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Abstract: Activation processes in biology

Many processes in physics and biology can be understand through the framework of
escape from a metastable state, including (but not limited to) the rates of chemical
reactions, the unfolding of proteins, the nucleation of bubbles, and the condensation of
gases. To understand the kinetics of these processes, we have to be able to calculate
the rate of escape. In this thesis, I solve several of such of escape problems, each
addressing a specific physical or biological system. I first show how the forced unfolding
of heteropolymers could be a process with non-exponential kinetics, developing ideas
about the importance of unfolding pathways in determining kinetics of unfolding. Then,
I consider forced unfolding when a molecule is attached to a yielding (viscoelastic)
substrate, and a constant force is applied. I show that the rates of unfolding depend
on both the elastic and viscous response of the substrate. This problem is related to
the biological process of mechanosensing, when the unfolding ‘sensor’ protein exposes
catalytic residues and generates a chemical signal to the cell. Related to this is the
analysis of population-dynamics study of cells adhesion on substrates, which allows me to
extract key characteristics and parameters of the adhesome complex. Then, I apply the
ideas of escape from a metastable state to ask about the rates of a ligand at the end of a
tethered polymer binding to a surface receptor, using a mean field approach to reduce
the problem to one dimension. I show that there is a trade-off between the entropic
cost of reaching to a receptor vs the volumetric cost of expanding the tether length. I
then show that for a Gaussian chain with multiple ligands along its length, there exists
a finite, non-zero optimal number of ligands to minimise the time taken for the end of
the chain to bind to the surface. Finally, I consider the problem of microswimmers in
an obstacle lattice, calculating their transport properties, and showing how we can use
lattices to examine the underlying stochastic dynamics.
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Dearest John, may you live forever in the winds over the peaks, and may my work
remain unburdened by third-order asymptotic expansions.
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Preface

The second law of thermodynamics is considered so fundamental that it has transcended
the field of physics, and entered into popular culture. It fascinates us; it is our oblivion.
The Universe is marching towards a heat death, as its stores of ‘useful’ energy are slowly
degraded – a future where time itself may cease to have any meaning.

Life exists as a parasite, its own existence dependent on accelerating the Universe’s
decay (of course, the total entropy generated by life on Earth will be but an infinitesimal
portion of that contained in a single black hole, which acts as an ‘entropic sink’). But what
a wondrous parasite it is! Living organisms have ‘learnt’ to harness entropy production
and self-replicate, adapt and flourish. Evolution has made this struggle diverse, across
the micron scale to the kilometre scale (the largest organisms in the world, aspen clonal
colonies, are many square kilometres and can be 100,000 years old!). However, common
threads run across all organisms. One particular thread, relevant for this thesis, is that
all organisms have microscopic structure – they are composed of one, ten, or ten trillion
cells, each of which are approximately the same order of magnitude in size (10-100µm).
Prokaryotes, simpler organisms without a nucleus, are smaller at around 1µm.

I was extremely fortunate to learn my undergraduate cell biology from a converted en-
gineer, Murray Stewart. He tried to invoke physical principles when talking about cellular
processes, and one notion in particular has stuck with me. Prokaryotes, such as bacteria,
have a simple internal structure, without any of the membraned sub-compartments
of eukaryotic cells. As such, they are less able to direct molecules around the cell to
where they are required, and need to rely on simple diffusion for absorbed nutrients
and ions to spread throughout the cell. If we take a response time of 1s for a cell to
respond to an influx of ions (perhaps a chemical gradient), then, using the diffusion
coefficient of water D = 3 × 10−12m2s−1, we get that the largest size of the cell can be√

2 × 3 × 10−12m ≈ 2.5µm. This was the first example I saw that thermal motion was
an important driving force in cellular processes and, looking back, it probably helped
shape my interest in physics towards its application in biological systems.
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Even the larger eukaryotic cells are well-placed to make use of thermal motion.
Protein conformational changes often involve the making or breaking of weak links such
as hydrogen bonds, where the activation energy is of the order of 10kBT . These bonds
are such that they will be broken by thermal fluctuations with the help of a destabilising
force. One good example of this is in forced protein unfolding, either in the muscles,
where titin acts as a force buffer, or in cell-surface adhesion via focal contacts. Here,
the cell cytoskeleton will exert forces on the substrate through membrane-bound protein
complexes, and these may undergo conformational changes as a result. Fluctuations, both
in the substrate, and in the cell, may play a crucial role in the rate of these conformational
changes. This means that we must consider a two-dimensional stochastic process – a
formidable theoretical problem. The general case is impossible to solve completely, and
so we must dream up approximations to try and calculate the reaction time. In fact, it
is possible to make multiple seemingly sensible choices and end up with vastly different
results, as I will show. The art is in finding a choice that gives qualitatively correct
results – not an easy task for coupled stochastic variables.

Once we understand the kinetics of a singular molecular process, one goal of cell
biophysicists must be to coarse-grain. We are interested in the behaviour of cells and
tissues – on the properties and pathologies of cell collectives such as ourselves. In the
context of cell adhesion, we must try and understand how molecular processes translate
upwards. This is an area where physics can play a crucial role – biology creates more and
more data every year, and to make sense of it we must look for sensible simplifications of
behaviour, and new ways of interpreting data. In this thesis, I show that cell populations
can offer insight into more than macroscopic behaviours. Of course, there is a limit to
what you can infer, but it is interesting in and of itself to see clean population kinetics –
it is a truth often related from biologists to physicists that each cell has its own distinct
character. While this is no doubt true of some cell characteristics, in the context of cell
adhesion, we find beautiful examples of nucleation kinetics. In my mind, such discoveries
are why statistical physics is such a vital tool for understanding the behaviour of biological
systems. There is important information to be had everywhere, as long as you know how
to look.

Protein unfolding is far from the only activated process in the cell, and in Chapter
5 I consider entropic barriers, rather than enthalpic barriers. A ligand tethered to the
end of a chain must reach a receptor on the surface some distance away – this is a
problem seen in the thrombin receptor and in cell-cell adhesion. Such problems offer
intriguing avenues for theoretical work, because they offer multi-dimensional problems
in non-trivial geometries. For a surface-based receptor, the tether itself offers another
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entropic constraint (a non-absorbing Gaussian chain suffers an entropic repulsion from a
hard wall), which modifies the scaling relations in the reaction time. I then extend this
to a problem of self-assembly: that of multiple ligands binding in turn to a surface.

In the final chapter of this thesis, I move sideways, and focus on the problem of
microswimmers in obstacle lattices. These are really interesting model systems – the
hydrodynamics of their surface interactions means that their trajectories break time-
reversal symmetry. These surface interactions allow them to traverse lattices much more
efficiently than a classical reflection would. This may have been selected for – faster
organisms can reach food sources faster, and out-compete slower species. The beauty of
these model systems is that with careful experimentation, we may be able to explore
some fundamental ideas surrounding non-equilibrium physics. The final chapter of this
thesis provides a basis for exploring the basic stochastic dynamics driving the motion of
microswimmers.





Chapter 1
Theoretical background

Before we begin, it is necessary to outline the current state of our understanding.
To understand activation processes, one has to understand the underlying thermal
fluctuations, how they are modelled, and the limitations of those models. Once I have
outlined this historical development of fluctuations and thermal motion, I move on to how
the effects of these fluctuations on a single particle can be shifted to an ensemble level,
replacing well-defined particle positions and velocities with a probability density in phase
space. This probability density obeys a partial differential equation, and I demonstrate
how we can derive these partial differential equations. I discuss the limitations and choices
made when we model stochastic processes, and then show how the partial differential
equations were first used to calculate the escape rates from a metastable state. Then,
I show how the calculation of the escape rate can be framed in the context of a first
passage time, and introduce the machinery used to calculate mean first passage times.

1.1 A history of fluctuations in physics

In 1828, Robert Brown published “A brief account of microscopical observations made in
the months of June, July and August 1827, on the particles contained in the pollen of
plants; and on the general existence of active molecules in organic and inorganic bodies”
in a privately circulated pamphlet. In this work, he describes the existence of small active
molecules, initially isolated from pollen grains, of diameters “ 1

15000th - 1
20000th of an inch”

(0.8-1.3µm) [1]. These active molecules were different from the “animalcules” (such as
bacteria), whose free motion in fluids is, amusingly, now a major topic in the modern
field of active matter. Brown observed that these active molecules not only moved within
the fluid, but underwent small shape changes. He was satisfied that these motions were
not due to fluid flow, but belonged to the particles themselves. To check the extent of
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these active molecules, he first checked different parts of the same plant: squeezing the
leaves, and then suspending the material, he found the same thing. His real contribution
lies in ruling out a vital force – he extended his investigation from alive plants, to those
dead “not less than a century”, and then finally on to inorganic materials. All exhibited
these small motions, which came to be known as Brownian motion.

It is not clear that Brown should really be attributed the discovery of Brownian
motion: in 1784, Jan Ingen-Housz published a paper in Journal de Physique discussing
the problem of evaporation of liquid droplets in microscopy, and his proposed solution of
placing a glass coverslip over liquid droplets [2]. In it, he makes the following observation:

As long as the droplet lasts, the entire liquid and consequently everything
that is kept within it is kept in motion by the evaporation [of the droplet],
and this motion can give the impression that some of the corpuscles are living,
even if they have not the slightest life in them. To see clearly how one can
deceive one’s mind on this if one is not careful, one only has to place a drop of
alcohol in the focal point of a microscope and introduce a little finely ground
charcoal therein, and one will see these corpuscles in a confused, continuous
and violent motion, as if they were animalcules which move rapidly around.

While Ingen-Housz did observe a type of Brownian motion in inanimate matter, he
attributes this to flow of fluid. Brown ruled out this possibility by “reducing the drop of
water containing the particles to microscopic minuteness, and prolonging its existence
by immersing it in a transparent fluid of inferior specific gravity, with which it is not
miscible, and in which evaporation is extremely slow”. Brown added small amounts
of water to almond oil, managing to isolate individual active molecules within small
droplets, ruling out the influence of other particles, and observed undiminished activity.

Brown was systematically studied these active particles for a large range of organic
and inorganic materials, finding active molecules in all materials he studied, but he
did not understand the mechanism for their motion, appearing to attribute it to the
molecules themselves. It was not until 1877 that Joseph Delsaux attributed the motion
to the discrete nature of the surrounding fluid [3], and then not until 1888 that Gouy
demonstrated the first experimental proof, by eliminating as many confounding variables
as possible, and finding that the activity of particles was smaller when the fluid viscosity
was higher [4]. Gouy writes

I do not believe after careful observation that it can be doubted that this
is due to accidental currents, vibrations, or temperature differences, but is
instead down to a natural phenomenon, occuring at a constant temperature,
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and due to the constitution of liquids. ... The Brownian motion thus shows
us something that, while certainly not the exact movements of molecules, is
something very close, and provides us with direct and visible proof about
the accuracy of the current assumptions of the nature of heat. If we adopt
these views, the phenomenon – whose study is far from complete – takes on
first-rate importance in molecular physics.

Gouy would prove to be correct. In 1905, as part of his annus mirabilis, Einstein
published his work on the theory of Brownian motion, connecting the movements of
microscopic bodies to the molecular-kinetic theory of heat [5]. Einstein first showed
that the molecular-kinetic theory of heat should give rise to an osmotic pressure for
macroscopic particles, identical to that of smaller, solute molecules. In particular, for
n suspended particles in a volume V ∗, enclosed by a semi-permeable membrane, and
forming part of a total volume V , the osmotic pressure Π is given by

Π = RT

V ∗
n

NA

, (1.1)

where R is the molar gas constant, NA is Avogadro’s number and T is the temperature.
This is just the ideal gas law, with the particles moving according to the equipartition
theorem. Einstein then imposed a force K acting on the particles, exerted everywhere
in the direction of the x-axis. The number of suspended particles per unit volume, ν,
would be a function of x such that the free energy is minimal with respect to small
displacements in the positions of the suspended particles δx:

δF = δE − TδS = 0. (1.2)

The change in energy is given by

δE = −
∫
d3xKνδx, (1.3)

and the change in entropy by

δS =
∫
d3xR

ν

NA

∂δx

∂x
= −R

N

∫
d3xδx

∂ν

∂x
, (1.4)

and so the condition of thermodynamic equilibrium is

−Kν + RT

NA

∂ν

∂x
. (1.5)
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This condition could be allied to the steady-state diffusive flux condition, where the drift
caused by the force K is balanced by diffusion. For spherical particles with a radius a
there will be a drift flux of

Kν

6πηa (1.6)

particles through unit area perpendicular to the x-axis per unit time, where η is the
viscosity of the fluid, and 6πηa is the Stokes drag on a sphere in viscous flow. The
diffusive flux for a system with constant diffusion coefficient D is

−D
∂ν

∂x
(1.7)

particles through unit area perpendicular to the x-axis per unit time, and so the flux
balance equation will read

Kν

6πηa −D
∂v

∂x
= 0 (1.8)

Eqs. (1.5) and (1.8) can be used to find the diffusion coefficient:

D = RT

NA

1
6πηa. (1.9)

This is called the Einstein-Stokes relation, and tells us particles will diffuse slower when
there is greater dissipation as they move in the system. Einstein goes on to show that
the density of suspended particles will indeed follow a diffusion equation as a result of
molecular collisions, and that the mean square displacement of suspended particles is a
linear function of time! Interestingly, at that time, Einstein proposed the measurement
of diffusion coefficients as an accurate measure of Avagadro’s number, which was still not
precisely known.

As one might imagine, this paper sent a shockwave through the world of statistical
physics. There followed a flurry of experimental activity looking to verify Einstein’s
findings, and it is in an early note to experimentalists from Einstein in 1907 that we first
see a discussion about the root mean square velocity [6], and the ghost of the modern
treatment of stochastic processes. Einstein writes that

The molecular theory of heat allows the calculation of the mean value of the
instantaneous velocity a particle possesses at the absolute temperature T , since
the kinetic energy of the particle’s center-of-gravity motion is independent of
the size and nature of the particle and of the nature of its environment, e.g.,
of the liquid in which the particle is suspended; this kinetic energy is equal
to that of a monoatomic gas molecule.
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As such, by equipartition, Einstein noted that the root mean square velocity for particles
of mass m was given by

m

2 ⟨v2⟩ = 3
2kBT. (1.10)

For normal colloidal particles, this velocity is massive (Einstein calculates a speed of
8.6cm/sec for colloidal platinum particles observed by Svedberg) [6]. Einstein explains
that this velocity is not seen in practice. In particular, if one knew nothing about the
molecular theory of heat, the velocity will evolve according to

m
∂v

∂t
= −6πηav, (1.11)

where again, η is the viscosity of the surrounding fluid, and a is the particle radius.
Thus the velocity imparted to the particle will quickly dissipate, with characteristic
time τv = m/6πηav. However, the analysis must be modified to take into account the
molecular theory of heat. As Einstein notes,

we must assume now as well that, due to friction, the particle loses almost all
its initial motion during the very short time d. But we also must assume that
during this time the particle receives new impulses by a process that is the
reverse of internal friction, so that it retains a velocity that on the average
equals

√
v2. But since we must imagine that the direction and magnitude

of these impulses are (almost) independent of the initial direction of motion
and velocity of the particle, we must conclude that the velocity and direction
of motion had changed drastically, and in a completely irregular manner,
already in the extraordinarily short time τv.

In fact, this was also known to Smoluchowski, who published a paper independently
of Einstin in 1906, on his treatment of Brownian motion in relation to the molecular
theory of heat [7]. Smoluchowski started by arguing that Brownian motion was a result
of infinitesimal collisions from random directions with the surrounding fluid molecules.
Smoluchowski showed, by considering the effect of these collisions on the velocity, you
could derive the mean square displacement, finding an expression similar to Einstein’s
that differed only by a numerical factor.

Einstein and Smoluchowski had changed the landscape of statistical physics, by
moving the discussion away from measurements of Brownian motion trajectories, to
measurements of stochastic displacements. It was this understanding that laws could
only be described upon ensemble averaging that allowed mathematical progress to be
made. The next real theoretical development came in 1908, with Langevin’s paper “On
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the theory of Brownian motion” [8]. Langevin wanted to unite Einstein’s result with
Smoluchowski’s, and succeeded, but also stumbled across another way of deriving a
diffusion coefficient directly. Crucially, he writes a full equation for the stochastic force
balance:

m
∂2x

∂t2
= −6πηa∂x

∂t
+ ξ. (1.12)

This expression, known as the Langevin equation, is familiar to all physicists working in
stochastic processes today, and underpins the field. On the mysterious force ξ, Langevin
writes (from translation [9]):

About the complementary force ξ, we know that it is indifferently positive
and negative and that its magnitude is such that it maintains the agitation
of the particle, which the viscous resistance would stop without it.

Langevin multiplied his equation through by the particle position x,

mx
∂2x

∂t2
= −6πηax∂x

∂t
+ ξx

=⇒ m

2
∂2x2

∂t2
−m

(
∂x

∂t

)2

= −3πηa∂x
2

∂t
+ ξx,

(1.13)

where the chain rule has been applied to simplify the partial derivatives. Then, Langevin
asks what happens if we consider a large number of particles. He asserts, by the
irregularity of ξ, that the average value of the quantity ξx is zero, and by acknowledging
that

m

〈(
∂x

∂t

)2〉
= m⟨v2⟩ = kBT (1.14)

by equipartition, he recovers that

m

2

〈
∂2x2

∂t2

〉
+ 3πηa

〈
∂x2

∂t

〉
= kBT, (1.15)

and so the mean square displacement ⟨x2⟩ evolves according to the solution:

∂⟨x2⟩
∂t

= kBT

3πηa + Ce−t/τv , (1.16)
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where τv = m/6πηa is Einstein’s velocity relaxation time. For times t ≫ τv, we get the
diffusive relation

⟨(x(t) − x(0))2⟩ = kBT

3πηat = 2Dt (1.17)

=⇒ D = kBT

6πηa. (1.18)

Thus, Langevin recovered the diffusion coefficient of Einstein. In doing so, he introduced
the concept of the stochastic force ξ, and much of what has followed has been variations
on this theme. By 1917, Ornstein had shown that the Langevin equation was consistent
with statistical mechanics [10, 11]. It became accepted that a Gaussian white noise term
was an appropriate approximation when the velocity relaxation time was very short
compared to experimental timescales. How though, to deal with short times, with few
collisions? One proposed solution was to re-write the Langevin equation, allowing the
friction coefficient to have a memory kernel:

ẋ(t) = v(t) (1.19)

mv̇(t) = f(x) −
∫ t

0
γ(t− t′)v(t′)dt′ + ξ(t), (1.20)

with the problem then shifting to how best to model the dissipation kernel γ(t − t′).
However, we now also have the problem of the random force. The reason for this is easiest
seen conceptually: the source of dissipation is collisions with surrounding molecules, but
these collisions are also the source of the fluctuating random force ξ(t). Therefore, it is
perhaps reasonable to expect some kind of relationship between the relaxation kernel
and the random force. While I will not relate the development of this theory in detail
(for this, see Kubo’s excellent review [12], one of the first to notice this was Nyquist in
1928 [13], in the context of thermal agitation in conductors. The fluctuation-dissipation
relation as we know it now relates the correlation function of the noise to the friction
kernel via the equipartition theorem:

⟨ξ(t)ξ(t′)⟩ = mkBTγ(t− t′). (1.21)

The fluctuation-dissipation relation theorem, and the generalised Langevin equa-
tion, are very useful when we want to find correlation functions. This maybe be in
an experimental context: for example, the intermediate structure factor in spin-echo
measurements [14, 15] is related to a velocity correlation function, and modelling this it is
useful to appeal to the generalised Langevin equation [16]. However, in many applications,
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we seek instead the probability distribution of an ensemble of systems, and its evolution
in time.

1.2 The Fokker-Planck equation

The probability distribution and diffusion equation were first discussed in Einstein’s
original paper [5], but was developed in greater detail by Fokker [17], Planck [18] and
Smoluchowski [19]. The derivation presented here is given by Wang and Uhlenbeck in
their review [20], but I have chosen to reproduce it here, because it shows some interesting
aspects of stochastic processes, and their physical relevance. One starts with what is
called the evolution equation [or equivalently, the Chapman-Kolmogorov equation if one
is interested in conditional probabilities respecting the initial condition, W (x, t|x0, t0)]:

W (x, t+ ∆t) =
∫
dy P (x, t+ ∆t|y, t)W (y, t). (1.22)

We want to get to a differential equation, by taking the limit to small ∆t, where we will
expect that the difference |x − y| will also be small. As such, we can expand in this
difference ∆x = x− y:

W (x, t+ ∆t) =
∫
d(∆x)P (x, t+ ∆t|x− ∆x, t)W (x− ∆x, t) (1.23)

=
∫
d(∆x)P (x− ∆x+ ∆x, t+ ∆t|v − ∆v, t)W (x− ∆x, t)

=
∫
d(∆x)

∞∑
n=0

(−∆x)n

n!
∂n

∂xn
P (x+ ∆x, t+ ∆t|x, t)W (x, t)

= W (x, t) +
∫
d(∆x)

∞∑
n=1

(−∆x)n

n!
∂n

∂xn
P (x+ ∆x, t+ ∆t|x, t)W (x, t).

This is often called the Kramers-Moyal expansion. Taking the sum and differential
operator outside of the integral, we can define the Kramers-Moyal coefficients of the
stochastic process as the limit of the moments as ∆t → 0 (including the n! term for
neatness):

M (n)(x) = lim
∆t→0

1
∆t

∫
d(∆x)(∆x)

n

n! P (x+ ∆x, t+ ∆t|x, t). (1.24)

Now, we can write that

∂W

∂t
= lim

∆t→0

W (x, t+ ∆t) −W (x, t)
∆t =

∞∑
n=1

(−1)n ∂n

∂xn

(
M (n)(x)W (x, t)

)
= LKMW,

(1.25)
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where LKM is the Kramers-Moyal operator. This is the partial differential equation
governing the probability density of the stochastic process x(t), and also the propagator
P (x, t|x0, t0) (taking the initial condition to be δ(x− x0)). The beauty of this is that the
quantities M (n)(x) can be calculated directly from the underlying Langevin equation(s).
Let us examine this for a simple example of constant damping without a potential:

ẋ = v (1.26)
mv̇ = −γv + ξ(t), (1.27)

where ξ(t) is a usual Gaussian noise process, obeying the moments

⟨ξ(t)⟩ = 0 (1.28)
⟨ξ(t1)ξ(t2)⟩ = 2kBTγδ(t1 − t2). (1.29)

The moments of the process are calculated by integrating the Langevin equation. For
the velocity, we can write that

v(t+ ∆t) = v(t) − γ

m

∫ t+∆t

t
v(t′)dt′ + 1

m

∫ t+∆t

t
ξ(t′)dt′. (1.30)

From this, it is fairly clear (using ⟨ξ⟩ = 0) that the first moment of the velocity is given
by

⟨v(t+ ∆t) − v(t)⟩ = − γ

m
v∆t, (1.31)

and so the first Kramers-Moyal coefficient in the velocity is given by

M (1)(v) = lim
∆t→0

⟨v(t+ ∆t) − v(t)⟩ = − γ

m
v. (1.32)

The first moment in the position is given by

⟨x(t+ ∆t) − x(t)⟩ = a1(x,∆t) = v∆t, (1.33)

and so M (1)(x) = v. The second moment of the particle position is also easy to write
down:

⟨(x(∆t) − x(0))2⟩ = v2(∆t)2. (1.34)

Since only terms in the moments of linear order in ∆t contribute to the Kramers-Moyal
coefficients, M (n)(x) = 0 for all values of n ≥ 2. All that is left is to calculate the higher
order Kramers-Moyal coefficients in the velocity.
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The second moment in the velocity can be written as

⟨(v(t) − v(0))2⟩ =
[
γ

m

∫ ∆t

0
v(t′)dt′

]2

+ 1
m2

∫ ∆t

0

∫ ∆t

0
⟨ξ(t′)ξ(t′′)⟩dt′dt′′, (1.35)

where we have used the property ⟨ξ(t′)⟩ = 0 to evaluate a cross-term integral as zero. It
is clear that the first integral will contribute to the moment as O(∆t2), and so we are
left with

⟨(v(t) − v(0))2⟩ = Γ
m2

∫ ∆t

0

∫ ∆t

0
δ(t′ − t′′)dt′dt′′ = 2kBTγ

m2 ∆t. (1.36)

Therefore, the second Kramers-Moyal coefficient in the velocity is given by

M (2)(v) = kBTγ

m2 . (1.37)

There are some arguments that simplify this process: first, all terms not arising from the
stochastic force will contribute at higher than first order. Secondly, all odd moments
vanish for the Gaussian stochastic force, so all odd Kramers-Moyal coefficients are zero.
All that is left is to evaluate the higher order moments for the stochastic force, using
Wick’s relation for moments of a Gaussian:

⟨ξ(t1)ξ(t2)...ξ(t2n)⟩ =
∑

permutations
⟨ξ(t1)ξ(t2)⟩...⟨ξ(t2n−1)ξ(t2n)⟩. (1.38)

As seen in Eq. (1.36), each correlation function contributes a factor of ∆t, so the 2nth

moment is of the order O(∆tn), and the Kramers-Moyal coefficient is zero. In fact, the
Pawula theorem states that a Kramers-Moyal expansion must terminate at the first or
second term, or not at all. If it terminates at the second term (as is the case with a
Gaussian stochastic force), the resulting differential equation for the probability density
W (x, v, t) is the classical Fokker-Planck equation of a free Brownian particle:

∂W

∂t
+ ∂(vW )

∂x
= γ

m

∂

∂v

(
vW + kBT

m

∂W

∂v

)
. (1.39)

1.3 Interpretation of stochastic integrals

The calculation above is simple if your noise is not coordinate-dependent. This is not
always the case. Consider the Langevin equation

q̇ = F (q) +G(q)ξ(t), (1.40)
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where ξ(t) is a normalised Gaussian white noise source, with zero mean and unit variance.
This type of coordinate-dependent fluctuation is called multiplicative noise, and leads to
a dilemna in the derivation of the Fokker-Planck equation. Following our simple Langevin
equation, we can create an integral equation

q(∆t) = q(0) +
∫ ∆t

0
F (q(t′))dt′ +

∫ ∆t

0
G(q(t′))ξ(t′)dt′. (1.41)

The problem is that the second term on the RHS is not an integral in the typical sense.
The function ξ(t) is neither continuous, nor differentiable, and so we have to define what
we mean by integration. There are two common interpretations of stochastic processes
in this way: one based on the Ito calculus, the other - on the Stratonovich assumption.
To illustrate this, we will cover the derivation of the Fokker-Planck equation once more,
carefully showing where the two interpretations differ. If we assume that ∆t is small,
then we can expand the continuous functions F (q(t′)) and G(q(t′) at t = 0:

q(∆t) − q(0) =
∫ ∆t

0
(F (q(0)) + F ′(q(0))(q(t′) − q(0)) + ...)dt′

+
∫ ∆t

0
ξ(t′)(G(q(0)) +G′(q(0))(q(t′) − q(0)) + ...)dt′ (1.42)

The point of this expansion is that you can iterate by substituting for q(t′) − q(0),
recovering that

q(∆t) − q(0) = F (q(0))
∫ ∆t

0
dt′

+ F ′(q(0))
∫ ∆t

0

∫ t′

0
[F (q(t′′)) +G(q(t′′)ξ(t′′)]dt′′dt′

+G(q(0))
∫ ∆t

0
ξ(t′)dt′

+G′(q(0))
∫ ∆t

0

∫ t′

0
[F (q(t′′)) +G(q(t′′))ξ(t′′)]ξ(t′)dt′′dt′

+ ...

(1.43)

The higher order terms in the expansion are all irrelevant for calculation of Kramers-
Moyal coefficients, because they contribute terms of O(∆t2) or higher. We will show this
once we have considered the terms above. It will be useful to define the function:

ω(τ) =
∫ τ

0
ξ(t)dt , (1.44)
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which has the following properties: ⟨ω(τ)⟩ = 0 and ⟨ω(τ1)ω(τ2)⟩ = min[τ1, τ2]. These
properties are derived in Risken [21]. Using this notation we can rewrite our expansion

q(∆t) − q(0) = F (q(0))∆t+ F ′(q(0))F (q(0))∆t
2

2
+ F ′(q(0))G(q(0))ω(∆t)
+G(q(0))ω(∆t) +G′(q(0))F (q(0))ω(∆t)

+G′(q(0))G(q(0))
∫ ∆t

0
ω(t′)ξ(t′)dt′.

(1.45)

Now, performing the average, using that ⟨ω(∆t)⟩ = 0 and dropping terms of O(∆t2), we
obtain

⟨q(∆t) − q(0)⟩ = F (q(0))∆t+G(q(0))G′(q(0))
〈∫ ∆t

0
ω(t′)ξ(t′)dt′

〉
(1.46)

It is the treatment of this stochastic integral that is different for the Ito and Stratonovich
representations (and other versions of this analysis). In the Ito calculus, the integral is
defined as a sum of small steps according to the scheme

∫ τ

0
ω(t′)ξ(t′)dt′ = lim

N→∞

N−1∑
i

ω(ti)[ω(ti+1) − ω(ti)], (1.47)

where ti = iτ/N . The expression ω(ti+1) − ω(ti) = ξ(ti)(ti+1 − ti) is the part of the
integrand associated with the noise term ξ, and the multiplying factor ω(t′) is sampled
at the beginning of each interval {ti, ti+1}. We can use the properties of ω(t) to simplify
this expression:

〈∫ ∆t

0
ω(t′)ξ(t′)dt′

〉
I

= lim
N→∞

N−1∑
i

(⟨ω(ti)ω(ti+1)⟩ − ⟨ω(ti)ω(ti)⟩)

= min[ti+1, ti] − min[ti, ti] = 0
(1.48)

By contrast, the Stratonovich integral samples the function ω(t′) in the middle of the
interval {ti, ti+1}:

∫ τ

0
ω(t′)ξ(t′)dt′ = lim

N→∞

N−1∑
i

ω
(
ti + ti+1

2

)
[ω(ti+1) − ω(ti)]. (1.49)
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This leads to a different average value for the integral:
〈∫ ∆t

0
ω(t′)ξ(t′)dt′

〉
S

= 1
2 lim

N→∞

N−1∑
i=0

(⟨ω(ti+1)ω(ti+1)⟩ + ⟨ω(ti)ω(ti+1)⟩

− ⟨ω(ti+1)ω(ti)⟩ − ⟨ω(ti)ω(ti)⟩)

= 1
2 lim

N→∞

N−1∑
i=0

(ti+1 + ti − ti − ti) = 1
2 lim

N→∞

N−1∑
i=0

(ti+1 − ti)

= ∆t
2 (1.50)

As such, the moments for the Ito and Stratonovich Fokker-Planck equations are different:

M
(1)
I (q) = lim

∆t→0

1
∆t⟨q(∆t) − q(0)⟩I = F (q) (1.51)

M
(1)
S (q) = lim

∆t→0

1
∆t⟨q(∆t) − q(0)⟩S = F (q) + 1

2G(q)G′(q). (1.52)

The second moment is the same for the Ito and Stratonovich interpretations: M (2)(q) =
1
2G

2(q), but this is a general feature in Fokker-Planck equations. Where a noise term
appears in a variable’s Langevin equation, then the first Kramers-Moyal coefficient will
differ by a term due to the gradient of the noise field (for constant coefficient noise
sources, there will be no difference between the Ito and Stratonovich Fokker-Planck
equations). These equations can be generalised to multiple dimensions:

q̇α = Fα(q(t)) +Gi
α(q(t))ξi(t). (1.53)

For multiple dimensions, the Fokker-Planck equation in the Stratonovich interpretation
takes the form

∂P (q, t)
∂t

=
{

− ∂

∂qα

(
Fα(q) + 1

2G
i
β(q)∂G

k
α(q)
∂qβ

δik

)
+ 1

2
∂2

∂qα∂qβ

Gi
α(q)Gk

β(q)δik

}
P (q, t)

= LS
F P (q)P (q, t), (1.54)

while the Ito Fokker-Planck equation is

∂P (q, t)
∂t

=
{

− ∂

∂qα

Fα(q) + 1
2

∂2

∂qα∂qβ

Gi
α(q)Gk

β(q)δik

}
P (q, t)

= LI
F P (q)P (q, t). (1.55)
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Physics has typically taken the Stratonovich interpretation as the Fokker-Planck equation.
There are good practical reasons for doing this: the Stratonovich interpretation works
if the stochastic process is the limiting case τ → 0 of coloured noise, ⟨ξ(t)ξ(t′)⟩ =
exp[−|t − t′|/τ ]. This is a good physical interpretation, as in reality, no collisions are
instantaneous. In fact, the seminal Wong-Zakai theorem [22] shows that if the Wiener
white-noise stochastic process ξ(t) is the approximation of a sequence of n independent
but continuous processes (which is certainly the case with Brownian motion, when each
collision event is an act of momentum transfer, with fast subsequent decay), then the
Langevin equation (1.40) is taking a different form:

q̇ =
[
F (q) + 1

2G(q)∂G(q)
∂q

]
+G(q)ξ(t), (1.56)

which leads to the Stratonovich form of the Fokker-Planck equation following the classical
Itoh stochastic calculus. So the resolution of the ‘Itoh-Stratonovich dilemma’ is in
the interpretation of the underlying physics, which leads to the Langevin stochastic
differential equation. It is not a matter of choice. The Itoh calculus is the mathematically
correct way of working with such equations. So, if the underlying physics is such that
(1.40) with the true Wiener noise ξ(t) is valid, then the Itoh Fokker-Planck equation
(1.55) follows; this is thought to often be the case in financial statistics. But the Brownian
motion, and many other thermal-fluctuation driven processes, follow the Wong-Zakai
theorem and result in the modified Langevin equation (1.56), as long as there is a reason
for multiplicative factor in the noise. Then the Stratonovich Fokker-Planck equation
(1.54) follows.

In practical cases, it makes sense that we should try and test how good the Stratonovich
interpretation is before we try and make predictions arising from it. At the end of
this thesis, in Chapter 6, I propose a simple experimental test for the dynamics of
microswimmers, using a spatially varying diffusion coefficient.

1.4 Overdamped dynamics

Let us write the dynamics of particles subject to thermal motion and an external potential
in the notation of generalised coordinates:

ẋ = v (1.57)

v̇ = − 1
m

∇V (x) − γ

m
v + 1

m

√
2kBTγξ(t). (1.58)
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We can use the results above to produce a Fokker-Planck equation:

∂f

∂t
+ ∇x · (vf) = 1

m
∇v · ([∇V (x) + γv] f) + kBTγ

m2 ∇2
vf (1.59)

However, at a cellular and molecular level, the velocity relaxation timescale m/γ is
often very small compared to experimental timescales. We can see this by considering
the Reynolds number, a dimensionless variable considering the balance of kinetic vs.
dissipative forces:

Re = K.E
fresa

∝ ρa3v2

γva
= ρav

η
, (1.60)

where a is the size of the particle, v is its characteristic velocity, and γ is the coefficient
of dissipative friction, which for a sphere in viscous flow is given by γ = 6πηa. On a
length scale of cells (1 − 10µm), the speed must be v ∼ 0.1 − 1 m/s to reach Re = 1. For
all realistic speeds, at the cell (and even more so, on the subcellular level of proteins) the
Reynolds number is vanishingly small, and no momentum transfer could be taking place.

In the case of low Reynolds flows, fluctuations in the velocity distribution decay away
very fast, since the velocity relaxation time, m/γ, is very small compared to experimental
timescales, and there is no observable ballistic part of the particle trajectories. In this case,
it is possible to integrate out the fast variable of velocity, and reduce the Fokker-Planck
to an equation purely in position x. We call this equation the Smoluchowski equation, as
it was discussed by Smoluchowski in his 1916 paper [19].

