reference graph based on the (causal) biochemical liter-
ature. Results are mean values over 25 iterations and error bars indicate standard
error of the mean. See text for details. Additional results appear in Appendix C.

be important to carry out similar analyses in other contexts, in order to better understand
the extent to which our findings generalize to other scientific settings.

An open question from a theoretical point of view is to understand conditions on data-
generating processes needed to permit a discriminative approach as pursued here and we
think this will be an interesting direction for future work. One point of view—analogous
to that used in practical applications of classification—is to estimate the risk of the learner
and thereby report an estimate of (causal) efficacy without having to directly consider
requirements on the underlying system. We think this approach is acceptable when some
causal information is available, since one can then empirically test problem-specific efficacy
(as in our examples above). This then gives confidence with respect to generalization to
new interventions on the system of interest (but does not address the broader theoretical
question).

In our approach, information on multiple variable pairs is coupled via the classifier but
not by global constraints on the graph. In the scientific settings we focused on we did
not consider further coupling via global constraints but such constraints (e.g. enforcing
transitivity) could be relevant in some applications and an interesting direction for further
work. The main advantage of our approach is that it allows regularities in the data to
emerge via learning, rather than having to be encoded via an explicit causal or mechanistic
model. It also naturally provides some uncertainty quantification, in the sense of scores
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that can be used to guide decisions or future experimental work. The main disadvantage
relative to methods rooted in DAGs and related graphical models is the lack of a full causal
model. Albeit under relatively strong assumptions, DAG-based models, once estimated, can
be used to shed light on a huge range of questions concerning causal relationships, including
direct and ancestral effects, and details of post-intervention distributions. In contrast, our
approach in itself provides only estimates of binary causal relationships. That said, given
the efficacy and simplicity of our approach, we think it would be fruitful to consider coupling
it to established causal tools in a two-step approach, with our methods used to learn an
edge structure in a data-driven manner and this structure used to inform a full analysis
in a second step. Such an approach would require some care to avoid bias, and sample
splitting techniques that have been studied in high-dimensional statistics could be relevant
(Wasserman and Roeder, 2009; Städler and Mukherjee, 2017).

5. Code Availability

All computational analysis was performed in R (R Core Team, 2018). Source code for
MRCL and scripts to generate the empirical results presented in Section 3 are available at
https://github.com/Steven-M-Hill/MRCL.
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Appendix A. Proof of Results in the Main Text

In this appendix we provide proofs for the theoretical results in the main text.

Proof [Proposition 1] Given S, S′ ∈ Sn, we obtain from the pseudo-metric properties of
dP each of (i) positivity dS(S, S′) = dP(κ(S), κ(S′)) ≥ 0, (ii) pseudo-identity dS(S, S) =
dP(κ(S), κ(S)) = 0, (iii) symmetry dS(S, S′) = dP(κ(S), κ(S′)) = dP(κ(S′), κ(S)) =
dS(S′, S) and (iv) the triangle inequality dS(S, S′′) = dP(κ(S), κ(S′′)) ≤ dP(κ(S), κ(S′)) +
dP(κ(S′), κ(S′′)) = dS(S, S′) + dS(S′, S′′), for all S, S′, S′′ ∈ Sn.
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Suppose now that κ is injective and dP is a metric on P. Then if it holds that
dS(S, S′) = dP(κ(S), κ(S′)) = 0, it follows that κ(S) = κ(S′) which (from assumption
on κ) implies S = S′ in Sn. Thus under these additional assumptions, dS is a metric on Sn.

Proof [Proposition 2] The non-negativity, symmetry and sub-additivity properties of dP
are clear, so all that remains is to establish that dP(π, π′) = 0 implies π = π′. From the defi-
nition of P, both π and π′ are continuous on Z2. The result is then immediate from the fact
that, since π and π′ are continuous and Z2 is compact, then

∫
Z2
|π(z′)−π′(z′)|2 dΛ2(z′) = 0

implies π and π′ must be identical as functions on Z2.