It is possible to derive the Smoluchowski equation by assuming that the velocity is
always in its equilibrium Maxwell distribution, and then averaging over this distribution
in the limit of small velocity relaxation time. Such a derivation typically relies on
an appropriate non-dimensionalisation of the Fokker-Planck equation, which is usually
potential-dependent and therefore not easily applicable to more complex situations. Here,
I consider an approach taken directly from the solution to the underlying stochastic
differential equations. Starting with the full Langevin equation that includes the inertial
effects:

v̇ = − 1
m

∇V (x) − γ

m
v + 1

m

√
2kBTγξ(t) (1.61)

We can write the formal solution to Eq. (1.61) as

v(t) = v(0)e−t/τv − 1
m

∫ t

0
dt′ ∇V (x(t′))e−(t−t′)/τv +

√
2kBTγ

m

∫ t

0
dt′ e−(t−t′)/τvξ(t′), (1.62)

where τv = m/γ is the velocity relaxation time, as usual. This solution is deceptively
simple, but riddled with hidden mathematical complications. The final term on the
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right hand side is a stochastic integral, and since the function ξ(t) is neither continuous,
nor differentiable, its exact meaning is a little unclear (see the earlier discussion of
Itoh-Stratonovich issues). Here, we need only that

lim
τv→0

( 1
τv

e−(t−t′)/τv

)
= δ(t− t′), (1.63)

i.e. there is no memory in the velocity, and the instantaneous velocity of the particle has
contributions only from the present moment. In this limit, we can write the velocity as

v(t) = −1
γ

∫ t

0
dt′ ∇V (x(t′))δ(t− t′) +

√
2kBT

γ

∫ t

0
dt′ξ(t′)δ(t− t′)

= −1
γ

∇V (x) +
√

2kBT

γ
ξ(t).

(1.64)

Then, we substitute this in (1.57) and obtain the stochastic differential equation for x:

ẋ = −1
γ

∇V (x) +
√

2kBT

γ
ξ(t). (1.65)

This is the familiar overdamped Langevin equation, and from this we can use the equation
derived earlier to directly write down the equation for its probability density (with the
velocity averaged out):

∂w

∂t
= kBT

γ

∂2w

∂x2 − 1
γ

∂

∂x
(−∇V (x)w(x, t)) = D

∂

∂x

(
∇V (x)
kBT

w + ∂w(x, t)
∂x

)
(1.66)

We can see that is is valid in the limit τv → 0. The Smoluchowski equation is often
written as

∂w

∂t
= −∂J

∂x
, with J = −De−βV (x) ∂

∂x

(
eβV (x)w(x, t)

)
(1.67)

being the probability flux. Here, and throughout the thesis, β = 1/kBT is the inverse
temperature.

1.5 Escape from metastable state: Kramers theory

We have now formed a theoretical framework for understanding thermally driven motion,
either looking at the individual particles (Langevin equation), or the distribution of an
ensemble of thermally driven particles (Fokker-Planck/Smoluchowski equation). Now, we
use this formulation to describe the rate of escape from a metastable state, as illustrated in
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Fig. 1.1. Here, we will look at the high-friction limit, where the dynamics is overdamped.
Additionally, we consider only a high-temperature classical limit, where we can neglect
quantum effects. Quantum mechanical treatment of the escape problem is a fascinating
and beautiful topic, but outside the scope of this work.

xCxA

xB

x

E(x)
EC

Fig. 1.1 A schematic showing two potential minima, state A and state B, separated by
an energy barrier of size Ec, positioned at the state x = xc. Kramers calculated the
steady-state non-equilibrium rate of transition from state A to state B.

The seminal approach to the escape problem was described by Kramers in [23]. Also
important in this context is the work of Brinkman [24], who added the analysis of
detailed balance between the states in a two-well potential. On a basic level, consider
the constant-flux idea in equilibrium, and we know the form of the flux:

J(x, t) = −D∂P (x, t)
∂x

+ f(x)
γ

P (x, t) = −De−βE(x) ∂

∂x

[
eβE(x)P (x, t)

]
. (1.68)

At constant J , we can integrate this, and use the fact that the potential energy in the
state B is large and negative (so eβE(B) → 0):

∫ B

A
JeβE(s)ds = −D

[
eβE(x)P (x)

]B
A

= DeβE(A)P (A). (1.69)

I.e. the particles are absorbed at the boundary B. Then, we may write the (constant)
flux over the barrier as

J = DeβE(A)P (A)∫ B
A eβE(s)ds

. (1.70)

The denominator will be dominated by the largest values of the energy, at the barrier
top C. To demonstrate this, and make use of approximation, we can expand the energy
around the barrier: E(x) ≈ EC − 1

2ωC(x−xC)2, with ωC the curvature around the barrier
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top, and make the approximation that the barrier height EC is much greater than the
thermal energy kBT . In this limit, we may write that

∫ B

A
eβE(s)ds =

∫ ∞

−∞
eβ[EC−ωC(x−x0)2/2] =

√
2πkBT

ωC

eβEC (1.71)

The rate constant k = J/NA, where NA is the number of particles in well A:

NA ≈
∫

near A
dsP (A)e−βωA(x−x0)2/2 = P (A)

√
2πkBT

ωA

e, (1.72)

where ωA is the curvature of the potential energy around the metastable minimum. Now
we can write the rate constant k as

k = J

NA

=
√
ωAωC

2πγ e−β∆E, (1.73)

where ∆E = EC − EA is the height of the barrier separating the two wells. Depending
on the precise geometry of the confining potentials, the rate constant pre-factor may
be modified (for instance, the quadratic expansion of energy would not be valid for a
cusp-shaped potential), but there always is this common suppression of the rate due to
the height of the energy barrier (c.f. the Arrhenius law of thermal activation in chemical
reactions). Such rates are important in problems of protein folding and unfolding, and
often measured single-molecule atomic force microscopy. This is a useful approach when
the energy barriers are large. If we wish to be more accurate with our calculation of
reaction rate constants, especially when the β∆E ≫ 1 limit is not strong, we must
turn to more sophisticated machinery; with many situations are described very well by
Gardiner [25].

1.6 Mean first passage time

Suppose we have a region of space that is bounded by walls. Some of these walls, the
surface Ω, allow confined particles to exit the region, and some of them reflect particles
back into the confined region. A sensible question to ask might be: how long does it
take particles to exit our region of space? In the case of particles subject to thermal
motion, this question only makes sense statistically: what is the probability that a
particle starting at a position x′ at t = 0 exits the region at some later time t? We can
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certainly find out what the probability is that the particle still remains in the region is:

Q(t) =
∫

V
dxP (x, t|x′, 0). (1.74)

The transition probability P (x, t|x′, t′) is found by solving the underlying Fokker-Planck
equation, subject to some specific boundary conditions: where the boundary is hard,
a zero flux boundary condition is implemented (∂P/∂n) = 0 for the vector normal to
the reflecting surface, n. For any boundary where the particle may escape, we must
implement the absorbing boundary condition P (x, t|x′, t′)Ω = 0.

It is interesting to spend a moment understanding the physical meaning of the
absorbing boundary condition. What it means is that any particle that reaches the
boundary is no longer considered part of the probability distribution. One of the
consequences is that the probability density is no longer normalised: the total ‘number
of particles’ is depleting, and at t → ∞ we may expect none to remain in the box. The
transition probability P (x, t|x′, t′) can be interpreted a sum over weighted paths. When
we calculate the survival probability Q(t) for particles that have not exited our confined
region, we must sum over those paths that have not exited the region at any earlier time.
At any time t, we can write that the Chapman-Kolmogorov equation for the probability
of being at a point x within the region as

P (x, t|x′, 0) =
∫

V
P (x, t|x′′, t′′)P (x′′, t′′|x′, 0) dx′′ +

∫
P (x, t|Ω, t′′)P (Ω, t′′|x′, 0) dΩ ,

(1.75)
where the second integral (when adequately normalised) is over the paths that have
touched the absorbing surface Ω. Observing the absorbing boundary condition means
the second integral is strictly zero (or appropriately modified in the cases when the type
of the ‘exit condition’ is not a simple unconditional exit, e.g. [26]).

Suppose we have the survival probability Q(t), defined in (1.74). This is a monotoni-
cally decreasing function from one (at t = 0) to zero (at t → ∞). What is the probability
that a particle starting at x′ will leave the region V between the times t and t+ δt? The
difference Q(t) −Q(t+ dt) is essentially the probability of particles to have escaped in
this interval of time, which we can write as f(t)dt defining the probability distribution of
escape times:

f(t|x′, 0) = −∂Q(t|x′, 0)
∂t

. (1.76)

Then the average time of particles to escape, or the Mean First Passage Time, is simply

⟨t(x′)⟩ =
∫ ∞

0
t f(t|x′, 0)dt =

∫ ∞

0
Q(t|x′, 0)dt =

∫ ∞

0

∫
V
P (x, t|x′, 0) dxdt, (1.77)
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where the second relation obtained via integration by parts. Naturally, the MFPT
remains a function of the initial position x′.

We now wish to derive a differential eqaution that would allow finding the MFPT
⟨t(x′)⟩, in a 1D diffusion process along the axis x. It is immediately clear that, to achieve
this, we need diferential operators that act on x′, that is, on the initial position of the
stochastic process determined by P (x, t|x′, 0). If we write the Chapman-Kolmogorov
equation, and take the time derivative, then:

˙P (x, t|x′, 0) =
∫
Ṗ (x, t|x′′, t′′)P (x′′, t′′|x′, 0) dx′′

=
∫

L(x)P (x, t|x′′, t′′)P (x′′, t′′|x′, 0) dx′′
(1.78)

where L(x) is the Fokker-Planck (or Smoluchowski) operator

L(x) = D
∂

∂x

[
e−βV (x) ∂

∂x
eβV (x)

]
. (1.79)

If, on the other hand, we take the time-derivative over the time t′′, the left-hand side will
be zero (as it does not depend on this time). On the other hand, t′′ appears twice under
the Chapman-Kolmogorov integral:

0 =
∫ ∂

∂t′′
P (x, t|x′′, t′′)P (x′′, t′′|x′, 0) dx′′ +

∫
P (x, t|x′′, t′′) ∂

∂t′′
P (x′′, t′′|x′, 0) dx′′

=
∫ [

∂

∂t′′
P (x, t|x′′, t′′)P (x′′, t′′|x′, 0) + P (x, t|x′′, t′′)L(x′′)P (x′′, t′′|x′, 0)

]
dx′′.

(1.80)

By renaming the variables and integrating by parts, one defines the so-called ‘backward’
or adjoint Fokker-Planck operator:

0 =
∫ [

∂

∂t′′
P (x, t|x′′, t′′)P (x′′, t′′|x′, 0) − L†(x′′)P (x, t|x′′, t′′)P (x′′, t′′|x′, 0)

]
dx′′

=
∫ [

∂

∂t′′
P (x, t|x′′, t′′) + L†(x′′)P (x, t|x′′, t′′)

]
P (x′′, t′′|x′, 0)dx′′,

(1.81)

where
L†(x) = D

∂

∂x

[
eβV (x) ∂

∂x
e−βV (x)

]
= D

(
−∇V (x)

kBT

∂

∂x
+ ∂2

∂x2

)
. (1.82)

The backward Fokker-Planck equation can then be written down:

∂P (x, t|x′, t′)
∂t′

= −L†(x′)P (x, t|x′, t′). (1.83)
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The details of this derivation, and the discussion of the adjoint Fokker-Planck operator
are found in textbooks [27, 28, 25]. Now we have the ability to derive the equation for
MFPT. Start with applying the adjoint operator:

L†(x′)⟨t(x′)⟩ =
∫ ∞

0

∫
V

L†(x′)P (x, t|x′, t′) dxdt = −
∫ ∞

0

∫
V

∂

∂t′
P (x, t|x′, t′) dxdt

=
∫ ∞

0

∫
V

∂

∂t
P (x, t− t′|x′, 0) dxdt =

∫ ∞

0
dt
∂

∂t

∫
V
P (x, t|x′, 0) dx

=
∫ ∞

0
dt
∂

∂t
Q(t) = −

∫ ∞

0
f(t|x′, 0) dt = −1

(1.84)

This finally gives

D
∂

∂x

[
eβV (x) ∂

∂x

(
e−βV (x)⟨t(x′)⟩

)]
= −1. (1.85)

Integrating this equation twice gives the solution that respects the required boundary
conditions:

⟨t(x′)⟩ = 1
D

∫ L

x′
eβV (x)

(∫ x

B
e−βV (y) dy

)
, (1.86)

where the upper limit L is the position of the absorbing boundary, where P (x = L) = 0,
and the lower limit B is the position of any reflecting boundary which confines the
away-motion of the particle along x (in many cases, in a confining potential V (x), that
limit is B = −∞). Of course, the initial position x′ remains the argument of MFPT.

The utility of the mean first passage time could be shown is we approximate the
survival probability as a generic decaying function: Q(t|x′, 0) ≈ e−t/T (x′). The assumption
has to be that the probability of reacting (or ‘escaping’ at the absorbing point) is time-
independent, with some rate constant k:

Q(t+ ∆t|x′, 0) = (1 − k∆t)Q(t|x′, 0) (1.87)

Then, we can write this as
∂Q

∂t
= −kQ, (1.88)

and so the survival probability is indeed an exponential, and importantly, the rate
constant k is the reciprocal of the mean first passage time T (x′):

T (x′) =
∫ ∞

0
dtQ(t|x′, 0) =

∫ ∞

0
dt e−kt = 1

k
, (1.89)

This is not true for all Markov processes, especially at short times: then we must
care about the details of the process. A good example is that of transitions between
two states in a finite state Markov chain such as a chemical reaction. Starting with the
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chemical kinetic equations of transition [1] → [2] → [3]:

∂N1

∂t
= −k1N1(t) (1.90)

∂N2

∂t
= k1N1(t) − k2N2(t) (1.91)

∂N3

∂t
= k2N2(t) (1.92)

This can be solved explicitly, but we are not too interested in this at the moment. Instead,
we can write the short-time decay from the first state as N1(t) = 1 − k1t. Then, the next
equations become, consecutively:

∂N2

∂t
= k1t =⇒ N2(∆t) = 1

2k1t
2 (1.93)

∂N3

∂t
= k2 × 1

2k1t
2 =⇒ N3(t) = 1

6k1k2t
3 (1.94)

This kind of simple power law expands to more complicated reaction networks too, not
just those in a line. It is possible to show that the first passage density fij between from
a state i to a state j in a reaction network (this need not be linear) is given by

fij(t) =
(
kiq1kq1q2 ...kqmj

uij

)
tm

m! , (1.95)

where m+ 1 is the length of the minimum connector between the two states, i → q1 →
q2 → ... → qm → j. The factor uij is the probability of absorption in state j (this is 1 if
j is the only absorbing state, but can be less than one if there are multiple states) [29].
These power-law kinetics at short times then give some information about the underlying
structure of the reaction network. The long time dynamics of this reaction from i to j
are dominated by the smallest rate constant kmin the system must pass through – this is
a bottleneck. At long times the survival probability is again exponential:

Q(t) ∝ e−kmint. (1.96)

To calculate the mean first passage time is not an easy task (if it was, Kramers would
have done it), and we must often resort to approximations of the effective potential,
using the generic solution (1.86), as in various studies used to refine the Kramers method
[26, 30], or in problems of diffusion in periodic potential [31, 32], or in the specific
geometry of the escape window (the narrow escape problem [33, 34]).
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Fig. 1.2 Two narrow escape problems. In (a), a Brownian particle is confined within a
domain Ω, with reflecting boundaries ∂Ω . There is a small absorbing window in this
boundary, ∂Ωa, through which the particle can escape. The narrow escape problem seeks
to find the time at which the particle first exists the region Ω [33]. In b), a ligand has
a soft restraint due to a surface tether, and must hit a small receptor of size ϵ some
distance a from the tethering point. This process has an entropic barrier associated with
stretching the chain [35].

Narrow escape problems

One problem of first passage times is a generic problem of the escape of a Brownian
region from a confining region Ω through a small hole ∂Ωa in its boundary ∂Ω (see Fig.
1.2). This amounts to solving the Smoluchowski equation

∂p(x, t)
∂t

= −1
γ

∇ · (p(x, t)f(x))D∇2p(x, t) = Lp(x, t), (1.97)

with mixed Dirichlet-Neumann boundary conditions:

p(x, t) = 0, for x ∈ ∂Ωa (1.98)

D
∂p(x, t)
∂n

− p(x, t)
γ

f(x) · n(x) = 0, for x ∈ ∂Ω, (1.99)

where n is the normal to the surface, and L is the Fokker-Planck operator for the
Smoluchowski equation. The escape time can be estimated asymptotically in powers of
the small parameter

ϵ = |∂Ωa|
|∂Ω|

≪ 1. (1.100)

The probability density can be written as an eigenfunction expansion:

p(x, t|y, 0) =
∞∑

i=0
aiψi,ϵ(x)ψi,ϵ(y)e−λi(ϵ)t, (1.101)

where ψi,ϵ(x) are the eigenfunctions corresponding to eigenvalues λi(ϵ) of the Fokker-
Planck operator in Eq. (1.97), and y is the initial position.
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Since the eigenvalues λi(ϵ) are positive and increasing with the eigenmode index i,
so for times longer than t ≫ 1/λ1(ϵ) the probability distribution is dominated by the
‘ground state’ (for the big volume of work on ‘ground state dominance’ in polymer physics,
see [36, 37]):

p(x, t) ≈ α0ψ0,ϵ(x)ψ0,ϵ(y)e−λ0(ϵ)t. (1.102)

Then, the survival probability

Q(t) =
∫
dx p(x, t) ≈ e−λ0(ϵ)t, for t ≫ 1

λ1(ϵ)
, (1.103)

from which it is clear that the mean first passage time T = 1/λ0(ϵ). Solving for this
eigenvalue depends on the dimensionality d of the problem, and the geometry of the
confining voluime. When the boundary of the domain is regular, the MFPT takes the
form of

T ≈


L2

πD
ln 1

ε
+ O(1) for d = 2

L3

4aD
= L2

4εD
for d = 3.

(1.104)

Here, L represents the characteristic size of the confining volume of the domain, D is
the free space diffusion coefficient, and a = εL is the characteristic size of the absorbing
window. These results highlight the mathematical complexity of narrow escape problems,
such that only asymptotic results are possible, even for free diffusion. In this thesis, I
approximate the mean hitting time of the end of a tethered polymer chain to a surface
receptor. With no hard confining boundaries (only the soft quadratic free energy of the
Gaussian chain), and a potential to move in, this problem is far more mathematically
challenging to tackle using the narrow escape approach, and so instead I develop new
mean field ideas to make progress.



Chapter 2
Unfolding of polymers under constant force

The start of the study into escape from metastable states was with a simple problem of
unfolding polymers under constant force.

Self-assembly and controlled unfolding of biological macromolecules is a fundamental
process in cell biology, and is crucial to life itself. It has proven to be a rich area of
research, and while there has been much progress and understanding achieved, there is
still much left to discover. Part of the reason for this is the unique set of interactions
for each protein sequence, and the resulting complexity of the phase space, as well as
the many mechanisms for denaturation, including temperature, pH, force and enzymatic
action.

The response of biomolecules to mechanical forces has been a popular area of study
within biophysics [38]. The sensitivity of experimental tools like optical tweezers and
atomic force microscopy (AFM), and their ability to work in a ‘wet’ environment,
have made them ideal for probing biology with mechanical forces at a molecular level.
They have been used extensively to characterise the unfolding kinetics of a range of
biomolecules [39, 40]. As well as working with DNA, many experiments have focused on
compact globular protein structures, such as the Ig domain, an important subdomain of
several proteins, including titin [41–43].

AFM experiments can be performed in the position-clamp mode, where the force is
measured by the cantilever [42], or in the force-clamp mode, where a constant force is
applied and the resulting extension measured. In force-clamp experiments, biomolecules
typically show all-or-nothing transitions between folded and unfolded states [44, 45],
meaning that denaturation occurs abruptly and completely once a critical force is reached
in the case of force-ramp, or a characteristic time is reached if a constant force is applied.

Theoreticians working to interpret AFM pulling experiments have originally focused
on the position-clamp mode. Many papers have shown that using models of semi-flexible
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polymer chains accounts well for the shape of force-extension curves [46–49]. Applying
a force (or impose deformation) to a polymer globule is a different problem. Halperin
and Zhulina first demonstrated that globular homopolymers being extended in this way
will undergo a first order phase transition from a weakly extended globular state to an
extended state [50]. Later, simple models were able to account for internal properties of
the globule: either the bending rigidity or specific bonding between its units (replicating
the protein morphology) [51]. There has been previous theoretical work on the force-clamp
mode for poor solvents [52, 53]. Polotsky et al. used self-consistent field modelling and
verified an ‘all-or-nothing’ transition in this regime. However, although their numerical
results extend across a wide range of parameters, the analytical work presented in these
papers only remains valid in the vicinity of the Θ-point, i.e. for weakly confined polymer
globules. Our main interest here is to understand the ‘strongly confined’ globules such
as folded proteins, or just chains precipitated in poor solvent.

A lot of the work in protein dynamics focus around energy landscapes [54], which are
useful for computation using dynamics simulations. In practice, it would be impossible to
accurately determine a complete energy landscape through single-molecule experiments;
efforts to determine landscapes have thus far focussed on how the landscape varies over
the extension of the molecule. One approach, employed by Szabo et al., is only interested
in the potential well the native state resides in, and calculates the rate constant for
biomolecules’ extension using classical Kramers’ theory [55, 56]. This says nothing about
the final state energy, which will change with applied force and the quality of solvent,
and will only be appropriate when refolding can be neglected. However, it does offer easy
calculation and is useful under generalisation to several unfolding paths [57].

These models exist to determine key features of the energy landscape from experimen-
tal data, but they do not seek to predict the behaviour of a polymer under mechanical
loading. A perfect starting point in this problem is the theory of a self-attracting semi-
flexible homopolymer. Although the lack of specific interactions that are present in
proteins means that the native state will not be as stable as for heteropolymer proteins,
as we move away from the ground state, we can merely average over the heterogeneity
introduced by a protein’s primary structure, and approach a homopolymer. In the limit
of large deformations, when the polymers are highly stretched and self interactions are
minimal, one would expect the two models to behave almost identically.

There have been several computational studies of the self-attracting homopolymer
on 2 and 3 dimensional lattices, with the 2-dimensional case showing different phase
transition behaviour than for the 3-dimensional case [58, 59]. These are able to account
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for topology of the globule as well, and offer an insight into the ruggedness of energy
landscapes.

The first part of this chapter aims to construct an energy landscape for a collapsed
homopolymer in poor solvent using a Flory mean-field theory. Taking cues from the
theoretical work on the position-clamp mode [50], I allow the polymer to have a globular
section and an extended section. In the first section, I calculate the Gibbs free energy
for a compact globule in poor solvent, accounting for the monomer-solvent interactions
at the globule’s surface. In the next section, I do the same for an extended chain,
accounting for the entropy of stretching. Then, I consider these energies together, and
analyse the phase behaviour of the polymer under tension. I show the existence of an
‘all-or-nothing’ transition, and calculate the transition force. I also calculate the energy
barriers separating the globule state from the extended state.

Having treated the equilibrium behaviour of globular polymers under tension, I
then move on to study kinetic aspects of polymer unfolding. Initially, the kinetics of
transitions were studied using a two-state system, with a potential barrier modified by
the introduction of force [60]. When the final state is much lower in energy than the
initial state, such a reaction is essentially irreversible, and the survival probability of the
initial state decays exponentially with time. This is the regime of the original Kramers
problem of escape over the barrier [23].

Recent analysis of ubiquitin unfolding data from single-molecule pulling experiments
has found this simple model fails at describing the experimental data [61, 62]. Strongly
non-exponential kinetics have been also found in other biological systems, such as ligand
binding in myoglobin, and are usually attributed to random variations in molecule
conformations [61]. These ensemble variations may have an additional time-dependence.
As such, some early work thought of the protein free energy landscape as a collection of
native globular states (of similar but not identical energies) and extended unfolded states,
separated by a single energy barrier, in a globally connected energy landscape [63, 64].
This idea of heterogeneity can also be modeled using disorder theory [65]. The variation of
unfolding rate in the ensemble of molecules can be described by introducing a stochastic
internal parameter, which could follow a chosen pattern of static or dynamic disorder.

When the rate of change of internal parameter is much slower than the unfolding
rate, we can regard it as fixed for each molecule, and consider the regime of static, or
quenched, disorder. In this limit, Kuo et al. [66] introduced a Gaussian variation in the
barrier height to be surmounted by individual molecules. However, Lannon et al. [62]
subsequently found this model to be a poorer fit to the data than a stretched exponential
distribution.
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When the internal parameter can no longer be regarded as fixed on the time-scale
of unfolding, one enters the regime of dynamical disorder [65]. Recent work by Hyeon
et al. [67] have looked at the role of dynamical disorder in the unfolding kinetics of
macromolecules, and other work has had some success at fitting ubiquitin unfolding
data using a generalised Langevin equation with fractional Gaussian noise [68]. These
approaches are still relatively new, and have yet to be fleshed into a physical model where
parameters are obtained from physical quantities.

In the second part of this chapter I take inspiration from earlier work by Geissler
and Shakhnovich [69]. They studied the mechanical response of random copolymers
in equilibrium (a problem in static disorder). In attempting to adapt their analysis to
look at the unfolding kinetics, I found that a much simpler model is already showing
non-exponential kinetic features. Even the introduction of only a single inhomogeneous
residue into an otherwise homogeneous polymer chain can lead to a significant change in
the unfolding kinetics. Although the position of this residue could be fully prescribed
by the sequence, its exposure to solvent has to be treated as a random variable. This
variable affects the unfolding rate constant, making the ensemble-average phenomena
highly non-exponential. This could provide a crude but effective model for hydrophobic
cores of biomolecules.

2.1 Polymer model

We consider a model polymer consisting of a single type of hydrophobic monomer, with
just one additional ‘core’ monomer, which we take to be much harder to remove from
the bulk of a polymer globule than all the others. This could be a toy model for the
hydrophobic core of a protein, or a particular sequence of residues that binds to its
matching counterpart stronger than others. We shall assume that the position M of this
particular monomer in the polymer sequence (1 . . . N) is known, and remains fixed. The
reason why we only consider one such ‘locked’ monomer, and not several (as would be
the case in a real folded protein), is simply because the qualitative features emerging due
to the presence of such an internal ‘lock’ are clear already in the singlet case – while the
calculations are kept simpler and transparent.

Given poor solvent conditions, we expect that the unstretched polymer is folded in
equilibrium, and will form a compact globule. Following earlier works, we model the free
energy of the globule as the sum of favourable monomer-monomer pair interactions in
the bulk, and unfavourable monomer-solvent interactions at the surface. To minimise the
free energy, the core monomer will always be buried deep within the bulk of the globule,
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Fig. 2.1 Spherocylinder model of the globular polymer in poor solvent, being stretched
by an application of force f to its two ends. (a) A tube representation of a chain in
Brownian dynamics simulation; (b) a scheme illustrating the force-induced asymmetry of
the remaining globule with Ng monomers, one of which has a stronger binding energy
in the globule, −(u+ w). Chain can be removed from both ends when the polymer is
unravelling.

and provide no contribution to the surface energy. The free energy of the globule can be
written as a function of the number of monomers in the globule Ng, the force-induced
extension of the globule x, the bulk energy of the monomers, −u, and the additional
binding energy of the ‘lock’ monomer w, such that the total energy of this residue in the
bulk of the globule is −(u+ w). This gives the free energy of the globule:

Fg(Ng, x) = −Ngu− w + A(x)
b2

u

2 = −Ngu− w +
2Ngb

3x +
√
πNgx

b

u, (2.1)

where A(x) is the surface area of the deformed globule, and b is the monomer size.
Following an earlier work [70], for efficient analytical treatment we take the shape of the
globule to be a spherocylinder (see Fig. 2.1), with a constant volume Ngb

3. In Eq. (2.1)
we assume that any monomers on the surface are half-solvated, with the binding energy
−u/2, and that a completely solvated monomer in the exposed chain segments has the
potential energy level of zero. The term −w may or may not be present in Fg, depending
on whether the w-monomer is still inside, or has been removed from the globule into the
stretched-out segments.

The surface energy A(x) has an inflection point, which indicates an instability in the
globule past certain extensions (see [70] for a detailed discussion). In the force-clamp
regime, this manifests in the globule’s inability to supply restoring forces beyond a certain
critical value of its extension, xcrit. For a given applied force f , the minimum size of the
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globule to provide an equal and opposite restoring force is given by:

Ng(stab) = N −Ns = 2
3π2

(
16fb
3u

)3

, (2.2)

Globules below this size cannot sustain the applied force in equilibrium. For compactness
of later expressions, we define the amount of chain that must be removed to reach
this threshold of stability, Ns. We posit that once a globule has been reduced below
its smallest stable size, it will rapidly unfold and extend to a chain state, with little
regard for features of the globule. This issue will become important later, when we start
calculating the rate at which a globule transforms into an extended chain.

Since we have chosen to measure the potential energy of fully solvated monomers
as zero (in the poor solvent, this leads to the negative potential energy of monomers
inside the globule, Eq. (2.1)), the remaining free energy of the expanded chain with
contour length L = b(N −Ng) is entirely dependent on the chain’s properties. A general
form for this free energy in terms of the chain’s end-to-end extension, z, was derived by
Blundell [49], and here we reduce the full expression to the flexible chain limit, where
the persistence length lp is small – of the order of the monomer size, lp ≈ b ≪ L:

Fch(z) = 2kBTL

πb (1 − (z/L)2) − 2kBTL

πb
. (2.3)

The constant term is added to fix the energy of the chain at zero extension: Fch(0) = 0.
This expression is valid across the different regimes of stretching as the chain is being
pulled. For small deformations, Eq. (2.3) reduces to the entropic spring expression,
Fch(z) ≈ (2kBT/πLb)z2. In the limit of large stretching, z → L, the expression shows
the well-discussed divergence for an inextensible chain, known as the Marko-Siggia or
Fixman-Kovac limit [46, 47].

In the force-clamp mode of a typical AFM stretching experiment, we need to work
with the Gibbs free energy,

G(f) = F [xeq(f)] − fxeq(f), (2.4)

where xeq(f) comes from the condition of mechanical equilibrium. To calculate the Gibbs
free energy of the whole system, we must add the contributions from any globular part
with Ng monomers, G1(f), any chain parts, G2(f) with a total of Nc = N−Ng monomers,
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and whether or not the w-monomer is solvated (i.e. extracted from the globule):

G(f,N,Ng) = G1(f,Ng) +G2(f,N −Ng) − (w), (2.5)

To find an expression for the Gibbs free energy of the remaining globule, G1, we need
to use Eq. (2.1) in (2.4). In order to obtain a simple and compact form of the equilibrium
extension xeq(f), we need to make the assumption that the globule only suffers a small
deformation when a force is applied; this will be the case when the solvent is sufficiently
poor. Then the deformation is linear with applied force,

xeq(f) = 3

√
6
π
Ngb3 + 16b2

9πu f, (2.6)

where the first term is the diameter of spherical globule.
For the pulled-out chain segment, we need to impose the condition of mechanical

equilibrium as well, finding the tensile force

f = −∂Fch(z)
∂z

= −4kBT

πlp

(
z

L

) 1(
1 − (z/L)2

)2 , (2.7)

and inverting it to obtain the equilibrium extension zeq(f) to be then used in Eqs. (2.3)
and (2.4). Since all expressions depend strictly on the ratio (z/L), we can infer that the
total extension in response to an applied force is proportional to the contour length L

of the exposed chain. As a consequence, the (negative) Gibbs free energy of the chain,
G2(f), is proportional to the contour length of the chain, L = Ncb, where the number of
solvated monomers is Nc = N −Ng. As a result, we can separate the effective chemical
potential factor: G2(f) = µ(f)Nc. In the limit of large extension, when (L− z)/L ≪ 1,
this chemical potential takes the form [70]:

µ(f) ≈ 2kBT

π

(
1

1 − ξ2 − 1
)

− fbξ . (2.8)

Here the dimensionless parameter ξ is a measure of the fractional extension of the chain
relative to its contour length:

ξ = zeq

L
= 1 − 1√

1 + πfb/kBT
. (2.9)
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2.2 Homopolymer unfolding

Before we consider the heteropolymer detailed above, I want to highlight the existence
of a first order phase transition in the case where w = 0, i.e. when the chain is a
homopolymer.

To calculate the Gibbs free energy of the polymer, we assume that in equilibrium
the polymer can be completely compact, or completely extended, or consist of a single,
smaller globule with Ng = N −Nc and a stretched-out tail of Nc monomers, as in Fig. 2.1.
The full Gibbs free energy can then be written as

G(f,N) = G1(f,N −Nc) +G2(f,Nc). (2.10)

The construction ofG is illustrated in Fig. 2.2, which shows the existence of two metastable
states: when the polymer is fully globular (Nc = 0), and when the polymer is fully
extended (Nc = N).

Figure 2.3 shows the variation of the full Gibbs free energy G with the chain confor-
mation characterised by Nc, which plays the role of ‘reaction coordinate’ in our problem,
for several values of applied tension f . We see first that the free energy curves are disjoint.
For each force f , there is a range of globule sizes that will not sustain a restoring force of
its magnitude,

fcrit = 3u
16b

(
3π2Ng

2

)1/3

, (2.11)

determined by inverting Eq. (2.2); the boundary of this region is marked by the dashed
line in Fig. 2.3. The right-most states on this plot (marked with the cross) correspond to
the fully unfolded chain. Since no globule can exist beyond the critical force, there are
no physical states with a defined Gibbs free energy G(Nc < N) in this region: the only
state (whether stable or metastable) is when Nc = N .

We also see the existence of a first order (discontinuous) phase transition at a force
f∗. At this point, the two equilibrium states of equal depth are separated by an energy
barrier ∆G. It is not until the force reaches a much higher value f2 that the globule loses
its metastability and the chain can only exist in the fully extended state with Nc = N

(these end values for each curve are marked by a cross in the figure). It is clear from
Fig. 2.3 that there is no intermediate minimum between the globular state, and the
stretched chain.
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Fig. 2.2 Gibbs free energy curve for a polymer of total length N , subject to a particular
tension force, f0, as a function of varying numbers of monomers in the stretched-out
chain, Nc. The final free energy is a sum of the Gibbs energies of the chain, G2(Nc), and
of the remaining globule with N −Nc monomers, G1.

G

N0

G( f, N, N )
c N

c

f = 0

f 

f = f
2

f = f
*

Fig. 2.3 Gibbs free energy curves against the number of monomers within the polymer
that are in an extended phase. The different curves are for different constant forces,
0 < f < f∗ < f2. ∆G is the energy barrier separating the two states Nc = 0 and Nc = N
when they are of equal energy. The thick grey dashed line indicates the boundary of
critical force, past which there are no equilibrium solutions except the fully extended
phase.
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To find the force at the equilibrium thermodynamic phase transition, f∗, we equate
the Gibbs energies of the globule and the chain, G1(f,N) = G2(f,N):

−Nu+
 2Nb

3x(f∗, N) +
√
πNx(f∗, N)

b

u− f∗x(f∗, N) = Nµ(f∗) (2.12)

Inserting Eq. (2.6) for xeq(f) again, we find, to leading order terms in N ,

µ(f∗) = −u
(

1 − 3
2

(4π
3

)1/3
N−1/3

)
− 4

3

( 3
4π

)1/3
fbN−2/3. (2.13)

For sufficiently large u, we can find an approximate expression for f∗:

f∗b

kBT
≈ 1 + 3a∗

2π(1 − a∗)2 + u∗

1 − a∗
+

√
2 (3a∗ − 1 + 2π(1 − a∗)u∗)

π(1 − a∗)2 , (2.14)

where the dimensionless shorthand parameters u∗ and a∗ are identified as

u∗ = u

kBT

(
1 − 3

2

(4π
3

)1/3
N−1/3

)
,

a∗ = 4
3

( 3
4π

)1/3
N−2/3. (2.15)

For large N ≫ 1 (as expected to be the case in most polymers), in the leading order:

f∗ ≈ u

b
+
√

8
π

√
ukBT

b
. (2.16)

There is an important difference with the earlier work of Polotsky et al. [52, 53], who
have only considered weak globules and small forces (to Taylor-expand their expressions)
and effectively remained in the quadratic region Geq ∼ −f 2 in Fig. 2.4. Therefore, in
order to have any transition at all, they had to consider a very low binding enthalpy u
(i.e. the solvent close to the Θ-point). Although our results look qualitatively similar in
plots, the algebraic differences in allowing for large tension forces and strongly compacted
globules are significant.

We are also able to find the position of the free energy maximum (the barrier), G∗,
in Fig. 2.3:

0 = ∂G

∂Nc

= u+ µ(f) −
(4π

3

)1/3
u(N −Nc)−1/3 + 4

9

( 3
4π

)1/3
fb(N −Nc)−2/3. (2.17)
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Fig. 2.4 Schematic phase diagram indicating the point at which the phase transition
occurs (f∗), the force at which the globular phase is no longer metastable (f2), and the
critical force of the globule (fcrit).

These terms have clear physical meaning. The first term is the (positive) energy change
when a monomer is taken from the bulk of a globule, and the second is the (negative)
energy change when a monomer is added to the chain allowing it to be stretched less. The
third term is the (negative) leading-order term due to contraction of the surface of the
globule when a monomer is removed. This is force-independent; the first order correction
due to the application of a force is identically zero. The final term is the increase in
mechanical work on the system due to the globule shrinking against an applied force
when a monomer is removed.

The point at which the globule completely loses its metastability, f = f2, is reached
when the barrier G∗ reaches the boundary Nc = 0. This gives a condition for f2, when
we let Nc → 0 in Eq. (2.17) and find:

µ(f2) = −u
(

1 −
(4π

3

)1/3
N−1/3

)
− 4

9

( 3
4π

)1/3
fbN−2/3. (2.18)

In a way identical to Eq. (2.14), we can find an approximate expression for f2 for
sufficiently large u:

f2b

kBT
≈ 1 + 3a2

2π(1 − a2)2 + u2

1 − a2
+

√
2 (3a2 − 1 + 2π(1 − a2)u2)

π(1 − a2)2 , (2.19)

where the dimensionless shorthand parameters u2 and a2 are identified as

u2 = u

kBT

(
1 −

(4π
3

)1/3
N−1/3

)
, a2 = 4

9

( 3
4π

)1/3
N−2/3. (2.20)
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For large N , in the leading order we find f2 ≈ f∗ in Eq. (2.16). However, from comparing
Eqs. (2.15)) and (2.20), we see that u2 ≥ u∗, and so it is clear from Eqs. (2.14) and (2.19)
that f2 ≥ f∗, with equality holding only at N → ∞.

More generally, and noting that Ng = N − Nc, we can find an expression for the
number of monomers in the globule at the free energy maximum, N∗

g , by solving the
effective quadratic in Eq. (2.17), to find

N∗
g ≈ π

6

(
u

∆ϵ

)3
1 +

√
1 − 4fb

3πu2 ∆ϵ
3

, (2.21)

where ∆ϵ = µ(f) + u is the (positive) net change in the energy per monomer between
the globule and the expanded state (which reflects the fact that the solvent remains poor
even though the monomers were forced into the expanded configuration). The position
of the free energy barrier is plotted in Fig. 2.5, where we see that it becomes equal to N
at f = f2, that is, at f ≥ f2 even the full globule is ‘past the barrier’ and is absolutely
unstable.

We can use this expression for N∗
g to find the energy barriers, both from the globular

state, and from the fully expanded state of the chain. The barrier height from the
globular state for a polymer of N monomers: ∆Gg = G∗ −G1(N), is found to be

∆Gg(f) = (N −N∗
g )∆ϵ− 3

2

(4π
3

)1/3
(N2/3 − (N∗

g )2/3)u+ 4
3

( 3
4π

)1/3
(N1/3 − (N∗

g )1/3)fb,
(2.22)

and the barrier height from the extended chain state for a polymer of N monomers,
∆Gc = G∗ −G2(N), is

∆Gc(f) = −N∗
g ∆ϵ+ 3

2

(4π
3

)1/3
(N∗

g )2/3u− 4
3

( 3
4π

)1/3
(N∗

g )1/3fb. (2.23)

By equating the Eqs. (2.22) and (2.23), we can recover the condition for the ther-
modynamic transition, f∗, found in Eq. (2.13), which is a reassuring check, since when
the energy barriers from the globule state and from the chain state are equal, the two
states themselves are equal in energy. This is illustrated in Fig. 2.5. From Eq. (2.21) we
can also see that ∆Gg(f2) = 0 for N∗

g = N (see Fig. 2.5), again confirming the point at
which the globular state is no longer metastable.
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Fig. 2.5 The energy barriers for a polymer, with N = 100, u = 2kBT . The crossing of the
curves for ∆Gg(f) and ∆Gc(f) marks the point of thermodynamic transition between
the two states, at f∗. The dashed curve corresponds to the axis on the right, and gives
the size of the globule at the free energy barrier, N∗

g .

Another interesting and subtle feature of Fig. 2.5 is that the free energy barrier
∆Gc(0) remains non-zero even at f → 0. Equally, the free energy barrier position N∗

g ̸= 0
at f → 0. This means that if we prepare a chain in a fully expanded (coil) state (with
Nc = N) and then rapidly quench the temperature, or otherwise make the solvent poor
– there will nevertheless remain a free energy barrier to nucleate a globular state. The
same effect can be seen in Fig. 2.3, where the zero force curve has a region with positive
energy near Nc → N . This is an effect similar to the barrier arising in the classical
nucleation theory [71]. This barrier height will be further enhanced by the high curvature
in small globules, if bending energy is taken into account.

2.3 Heteropolymer unfolding free energy curves

Having considered the equilibrium behaviour of a globular polymer under a constant
tension, I now move on to the case of a simple heteropolymer with a super-hydrophobic
w-monomer, w > 0. To compare the results and predictions here to experimental data, a
set of realistic model parameters will need to be chosen. For these, we will follow the
directly related experiments by Fernandez and Brujic [44, 61, 66, 62], where ubiquitin or
Ig-like I27 domains of titin were unfolded at constant force. Hence, I will take a polymer
chain with N = 100 residues, as a value close to the above proteins. Since the minimal
force these authors were using was ∼ 90pN, and I have earlier obtained the theoretical
value for the critical unfolding force f ∗ in this regime (see Eq. (2.16)), quite a reasonable
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value of the globule ‘hydrophobic strength’ u = 5kBT has to be chosen (assuming the
characteristic size of an amino acid residue is b ∼ 0.3nm); at this strength of globule
the critical force for a homopolymer would be f ∗ ≈ 4.48(kBT/b) = 59.7 pN, acceptably
slightly below what was used in experiment.

The impact of this heterogeneity can be seen by considering the extended chain’s
Gibbs free energy

G2(f) = µ(f)Nc (2.24)

where the chemical potential µ(f) is as in Eq. (2.8). Note that the free energy is merely
a function of the extended chain’s length. This additive form of the free energy of the
extended portion of the polymer has an important consequence. We can in principle divide
any chain of Nc monomers into two separate segments linked in series (see Fig. 2.1), and
the Gibbs free energy will be the same, regardless of how we distribute the Nc monomers
between the two parts. This means that monomers can be pulled out of the globule
from either end of the chain, forming two tails of length z1 and z2 = z − z1, without
any additional free energy penalty. This means that the ‘lock’, positioned at M < N/2
from one end of the chain, could be exposed to the solvent for any Nc in the range
M ≤ Nc ≤ N . Let us denote which monomer it is to leave the globule as Nw (meaning
that the exposed chain segments have the total of Nc = Nw monomers when the ‘lock’ is
pulled out). The exposure of the w-monomer will manifest itself as a discontinuous jump
in the free energy profile G(Nc, Nw) at Nc = Nw. There are three qualitatively different
situations, depending on the value of Nw, illustrated in Figures 2.7, 2.8 and 2.9, which
sketch the dependence of G(Nc) for a fixed value of applied force f (the dashed region
on these plots represents the unstable globule, with Ng ≤ N − Ns, see Eq. 2.2). The
three regimes, which will be discussed in more detail in the next sections, are:

1. The lock could be exposed before the free energy barrier (Nw ≤ N∗
c ), as in Fig. 2.8.

This results in a simple two-state kinetics with an enhanced barrier.

2. The lock could be exposed past the barrier, in the stable region of the free energy
curve (N∗

c < Nw < Ns), as in Fig. 2.9. In this case, we have a meta-stable
intermediate state, and a resulting three-state kinetics.

3. The lock is exposed in the unstable region (Nw > Ns), as in Fig. 2.7. This means
that the system effectively does not see the free energy jump and the globule unfolds
as if there was no w-monomer.

The value of Nw (the total length of the pulled-out chain for which the w-monomer
gets exposed) is a random variable. The randomness arises purely because there is a choice
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in how to distribute the pulled-out segments z1 and z2 (see Fig. 2.1) before the ‘locked’
monomer is at the surface. We derive the probability to have the w-monomer pulled
out, given its sequential position M < N/2 along a chain of N monomers: P (Nw|N,M).
Let us assume that each time a monomer is pulled from the globule, we have an equal
probability p = 1/2 of it being pulled from the left or the right. P (Nw|N,M) is therefore
similar to the binomial distribution, with the difference in that we could remove the
w-monomer by approaching from the left or the right, equivalently. To remove the
w-monomer at Nw from the shorter end, we must first remove M − 1 ordinary monomers
in a total of Nw − 1 exposure events. Let us call the probability of that PS; this is
given by the binomial expression PS = 2−(Nw−1)

(
Nw−1
M−1

)
. In the same way, to remove

the w-monomer from the longer end, we must remove N −M ordinary monomers first,
with probability PL = 2−(Nw−1)

(
Nw−1
N−M

)
. The total probability is then given by the sum

1
2(PS + PL), which takes the form:

P (Nw|N,M) = 1
2Nw

[(
Nw − 1
M − 1

)
+
(
Nw − 1
N −M

)]
. (2.25)

Figure 2.6 gives the shape of this distribution for various positions of the w-monomer in
the chain sequence. P (Nw|N,M) = 0 for Nw < M : one cannot remove the w-monomer
without first removing a certain number of ordinary monomers. It is normalised, as
expected for a probability distribution: ∑Nw

P (Nw|N,M) = 1.
We will shortly determine how the position of the jump Nw determines the rate

constant of the transition to the unfolded state. Let us split the population according
to each unfolding trajectory, defined by the value of Nw. These sub-populations will
decay according to their specific rate constant k(Nw), and the number of folded polymers
n(Nw) will vary according to the simple exponential rate law:

ṅ(Nw, t) = −k(Nw)n(Nw, t) . (2.26)

However, in experiment, we cannot distinguish between different sub-populations. Instead,
we track how the total population evolves over time. To calculate this, we have to weight
each sub-population by its fraction, i.e. average ⟨n(Nw)⟩. The fraction of the population
in the sub-population n(Nw) is given by P (Nw). Accordingly, the rate equation for the
entire population takes the form:

⟨n(t,M)⟩ = n0

N∑
Nw=1

P (Nw|N,M)e−k(Nw)t. (2.27)
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Fig. 2.6 The likelihood of the jump occurring at Nw is given by P (Nw). The distribution
P (Nw) is plotted here for N = 100 and several values of the w-monomer’s position, M ,
in the sequence along the chain.

In order to efficiently evaluate the ensemble-averaged population kinetics for the chains
unfolding by the pulling force, we need to make an approximation for the probability
distribution of the random variable Nw. This discrete distribution was given by the Eq.
(2.25) and plotted (for N = 100) in Fig. 2.6. It is clear that, although the binomial
expressions involved are skewed, even at these moderate chain lengths the Central Limit
Theorem holds, and we can approximate the distribution as a Gaussian with good
accuracy. The conversion from a strict binomial distribution of a random variable X
with Nw − 1 ‘attempts’ corresponds to replacing it with a continuous Gaussian [72] with
the mean y = (Nw − 1)/2 and variance σ2 = (Nw − 1)/4. For the binomial probability PS

contributing to the first term in Eq. (2.25), the variable is X = M−1; for the distribution
PL in the second term of Eq. (2.25), the variable X = N −M . Put together, these two
expressions (Gaussian in the variable X) produce the final continuous probability density
of our actual random variable Nw:

P (Nw) =
√

1
πy

(
e− (M−1−y)2

y + e− (N−M−y)2
y

)
, (2.28)

where the shorthand y = (Nw − 1)/2 is employed. This approximate expression turns
out to be indistinguishable from the exact curves in Fig. 2.6, plotted for N = 100. The
compact analytical expression in Eq. (2.28) can now be used to calculate the observed
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Fig. 2.7 This is the Gibbs free energy curve versus the number of monomers in the chain
Nc, for the case where the w-monomer is exposed once the globule is already unstable
to force, Nw > Ns. Here, there will be no contribution to the opening rate from the
exposure of the w-monomer.

population kinetics, which replaces Eq. (2.27):

⟨n(t)⟩ =
∫ N−1

2

0
dyP (y)e−k(y)t. (2.29)

2.4 Rate constants

The equilibrium rate constants k(Nw) could be found using a Kramers-like method, first
explored by Brinkman for the case of two-well potential [24]. The expression for the rate
constant is given by a steady-state limit of the Ornstein-Uhlenbeck theory for the mean
first passage time [25], when the ensemble distribution in the initial potential well had
enough time to equilibrate before the average transition occurs:

k = kBT

γ

1∫
well e

−βG(Nc)dNc

∫
barrier e

βG(Nc)dNc

, (2.30)

where γ is the frictional coefficient for the effective energy landscape characterised by
the reaction coordinate Nc; as usual β = 1/kBT . We use the same approach here to
calculate the rate constants for the three separate cases identified above.

2.4.1 Jump in the unstable region

We start with this region (Nw > Ns), as illustrated in Fig 2.7, in spite of it appearing
the last on the list, because the transition rate obtained in this regime is unaffected by
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Fig. 2.8 This is the Gibbs free energy curve versus the number of monomers in the
chain Nc, for the case where the w-monomer is exposed before the homopolymer curve
maximum, Nw < N∗

c . This will increase the height of the energy barrier from ∆Gg to
∆Gg + w, but does not substantially change the calculation of the rate constant k1.

the ‘lock’ and forms the reference for all other cases. When the jump in the free energy
happens in this unstable region, we are reduced to the homopolymer problem [70], since
the extraction of the w-monomer has no effect on the process (the remaining globule
loses its stability before the ‘lock’ is forced out). The forward rate constant is given by

k0 = α

γ

√
ω

2πkBT
καe

−β∆GG , (2.31)

where ∆GG is the energy barrier at N∗
c , see Fig. 2.7 for illustration. ω is the curvature

of the barrier, and α = (∂G/∂Nc)|Nc=0 is the slope of the native potential well (which is
treated as approximately triangular). The pre-factor κα is determined by the geometry
of the well, and we define it for the convenience of later expressions:

κα(N∗
c ) =

[
1 − exp

(
− αN∗

c

2kBT

)]−1
. (2.32)

Note that the rate k0 is not a function of our random variable Nw.

2.4.2 Jump before the barrier

In most cases, when Nw < N∗
c , the fixed jump in the free energy has only a minor effect

of slightly distorting the pre-exponential factor in the basic homopolymer expression of
Eq. (2.31) due to the distortion of the native well, see Fig. 2.8. However, the effective
height of the barrier is increased by the magnitude of this jump. To estimate the resulting



2.4 Rate constants 47

N0

G(f,Nc)

Nc

kG→I

kI→G

kI→E

k2

∆GI→G

Nw

Fig. 2.9 This is the Gibbs free energy curve versus the number of monomers in the chain
Nc, for the case where the w-monomer is exposed after the homopolymer curve maximum,
but before the globule loses stability, N∗

c < Nw < Ns. Here, the energy barrier from
exposure of the w-monomer creates a new meta-stable state, and to calculate the rate of
transition over the barrier, k2, we have to use three state kinetics.

rate constant k1 we can split the integral over the barrier (having approximated the
potential as harmonic) into two pieces,

∫ ∞

−∞
eβGdNc =

∫ Nw

−∞
eβ(G+w)dNc +

∫ ∞

Nw

eβGdNc.

This leads to a modified form of Eq. (2.31):

k1(Nw) = fw(Nw) · k0e
−βw , with (2.33)

fw = 2

(1 − e−βw) erf
(√

ω
2kBT

(N∗
c −Nw)

)
+ (1 + e−βw)

.

Naturally, the rate constant k1 reduces to k0 when w = 0, that is, when there is no
‘locked’ w-monomer present in the polymer globule. In the special case when Nw = N∗

c ,
the exposure happens at the top of the barrier and the rate constant simplifies to:

k1(N∗
c ) = 2k0

1 + eβw
. (2.34)

2.4.3 Intermediate state kinetics

When the jump occurs in the region N∗
c < Nw < Ns, we have three (meta-)stable states

and two free energy barriers between them, see Fig. 2.9. With three-state kinetics, one
has to make approximations to find an analytic expression for the rate constant. We
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choose to follow the steady-state approximation [73], where the intermediate state is
assumed to be in equilibrium with the native state, and transitions to the extended state
are assumed to be permanent (no refolding). In this approximation, the rate constant is
expressed as

k2 = kG→IkI→E

kI→G + kI→E

(2.35)

where G, I, and E refer to the globular (native), the intermediate, and the extended
states, respectively.

kG→I = k0 , (2.36)

kI→G = α′

γ

√
ω

2πkBT
κα′e−β∆GI→G (2.37)

where α′ is the reverse gradient of the intermediate well, and ∆GI→G = G(f,N∗
c ) −

G(f,Nw) is free energy barrier for the transition from the intermediate state back to the
native globular state, see Fig. 2.9 for illustration. The pre-factor κα′ is given by the same
form as Eq. (2.32), but with the arguments α′ and (Nw −N∗

c ). Finally, the rate constant
of escape into the fully extended state is:

kI→E = α′2

kBTγ
κ

(1)
α′ κ

(2)
α′ e−βw . (2.38)

α′ appears twice in the expression for kI→E, and so is the pre-factor κα′ : once with
the argument (Nw − N∗

c ) from the Kramers integral over the triangular well of the
intermediate state, and again with the argument (Ns −Nw) from the integral over the
I → E barrier, which is also triangular with the same slope α′.

The full expression for the rate k2 in the three-state regime can be simplified into a
form:

k2(Nw) = k0√
ω

8πkBT
(Ns −Nw)eβwe− 1

2 βω(Nw−N∗
c )2 + 1

(2.39)

We can plot the rate constants derived above for a range of w and f , as illustrated in
Fig. 2.10. For values of Nw close to N∗

c , the expression for k2 deviates from its expected
value where it needs to join the end-point of k1: here the approximations made by
Brinkman (that of a high barrier) break down. However, we expect that the value of k1

itself is actually valid at any value of Nw within the region 0 ≤ Nw ≤ N∗
c . Therefore, we

get a good idea of the true profile of k(Nw) in spite of approximations.
For small Nw ≪ N∗

c , the rate constant k1 differs from the homopolymer rate of escape
k0 only by the Arrhenius factor for the jump, exp(−βw). For Nw > Ns, the rate is just
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Fig. 2.10 Plots of the rate constants k(Nw)/k0 for N = 100, u = 5kBT for two values of
pulling force: f1 = 4.8kBT/b (only slightly above the critical force f ∗), and f2 = 5.3kBT/b.
Two values of the ‘lock’ energy w are shown in the plots. The segments k1 (at low Nw)
terminate at the points when Nw = N∗

c (f), Eq. (2.34), labelled by •. The segments in the
three-state regime, k2(Nw), reach the value k0 (1 in the scaled plots) when Nw = Ns(f).

a constant k0. Because of these constant values of rates, the average ⟨n(t,M)⟩, given by
Eq. (2.27), will retain a simple exponential time dependence in certain ranges of ‘lock’
monomer positions M .

2.5 Ensemble average

We are now in a position to evaluate the integral in Eq. (2.29), and plot the resulting
average population dynamics against time. In a typical AFM experiment [45, 61, 62] a
constant force is applied to a folded protein, and a time of a sharp unfolding transition
is recorded. After many repeats, a distribution of rupture times is obtained with great
accuracy. The cumulant of this distribution represents the relative population of chains
unfolded up to time t. With a single rate of unfolding, one expects this population to
grow as (1 − e−k0t). To represent the same population in our analysis, we plot 1 − ⟨n(t)⟩
in Fig. 2.11. In the plot we use constant force slightly above the critical value f ∗, and
the fixed added strength of the ‘lock’ that is equal to the hydrophobic strength of the
main monomers. In this representation it is difficult to distinguish exponential from
non-exponential kinetics: all curves show qualitatively the same cumulative effect of
an increasing fraction of unfolded chains as time passes under a constant force. It is,
however, remarkable that for all the same parameters of the chain, the mere position of
the ‘locked’ monomer along the sequence has such a strong effect on the apparent rate of
unfolding.
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Fig. 2.11 We plot the cumulant 1-⟨n(t)⟩ as an illustration of a typical experimental
trace. We have the same force for each of the curves, and strength of w-monomer
(fb = 4.8kBT, u = 5kBT, w = 5kBT for N = 100), but vary the position of the w-
monomer, M . The linear non-dimensional time axis is measured in units of 1012, which
we shorthand as T =‘tera’.

Note that the time axis in Fig. 2.11 and subsequent plots is scaled by a dimensional
constant τ = γ/kBT , evident in the original definition of all rates, Eq. (2.30). This time
scale is an inverse of a diffusion constant of fluctuations in the reaction coordinate Nc.
To relate it to a more familiar diffusion constant D of a single residue (monomer), we
have to use the length scale of our monomer: τ = b2/D. Taking D ∼ 6 · 10−10m2/s for an
average amino acid in water (which is almost certainly an overestimate in this case), we
obtain τ ∼ 1.5 · 10−10s. This means that the real time scale in Fig. 2.11 and subsequent
plots is measured in minutes. It is a bit longer than in experiments we quoted [45, 61, 62],
but our aim was not to reproduce the experimental results quantitatively: we built a
minimal model with a single ‘lock’ to illustrate the point, with both u and w magnitudes
chosen somewhat arbitrarily. It is very easy to change these parameters slightly and
achieve a much better agreement with measured time scales, but we believe this is not
necessary or particularly beneficial.

To what extent does the ‘lock’ affect the kinetics? To distinguish the exponential
relaxation, we first plot ⟨n(t)⟩ for different lock positions, M , on a logarithmic scale in
Fig. 2.12. As in Fig. 2.11, for a range of w-monomer positions near the end of the chain,
there is a very little change in the slow single-exponential relaxation. The deviation
from single exponential kinetics (showing as a straight line in this logarithmic plot) is
increasingly evident for values of M closer to the middle of the chain. Initially, the decay
is fast, and follows a simple exponential law, as those globules that transition with the
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Fig. 2.12 The plot ⟨n(t)⟩ on a logarithmic scale, where ⟨n(t)⟩ is the same as in Fig 2.11,
for fb = 4.8kBT, u = 5kBT, w = 5kBT and N = 100. For the core located at M ≈ 20
or less, we have an approximately single exponential decay. For the intermediate core
positions, there is a transition from faster decay to the single exponential at longer times
(leading to a long tail). Note that as the core gets close to the middle of the chain the
slower (sub-exponential) relaxation becomes increasingly apparent.

fast rate k0 unfold first. It is difficult to discern this regime in the log-linear plot in
Fig. 2.12, because we concentrate on the long-time effects. At much longer times, there is
a gradual crossover to a different simple-exponential decay with the rate constant k0e

−βw,
much smaller for significant w. As M gets larger, the time this crossover occurs increases
– whereas for small M we mostly see the slow exponential rate.

For small M , the deviation from single exponential kinetics will not be observed in
experiment. This is easy to understand: the probability of exposure, P (Nw), is relatively
sharply peaked, so for small M , almost all the probability mass will lie in the two
opposite regions where the rate constant is independent of Nw. Thus, the ensemble
average ⟨n(t)⟩ remains a single exponential, with only a small extra contribution from
other rate constants. Non-exponential effects are most prominent when M lies close to
the middle of the chain where the rate constant undergoes the rapid change, cf. Fig.
2.10.

We examine the effect of varying the ‘lock’ strength w in Fig. 2.13, comparing a
mid-range position M = 30 and near the middle position M = 42. As the ‘locked’
monomer becomes increasingly hydrophobic, the rate of slow decay k0e

−βw will obviously
decrease, and so the folded molecule is more stable for larger w. It is apparent that,
at short times of folded population decay, all curves follow the fast simple-exponential
relaxation k0 that is independent of the ‘lock’ strength w. The position of the crossover to
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Fig. 2.13 The plot ⟨n(t)⟩ on a logarithmic scale, for N = 100, fb = 4.8kBT, u = 5kBT
and varying core strengths, w, listed in the plot. Solid lines are for a mid-range M = 30,
the matching dashed lines are for M = 42, close to the middle of the chain. A stronger
core (larger w) leads to a very long tail in the distribution, even for the same position M .

the slow simple-exponential relaxation with the rate constant k0e
−βw occurs at different

times depending on the ‘lock’ position M .
Not all cores will influence the unfolding kinetics, and we have demonstrated that

much depends on the position of such a ‘lock’ along the chain. When the core is close
to the terminus of a polymer, it will unfold on average after a much longer time than
those where the core is in the middle of the polymer’s sequence. However, the globules
with cores close to the middle of their sequence exhibit a pronounced non-exponential
dynamics (on average) upon the application of constant force. Unsurprisingly, stronger
locks stabilise the molecule more than weak locks.

What if there are multiple cores within the heteropolymer? The probability distri-
bution now has multiple degrees of freedom: the exposures of the different cores. The
probability will be sharply peaked around the point M, which is now a vector containing
the sequence positions of the different cores. There may be small breakage events into
smaller globules (but each larger than the critical size), each protecting a strongly bound
region, before the chain fully extends. These might manifest as short-lived intermediate
plateaus on experimental traces.

It is possible to verify these predictions experimentally, using synthetic polymers. Con-
struction of heteropolymers with controlled placement of more hydro-phobic monomers
would allow a precise test of the predictions of non-exponential kinetics. The advantage
of these constructed biomolecules would be the simplicity of inter-monomer interactions
compared to the complexity of biological proteins.
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In reality, biomolecules have a whole range of varied local and non-local interactions
that help stabilise their specific structure. Experimental work that shows distinctly non-
exponential kinetics of unfolding has been mostly done on ubiquitin protein [61, 66, 62].
The structure of ubiquitin has been resolved in 1987 [74], where the authors clearly
identify the residues that form the hydrophobic core, which is created by bonding the
α-helical segment (residues 23-34) with the β-sheet segment. By examining the sequence
and the folded structure, Fig. 2.14, we conclude that the main hydrophobic bond is
formed between Ala28 and Leu43, out of the total sequence of 76 residues. Since force
is applied at the N- and C-termini of the protein, we say that the intermediate chain
segment (28-43) between these two residues is only exposed to the force upon the breaking
of this bond. Therefore, we introduce an effective chain length of N = 61, with a lock
at M = 28 and N − M = 33. This is close to the middle of the effective chain, which
agrees with the non-exponential kinetics prediction.

It would be irresponsible to suggest that this analysis offers the final word in non-
exponential kinetics of ubiquitin unfolding. Proteins are very complicated structures,
with several levels of organisation above simple primary sequence. Where interactions of
the core residues are much stronger than all other interactions in the molecule, there may
be some justification in taking other interactions within the protein as approximately
equal in strength, as in my model. However, generally, the level of non-local interactions
in a protein’s structure does not allow its partition into a series of smaller units. In
reality, force propagation along a protein’s backbone under applied force is not linear, and
not all interactions within a protein will propagate stress through them [75]. Then, as
the molecule unfolds, the distribution of applied force through the molecule will change.
Molecular dynamics simulations of ubiquitin unfolding under applied force show that
dynamic disorder within ubiquitin, i.e. conformational fluctuations leading to changes
in unfolding barriers, could explain non-exponential kinetics in the fast mechanical
unfolding of ubiquitin [76], though it should be noted that fast unfolding is achieved
through extremely high unfolding forces (500-1000pN), well past the usual forces applied
in force-clamp AFM experiments [44].

Nevertheless, the concept of multiplicity of unfolding pathways is not controversial [77],
and I believe there is utility in coarse-grained descriptions of proteins in this way. In
particular, if one is able to consider a graph of the protein, through which force propagates,
with stochastic breaking of individual links within the propagation backbone, then it
might be possible to identify certain types of network structures that lead to more stable
structures under loading. One simple model could look like so: consider a collection of
springs between two plates, with a constant pulling force applied to the plates. These
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Fig. 2.14 The structure of ubiquitin: (a) the PDB 1ubq rendering, the arrow pointing
at the strongest hydrophobic bond between Ala28 and Leu43; (b) the corresponding
sequence annotation with the labelled hydrophobic residues.

springs could have different breaking energies, and different spring constants. Force
applied will now be spread across these springs, which will break, according to the same
principles as discussed here. As each springs break, the force will re-distribute across the
remaining springs, and each will have a force increased. This linkage of the bonds will
lead to non-exponential kinetics as well, as many other effects such a random variation of
sequence. It would be most interesting to look at this from the more general perspective
of graph theory and network connectivity, where the theoretical tools for characterisation
of networks is more developed.

In this chapter I have looked at the simplest possible scenario, and found that
the introduction of even a single specifically-placed inhomogeneity to an otherwise
homopolymer chain already produces non-exponential kinetics when chains are unfolded
under constant force. The inhomogeneity leads to a statistical randomness in the way
the chain unfolds and results in stretching of the decay curve, with a long tail decay
after an initial fast exponential decay (corresponding to the situations when a significant
portion of the chain can be pulled out of the globule before the ‘lock’ is affected).
While this is very much a toy model, such behaviour mimics quite well the behaviour
of biological macromolecules in AFM pulling experiments, and highlights that where
multiple unfolding pathways exist, one may find non-exponential kinetics without either
static or dynamic disorder.



Chapter 3
Mechanosensing: unfolding on non-rigid substrates

One interesting topic to which we can apply the ideas of forced unfolding is cell
mechanosensation – the transduction of mechanical stimuli from the environment across
the cell membrane. Mechanosensors are the protein complexes that produce responses to
mechanical inputs [78, 79]. There are two distinct types of mechanosensing: reacting to an
external force, or sensing the viscoelastic properties of the cell environment. Here, I refer
to the first as mechanosensitivity of the 1st kind, and the latter as mechanosensitivity of
the 2nd kind.

Mechanosensitive ion channels (MSC), such as alamethicin [80], are an example of
mechanosensors of the 1st kind. MSCs exist in all cells and provide a non-specific response
to stress in a bilayer membrane [81, 82]. Traditionally, MSC operation is understood as
a two-state model. These two-state systems (open/closed, or bonded/released) with the
energy barrier between the states depending on applied force, are common in biophysics
[83, 84]. Rates of transition in these systems are often calculated using the ‘Bell formula’
[60], which has them increasing exponentially with the force. This is just the classical
result of Kramers and Smoluchowski [23, 85], but the application of this formula is
problematic in the limit of small barriers.

A mechanosensor of the 2nd kind has a different challenge: to actively measure the
response coefficient (stiffness in this case, or matrix viscosity in the case of bacterial
flagellar motion). On macroscopic scales (in engineering or rheometry) this is done with
two separate measurements: of force (stress) and of position (strain), or we could contrast
two separate points of force application. One could also use inertial effects, such as
impact or oscillation, to measure the stiffness or elastic constant of the element. None
of these options are available on a molecular scale because of a very high resistance,
and of a short-distance cutoff of elasticity. The single sensor complex cannot measure
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Fig. 3.1 The assumed chain of force transduction from the F-actin of the cytoskeleton,
through the activated β integrin binding to ligands of the deformable ECM. The FERM
domain of FAK is associated with the cell membrane, near the integrin-talin head
assembly, while the FAT domain is associated with actin through its binding to paxillin
[90]. The pulling force is transmitted through this chain to the FERM-kinase physical
bond. In the closed state [c] the kinase domain is inactive and the whole FAK protein is
in its native low-energy state. Once the physical bond holding the FERM domain and
the kinase together is broken, the protein adopts the open conformation [o]. In the open
state, first the Tyr397 site spontaneously phosphorylates, which in turn allows binding
of Src and further phosphorylation of the kinase - turning it into the active state [a], see
[91–93].

relative displacements in the substrate, and the overdamped dynamics prevents any role
of inertia. Cells must come up with novel ways of measurement.

Mechanosensing at focal adhesions

To probe the mechanical modulus of a medium, a force has to be applied to it, either as
a local point source, or as distributed stress. In focal adhesions the source of this force is
the actin-myosin activity of the cytoskeleton. Therefore, we need to trace the series of
connected devices, from the point of force origin (F-actin) to the point of its application
to the ECM. Figure 3.1 illustrates this force chain, which has been reproduced in a large
number of important publications in this field [86–90]. There are several key players that
we should consider: integrins, focal adhesion kinase, talin, paxillin, and the cytoskeleton.
How do these components each contribute to the function of the complex?
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The integrin family of transmembrane proteins link the extracellular matrix (ECM)
to the intracellular actin cytoskeleton via a variety of protein-tyrosine kinases, one of
which is FAK [94]. Integrins are aggregated in focal adhesions, and they mediate the
cell interaction with ECM [78]. Activation of integrins is required for adhesion to the
substrate; active integrins acquire ligand affinity and bind to the proteins of the ECM. It
is well established that integrin activation and clustering leads to FAK activation and the
subsequent signalling chain of mechanosensing and cytoskeletal remodelling, e.g. see the
review by Parsons [95]. There is a large body of literature on integrins, with definitive
reviews by Hynes [96, 97] explicitly stating that integrins are the mechanosensors. It
has recently been demonstrated [98, 99] that the integrin bond with fibronectin has
catch-bond characteristics, and therefore could have a graded response to force and
stiffness.

However, activated integrins possess no further catalytic activity, and so cannot act as
a mechanosensor on their own. A good summary by Giancotti [100], while talking about
integrin signalling, in fact shows schemes where FAK is the nearest to cytoskeletal actin
filaments. The important work by Guan et al. [101, 102] establishes a clear correlation
chain of extracellular fibronectin – transmembrane integrins – intracellular FAK, but
offers no reason to assume that integrin is the sensing device on this chain. There is
a clear indication that phosphorylation of FAK is a key step in the mechanosensing
process [79]. Indeed, Schaller et al. [103] state that FAK phosphorylation is the initial
step of signalling, and show evidence that crosslinking integrins and ECM (i.e. making
the ‘substrate’ stiffer) leads to an enhanced FAK phosphorylation, while conversely, a
damage to integrin is connected with a reduced activation of FAK.