Proof [Proposition 3] Observe that, using Prop. 2 for sub-additivity of the metric dP ,

dS(S(n), S̃(n)) = dP(κ(S(n)), κ(S̃(n)))

≤ dP(κ(S(n)), π) + dP(π, π̃) + dP(π̃, κ(S̃(n)))

= dP(π, π̃) + ‖π − κ(S(n))‖L2(Λ2) + ‖π̃ − κ(S̃(n))‖L2(Λ2)

Since κ is consistent we have ‖π − κ(S(n))‖2 = oP (1) and ‖π̃ − κ(S̃(n))‖2 = oP (1). This
completes the proof.

Proof [Proposition 4] This proof extends the simpler proof given for the univariate case in
Theorem 6.11 of Wassermann (2006). For convenience, and without loss of generality, we
suppose that Z2 = [0, 1]2. It will be convenient in this section to re-assign the notation z
as a dummy variable in Z2 (instead of in Zp). Let

pi,j =

∫
Bi,j

πdΛ2

be the probability mass assigned to

Bi,j =

[
zmin + (zmax − zmin)

i− 1

M
, zmin + (zmax − zmin)

i

M

)
×
[
zmin + (zmax − zmin)

j − 1

M
, zmin + (zmax − zmin)

j

M

)
,

so that, from binomial properties, the mean and variance of the histogram estimator
κ(S(n))(z) at the point z ∈ Z2 are

m(z) =
pi,j
h2

v(z) =
pi,j(1− pi,j)

nh4
.

Let b(z) = m(z)−π(z) denote the bias of the histogram estimator. The mean square of the
error π(z)− κ(S(n))(z) at a point z′ ∈ Z2 can be bias-variance decomposed:

E{[π(z)− κ(S(n))(z)]2} = b(z)2 + v(z)
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The aim is to obtain independent bounds on both the bias and variance terms next.

To bound the bias term, Taylor’s theorem gives that, for z, z′ ∈ Bi,j ,

π(z′) = π(z) + (z′ − z)> · ∇π(z) +
1

2
(z′ − z)> Ri,j(z) (z′ − z) (7)

where the remainder term satisfies

‖Ri,j(z)‖max ≤ sup
z′′∈Bi,j

‖∇∇>π(z′′)‖max (Taylor)

≤ sup
z′′∈Z2

‖∇∇>π(z′′)‖max < ∞ (continuous on compact domain).

Here ‖M‖max = max{Mi,j} and ∇∇>π denotes the Hessian, which exists since π is twice
continuously differentiable in Z2. Thus for z ∈ Bi,j , integrating (7):

∫
Bi,j

π(z′)dΛ2(z′) = h2π(z) + h2

(
h

2

[
2i− 1
2j − 1

]
− z

)
· ∇π(z) + Ei,j(z)

where the new remainder term can be bounded:

|Ei,j(z)| =

∣∣∣∣∣12
∫
Bi,j

(z′ − z)> Ri,j(z) (z′ − z)dΛ2(z′)

∣∣∣∣∣
≤ 1

2

∫
Bi,j

‖z′ − z‖22dΛ2(z′)× sup
z′′∈Z2

‖∇∇>π(z′′)‖max (8)

≤ 8h4 sup
z′′∈Z2

‖∇∇>π(z′′)‖max =: Ch4

where the constant C is independent of z and i, j. The number 8 (which is not sharp) is
obtained from trivial but tedious computation of the integral in (8) and bounding each term
in the result. Now, for z ∈ Bi,j , the bias is expressed using (7) as

b(z) =
1

h2

∫
Bi,j

π(z′)dΛ2(z′)− π(z)

=

(
h

2

[
2i− 1
2j − 1

]
− z

)
· ∇π(z) +

1

h2
Ei,j(z).
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Now we integrate this expression over x ∈ Bi,j :

∫
Bi,j

b2dΛ2 =

∫
Bi,j

{(
h

2

[
2i− 1
2j − 1

]
− z

)
· ∇π(z) +

1

h2
Ei,j(z)

}2

dΛ2(z)

≤
∫
Bi,j

{(
h

2

[
2i− 1
2j − 1

]
− z

)
· ∇π(z)

}2

dΛ2(z)

+2

∫
Bi,j

∣∣∣∣(h2
[

2i− 1
2j − 1

]
− z

)
· ∇π(z)