This lack of clarity on the link between integrin engagement and FAK activation
during mechanosensing arises from the lack of detailed knowledge at a molecular/physical
level of how FAK is activated. One possibility, explored by U. Schwartz [104, 105], is
that clusters of activated integrins always activate FAK and generate the mechanosensing
signal that leads to the increasing F-actin pulling force. As some of the integrins are
broken off their ECM attachment, the associated FAK signal reduces, regulating the
further force increase – and that is the action of the focal adhesion mechanosensor
complex. More recently, these same ideas have incorporated newly-discovered catch-bond
characteristics of the the integrin-ECM links [98]. In both cases, the mechanosensing
response is an emergent property – you need a collection of coupled mechanosensors of
the 1st kind to generate a stiffness sensing response. I think this work is elegant, and
important, but ask the question: are there any other possible mechanisms?
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The application of tension in mechanosensing at focal adhesions is now well established
[90]. A key role in this system is played by talin. There are many papers investigating
the correlation of talin (as well as paxillin) with β-integrin and FAK; recent studies
clearly show that talin is capable of high stretching by a tensile force [106, 107], implying
a function similar to that of titin in muscle cells: acting as an extension-limiter. It is
also now clear that the immobile domain at the N-terminal of talin is associated with
integrin, and also closely associated with the FERM domain of FAK [106, 107], while
the C-terminal of talin is associated with paxillin, which in turn may associate (perhaps
via vinculin) with the focal adhesion targeting (FAT) domain (C-terminal) of FAK. Both
talin and paxillin alco bind to cytoskeletal F-actin. These actin filaments exert a pulling
force on the C-terminal of talin, making it play a role of a scaffold for other proteins to
arrange around. More importantly, this allows the pulling force to be transmitted from
the cytoskeleton to the ECM, via the force chain sketched in Fig. 3.1. This could be used
to effect the conformational change in FAK required for its activation. In this model,
integrin is merely the bridging element from FAK to the ECM, with the FERM domain
localized near the cell membrane and N-terminal of talin. At the opposite end, the FAT
domain can be pulled away by the cytoskeletal force transmitted through paxillin/talin.
This model is supported by the recent computational analysis [108] showing that the
closed and the open states of FAK are reversibly reached by increasing and decreasing of
pulling force.

Here, using this idea of FAK conformational change under applied force, I demonstrate
that sensing of stiffness may be a distinct single-molecule response, and develop a
theoretical model of reversible mechanosensor of the 2nd kind. The underlying physics
of this model is applicable to a wide variety of protein complexes, but here I concentrate
on the focal adhesion kinase, because FAK occupies a central point in mechanosensing
pathways of focal adhesions [109]. I posit that the activation of FAK is dependent on
cytoskeletal tension and ECM stiffness, and the integrin (along with other members of
the force chain in Fig. 3.1) is playing a role of force transducer. Of course, without the
activated integrin there would be no force transduction to ECM, and no mechanosensing.
I do not consider the role of clustering. This is clearly an area of further work in this
field, since clustering is definitely an important aspect of the process on stiff substrates:
allostery of integrins (and associated FAK) must have a role in the signalling process,
as it has in chemotaxis [110, 111]. This chapter focuses on the physical model of an
individual FAK sensor operation.
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Fig. 3.2 A scheme of the 2-spring model used to produce equations (3.1). The viscoelastic
substrate is characterized by its elastic stiffness and stress-relaxation time given by γ1/κ.
The conformational change of FAK is described by a potential U(u), see Fig. 3.3, and
the associated relaxation time determined by the damping constant γ2.

3.1 Model of coupled viscoelastic elements

At its heart, the problem of a bond unfolding under duress can be captured with two
stochastic differential equations. The variables under consideration relate to the position
of the substrate, x1, and the point of force application, x2, and the viscoelastic system is
shown in Fig. 3.2. Therefore, the difference in these is effectively the separation of the
bond. These variables are subject to separate thermal noise sources, if they are spatially
separated: by a flexible linker in the case of single-molecule spectroscopy, and by the
cell membrane in the case of cell adhesion. Regarding the bond as harmonic, and the
substrate response as viscoelastic, we can write down our system:

γ1ẋ1(t) = −κx1(t) − ∂U [x2(t) − x1(t)]
∂x1

+
√

2kBTγ1ξ1(t)

γ2ẋ2(t) = −∂U [x2(t) − x1(t)]
∂x2

+ f +
√

2kBTγ2ξ2(t) (3.1)

where κ and γ1 are the elastic and viscous response coefficients of the substrate, γ2 is
the strength of dissipation around the bond, f is the force applied to the complex, and
U(x2 − x1) is the free energy of the bond, where the bond separation u = x2 − x1. The
thermal noise terms, ξ1,2(t), are independent normalised Gaussian noise processes.

At this point, it is important to note how the friction across the bond is implemented
in the Langevin equations. The dissipation in the bond is not connected to the cell
membrane, which in the language of Fig. 3.2 is at position x1 - friction is assumed due to
absolute motion of the bond, ẋ2, rather than relative to the substrate, u̇ = ẋ2 − ẋ1. For
instance, in the case of an AFM pulling experiment, where a protein may be attached
to a yielding substrate (perhaps a hydrogel), the friction resisting the absolute motion
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at x2 is a very reasonable assumption, due to the physical separation of the unfolding
molecule and the substrate. The case of mechanosensing at focal adhesions is a little
more nuanced. At the cell membrane, one might suspect that its motion will create a
relative reference state for the sensor, and then the friction γ2 responding to this relative
motion. However, the cell membrane is not a rigid wall: it is permeable to fluids, and
its transverse rigidity is negligible. So, motion in the cell membrane will not be directly
translated to the sensor’s environment, and we are free to consider the component of
friction coming from the sensor’s absolute motion. The alternative, if we were to consider
a purely relative friction, i.e. the sensor represented by another Voigt model pair of
elements, Fig. 3.2, would lead to the pair of equations

γ1ẋ1(t) = −κx1(t) + f +
√

2kBTγ1ξ1(t)

γ2u̇(t) = −∂U [u(t)]
∂u

+ f +
√

2kBTγ2ξ2(t), (3.2)

that is, a pair of completely independent processes with no possibility for mechanosensi-
tivity in the bond.

For many biomolecules, there are crucial bonds that have to be overcome before the
structure unfolds. Under tension, a molecule will then stretch out until we reach the
limit of the molecule’s length. Then the free energy will rapidly increase. If we apply a
force, this will bias the free energy in favour of extended configurations. Such a profile,
and the effect of applied force, is sketched out in Fig. 3.3.

The important bond’s effect is encapsulated in a steep well, which has a length u = um.
Beyond this, the potential is flat, as the polymer unfolds. We treat the rise in free energy
due to the entropic stretching as negligible compared to the bond energy in this problem.
Then, at u = umax, we have reached the inextensible limit of the polymer/protein. In
this toy reaction profile, U(u > umax) = ∞.

In what follows, I show several ways to approach this problem. First, I show how we
can choose a reaction pathway, and calculate the rate from this. I discuss the results,
and show the limitations of this approach. Then, I ask about the mean first passage time
to the end of the bond’s influence, um. First, I consider special cases in which we can
solve the system (3.1) analytically. Then, I show how we can use a different reduction
of variables, by considering the mean weight at a fixed distance from the line of first
passage, and then using the distance from the line of first passage as our variable.
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Fig. 3.3 Schematic potential energy of different FAK conformations. (a) The force-
free molecule has its native folded state [c]. The binding free energy ∆Go has to be
overcome to separate the kinase from the FERM domain, after which there is a range of
conformations of roughly the same energy is achieved by further separating these two
domains in the open state [o]. At full separation (distance umax) the Src binding and
kinase phosphorylation lead to the active state [a] of the protein, with the free energy
gain ∆Ga. (b) When a pulling force is applied to this system (f2 > f1 > 0) the potential
energy profile distorts, so that both [o] and [a] states shift down in energy by the same
amount of −f · umax.

3.1.1 Estimates of material parameters

We shall find that the model predictions are very sensitive to values of several key
parameters so a careful discussion of their estimates is required.

We start with the strength of the bond holding the FERM and kinase domain in the
closed (inhibited) state, labeled as ∆Go in Fig. 3.3. The MD simulation study [108]
estimated the energy barrier for FAK opening as ∆Go ≈ 28.5kBT , which is 17 kcal/mol
at room temperature. This value seems too high, and the authors of [108] also comment
on that. It is known that interdomain hydrophobic interaction in such proteins is usually
low-affinity. For instance, a measurement in a different multi-domain protein gives a
value for this bonding energy is 7 kcal/mol, or ∼ 11kBT [112]. However, this is close to
an energy of just 1-2 hydrophobic contacts, and there is more affinity between FERM and
kinase domains observed in [108]. In the end, we select an intermediate value between
the two limits mentioned above: ∆Go ≈ 17kBT , or 10 kcal/mol.

We take the position of the barrier from the computational study: um = 0.9 nm [108],
which is a reasonable value for the protein domain structure. This determines the value
of critical force at which the native minimum disappears, and the closed state [c] becomes
completely unstable, fc = 2∆Go/um ≈ 150 pN. This is a very high force that is likely to
unfold most proteins, and is also unlikely to be generated by a single actin filament of
a cell cytoskeleton. For comparison, studies investigating the force required to disrupt
the fibronectin-integrin-cytoskeleton linkage, report the value of only 1—2 pN [113, 114];
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this is probably too low (an underestimate), since a single myosin motor exerts ∼ 3 pN
of force [115, 116]. So we should explore the effect of pulling forces in the range of single
to tens of pN.

We now look at substrate stiffness. For reference, the elastic modulus of a typical
collagen-rich mammalian tendon is 1.2 GPa [117], of a collagen/elastin ligament: 1.1 Mpa
[118], and of an aorta wall: 0.8MPa [119]. Synthetic rubber has a modulus around
100 kPa [120]. Epithelial and glial tissues have a much lower modulus: 100Pa-1 kPa
[121, 122]. If a half-space occupied by an elastic medium (e.g. gel substrate or glass
plate) with the Young modulus Y , and a point force f is applied along the surface
(modeling the pulling of the integrin-ECM junction, Fig. 3.1), the response coefficient
(spring constant) that we have called the stiffness is given by κ = (4/3)πY ξ, where ξ is a
short-distance elastic cutoff: a length scale analogous to the mesh size of a densely packed
(non-filamentous) substrate. This is a classical relation going as far back as Lord Kelvin
[123]. In the work of Janmey et. al [124] on comparative cell response on soft substrates,
the weakest meaningful substrate had Y = 540 Pa. For a more typical weak gel with
Y = 10 kPa, and a characteristic network mesh size ξ = 10 nm, we obtain κ = 4.2 · 10−4

N/m. On a stiff mineral glass with Y = 10 GPa, we must take the characteristic size to
be a ‘cage’ size (slightly above the size of a monomer), ξ = 1 nm, which gives κ = 42
N/m. A typical stiff plastic has a value about 10 times smaller. So a large spectrum of
stiffnesses κ could be explored by living cells.

Finally, we need estimates of the damping constants. The simulation study [108]
determined a very reasonable value for the internal diffusion constant of the FAK complex:
D = kBT/γ2 ≈ 6 · 10−12m2s−1. At room temperature, this gives the damping constant:
γ2 = 7 · 10−10kg s−1. Then, the overall scale (‘bare magnitude’) of the opening rate
derived below, Eq. (3.56), is approximately (2∆Go/u

2
mγ2) ≈ 1.6 · 108s−1, which means

a time scale of ca. 6 ns. This ‘bare’ time scale is compatible with available data and
simulations on full and partial protein unfolding [125]; naturally, at given bonding energy
and low pulling force the actual rate of FAK opening/activation would be much lower:
the plots below suggest tens of microseconds to milliseconds range.

To estimate the damping constant of the viscoelastic substrate, we need the charac-
teristic time of its internal relaxation, which is the ratio γ1/κ = τ1 in our notation. It is
important to note here that the local time of relaxation of thermal fluctuations must
not be confused with the macroscopic stress relaxation time, which can sometimes be
very long in rubbers and gels. To estimate this, I use a study conducted using both
AFM and a classical rheometer on a variety of polyacrylamide gels [126]. They found a
reasonably constant value of τ1 = 2 × 10−4s across gels from 300Pa-10kPa. Therefore, we
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take γ1 = τ1κ. As such, the ratio between the damping coefficients, γ2/γ1, takes a wide
range of values, from 0.2 for soft substrates, to 10−4 for stiffer substrates.

3.2 Fixed reaction path approach

The first attempt to solve this problem considered a fixed reaction path approach. This
begins by noticing that the problem naturally reduces to a 2-dimensional Smoluchowski
equation for the variables x(t) = x1 for the substrate, and u(t) for the FAK conformations,
with the corresponding diffusion constants Di = kBT/γi, and the Cartesian components
of diffusion current:

Ji = −kBT

γi

e−Veff/kBT ∇i

(
eVeff/kBTP

)
, (3.3)

where the index i = 1, 2 refers to the spatial coordinates, P (x1, x2; t) is the probability
distribution of the process, and

Veff(x1, x2) = 1
2κx

2
1 − fx2 + U(x2 − x1) = 1

2κx
2 − fx+ U(u) − fu (3.4)

represents the effective potential landscape over which the substrate and the mechanosen-
sor complex move, subject to thermal excitation and the external constant force f . This
landscape is illustrated in Fig. 3.4.

The effective Kramers problem of escape over the barrier has been solved many times
over the years [23, 24, 85, 83, 127]. The multi-dimensional Kramers escape problem,
with the potential profile not dissimilar to that in Fig. 3.4 was also solved several
times [128, 129]. Unlike previous approaches, here I do not allow unphysical solutions
by mistreating the case of very low/vanishing barrier. In the case when the effective
potential barrier is not high enough to permit the classical Kramers approach of steepest
descent integrals, one of several good general methods is via Laplace transformation
of the Smoluchowski equation [25, 85]. The compact answer for the mean time of first
passage from the closed state [c] to the top of the barrier of height ∆G a distance ∆u
away is:

τ+ = ∆u2

D

(kBT

∆G

)2 (
e∆G/kBT − 1

)
− kBT

∆G

 . (3.5)

There are many complexities regarding choosing an optimal path across the potential
landscape Veff(x, u), some of which are discussed in [128, 129], but we are aiming for
the quickest way to a qualitatively meaningful answer. As such, let us assume that
the reaction path consists of two ‘legs’: from the origin down to the minimum of the
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m m

Fig. 3.4 The 2D contour plot of the effective potential Veff(x, u) at low pulling force
[left] and at high pulling force [right]. The position of substrate anchoring has moved
from x = 0 to x̄ = f/κ, and the depth of the energy well of the [o] state has lowered
to ∆Go − fumax. The dashed line shows the path of the system evolution that leads to
crossing the barrier towards the open state.

potential, which is shifted to x̄ = f/κ due to the substrate deformation, and then from
this minimum straight over the saddle (barrier) into the open state of FAK conformation.
The average time along the first leg is given by Eq. (3.5) with the distance ∆u = x̄ and
the negative elastic energy in this minimum, E = −f 2/2κ, with the diffusion constant
determined by the damping constant of the substrate:

τdrift = 2γ1

κ
+ 4γ1kBT

f 2

(
e−f2/2κkBT − 1

)
. (3.6)

Here the ratio γ1/κ is the characteristic time of fluctuation relaxation in the viscoelastic
substrate [130], which will play a significant role in our results. Naturally, τdrift = 0 when
there is no pulling force and the effective potential minimum is at (x = 0, u = 0).

In the region between the minimum of Veff and the potential barrier, a number of
earlier papers [131, 127, 129] have used the effective cubic potential to model this portion
of U(u). In this case, when the pulling force is applied, the barrier height is reducing
as: E = ∆Go (1 − 2fum/3∆Go)3/2. The distance between the minimum [c] and the
maximum at the top of the barrier is reducing as well: ∆u = um (1 − 2fum/3∆Go)1/2.
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Fig. 3.5 (a) The rate constant of the [c]→[o] transition K+(f, κ) plotted against the
substrate stiffness (on logarithmic scale) for several values of pulling force f . The arrows
point at the inflection point on each curve, i.e. the region of maximum sensitivity. (b)
The plot of ‘sensitivity’ dK+/dY for the same parameters, illustrating the maximum
sensitivity range at each level of pulling force. In this figure, τ1 = 0.01s.

Substituting these values into Eq. (3.5), we find the mean passage time over the barrier:

τopen = − γ2u
2
m

∆Go
(
1 − 2fum

3∆Go

)1/2 + γ2kBTu
2
m

∆G2
o

(
1 − 2fum

3∆Go

)2

(
e∆Go(1− 2fum

3∆Go )3/2
/kBT − 1

)
. (3.7)

In the limit of high barrier ∆Go ≫ kBT , and small pulling force, this expression becomes
proportional to e−(∆Go−fum)/kBT , i.e. recovers the ‘Bell formula’ that people use widely.
When the force increases towards the limit fc = 3∆Go/2um, this time τopen reduces
dramatically: there is no barrier left to overcome, and the minimum of Veff shifts to
coincide with the entrance to the [o] state.

The overall rate constant of the [c]→[o] transition, K+, is then determined as the
inverse of the total time:

K+ = 1
τdrift + τopen

. (3.8)

Figure 3.5 presents the rate of FAK opening for several values of pulling force, as a
function of substrate stiffness. The rate of FAK activation has a characteristic (generic)
form of any sensor, in that it undergoes a continuous change between the ‘off’ and
‘on’ states. The latter is a state of high rate of FAK opening and the subsequent
phosphorylation that occurs on stiffer substrates. The force applied to the complex
determines its response for a given substrate: the substrate could be ‘too soft’, meaning
that FAK does not activate at all – and also ‘too stiff’, where the rate of activation reaches
a plateau and no longer responds to further stiffening. Between these two limits, there is
a range of maximum sensitivity where the rate of activation directly reflects the change
of substrate stiffness. Note, that due to the logarithmic scale, this range is actually as
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Fig. 3.6 The rate constant of FAK opening K+(f, κ) is plotted as a function of the
cytoskeletal pulling force f , for several values of substrate stiffness labelled on the plot.
The dashed line marks the rate Ksub = 1/2τ1 for the opening without any barrier. The
homeostatic peaks of activation rate K+(f), for each given substrate stiffness, roughly
correspond to the peak of sensitivity in Fig. 3.5(b) at the same level of force. This
suggests that the cell self-adjusts the sensor to keep it at the optimal sensitivity on each
substrate. In this figure, τ1 = 0.01s

much as one order of magnitude in stiffness – quite broad, and we suspect more than
enough to precisely sense local variations in stiffness. Figure 3.5(b) highlights this by
presenting the ‘sensitivity’ directly as the value of the derivative dK+/dκ. We see that
cells with a higher pulling force (i.e. with high actin-myosin activity and more developed
stress fibers) are sensitive to the substrates in the more stiff range. In contrast, cells that
exert a low pulling force (i.e. no stress fibers, lower actin-myosin activity) are mostly
sensitive to soft substrates. This is in good agreement with broad observations about the
cell mechanosensitivity of the 2nd kind, and their response to substrate stiffness.

The dependence of the sensor on the force applied by the cytoskeleton is illustrated
in Fig. 3.6. We see a rapid increase in the rate that FAK opens (and its subsequent
phosphorylation) on stiffer substrates. For the complex to actively probe the substrate
stiffness (mechanosensitivity of the 2nd kind), we posit that the cell remodels itself in
response to FAK activation, increasing the pulling force. This further increases the level
of FAK activation in a positive feedback manner, until a maximum rate is reached. Any
increase in force beyond this point decreases the rate of FAK opening. This would act as
a mechanism for negative feedback, which settles the cell tension in homeostasis at the
peak of the corresponding curves in Fig. 3.6. The stiffer the substrate, the higher the
rate of FAK activation and, accordingly, the more α-SMA stress fibres one would find
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Fig. 3.7 The rate of the [c]→[o] transition K+(f, κ) plotted against the pulling force f
(in the biologically relevant range of small forces) for a set of values τ1 labelled on the
plot representing the change in stress-relaxation characteristics of the substrate (the last
two curves are for τ1 = 1s and 10s, respectively).

in this adjusted cell (leading to morphological changes such as fibroblast-myofibroblast
transition, or the fibrosis of smooth muscle cells). On soft substrates with sufficiently
small Young’s modulus there is no positive force that gives a maximum in the opening
rate. Thus, any pulling force on the FAK-integrin-ECM chain has the effect of further
lowering the activation of FAK relative to the tension-free state, and so the cell does not
develop any additional tension in the cytoskeleton. This is consistent with the observation
that cells do not develop focal adhesions on soft gels. The strong effect of substrate
viscoelasticity on the absolute value of rate of FAK activation K+ is shown in Fig. 3.7,
for an example of a typical rubber with the Young modulus of ∼ 300 MPa. A range of τ1

is tested, and here these results predict that material with a longer relaxation time has
a reduced response at any pulling force. This is essentially analogous to the substrate
appearing ‘softer’.

The fixed reaction path approach gives very nice biological behaviour – a built-in
mechanism for homeostatic response, and a sensor whose sensitivity adapts according
to the applied force. However, on closer reflection, it became less clear how we could
explain the peaked response of the sensor to applied force. The mechanism for it in the
fixed reaction path is that the system must wait until the substrate is in equilibrium
to transition, which effectively caps the rate at the substrate relaxation rate. However,
there is no a priori reason to assume this – there will always be an applied force across
the bond as the substrate is equilibrating (although perhaps not the full force f), and
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Fig. 3.8 Harmonic potential modelling a bond under force. Once the bond length
u = x2 − x1 reaches a critical value, um, it will snap open irreversibly (the potential
drops to U = −∞ past the barrier). Increasing the force applied to the bond lowers the
barrier height and moves the minimum at f/µ closer to the barrier position.

this may well destabilise the bond enough to transition before the substrate reaches
mechanical equilibrium. To examine this, we can strip the problem back, removing the
complexity of the potential, and looking for limiting cases.

3.3 Ornstein-Uhlenbeck approach

Instead of considering the whole free energy profile of our extending biomolecule, we can
ask about the mean first passage time to the end of the harmonic section of potential, so
that we may consider the potential U(x2 − x1) = µ(x2 − x1)2/2 as in Fig. 3.8. We can
write out the system in Eqs. (3.1) in a standard vector form, for x(t) = (x1(t), x2(t)),
and stochastic force ξ(t) = (ξ1(t), ξ2(t):

ẋ = −M(x(t) − x̄) + σξ(t), (3.9)

where the quantities M , x̄, and σ are defined as:

M =
(κ+ µ)/γ1 −µ/γ1

−µ/γ2 µ/γ2

 , x̄ = M−1

 0
f/γ2

 , σ =
√2kBT/γ1 0

0
√

2kBT/γ2

 .
(3.10)

Physically, the matrix M is the coefficient of restoring force, and the matrix σ gives the
strength of thermal fluctuations in the system. The vector x̄ gives the equilibrium position
of the system in phase space in the absence of thermal fluctuations. Equation (3.9) is the
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standard form of a two-dimensional Ornstein-Uhlenbeck process. In general, the matrix
M is not diagonal. The stochastic force matrix σ need not be diagonal either, but in the
set-up of our problem in (x1, x2) variables, it is.

To solve this equation we diagonalise M , and finding its eigenvectors, ei, and corre-
sponding eigenvalues, λi. These give the normal modes and their characteristic relaxation
times. Then, we can use a result in the literature to give us information about the first
passage time to the barrier, when x2 − x1 = um. Once we have found the eigenvalues, we
can diagonalise M by using the matrix whose columns are the eigenvectors,

R =
(
e1 e2

)
. (3.11)

Then, left multiplying by the inverse of R, and insertion of the identity matrix:

∂

∂t
R−1x = −R−1MR(R−1x −R−1x̄) + (R−1σ)ξ(t) (3.12)

gives a system of equations diagonal in the new variables x′ = R−1x:

ẋ′ = −diagM(x′ − x̄′) + σ′ξ(t), (3.13)

where x̄′ = R−1x̄, and diagMij = λiδij. Note that the stochastic matrix σ′ = R−1σ is
not diagonal, and so the stochastic forces affecting the two natural variables are no longer
independent sources of noise.

Now, since we have expressed the process in its natural variables, we can treat each
one as a separate Ornstein-Uhlenbeck process, and write the solution for each of the
natural variables x′

i as

x′
i(t) = x′

i(0)e−λit + x̄′
i

(
1 − e−λit

)
+ σ′

ij

∫ t

0
e−λi(t−s)ξj(s)ds (3.14)

From this equation, we can calculate the mean and expectation of the variables x′, but
this is only of limited use in our problem. The main issue for finding first passage times
is that the separation x2 − x1 is a function of both x′

1 and x′
2. Hence, when we look for

the approach to the line of first passage, we have to consider a 2D first passage process.
It is only in certain cases that we can address the problem analytically, where the 2D
problem naturally simplifies to one dimension.
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Fig. 3.9 Schematics showing the two limiting cases in which the two-dimensional problem
reduces naturally to a single variable: the bond separation u. Schematic a) shows the
rigid substrate case, where κ → ∞, and b) shows the viscous anchor chase, where κ → 0.

3.3.1 Two limiting cases

It turns out that there are two different cases where the problem reduces easily to one
variable: the case of κ → ∞, when the substrate is completely rigid, and x1 becomes
fixed, and the case that κ = 0, when the anchoring substrate has no elastic modulus. In
these cases, we can quickly arrive at expressions for time to um.

The mean first passage time for this is a known formula, derived in one paper by
Ricciardi and Sato [132]. This paper takes a one-dimensional Ornstein-Uhlenbeck process
written in a standard form,

ẋ(t) = −Mx(t) + σξ(t), (3.15)

starting at x(0), and reaching a final value S > x(0). Then, the MFPT is given by

τ = φ(S) − φ(x(0)), (3.16)

where the function φ(z) is the infinite series

φ(z) = 1
2M

∞∑
n=1

Γ(n/2)
n!

(
z
√
M

σ

)n

. (3.17)

In the case that 0 < S < x(0), then one should take the problem with S → −S and
x(0) → −x(0). This careful treatment of signs is necessary as the initial conditions
explored are force-dependent, and so depending on the value of the force we may have to
use different expressions.
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Fig. 3.10 The MFPT plotted against applied force on a rigid substrate. The critical
bond separation um is different for the two curves: um = 0.9nm for the black curve,
um = 0.8nm for the red curve, and um = 0.7nm for the blue curve, with the same energy
barrier height. A smaller um implies a steeper quadratic well, as µ = 2∆G/u2

m. The plot
shows that higher stiffness results in a smaller unbinding time.

A rigid substrate

In this case of a rigid substrate, the set of equations reduces to simply the dynamical
equation for x2, and so the equation determining the separation, u, is

u̇ = − µ

γ2

(
u− f

µ

)
+
√

2kBT

γ2
ξ(t) (3.18)

We are seeking the MFPT from u0 = 0 to the final bond length S = um > 0. To put
Eq. (3.18) into the Ricciardi-Sato form, we shift the variable u: ũ = u−f/µ. Then, we can
use the Ricciardi-Sato formula, starting at ũ(0) = −f/µ, and finishing at S̃ = um − f/µ.
The function φrigid(z) has the form:

φrigid(z) = γ2

2µ

∞∑
n=1

Γ(n/2)
n!

(
z

√
µ

2kBT

)n

(3.19)

Then, the MFPT is

τrigid = φrigid(um − f/µ) − φrigid(−f/µ). (3.20)

This result holds while there is still a stable minimum in the potential. This will be true
for forces less than the critical force fc = µum, where the minimum will coincide with the
barrier position um. Figure 3.10 shows that the MFPT decreases as a function of applied
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force. For a fixed barrier height, stiffer bonds will be easier to break, as the barrier is
closer to the minimum.

A viscous anchor

When the substrate has no elastic response, and is instead only a viscous anchor, we can
set κ = 0 in Eq. (3.9). The restoring matrix M then has a particularly simple form:

M = µ

 1/γ1 −1/γ1

−1/γ2 1/γ2

 . (3.21)

The eigenvectors reduce to a simple form as well, and then we can write the matrix R as

R =
1 −γ2/γ1

1 1

 (3.22)

The inverse of the matrix gives the natural variables

x′ = R−1x = γ1

γ1 + γ2

 1 γ2/γ1

−1 1

x1

x2

 (3.23)

Now, the variable x′
2 = (x2 − x1)γ1/(γ1 + γ2): just the separation u scaled by a constant

factor! However, unlike the case of a completely rigid substrate, where there were no
thermal fluctuations in the substrate, we have to deal with thermal fluctuations in the
substrate, and on the complex. For a viscous anchor, the full solution for our natural
variable u is:

u(t) = u0e
−λt + f

µ

(
1 − e−λt

)
−
√

2kBT

γ1

∫ t

0
e−λ(t−s)ξ1(s)ds

+
√

2kBT

γ2

∫ t

0
e−λ(t−s)ξ2(s)ds, (3.24)

where λ = µ(γ1 + γ2)/γ1γ2. Usefully, we can combine the noise terms, in a version of
Pythagoras’ theorem. Consider the process

Z(t) = X(t) + Y (t), (3.25)

where X(t) and Y (t) are independent Gaussian white noise terms, with correlation
functions ⟨X(t)X(t′)⟩ = σ2

Xδ(t− t′), ⟨Y (t)Y (t′)⟩ = σ2
Y δ(t− t′), and ⟨X(t)Y (t′)⟩ = 0. The
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process Z(t) is another Gaussian white noise, with moments given by [25]:

⟨Z(t)⟩ = ⟨X(t)⟩ + ⟨Y (t)⟩ = 0 (3.26)
⟨Z(t)Z(t′)⟩ = (σ2

X + σ2
Y )δ(t− t′) = σ2

Zδ(t− t′), (3.27)

As such, we may combine the two white noise terms in Eq. (3.24) as so:

√
2kBT

γ1
ξ1(t) +

√
2kBT

γ2
ξ2(t) =

√√√√2kBT

(
1
γ1

+ 1
γ2

)
ξ(t) =

√
2kBT

γ̃
ξ(t), (3.28)

where γ̃ = γ1γ2/(γ1 + γ2) is the reduced dissipation constant, and we see that the
separation u is a one-dimensional Ornstein-Uhlenbeck process with solution

u(t) = u0e
−λt + f

µ

(
1 − e−λt

)
+
√

2kBT

γ̃

∫ t

0
e−λ(t−s)ξ(t)ds. (3.29)

The relaxation timescale 1/λ contains a reduced friction coefficient. Now, to use the
Ricciardi-Sato formula, we must again shift into coordinates ũ = u− f/µ, with a starting
position ũ = −f/µ, and boundary S̃ = um − f/µ. This is actually just the same formula
as for the rigid substrate, with the substitution of the bond dissipation constant with
the reduced dissipation constant: γ2 → γ̃. Therefore, we see that if there is very high
dissipation in the viscous anchor, the system behaves as if the substrate is rigid.

The MFPT follows from the Ricciardi-Sato result again, and uses the function φvisc(z):

φvisc(z) = γ̃

2µ

∞∑
n=1

Γ(n/2)
n!

(
z

√
µ

2kBT

)n

, (3.30)

so that the MFPT for forces less than the critical force, f < µum, is

τvisc = φvisc(um − f/µ) − φvisc(−f/µ). (3.31)

The mean first passage time for a viscous anchor is plotted in Fig. 3.11. The larger the
friction coefficient, the longer the unbinding time, as the system takes longer to relax.
Note that again, the unbinding time is monotonically decreasing as the force applied
increases, in stark contrast to the results from the reaction path approach.

One important thing to note is that if either of the damping coefficients go to zero,
then the MFPT τ → 0 for both the rigid substrate and the viscous anchor. The reason
for this is the fluctuation-dissipation theorem: in the limit of vanishingly small damping,
the fluctuations in the system will be massive, and it will be knocked out over the barrier
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Fig. 3.11 MFPT for a viscous anchor for different values of viscosity γ1 against applied
force. The values of viscosity are chosen to loosely reflect the friction coefficients of
polyacrylamide gels. A higher friction coefficient results in a higher first passage time.
All other parameters are as given in Section 3.1.1.

almost immediately. Of course, in such a limit, we are no longer free to neglect inertial
terms, and so this result is not valid. We will assume here, as in the extra-cellular matrix,
that the fluid viscosity is much greater than the friction coefficient of the bond.

3.4 Mean field approach

If we want to consider cases besides the simple limits presented above, then there is
no simple transformation of variables to find the separation. In particular, since the
separation does not naturally emerge as a normal mode of the system, the formal solution
has two exponential terms, and so can’t be expressed as a simple Ornstein-Uhlenbeck
process. We have to find other ways to isolate the bond separation. The approach explored
here integrates out a degree of freedom, and creates a ‘mean field’ approximation to
the probability density, with the bond separation as the independent variable. To do
this, we transform into a coordinate system based around the distance from the breaking
point. Then we can integrate over lines of fixed distance from the barrier. Now we have
a 1D problem, and can use the backward Fokker-Planck formalism to come up with an
estimate of the first passage time.
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We start at the original diffusion equation in (x1, x2) coordinates:

∂p

∂t
=D1

∂2p

∂x2
1

+D2
∂2p

∂x2
2

− ∂

∂x1

[(
µ

γ1
(x2 − x1) − κx1

γ1

)
p

]

− ∂

∂x2

[(
− µ

γ2
(x2 − x1) + f

γ2

)
p

]
(3.32)

This is derived using a standard method from the underlying stochastic differential
equations. The coordinate transformation requires a little algebra to derive, but it can
be shown that the new coordinates are given by:

u = x2 − x1, v = x1 + x2, (3.33)

where it is the v variable that we are to integrate over. Then, by the chain rule, the
relevant differential operators are

∂

∂x1
= ∂

∂v
− ∂

∂u
,

∂

∂x2
= ∂

∂u
+ ∂

∂v
. (3.34)

Now, the diffusion equation becomes

∂p

∂t
=(D1 +D2)

(
∂2p

∂v2 + ∂2p

∂u2

)
+ 2(D2 −D1)

∂2p

∂v∂u

−
(
∂

∂v
− ∂

∂u

)[(
µ

γ1
u− κ(v − u)

2γ1

)
p

]
−
(
∂

∂v
+ ∂

∂u

)[(
− µ

γ2
u+ f

γ2

)
p

]
(3.35)

We can now integrate over v, to obtain a new diffusion equation for the effective proba-
bility distribution P =

∫
dvp(v, u). This relies on the behaviour of the full probability

distribution and its derivative at v = ±∞, but since the potential is harmonic, we can
say that the probability distribution and its derivative go to zero faster than the potential
becomes infinite. We can write this mean-field diffusion equation in u as:

∂P

∂t
= (D1 +D2)

∂2P

∂u2 − ∂

∂u

[(
−
(
µ

γ̃
+ κ

2γ1

)
u+ f

γ2

)
P

]
(3.36)

We can rewrite the diffusion coefficient using the Stokes-Einstein relation with the effective
friction coefficient γ̃,

D = kBT

γ1
+ kBT

γ2
= kBT (γ1 + γ2)

γ1γ2
= kBT

γ̃
(3.37)
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Now, we can collect together the potential terms:

µ

γ̃
+ κ

2γ1
= µ̃

γ̃
(3.38)

where the effective stiffness of the bond µ̃ = µ+ κ(γ̃/2γ1) is modulated by the character-
istics of the viscoelastic substrate, τ1 = κ/γ1. We can use these definitions to rewrite the
diffusion equation:

∂P

∂t
= D

∂2P

∂u2 − ∂

∂u

[(
− µ̃u

γ̃
+ f

γ2

)
P

]
(3.39)

From this diffusion equation we can write down the effective potential for the separation
u:

Veff(u) = µ̃u2

2 − fuγ̃

γ2
, (3.40)

which contains a harmonic term from the bond, and from the restoring force from the
substrate, and a term for the work done by the applied force. Note that the force is
scaled by the factor γ̃/γ2. There will be more discussion on this later, but I claim that
this is the effective force felt across the bond at short times. The mean first passage time
for constant D as derived in Eq. (1.85) can be adapted for the case when the absorbing
boundary is at the upper end of the interval:

τ(u0) = 1
D

∫ um

u0
dy eβVeff(y)

∫ y

−∞
dx e−βVeff(x). (3.41)

It is useful to rewrite the effective potential by completing the square:

Veff(x) = µ̃

2

(
x− fγ̃

µ̃γ2

)2

− f 2γ̃2

2µ̃γ2
2
. (3.42)

Since the effective potential appears with opposite signs in the integrals in Eq. (3.41),
the constant term can be cancelled in the integration. Defining the effective free energy
minimum ū = fγ̃/µ̃γ2, we are left with

τ(u0) = 1
D

∫ um

u0
dy eβµ̃(y−ū)2/2

∫ y

−∞
dx e−βµ̃(x−ū)2/2 (3.43)

The inner integral can be rewritten as the cumulative density of the normal distribution,
Φ(x), scaled by a factor:

τ(u0) = γ̃

√
2πβ
µ̃

∫ um

u0
dy eβ(y−ū)2/2Φ

(√
βµ̃ (y − ū)

)
(3.44)
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Fig. 3.12 The exponent of the steepest descent φ(y) plotted as a function of the bond
separation u, for a maximal bond length of u = 0.9nm. For low forces, the exponent is
very large close to the barrier, and so the integral in Eq. (3.45) will be well approximated
by the method of steepest descent around the barrier. However, as the force nears the
critical force, at 150pN, this approximation is much less sound.

This integral is not analytically solvable. However, we use the method of steepest descent
to make an approximation. In particular, we can write the integrand as an exponential

τ(u0) = γ̃

√
2πβ
µ̃

∫ u0

−um

dy eφ(y) (3.45)

where the function φ(y) is

φ(y) = βµ̃(y − ū)2

2 + ln Φ
(√

βµ̃(y − ū)
)
. (3.46)

The exponent φ(y) is plotted in Fig. 3.12, and we can see that it is dominated by the
region around the barrier. As such, we can expand the exponent as a Taylor series around
the barrier:

φ(y) ≈ φ(um) + φ′(um) (y − um) (3.47)

Using this expansion, the mean first passage time from u0 can be approximated as

τ(u0) = γ̃

√
2πβ
µ̃
eφ(um)−φ′(um)um

∫ um

u0
eφ′(um)ydy

= γ̃

√
2πβ
µ̃

eφ(um)

φ′(um)
(
1 − eφ′(um)(u0−um)

)
.

(3.48)
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We are now close to an answer, and all that is left is to average over the initial position
distribution. The scenario imagined is one where the force is applied at time t = 0, and
so the initial position distribution is actually the force-free steady state distribution:

p(u0) =
√
βµ̃

2π e
−βµ̃

u2
0

2 . (3.49)

The mean first passage time is

τ =
∫ um

−∞
p(u0)τ(u0) ≈

∫ ∞

−∞
p(u0)τ(u0), (3.50)

where we are using that the probability decays so fast away from u0 = 0 that we can
extend the lower limit past the barrier limit. In this integral, we only have to deal with
the integral √

βµ̃

2π

∫ ∞

−∞
e−βµ̃u2

0/2+φ′(um)u0du0 = eφ′(um)2/2βµ̃. (3.51)

Finally, we can write down the full mean first passage time:

τ = γ̃

√
2πβ
µ̃

eφ(um)

φ′(um)
(
1 − eφ′(um)2/2βµ̃−φ′(um)um

)
(3.52)

Usefully, the funtion Φ(
√
βµ̃(y− ū) can be neglected: when the force is below the critical

force f/µ̃ < uγ2/γ̃, f(y) is a constant, Φ(
√
βµ̃(y − ū) ≈ 1. As such, we can write down

the mean first passage time as:

τ = γ̃

µ̃


√

2π/βµ̃
um − ū

 exp
[
βµ̃

2 (um − ū)2
](

1 − exp
[
βµ̃

2 (ū2 − u2
m)
])

(3.53)

The first exponential is the most important factor at forces below the critical force (as
the second exponential will only contribute if ū ≈ um). We can rewrite the mean first
passage time in energetic terms:

τ = γ̃

µ̃


√

2πkBT/µ̃

u− fγ̃/µ̃γ2

 exp
β

∆G0 + κu2
mγ̃

2

8γ2
1

− fu
γ̃

γ2
+ f 2

2µ̃

(
γ̃

γ2

)2


×

1 − exp
β

 f 2

2µ̃

(
γ̃

γ2

)2

− µ̃u2

2

 (3.54)

Looking at the exponent, we can see a term coming from the zero-force energy barrier
∆G0 = µu2

m/2, and an additional harmonic stretching energy of the substrate. At low
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Fig. 3.13 The opening rate k as a function of the applied force for substrates of different
stiffness. In a), a longer relaxation time τ1 = 2 × 10−4s reduces the sensitivity of the
bond to substrate stiffness compared to the shorter relaxation time in b). In both cases,
the applied rate increases more for stiffer substrates up to about 10kPa, before the sensor
response stops being stiffness-dependent. This would suggest that the complex is not
capable of sensing beyond a certain stiffness threshold. At low forces, the increased
fluctuations in softer substrates actually increases the opening rate over stiffer substrates.

forces, these will dominate. The next term we see is proportional to the reduction
in the energy barrier due to the applied force, −fu(γ̃/γ2). Finally, the third term is
similar to the one seen in the reaction path approach – the change in energy to the free
energy minimum from the starting point: −(f 2/2µ̃)(γ̃/γ2)2. This is simply an Arrhenius
activation term. The final bracket in this expression is important for when we surpass
the critical force needed to destabilise the bond completely; it prevents the MFPT from
diverging to ∞. However, it seems fair to only consider the regime below the critical
force,

f <
µ̃uγ2

γ̃
= fc. (3.55)

Then we are free to drop the bracketed term. The rate constant of unfolding is then
simply the reciprocal of the MFPT:

k ≈ µ̃

γ̃

u− fγ̃/µ̃γ2√
2πkBT/µ̃

 exp
−β

∆G0 + κu2
mγ̃

2

8γ2
1

− fu
γ̃

γ2
+ f 2

2µ̃

(
γ̃

γ2

)2
 (3.56)

This expression is quite intuitive. First of all, it scales with the overall relaxation timescale
of the mean field potential, µ̃/γ̃. Then, it contains a contribution comparing the distance
from the free energy minimum to the barrier position u− w̄ with the thermal fluctuations
within the energy barrier,

√
kBT/µ̃. It is interesting that the rate pre-factor is smaller

when the equilibrium fluctuation from the free energy minimum is larger. Finally, we have
an Arrhenius-type activation term, as noted above. The opening rate vs applied force is
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Fig. 3.14 The opening rate k plotted against the applied force for a 1kPa substrate, for
different substrate relaxation times τ1 = γ1/κ. Substrates with a shorter relaxation time
have a lower rate of opening, and the rate maximum is peaked at higher values of force.

plotted in Fig. 3.13. There is an increase in opening rate on stiffer substrates at higher
forces, but the maximum is not within the physiological range of forces (around 100pN).
In reality, the rate constant should not decrease – this maximum comes artificially as the
steepest descent method loses its validity. In reality, there is no maximum in the rate. In
fact, the rate increases to a much higher value than the reaction path results. Secondly,
there is a stiffness threshold, above which the complex is incapable of distinguishing
substrates of different stiffness. For the parameters plotted here (a mesh size of 10nm
and a relaxation time of 2 × 10−4s), this stiffness threshold is around 10kPa, but depends
strongly on the substrate’s viscoelastic properties. It happens that this is around the
same stiffness that Yeung et al. found a plateau in cell circumference with increasing
stiffness [124], and around the stiffness threshold for myofibroblast differentiation [133].
Figure 3.14 shows how the relaxation time of the substrate influences the rate of opening.
Longer relaxation times in the mean field approach lead to higher opening rates.

The rate of opening given in Eq. (3.56) shows some interesting features. First of
all, the stiffness κ always comes with a scaling factor γ̃/γ1 = γ2/(γ1 + γ2). As such, if
γ2 ≫ γ1, then the scaling factor is zero, and there is no direct dependence of the opening
rate on the substrate stiffness (of course, in our study, there is an indirect relationship
through the substrate relaxation time, τ1 = γ1/κ. Indeed, for a longer relaxation time,
τ1 = 0.01s, there is no sensitivity to substrate stiffness at all. This sensitivity is controlled
by the balance between the viscous properties of the substrate and those of the bond.
When γ1 ∼ γ2, increasing the substrate stiffness increases the effective stiffness of the
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bond in the bond length variable. This has the effect of diminishing the contribution
from the f 2 term in the exponent, and increasing the bare rate µ̃/γ̃.

The qualitative and quantitative differences between the two approaches to the
calculation are quite stark, and it is interesting to try and understand the differences
between them. First, there is no maximum in the rate for the mean field approach,
compared to a very low maximum for the reaction path approach. The reason for this is
simple - when we take two reaction paths, the rate is controlled by the time to reach
the x1 minimum, and it is assumed that the system does not reach minimum in u space
before it reaches the minimum in x1 space.

To investigate this, we can plot the deterministic force expected across the bond,
without any stochastic forces, using the equations of motion:

γ1ẋ1(t) = −κx1(t) − ∂U(x2(t) − x1(t))
∂x1

γ2ẋ2(t) = −∂U(x2(t) − x1(t))
∂x2

+ f (3.57)

The full solution of this can be found with a harmonic potential U = µu2/2. We can
solve this set of ordinary differential equations for x1(t) and x2(t), and then find the bond
separation, x2(t) − x1(t) across the bond as a function of time, as plotted in Fig. 3.15.
The full expression is unwieldly, but in fact a simple approximation is

x2(t) − x1(t) = f

µ

(
γ1

γ1 + γ2

(
1 − e−µ̃t/γ̃

)
+ γ2

γ1 + γ2

(
1 − e−t/τ1

))

= f

µ

(
γ̃

γ2

(
1 − e−µ̃t/γ̃

)
+ γ̃

γ1

(
1 − e−t/τ1

)) (3.58)

This gives us a lot of intuition for the final result in the stochastic case. For long substrate
relaxation times, the extension rapidly reaches an intermediate free energy minimum
fγ̃/µγ2, extending further as the substrates slowly reaches full extension. Importantly, if
the force is larger than the critical force so that the intermediate minimum is past the
barrier, fγ̃/µγ2 > u, then the bond will break in this initial extension phase. There is no
reduction in the rate as the force goes to infinity; the deterministic breaking time above
the critical force is a monotonically increasing function with force. This interpretation
explains the presence of the factor γ̃/γ2 in the mean field Arrhenius factor – on the
timescale of the MFPT, the relevant value of force is this scaled one. For polyacrylamide
gels, this factor is only relevant for soft subrates (<1kPa). The plot of deterministic
extension shows that the reaction-path approach does not capture essential parts of the
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Fig. 3.15 The deterministic force expected over the bond upon application of a subcritical
force of 100pN plotted for two different substrate stiffnesses. There is an initial rise in
the force to an intermediate threshold, and then a slower increase up to the full value
(here, τsub = 2 ∗ 10−4s. This threshold is a balance of the friction coefficients in the bond
and in the substrate, and is lower for the softer substrate (this has a lower coefficient of
friction). The approximation in Eq. 3.58 is plotted for 100Pa as the dashed black curve.
The same approximate expression lies directly on top of the 1kPa curve.

physics at high forces. During the first leg of the movement, there appears to be an
assumption that there is no effective force across the bond facilitating the opening event.
Figure 3.15 shows this notion to be false; we build up some measure of force across the
bond very quickly, and it is this that we should be testing the bond with.

It may well be that the ‘mean field’ approach taken here, to integrate out the fast
variable, provides a route to solving the problem for more general viscoelastic substrates.
In particular, if the response of the substrate is slow compared to the typical breaking
time of the bond, then it may be possible to treat the substrate as quasi-stationary, with
an effective force across the bond. Remember that as long as we can find the overall
effective friction coefficient on the reaction timescale, and the effective force, then we can
use the Ricciardi-Sato formula to obtain the mean first passage time quickly. Again, the
reduction in variables might be done by such a ‘mean field’ approach as was taken here.

How could the reaction rates calculated here for the unfolding of molecules such as
focal adhesion kinase, or talin, be included in a cellular description of mechanosensing?
One prominent description of focal adhesion dynamics is given by the clutch model,
which couples an internal mechanosensing molecule (often described as talin), with the
on/off rates of integrin binding to the ECM (for a recent survey, see for example [134]).
Integrin is a catch-bond: as force is applied to integrins, the integrin-ECM bond strength
initially increases, in contrast to the usual trend of biomolecules to become less stable
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with increasing force [98, 99]. Above a certain force, the bond strength starts to decrease,
in line with ‘conventional’ bond dynamics described by the Bell model [60]. The interplay
between the two unbinding/unfolding timescales allow the cell to distinguish between
stiff and soft substrates.

In this context, the rate constants calculated here provide more complete expressions
for the unfolding rates of the internal mechanosensor, and the dependence upon substrate
viscoelasticity, which has not yet been fully addressed in the literature. If we take a
rough force of ∼ 30pN across each integrin bond [135], then by Fig. 3.14, we are in
the region where greater substrate stress relaxation leads to a higher response from the
mechanosensing molecule. This is in accord with experimental results of cells spreading
on viscoelastic substrates, where spreading is enhanced on substrates with greater stress
relaxation [130]. The same study produces simulation results for such a viscoelastic
clutch model.

Finally, it is important to note that such molecules as focal adhesion kinase and talin
may not only act as force transmitters (to pass the cytoskeletal pull down to integrin-ECM
bond), but also force transducers, initiating signalling pathways throughout the cell. To
successfully model these, it is likely that a complex kinetic model is needed, accounting
for activation of signalling pathways, turnover of focal adhesion units (and therefore
active force transducers), and the feedback mechanisms on e.g. cytoskeletal force changes
as a result of downstream signalling events. Such a kinetic model is very sensitive to the
rates of its component processes, and the work in this chapter is well placed to inform
the activation rates of force transducers in such models.





Chapter 4
The onset of cell spreading as a study in popula-
tion kinetics

Matrix stiffness is known to affect cell size and morphology [136, 124, 137]. When cells are
plated onto soft substrates, their footprint will not increase as much as on stiff substrates,
and their spreading will be more isotropic: resulting cells will be round and dome-like in
shape. On stiff substrates, the same cells will spread very strongly, develop concentrated
focal adhesion clusters and stress fibers of bundled F-actin, and eventually polarize
to initiate migration. This leads to several well-documented biological functions in
tissues: variable stem-cell differentiation pathways [136, 138], the fibroblast-myofibroblast
transition near scar tissue [139–141], fibrosis in smooth-muscle cells near rigid plaque
or scar tissue [142, 143], and the stiffer nature of tumor cells [144, 145]. The definitive
review [146] summarizes this topic.

The actual process of spreading, after a planktonic cell is deposited on a substrate,
involves several stages. After initial anchoring, which probably occurs due to a non-
specific hydrophobic or Van der Waals binding, which could lead to an initial increase
of the cell footpring on the surface due to viscoelastic wetting [147, 148]. Once on
the surface, the cell must test for the presence of suitable ligands, and then bind to
them [149, 150]. This specific adhesion must occur for the cell to spread [151]. Then,
the cell tests the elasticity of the extracellular matrix (ECM), and on sufficiently stiff
substrates, it continues spreading, approaching its maximal footprint area. Finally, after
polarization is triggered on stiff substrates, the cell may start moving in a particular
direction.

The dynamics of cells spreading has been studied extensively, and several characteristic
universal features have been established [146, 124, 152–154]. In particular, the average
cell area has been shown to grow with time as a power law, often with the radius of cell
footprint being R ∝ [t− τlag]1/2, where the ‘lag’ τlag is referred to as the adhesion time.
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[152, 155–157]. It is important to note that the ‘lag time’ is observed in many discussions
of the dynamics of spreading, but mostly ignored by subtracting it from the data. Several
mechanistic models of how the cell spreading is achieved after the adhesion to ECM
is established [152, 157, 155], as well as the spreading and cell orientation response to
mechanical deformation of the substrate [158, 159]. A common theme to these studies is
the presentation of individual cell trajectories, outlining the time course of a cell response
to adhesion (although of course many cells are used to generate statistics). In contrast,
here I examine the dynamics of a cell population, by identifying the time at which a
cell reaches a specific point early in its spreading sequence (essentially reflecting the
‘decision’ of a cell to start spreading in response to its ECM mechanosensing signal).
Frisch and Thoumine [58] have shown that in the early stages of spreading, the cell
takes a spherical-cap morphology, and when the increasing adhesion energy becomes
similar to the cell cortical tension: the cell contact angle crosses from greater than 90◦

(representing the partial dewetting) to less than 90◦ (representing the partial wetting).
Such a binary condition, asking if an event has taken place by a certain time, rather than
what events are taking place over the course of time, allows the use of stochastic theory
to interrogate the cell dynamics, extracting useful information about the underlying
kinetics of spreading. In particular, we are able to form a better understanding of the
‘lag time’ and also identify the rate-limiting energy barrier that controls the transition
of cells from the initial non-specific binding to the final strongly adhered, and widely
spreading regime. This is a useful complementary approach to single cell measurements.
I emphasize that here, and in the rest of this chapter, I am discussing isolated cells on
a substrate: when cells adhere to each other, their shape transitions are controlled by
other mechanisms, based on cadherin and associated pathways [160].

While reporting and discussing the cell area increase on stiffer substrates, Fig. 5(d) of
the paper by Yeung et al. [124] and Fig. 2(A) of the paper by Reinhard-King et al. [154]
also present data on the time-dependence of cell spreading, which already gives a hint
for the central experimental finding: the onset of cell spreading does not depend on the
substrate. In this chapter I investigate the time-dependence (kinetics) of the initiation of
spreading, asking the question: how long does it take for the cell to recognize the presence
of a substrate, and respond by engaging signalling pathways and enacting the required
morphological change (spreading on the substrate)? Figure 4.1 illustrates the point: plots
(a) and (b) show the same cells: immediately after planting on the substrate, and after
some time, when several cells have already responded by engaging their spreading. Two
very different cell lines (NIH/3T3 fibroblasts and EA.hy927 endothelial cells) were plated
on a variety of substrates that span the range of stiffness from 30 GPa (stiff glass) to
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(a) (b)

Fig. 4.1 A section of the experimental field of view, illustrating the onset of spreading.
Photographs (a) and (b) show the same cells: immediately after planting on the substrate
(solid glass with fibronectin), and 15 min later, when several cells have already responded
by spreading (labelled by matching arrows). Scale bar = 20 µm.

460 Pa (very soft gel), registering the characteristic time at which the initially deposited
planktonic cells start to spread.

We will discover three things: [1] the onset of spreading is completely universal,
not depending on the stiffness of substrates (in contrast to the final cell morphology,
which strongly depends on it); [2] the rate-limiting process, with the characteristic free
energy barrier, is the same in both cell lines; [3] the onset of spreading is controlled by a
nucleation event, its universal power-law dependence t5 suggesting that there are 5 state
changes a newly deposited cell must go through before it is able to spread. We will also
find that the sum of the free energy changes of these state changes, in contrast to the
rate-limiting process, depends on the cell line.

At first, these results on the insensitivity of the onset of spreading to substrate stiffness
look counter to much of the literature. It is important to draw a clear line between many
existing results on the cell area increase with time on different substrates, and this study
that looks at the statistics of a cell population that start spreading. In particular, the
criterion observed happens at a very early stage of the overall spreading (see Fig. 4.2),
where the cell area has increased only by a factor of 1.26 from its initial settled state.

4.1 Experimental details

In order to assess the analysis presented in this chapter, it is necessary to understand
the experimental set-up and choices made. Here, I present a brief overview of the
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Fig. 4.2 Plotting some digitized data from Reinhart-King 2005 (Fig. 2A), and from
Yeung 2005 (Fig. 5(d)) showing the time evolution of spreading cell area: in the first case
at varying concentration of ligands for integrin binding, in the second case at varying
substrate stiffness. The initial cell area (on first deposition on surface) is A0, and the
‘selection criterion’ illustrated in Fig. S2 implies the observed cell area increases by a
factor 22/3 ≈ 1.6. This is a very early stage of cell spreading, which I refer to as the onset
of spreading response.

experimental procedure undertaken by Anna-Lena Redmann, who collected all of the
data used in this chapter.

The cell lines of choice were endothelial cells and fibroblasts, because their adhesion
behaviour is important for understanding cardiovascular diseases and tissue engineering.
Anna used immortalized cell lines: NIH/3T3 murine fibroblasts (obtained from ATCC)
and EA.hy927 endothelial cells. NIH/3T3 fibroblasts are very well characterized, as
they have been used in many cell studies since their establishment as cell line; they
have also been used in cell adhesion studies, making them a good choice for these
experiments [161, 162]. EA.hy927 is a cell line established in 1983 by the fusion of
HUVEC with a lung carcinoma line [163]. It has since become a widely used and thus
well characterized cell line, popular in studies of cardiovascular diseases. EA.hy927 cells
have also been used for adhesion strength assays [164].

Three different substrate stiffnesses were used: standard laboratory glass (elastic
modulus 30 GPa), and several versions of siloxane elastomers. The fabricated elastomers
were tested on a standard laboratory rheometer (Anton Paar), giving the values of
equilibrium modulus G = 460 Pa, and 480 kPa, compared to the modulus of 30 GPa
for glass. For comparison, the stiffness of typical mammalian tissues is: 100 Pa – 1 kPa
in brain tissue; ∼3 kPa in adipose tissue; 10 – 20 kPa in muscle; 30 – 50 kPa in fibrose
tissue; up to a few MPa for bone.
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Fig. 4.3 The illustration of the visual criterion used to count the cells as ‘engaged’ in
mechanosensing response. We interpreted the loss of the sharp edge in the microscopic
image, and the simultaneous loss of the ‘lensing effect’ with the cell shape becoming
flatter than semi-sphere. This point in time was associated with the given cell beginning
to spread, and therefore counted towards the ‘fraction of cells engaged in spreading’ in
the population.

The cell culture was placed over the entire substrate. Cells were left to adhere to the
substrate for 2 min, at which point the culture dish containing the substrate is filled slowly
with fresh medium to reduce the cell density. This was to prevent new cells depositing,
and cell clusters forming on the substrate. Only the cells attached to the substrate at this
point were included into the subsequent counting. This initial attachment is certainly
purely physical, through van der Waals forces and various non-specific cell adhesion
molecule head groups. These physically adhered cells, initially spherical in planktonic
culture, maintain the high spherical-cap shape with only a small adhesion footprint, as
ordinary inflated bilayer vesicles would do as well. This is readily confirmed by optical
interference bands around the cell perimeter when viewed from above, and the lensing
effect focusing the light by the short-focal distance near-spherical shape [58].

After a certain time on substrate, the cells finally engage their specific adhesion mech-
anism, and start spreading, achieving a very widely spread area with highly asymmetric
focal adhesions on stiff substrates, or a round dome-like shape on soft substrates. The
aim of the study was to determine the time it takes for the cells to engage this active
spreading process.

To obtain a population distribution of the onset time of cell spreading, we had
to choose a ‘spreading criterion’, which would be clear and easily distinguishable to
avoid counting errors. This was chosen to be the transition between the near-spherical
cell initially planted (physically attached) on the substrate, and the cell with adhesion
processes engaged and its shape developing an inflection zone around the rim. As seen
in Fig. 4.3, this morphological transition turns out to be easily identified as the near-
spherical cell has a sharp edge, with interference bands in higher magnification, and also
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a lensing effect of focusing light, which disappears on the transition to a more flattened
shape. It must be emphasized, that in order for the cell count to be meaningful, the
cells have to be isolated on the substrate: once the cells come into contact with each
other, many other adhesion and mechanosensing mechanisms engage (for example, those
based on cadherins), and they spread much more readily and more significantly. As such,
initial cell density was chosen such that the initial attachment is in isolation, and the
spreading criterion is applied before they spread sufficiently to come in contact (as some
cells in Fig. 4.1 have done).

In each individual experiment (given substrate, fixed temperature, and other parame-
ters), once the cells were deposited on the substrate, and the clock started, Anna took
broad-field microscopic images at regular time intervals, and counted the fraction of
cells that had crossed the threshold defined by the spreading criterion – that is, the
cells that have started the active spreading process in response to their mechanosensing
cue. This produced a characteristic sigmoidal curve for each experiment (see Fig. 4.4):
the fraction of cells engaged in spreading starting from zero at t = 0 and saturating at
near-100% at very long time (excluding the occasional cell mortality, which was more
of a factor at lower temperatures). The typical sample size was 100-120 cells in each
experiment (field of view). The main sources of error were: inconsistency of application
of the spreading criterion in image analysis, imperfections of fibronectin coverage on
substrate, temperature fluctuations, and of course the natural cell variability. All of
these are random errors, with no systematic drift. We were satisfied that the results were
reproducible, and errors did not dominate the data trends. The plots in Figs. 4.4 and
4.5 do not include error bars only to avoid obscuring distinct data sets.

The experimental results concurred with the results of earlier studies [58, 136, 124, 138].
Cells placed on stiffer substrates spread to larger areas, and were less rounded, for both
cell types. There is also a strong dependence on the ECM protein coverage [165], but
this was not a variable in the study.

The time of initiation of spreading is presented in Fig. 4.4. These two plots (for 3T3
and EA cells) show the fraction of cells that have started spreading at each given time
that has passed after planting on substrate and replacing the medium. The point of
steepest gradient in these cumulative curves marks the most probable time for the onset
of spreading. We see the timing of cell spreading is completely insensitive to the substrate
stiffness: the kinetics of spreading response is exactly the same on each substrate. The
work of Sheetz et al. [106] has reported a similar effect (the rate of spreading did not
depend on the degree of ECM protein coverage on the surface). Rather than substrate
stiffness, the curves in Fig. 4.4 are instead strongly segregated by temperature.
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Fig. 4.4 Cumulative population dynamics of cell spreading. Plots (a) and (b) show the
growing fraction of cells engaged in spreading on substrates with different stiffness for
3T3 fibroblasts and EA endothelial cells at two different temperatures each. It is clear
that the dynamics is not affected by the substrate stiffness, but changes with temperature.
In the remainder of this chapter, I analyze in detail the long-time behaviour of these
cumulative curves as they approach saturation, and the behaviour at short times when
the onset of mechanosensing response occurs.

4.2 Long-time kinetics: a rate-limiting process

To examine the effect of temperature in greater detail, in Fig. 4.5 we can plot the same
cumulative spreading fraction curves for the two cell types on glass (as we are now
assured that these curves are the same on all substrates). It is noticeable that the initial
lag is greater in the EA cells, and that at low temperature the saturation level drops
significantly below 100% – presumably because more cells disengage (or die) at low
temperature, reducing the saturation fraction. The same effect is much enhanced for the
the nutrient-starved cells in the PBS medium, see in Fig. 4.5(a): the onset of spreading
is very slow in this case, and a large fraction of cells do not engage at all. But the generic
sigmoidal shape of the cumulative curve is universal, and the random spread of data
within each individual experiment is not excessive.

The curves of the generic shape seen in Figs. 4.4 and 4.5 are encountered in many
areas of science, and their characteristic ‘foot’ at early times, especially obvious at
lower temperatures, is usually associated with a ‘lag’ in the corresponding process. I
will discuss this early-time regime separately, later in the chapter, but first we can fit
exponential relaxation curves to the long-time portion of the data (as the fit lines in Fig.
4.5 indicate): Q(t) = A · (1 − exp[−(t− tlag)/τ ]. It is clear from the plots that the fitting



92 The onset of cell spreading as a study in population kinetics

3T3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

T=36.7
T=36.5
T=36.3
T=35.1
T=30.2
T=27.5
T=27.5
T=26.1
T=23.9
T=23.9
T=23.8
T=23.6

Fr
ac

tio
n

of
ce

lls
sp

re
ad

in
g

T=36.6 PBS
T=33.7 PBS

0

0.2

0.4

0.6

0.8

1
EA

Fr
ac

tio
n

of
ce

lls
sp

re
ad

in
g

T=37.0
T=36.3
T=35.3
T=29.5
T=27.2
T=25.4
T=24.9

(a) (b)

Time on substrate [×103s]
0 1 2 3 4 5 6 7 8

Time on substrate [×103s]

Fig. 4.5 Cumulative population dynamics of cell spreading. Plots (a) and (b) show
fraction of spreading cells on glass, at many different temperatures; for 3T3 fibroblasts
and EA endothelial cells. Lines in all plots are the fits of the long-time portion of
data with the exponential relaxation curves, producing the fitted values of the longest
relaxation time τ (see text).

to the single-exponential relaxation law, with just two parameters since A is known for
each curve, is very successful. The characteristic relaxation time τ markedly increases
at low temperatures. It is interesting that such a characteristic time associated with
the ‘spreading of an average cell’ has been discussed in [152], giving the same order of
magnitude (of the order of magnitude 50-100s).

To better understand this dependence on temperature, I tested a hypothesis that
this relaxation time is determined by the thermally-activated law by producing the
characteristic Arrhenius plots of relaxation times, for both cell types, see Fig. 4.6. It
is remarkable that both cells show almost exactly the same trend of their relaxation
time: the rate limiting process in their spreading pathways is the same: τ = τ0e

∆G/kBT ,
with the activation energy ∆G ≈ 18.3 ± 1.5 kcal/mol, and the thermal rate of attempts
τ−1

0 ≈ 4 × 1010s−1. Both values are very sensible: this magnitude of ∆G is typical for
the non-covalent bonding energy between protein domains [108], and this rate of thermal
collisions is in excellent agreement with the basic Brownian motion values.

4.3 Short-time kinetics: a nucleation process

After discovering that the late-times (rate-limiting) dynamics of the onset of spreading is
quite universal across different cells and substrates, it becomes clear that the marked
difference between the two cell lines in Fig. 4.5 lies in the early-time behavior: something
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Fig. 4.6 The Arrhenius plot of the longest relaxation time (log(τ) vs. inverse absolute
temperature) from the exponential fits in Fig. 4.5(a,b), giving almost exactly the same
value of binding energy ∆G ≈ 18 kcal/mol, for both types of cells.

that I have called a ‘lag’ following many similar situations in protein self-assembly. To
examine this early-time regime more carefully, let us re-plot the same time series data on
the log-log scale in Fig. 4.7.

This reveals that the process is active from the very beginning (t = 0) and the plotted
value grows as a power-law of time. The only reason that we appear to see a ‘lag’ is
because the experimental technique of counting the cells engaging in spreading did not
permit values below 0.01 (1%) to be resolved in this plot; the same certainly applies
to other experimental situations reporting similar kinetic data. The trend illustrated
in Fig. 4.7 is clear: the early onset of cell spreading follows a universal power law, and
the fitting of all the data sets gives Q(t) = αt5 with very good accuracy, where only the
prefactor α depends on temperature and the cell type. This result is remarkable: similarly
to the universal value of binding energy that controls thermally-activated rate-limiting
relaxation time τ , this very specific t5 power law appears to be the only sensible fit of
the early-time data for different cells, temperatures, and substrates.

Again, strong temperature dependence is evident in the subpopulations of cells which
start spreading very early: the difference was evident in Figs 4.4 and 4.5, but is very
clearly enhanced in Fig. 4.7. What changes between the data sets is the prefactor α of the
universal power law α t5, which has a systematic temperature dependence. Now expecting
the thermally activated behavior, by analogy with the earlier analysis, we plot these
prefactors α(T ) on the Arrhenius plot in Fig. 4.8. The fitting to α = const · e−∆H/kBT
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Fig. 4.7 Analysis of the short-time dynamics of cell spreading. Plots (a) and (b) show
selected data sets from the Fig. 4.5 (a,b), presented on the log-log scale to enhance the
short-time dynamical range. In both plots, the power-law slopes of the short-time data
follow the equation: αt5, with the coefficient prefactor α depending both on cell type
and on temperature. The dashed line illustrate the slopes of t6 and t4 to illustrate the
strength of fit.

indeed gives a very reasonable trend, with the activation energies ∆H = 70 kcal/mol
for 3T3, and 129 kcal/mol for EA. Note that, in contrast to Fig. 4.6, here we have
a negative exponent, i.e. the parameter α(T ) represents a reaction rate rather than
a relaxation time. In the classical Arrhenius-Kramers thermal activation, the process
time is shorter as the temperature increases, while the Fig. 4.8 shows the scaling factor
α(T ) is decreasing as the temperature decreases instead (which is reflected in the overall
observation of longer ‘lag time’ in the cumulative curves).

4.4 Kinetics of adhesome assembly

The time measured is the sum of the adhesion lag time, and the time to reach the binary
criterion for the start of spreading. The distribution in the data is due to the statistical
distribution of the ‘lag times’. The results show that the stochasticity of lag time has
structure. We can use this structure to infer information about the processes underlying
adhesion and spreading.

In classical physics, early-time power law kinetics in a cumulative distribution are a
hallmark of self-assembly processes such as polymerization or aggregation [166, 29]. As
already described in Section 1.6, the first passage time density from a state i to a state j
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Fig. 4.8 Analysis of the short-time dynamics of cell spreading. The Arrhenius plot of
the prefactor α(T ), with the fit lines giving the effective activation enthalpy ∆H ≈ 70
kcal/mol for 3T3, and 129 kcal/mol for EA. See text, explaining how this value represents
the sum of free energy barriers of key proteins assembling into the adhesion complex.

in a reaction network is given by

fij(t) =
(
kiq1kq1q2 ...kqmj

uij

)
tm

m! , (4.1)

where m+ 1 is the length of the minimum connector between the two states, i → q1 →
q2 → ... → qm → j. The factor uij is the probability of absorption in state j (this is 1
if j is the only absorbing state). Since the first passage time is related to the survival
probability Q(t) (the fraction of cells that have not started spreading), through

f(t) = −∂Q(t)
∂t

, (4.2)

and the cumulative probability of having started to spread is merely P (t) = 1 − Q(t),
then the short-time behaviour of the cumulative probability P (t) is simply

P (t) =
(
kiq1kq1q2 ...kqmj

uij

)
tm+1

(m+ 1)! , (4.3)

i.e. the exponent of the power law gives the length of the minimum connector, m+ 1.
This is simply the number of states you must pass through to reach a final state. In this
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case, we must be looking at a process of self-assembly within the cell. The exponent of the
power law gives us some idea of how many important assembly steps there are. But, what
exactly is being assembled? It seems likely that we are observing the formation of adhesion
points and adhesome complexes that allow the cell to bind onto its ECM environment and
begin spreading. The idea that the initial assembly of adhesome complexes is responsible
for the initial changes in the cell footprint area, e.g. Reinhart-King et al. [154]. Here we
are able to infer some quantitative details of this process.

It is well established that disruption of the integrin-fibronectin linkage completely
halts cell spreading [151, 167]. Integrins are transmembrane receptors linking the cell to
the matrix in focal adhesions [97, 100, 101]. To attach to their ligands, they need to be
activated [168, 169]: in isolation, integrin pairs will lie in their inactive state, unable to
bind to fibronectin (or other ECM proteins containing the RGD motif). In equilibrium,
the level of integrin activation might be dependent on the ECM rigidity [105, 170],
however, here we are examining very early stages of cell settling on its substrate, so it is
the adhesome assembly and signalling that control the results.

Much of the literature on focal adhesions sees the attachment of the talin head domain
to integrin tails as an important activation step [171–173]. Talin is a key protein in
mature and nascent adhesions, linking integrins to the actin cytoskeleton, and providing
a scaffold for other focal adhesion proteins (see, for example [79]). For the onset of
spreading, there is some conflict in the literature: in the study by Zhang et al. [151],
where they confirmed that integrin linkage was essential to the onset of spreading, they
actually depleted both types of talin, and found that the onset of spreading was not
fully inhibited, although spreading was severely limited. This could indicate that talin
was not needed for the activation of integrins during the onset of spreading. However, a
subsequent knock-out study of talin (among other proteins) [174] found that spreading
was actually completely inhibited by the removal of talin (although partial function was
restored by the addition of Mn2+). In that work, the authors note that the experimental
methods (si-RNA transfection) employed in previous studies left residual amounts of
proteins in the cell, and that there may well have been enough talin left in depleted cells
to form nascent adhesions. Indeed, in their paper, Zhang et al. say that the decrease in
talin2 levels (talin1 was not expressed in their cell lines) was between 40-68%.