∣∣∣∣ 1

h2
|Ei,j(z)|dΛ2(z)

+

∫
Bi,j

1

h4
Ei,j(z)2dΛ2(z)

≤
∫
Bi,j

{(
h

2

[
2i− 1
2j − 1

]
− z

)
· ∇π(z)

}2

dΛ2(z)

+2Ch2

∫
Bi,j

∣∣∣∣(h2
[

2i− 1
2j − 1

]
− z

)
· ∇π(z)

∣∣∣∣ dΛ2(z) + C2h2

To bound these integrals we use Cauchy-Schwarz:

∫
Bi,j

{(
h

2

[
2i− 1
2j − 1

]
− z

)
· ∇π(z)

}2

dΛ2(z) ≤
∫
Bi,j

∥∥∥∥h2
[

2i− 1
2j − 1

]
− z

∥∥∥∥2

2

‖∇π(z)‖22dΛ2(z)

≤ h2

2

∫
Bi,j

‖∇π(z)‖22dΛ2(z) (9)

and

∫
Bi,j

∣∣∣∣(h2
[

2i− 1
2j − 1

]
− z

)
· ∇π(z)

∣∣∣∣dΛ2(z) ≤
∫
Bi,j

∥∥∥∥h2
[

2i− 1
2j − 1

]
− z

∥∥∥∥
2

‖∇π(z)‖2dΛ2(z)

≤ h√
2

∫
Bi,j

‖∇π(z)‖2dΛ2(z). (10)

Both expressions in (9) and (10) are finite since the integrand is continuous and the domain
is compact. The total integrated bias is thus bounded as

∫
Z2

b2dΛ2 ≤ h2

2

∫
Z2

‖∇π(z)‖22dΛ2(z) + C2h2 +O(h3)

To bound the variance term, from the integral form of the mean value theorem we have
that, for some zi,j ∈ Bi,j ,

pi,j =

∫
Bi,j

πdΛ2 = h2π(zi,j).
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The application of the integral form of the mean value theorem is valid since π is continuous
on Z2. Then:∫

Z2

v2dΛ2 =

M∑
i,j=1

∫
Bi,j

vdΛ2

=
M∑
i,j=1

∫
Bi,j

pi,j(1− pi,j)
nh4

dΛ2

=
1

nh2
− 1

nh2

M∑
i,j=1

p2
i,j

=
1

nh2
− h2

n

M∑
i,j=1

π(zi,j)
2

=
1

nh2
− 1

n

(∫
X2

π2dΛ2 + o(1)

)
=

1

nh2
+O

(
1

n

)
Putting this all together to obtain a bound:

E‖π − κ(S(n))‖2L2(Λ2) =

∫
X2

b2dΛ2 +

∫
Z2

vdΛ2 (Fubini)

≤ h2

2

∫
Z2

‖∇π(z)‖22dΛ2(z) + C2h2 +O(h3) +
1

nh2
+O

(
1

n

)
(11)

where E denotes expectation with respect to sampling of the data S(n) ∼ Π. From inspection
of (11), the estimator error vanishes provided that h is chosen such that nh2 → ∞. Since
convergence in expectation implies convergence in probability, we have established that
‖π−κ(S(n))‖L2(Λ2) = oP (1). The bandwidth h∗, which minimizes the upper bound in (11),
is

h∗ =
1

n1/4

(
2∫

Z2
‖∇π(z)‖22dΛ2(z) + 2C2

)1/4

and with this choice we have that E‖π − κ(S(n))‖2L2(Λ2) = OP (n−1/2). For h = h∗ we have

thus established that ‖π − κ(S(n))‖L2(Λ2) = OP (n−1/4).

Appendix B. Consistency of the Classifier

Let X be the compact metric space X =×1≤i,j≤M [0, n] from the main text, where n (the
number of points in each scatter plot) is fixed. Let Y = R, so that {−1,+1} ⊂ Y. This
section studies the performance of the classifier ĉ : X → {−1,+1}, ĉ(x) = sign(f̂), where
f̂ is the Laplacian-regularized least squares method from (4) in the main text, trained on
labelled data {(x[k], y[k]) : [k] ∈ L} and unlabelled data {x[k] : [k] ∈ U}, where x[k] ∈ X and
y[k] ∈ Y. To this end, we must establish a context in which the data pairs (x[k], y[k]) can be
considered to be generated. Let ρX ,Y be a probability distribution on X ×Y, with marginals
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ρX , ρY and conditional ρY|X . In this theoretical investigation we suppose that all data are
generated independently from ρX ,Y , with the values {y[k] : [k] ∈ U} being withheld.