In fact, Theodosiou et al. [174] implicate three further players: kindlins, paxillin, and
focal adhesion kinase (FAK). This is not a new finding, or point of view: since the early
discovery of the key role of FAK in the integrin adhesome [101, 175, 95], it was understood
that is is the FAK activation that produces the chemical cue for the subsequent cell
mechanosensing pathways via Src, Rho, Rac and Cdc42, as well as Erk [176, 167, 177, 178].
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Fig. 4.9 A possible assembly sequence of a mechanosensor complex. Analysis suggests
that there are five distinct ‘slow’ stages illustrated in the sequence, with their respective
rates k1-k4 and the rate of FAK activation kon (controlled by the free energy barrier
∆G ≈ 18 kcal/mol, cf. Fig. 4.6). The product of the five rate constants α = k1k2k3k4kon
is what we measure in the Arrhenius plot Fig. 4.8. In the center is a sketch of forming
focal adhesion cluster, where the individual mechanosensor complexes in various stages of
development/turnover are bound by vinculin and actin crosslinking (see text for details).
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Theodosiou et al. found that chemical inhibition of FAK reduced lamellopodia formation
in cells to the level of kindlin knock-out cells [174]. The formation of these lamellopodia
and the initiation of isotropic cell spreading was therefore found to be dependent on FAK
activation. The model of FAK as a mechanosensor presented in Chapter 3 shows how the
rate of its activation is sensitive to the stiffness of substrate, and the cytoskeletal pulling
force. Importantly, when the force is low (as we would expect at early times, before the
mechanosensing pathways are activated and the cytoskeletal forces increase), this rate is
controlled only by the bonding energy between its FERM and kinase domains, not the
stiffness.

FAK clearly sits at the centre of the adhesion signaling network [179]. But the minimal
composition of the whole adhesion-mechanosensing complex in the nascent adhesions, as
well as the rate of its assembly and turnover, remain a question of active research and
debate. Kindlins are known to be a necessary partner for talin in integrin activation [79,
168, 173]. The F3 subdomain of a FERM domain mediates an interaction with β-integrin
tails, and ‘cooperates’ with the talin head domain in integrin activation [180]. Paxillin
is another player in the adhesion network [79, 174, 179]. In particular, in the nascent
adhesions formed at the onset of spreading, kindlin was directly binding paxillin; paxillin
was then recruiting FAK to these nascent adhesions. On the other hand, the important
role of vinculin in several processes in the integrin-talin-FAK adhesion complex appears
to be relevant mostly at the mature focal adhesion stage [181, 106, 182], and I believe its
role could be to bind different adhesion complexes into a dense focal adhesion raft.

How does this information tie in with the results in this chapter? A recent molecular-
dynamics simulation [108] has explicitly calculated the bonding energy between FERM
and Kinase domains of FAK as ∆G ≈ 17 kcal/mol. Breaking this bond is the essential
step of FAK activation. We can compare this barrier with the longest relaxation time
examined in Fig. 4.6, and the agreement of the ∆G values is remarkably close. According
to reaction rate theory, this energy barrier is the largest one of the assembly process, as it
produces the long-time ‘bottleneck’ in the population dynamics of the onset of spreading.

In a scenario when the spreading response is initiated by the assembly of adhesome
complex and engagement of mechanosensors, the cell must undergo 5 changes of state
before it can start spreading, with the last being the FAK activation process, as in
the previous chapter. This is necessary for the mechanosensing signal to be generated,
and the cell morphological response initiated [79]; it also has to be the rate-limiting
step, logistically. The possible candidates for the other 4 reaction steps must have a
rate slow enough to be counted in the first data points, see Fig. 4.9 for an illustration.
Images of cells were taken approximately every minute, and so it is impossible to resolve
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fast processes with rates of k > 1min−1 using the experimental data. For instance, the
binding of integrins to fibronectin does not fit this criterion: it has been seen that the
binding of integrins to an antibody ligand in the presence of different cations has a
characteristic binding time of 0.01 − 1ms [183]; this is much faster than could be resolved
in the experimental data. In order to form the force-bearing chain from integrin to
F-actin of cytoskeleton, I see the following reactions necessary: [a] the binding of talin
and kindlin to integrins, [b] the binding of paxillin to kindlin, [c] the binding of talin
to F-actin, [d] the binding of FERM domain of FAK to talin, [e] the binding of FAT
domain of FAK to paxillin, and [f] the binding of FAK/paxillin to the F-actin. It is
difficult to find any estimates of the rates of these processes. One can find evidence for
the fast strengthening of focal adhesions under load [184], but this is not the same as
the assembly of these complexes at the onset of spreading. The experiments suggest
that 4 of these reactions are quite slow (accounting for the need of protein localization
on the complex); these can’t be identified, but the combined activation energy of these
four reactions has been measured (Fig. 4.8) in 3T3 and EA cells. Only once the full
force-chain of the integrin adhesome is assembled, the mechanosensor produces the signal
for the cell to modify its morphology to the substrate.

Another possible scenario that could account for the 5-step initial kinetics still has
to rely on activation and adhesion of integrins, but could include a phase of initial
viscoelastic spreading [152] that should be controlled by physical interactions on a more
macroscopic scale. In that case we would require fewer slow steps of adhesome assembly.
The experimental data cannot rule this out, but it is interesting to note that the universal
timescale suggested by Cuvelier et al. (obtained with a much lower ligand density:
fibronectin coating ten times less dense than that in this study) was between 5 and 10
minutes. Using their model with parameters they fit for HeLa cells on our fibronectin
density estimates a spreading time to our criterion of around 2-3 minutes. As such, this
is not inconsistent with our data, with the caveat that we are still seeing the adhesion
process before spreading in the early power-law kinetics. It is also unclear whether
there should be an Arrhenius activation-type temperature dependence for their spreading
timescale (which is prominent in the data presented in this chapter). Certainly, the work
of Cuvelier et al. avoids kinetic complications by simply considering the adhesion energy
gain per unit area of the cell.

The unusual feature of this work is the use of population dynamics of spreading cells
to infer details of the microscopic processes governing the cell response to an external
substrate. Linking these results to nucleation theory allows us to cast new light on the
onset of cell spreading as a problem of complex assembly.





Chapter 5
The binding of tethered ligands to surface recep-
tors

Ordered self-assembly requires the ability to organize and bind many molecules into a
coherent structure. In biology, most self-assembling structures rely on specific interactions,
matching ligands and distinct binding sites. The kinetics of self-assembly is a broad
and rich topic, which offers a fundamental understanding of processes being used in the
construction of structured and functional aggregates.

One such process is the binding of a tethered ligand to a binding site. This is a
fundamental process, involved in many biological settings. The thrombin receptor, a
transmembrane protein, activates by cleaving an amino-terminal extension on the extra-
cellular side of the membrane, unmasking a ligand which binds to another part of the
receptor nested against the cell membrane [185–187]. Cytoskeletal molecular motors
(dynein, kinesin and myosin) all require a periodic binding of their ligand at the end of
a flexible ‘arm’ to a site on a substrate (microtubule or F-actin, respectively) a certain
distance away [188, 189]. There is also a larger scale process of cell-cell, or cell-surface
adhesion. Jeppesen et al. [190, 191] examined this problem for one specific binding site,
where ligands tethered to the cell surface by flexible chains could also associate with the
matching receptor on an adjacent cell. They found a dependence on the configuration of
the polymer tether: in particular, how often the chains entered extended configurations
to reach the distant receptors. Their treatment did not extend to an analytical expression
of the binding rate. Theoretically solving this problem is one of our main tasks here.

The search for a small target has already been considered in the context of DNA
looping [192, 26, 27], where the mean first time for two distant monomers on a polymer
chain to meet was calculated. Such loops are observed experimentally in chromatin [193,
194], and in surface-tethered DNA [195, 196]. In fact, my calculation is similiar to the
work of Szabo et al. [26], although in their problem of forming a loop the distance to the
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binding site is zero, and accordingly no activation exponential has been observed. My
problem is also similar to the ‘narrow escape problem’ [197, 34, 198, 33]. Here a Brownian
particle is confined to a domain whose boundary is entirely reflecting, apart from a small
absorbing patch. The ‘narrow escape time’ is the mean first time the particle reaches the
absorbing patch and escapes the volume it was diffusing in. The diffusion of a tethered
particle (ligand) is different, since it is confined by the polymer chain statistics, rather
than hard boundaries.

In the model, this graft to the surface is persistent; we can regard the polymer tether
as fixed at the origin. The remaining free chain has a second binding site, subject to
thermal motion. The chain has a hard constraint of the wall to which it is grafted to,
but its free end (with the binding ligand) also has a soft constraint on how far it can
extend from the grafted origin. If the chain end-to-end distance increases, there will be
a resulting reduction in its entropy, which leads to an entropic barrier for associated
activated processes. Such entropic barriers have been investigated in polymer dynamics
[199], and in colloid glassy dynamics [200]. They have an important role to play in cell
and molecular biology: entropic barriers show up in polymer translocation through a
pore [201, 202], as well as the looping time of a polymer chain [26]. They also play a
role in the protein aggregation into amyloids [203], and in more general protein folding
funnel problems [30].

In this chapter, I examine a trade-off in the entropic barrier faced by reaching the
distant target, which is on the same surface a fixed distance a away, against the reduction
in chain confinement. I calculate the mean first time it takes the chain to find the receptor,
which is determined by an activation law where the effective potential barrier is purely
entropic, −T∆S. As such, the explicit temperature disappears from the Boltzmann
factor and the mean binding time is proportional to exp[a2/R2

g], with Rg the radius of
gyration of the tethered chain. If we make the chain very short, there will be a very small
chance of it stretching far enough to reach the receptor site, and the time to reach the
receptor will be long. If we make the chain very long, there will no longer be such a high
entropic penalty for reaching the same receptor; however, the chain will now be able to
explore a very large volume, and that reduces the probability that the binding site will
hit the target. Once the expression for the average binding time is obtained, we are able
to find the optimal chain length for the fastest binding time: this turns out to be exactly
when the target separation a is equal to the radius of gyration of the chain. The second
aspect of this problem is addressed in the last section of the chapter: I examine binding
of the tethered ligand to a receptor on a different surface, across a gap d, in a geometry
directly related to cell-cell adhesion of Jeppesen [190]. Again, I find the entropic barrier
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defining the activation rate of such a process, and how the rate of such bridging across
the gap depends on the distance d.

5.1 Diffusion of a tethered ligand

Consider an ideal polymer chain: N segments of length b, grafted at the origin to a flat
surface, where the last (Nth) monomer is the binding ligand. To find the equilibrium
distribution of the chain configuration, we use the Gaussian chain propagator of an ideal
chain GN(r, r0): the probability that such a chain begins at r0 and ends at r [204]. We
need to implement a boundary condition on the substrate plane z = 0. This is a question
with a very long history [205], culminating with the classical work of Edwards and Freed
[206] on the properties of confined chains. Many aspects of this problem, of a chain
near a hard wall, were explored over the years, with seminal contributions [207–209]
being just a few of many important references, all using and exploiting the ‘exclusion’
condition: GN(r, r0)

∣∣∣
surface

= 0. This means that no monomer may rest against the wall.
Surprisingly, this restriction is not well covered in the literature, and it is difficult to
acquire intuition for it. Exclusion seems drastically different from the reflecting boundary
condition one would impose on Brownian particles, if they were not connected on the
chain. This is a subtle, yet potent effect of chain configurational entropy – understood
first by DiMarzio from the point of view of counting restricted chain configurations [205],
and then by Edwards and Freed by looking at the entropic repulsive force arising if we
were to push the chain into a wall [206].

When only one planar wall is present, the Gaussian chain propagator can satisfy the
boundary condition by adding one negative chain ‘image’. Although we tether the chain
at the origin r = 0, it is necessary to insist that the first monomer steps directly away
from the surface, so z0 = b, and the image chain starts at z̄0 = −b. The remaining chain
is then of length N − 1, but since we must assume N is large, we ignore this:

GN(r) =
( 3

2πNb2

)3/2 [
e− 3(r−bẑ)2

2Nb2 − e− 3(r+bẑ)2

2Nb2

]
. (5.1)

The binding ligand (located at rN ) needs to find a surface receptor placed a distance
a from the grafting site, as illustrated in Fig. 5.1. The receptor zone is assumed
hemispherical, with a small radius ε. We will now construct an effective radial probability
distribution Peq(ρ) for the distance ρ from the binding site rN to the target receptor.

In Eq. (5.1), the propagator for the position of the chain end is presented using a
Cartesian coordinate system with the origin at the point of grafting. However, since we



104 The binding of tethered ligands to surface receptors


z

x

y

rN

a

θ

ε

ϕ

Fig. 5.1 A chain of N monomers is tethered to a hard wall at the origin. A hemispherical
absorbing target of radius ε lies on the same surface, a distance a from the tether. We
look for the equilibrium radial probability Peq(ρ) for the ligand distance to the target.

are looking for the passage time into a hemisphere centered on the receptor, it is useful to
switch to spherical polar coordinates (ρ, θ, φ) centered on the target, Fig. 5.1. Then we
will need to integrate over the two angles, to finally derive the radial probability density
about the target receptor, Peq(ρ), which will be a function of the receptor position a. Let
us choose the target to be in the positive x-direction relative to the tethered end. Then
the coordinate transformation is

x− a = ρ sin θ cosφ , y = ρ sin θ sinφ , z = ρ cos θ. (5.2)

The two scalar products in the combined exponents of Eq.(5.1) become:

(r ± bẑ)2 = a2 + b2 + ρ2 + 2aρ sin θ cosφ± 2bρ cos θ. (5.3)

The next step of integration over the solid angle on the unit hemisphere is not easy.
We need to evaluate

I =
∫ π/2

0
dθ sin θ

∫ 2π

0
dφ e−α cos φ sin θ±β cos θ, (5.4)

where parameters α and β involve N, b, a and ρ. This is solved by realizing that the
integrand has a non-trivial axial symmetry. Exploiting this symmetry, we transform
back into Cartesian coordinates about the target: x′ = cosφ sin θ, z′ = cos θ, and rotate
these new coordinates by an angle ϕ = tan−1(β/α) = tan−1(b/a) around the y-axis. The
direction of this rotation depends on the sign of the z-term in the exponent (i.e. whether
we are dealing with the ‘real’ or ‘image’ Gaussian term). The details of this calculation
are given in [35], including the full expression for the normalised radial distribution Peq(ρ).
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Fig. 5.2 The radial probability density Peq(ρ), given by the Eq. (5.5), for N = 100
(so Rg = 10b), and for several values of the target position: a/b = 1, 10, 20, 30 and 40.
Dashed lines show the exact result of the angular integration (5.4) for comparison: the
deviations are only seen at small a.

It turns out that a very good approximation exists to that complicated expression, which
is accurate except in the regime a ≤ b:

Peq(ρ) ≈ 3
Nb2a

e− 3(a2+ρ2)
2Nb2 I1

( 3aρ
Nb2

)
, (5.5)

where I1(...) is the 1st rank modified Bessel function of the first kind. Note that the
thermodynamic partition function of a grafted Gaussian chain is

√
6/Nπ here. It is

useful to define a length-scale parameter Rg =
√
Nb, closely related to the chain radius

of gyration [204].
This distribution is plotted in Fig. 5.2. The probability density goes to zero as ρ → 0

because of exclusion at the surface, and then peaks before decaying away again due to
the chain being over-stretched. This peak of this distribution is going to be close to
the target distance: ρ ≈ a, because the chain is most likely to be found near the tether
(which is a distance ρ = a away from the target). The actual peak lies at just less than
ρ = a, as a result of averaging over the polar angles, but the difference becomes less
significant as a ≫ Rg.

One can identify the radial probability density discussed above with an effective radial
potential via the Boltzmann factor: Veff = −kBT ln [ρ2Peq(ρ)]. The resulting effective
potential that the binding ligand on the N th chain segment experiences is a function
of distance from the target receptor, and depends on two relevant length scales in the
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Fig. 5.3 The effective potential Veff(ρ) of the end of the chain, plotted for N = 100, (so
Rg = 10b here), and several values of the target position: a/b = 1, 10, 20 and 30. The
shaded area around the origin marks the receptor size ε = b.

problem: the chain radius of gyration Rg = N1/2b, and the distance to target a. It is
plotted in Fig. 5.3 for several values of a: above and below the Rg. The effective potential
has a minimum (seen as the peak of the radial probability distribution), but diverges in
the close proximity to the target because of the exclusion boundary condition the wall
imposes on the chain: this produces an effective (entropic) repulsion that the ligand has
to overcome to reach the target at ρ → 0. We see in Fig. 5.3 that this effective energy
barrier (between the minimum of Veff and the value at ρ = ε is about 4kBT for a = b,
raising to almost 20kBT for a = 30b, for the chain of 100 monomers.

5.2 Mean first passage time to target

To find the reaction rate, we could convert our probability distribution into an effective
potential, via the Boltzmann factor: V = −kBT ln Peq(ρ), and then use Kramers
theory [23, 210] to derive an expression for the rate. For context, an ideal chain of
N = 100 monomers has an effective free energy barrier (between the minimum of Veff

and the value at ρ = ε) of ∼ 2kBT for a = 5b, rising to ∼ 5kBT for a = 20b.
However, since we already have the equilibrium probability distribution for the single

radial variable ρ (the distance of the dangling ligand from the target receptor), we can
instead use a famous relation derived by Szabo et al. [26] to find the mean first passage
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time (MFPT) to an absorbing surface at ρ = ε:

τabs =
∫ ∞

ε

dρ

D ρ2Peq(ρ)

[∫ ∞

ρ
dρ′ ρ′2Peq(ρ′)

]2
, (5.6)

where we assume the diffusion coefficient of the free end of the chain, D = kBT/γ, is
constant and equal to the diffusion coefficient of a single monomer in solution (in the
spirit of the Rouse model [204]). In the free particle case, it is necessary to constrain
the particle with an upper reflective boundary, but for the polymer chain, the entropic
spring effect ensures the integrals converge if we take the upper limit to ρ = ∞.

Even for the approximate probability distribution given in Eq. (5.5), the integral in
Eq. (5.6) does not have an easy analytical solution. However, it is clear from Eq. (5.6)
that the bracketed integral will have a value between 0 and 1 (with the integral equal
to 1 for ρ = 0, since Peq is normalized). We also notice the probability appearing in
the denominator of the final integral. This means that the mean first-passage time will
be dominated by any regions where ρ2Peq(ρ) → 0. For the tethered chain, this does
occur as ρ → 0 (as is obvious from Fig. 5.2), and so the main contribution to the mean
first passage time comes from the region of small ρ (where the bracketed integral can
be approximated as 1). Expanding the integrand about ρ = 0 and retaining only the
leading term, we find that Eq. (5.6) reduces to a simple integral

τon ≈ 2N2b4

9D e3a2/2Nb2
∫ ∞

ε

dρ

ρ3 = N2b4

9Dε2 e
3a2/2Nb2

, (5.7)

where, as before, we recognize the characteristic length scale Rg = N1/2b: the radius of
gyration of an ideal chain. Equation (5.7) is one main result of this chapter. I denote
this characteristic time of binding to a receptor on the same surface as τon.

The comparison between the exact numerical integral and the approximation presented
in Eq. (5.7) is shown in Fig. 5.4, where the mean time of the binding ligand reaching the
target receptor is plotted against the ‘size’ of the receptor (measured by the radius of
the hemisphere ε, see the sketch in Fig. 5.1). The deviations are enhanced in Fig. 5.4
inset by the logarithmic scale, and are evidently very small for sufficiently small targets.
Clearly, Eq. (5.7) is a good approximation, offering a compact analytical expression that
we can examine.
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Fig. 5.4 The mean first passage time τon (in units of b2/D) calculated numerically from
Eq. (5.6) (dashed lines), compared with the approximation of Eq. (5.7) (solid lines).
Here, again, N = 100 (so Rg = 10b; plot (a) is for the close proximity of the receptor,
a = b, and plot (b) a distant receptor, a = 20b. In reality, one might imagine the relevant
size of targets for specific binding to be not much greater than b. The insets show the
same plots on logarithmic scale, which covers a greater range and also emphasizes the
deviations of the approximate expression for τon.

5.3 Bridging across a gap

During cell-cell adhesion, the two cell membranes come very close to one another. Thus,
they can be modelled as two parallel planes a distance d apart, with their actual curvature
playing a minor role in the dynamics. As in the single plane case of the previous sections,
we must consider the first monomer as stepping directly away from the surface, so the
tether in this coordinate system is at (0,0,b). We can then write down the chain propagator
in exactly the manner of Edwards and Freed [206], separating the unconstrained chain in
the xy-plane from the narrow confining box along z, with one chain end fixed at z = b:

GN(x, y, z) = 2
d

∞∑
n=1

sin
(
nπz

d

)
sin

(
nπb

d

)
e− n2π2Nb2

6d2 · 3
2πNb2 e

− 3(x2+y2)
2Nb2 . (5.8)

As before, both planes are monomer excluding due to the chain entropic repulsion. When
cells are close to one another, the distance d2 ≪ Nb2, we are free to consider only the
first term in the sum, as the exponential in the sum suppresses subsequent terms (a
regime known as the ground-state dominance in polymer physics).

As in the single-plane case, the key is to derive the radial probability distribution
Peq(ρ) for the ligand a distance ρ away from the binding site, see Fig. 5.5. If the target
receptor is placed a perpendicular distance a from the tether, on the opposite plane, then
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rN

Fig. 5.5 A schematic for the cell-adhesion process, where a flexible linker will bind to
a neighbouring cell across a gap d. The inset shows our simplified scenario: assuming
the two membranes to be infinite in extent, and parallel to each other, with the receptor
displaced by a distance a.

there is no obvious symmetry to exploit. Instead, it is possible to make progress if we
use the approximation a ≫ ε. The propagator is radial in the xy-plane about the tether.
If the receptor is placed in the x-direction, then around the receptor, at small ρ, the
gradient of the propagator will have no y-component to first order. Therefore we can
assume that y = 0 in the propagator without significantly changing its value. This allows
us to build our hemispherical shells centered on the target by shifting the coordinate
system by x′ = x−a, then integrating the propagator over semicircles of radius

√
ρ2 − x′2,

holding x′ constant. This eliminates the z-dependence, effectively generating the average
⟨sin (πz/d)⟩. The second integration is over the x′-axis from −ρ to +ρ, adding these
semicircles with an appropriate surface element to recover the radial distribution function
about the receptor. This distribution Peq(ρ) can be expanded at small ρ again, exploiting
the vanishing denominator as in Eq. (5.7), and in the same way we obtain the result for
the mean first passage time:

τ = 2Nb2d2

3π2Dε2 e
3a2/2Nb2

. (5.9)

One can see the same constrained dependence on the reaction volume ε, due to the
difficulty for any chain segment to get that close to the wall. It is possible to consider the
a = 0 case using a different method, relying on the azimuthal symmetry of the propagator.
We recover the non-exponential prefactor in Eq. (5.9), confirming the validity of the
analysis. It is also possible to adapt this result for a very small gap, d < ε, where the 2D
scaling relation τ ∼ (Nb2/D) ln(

√
Nb2/ε) replaces Eq. (5.9). See Schuss et al. [33] for a

freely diffusing Brownian particle analogue.
The quadratic dependence of the mean bridging time on the cell gap d in Eq. (5.9) is

the novel feature, but it is only valid in the tightly confined case d ≪ Rg. The general
expression for the binding time is complicated, but the calculation in the opposite limit
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(short chain or wide gap: d2 ≫ Nb2) is presented in [35]. I found a very accurate
interpolation formula for the mean time of bridging between two surfaces, which spans
across the whole range between the two limiting cases:

τ2 =
2R2

gd
2

3π2Dε2
1

(1 + 36d4/π2R4
g)

· e3(d2+a2)/2R2
g . (5.10)

5.4 Optimising the reaction time

It is interesting to compare the tethered binding time τon in Eq. (5.7) with the average
time for a free polymer chain to make a loop by having the last Nth monomer reach a
sphere of radius ε around the first monomer [26] (the Szabo problem, corresponding to
distance a = 0, and no restricting surface):

τloop =
√
π

54
(Nb2)3/2

Dε
. (5.11)

This involves integrating the free space propagator over the full space in Eq. (5.6), rather
than the constrained propagator over the half space in the single plane case. Also
instructive is to compare with the average time for a free Brownian particle to escape
a closed volume V through a small hole of size ε [33] (the ‘narrow escape problem’ of
Holcman et al.), which is estimated as τesc = V/Dε. If the volume is replaced by the
average extent of chain spreading, V = R3

g, this matches the Szabo expression in Eq.
(5.11). Both have a different scaling with the size of target: 1/ε compared to 1/ε2 in our
Eq. (5.7). The chain is inhibited from approaching the wall due to the polymer-specific
exclusion boundary condition, and so the average time it takes to reach the target is
much longer even without the additional exponential factor reflecting the entropic barrier
for binding. The same argument applies to the mean bridging time τ2 in Eq. (5.10): an
entropic repulsion of monomers from the surface causes a stronger, 1/ε2 scaling with the
receptor size.

The second factor that distinguishes the mean binding time in Eqs. (5.7) and (5.10)
is the exponential factor: exp[3a2/2R2

g] and exp[3(a2 + d2)/2R2
g], respectively. In both

cases this represents thermal activation over an entropic barrier ∆G = 3
2kBT (a2/Nb2),

which is essentially the free energy to stretch the chain ends by a distance a. This
factor, significantly increasing the time for bridging to a distant target, only arises for the
tethered chain (all polymer work on the related narrow escape problems [199, 202, 30]
has thus far focused on polymers with no attachment to the boundary of the domain,
which fundamentally alters the accessibility of the binding site). One might then, naively
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Fig. 5.6 The dependence of scaled mean binding times (τ ·Dε2) on the chain length via
Rg =

√
Nb: (a) for the tethered binding in the same plane, for a = 3b, 10b, 20b, and (b)

for bridging across the gap, for a = 3b, 10b, 20b with d = 10b.

assume that the binding time will decrease monotonically as the length of the chain
increases – the entropic penalty will become smaller and smaller.

However, as I find in Eqs. (5.7) and (5.10), there is another competing effect that
decreases the rate (or increases the mean first passage time): as the chain gets longer, the
effective volume that the site can explore relative to the receptor volume also increases. If
we increase the chain to an infinite length, we actually return to a free particle scenario,
and there is not enough confinement for the end of the chain to ever hit the receptor.
Figure 5.6 illustrates the resulting effect, which predicts a certain optimal (shortest)
binding time for any given receptor separation. It is straightforward to find the shortest
binding times, and the chain length N∗ that achieves this rate in each case:

τ ∗
on ≈ 0.46 a4

Dε2 at N∗ = 3a2

4b2 , (5.12)

τ ∗
2 ≈ 0.04 d4

Dε2 at N∗ ≈ a2 + d2

2b2 and a → 0. (5.13)

The scaling with the receptor size ε is an interesting feature, especially when compared
with the looping or narrow escape problems (which both have the ε−1 scaling). Together
with the entropic barrier, this effect determines the mean first binding time of a tethered
ligand.

I approached this problem in a way completely different to the approach of Holcman et
al. in the narrow escape setting [34, 33]. Instead of examining the Smoluchowski problem
in an effective potential imposed by the constraints, one can generate the mean-field
equilibrium probability density Peq(ρ) by integrating out the angular degrees of freedom.
As a result, I was able to utilize the backward Fokker-Planck approach of Szabo et al. [26].
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It may well be that this approach generates analytical and numerical solutions more
rapidly even for the more complex problems involving potential interaction and non-ideal
polymer chain, as well as confined Brownian particles, since you don’t have to look at the
dynamical effects – only at how these affect the equilibrium effective potential. However,
the scope of the method is limited to Markovian processes, using as it does the backward
Fokker-Planck operator.

Further, while theoretically clean, the absorbing boundary has only limited biological
application as it assumes infinitely fast binding reaction. It is more relevant to consider
the case where binding to a surface is slower, and the reaction time becomes a relevant
factor slowing down the reaction. For instance, DNA loop formation is much slower than
the diffusive end-to-end encounter [211]. In their original work on first passage time,
Szabo et al. [26] allowed for this by adopting a radiation condition on the flux at the
boundary: J(ε, t) = κp(x, t). The constant κ is indicative of the reaction rate at the
boundary: for κ → ∞ we reach the limit of an ideal absorbing boundary. In our formalism,
accounting for κ adds an extra term into the mean process time: τκ = [κε2Peq(ε)]−1. For
the laterally displaced receptor, the full form of the mean binding time takes the slightly
modified form:

τon = N2b4

9Dε2 e
3a2

2Nb2

(
1 + 2D

κε

)
. (5.14)

A sufficiently small reaction volume (ε) and reaction rate (κ) could significantly slow
down the binding process, in addition to the entropic penalty.

5.5 Multiple ligands on a tethered chain

Having considered the problem of a single tethered ligand binding to a receptor, I now
consider the more complicated case, where there are multiple ligands spaced along the
tether, each attaching to a receptor. This is an interesting problem in ordered self-
assembly. The kinetics of ordered self-assembly is a broad and rich topic, which offers
insight into the construction of structured and functional aggregates.

Surface adsorption of a polymer is not a new topic; industrial interest in colloid
stabilisation and oil extraction led the early theoretical pioneers – Silberberg [212], de
Gennes [213, 208] and Alexander [214] – to study the equilibrium properties of polymer
chains close to surfaces. As polymer physics matured, there grew a need to understand
the kinetics of adsorption. Existing work distinguishes between two regimes, depending
on the free energy barrier presented to monomers binding on the surface: chemisorption if
the reaction barrier is high, and physisorption if the barrier is low and the characteristic
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time to establish a bond on contact is short. In chemisorption, the reaction time of the
monomers is larger than the time for the polymer to return to an equilibrated state, so the
process becomes quasistatic. Theory [215, 216], experiment [217], and simulations [218–
220, 217, 216], have all shown that two mechanisms control chemisorption: the zipping
down of sequential monomers, and the formation of extra nucleation points via loop
formation. Loop formation lowers the adsorption time relative to a simple sequential
zipping mechanism, and so chemisorption is said to take place via the accelerated zipping
mechanism.

Physisorption is, on average, a simple zipping mechanism: sequential monomers
very quickly attach to the surface, leaving no time for loop formation [220–222, 216].
This forces the chain out of equilibrium, as the remaining unabsorbed segment initially
moves more slowly than the chain zipping down. The precise scaling of this adsorption
time depends on the strength of the polymer-surface attraction [216]. For irreversible
physisorption, the intermediate chain conformation combining a stretched tether at the
zipping end, and a coil at the free end, is known as the ‘stem and flower’ model, and was
first described by Brochard-Wyart [223] for tethered polymers under strong shear flow.

Many of the systems considered are entirely homogeneous polymer chains with no
specificity of binding sites, while others examined copolymers attaching to uniform
surfaces [219, 224]. Li et al. have studied stripe-patterned surfaces [225], and copolymers
of one attractive and one inert monomer type [226], but many processes in self-assembly
are much more specific than this. These processes, such as DNA hairpin formation
[227, 228], still show zipper kinetics.

In the rest of the chapter, I do two things: first, using the knowledge acquired about
the binding MFPT – see Fig. 5.7(a), I first evaluate the average binding time to a
sequence of such receptors, Fig. 5.7(b). This process of chain adsorption may proceed via
different pathways, involving purely sequential (zipper) single steps, or multiple-distance
looping events. It turns out that, for sufficiently separated binding sites, the simple
zipping mechanism becomes the preferred pathway. Secondly, I consider the ‘stem and
flower’ effect, and show that for a chain looking to bind its free end to a target a distance
a away as fast as possible, non-equilibrium effects associated with a slow drift of the chain
towards the receptor targets defines a certain optimal number of intermediate receptors
that achieves the fastest mean adsorption time.
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Fig. 5.7 A scheme of ordered self-assembly of a polymer chain binding to a specific
sequence of receptors on a substrate. (a) The single binding time τon is a function of
chain length A-B and the receptor separation a-b. (b) Each surface receptor is separated
by a distance ∆a. In this scenario, the ligand [B] has bound via a single step, with
typical time τ1a = τon(∆a), and the ligand [D] has bound with a double step of time τ2a;
the ligand [C] will then bind quickly.

5.6 Accelerated zipper binding

As before, we can consider an ideal polymer chain of N segments of length b, which
is grafted at the origin to a flat surface, where the last (Nth) monomer is the binding
ligand. Its matching receptor is located on the same surface, a distance a away, Fig.
5.7(a). The expected binding time for the ligand to its receptor is given by the familiar
expression

τon ≈ N2b4

9Dε2 e
3a2/2Nb2

. (5.15)

where we assume the receptor zone is hemispherical, with a small radius ε, and the
diffusion coefficient of the free end of the chain, D = kBT/γ, is a constant equal to the
diffusion coefficient of a single monomer in solution.

We can now use Eq. (5.15) for τon(a,N) to examine a simplified version of the multiple-
site binding problem. Let us consider M binding sites spaced evenly along a polymer
chain of total length N (so that the ligands are ∆N = N/M monomers apart, along the
chain). As in the single-site problem, we must take the first segment of the chain to
be already bound (grafted) to the surface, so there are M binding events yet to occur
in total. The receptors for these ligands are spaced at equal distances ∆a apart in a
straight line on a plane reflecting surface, see Fig. 5.7(b). While it should not be difficult
to consider arbitrary positioning of chain binding sites and surface receptors, I use this
simplified geometry in the hope of finding a clear analytical result for the average binding
time.

Assuming that each binding ligand on the chain associates with a specific receptor,
the chain may form a loop by binding across several receptors, a distance q∆a from the
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grafting point, see Fig. 5.7(b) for a q = 2 loop. The time to bind to a receptor a distance
q∆a away is

τqa = (qN/M)2b4

9Dε2 e
3(q∆a)2M

2qNb2 = q2e
3(q−1)M∆a2

2Nb2 · τ1a, (5.16)

where the single-step binding time τ1a = τon(∆a,N/M) from Eq. (5.15). If the chain
does not bind sequentially, but with a loop forming (for example, next nearest binding
in Fig. 5.7(b)), the subsequent binding of the ‘middle’ ligands is much faster (site [C]
between [B] and [D] in Fig. 5.7(b)), and therefore is not a rate-limiting step. The
combination of single and multiple steps is the accelerated zipper mechanism.

The kinetics of both single and multiple steps can be understood as a continuous-time
Markov chain [229, 230], with M + 1 discrete states corresponding to how far along the
chain the final binding event has been. This means we can write the rate equations in
vector form: dP/dt = Q · P , where Q is known as the rate matrix. This is called the
backward Kolmogorov equation. The (M + 1) × (M + 1) rate matrix has the following
form:

Q =



−∑M
q=1 kq k1 k2 k3 ... kM

0 −∑M−1
q=1 kq k1 k2 ... kM−1

0 0 . . . . . . . . . ...
... ... 0 −∑2

q=1 kq k1 k2
... 0 ... 0 −k1 k1

0 0 0 ... 0 0


(5.17)

where kq = 1/τqa are the rates of binding to a receptor a distance q∆a away. Instead of
explicitly solving the Kolmogorov equation, we can rely on the following fundamental
result to derive the recursive relations for mean first passage times ⟨τ(M + 1 − i)⟩ from
state i to the final fully bound state (across M + 1 − i receptors, where state i = 0 is the
tethered chain with no receptors bound, and i = M + 1 is when the final Mth receptor
is bound)[230]: ∑

j

Qij⟨τ(M + 1 − j)⟩ = −1 , (5.18)

for all states 1 ≤ i < M + 1. If we start in the final absorbing state, then the mean first
passage time is zero by definition, and so ⟨τ(0)⟩ = 0. The remaining ⟨τ(i)⟩ can then be
constructed recursively.

While Eq. (5.18) is a full solution to the problem of mean binding time, it does not
indicate how important loop formation is in the binding process. To make progress,
I compared the binding times τqa. For multiple steps, the rapidly increasing entropic
barrier to reach receptors further away means that the expected time for binding gets
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Fig. 5.8 The plot of the (scaled) average adsorption time ⟨τ(M)⟩ for M = 20, when the
multiple-step jumps (loops) are allowed. The x-axis indicates the largest jump allowed
to accelerate the zipper binding. Filled symbols • represent the maximum effect, when
the exponential entropic-penalty factor in τ1a is equal to one (i.e. the distance ∆a = 0);
the open symbols ◦ represent the reduced acceleration effect when ∆a2 = ∆N b2.

longer and longer. Figure 5.8 shows how the mean binding time across M = 20 receptors
reduces as we include the possibility of longer jumps. It is clear that we are free to
neglect steps past q = 2 when ∆a2 ≥ ∆Nb2 (the open symbols in Fig. 5.8, as τqa rapidly
increases with q, and the adsorption time seems to rapidly approach a limiting value. For
very closely spaced receptors (∆a2 ≪ (N/M)b2) the ratio of τqa/τ1a = q2, and Fig. 5.8
shows that although the largest reduction in binding time comes from increasing the
maximum step to q = 2, larger size loops do still play an appreciable role. To offer a
quantitative idea of how big a role they play, I manually fitted a curve to the closely
spaced receptors in Fig. 5.8 (the solid red line), and found that the deviation from a
fitted limiting value ⟨τ∞⟩ was ⟨τq⟩ − ⟨τ∞⟩ ∝ 1/q.

In the regime ∆a2 ≥ ∆Nb2, I restrict the binding process to either binding at the
closest available site, which takes an average time τ1a and follows in a zipper sequence,
or at the next nearest site, which takes τ2a, as shown in Fig. 5.7(b); all other binding
events across greater distances are neglected (ki = 0 for i > 2). Then, Eq. (5.18) defines
a recurrence relation for arbitrary M :

⟨τ(1)⟩ = 1
k1
, ⟨τ(2)⟩ = 2

k1 + k2
,

(k1 + k2)⟨τ(M)⟩ = 1 + k1⟨τ(M − 1)⟩ + k2⟨τ(M − 2)⟩ for M ≥ 2. (5.19)
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Fig. 5.9 The mean time ⟨τ⟩ (in units of b2/D, logarithmic scale) to bind the chain to the
surface, as a function of the number M of equidistant binding sites. (a) A fixed chain
N = 100 segments. The dashed blue line marks the case of M = 1, when only the Nth
segment has a binding ligand, reaching for a receptor a = 40b away. As the number of
binding sites along the chain increases, the time to bind the final receptor dramatically
reduces. (b) A fixed interval between receptors ∆N = 20, so N = M∆N . The plot
compares a chain with single binding site at a distance a = 3Nb/20 (solid blue line), and
a chain with M = N/∆N binding sites every 20 monomers, whose receptors are spaced
at ∆a = a/M = 3b. In both cases, the end of the chain binds at the distance a. The
inset illustrates that the typical binding time increases almost linearly with chain length
or number of sites, in contrast to the exponential increase of this time for the single-site
chain. The dashed black line indicates the line Mτ1a, which is the strictly single-step
zipper binding pathway. The possibility of occasional double steps lowers the binding
time of an ‘accelerated zipper’. In both plots, the blue dots represent the exact expression
for ⟨τ⟩; the continuous red line is the plot of (5.21), where ∆a = a/M .

Using a standard generating function method to solve the recurrence relation [231], we
find that

⟨τ(M)⟩ =
Mk2

1 + 2(M + 1)k1k2 + 2k2
2

(
1 +

(
− k2

k1+k2

)M−1
)

k1(k1 + 2k2)2 . (5.20)

Since this expression is only valid for sufficient spacing, k2 ≪ k1, and we are free to
Taylor expand Eq. (5.20):

⟨τ(1)⟩ ≈ Mτ1a − 2(M − 1)τ 2
1a

τ2a

=
(
M − M − 1

2 e− 3M∆a2
2Nb2

)
τ1a. (5.21)

This expression is another main result of this chapter. Figure 5.9 shows the comparison
of the approximation presented in Eq. (5.21), and the exact sum in Eq. (5.20), the latter
plotted as discrete points at integer values of M . Evidently, the approximation (5.21) is
virtually indistinguishable from the exact average binding time, when the probability of
making a double step is small.
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How does adding more binding sites along a chain length influence its time to bind
to a surface? Let us consider a chain of fixed length N , as usual grafted at the origin.
There is a binding ligand on the end of the chain, and Eq. (5.15) gives the mean time
for it to bind at a receptor on the surface a long distance a away: τon(N, a). Let us now
add several more binding ligands on the chain, such that they have N/M monomers in
between, and the matching sequence of equidistant receptor sites on the surface, such
that they are a distance ∆a = a/M apart. The resulting decrease in binding time is
plotted in Fig. 5.9(a). Note that the binding time is plotted on a logarithmic scale, so
the effective decrease is quite dramatic when more binding sites are added to the chain.
Equation (5.21) gives the scaling ⟨τ⟩ ∝ M−1 exp[α/M ].

I have also examined the situation where the binding site density is kept constant,
i.e binding sites on the chain are equally spaced, and the matching receptors on the
surface are always spaced the same distance ∆a apart, but vary the total length of the
chain. In this case the total chain length N = M∆N , and the distance to the last
receptor is a = M∆a. The results are plotted in Fig. 5.9(b) for the receptor density
∆a = 3∆Nb/10 = 6b. The comparison is made with the mean binding time for the chain
with only one binding site at the end, with the chain length and the distance to the single
receptor related in the same way: a = 3Nb/10 away, to illustrate the role of overall chain
length. This time increases almost exponentially, see Eq. (5.15) giving τon ∝ N2 exp[αN ].
In contrast, the mean time to bind a sequence of receptors increases only ∼linearly with
the chain length, illustrating that multiple sites massively enhance the binding rate. Note
that a non-zero probability to make occasional double steps increases the binding rate
even further, comparing with the straight zipper sequence, making it an ‘accelerated
zipper’ process – this is illustrated by the linear plot in the inset of Fig. 5.9(b).

5.7 Drift of center of mass

When we consider a single binding event, we do not consider the entire chain’s length, but
instead just the length between the tether and the binding site. However, in a sequence
of binding events, we must consider how the rest of the chain moves around at the time
of binding. In a typical monomer-by-monomer physisorption of a chain to a uniform
surface, the rapid binding of monomers to the surface moves the effective current grafting
point away from the center of mass of the remaining free chain, resulting in the ‘stem and
flower’ configuration of Brochard-Wyart [223, 222]. This has an effect on the adsorption
kinetics. Is there a similar effect when there is a section of chain between binding sites?
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According to equilibrium polymer statistics, at the moment of a binding event, we
would expect the remainder of the chain to be centered directly above the new grafting
site. This stems from the Markovian treatment of the polymer chain, and is easily derived
through Gaussian propagators. However, a study by Guérin et al. [232] found that in
reality, non-Markovian effects (i.e. non-Gaussian chain statistics before equilibrium is
reached) play a large role in determining the dynamics of polymer configurations for
reactions to a target in free space. The delay in reaching the equilibrium is often quite
extended, so that the chain leaves the center of mass behind while reaching for a new
target. This becomes clear if we consider the Rouse modes of the chain: the typical time
for a monomer to fluctuate (travel a distance a) is much smaller than that for the chain
center of mass to do the same. As such, the polymer chain is ‘left behind’ when the
next binding site finds its receptor, and we will need to consider the subsequent drift
of the chain center of mass to the new grafting point. In this case, in contrast to the
monomer-by-monomer physisorption, the rare binding steps result in a high stretching of
the ‘stem’ and a relatively high force pulling the remaining free chain towards the new
equilibrium around the new grafting site. The mean time to diffuse a distance for the
center of mass to diffuse the distance a is:

τcom = Nfa
2

D
, (5.22)

where Nf is the number of monomers in the remaining free chain, so that Nfγ is the
effective friction constant for the free chain center of mass. As before, D = kBT/γ is the
diffusion constant for a single monomer. In order for the Szabo-based [26] expression for
the binding time τ1a to be valid, we should have a chain in equilibrium configuration,
which occurs when τcom/τ1a ≪ 1. This ratio takes the form:

τcom

τ1a

= 9Nfε
2∆a2

∆N2b4 e−3∆a2/2∆Nb2
. (5.23)

Assuming only a single-step zipper binding for simplicity, for the mth binding event, the
remaining Nf = (M −m+ 1)∆N . Remembering that the total number of monomers,
N = M∆N , and that the Mth receptor is placed at a distance a = M∆a, this condition
takes the form:

m ≫ M + 1 − MNb4

9ε2a2 e
3a2/2MNb2

. (5.24)

We can define the crossover point, m∗
com, at which the binding time becomes comparable

to the characteristic time of the center of mass diffusion by demanding equality in Eq.
(5.24). So the equilibrium theory of binding to a distant site is valid at m ≫ m∗

com, and



120 The binding of tethered ligands to surface receptors

in the opposite limit the dynamics is determined by non-equilibrium (non-Markovian)
statistics.

How does this affect the zipper action? Let us assume that the polymer chain is
initially equilibrated, with its center of mass close to the current point of grafting. After
reaching for the next receptor site, the chain binds there, and then the remaining free
chain finds its center of mass a distance ∆a out of equilibrium. The entropic force due
to this stretching of the chain will provide an impetus to move the center of mass of
the remaining chain to re-equilibrate above the new grafting position, and we can write
down the dynamical equation for the movement of the center of mass:

− (Nfγ)ẋ− 3kBT

2Nfb2 (x− ∆a) = 0, (5.25)

where, again, Nf is the number of monomers in the remaining free chain. It follows that
the relaxation time to the new equilibrium of the free chain is given by

τdrift =
2N2

f b
2

3D . (5.26)

Then, following a similar method to before, we can find a condition on m for the drift
time to be dominant, τdrift/τ1a ≫ 1:

m ≪ M + 1 − 1√
6
b

ε
e3a2/4MNb2

, (5.27)

because for early binding events (small m), there is a lot of free chain, and so τdrift is
large. For later binding events, the remaining free chain is able to equilibrate fast, and
so there is no need to account for the drift of center of remaining mass.

We can define the other crossover point, m∗
drift, at which the chain binding changes

from being limited by the chain relaxation time, given by Eq. (5.26), to being limited by
the time τ1a to reach the next binding site, by setting equality in (5.27). It turns out
that, in spite of subtle differences, the crossover expressions are quite close numerically:
m∗

com ≈ m∗
drift = m∗. So when the equilibrium expression for the binding time is valid

(m ≫ m∗
com) it is also the case that the total binding time is dominated by the reaching

time. On the other hand, when the chain is not equilibrating fast enough (m ≪ m∗
com),

it is also the case that the binding is limited by the slow drift of the chain center of mass.
Therefore, the first m∗ binding events (when the free chain segment is still long) will

be relaxation-limited, while the last (M −m∗) events are independent of the chain length.
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The effective binding time takes the form:

τ =
m∗∑

m=1
τdrift(m) + (M −m∗)τ1a (5.28)

(neglecting the weaker effect of accelerated zipper, for clarity). If m∗ < 1, which is always
the case at small M , then all binding events are reach-limited, and the expression returns
to the simple linear zipper τ = Mτ1a.

Figure 5.10(a) illustrates how increasing the number of intermediary binding sites
affects the total time to adsorb a chain, which is essentially the time to bind to the final
receptor a fixed distance away. This is analogous to Fig. 5.9(a) obtained in the fully
equilibrium-chain setting; in fact, the dashed lines in Fig. 5.10(a) give the lines of Eq.
(5.21) as in Fig. 5.9(a). We see that for small M , increasing the number of binding sites
along the chain reduces the total binding time, because the process is purely reach-limited
(m∗ < 0). As the number of intermediary sites increases, however, we cross into a regime
limited by the relaxation (drift) of the chain center of mass. Here, increasing the number
of sites lowers the drift force in the Langevin equation, and so the chain will actually
take longer to reach the terminal receptor. Note that all curves saturate on the same
line, because the relaxation-limited time does not depend on a: making the summation
in Eq. (5.28) for m∗ = M gives a linear estimate τ ≈ M(2Nb2/9D) for this section of
the curves in Fig. 5.10(a).

Between these two effects: the zipper time, which becomes shorter when more receptors
are added on a fixed interval, and the relaxation (drift) time of the chain center of mass,
there is clearly an optimal number of binding sites that achieves the shortest time for
the complete chain adhesion. To find this point, one has to solve the derivative of Eq.
(5.28): dτ(M)/dM = 0. This is a complicated algebraic task, which simplifies in the
limit a2 > Nb2, that is, when the chain needs to absorb by stretching over some distance.
In this case the minimum of the adhesion time is for the M determined by the equation:

16Nε3M4 − 2
√

6a2be
9a2

4MNb2 = 0. (5.29)

This transcendent equation has a solution in terms of the Lambert W-function, or the
product logarithm, but this is too cumbersome to get a clear understanding. However, in
the limit a2 ≫ Nb2, the leading contribution to the ‘optimal’ number of receptors for the
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Fig. 5.10 The adhesion time is plotted in units of b2/D, for ε = b. (a) The linear plot
for a fixed N = 100. The set-up is M receptors, with the final receptor placed at
varying distances a away in different curves (labelled on the plot). The dashed line shows
how the reaction-limited time reduces as M increases. (b) The log-log plot, for fixed
∆N = N/M = 10. From top to bottom, the distance between consecutive receptors
∆a =

√
∆Nb2, 1.5

√
∆Nb2, and 2

√
∆Nb2. For shorter chains, there is a reach-limited

linear ‘zipper’ region (gradient slope of 1 is shown), before switching to the cubic increase
of time with length as chains get longer (gradient slope of 3 is shown), see Eq. (5.31).
For larger ∆a, the linear region is extended.

shortest adhesion time takes the form

Mopt ≈ 3a2

4Nb2

ln
 9a2

16Nb2
ε

b

√
3
2

−1

=
3a2/4R2

g

ln
(
0.69[a2/R2

g](ε/b)
) . (5.30)

In Figure 5.10(b) I instead fix the distance between receptors, ∆a, and the chain
length between binding sites, ∆N , as in Fig. 5.9(b). When the total adhesion time is
plotted on a log-log scale, one can clearly see the two distinct regimes: the reach-limited
at small M (the linear zipper increase), changing to the cubic increase as we go to
larger M and the relaxation-limited regime. In this latter regime, Eq. (5.26) with
Nf = [M − m + 1]∆N dominates the contributions to the total adhesion time (5.28),
producing the dominant cubic dependence on the number of receptors, as illustrated in
the plot:

τ ≈
M∑

m=1

2(N − [m− 1]∆N)2b2

3D → 2M3∆N2b2

9D + ... (5.31)

The biggest limitation of this model is the specificity of all receptors, and their
matching binding ligands on the polymer chain. Non-specific binding of chain segments
to the surface has already been covered for uniform surfaces [218–220, 217, 216] , and
the case of spaced receptors is relevant for applications such as receptor targeting with
multivalent polymers [233]. Could this be considered within the framework of this
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model? Here, in order to have the dominance of the zipper pathway, we need to be
assured that there is no competition for the same receptor by different binding ligands
(and therefore a possibility of mis-assembly). This occurs when the second (or higher,
number q) ligand along the chain takes a longer time to bind to the nearest receptor.
The binding time for forming a loop of (qN/M) monomers, binding a distance ∆a, is
τ1a(q) = q2 exp[(1/q−1)3M∆a2/2Nb2] ·τ1a, compare with Eq. (5.16). So the non-specific
binding will follow the zipper pathway when (N/M)b2 ≫ (3(1 − 1/q)/4 ln q)a2, for all q.
Since this is a decreasing function with q, we can replace the function with the value for
q = 2, and get that Nb2 ≫ 0.54a2 (i.e. when receptors are relatively closely spaced). The
full model will apply to non-specific binding in this case, but may have to account for
larger loop formation to get accurate predictions. I should note that with larger loops,
there is a greater chance of binding to the ‘wrong’ receptor, since the fractional change
in free chain length between binding sites decreases.

In the problem of chain adhesion to a sequence of binding sites on a surface, I have
shown that the addition of intermediary binding sites along a chain length has a ‘zipper
effect’, massively decreasing the time for the chain to bind fully along its length. When
we examine the main result – the expression for the average binding time in Eq. (5.21),
it is important that for large ∆a and large M , the dominant binding process is the
single-step ‘zipper’ pathway with the mean time approximately equal to Mτ1a, as we
can see in the inset of Fig. 5.9(b). Only occasionally will a chain bind with a double
step, and this correction to the binding time also scales linearly with M , see Fig. 5.9(b).
It is not until receptors are very tightly grouped (small ∆a) that double-step processes
start to become relevant. This is suggestive of reality – if a polymer chain has a specific
substrate structure to bind to, then steric effects may well force the polymer to bind in a
very conserved and controlled sequence (as in nature), just by virtue of the high entropic
penalty for binding ‘out of order’.

The existence of an optimal number of intermediate receptors, Mopt for the shortest
time of full chain adhesion is the other main result. This is an interesting feature, perhaps
contrary to an expectation that by reducing the reaction barrier (and the associated
individual binding time) one would increase the overall rate of adsorption. For chains
with many intermediate receptors, although there is fast attachment to each individual
site, the process of moving the center of mass of the remaining free chain down the line of
receptors is slow, because the entropic pulling force causing this drift is weak. Conversely,
if there are only a few receptors, even though any attachment event will provide a strong
force to move the free chain to its new equilibrium position, the binding time itself is
prohibitively slow.
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The knowledge of these principles of adsorption kinetics are useful in understanding
protein self-assembly, e.g. in β-sheets at the growing end of an amyloid fibril, where the
new peptide subunit has to bind to a specific sequence of sites by hydrogen-bonding the
β-sheet at the end of the existing filament [234], and the entropic barriers are explicitly
reported. In the design of specifically-binding chains, aiming to optimize the rate of
self-assembly, this analysis could be used to guide the structural features. The work in
this chapter also shows that careful positioning of receptors relative to each other allows
tight control of the order of assembly.



Chapter 6
Diffusion of microswimmers in obstacle lattices

The field of active matter covers the broad spectrum of particles which move by consuming
energy from their environment [235]. These range from flocks of birds and insect
swarms [236, 237], to cell tissues [238], microswimmers [239], microtubuli [240, 241],
and enzymes [242]. Microswimmers such as bacteria and Janus particles self-propel at
low Reynolds numbers, the latter being directly powered by an asymmetric chemical
reaction on the particle surface, the former by rotating helical filaments. The propulsive
mechanisms set up complicated hydrodynamic flows, which determine the characteristics
of interactions, both with other microswimmers, and with the boundaries of their
environment. These boundary interactions may perform an essential function in nature.
Surface-induced accumulation is an important step in the formation of biofilms, which
are involved in many chronic diseases and pathogen spread [243, 244]. Blood pathogens
are adapted to swimming in crowded environments [245], sperm cells follow the wall of
the genital tract to reach the egg cell [246–248], and artificial Janus particles have been
guided along microfluidic edges [249] and through obstacle arrays [250–252].

The nature of particle-surface interactions relies on a microswimmer’s propulsion
mechanism, including steric and hydrodynamic effects. Microalgae, which are “puller”
type swimmers, are scattered off surfaces [253–255], leading to billiard-like motion in
polygon structures [256]. In contrast, “pusher” type swimmers, such as bacteria or
Janus particles, are trapped by hydrodynamic effects near flat surfaces, where they
accumulate [257–259]. When the surface is instead convex, this trapping time can be
reduced [260]. In particular, bacteria trace along convex surfaces such as microfluidic
pillars before escaping with a small angle [261].

The modelling of these scenarios typically follows one of two approaches: hydro-
dynamic models, or random walk models. With a full hydrodynamic approach, the
particle-surface interactions can be studied by modelling the active particle as a hard
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sphere with defined tangential surface velocity [262]. A recent study explored the migra-
tion of active particles through a body-centered cubic lattice of spheres of the same size
as the particle [263]. Depending on the swimmer type and packing density, the authors
found trapped, random walk and straight trajectories. The computational demands of
the simulations, however, prevented study of long-time behavior. Random walk models
can be used to study the diffusive behavior of active particles. Diffusion in complex
media has been studied for several boundary interactions: for model particles that evade
obstacles [264], particles that are trapped before being randomly reorientated [265], and
particles that interact with obstacles via an excluded volume potential [266]. Hydro-
dynamic boundary interactions have been shown to play an important role in active
systems, e.g. in the control of flow-induced phase separation [267]. Similarly, pusher-type
boundary interactions may guide microswimmers through their environment [249, 268],
which would facilitate diffusion.

In this chapter, I will look at how different modes of boundary scattering influence
the diffusive transport of active particles in ordered arrays of obstacles. We will consider
particles specularly reflected from boundaries, as in the Lorentz gas model [31]; particles
that scatter by sliding around obstacles, like pushers [260, 261]; and particles that interact
with obstacles via a steric, torque-free interaction, which is referred to here as a “slide-off”
condition [266]. For these ‘pusher-like’ collisions, simulations and a run-and-tumble
particle model predict, counterintuitively, that large diffusive transport is possible even
at high obstacle densities. This result contrasts sharply with the expected low diffusivity
of Lorentz gas particles at high densities. Further, I will show for the sliding condition,
using a simple deterministic model, how this large diffusion at high density is caused
by particle guiding by the lattice. Simulations show that the same effect occurs for the
slide-off condition, but not for Lorentz gases.

6.1 Equations of motion and boundary conditions

In each simulation, there are NP non-interacting active particles in a two-dimensional
space in which obstacles are placed in a hexagonal lattice. The centres of the obstacles
are fixed with distance d, and the obstacle radius R is varied. The equations of motion
for the i-th particle are given by

ẋi = v p(ϕi) (6.1)

ϕ̇i =
√

2DRξi(t), (6.2)
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Fig. 6.1 Boundary conditions. Typical trajectory of a particle governed by Eqs. (6.1)
and (6.2) with (a) a sliding, (b) a slide-off, or (c) a reflecting boundary condition. For
the sliding condition, particle leaves at a tangent to the obstacle after traversing a fixed
central angle α. For the slide-off condition, the central angle α̂ depends on the incident
angle, the obstacle radius, and the magnitude of rotational diffusion on the obstacle.

where dot denotes the time derivative, v is the particle speed, xi and ϕi correspond to the
position and moving direction of the i-th particle, respectively, and the unit vector p =
[cosϕ, sinϕ]. The white noise in Eq. (6.2) obeys ⟨ξ(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′).
Thus, the moving direction undergoes rotational diffusion with ⟨ϕ(t)2⟩ = 2DRt. As a
result, the particle performs a persistent random walk with persistence length lp = v/DR

[269].
Recent microfluidic experiments [260] and hydrodynamic models [260, 261] have shown

that pillars with radii above a critical threshold strongly trap pushers, which escape
at long times by rotational diffusion. Here, I will discuss only pillars with radii below
this critical threshold (and so choose parameters motivated by experiment [268, 270]).
In this case, swimmers collide with an obstacle at an angle β, defined as the angle
between the tangent at the collision point and the orientation p. If β < π/2, the particle
travels clockwise around the obstacle; if β ≥ π/2, the particle travels counter-clockwise.
After the collision, the angle between it and the obstacle surface tangent decreases until
escape [261].

To capture the non-classical particle-surface interaction, we introduce a sliding
boundary condition [260]. Consider a collision with an obstacle: β is defined as the angle
between the tangent at the collision point and the orientation p. The particle moves
along the obstacle to traverse a central angle α (Fig. 6.1(a) inset). A model of stochastic
dynamics could determine, for a given incident β, the resulting distribution of central
angles α (leaving times). However, such a model has yet to be developed. We know
from modelling and experiments that after collision, the particle quickly rotates, through
phoretic and/or hydrodynamic interactions with the surface, to align its orientation vector



128 Diffusion of microswimmers in obstacle lattices

with the surface, regardless of the orientation of the particle upon collision [244, 271].
This rotation generally occurs on a much faster timescale than the trapping time of the
particle. Therefore, let us choose to neglect the dependence of the sliding angle α on
β, i.e., model the probability distribution of α as P (α) instead of as P (α|β), with P (α)
peaked at some value αmax determined by the competition between rotational diffusion
and deterministic alignment with the surface. In this work we will explore the effect of
boundary conditions assuming a fixed central angle α and further assume that, when
a particle leaves an obstacle, its orientation p is tangent to the obstacle surface. This
is a necessary simplification of the hydrodynamic behaviour of pusher-type particles at
convex obstacles. The model also neglects any potential impact of the chemical field
surrounding synthetic active particles. The neglect of stochasticity in α can be checked
by simulations. Results (not shown) with a fixed (mean) α are qualitatively the same to
those obtained with a distribution of α, provided the latter is peaked about its mean
(e.g. a Gamma distribution).

As a comparison, let us also consider a slide-off boundary condition, and a reflecting
boundary condition. In the slide-off condition, when a particle collides with an obstacle,
it retains its orientation vector, and advances around the obstacle depending on the
component of its velocity parallel to the obstacle surface (initially β) , i.e. v = v0 cos β,
as shown in Fig. 1(b). The angle between particle orientation and obstacle tangent
decreases as the particle moves around the obstacle’s surface. It will leave the obstacle
when the orientation vector is parallel to (or pointing away from) the obstacle’s surface.
In the absence of rotational diffusion, this means that the particle will traverse a central
angle of α̂ = min(β, π − β), and so it bears some resemblance to the sliding condition.
Here, we consider two different cases: i) when rotational diffusion is fully suppressed
while on the obstacle, here called the deterministic slide-off condition, and ii) when
rotational diffusion remains the same as in free space while on the obstacle, here called
the stochastic slide-off condition. Note that while sliding is motivated by hydrodynamic
effects, the slide-off condition is motivated by steric effects, and has been used in various
potential-based simulation studies to model Janus particles and active disks [266, 272].

For the reflecting condition, a particle is reflected with an angle equal to the incident
angle, as illustrated in Fig. 6.1(c). This interaction type implies time-reversibility, which
is an assumption underlying gas kinetic models derived for bacteria transport in porous
media [273, 274]. By contrast, both the sliding and slide-off boundary condition are
not time-reversible and violate detailed balance [239]. The system of Eqs. (6.1) and
(6.2) is solved numerically, and example particle tracks are shown in Fig. 6.1. We derive
the diffusion coefficient from NP simulated particle tracks by fitting the mean square
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displacement as
⟨δx(t)2⟩ = 4Defft+ 4Deffη[exp(−t/η) − 1], (6.3)

a result easily derived for self-propelled particles using a standard method (see for
example [21]), where the time scale of ballistic motion, η, is the second fitting parameter.

6.2 Diffusion of an active Lorentz gas

First, I will address diffusion of active particles with the classical specular reflection rule
on obstacle boundaries. These have already been studied for ballistic particles, both in a
physical context [31], and a mathematical context [275]. Ballistic particles undergoing
specular reflection are termed a Lorentz gas, and the calculation of the diffusion coefficient
can be reduced to the problem of finding the mean free path λ, using the relationship

D = 1
2λv (6.4)

There already exists a well-known result for the mean free path of a Lorentz gas, known
as the the Santalo formula [275]:

λ = πA/P, (6.5)

where A and P are the free area and obstacle perimeter in a unit cell (shown for a
hexagonal lattice in Fig. 6.2(a)), respectively. There is an important caveat for this
result: it applies only when the space has a finite horizon. This means that it is not
possible to place a straight line down onto the space without it intersecting an obstacle.
In practice, for our hexagonal lattice, it therefore assume that the rows of the lattice are
overlapping, otherwise you would be able to place a straight line down the middle of the
channels formed by the lattice. This would limit how small we could make the ratio of
obstacle centre separation d to obstacle radius R – simple geometry tells us that for a
finite horizon, R/d >

√
3/4.

If the particles in our study were unaffected by rotational diffusion, then we would
expect their motion to be ballistic for R/d <

√
3/4. However, since the active particles

described by Eqs. (6.1) and (6.2) move diffusively at large time scales, they obviously
have a finite effective mean free path in free space (and therefore effectively a finite
horizon). This is just the persistence length lp. To try and capture this, and extend the
validity of the Santalo formula to lower obstacle densities, I derived an active version of
Santalo’s formula, by placing an additional circular boundary of radius lp into the space,
as in Fig. 6.2(b). Now, we can work out the number N of unit cells (with area

√
3d2/2
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 (a)

lp

(b)

Fig. 6.2 An illustration of the lattice geometry in the reflecting boundary condition
calculation. A hexagonal lattice can be patterned by rhombi of side length equation to
the lattice spacing, as shown in (a). The shaded area is the area available to particles per
unit cell, A, while the orange arcs highlight the obstacle surface per unit cell P = 2πR.
In (b), an extra circular boundary is added, with a radius of the persistence length, to
account for reorientation via rotational diffusion, and preventing an infinite mean free
path at low densities.

for a hexagonal lattice) held within the persistence circle:

N =
πl2p√
3d2/2

=
2πl2p√
3d2

(6.6)

The free area per unit cell is, as illustrated in Fig. 6.2(a), given by the area of a
parallelogram with sides of the lattice constant d, minus the area of a single circular
obstacle:

A =
√

3d2

2 − πR2, (6.7)

and the perimeter per unit cell is simply P = 2πR. Now, the mean free path of an active
particle is

λ̃lp = π
NA

NP + 2πlp
= π

2

√
3d2 − 2πR2

2πR +
√

3d2/lp
(6.8)

In order to obtain the fit seen in Fig. 6.3, we find that this mean free path has to be
scaled by π/2, i.e. λlp = 2λ̃lp/π. We believe that this is due to the choice of averaging
conditions made in earlier work [275]. As shown in Fig. 6.3, applying this adjusted
mean-free path in D = λlpv/2 matches the simulations.

The inset plots the theoretical prediction and the diffusion coefficient fitted from
simulations on a lin-log scale, showing that at large R/d the diffusion coefficient scales
as ln(1/ρ), where obstacle density ρ = 2π/

√
3 (R/d)2. If we vary the obstacle separation

d instead of the obstacle radius R, we see, as expected, that the diffusion coefficient
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τc

τc

B

Fig. 6.3 Diffusion with reflecting boundary condition, Dref , is scaled by diffusion coefficient
in the absence of any obstacles, D0 = v2/2DR. Simulations agree with Santalo’s formula
that was adjusted for rotational diffusion, λlP (green dotted curve). The run-and-tumble
model in Eq. (6.9) with Santalo mean free path λ in τc = λ/v (orange dashed) is
compared to RTP model with τB

c = 1/ρ [265] (purple dashed-dotted) and ⟨cosψ⟩ = −1/3.
Parameters: NP = 1000, DR = 0.1 s−1, v = 20 µm s−1, d = 60 µm, unless otherwise
stated.
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τc
τc

B

'

Fig. 6.4 Diffusion with reflecting boundary condition for fixed R = 12µm, as the obstacle
separation d′ = d− 2R is varied. The diffusion coefficient was again scaled by the free
space diffusion coefficient D0, which is approaches as obstacle density gets very small
(d′ ≫ lp).

approaches D0 when d ≫ lp, shown in Fig. 6.4. We can understand the reduction in
diffusion coefficient qualitatively: as the obstacle density increases, particles spend most
of their time in the wells between triplets of obstacles in the hexagonal lattice, and their
motion becomes a jump-diffusion process from well to well, as described by Machta and
Zwanzig [31] and illustrated by the particle track in Fig. 6.1(c).

6.3 Run-and-tumble model

While the active Santalo formula matches the reflective simulations well in Fig. 6.3,
it cannot account for the persistence introduced by the sliding and slide-off boundary
conditions, and a different approach is required. Figure 6.5 shows a sample trajectory
at low density, which gives some clue as to how the simulations can be modelled. If
we remove the obstacles from the trajectory, the particle appears to follow a series of
roughly straight runs (rotational diffusion adds in some variation in direction) of length
dictated by the run time τ , followed by sharp tumbles onto a new direction of travel, of
angle ψ. These parameters are not necessarily fixed, and may instead obey some sort of
probability distribution. This kind of travel is common in bacteria such as E. coli [269],
and such microswimmers are termed run-and tumble particles (RTP) [276, 277]. In
this case, instead of internal cues forcing a RTP to tumble, these are obstacle-induced
reorientations of the particles. The diffusion coefficient for an RTP also undergoing
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ψ

vτ
a) b)

Fig. 6.5 Sample trajectory at low obstacle density. (a) shows a sample trajectory within
an obstacle lattice, and (b) shows the same trajectory with the obstacles deleted. It
bears resemblance to a particle undergoing roughly straight runs of length vτ , before
tumbling through an angle ψ. Both the run time τ and the reorientation angle ψ are
sampled from some probability distribution.

rotational diffusion is known to be

D = v2

2[DR + (1 − ⟨cosψ⟩)/τ ] , (6.9)

where τ is the mean run time and ψ = ψ(α, P (β)) is the reorientation angle during
a tumble [278, 279]. In the following, I will derive expressions for the parameters in
Eq. (6.9): i) the reorientation function ⟨cosψ⟩, ii) the mean run time τ , and iii) the
effective speed v based on the microscopic details of the sliding, the reflecting and the
slide-off boundary conditions. We will then apply the RTP model with those parameters
to the simulations presented in the previous section.

Sliding boundary condition

Reorientation function

For the sliding BC, the reorientation angle ψ is the combination of alignment upon
collision with the obstacle, β, and sliding according to the central angle, α. We can
calculate this by considering the geometrical construction in Fig. 6.6. Since we have
constructed the line CH to be parallel to the tangent at the collision point BE, and
constructed FC to be parallel to OB, angle FCH must be a right angle. Since the
particle leaves at a tangent, OCD is also a right angle. By the alternate angle theorem,
OCF=COB=α, and so DCF=π/2 − α. Therefore,

ψ = π

2 − β −
(
π

2 − α
)

= α− β. (6.10)
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Fig. 6.6 A geometrical construction for determining the reorientation angle, ψ, as a
function of collision angle β, and central angle traversed, α. The sliding particle travels
along the path ABCD. Lines OB and CF are parallel, as are lines AB and CG, and lines
EB and CH.

The average ⟨cosψ⟩ is performed over the collision angle β, with probability distribution
P (β).

To derive the collision angle distribution, we consider a single circular obstacle of
radius R. A particle can start at any distance x from the centre of the obstacle, with
its initial direction φ uniformly distributed (see Fig. 6.7 for schematic). The particle
moves in a straight line, and may or may not collide with the obstacle. Given a uniform
distribution of starting directions, what is the observed collision angle distribution P (β)?