For a generic classifier c : X → {−1,+1}, define the misclassification rate

R(c) =
1

2

∫
|y − c(x)|dρX ,Y(x, y).

This is minimized by cρ(x) := sign(fρ(x)) where fρ : X → Y is the (typically unavailable)
regression function

fρ(x) =

∫
y dρY|X (y|x).

Thus the quantityR(cρ) captures the intrinsic difficulty of the classification task. A classifier
ĉ is said to be consistent (either in expectation, with high probability, etc.) if R(ĉ)→ R(cρ)
in the limit mL →∞ of infinite labelled data (with convergence either in expectation, with
high probability, etc.). Our consistency argument is based around the following straight-
forward bound:

Lemma 6 Fix ε > 0 and let Xε := {x ∈ X : |fρ(x)| < ε}. Then

R(ĉ) ≤ R(cρ) + ρX (Xε) +
1

2ε
‖f̂ − fρ‖L1(ρX ),

where ρX (Xε) denotes the ρX -measure of the set Xε.

Proof For all x ∈ X , y ∈ Y, we have that

|y − sign(f̂(x))| ≤ |y − sign(fρ(x))|+ |sign(fρ(x))− sign(f̂(x))|

so in particular

R(ĉ) ≤ R(cρ) +
1

2
‖sign(fρ)− sign(f̂)‖L1(ρX ). (12)

Now,

‖sign(fρ)− sign(f̂)‖L1(ρX ) =

∫
Xε
|sign(fρ)− sign(f̂)|dρX︸ ︷︷ ︸

(∗)

+

∫
X\Xε

|sign(fρ)− sign(f̂)|dρX︸ ︷︷ ︸
∗∗

.

To bound (∗), we note that the integrand is trivially bounded by 2. To bound (∗∗), we note
that if |fρ(x)| > ε then sign(fρ) 6= sign(f̂) implies that |f̂(x)− fρ(x)| > 2ε. Thus

(∗) + (∗∗) ≤ 2ρX (Xε) +

∫
X\Xε

|fρ(x)− f̂(x)|
ε

dρX (x) = 2ρX (Xε) +
1

ε
‖f̂ − fρ‖L1(ρX )

(13)

Combining (12) and (13) completes the proof.

Next we leverage an existing high-probability consistency result established in the re-
gression (as opposed to classification) context:
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Theorem 7 Suppose fρ is non-constant and that Σ
−α

2
K fρ ∈ L2(ρX ) for some α ∈ (0, 1]. Let

θ = 1
(1+α)(1+s) . Take λ1 = mθ

U and λ2 = mθ
L. Then there exists a finite constant C such

that for any δ ∈ (0, 1), and for mL,mU sufficiently large, we have with probability at least
1− 8δ that

‖f̂ − fρ‖L1(ρX ) ≤ C log

(
2

δ

)
m−αθL . (14)

Proof This result is an immediate consequence of Theorem 5.6 in Cao and Chen (2012),
whose bound on the L2(ρX ) error clearly also implies a bound on the L1(ρX ) error. In
addition, since our intention in what follows is limited to establishing consistency of the
proposed classification method, as opposed to a detailed convergence rate analysis, we have
simplified the presentation by stating a slightly weaker but less-verbose upper bound.

Note how the “for mU sufficiently large” condition in Theorem 7 will typically be au-
tomatically satisfied in our context, where the amount of unlabelled data is mU = O(p2).
Thus the content of (14) is control over f̂−fρ as the number mL of labeled data is increased.