To answer this, we need only consider a truncated distribution

P (φ) = 1
2 cos−1 R

x

for − cos−1 R

x
≤ φ ≤ cos−1 R

x
, (6.11)

because beyond this range of angles, the particle will not hit the obstacle (for instance, if
φ = π, the particle will move away from the obstacle forever and never hit it). From the
sine rule, we can see quickly that

x

sin(π/2 + β) = R

sinφ, (6.12)
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x

R

ϕ

β

Fig. 6.7 Schematic of the set-up to determine the incoming angle distribution. A particle
starts a distance x from the centre of the pillar, and then travels at an orientation φ
relative to the line joining the centre of the circle to the particle’s origin, hitting the
circle at an angle β to the tangent of the circle.

and so the relationship between incoming and collision angle at a given distance from
the obstacle φ(β, x) is given by

φ(β, x) = sin−1
(
R

x
cos β

)
. (6.13)

The transformation between the uniform initial angle distribution P (φ) and the collision
angle distribution Px(β) is given by Px(β) = P (φ)|dφ/dβ|, where

∣∣∣∣∣dφdβ
∣∣∣∣∣ = R sin(β)

x

(
1 − R2 cos2 β

x2

)−1/2

(6.14)

is the Jacobian of the transformation. We can write the collision angle distribution
averaged over all space as

P (β) = lim
L→∞

∫ L
R dx 2πx Px(β)∫ π

0 dβ
∫ L

R dx 2πx Px(β)
= sin β

2 , (6.15)

where L is the system size. Here, the factors of 2πx arise from summing over annular
regions of starting points. The denominator is a normalisation factor, and the lower limit
of the x integral comes from the fact that you cannot start less than a distance equal to
the radius R from the centre of the obstacle. Despite using deterministic trajectories to
calculate this distribution, it fits the observed collision angle distribution for simulations
at low densities. Performing the average gives the reorientation function as:

⟨cosψ⟩ = 2
∫ π/2

0
cos(α− β)P (β)dβ = 1

4(2 cosα + π sinα), (6.16)
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noting that cosψ is even about β = π/2. This framework is general, and so can be
adapted for specific boundary conditions, as long as the reorientation function ⟨cosψ⟩
can be determined. For the reflecting boundary condition, ψ = 2β, and ⟨cosψ⟩ = −1/3.
We will discuss the stochastic slide-off condition in the next section.

Tumble rate

The second parameter in the RTP model (6.9) is the mean run time τ , which corresponds
to the time between obstacle collisions. Because the characteristic time between collisions
is independent of the details of the random walk and depends purely on confinement
[280], we use the mean collision time τc = λ/v for all boundary conditions, where λ is the
mean free path given by Santalo’s formula. Note that this is not the active Lorentz gas
formula derived earlier, but the deterministic Santalo formula. In the run-and-tumble
model, rotational diffusion is dealt with separately (as in Eq. (6.9)). The reason this is
important is more evident at low densities, where the tumble rate will be lower than
the rate of reorientation by rotational diffusion. We do not want to artificially enhance
the tumble rate at low densities. Of course, there are caveats to the approach: we are
applying the Santalo formula beyond the bounds of its applicability (putting it onto an
infinite horizon space). However, in my opinion, the results (presented later) justify this
approximation.

For the sliding boundary condition, the mean run time is adjusted by the time spent
on an obstacle, i.e. τ = τc + τR, with residence time τR = Rα/v simply being the arc
length traversed divided by the speed on the obstacle.

Effective speed

A final consideration is that travelling on the obstacle causes an effective reduction
in velocity. When the particle traces along the pillar, it travels a distance l < vτR,
which gives vobs = l/τR. By the cosine rule, l = R

√
2 − 2 cosα for the sliding boundary

condition. Using the distance travelled, the effective speed in Eq. (6.9) is then veff =
vτc/τ + vobsτR/τ = vτc/τ + l/τ .

Comparison with simulation

As a sanity check, we can first apply the RTP theory to simulations with reflecting
boundary condition, using ⟨cosψ⟩ = −1/3 and τR = 0. As shown in Fig. 6.3, the
RTP model with τ = τc yields a good approximation of the simulation results. As a
comparison, the RTP model with a recently derived mean collision time [265], where
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(a) Simulations (b) RTP model

Fig. 6.8 Diffusion with sliding boundary condition. (a) Simulations reveal dependence
on both obstacle density and central angle. (b) Theoretical prediction Eq. (6.9) with
τc = λ/v in τ = τc + τR and ⟨cosψ⟩ given by Eq. (6.16). Parameters: NP = 1000,
DR = 0.1 s−1, v = 20 µm s−1, d = 60 µm.

τB
c = 1/ρ, approximates the simulations at low densities but diverges in the high density

regime.
Numerical solutions of Eqs. (6.1) and (6.2) with a sliding boundary condition reveal

that diffusion depends both on the obstacle density ρ and the central angle α [see Fig.
6.8(a)]. A large diffusive transport can be sustained even at large obstacle density ρ for
certain values of α. Despite frequent obstacle collisions, the reorientation is small because
the sliding boundary condition conserves the major component of the velocity vector for
small to intermediate values of α. Large values of α, on the other hand, cause a particle
to retrace much of its track. The RTP framework reproduces the main features of these
simulations (see Fig. 6.8 for a comparison): it maintains a large diffusion coefficient
for small to intermediate α. Since τc is independent of the boundary condition, this
must stem from the reorientation function ⟨cosψ⟩ in Eq. (6.16), which has a maximum
at α ≈ π/3 and a minimum at α ≈ 4π/3. These extrema coincide with the predicted
maximum and minimum of the diffusion coefficient observed for small to intermediate
R/d in Fig. 6.8(b). Beyond α = 4π/3, any increase in the diffusion coefficient due to the
reorientation function is suppressed by the increase in residence time τR at large R and
α. Note that, since the RTP model is oblivious to obstacle arrangement, these results
also apply to random lattices at low densities. The discrepancies between the simulation
results and the theoretical prediction at high densities is evidence of the geometrical
guiding effect, and will be discussed in Section 6.3.1.
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6.3.1 Slide-off boundary conditions

The slide-off boundary condition presents a different challenge, especially when rotational
diffusion persists on the obstacle.

Reorientation function

For the deterministic slide-off condition, there is by definition no reorientation, and so
⟨cosψ⟩ = 1. For the stochastic slide-off condition, however, the particle can deviate in its
orientation while on the obstacle, and so the reorientation function ⟨cosψ⟩ ≤ 1. For this
condition, the reorientation function depends on the obstacle radius compared to the
persistence length, R/lp = RDR/v. This parameter gives an idea of whether diffusion
(DR) or movement around the pillar (v/R) has a larger effect on the particle’s orientation.
To see this, consider an extremely large obstacle (large R/lp). Then, change in the
particle’s surface angle due to movement around the obstacle will be very small, as the
curvature is low. Therefore, diffusion will dominate the reorientation, and ⟨cosψ⟩ < 1.
Conversely, a small obstacle will not allow much time for reorientation due to rotational
diffusion before the particle leaves again.

To model the dependence of the reorientation function for the stochastic slide-off
condition, we must look at the underlying Langevin equation of the angle the particle
makes with the obstacle surface, Θ:

Θ̇ = − v

R
cos Θ +

√
2DRξ(t). (6.17)

The deterministic drift comes from movement around the surface of the pillar. We want
to know the average distance traversed around the pillar for a given incident angle, α̂(β).
We find this by adding up all the contributions of the particle’s movement over the
surface during its interaction with the pillar:

α̂(β) =
〈∫ T

0
dt

v

R
cos Θ(t)

〉
Θ(0)=β

, (6.18)

where T is the time at which the particle angle Θ first reaches 0 or π and leaves the
obstacle. We can substitute using the Langevin equation (6.17):

α̂(β) =
〈∫ T

0
dt
(

−Θ̇ +
√

2DRξ(t)
)〉

Θ(0)=β

= β − ⟨Θ(T )⟩Θ(0)=β. (6.19)
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Fig. 6.9 Numerical solution for the reorientation function in Eq. (6.21) (thick curves) vs.
the analytical approximation (dashed curves) in Eq. (6.22) for DR = 0.1s−1 (blue curves)
and DR = 0.5s−1 (red curves). Other parameters are those taken in the simulations.

Here we have made the assumption that the stochastic integral vanishes, which is not
obviously true, as we are not averaging over all trajectories at the time T , only those
ones that reach the boundaries for the first time. However, this seems reasonable, given
the particle may exit the region on both sides.

We are left with needing to calculate the probability of exiting at an angle x = 0 or
x = π, p0/π(β). These probabilities are known as the splitting probabilities, and have the
formal solution

pπ(β) =
∫ β

0 dx exp
[

lp sin x
R

]
∫ π/2

0 dx exp
[

lp sin x
R

] , (6.20)

where again, we consider β ≤ π/2 and then use symmetry to deal with π/2 ≤ β ≤ π

(for information on the splitting probability, see for example [281]). Then, ⟨x(T )⟩ =
πpπ + (0)p0 = πpπ(β). To get the reorientation, we integrate over the incident angle:

⟨cosψ⟩ = 2
∫ π/2

0
cos(α̂(β) − β)P (β)dβ =

∫ π/2

0
dβ sin β cos⟨Θ(T )⟩x(0)=β. (6.21)

This expression can be evaluated numerically, and a very good approximation for small
to medium R/lp (see Fig. 6.9) is given by:

⟨cosψ⟩ ≈ 1 − 1
2

√
R

lp
. (6.22)
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Tumble rate

To get the residence time for the deterministic slide-off condition, we must take into
account speed reduction on the obstacle. Accordingly, we may write the residence time
as an integral:

τR(β) =
∫ 0

β

RdΘ
v cos Θ = R

v
ln
[
1 + 2

cos(β/2) − 1

]
(6.23)

Note that this is not equal to Rα̂/v, because v is reduced on the obstacle, and so
τR > Rα̂/v. The addition of rotational diffusion also changes the residence time. The
residence time averaged over the incident angle distribution is then

τR =
∫ π/2

0
dβ τR(β) sin β = πR

2v . (6.24)

Addition of rotational diffusion on the obstacles makes analysis more difficult. Now,
the residence time can be characterised by the mean hitting time of the Langevin
equation (6.17) on the exiting boundaries. This has a known expression [26]:

τR(β) = 1
DR

∫ β

0
dy elp sin y/R

∫ π/2

y
dΘ e−lp sin Θ/R, (6.25)

where there is a reflecting boundary at Θ = π/2 and an absorbing boundary at Θ = 0.
Again, it is possible to make headway by asymptotics on this integral, but it turns out a
more intuitive approximation suffices. For small rotational diffusion lp ≫ R, the drift
time τdrift = πR/2v dominates the mean first passage time. However, for large rotational
diffusion lp ≪ R, we may expect that diffusion time, τdiff = 1/DR – calculated as the
mean first passage time out of a flat potential for the incident angle distribution P (β) –
dominates. It turns out that a very reasonable fit to numerical solutions of the integral is

τR = τdriftτdiff

τdrift + τdiff
= πR

2v
1

1 + πR/2lp
, (6.26)

see Fig. 6.10. This expression gives the deterministic time τR → πR/2v at low rotational
diffusion (small R/lp), and the expected time to exit the free space interval {0, π} for
large rotational diffusion (large R/lp): τR → 1/DR. This latter time assumes that we
can neglect the contribution from deterministic drift at large enough rotational diffusion
values.
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Fig. 6.10 Numerical solution of Eq. (6.24) (thick curves) compared to the analytical
approximation in Eq. (6.26) (dashed curves). These are plotted for DR = 0.1s−1 (blue
curves) and DR = 0.5s−1 (red curves). Other parameters are those taken for the
simulations.

Effective speed

It can be quickly shown that for the deterministic slide-off condition, the average angle
traversed during a collision is 1 radian. It follows that l = R

√
2 − 2 cos(1) for the

deterministic slide-off condition. For the stochastic slide-off condition, we require the
average reorientation angle α̂. Using that

α̂ =
∫ π/2

0
dβ α̂(β) sin β, (6.27)

and the definition of α̂(β) in Eq. (6.19), we can find α̂ numerically. It turns out the
numerical solution is very close to an analytical approximation:

α̂ ≈ 1 −
√
πR

2lp
+
(
R

2lp

)3/2

, (6.28)

as shown in Fig. 6.11. and then, the average distance travelled for the stochastic slide-off
condition is l = R

√
1 − cos α̂. Using those distances travelled, the effective speed in Eq.

(6.9) is then veff = vτc/τ + vobsτR/τ = vτc/τ + l/τ .

Comparison with simulations

For both deterministic and stochastic slide-off conditions, the diffusion coefficient DSO is
equal to the free diffusion coefficient D0 in the limit of small (or very separated) obstacles,
as shown in Fig. 6.12. However, at higher obstacle densities, the deterministic slide-off
diffusion coefficient increases significantly over the free diffusion coefficient (see the purple
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Fig. 6.11 Numerical solution of α̂ (thick curves) vs. the analytical approximation in
Eq. (6.28) (dashed curves), for DR = 0.1s−1 (blue curves) and DR = 0.5s−1 (red curves).
Other simulation parameters as in Fig. 6.12.

markers Fig. 6.12). This increase appears despite the decrease in speed on the obstacle:
as the speed on the obstacle is given by v = v0 cos β, the particle will propagate very
slowly when it is oriented at right angles to the surface. We suspect the suppression
of rotational diffusion as cause for this increase, and, thus, use an effective rotational
diffusion Deff

R = DRτc/τ in Eq.(6.9). With this correction, the RTP model is a good
approximation of the simulation results, see dashed purple line.

Restoring rotational diffusion on the obstacle surface dramatically changes the de-
pendence of DSO on the obstacle density. For the stochastic slide-off condition, the
RTP model in Fig. 6.12 reproduces the trends seen in the simulation results: we see a
reduction in the diffusion coefficient as the obstacle density increases. This reduction is
still much smaller than the Lorentz gas results (compare the green markers in Fig. 6.12
to the markers in Fig. 6.3). The relative decrease in the diffusion coefficient to that of
free space is smaller as the persistence length decreases: if the particle is more prone to
reorientation in free space, the effect of reorientation due to the obstacles is smaller, as
can be seen by comparing the green and orange markers (simulations) and dashed curves
(RTP model) in Fig. 6.12. However, the RTP model predicts a much sharper decline
in the diffusion coefficient at larger values of R. This gives another strong indication
that the obstacle lattice may be playing a large role at high densities for the sliding and
slide-off BCs.
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Fig. 6.12 Diffusion with slide-off boundary condition, DSO, is scaled by the free diffusion
coefficient. If the particle orientation is fixed on the obstacle (i.e. DR = 0 on obstacle),
diffusion is enhanced at large obstacle densities (purple markers). With stochastic slide-off
boundary condition (i.e. DR ̸= 0), the diffusion coefficient decreases with increasing
obstacle density. If DR is increased (both free space and on obstacle), the relative decrease
in diffusion coefficient, DSO/D0, due to obstacle collisions is smaller (orange vs. green
markers). Note that absolute value of DSO is smaller for larger DR. The dashed lines
are the respective theoretical approximations to the simulations (details given in section
6.3). Parameters: NP = 1000, DR = 0.1 s−1, v = 20 µm s−1, d = 60 µm, unless otherwise
stated.

6.4 High-density geometrical effects

I now want to examine the deviations of the RTP model from the simulated diffusion
coefficient Dslid at high density in more detail. Figure 6.13(a) shows fixed R/d = 0.47
(the largest value) cross-sections of the surfaces in Figures 6.8(a) and 6.8(b). At this
high density, the diffusion coefficient for the hexagonal lattice simulations has peaks
that exceed the RTP model. There are two of these peaks at low α as well as smaller
overshoots at higher α. However, if we instead perform the simulations in a square lattice,
we get a different peak structure, with a single peak at low α. We will see that this is
due to the geometry of the lattice, and its guiding effect on the self-propelled particles.

For the geometry of the lattice to influence the particle paths, there must be a
correlation between successive collisions with pillars. This means that the particle must
not lose the memory of its orientation between collisions, i.e. the obstacle separation
must be much smaller than the persistence length, d− 2R ≪ lp. In this case, a purely
deterministic model (DR = 0) provides a good approximation to explore correlations
between collisions. In such a model, the particle travels in a straight line between



144 Diffusion of microswimmers in obstacle lattices

θ
max

θ*

θ
min θ* θ

max

θn

α

(c)

θn

θn-1 θn+1

θn+2 θn+3

(b)

θ
min

θ
max

flight
direction

square

(a)
hexagonal
RTP model

θ n
+

1

θn+1=θ n

f(θ )n

Fig. 6.13 Geometric effects for sliding BC. (a) The discrepancy between the RTP model
and the hexagonal lattice simulation results at high density (R/d = 0.47) is centred
around the deterministic stable regions [shaded as in (c)], revealing influence of geometry.
Inset: Diffusion coefficient for a square lattice. (b) Schematic of a 1-D system, considering
a flight along one channel in the lattice. The leaving angle at each pillar is given by θn.
The lower schematic shows possible termination of flights in a horizontal channel. (c)
Iterative map of the leaving angle as a function of the previous leaving angle for different
central angles α, θn+1 = f(θn) + α. The shaded regions correspond to regions of stable
flights. Stable fixed points cross the dashed θn+1 = θn line with a gradient between -1
and 1 (a mapping with a stable fixed point is shown in the lower shaded region, with
an example trajectory in pink). An example of a bounded mapping of leaving angles is
shown as orange trajectory.

pillars, and is reoriented by α by sliding scattering. We consider a ‘channel’ defined by
two rows of pillars within the lattice (Fig. 6.13(b)). A particle traverses the channel
by skirting around pillars, leaving the surface of the nth pillar with a polar angle θn.
For deterministic (ballistic) dynamics between collisions, we can completely specify a
trajectory by the ‘flight’ {θn}N

n=1, the sequence of leaving angles from successive collisions,
as in Fig. 6.13(b). The sequence size N defines the flight length. Successive leaving
angles are determined by a recurrence relation:

θn+1 = gα(θn) = f(θn) + α, (6.29)

where, in this deterministic model, f(θn) is a function determined solely by the geometry.
As the particle moves along a channel during a flight, it can transition between pillars

on the opposite ( e.g. θn−1 → θn) or same (e.g. θn+2 → θn+3) side of the channel, as
shown in Fig. 6.13(b). For R/d >

√
3/4 (the close-packed limit of overlapping pillars), a

critical angle θn = θ∗ emerges that determines on which side of the channel a particle
will next hit. If θn ≤ θ∗, the particle will cross over to an obstacle on the other side of
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the channel, while if θn > θ∗, it will move to one on the same side. This means the map
gα(θn) is discontinuous at θn = θ∗, as in Fig. 6.13(c).

The flights considered in the deterministic model correspond well to what we observe
in our simulations. At high densities, these show particle trajectories made up of long
flights along lattice channels, interrupted by ‘tumbles’ into the next long flight. The
deterministic model allows to establish if the flights are geometrical in origin. In this
model, a flight terminates when the leaving angle θn becomes too small (θn < θmin) or too
large (θn > θmax) as it will be deflected out of the channel on its next collision, illustrated
in Fig. 6.13(b). Stable flights are trajectories that remain in the region θmin ≤ θn ≤ θmax

indefinitely. This can happen in two ways:

1. A stable fixed point may exist (a point θ such that gα(θ) = θ, and |g′
α(θ)| < 1), so

that long trajectories have a single repeated leaving angle.

2. The map gα(θn) is bounded within the allowed region of leaving angles: θmin ≤
gα(θn) ≤ θmax for all θmin ≤ θn ≤ θmax, so that no trajectory may leave the allowed
region.

Example trajectories of both types are illustrated in Fig. 6.13(c).
The iterative map θn+1 = gα(θn) is plotted for R/d = 0.47 in Fig. 6.13(c). Two stable

ranges (shaded regions) are seen to emerge corresponding to ranges of α, which controls
stability. For θn < θ∗, increasing α causes a stable fixed point to develop. Increasing
it further, in the range that defines the lower region (shaded in blue), provides a map
bounded in the interval [θmin, θmax]. Flights in this lower shaded region bounce from
one side of the channel to the other. If α is increased further, the map again becomes
unbounded (gα(θn) > θmax) and stability is lost. For θn > θ∗, the upper region (shaded
in pink) has a stable fixed point, so that particles perform stable flights by running along
only one side of the channel in this region. Stable trajectories from the deterministic
model cannot give rise to diffusive behaviour. However, any rotational diffusion, however
small, will eventually cause a deviation of trajectory large enough to take the particle out
of the stable interval [θmin, θmax]. This will cause flights to terminate, and this is why the
observed transport is diffusive, not superdiffusive. In view of the large persistence length
of flights for stable values of α, the diffusion coefficient for such flights is expected to be
large compared to that corresponding to other values of α. By plotting the stable regions
of α predicted by the deterministic model against the simulation results at high density
in Fig. 6.13(a), we see that this is indeed the case: the spikes in diffusion coefficient for
the simulations correspond well to the stable regions in the deterministic model. It is
important to note that the obstacle sizes we are considering here are below the critical
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trapping radii tyically found [260, 261]. It is possible to reach a high density state where
the obstacle separation is larger than the persistence length, where our results wouldn’t
hold. However, in this regime, the obstacles would be much larger than the trapping
radius, and so particles would be trapped for long periods on obstacles [260, 261], making
diffusion very slow. Finally, it is not only in the sliding boundary condition that we see
significant deviation from the RTP model. The stochastic slide-off collision rule also
exhibits an increase over the bare RTP model as R/d gets very large. Although we do
not try to model this here, it is clear from particle trajectories in the simulations (see e.g.
Fig. 6.1(b)) that in this case there is also a geometrical guiding effect (this is also the
case for the deterministic slide-off rule).

6.5 How should we model active particles?

We have seen that non-classical surface interactions significantly impact the active
diffusive transport in complex environments, such as ordered obstacle arrays. Compared
to a high-density Lorentz gas model, where particles get trapped in the wells of lattices,
and the behaviour is jump-diffusive, the sliding and slide-off boundary conditions allow
particles to escape these wells and traverse the lattice efficiently. These boundary
conditions share certain general features and differences to the classical specular reflection
boundary condition. The most striking is that they are not invertible; given an outgoing
orientation and leaving point, we cannot infer both the incoming angle and collision
point. The sliding condition maps particles with different orientations upon collision
to the same leaving point, and so information on the incident angle is lost. Similarly,
the deterministic slide-off condition maps particles with the same incident angles but
different collision points onto the same leaving point. The stochastic slide-off condition
loses both pieces of information. This non-invertibility could provide a stabilising effect
on trajectories due to geometrical guiding at high obstacle densities.

The results shown here highlight the importance of choosing realistic microscopic
boundary conditions to obtain realistic macroscopic dynamics. In particular, models
employing reflective boundary conditions, e.g. those used in [273, 274] to describe
bacteria in porous media, should not give realistic results for active particles. While
this is generally obvious considering detailed balance [239], the theoretical framework
exposited here allows the formulation of particular predictions to be tested experimentally,
for instance, using bacteria in microfluidic arrays (in fact, this work is now underway).
In particular, it would be interesting to test our prediction of large diffusive transport
in dense arrays. The RTP model presented here is general in the sense that it can be
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Fig. 6.14 A schematic geometry for determining the stochastic dynamics of microswimmers.
A microfluidic device with rows of circular obstacles have these rows separated by a
monotonically increasing distance along a microfluidic channel. Therefore, the diffusion
coefficient will be given by 6.9. The distribution of these particles can be modelled
using a Fokker-Planck equation, and it may be possible to distinguish the appropriate
interpretation of the stochastic integral, as discussed in Chapter 1.

applied for different lattices and particles. A different lattice of obstacles requires the
re-calculation of ⟨cosψ⟩ and τc. A change in the scattering interaction, on the other
hand, requires specification of ⟨cosψ⟩, τR, and potentially vobs, e.g. using experimental
measurements. While the description was developed for lattices, the results hold for
random environments when the number of obstacle contacts is low.

Finally, the model developed here has a potentially useful application in understanding
more completely the underlying stochastic dynamics of microswimmers. Crucially, since
the diffusion coefficient of these particles for pillars of fixed radius depends on the
obstacle density, we are in a position to probe the underlying Fokker-Planck equation.
If a microfluidic device can be constructed with a monotonically changing density, as
in Figure 6.14, then we will effectively have an interval with a monotonically changing
diffusion coefficient in space. With experimental tests of the boundary interaction for
the channel’s pillar radius, we should know this function, and thus be able to find the
stationary probability distributions expected from the Ito and Stratonovich interpretation.

This is a work in progress, but should be of great interest to those people working in
active matter, who routinely write down Fokker-Planck equations for active particles [277,
276].





Chapter 7
Conclusions and outlook

Within the field of biophysics, there exists a need to characterise the kinetics of systems.
When out of equilibrium, we must find how fast the processes that drive life progress,
or we will be unable to understand it. The problems presented in this thesis, I have
shown how mean first passage time methods can be used to treat these problems, either
for enthalpic barriers of unbinding, or for entropic barriers of assembly. I hope to have
shown the utility of the first passage time approach, and how exactly we may use it to
approximate the reaction rates in some model systems. Such an approach is not always
useful – in problems of protein structure, or reaction pathways, molecular dynamics
is king. If we attempt to coarse grain very complex free energy landscapes, we will
necessarily lose much of the fine detail of these molecular processes. Nevertheless, for
energy landscapes with simple features, the mean field approach to mean first passage
problems used in this thesis has its merit. In particular, it allows us to get analytical
approximations where saddle-point approximations may fail. With this in mind, I want to
show how the problems tackled in this thesis can be built upon, as we seek to understand
ever more complex models in cell biology.

The treatment of non-rigid substrates in this thesis lacks generality, although I believe
the mean-field approach would be a useful approach for any Markovian substrate (for
example, the standard linear solid). However, many materials are not Markovian, and it
would be more useful to write the equations of motion using the memory kernel γ1(t)

∫ t

0
γ1(t− t′)ẋ1(t′)dt′ = −∂U(x2 − x1)

∂x1
+ η(t) (7.1)

γ2ẋ2 = −∂U(x2 − x1)
∂x2

+ f + ξ2(t). (7.2)

The thermal noise terms are now not so easy to deal with; although ξ2(t) is still a white
noise term, the substrate noise term is now coloured, by the fluctuation dissipation
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theorem: ⟨η(t)η(t′)⟩ = kBTγ1(t− t′). Therefore, the problem is not Markovian and so it
is not possible to write down a Smoluchowski equation for these Langevin equations.

It is worth noting that it is not clear what the functions γ and κ written above refer
to. In this thesis we talk about the ‘mesh stiffness’ and associated friction coefficient, but
meaningful rheological measurements on the nano-scale response of biomaterials are still
very difficult to find. As such, we resorted to approximations based on known results in
elasticity, and the results of molecular dynamics simulations, but for accurate theoretical
modelling, I think there needs to be much more extensive experimental characterisation
of substrate behaviour at the force (both magnitude, and area of application) and
displacement scales of biological interest.

In this general case, it may be possible to make progress by appealing to a separation
of timescales if the substrate relaxes sufficiently slowly. For instance, recall that in
Chapter 3 we showed that the deterministic force across the bond was shown to be
quasi-static over the reaction timescale (in fact, it remains roughly constant over the
reaction timescale). So, for instance, it may have been possible to replace the non-rigid
susbstrate problem in Chapter 3 with a rigid substrate and an effective force, determined
by the substrate’s dynamics, reducing the problem to one dimension. This does not deal
with the problem of coloured noise in the substrate fluctuations, but may simplify the
dynamics enough that a solution becomes more achievable.

Even the equations written above are still linear models of elasticity. For a full
treatment of extra-cellular matrices there may have to be an appeal to non-linear
viscoelasticity – extra-cellular matrix networks display long-range correlations under
stress and have been shown to stiffen under stress from cell contraction [282].

The underlying motivation for understanding the behaviour of focal adhesions is
to try and understand the principles underlying cell behaviour and the impact of the
mechanical properties of a cell’s environment. One direct application of the work done
in this thesis could be to inform a larger-scale model of the transition to cell motility.
Typically, on a two dimensional substrate, a cell will adhere and begin to spread (as
described in Chapter 4). Some time after that, a cell will become polarised, as stress
fibres develop across the cell in some preferred direction, and then start to move. The
transition from isotropic to anisotropic, and the subsequent transition from stationary to
moving, could be an interesting problem in the dynamics of focal adhesions.

The idea that we have is to consider a polarised cell in equilibrium, before the
transition to cell motility. We consider a simple one-dimensional model, where there are
N focal contacts in the cell, contained in equal numbers on the left and right cell edge
(i.e. N/2 on both sides).
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We can consider a force f applied from the stress fibres onto the focal contacts. The
force f applies equally to each of the focal contacts, and so the overall resultant force
applied in the positive x-direction is

F (t) = f(n+(t) − n−(t)), (7.3)

where n+ and n− are the numbers of contacts on the positive edge and the negative edge
of the cell respectively. Now, we propose that there is some sort of resistive friction force
against the cell starting to move, fres. The condition for the transition to mobility is that

f |n+(t) − n−(t)| > fres. (7.4)

Denoting the activation and release rate of the complexes as kr, and the rate for assembly
of a complex as ka the kinetic scheme can be written as

∂⟨n±(t)⟩
∂t

= −kr⟨n±(t)⟩ + ka

(
N

2 − ⟨n±(t)⟩
)
. (7.5)

In the steady state ∂⟨n⟩/∂t, the average number of focal contacts attached to the substrate
are equal on the positive and negative edge,

⟨n+(t)⟩ = ⟨n−(t)⟩ = N

2(1 +K−1
eq ) , (7.6)

where the equilibrium constant Keq = ka/kr is the ratio of adhered complexes to released
complexes. Clearly, if the reassembly rate is infinite, then Keq → ∞, and the number of
adhered states is N/2, i.e. there are no released states.

The next assumption is that the more focal contacts activated, the stronger the
pulling force. This makes sense: concentrated focal contacts are associated with high
cellular traction forces. To implement this, it is simplest to assume that the force is
proportional to the amount of signal being produced at the focal contacts. The signal is
produced when a complex activates and then releases:

f = αkr(n+(t) + n−(t)). (7.7)

Now, we know that the populations on the negative and positive edge are equal in
equilibrium. Therefore, the idea is that the threshold for mobility must only be reached
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in a fluctuation. Writing the populations as

n±(t) = ⟨n±⟩ + σ±(t), (7.8)

we can write down the condition for mobility to leading order in the small displacements
σ:

αkr(⟨n+⟩ + ⟨n−⟩)|σ+(t) − σ−(t)| > fres, (7.9)

or, more compactly,
|σ+(t) − σ−(t)| > fres

feq
, (7.10)

where feq = αkr(⟨n+⟩ + ⟨n−⟩) is the equilibrium overall force on the cell.
This is a first passage problem. To solve it, we will need to work out the magnitude

of population fluctuations for given ka and kr. First, one can apply the kinetic equations
for a small initial displacement from equilibrium:

∂n(t)
∂t

= −krn(t) + ka

(
N

2 − n(t)
)

(7.11)

=⇒ ∂σ(t)
∂t

= −(kr + ka)σ(t). (7.12)

This makes sense: fluctuations are flattened by both the forward and backward processes.
To account for fluctuations in the contact populations, we can add a stochastic term:

σ̇(t) = −(kr + ka)σ(t) + η(t), (7.13)

and assume that η(t) can be well approximated as a Gaussian white noise term, ⟨η(t)⟩ = 0,
and ⟨η(t1)η(t2)⟩ = Γδ(t1 −t2). This is reasonable, as I think it is likely that the correlation
function of the noise will look roughly like ⟨η(t1)η(t2)⟩ ∝ exp[−(kr + ka)|t1 − t2|], so
as long as we are interested in timescales much longer than the reaction times of focal
attachments, then it is a reasonable approximation.

All that remains is to calculate the constant Γ is. We can write the solution for σ(t):

σ(t) = σ(0)e−(kr+ka)t +
∫ t

0
e−(kr+ka)(t−t′)η(t′)dt′, (7.14)

and, following the usual methods, we can find the mean square deviation of σ(t):

⟨σ2(t)⟩ = σ2(0)e−2(kr+ka)t +
∫ t

0

∫ t

0
e−(kr+ka)(2t−t′−t′′)⟨η(t′)η(t′′)⟩dt′dt′′ (7.15)
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and so at long times,
⟨σ2(t → ∞)⟩ = Γ

2(kr + ka)
= ⟨∆n2⟩. (7.16)

The long time variation in σ should be equal to the variation in the equilibrium population
of focal contacts. Assuming the distribution of n should be Poisson, in which case, the
variance is equal to the mean:

⟨∆n2⟩ = N

2(1 +K−1
eq ) . (7.17)

In this case, we can quickly write down the strength of the fluctuations Γ:

Γ = 2(kr + ka)
N

2(1 +K−1
eq ) = Nka. (7.18)

Now, the difference between the deviations, ∆σ(t) = σ+(t) − σ−(t), obeys a Langevin
equation

∆̇σ(t) = −(kr + ka)∆σ(t) + η+(t) − η−(t) = −(kr + ka)∆σ(t) + η(t), (7.19)

where the combined noise term has zero mean and a correlation function that is the sum
of the two processes in quadrature:

⟨η(t)η(t′)⟩ = 2Nkaδ(t− t′). (7.20)

To ask the question of the mean first passage time out of the interval {−fres/feq, fres/feq}
is the same as asking the probability of escaping at ∆σ(t) = −fres/feq with a reflecting
barrier at zero, because of the symmetry of the process about zero. Thus, we have written
down our problem in a way that it can be solved using the backward Fokker-Planck
approach.

One important feature that is missing from this treatment is the onset of persistence.
Once a cell starts moving, there is a period of persistence before another change of
direction. It could be that the rates of attachment and release vary at each side of the
cell while it is moving, and it becomes harder to fluctuate out of the new equilibrium
position. However, if the population of sensors shifts to this new equilibrium position
relatively slowly (i.e. if the rates of the two processes change over a sufficiently slow
period of time), there may be a few events that happen before the new equilibrium is
reached, effectively keeping the cell in an ‘unstable’ mode of movement, rather than a
persistent mode. Accounting for such rich biological behaviour in our models requires
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new innovative theoretical approaches - it may well be impossible to describe cells well
using a Markov process.

The work on cell mechanosensing and motility has occupied much of my consciousness
over the two years, and as such I have several ideas relating to it. However, the
other aspects of the work covered in this thesis are not without their own stories. One
interesting problem in a similar vein to the problem of multiple receptor binding addressed
in Chapter 5 is the problem of flagellar assembly in bacteria. These flagellar are made
up on individual sub-units, that must be taken from the inside of the cell, to the tip of
the growing flagella. One mechanism suggested is that subunits are fed into the flagella,
and bind together, being pulled up from the top to the site of sub-unit assembly. The
kinetics of how they bind together, given the constraint of a narrow tube, is one in which
it might be useful to consider a similar approach to that taken in Chapter 5. Some of
the work that I am most excited about in the future is that of the microswimmers in
obstacle lattices. As discussed in Chapter 6, there is the potential to try and pinpoint
how we should write down the Fokker-Planck equation for these systems, with these
spatially-varying microfluidic lattices. Indeed, there is experimental work being done now
by Theresa Jakuszeit, with the hope to having some results later this year. Particularly
in these active matter systems, there is still a relative scarcity of experimental results,
and so it will be a pleasure to work on the project, and see if the theory works out
in practice. These methods could also be applied to cells (perhaps in a temperature
gradient), to see if they observe similar Fokker-Planck equations.

The experimental test of theory is a cornerstone of science, and worked now as a
theoretician through the course of the last three years, it has become clear to me that
biophysics needs a good alloying of both experimental and theoretical methods. It is
exciting that many of the problems I have tackled in this thesis can be directly compared
against experiment. However, from what I have experienced so far, there is a feeling
among some that such theoretical methods may often be too reductionist for messy
biological systems. My own view is that where biophysics exists as a tool to try and
tackle specific questions, such as the roots of certain pathologies in biology, this is to an
extent true – we can not have that much to say about the mis-expression of a gene, for
example. However, where we seek to try and understand biology more generally, and
look for the principles underlying form and function, we should try and retain the eye
for a simple and intuitive picture, or risk missing the essential physics of life. It is a
theoretical biophysicist’s mission then, to not only seek to do this, but to speak with
experimentalists, and convince them that such an approach is not futile.
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