Corollary 8 Under the same assumptions as Theorem 7, we have with probability at least
1− 8δ that

R(ĉ) ≤ R(cρ) + ρX (Xε) +
C

2ε
log

(
2

δ

)
m−αθL . (15)

Corollary 8 makes explicit how the intrinsic difficulty of the classification task depends
on the form of fρ, and in particular the extent to which |fρ(x)| < ε occurs in X . For
typical regression functions fρ with simple roots in X , it will hold that ρX (Xε) = O(ε). An
assumption of this form can therefore be used to complete a high probability consistency
argument:

Corollary 9 (Consistency of the Classifier) Suppose that ρX (Xε) = O(εγ) for some
γ > 0. Under the same assumptions as Theorem 7, there exists a finite constant C̃ such
that, with probability at least 1− 8δ,

R(ĉ) ≤ R(cρ) + C̃

(
log

(
2

δ

)) γ
1+γ

m
− αθγ

1+γ

L .

In particular, this establishes that the classifier ĉ is (with high probability) consistent.

Proof From the hypothesis, ∃B1, ε1 such that ρX (Xε) ≤ B1ε
γ for all ε < ε1. Thus, for

ε < ε1 the difference R(ĉ)−R(cρ) can be bounded via (15) as

R(ĉ)−R(cρ) ≤ ρX (Xε) +
C

2ε
log

(
2

δ

)
m−αθL

≤ B1ε
γ +

B2

ε
=: J(ε)
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whereB2 = C
2 log

(
2
δ

)
m−αθL . Differentiating J and setting to zero reveals that J is minimized

over (0,∞) at

ε∗ =

(
B2

γB1

) 1
1+γ

,

which satisfies ε∗ < ε1 for mL sufficiently large (recall that mL being sufficiently large was
an assumption of Theorem 7). Thus, for mL sufficiently large,

R(ĉ)−R(cρ) ≤ J(ε∗) =
(
γ
− γ

1+γ + γ
1

1+γ

)
B

1
1+γ

1 B
γ

1+γ

2

which, upon substitution for B2, yields the required result with the value for the constant

C̃ =
(
γ
− γ

1+γ + γ
1

1+γ

)
B

1
1+γ

1

(
C
2

) γ
1+γ .
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Appendix C. Additional Figures
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Figure 6: Data set D1 (yeast data), random sampling. ROC curves are shown with respect
to causal relationships determined from unseen interventional data (see Main
Text for details). Results for PC (which returns a point estimate) are shown as
locations on the ROC plane. “TC” indicates use of a transitive closure operation
and “cnstrnts” indicates that the background information Φ was included via
input constraints. [Results shown are for significance level α = 0.01 and for a
lenient interpretation where possible edges are included. Results are averages
over 25 iterations.]
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Figure 7: Data set D1 (yeast data), row-wise sampling. ROC curves are shown with respect
to causal relationships determined from unseen interventional data (see Main
Text for details). Results for PC (which returns a point estimate) are shown as
locations on the ROC plane. “TC” indicates use of a transitive closure operation
and “cnstrnts” indicates that the background information Φ was included via
input constraints. [Results shown are for significance level α = 0.01 and for a
lenient interpretation where possible edges are included. Results are averages
over 25 iterations.]
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Figure 8: Data set D3 (cancer protein data). ROC curves are shown with respect to a ref-
erence graph determined from the scientific literature (see Main Text for details).
Results for PC (which returns a point estimate) are shown as locations on the
ROC plane. “TC” indicates use of a transitive closure operation and “cnstrnts”
indicates that the background information Φ was included via input constraints.
The “TC” results are included here for completeness, but we note that the ref-
erence graph here encodes direct, rather than ancestral, relationships. [Results
shown are for significance level α = 0.01 and for a lenient interpretation where
possible edges are included. Results are averages over 25 iterations.]

29



Hill, Oates, Blythe and Mukherjee

References

R. Akbani, P.K.S. Ng, H.M. Werner, M. Shahmoradgoli, F. Zhang, Z. Ju, W. Liu, J.Y. Yang,
K. Yoshihara, J. Li, S. Ling, E.G. Seviour, P.T. Ram, J.D. Minna, L. Diao, P. Tong,
J.V. Heymach, S.M. Hill, F. Dondelinger, N. Städler, L.A. Byers, F. Meric-Bernstam,
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